
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Erik Arne Huso

Generative Adversarial Networks for
Seismic Interpretation

CycleGAN: A novel approach

Master’s thesis in Industrial Mathematics

June 2020

Erik Arne Huso

Generative Adversarial Networks for
Seismic Interpretation

CycleGAN: A novel approach

Master’s thesis in Industrial Mathematics
Supervisor: Jo Eidsvik
Co-Supervisors: Kenneth Duffaut and Luc Alberts, IGP
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Summary

Seismic interpretation workflows are a crucial part of oil and gas exploration projects.
Even though advances in deep learning research have made it possible to simplify some of
the workflows, much of the work is manual, tedious, and time-consuming, despite being
trivial.

In this thesis, we apply a deep learning method to a seismic interpretation use case
in order to further optimise and automatise it. More specifically, we use a Generative
Adversarial Network to build a geological macro model based on a given seismic volume.
We do this by turning the problem into a domain translation problem, translating seismic
data into a representation of the main features of the geological structures present.

We improve a state-of-the-art, semi-supervised domain mapping method, the cycle-
GAN, by adding a customised penalty term to its objective functions. By minimising the
distance of the autocorrelation of the generated image and a reference image, we can
increase the interpretation quality by reducing the amount of noise present in the predic-
tions. Quantitatively, we reduce the MSE by 21.5%. We further test the capabilities of this
modified model by generating a macro model based on real seismic data from the Dutch
F3 block dataset. The results are promising, showing that the model indeed is capable
of building a decent macro model, given that it is trained well enough. Compared to an
analogue, manual process, this vastly reduces the time spent.

We do extensive analysis on how model performance is affected by more or less train-
ing data, and similarly how longer training sessions enhance interpretation quality. We
find that both more training data and longer training contribute to making the quality of
the macro model better. Using a larger dataset may increase accuracy by as much as
30.9%, while also increasing training time by approximately 170%. Conversely, there can
also be concluded that even if the size of the training dataset is small, longer training can
compensate for this, and vice versa.

i

Sammendrag

Arbeidsprosesser der tolkning av seismikk inngår, er en nødvendig del av prosjekter der
olje- og gassforekomster oppdages. Selv om nylige fremskritt i forskningen rundt dyp
læring har gjort det mulig å forenkle noe av arbeidsflyten, er mye av arbeidet fortsatt
manuelt, langtekkelig og ressurskrevende, til tross for at arbeidet er trivielt.

I denne oppgaven bruker vi en dyplæringsmodell til å tolke seismikk for å automatisere
og optimimalisere arbeidet. Mer spesifikt så brukes et Generative Adversarial Network til
å konstruere en geologisk makromodell basert på et gitt seismisk volum. Vi gjennomfører
dette ved å gjøre om problemet til et domene-overføringsproblem, der vi gjør om seismikk
til en modell som viser de viktigste geologiske strukturene tilstede.

Vi forbedrer en av de mest avanserte og beste modellene som bruker en form for
halvveis veiledning i domene-overføring, cycleGAN, ved å legge til et tilpasset straffeledd
til dens tapsfunksjon. Ved å minimere avstanden mellom autokorrelasjonen til et generert
og et referansebilde, kan vi forbedre bildekvaliteten ved å redusere forekomsten av støy.
Kvantitativt så finner vi at MSE reduseres med 21.5%. Videre tester vi denne modifiserte
modellen ved å generere en makromodell basert på ekte seismikk fra det nederlandske
F3 blokk-datasettet. Resultatene er lovende, og viser at vår modell er kapabel til å kon-
struere en god makromodell, gitt at den trenes nok. Sammenlignet med en analog manuell
prosess, reduseres tiden brukt kraftig.

Vi gjør omfattende analyse på hvordan modellens prestasjoner avhenger av hvorvidt vi
bruker mindre eller mer treningsdata, og også hvordan prestasjonen forbedres ved å trene
lenger. Vi finner at både mer treningsdata og lenger trening er med på å forbedre kvaliteten
i de genererte bildene. Ved å bruke et litt større datasett til trening kan nøyaktighet
forbedres med 30.9%, mens tiden det tar å trene øker med 170%. Samtidig kan det kon-
kluderes med at lenger trening kan kompensere for mindre treningssett, og omvendt.

i

Preface

This thesis concludes my Master of Science degree in Industrial Mathematics at the Nor-
wegian University of Science and Technology (NTNU), with a specialisation in statistics.
It has truly been five magnificent years, and I am thankful for all the knowledge and expe-
rience I have been privileged to accumulate during this time. Furthermore, I am grateful
for having had the opportunity to study abroad. Experiencing new places and cultures is
indeed the key to the enrichment of one’s life.

I want to thank my supervisor, Jo Eidsvik, for our productive meetings and guidance,
answering my countless number of mails, and for quick adaption when everything changed
in March. I would also like to thank my co-supervisors, Kenneth Duffaut and Luc Alberts
from the Department of Geoscience and Petroleum, for providing me with a different view
on the problem, thus challenging me to look at it from several angles.

Further, I would like to thank my girlfriend, Veronika, for supporting me through thick
and thin. These five years would not have been the same without you. Lastly, I would
like to thank my friends and family for their support throughout the years, and my fellow
students for all the good times.

Trondheim, June 2020
Erik Arne Huso

ii

Table of Contents

Summary i

Sammendrag i

Preface ii

Table of Contents iv

List of Tables v

List of Figures ix

1 Introduction 1

2 Literature Review on GANs 5
2.1 Related GAN models . 5
2.2 Papers on deep learning methods for seismic image data 6
2.3 Papers discussing different loss functions 7

3 Background on Seismic Data 9
3.1 Introduction to seismic . 9
3.2 Reflection seismology . 10
3.3 Data . 14

3.3.1 Synthetic data . 14
3.3.2 Netherlands Offshore F3 block 18

4 Generative Adversarial Networks 21
4.1 Fundamental deep learning theory . 21

4.1.1 Activation functions . 22
4.1.2 Learning process . 23
4.1.3 Convolutional Neural Networks 26
4.1.4 U-Net . 28

iii

4.2 Introduction to GANs . 29
4.2.1 Definition and mathematical description 30
4.2.2 Game theory . 34
4.2.3 Training GANs . 35

4.3 CycleGAN . 38
4.3.1 Definition and mathematical description 39
4.3.2 CycleGAN algorithm . 41

4.4 Model architecture . 41

5 CycleGAN with Additional Penalty Term 43
5.1 Theory . 43

5.1.1 Covariance penalty . 43
5.1.2 Correlation penalty . 44
5.1.3 Kullback-Leibler Divergence penalty 45

5.2 Results . 46
5.2.1 Evaluation metrics . 46
5.2.2 Covariance penalty . 48
5.2.3 Correlation penalty . 50
5.2.4 Kullback-Leibler Divergence penalty 52

5.3 Summary . 55

6 Results 57
6.1 Initial results and tuning of hyperparameter 58
6.2 Rich versus sparse data . 59
6.3 Training length . 64

7 Discussion 67
7.1 Main remarks . 67
7.2 Value of model in practical use . 71

8 Conclusion 73

Bibliography 75

Appendix 81

iv

List of Tables

6.1 MSE values for the four cases. 61
6.2 Jaccard index values for the four cases. 61

v

vi

List of Figures

1.1 Examples of what a GAN imagines would be the visual representation of a
celebrity. These people do not exist. Image reproduced from Karras et al.
(2018). 2

3.1 An illustration showing how an incoming wave is reflected and refracted
with different wave amplitudes dependent on the properties of the two
layers. The interface between the two layers is the horizon. 10

3.2 An example of how a RC (reflection coefficient) model in a convolution
with a wavelet is used to produce a (synthetic) seismic trace. The RC
function shows the different reflection coefficients as a function of depth,
and as how the stratigraphy varies. 12

3.3 The illustration shows the relationship between forward and inverse mod-
elling. Figure reproduced from Nanda (2016). 13

3.4 A 2D excerpt of seismic 3D data from the Aasta Hansteen area in the
Norwegian Sea. 13

3.5 Visualisation of how the synthetic seismic trace is constructed. The amount
of noise added is high. 15

3.6 The image shows a 2D cross section of a geological model including
subsurface structures we would like the deep learning model to discover.
Specifically horizons, faults and pinch-outs. 16

3.7 Model and belonging seismic data. Different layers of model displayed
with different colours. 17

3.8 A 3D view of the geological model of the F3 block. Figure reproduced
from Alaudah et al. (2019). 18

3.9 . 19

vii

4.1 An example of a simple feedforward neural network. In this network, the
input layer (in yellow) with input vector x = [x1, x2, x3]T are connected
to a single output (in green) through two hidden layers, displayed in light
blue. Weight matrices W1,W2 and W3 links the neurons together. More-
over, f and O are predefined activation function for the hidden layers and
the output, respectively, and a is the activation outputs from the hidden
layers. The network also uses bias, b, to adjust the outputs to give a best
possible fit. Here, b is the same everywhere, but different bias values for
each neuron is also possible. 22

4.3 Example showing how max pooling works. 28
4.4 Architecture of the UNet. It consists of two main parts: a contracting path

and an expansive path. In the contractive phase, spatial image informa-
tion is reduced while feature information is increased. In the expansive
phase, feature and spatial information is combined to propagate context
information to a higher resolution. Figure reproduced from Ronneberger
et al. (2015). 28

4.5 A high-level sketch showing the architecture of a standard GAN. The Gen-
erator generates images as close to the target as possible, while the Dis-
criminator tries to separate generated images from the real training sam-
ples. 29

4.6 Plot showing the trajectory of simple GD for the value function V (x, y) =
xy. It will orbit the equilibrium solution at x = y = 0 at a constant radius. 37

4.7 The cycleGAN architecture. The model consists of two separate GANs,
mapping images from opposite domains. Figure reproduced from Wang
and Deng (2018). 39

5.1 A figure illustrating how the basic cycleGAN occasionally makes predic-
tions that are noisy. Notice the area in the upper left part of the predicted
image. 44

5.2 Comparison of accuracies of baseline model (without any additional penalty
terms) and a model where a covariance distance penalty is added. We ob-
serve how the MSE has sudden drops in the plots where additional penalty
is added. 48

5.3 MSE of model with additional penalty term trained for 300 epochs. . . . 49
5.4 . 50
5.5 MSE of the model accuracy where γ = 0.01 and γ = 0. The plots repre-

sents a mean of 10 simulations each, to get a more representative result. . 51
5.6 MSE of the model accuracy where n denotes the size of the training set.

Here, γ is set to 0.01 where correlation penalty is included. The data is
based on the mean of five simulations. 52

5.7 Comparison of model output with and without additional penalty term.
The model is trained for 50 epochs in all four cases and γ = 0 and γ =
0.01 respectively. 52

5.8 An illustration of how the KLD evaluates the distance in distribution of
histograms of a reference and a generated image. 53

5.9 . 53

viii

5.10 MSE of an average of 5 sessions with γK = 0.01 and γK = 0. The
reduction of MSE when KLD penalty is added is significant. 54

5.11 Comparison of model output with and without additional KLD penalty
term. The model is trained for 150 epochs in all four cases and γK = 0
and γK = 0.01 respectively. 55

6.1 A figure illustrating how we extract lines from a given volume. The light
blue area represents the seismic volume, while the light yellow planes in-
dicates evenly extracted 2D lines. 57

6.2 . 58
6.3 Model-generated outputs compared to its reference. The model is trained

for 150 epochs in both cases. 59
6.4 A figure illustrating how a prediction may differ from its true label. Green

pixels indicates areas where the difference between the generated label and
the actual label is bigger than some small threshold (here, 0.1 is used). . 59

6.5 A special case where the model tries to include more colours/horizons than
what is present in the seismic. 60

6.6 Model output after a training session of 60 epochs. 60
6.7 MSE for models trained on rich and sparse datasets. The rich dataset is

based on 20 inlines and 20 crosslines. The sparse dataset consists of 5
inlines and 5 crosslines. Complex seismic indicates the Eastern region,
while simple seismic indicates training and predicting on the Western re-
gion. 61

6.8 Comparison of model outputs after 50, 150 and 300 epochs, training on a
sparse and a rich dataset. 62

6.9 Comparison of model outputs trained on sparse and rich datasets for a
horisontal slice across the volume, at depth 210. 64

6.10 MSE for three sessions where the model is trained on a sparse dataset,
with a benchmark consisting of several sessions averaged into one where
no additional penalty term is included. 65

6.11 Comparison of model outputs after a various number of epochs. We com-
pare output from two different inlines. 66

7.1 Model output from a case where we train on complex seismic but predict
on simple seismic. The model is trained for 300 epochs. 68

7.2 Time plotted as a function of epochs for training sessions on a sparse and
a rich dataset. 70

ix

Chapter 1
Introduction

In a time where the industry faces some of the biggest challenges ever seen, with dropping
oil prices, a coming, necessary adaption to a greener world and general uncertainty of
what the future brings, the need of a digital transformation - the digital leap - is larger than
ever. The industry needs to ameliorate their workflows and increase profitability in current
and future projects. Digitalisation is viewed as one of the main solutions to overcome the
massive challenges.

The exploration phase of oil and gas (i.e. hydrocarbons) projects has always been an
extensive process, as there is high risk involved in investing in well drilling operations.
High confidence in possible prospects is required as the drilling operations are very costly.
At the same time, many of the workflows in the exploration phase are still highly manual
and thus expensive. Geoscientists are, for example, still highly involved in interpretation
procedures. Ultimately, the experience and knowledge of a geoscientist will always be
a crucial ingredient in the exploration process. But there are also parts in the current
interpretation workflows where human intervention is excessive. Making these parts fully
automatic could release resources that would be better spent elsewhere, for instance on
working with reducing emission footprints in the industry.

Technologies like machine learning (ML) are sets of tools that potentially can be -
and already are - applied to these certain problems to automatise and digitalise them. We
now experience a ”boom” in oil and gas industry where ML methods are applied to many
problems to simplify workflows. Many of these attempts turn out to be successful, proving
to be valuable assets in the industry. Deep learning, a branch of machine learning, is one of
the most popular sets of methods existing in this field today. Recent advances in research
here have led to several interesting new concepts. The research on how these concepts can
solve real problems like hydrocarbon exploration problems is ever-growing.

In this project, we apply one of these deep learning methods, a Generative Adversarial
Network (GAN), on an interpretation use case. We investigate how this method can be used
in creating a workflow for automatically picking the brightest horizon events in seismic
volume data, creating a geologic, three-dimensional macro model of the volume.

Since they first saw the light of day in 2014, GANs have gained vast amounts of pop-

1

ularity, and a rapid increase in various applications.
It has also been called ”The most interesting idea in machine learning in the last decade”

by artificial intelligence (AI) pioneer Yann LeCun1. GANs have shown to produce very
impressive and realistic results in image generating, and has been used in everything from
generating fake celebrity images (as seen in Fig 1.1) to medical imaging to image resolu-
tion enhancing and 3D object generation.

Figure 1.1: Examples of what a GAN imagines would be the visual representation of a celebrity.
These people do not exist. Image reproduced from Karras et al. (2018).

It is said to be making deep learning more human by letting the network create instead
of just predicting an output based on training data. It has a semi-supervised approach in the
sense that it tries to learn underlying features in sample images without any other supervi-
sion than being told how a target image could look like. Because of this it accommodates
powerful capacities, and together with the momentum it gets from the current GAN hype,
it is interesting to see if it can be used as a tool in oil and gas exploration.

The most popular applications seen so far have been related to image generation, for
instance in generating super-realistic human faces (Karras et al., 2018). But also image
translation, e.g. turning a photograph into artistic painting style or turning a satellite aerial
photograph into a map-like view (Isola et al., 2017), has become popular and demonstrated
the versatility of the GANs. In the seismic world, most of the research done on applying
these generative models have focused on seismic data reconstruction (Siahkoohi et al.,
2018), processing (Picetti et al., 2018) or to generate distributions for priors for geological
structures used in seismic inversion problems (Mosser et al., 2018a). In this project, we
reconstruct and further develop some of the work that was first performed by Mosser et al.

1http://yann.lecun.com/

2

http://yann.lecun.com/

(2018b). Here, they used a GAN to construct a subsurface geological two-dimensional
model based on seismic data input.

Initially, we will do this by using synthetic data, but the main aspect of the thesis will
be analyse model performance on real data. We will investigate how the model performs
given data of different degrees of complexity and varying training dataset size, and try
to expose and understand the weaker and stronger points of using such a model for a
task like this. We will also make new contributions to the deep learning research field by
improving the proposed GAN model using statistical methods. The proposed model we
use in this thesis is a so-called cycleGAN, a GAN model designed for image translation.
We perform analysis on a basic cycleGAN model by comparing model accuracy between
datasets containing relatively much data (rich datasets) and less data (sparse datasets), and
we measure how model performance varies with the length of training. We say relatively
here, as one of the strengths of the model we are using is that it is capable of generating
good quality output even when training set size is small.

We also seek to increase performance by implementing additional penalty terms to
the model, leading to more precision in model output predictions. Although some of this
has been done in previous research studies, such an extensive analysis study and further
development on the model itself has never been done before in this field.

Outline

Throughout this master thesis we will explain and investigate different aspects related to
the stated objectives. Below follows an outline of the contents of the thesis:

• Chapter 2 contains a brief summary of a literature survey performed in order to gain
knowledge and expand our view on topics related to that of this thesis.

• In Chapter 3 we present some basic theory on seismic data and seismic data pro-
cessing, as well as a brief review of the data we make use of in this thesis.

• In Chapter 4 we present some essential deep learning theory as well as an introduc-
tion to the theory of GANs along with some theoretical results. We also present the
cycleGAN framework.

• Chapter 5 concerns the work related to modifying the basic cycleGAN model. We
present the theory behind the penalty terms as well as the results from tests where
we apply them.

• Chapter 6 contains the results from applying our modified model on a real seismic
dataset.

• Chapter 7 contains a general discussion regarding the results from the previous chap-
ter and some reflections on the fitness of our model when applied to a real case.

• In Chapter 8 we draw a conclusion to what we have seen in this thesis and what
possibilities that lies in further research related to the subjects discussed.

An extended abstract based on the results of this thesis was also made and submitted
to the EAGE Digital2 2020 conference. The abstract can be found in the appendix.

2https://eage.eventsair.com/digital2020/

3

https://eage.eventsair.com/digital2020/

4

Chapter 2
Literature Review on GANs

During the preparation phase of this thesis, a literature review was performed. This was
necessary to gather knowledge, understanding and inspiration from subjects closely related
to and in vicinity of the topic of the thesis. GANs are a rather new field of research, hailing
from 2014, and facing a rapid growth of interest from the deep learning community. It is
therefore highly useful to explore what this new technology can do, and try to keep up
with the latest research conducted. The following sections provide a summary of the most
interesting findings from this survey.

2.1 Related GAN models
The amount of research conducted on GAN models after the first paper was published in
2014, has exploded and promising new technology is rapidly introduced. For the topic of
the thesis, we are interested in GAN models which can be utilised in domain mapping,
much like the original CycleGAN (Zhu et al., 2017). One of these new GAN successors is
the StarGAN (Choi et al., 2018), a unified GAN for multi-domain image-to-image transla-
tion. Despite this, only one generator is needed. The loss function of the generator consists
of the traditional adversarial loss, a domain classification loss and a reconstruction loss.
StarGAN is able to produce a high quality domain translation. Its successor, StarGAN
v2 (Choi et al., 2019) is also interesting, where the domain label is replaced by a domain
specific style code that can represent diverse styles of a specific domain.

There exists several interesting model approaches for domain translation. The Cycada
(Hoffman et al., 2018), is an alternative, cycle-consistent method which improves pixel-
level and low-level shifts. It represents a cycle-consistent adversarial domain adaptation
method that unifies cycle-consistent adversarial models with adversarial adaptation meth-
ods. AttentionGAN (Chen et al., 2018) is a method of unpaired image-to-image translation
using an attention-guided GAN. The method offers more stable GAN training and thus
improves performance. The paper explores attention masks and content masks so that
image backgrounds are better preserved and low-level features of the input is captured.
InstaGAN (Mo et al., 2019) proposes a method for multi-domain image translations. This

5

method also preserves background as well as improving the quality of instance-generated
segmentations. A paper by Jiang et al. (2019) explores how image-to-image translations
can be carried out using segmentation guiding. This approach makes the generated images
spatially controllable. The paper by Benaim and Wolf (2017) takes on a different approach
to one-sided image translation. By learning a mapping that maintains the distance between
a pair of samples, a one-sided mapping can be performed. More specifically, this is done
by using target domain identity and distance constraints.

In a paper by Shen et al. (2020) the focus is on improving the performance of the cy-
cleGAN model by improving the cycle-consistency objective. They show that the cycle-
consistency rule allows for non-unique mappings. By separating the loss functions be-
tween the transfer operations, higher accuracy in mapping is achieved. A paper by Fu
et al. (2019) introduces a one-sided unsupervised domain mapping model, building on the
cycleGAN model but including an extra geometry-consistent constraint. The loss can be
seen as a reconstruction loss that relies on a predefined geometric transformation function,
dependent on the problem. The Mind2Mind (Frégier and Gouray, 2019) model is based
on the principle of transfer learning, and the paper discusses how this can be applied in
GANs. It is shown that cases where transfer learning has been used, convergence is faster.
There are promising results, albeit little research has yet been conducted on the subject.
TempoGAN (Xie et al., 2018) is a generative model addressing the super-resolution prob-
lem for fluid flows. By combining temporal and spatial discriminators and customised
penalty terms the model is able to generate high-quality reproductions of fluid flows.

2.2 Papers on deep learning methods for seismic image
data

Mosser et al. (2018b) uses a cycleGAN model to perform inverse modelling on mostly
synthetic seismic data, and obtains some promising results. This shows that GANs may
be a suitable method for working with seismic data.

In the paper Seismic data interpolation using CycleGAN by Kaur et al. (2019), a mod-
ified cycleGAN model is used to perform seismic trace interpolation. The model is mod-
ified by adding a self-distance loss (also discussed in Benaim and Wolf (2017)), basically
comparing the left side of the generated image by the right side.

In Lu (2019), a summary of where the industry currently stands when it comes to
deep learning in seismic research is given. One example that is highlighted, is how GANs
are shown to provide impressive results in seismic trace reconstructions. In the paper by
Picetti et al. (2018), a method for improving seismic image processing using GANs is dis-
cussed. The aim of the paper is to develop a model that can produce a high-quality seismic
image from migrated seismic data. Enhancing seismic imaging quality is also discussed
in Lu (2019), where a neural network in combination with full waveform inversion is pro-
posed. The predictive abilities of a neural network is used to support the full waveform
inversion. The predictions from a neural network is used to correct and support the inver-
sion procedure so that a symbiosis between the two methods takes place. In Akhmadiev
and Kanfar (2019), GANs are used to compensate for lateral mispositioning of the images
and where the lack of a priori information of the velocity model is significant. Here, the

6

cycleGAN model architecture is slightly changed to increase seismic image defocusing
performance. In Cho et al. (2020), tracking horizons using a convolutional neural network
is discussed. The authors demonstrate how this can be more accurate than manual tracking
using conventional methods, and also with a small training dataset. Horizon tracking is
also discussed in Koryagin et al. (2020), but with additional focus on generalisation of the
method so that the trained network can perform well on a different type of seismic than it
was trained on. The network uses binary classification to detect horizons, using a specific
Dice coefficient loss function. In Wu et al. (2019) horizon tracking is demonstrated using
an encoder-decoder network. By treating each seismic trace as a 1D image, and by extract-
ing the low-level features that resembles reflectors the authors show that the method can
perform at least as well as when standard tracking methods are applied. In Huang et al.
(2005) the neural network property of local connection is utilised to extract reflectors from
seismic data through horizon linking. They use cellular neural networks, which are net-
works where only neighbouring neuron communicate with each other. An energy function
is applied to work as a constraint, helping the network detecting the horizons.

2.3 Papers discussing different loss functions
We have reviewed papers discussing conventional deep learning methods, but where the
objective functions are changed to enhance accuracy in the model outputs. In He et al.
(2020) a method for cell detection in cases where the data is only partially or incorrectly
labelled is proposed. A cycleGAN model is modified by adding a penalty term consisting
of the measure of the binary classified image multiplied by a background image - which
yields the desired information.

Nabian and Meidani (2020) propose a framework for using physics-driven regularisers
to train neural networks. The regularisers are constructed so that they help the network
avoid violating the constraints governed by the problem it solves. Physics-based regularis-
ers are also used in Pan et al. (2018) where they act as penalty in an image restoration
case. A measure of the difference between a physics-based mapping and the actual output
helps increase accuracy. In Yang et al. (2018) a GAN framework for solving stochastic
differential equations is discussed. The model learns not only from a training set, but also
from governing physical laws which works as further guidance in the training process. In
a paper by Hiasa et al. (2018), a modified cycleGAN model is used to generate medical
images used to aid in orthopedic procedures. The cycleGAN model is modified by adding
a gradient consistency loss in order to improve accuracy at image boundaries.

In Wu et al. (2020) and Yang et al. (2019), statistical and physical constraints are
added to the objective function to improve accuracy and convergence rate in modelling
chaotic dynamical systems. This is done by helping the generator to decrease weight space
so that the generator and the discriminator can be more synchronised in their learning.
The physical constraints are approximate physical conservation laws, while the statistical
constraints are a measure of the difference between the covariance structures of the data
distribution and the generated distribution.

7

8

Chapter 3
Background on Seismic Data

To get a better perception of the essence of this thesis, a basic understanding of seismic data
and seismic data processing is necessary. This chapter will contain a short introduction to
the subject, as well as a presentation of the data we later make use of.

3.1 Introduction to seismic
Seismic data analysis is a large field, including everything from seismic data acquisition,
seismic processing and seismic interpretation. We will not delve deep into many of these
subjects in this thesis, but interested readers can learn more about this in classic textbooks
like Exploration Seismology (Sheriff and Geldart, 1995). The use of seismic data is one of
the most crucial parts of today’s oil and gas exploration. With seismic data, geoscientists
can get a visualisation of the subsurface of the Earth through mapping of geostructures by
soundwaves. The process can be compared to how ultrasound is used in medicine, or how
marine vessels use sonar to navigate and detect objects.

A seismic survey is performed by emitting sound pulses into the subsurface. They
are reflected at different depths dependent on the contrast between the Primary- and Sec-
ondary wave velocity and density between the different rock layers. The waves move with
different speed, and primary waves are the fastest of the two. An interface, a bedding sur-
face or a sudden change in the lithology, is called a horizon. The crust of the Earth consists
of numerous horizons separating layers of different texture and characteristics from each
other due to evolution, weather and the dynamics of the Earth’s inside. Figure 3.1 shows a
horizon between two layers.

For offshore seismic surveys, sound pulses from seismic vessels are reflected back to
sensors either placed on the seabed or towed behind the vessel as cables. There are several
categories of surveys: two-dimensional (2D) surveys provide a relatively low-resolution
cross-section of the subsurface right beneath the sensor cable (the cross-section consists of
a vertical depth axis and a horizontal length axis), and is usually used in new exploration
areas as reconnaissance data. Three-dimensional (3D) seismic provides a more detailed
view, as it also includes a third spatial dimension (width) and is thus a volume. A 3D

9

seismic volume consists of 2D seismic inlines and crosslines, where crosslines are lines (or
slices) perpendicular to the direction in which the data was acquired, and inlines are lines
parallel to this direction. 3D data is often used in appraisal phases of the exploration, where
a more detailed view of the underground is needed, as 3D data offers a better resolution
of the spatial appearance of subsurface structures. Four-dimensional (4D) data consists of
stacks of repeated 3D surveys of the same area, and is mostly used to detect changes over
time in a hydrocarbon reservoir where production or injection is performed.

Figure 3.1: An illustration showing how an incoming wave is reflected and refracted with different
wave amplitudes dependent on the properties of the two layers. The interface between the two layers
is the horizon.

3.2 Reflection seismology
Seismic waves can be described as mechanical perturbations travelling in the Earth’s inte-
rior with a speed governed by the medium in which the waves are travelling. The seismic
velocity can be used to calculate the acoustic impedance of the wave, which is crucial
to further determine the reflectivity of the wave. The impedance is defined through the
relation

I = V ρ, (3.1)

where ρ is the density of the medium the wave is travelling through and its velocity V .
The velocity V can be either that of a P-wave (Vp) or that of an S-wave (Vs) depending on
the mode of interest. The resulting impedance would then be either P-impedance (VP ρ) or
shear impedance (VSρ).

When the wave hits an interface between two different materials with different proper-
ties, some of the wave energy will be reflected back to the surface while the rest is refracted
through. By generating these seismic waves and then measuring the time before they are
reflected back to the surface, one can reconstruct the pathways of the waves so that an
image of the underground can be built. See e.g. Yilmaz (2001) for more on this.

The amplitude of a reflected wave can be predicted by multiplying the amplitude of
the incident wave with a reflection coefficient, RC, which is found by looking at the

10

impedance contrast between the two materials:

RC =
I2 − I1
I2 + I1

, (3.2)

with I1 and I2 being the respective impedance of the media. To find the amplitude of the
refracted wave, the transmission coefficient, T = 1−R can be applied in a similar fashion.
By investigating the changes in the reflector strengths, changes in the seismic impedance
can be mapped, which in turn also can be utilised to infer changes in the properties of the
rocks, like density and elastic modulus. We will not cover this in further detail here, as
it is not directly relevant to the studies conducted in this thesis. In Figure 3.1 we see an
example of how a wave behaves when encountering an interface between two strata.

Forward modelling

Forward modelling of seismic data is used to create synthetic seismic data based on the
geological properties of a designated area. The synthetic seismic traces are compared with
real seismic data acquired in the field, to see if they agree. If the accuracy is within a given
tolerance, the geological model can be used as a reasonably accurate representation of
the underground. If not, the geological assumptions are altered and new synthetic data is
made. This happens iteratively until a satisfactory match is achieved. Forward modelling
can, in many ways, be seen as the opposite of inverse modelling, where the geological
model parameters are computed from real data. In both cases, the final objective is the
same: to determine the geological structure and lithology of the subsurface.

One essential part of forward modelling is the calculation of synthetic seismic traces.
There exist numerous methods for seismic modelling, and among the simplest ones for
calculating seismic traces are convolution-based models (Sen, 2006). In this method, the
seismic, ultimately a time series, S(x, t) is computed using an assumed source function
ω(t), a wavelet, in a convolution with the reflection function RC(x, t). This function shows
how the reflections vary with depth. This is based on the different reflection coefficients
R in the subsurface. From this, we get

S(x, t) = ω(t) ∗ RC(x, t), (3.3)

where x is the spatial location and t is the two-way vertical seismic travel time, the time it
takes for a wave to travel from surface and back after being reflected. A commonly used
wavelet is the Ricker wavelet (Ricker, 1953),

ω(t) = (1− 2π2ωmaxt
2)e−π

2ω2
maxt

2

, (3.4)

where ω(t) is the amplitude of the wavelet at time t and ωmax is the maximum frequency of
the wavelet. In Figure 3.2 we illustrate how the reflection function (to the left) is convolved
with a wavelet to produce a seismic trace, a single 1D representation of the seismic.

11

Figure 3.2: An example of how a RC (reflection coefficient) model in a convolution with a wavelet
is used to produce a (synthetic) seismic trace. The RC function shows the different reflection coeffi-
cients as a function of depth, and as how the stratigraphy varies.

Inverse modelling

Working with seismic data can in many cases be considered to be an inverse problem: to
develop an abstract model, in this case a model of the structure and properties of the Earth’s
crust, by using collected data and physical laws. Being an inverse problem also implicates
that the output usually is not unique, because more than one model may fit the data. It
therefore requires additional information to decide on an appropriate model. Knowledge
about the local geophysical and geological conditions is necessary to narrow down the
range of potential models. Inversion is an iterative process, where one tries to minimise
an objective function which says something about the distance between the estimated and
the ”true” model. The estimated model is based on acquired seismic data while the ”true”
model may be based on actual data from the subsurface, e.g. well logs (boreholes from
which rock property data is extracted). Then, the inversion parameters transforming the
seismic data are iteratively adjusted so that eventually a model that explains as much of the
properties of the subsurface area as possible, is found. This is analogous to minimising the
objective function. As previously described, this is in many ways the opposite of forward
modelling, and this relationship is illustrated in Figure 3.3.

Inverse problems are sensitive to errors, as many assumptions are being made in the
process, and great care must be taken when interpreting a seismic survey. Typically, the
recorded signals are subject to extensive preprocessing before they are ready to be inter-
preted.

12

Figure 3.3: The illustration shows the relationship between forward and inverse modelling. Figure
reproduced from Nanda (2016).

Seismic interpretation

Seismic interpretation is a key part of accumulating understanding and knowledge about
the subsurface of the Earth. The goal is to obtain a coherent geological story from pro-
cessed seismic reflection data. By tracing and correlating the continuous reflectors in 2D
or 3D seismic data, a basis for geological interpretation can be established.

Figure 3.4: A 2D excerpt of seismic 3D data from the Aasta Hansteen area in the Norwegian Sea.
Image reproduced from Norsk Petroleum 1.

An example of post-processed seismic reflection data is displayed in Figure 3.4 . The
aim of doing interpretations on images like this is to produce structural maps that represent

1https://www.norskpetroleum.no/en/exploration/seismic-surveys/

13

https://www.norskpetroleum.no/en/exploration/seismic-surveys/

the spatial variation in depth of certain geological layers and features, e.g. a geological
macro model. These models are important tools in identifying hydrocarbon deposits or
traps; locations where hydrocarbon reservoirs can be found. In Figure 3.6, two different
types of traps are illustrated, a fault and a pinch-out. A fault is an example of a strati-
graphic trap, which are formed as a result of the deposition in the sedimentary rocks. A
pinch-out is an example of a structural trap, formed as a consequence of some structural
deformation of rock layers. Being able to identify these structures can thus be an important
tool in hydrocarbon detection.

However, due to noise and processing steps, seismic images often are of low quality.
This leads to some extent of uncertainty in the interpretations and there is often more than
one solution that fits the data. Because of this, the need for human proficiency and pres-
ence in these interpretation workflows are necessary, as well as being crucial for obtaining
geological understanding and knowledge of the area of interest, prior to a possible well
drilling.

Extracting key horizons and surfaces is an important part of the interpretation work-
flow, but even though semi-automatic horizon tracking tools have been available since the
1990s (Harrigan et al. (1992); Leggett et al. (1994); Dorn (1998)) most of them still rely on
a certain amount of manual effort by a human. Setting so-called seed points (points from
which regions where correlation is high can be tracked) on target geological features, i.e.
horizons, so that the deterministic tracking algorithm can interpolate on nearby reflectors
with high correlation, must be done manually. The tracking is not fool-proof, so a manual
quality check for possible miscorrelations must be performed regularly. Some seismic also
needs reinterpretation. This may be the case if the seismic is reprocessed or if it belongs
to a 4D seismic dataset. Performing tasks like this on large amounts of seismic data is
tedious, subjective and time-consuming albeit being almost trivial.

With computational power being ever-increasing, data science makes room for new
methods for solving problems. This is also the case for problems related to extracting
information from seismic data. Although the standards of such solutions must be very
high, there are methods in the domain of machine learning that may meet them, as we
later in this thesis will see.

3.3 Data
In order to perform the experiments involved in this thesis we use both synthetic and real
data. The synthetic data is used in an initial phase, mostly in the penalty term exploration
phase. We use synthetic data here so that we can evaluate model performance on specifi-
cally customised seismic data. However, testing the final model with real data is the most
interesting part, and thus poses the main part of the results and analysis later displayed in
this thesis.

3.3.1 Synthetic data
For parts of this thesis, we have focused on creating synthetic subsurface models and seis-
mic data for initial testing of the modified deep learning model. For this, we have used
the principle of forward modelling on a synthetic subsurface rock model with artificial

14

density-velocity pairs for each of a predefined number of layers. Hence, by knowing prop-
erties like the density and the wave velocity through a layer, we can find the impedance
I and furthermore construct a reflection coefficient model. By using a convolution with
a wavelet (thus following the steps of Eq. 3.1 - 3.3) we can construct seismic data of the
subsurface model.

Figure 3.5: Visualisation of how the synthetic seismic trace is constructed. The amount of noise
added is high.

Figure 3.5 depicts two seismic traces. One where the Signal-to-noise ratio (S/N ratio)
is infinite, meaning that there is no noise present, and one where the S/N ratio is much
lower, i.e. a more noisy trace. We use seismic data with noise in this project in order to
imitate genuine data.

Specifically, in order to generate the synthetic seismic volumeM we first specify the
size of the lateral area. We fill this grid area with samples from a normal distribution
N(0, τ2). This area Sj forms the basis of a single layer j.

Depending on how many stratigraphic layers the volume contains (in these experiments
we generate and use a model with 4 layers), we add noise, η ∼ N(0, 1), to each of them
to create dissimilarities between them. We end up withM = {S1, ...,S4}. The layers are
then smoothed using a convolution with a Gaussian filter of the form

g(u, v) = e
−
(

u2

a + v2

b

)
. (3.5)

Here, u and v are spatial positions in Sj and a = b = 600 are positive constants controlling
the magnitude of smoothing. Using this smoothing approach leads to a volume where the
layers are similar to each other, but with certain individual characteristics. In this way, we
obtain more authentic data. The layer generating procedure for 3D cases is illustrated in
Algorithm 1.

15

Algorithm 1: 3D Interface
Result: Multiple 3D Interfaces
g is a Gaussian filter;
M = ∅;
m× n size of area of the layers;
for 1:# layers do

generate a 2D array Sj consisting of random values from N(0, τ2) in a grid of
size m× n;

add noise η ∼ N(0, 1) to Sj ;
convolve the grid Sj with g;
rescale Sj ;
add Sj toM;

end
return volumeM

The layers are placed at different depths in the three-dimensional matrix and for each
layer, the spatial coordinate of one specific entry denotes the depth of the layer at that
location. To finally generate synthetic seismic we follow the same steps as previously
described: the stratification is formed by using artificial (V, ρ)-pairs to form impedance.
Furthermore, we add independent noise, ε ∼ N(0, σ2) to the whole volume, to decrease
signal-to-noise ratio in the seismic and thus make it harder to interpret. Here, σ2 = 0.08
is used.

We also increase complexity by creating a fault plane on a layer, similarly to how
it is illustrated in Figure 3.6. We do this by ”lowering” a subsection of one of the two
mid-layers, creating a vertical fault plane.

Figure 3.6: The image shows a 2D cross section of a geological model including subsurface struc-
tures we would like the deep learning model to discover. Specifically horizons, faults and pinch-outs.

Additionally, a pinch-out is added. We modify the lowest layer by letting the first part
be a linear plane. When this plane intersects the interface higher up, we let the plane follow

16

this layer for the rest of the length of the section. In this way, we get a slightly simplified
version of the model displayed in Figure 3.6.

An inline of the resulting synthetic volume is displayed in Figure 3.7.

(a) Example of seismic data with moderate
amounts of noise, containing 4 reflectors, a
vertical fault plane and a pinch-out.

(b) Example of geological model. We ob-
serve that the model contains 4 stratigraphic
layers, a vertical fault plane and a pinch-out.

Figure 3.7: Model and belonging seismic data. Different layers of model displayed with different
colours.

17

3.3.2 Netherlands Offshore F3 block

When we have found an appropriate cycleGAN model setup, we will proceed to experi-
menting with real data. For this we use the F3 block dataset2 from offshore Netherlands.
This dataset is publicly available and is widely used for experiments related to machine
learning implementations. In addition to the original dataset we also use labelled data pre-
pared by Alaudah et al. (2019). The labelled 3D model is based on 26 well logs as well as
the provided 3D seismic data.

The Netherlands F3 dataset is a seismic survey (made by using acoustic impedance) of
about 384km2 in the Dutch offshore portion of the Central Graben basin in the North sea.
The survey was acquired in 1987. From Figure 3.8, we can see that the volume consist
of several geological structures, both horizontally and vertically. In this project, these are
the main structures, or rather the horizons separating them, that we try to identify. In this
thesis, we will divide the block into two regions: the Western and the Eastern region. The
Eastern region is characterised by more complex structures, while the Western is of a more
simple form.

Figure 3.8: A 3D view of the geological model of the F3 block. Figure reproduced from Alaudah
et al. (2019).

An excerpt showing both a seismic and a labelled inline is shown in Figure 3.9. The
excerpt is showing a part of the Eastern region of the volume.

The labelled dataset is created by using dedicated modelling software (Petrel3). Some
built-in functions are used in the processing: seeded 3D autotracking is used to interpret
the horizons. A polygon editing tool is used to interpret the main fault surfaces and fault
networks. Based on the interpreted faults and horizons, preliminary modelling is con-

2https://terranubis.com/datainfo/Netherlands-Offshore-F3-Block-Complete
3https://www.software.slb.com/products/petrel

18

https://terranubis.com/datainfo/Netherlands-Offshore-F3-Block-Complete
https://www.software.slb.com/products/petrel

(a) Seismic inline from the Netherlands F3 block dataset.

(b) Labelled inline from the Netherlands F3 block dataset.

Figure 3.9

ducted using horizon modelling. Finally, the structural modelling module is used to create
the 3D geological model, as seen in Figure 3.8.

19

20

Chapter 4
Generative Adversarial Networks

This chapter will cover the theory behind some of the models this project seeks to utilise,
as well as some essential deep learning theory. In the first section we will present some
general deep learning theory around concepts like neural networks, both structurally and
how they learn. Further, we introduce the basic GAN with some theoretical results and
lastly the cycleGAN, explaining the structure and how it functions.

4.1 Fundamental deep learning theory
An Artificial Neural Network (ANN or simply NN) is a computational system inspired by
how neurons in the human brain work in a learning process. Modelling the behaviour of
neurons was first performed in the 1940s (McCulloch and Pitts, 1943), and the first, simple
neural network - the Perceptron - was introduced in Rosenblatt (1958). But it is not until
the last few decades that the concept has gained popularity, due to processing power finally
reaching an acceptable level.

Most of today’s ANNs consist of interconnected groups of nodes, organised in one
or several layers usually forming a directed, weighted graph. The weights dictate the
relative importance of the relationship between two nodes. Each node is representing a
neuron, which receives an input (usually weighted information from the preceding layer),
combines this with its internal state (an activation function) and produces an output, which
is sent to the connected neurons in the succeeding layer. A somewhat simplified output ak
of one neuron k can be summarised by

ak = φ (wT

kx+ b) , (4.1)

with wT

kx being the dot product between signals (outputs) x from connected neurons from
previously in the graph and their belonging weights wk, b is the bias and φ some activation
function (further explained in the next section). Networks with this directed, acyclic graph
architecture are called feedforward neural networks (Zell et al., 1994). Such a network is
visualised in Figure 4.1.

21

Figure 4.1: An example of a simple feedforward neural network. In this network, the input layer
(in yellow) with input vector x = [x1, x2, x3]

T are connected to a single output (in green) through
two hidden layers, displayed in light blue. Weight matrices W1,W2 and W3 links the neurons
together. Moreover, f and O are predefined activation function for the hidden layers and the output,
respectively, and a is the activation outputs from the hidden layers. The network also uses bias, b, to
adjust the outputs to give a best possible fit. Here, b is the same everywhere, but different bias values
for each neuron is also possible.

4.1.1 Activation functions

The activation functions in ANNs are inspired by how the rate of action potential that is
released from an actual neuron cell varies in a biological neural network. Without activa-
tion functions, ANNs would just be linear mapping functions, as the only mathematical
operations in the network would be dot-products between a weight matrix and an input
vector. In order to make the network capable of solving more complex tasks, non-linearity
in the form of activation functions are introduced.

In its simplest form, the activation function would be binary: the neuron is either
activated or not activated, based on whether the input value to the neuron is below or
exceeds a given threshold. However, for NNs applied to nontrivial problems, one would
prefer to use a more complex non-linear activation function. In many cases, it is necessary
to shift the activation function either to the right or to the left in order for the network to
successfully learn. In these cases we add a constant term, the bias. This is analogous to
adding the constant term b to a linear function f(x) = ax+ b to get a better fit to the data.

There exists a variety of different activation functions, based on which use it is desig-
nated for. For output layers, sigmoid and softmax functions are among the most common
choices. These functions return values between 0 and 1 and are thus well-suited for clas-
sification tasks. The sigmoid function,

S(x) =
1

1 + e−x
, (4.2)

is usually applied in binary classification tasks, while softmax is more often used when
there are more than two classes involved. It is defined as

σ(z)i =
ezi

∑K
j=1 e

zj
, (4.3)

22

where K is the number of classes and the index i denotes the probability for class i.
For hidden layers, the tanh function is often used:

tanh(x) =
2

1 + e−2x
− 1. (4.4)

However, the arguably most popular activation function for hidden layers is called rectified
linear unit (ReLU) (Hahnloser et al., 2000), and is defined as

f(x) = max{0, x}. (4.5)

A general problem with activation functions like the sigmoid and the tanh function is that
they are saturating functions, meaning that they have finite upper and lower bounds. As
we later will see, training NNs involves finding gradients in order to update the weights
between the layers. The saturating functions will have a very small gradient everywhere
but in the middle of their range, which makes the weight updates difficult when input
values are outside of this narrow range. This is called the vanishing gradient problem
(Hochreiter et al., 2001). ReLU is preferred as an activation function because it only
saturates in one direction, and has a constant gradient in the other direction, in addition to
being a simple function and thus computationally efficient. Because of these properties,
ReLU in many cases reduces time until convergence in NNs (Krizhevsky et al., 2012).

There exists numerous activation functions based on the ReLU. A popular alternative
is the leaky ReLU (Maas et al., 2013), defined as

f(x) =

{
x, if x ≥ 0

αx, otherwise,
(4.6)

where α usually is equal to 0.01. This activation function prevents cases where the original
ReLU would return gradients of value 0 and thus resulting in learning being stopped.

4.1.2 Learning process
Learning in NNs happens through iterative adjustment of the weights connecting the neu-
rons, e.g. by using a technique called backpropagation (Rumelhart et al., 1988). The
output of the network is compared to the labels of the data through some predefined cost
function, C, with the intention of minimising the difference iteratively. Hence, to train a
NN, a training dataset is necessary in order to teach the network what its output should
look like. A commonly used cost function is the quadratic cost, defined as

C =
1

2N

N∑

i=1

(
yi − aLi

)2
, (4.7)

where y is the labelled output, aL is the prediction from the network and N is the number
of individual training samples i. The outputs might be scalar, as here, but can also be
vectors. To be used in backpropagation, the cost function must be able to be written as
an average over cost functions Ci for individual training samples. For classification tasks,

23

the cross-entropy is a commonly used alternative to the quadratic cost, which we will also
return to later in this thesis.

The difference between the labels from the training data and the predictions is called
the loss, and is essentially the errors the network makes. This error is fed back through
the layers, from last to first, and the corresponding weights are adjusted to reduce the
error. After repeating this training cycle, called an epoch, for a sufficiently large number
of times, the error usually converges to some constant state and the network can be said to
have learned a certain target function.

More specifically, backpropagation evaluates the total derivative of the cost function
as a product of the derivatives between every layer, from last to first, hence the term back-
wards propagated error. The derivative is in turn used in an optimisation procedure to
minimise the cost function C. Since we wish to monitor how the weights influence the
error, we work with the gradients of the cost function with respect to the weights, W .

In a feedforward NN, the only way a weight in a layer l affects the loss is through the
effect it has on the next layer l + 1. This effect is linear, and by letting δlj = ∂C

∂zlj
denote

the gradient of the error of neuron j in layer l, we can compute the gradient of each layer
recursively, starting from the last layer, L. For weights between layer l− 1 and l, we have
the vector of weights W l

j = (wljk)mk=1, where wljk is the weight between the k-th node in
layer l − 1 and j-th node in l, and there is m nodes in layer l − 1. We let

δLj =
∂C

∂aLj
f ′(zLj) (4.8)

and
δl−1 = (f l−1)′(W l)T δl, (4.9)

where aLj is the j-th activation output and f is an activation function. We have here defined
zlj := (W l

j)
Tal−1 + blj , where blj is the bias of the j-th neuron in the l-th layer, n is the

number of weights in l − 1. By using e.g. the chain rule, it can be shown that

∂C

∂wljk
= al−1k δlj and

∂C

∂blj
= δlj . (4.10)

The gradients are then used in an optimisation algorithm in order to minimise the cost,
C, and thus learn i.e. improve the predictions on a given task.

Optimisation algorithms

Optimisation involves finding the maximum or minimum of a real function by a systematic
and repeated procedure of choosing an allowed input and calculating the resulting function
value. A well-known optimisation algorithm is the gradient descent (GD), originally pro-
posed in 1847 (Lemaréchal, 2012). It is a simple, first-order iterative algorithm for finding
a local minimum of a differentiable function.

The algorithm is based on the observation that for a defined and differentiable function
F (x) in a neighborhood of a point a, F (x) decreases fastest in the direction of the negative
gradient in that point, −∇F (a). Based on this, one can establish an iterative procedure to
find the local minimum:

x← x− ηk∇F (x), (4.11)

24

where ηk denotes the step size, or learning rate, at iteration k. Usually, the learning rate is
kept constant.

An algorithm that is very popular in training deep learning models is stochastic gradi-
ent descent (SGD), a stochastic approximation of the gradient descent algorithm (Robbins
and Monro, 1951). It is well-suited for problems involving large amounts of data, because
of its computational efficiency. Instead of calculating the gradient of the entire dataset, it
estimates the gradient through using a smaller subset of the data. For an objective function
on the form

Q(w) =
1

n

n∑

i=1

Qi(w), (4.12)

where n is the number of observations in a data set and Qi is the value evaluated at the
i-th observation. We pick a mini-batch Bk ⊆ {1, ..., n}, of the indexes of the observations
with size |Bk| = m � n. For true SGD the size of this subset is 1. We can describe the
iterative procedure at iteration k as

w ← w − ηk
1

m

∑

i∈Bk

∇Qi(w), (4.13)

where Bk is the sampled mini-batch at step k and m is the size of the subset. The full
dataset is shuffled, and the m samples are drawn randomly. Using m > 1 helps reduce
variance (since more data is used to compute the estimate). However, the larger the mini-
batch is, the more computation time increases.

Optimisation algorithms for deep learning models is an active research area. One of the
new and promising algorithms that have challenged algorithms like SGD is Adam (Kingma
and Ba, 2014). Adam is an abbreviation for Adaptive Moment Estimation, and it utilises
both averages of gradients as well as second moments of the gradients iteratively. For
given parameters w(i) and loss function L(i) at step i, the parameter update is given by the
following equations:

m(i+1) ←β1m(i) + (1− β1)∇wL(i)

v(i+1) ←β2v(i) + (1− β2)
(
∇wL(i)

)2
,

(4.14)

with m and v being first and second moment estimate vectors respectively, with initial
values m(0) = v(0) = 0. Furthermore, β1, β2 ∈ [0, 1) are forgetting factors (exponential
decay rates for the moment estimates). The first and second moments are defined as

m̂ =
m(i+1)

1− βi+1
1

v̂ =
v(i+1)

1− βi+1
2

,

(4.15)

so that the weight updates will be

w(i+1) ← w(i) − η m̂√
v̂ + ε

, (4.16)

where η is the learning rate and ε a small number to prevent dividing by zero.

25

4.1.3 Convolutional Neural Networks
One of the most important classes of NNs are Convolutional Neural Networks (CNNs)
(LeCun et al. (1998); Krizhevsky et al. (2012)). CNNs are widely used in visual image
analysis, natural language processing and recommender systems (Bhandare et al., 2016).

Receptive field

Convolutional networks are inspired by biological processes, i.e. how neurons are organ-
ised to resemble the system in the visual cortex of animals. Individual cortical neurons
only respond to stimuli in a certain region of the visual field which leads to eventually
splitting the image into several, smaller parts. This is mirrored in these NNs, where ev-
ery neuron receives input from a restricted subarea, usually a square shaped area, of the
previous layer. This is called the receptive field of a neuron. Applying this philosophy
into CNNs is a part of the reason why these networks are well-suited for image processing
tasks.

Convolutional layers

CNNs may consist of regular, fully connected layers (layers where neurons receive input
from every single neuron in the previous layer), but they mainly consist of convolutional
layers: layers where the neurons receive input from a restricted subarea of the previous
layer (the receptive field), so that only the local relationships of the input are examined.

A convolutional layer, or a convolutional filter, consists of one or several kernels. A
kernel is essentially a matrix consisting of a numbers forming a distinctive pattern, used to
detect e.g. low-level features in a target image. A kernel for detecting edges in an image
could be:

0 1 0
1 −4 1
0 1 0

During a regular forward pass in a CNN, the kernels are convolved (in practice a sliding
dot product) across the width and height of the input. For a kernel K of shape M ×N , the
generated output of the layer, a feature map F , would look like

F (i, j) = I(i, j) ∗K =

M∑

m=1

N∑

n=1

K(m,n)I(i−m, j − n), (4.17)

for each element of F and where I is the input image. The process is illustrated in Figure
4.2. As in ordinary NNs, we introduce non-linearity through activation functions. The
output from the convolutions is passed through an activation function for each receptive
field, i.e. a layer of activation functions, like the ReLU function.

The kernel weights are learned as in ordinary NNs - usually through the backpropa-
gation algorithm, and results in the network learning filters that activate when it detects
a certain type of features at a specific spatial position in the input. As one moves deeper
into the network, the filters learn to detect more complex patterns as feature outputs from
previous layers are combined.

26

Figure 4.2: Example showing how a convolutional operation in a convolutional layer works. The
input image I is here convolved with the kernel K to produce the output on the right. Figure
reproduced from Hossain and Sajib (2019).

Utilising the receptive field in the layer structure helps reducing the number of pa-
rameters greatly, which facilitates building deeper networks (more hidden layers) without
overfitting. Overfitting would mean producing output that is too similar to a particular
set of (training) data so that prediction accuracy when facing unseen test data is greatly
reduced. The reduced size of parameters also helps resolving the problem of vanishing or
exploding gradients seen in ordinary NNs, as well as speeding up computations.

By using kernels, the layer is also able to reduce the dimensionality and compress the
image. How much the spatial dimensions are reduced in the layer is controlled by several
hyperparameters, e.g. stride, which controls how many pixels the filters jump when it
slides around. In some cases it is convenient to pad the input volume with zeros on the
border. This is called padding, and the padding hyperparameter controls the output spatial
volume.

Pooling

Another frequent tool used in CNNs is called pooling. This is a method of down-sampling:
lowering the resolution of the input, but keeping the most important structures. Intuitively,
this is because the exact location of a certain feature is of less importance compared to
the location relative to other features. This is useful in order to reduce the number of
parameters in the network, and to reduce the risk of overfitting. It also makes the sample
more robust to changes in the location of the feature the (convolutional) layer is detecting.
Usually, the pooling layers are periodically placed between successive convolutional layers
in a CNN.

There are some specified pooling operations, usually maximum or average. Arguably
the most popular pooling technique is max pooling. Here, when the pooling operation is
performed, the input is down-sampled by only picking the maximum value of the patch.
A pooling layer is often added after a convolutional layer so that the pooling operation is
down-sampling the output from the convolutional layer. This is illustrated in Figure 4.3.

By utilising this architecture, the different layers learns to recognise specific shapes
or features in an image before merging all of these parts into a final representation. The
information the network now has concerning the input can then be further processed to
produce a desired output depending on the purpose of the network.

27

Figure 4.3: Example showing how max pooling works.

4.1.4 U-Net
A recent application of the CNN philosophy that has shown to perform well on image
segementation tasks, is the U-Net (Ronneberger et al., 2015). It was initially developed
to perform biomedical segmentation tasks, but has shown to exceed regular CNNs in a
variety of segmentation tasks due to its ability to convert an image into a feature vector
and from this, reconstruct a segmented image.

The architecture of the U-Net consists of three coherent sections. A contraction part
(called the encoder), an expansion part (the decoder) and a bottleneck connecting the two.
In the contraction phase the spatial information of an input image is reduced while its
feature information is increased through repeated convolutional layers (each followed by a
ReLU and a max pooling operation). Then, in the expansive phase, the spatial and feature
information is combined through a series of upsampling convolutions to reconstruct the
segmented image. The architecture of the U-Net is shown in Figure 4.4.

Figure 4.4: Architecture of the UNet. It consists of two main parts: a contracting path and an expan-
sive path. In the contractive phase, spatial image information is reduced while feature information is
increased. In the expansive phase, feature and spatial information is combined to propagate context
information to a higher resolution. Figure reproduced from Ronneberger et al. (2015).

28

4.2 Introduction to GANs

GANs are a branch of deep learning where the main objective is to map from latent space
to a particular data distribution of interest, often to generate some synthetic output, be it
images of people or art. More specifically, GANs are models combining a generative and
a discriminative approach to form an adversarial method, where the generative and the
discriminative methods oppose each other. It consists of a generative model whose aim is
to generate candidates that is as close to the targeted data distribution as possible, while a
discriminative model evaluates these and tries to learn which samples are real and which
are generated. When the generative model thus tries to cause the discriminative model to
make an incorrect prediction, it generates adversarial examples.

An analogue to this interaction could be the generator working as a con artist trying
to produce fake currency, while the discriminator would be a police investigator trying to
separate fake currency made by the con artist from real currency (Goodfellow, 2016). As
both the investigator and the artist learn from experience, their abilities to produce and
uncover fake currency increase. The competition between the two continues until the fake
currency is indistinguishable from the real. The GAN will then have reached convergence.
Figure 4.5 illustrates the architecture of such a network.

Figure 4.5: A high-level sketch showing the architecture of a standard GAN. The Generator gen-
erates images as close to the target as possible, while the Discriminator tries to separate generated
images from the real training samples.

29

4.2.1 Definition and mathematical description
As research in the field has progressed, numerous versions of GANs has been developed.
What they have in common is that they are extensions or further developments and inno-
vations of the fundamental GAN model based on the work of Goodfellow et al. (2014).

Framework

We let Z ⊆ R` and X ⊆ Rd be two ambient data spaces. Further, we let pz be a prior
distribution over Z , typically a uniform U(0, 1) or Gaussian distribution N(µ, σ2), and
pdata be the distribution of real data points over X . We also let z ∼ pz be a latent noise
vector. This latent vector z is mapped to form candidate distributions working as samples
via the generator G, which induces its own distribution pG from the input so that if z ∼ pz
then pG is the distribution such that G(z) ∼ pG.

Ideally, pG converges to a good estimator of pdata, the distribution of the target data
so that G : Z −→ X . The discriminator D takes the sample as input and outputs the
probability that the sample belongs to pdata, or in other words D : X −→ [0, 1].

In this framework, both the generator and the discriminator are differentiable functions,
G(z;θg) and D(x;θd). The vectors θd and θg represent the parameters of the functions
D and G, respectively. For now, the functions are defined to be multilayer perceptrons;
feedforward neural networks as described in Section 4.1, but in more recent years, deep
convolutional neural networks are more often used (Radford et al., 2015).

Discriminator cost function

The discriminator wants to maximise the probability of assigning the correct label to both
the generated samples and the examples from the training set. The common way to define
such a cost function LD is to use binary cross-entropy, which is also used here. Cross-
entropy is defined as

H(p, q) = −
∑

x∈P
p(x) log q(x), (4.18)

for discrete probability distributions p and q defined over the same support P .
Cross-entropy is widely used in ML loss functions as a measure of the dissimilarity

between the true distribution pi and predicted distribution qi for an outcome i. Thus, in a
binary setting with a sigmoidal probability curve we have

qy=1 = ŷ and qy=0 = 1− ŷ,

for outcomes y = 1 or y = 0. The cross-entropy between p and q can then be expressed
as

H(p, q) = −
∑

i

pi log (qi) = −y log (ŷ)− (1− y) log (1− ŷ) = H(ŷ, y). (4.19)

In the context of vanilla GANs (ordinary GANs) we use two minibatches of data, one
from the target dataset, i.e. with label 1, and one from the generated samples, with label 0
(Goodfellow, 2016). A minibatch here is described about as before: it can be said to be a

30

subset of a dataset, so that for a training set S we have B (S , where the minibatch B has
a size larger than 1.

In the following short derivation we denote by D(·) and G(·) the discriminator and
generator functions, omitting their parameters for ease of notation. Now, let us consider
single data points x ∼ pdata(x) and z ∼ pz(z). If we let y = 1 denote the label for data
coming from pdata(x) and ŷ = D(x) we obtain the following cross-entropy:

H (D(x), 1) = − log (D(x)). (4.20)

Furthermore, for the second batch, letting y = 0 denote data coming from pz(z) and
ŷ = D(G(z)) yields

H (D(G(z), 0)) = − log (1−D(G(z))). (4.21)

For one data point xi and its belonging label yi we can then write (with a slight abuse
of notation):

H (D, (xi, yi)) = −yi log (D(xi))− (1− yi) log (1−D(xi)). (4.22)

By reviewing the total performance of the discriminator, i.e. for all points x ∼ pdata(x)
and z ∼ pz(z), we sum the every individual entropy so that we end up with:

H
(
D, (xk, yk)Nk=1

)
= −

N∑

k=1

yk log (D(xk))−
N∑

k=1

(1− yk) log (1−D(xk)), (4.23)

where N is the number of samples, and where we know that xi = G(zi) when zi ∼ pz . If
we let N −→∞ we can replace the sums with expectations, using that

E[X] =

∞∑

i=1

xipi, (4.24)

for outcomes (x1, x2, ...) with belonging probabilities (p1, p2, ...). For a continuous prob-
ability density function we trade the sum with an integral.

If we also assume that the labels yi are evenly split in 1 and 0, and letting LD denote
the cross-entropy of the discriminator (so that we also end up with using the parameters
θd and θg), we arrive at

LD(θg,θd) = −1

2
Ex∼pdata logD(x;θd)−

1

2
Ez∼pz log (1−D(G(z;θg);θd)). (4.25)

Here,D(x; ·) is the discriminator’s estimate of the probability that the real data distribution
x is real, and D(G(z; ·); ·) is the estimate that a generated distribution - thus fake - is real.

Hence, the performance of the discriminator depends on both the functions D and
G and thus on the parameters θd and θg when the networks are NNs or CNNs. This
cost function is common for most discriminators used in GANs. The discriminator can
only control its own parameters and similarly for the generator. This makes it possible to
describe the problem as a game and not only an optimisation problem.

31

Generator cost function

In order to play the game between the discriminator and the generator, we also need a cost
function for the generator. This function varies more across the different versions of these
networks, but the simplest one would be

LG = −LD, (4.26)

so that the discriminator and the generator are parts of a zero-sum game, a balance between
players where they try to minimise their own maximum loss, and maximise their own
minimum gain (see Maschler et al. (2018) and Section 4.2.2 in this thesis for more on
this). The total gains of the players will directly sum to zero. With LG being directly tied
to LD we can summarise the total value function using the discriminator’s performance so
that

V (θg,θd) = −LD(θg,θd), (4.27)

and since games like this zero-sum one are defined by using minimising and maximising
operations, so-called minimax rules, we find the solution as

arg min
θg

max
θd

V (θg,θd). (4.28)

The generator wants to minimise the probability of the discriminator correctly classifying
the generated images as being fake, and the discriminator wants to maximise the prob-
ability of correctly classifying a given input image. A solution to this expression is the
so-called Nash equilibrium (Nash, 1951), named after the famous mathematician John F.
Nash, widely used in game theory (Von Neumann et al., 2007) which these zero-sum
games fall under.

As game theory play a big part in the GAN philosophy, utilising it can thus play an
important part in the training of these networks. We therefore present a brief introduction
on the subject in Section 4.2.2.

Theoretical results

The choice of generator cost function we use here does not work very well in practice as
the assumptions made here rely on convexity, while highly non-convex functions are often
used. However, the cost function is useful when it comes to theoretical analysis of the
capabilities of GANs. In practice, we often have to settle with approximations of these
results.

It can be shown that learning in this particular zero-sum game is similar to minimis-
ing the Jensen-Shannon Divergence (JSD), a finite and symmetric, altered version of the
Kullback-Leibler Divergence (KLD) (Kullback and Leibler, 1951), between model distri-
bution and the data. For two probability measures η and µ, where η is absolutely continu-
ous w.r.t. µ, the KLD is defined as

KL(η||µ) = Ex∼η
[
log

η(x)

µ(x)

]
, (4.29)

where the ”||” operator indicates divergence, i.e. how η differs from µ.

32

In the following derivation we assume that the generator is fixed, and we try to find the
optimal discriminator D∗G by finding

max
D

V (G,D). (4.30)

By considering the integral version of Equation 4.25, and simplifying by writingD(x;θd)
and G(z;θg) as D(x) and G(z), we get

V (G,D) =

∫

X
pdata(x) log (D(x))dx +

∫

Z
pz(z) log (1−D(G(z)))dz (4.31)

=

∫

X

[
pdata(x) log (D(x)) + pG(x) log (1−D(x))

]
dx, (4.32)

where the transition in the last line is possible due to the Radon-Nikodym theorem (Nikodym,
1930).

Furthermore, it can easily be shown that for any (a, b) ∈ R2 \ {(0, 0)} the function
y 7→ a log y+b log (1− y) reaches its maximum in [0, 1] at a

a+b . Thus, V has its maximum

in [0, 1] at pdata(x)
pdata(x)+pG(x)

, which is then D∗G(x).
We now turn to find the optimal generator, G∗. The optimal generator minimising the

loss function occurs when D = D∗G. Hence,

G∗ = arg min
G

V (D∗G, G). (4.33)

Subtracting the optimal discriminator D = D∗G into Equation 4.32 yields

G∗ = arg min
G

{∫

X

[
pdata(x) log

pdata(x)

pdata(x) + pG(x)
+ pG(x) log

pG(x)

pdata(x) + pG(x)

]
dx

}
.

(4.34)
We now manipulate the above equation by adding and subtracting the terms log (2)pdata(x)

and log (2)pG(x). We end up with

G∗ = arg min
G

{∫

X

[(
log (2)− log (2)

)
pdata(x) + pdata(x) log

pdata(x)

pdata(x) + pG(x)

+
(

log (2)− log (2)
)
pG(x) + pG(x) log

pG(x)

pdata(x) + pG(x)

]
dx

}

(4.35)

which, after collecting and reorganising terms can be written as minimising

G =− log 2

∫

X
(pdata(x) + pG(x)) dx

+

∫

X
pdata(x)

[
log 2 + log

pdata(x)

pdata(x) + pG(x)

]
dx

+

∫

X
pG(x)

[
log 2 + log

pG(x)

pdata(x) + pG(x)

]
dx.

(4.36)

33

The first term in the above equation equals − log 4, and by noting that the last two terms
can be slightly manipulated (using that log (ab) = log a+ log b) and write them as expec-
tations, we get

G∗ = arg min
G

{
− log 4 + Ex∼pdata

[
log

pdata(x)
pdata(x)+pG(x)

2

]
+ Ex∼pG

[
log

pG(x)
pdata(x)+pG(x)

2

]}
.

(4.37)
Moreover, we make use of the definition of the KLD to write

G∗ = arg min
G

{
− log 4 + KL

(
pdata

∣∣∣
∣∣∣pdata + pG

2

)
+ KL

(
pG

∣∣∣
∣∣∣pdata + pG

2

)}
, (4.38)

and finally
G∗ = arg min

G
{− log 4 + 2JSD(pdata||pG)} , (4.39)

since we by definition of JSD have the relation

JSD(P ||Q) =
1

2
KL(P ||M) +

1

2
KL(Q||M), (4.40)

with M = P+Q
2 .

The JSD(·) is always non-negative. Additionally, it is zero only when the distributions
are equal. Hence, the optimal generator G∗ is found when the generator replicates the
distribution from the data perfectly and pdata = pG.

Thus, it can be shown that if the players’ policies are updated in function space, the
equilibrium state will be reached. If we assume that the outputs from G comes from pG
we can again write

V (G,D) = Ex∼pdata [logD(x)] + Ex∼pG [log (1−DG(x))] = U(pG, D). (4.41)

U(pG, D) can be proven to be convex in pG by linearity of expectations, which also implies
that the optimisation problem converges. But as mentioned in the beginning of this section,
these results rely on convexity. In reality, this is not the case as deep neural nets, which are
most often used in GANs, are highly non-convex. Therefore, many alternative solutions
are proposed to achieve this, e.g. more complex loss functions, but in general this makes
GANs hard to train and unstable while doing so.

Additionally, when solving specific tasks it is necessary to build an architecture that
suits the problem so that the model is as fit as possible for solving the task. Therefore, there
exist numerous different successors that all are based on the same underlying concept of
GANs.

4.2.2 Game theory
We next provide a bit more depth and shed some light on the game theory aspect of the
GANs. Game theory can be used to apply a more direct adversarial approach to explain
GAN training and to overcome some of the present challenges related to training them.
In GANs, a game is played between the generator and the discriminator. In a strategic
two-player game (like this), each player chooses their plan of action conclusively, and
simultaneously. It has the following definition (Osborne and Rubinstein, 1994):

34

Definition 4.2.1. A strategic two-player game 〈(Ai) , (ui)〉i=1,2, for players i = 1, 2 con-
sist of

• a non-empty set Ai including the actions available for player i.

• an utility function (a payoff) ui : A −→ R, where A = A1 ×A2.

If the set Ai is finite we say that the game is finite.

As previously mentioned, the theoretical setup discussed in the previous section sug-
gests that the generator and the discriminator of a GAN plays a minimax game, which for
a two-player strategic game can be defined as

ui = min
a−i∈Ai

max
ai∈Ai

ui(ai, a−i), (4.42)

where ui is the largest value the player can be sure to get when the actions of the other
player (a−i) is known. These games can be zero-sum games if, given that it is a strategic
two-player game with 〈(Ai) , (ui)〉i=1,2, we have u1 = −u2. Zero-sum games are thus
games where the gain of utility of a player is exactly balanced by the loss of its opponent,
and vice versa. GANs are zero-sum games in this manner because either the generator
”wins” by tricking the discriminator, or the discriminator ”wins” by correctly identifying
the generated image leading to the generator ”losing”.

Theoretically, a game like this can reach a point where neither player can gain anything
by deviating from their strategy, given that the players know the optimal strategy of their
opponent. This situation is known as a Nash equilibrium, and can, in a strategic two-player
game, be formally defined as:

Definition 4.2.2. A Nash equilibrium of a strategic two-player game 〈(Ai) , (ui)〉i=1,2, is
a profile a∗ ∈ A of actions with the property that for i = 1, 2 we have

ui(a
∗
−i, a

∗
i) ≥ ui(a∗−i, ai) ∀ai ∈ Ai. (4.43)

In the GAN setting discussed in this thesis so far, given that we ought to pick generators
and discriminators from the spaces G andD, the Nash equilibria (G∗, D∗) for everyG ∈ G
and every D ∈ D (or rather the tuples (θ∗g,θ

∗
d)) are such that

V (G∗, D) ≤ V (G∗, D∗) ≤ V (G,D∗) (4.44)

for a value function V , is satisfied (Farnia and Ozdaglar, 2020). By exploiting this adver-
sarial nature of GANs, new approaches to train them can be developed, possibly exceed-
ing the traditional optimisation algorithms. One example of such an approach is to use a
stochastic forward-backward algorithm (Franci and Grammatico, 2020). However, this is
still an open and highly active research problem.

4.2.3 Training GANs
Training GANs involves balancing the training of two separate networks at the same time,
making sure that neither of the networks learn too fast, or at the expense of the other
network. In practice, this can be very difficult to achieve which also results in GANs
being hard to train properly. This has also lead to an extensive search in finding objective
functions and losses that stabilise and improve performance.

35

Nash equilibrium

In GANs, a Nash equilibrium is− as we have discussed− reached when the loss functions
of the generator and the discriminator cannot be lowered and convergence is reached.
Theoretically, this occurs when the generator is able to reproduce the true data distribution
and the discriminator is able to successfully classify all samples.

In practice, getting to this state is difficult as the strategy of the opponent usually is
unknown and variable. Even when an equilibrium theoretically exists, simple optimisa-
tion algorithms may struggle to find the optimum. This can be illustrated by this simple
example, using plain gradient descent:

We consider a minimax game with two players both controlling scalar values (replac-
ing the generator and discriminator), so that the value function V is

V (x, y) = xy, (4.45)

where the player controlling x wishes to minimise and the player controlling y wishes to
maximise (Goodfellow, 2016). It is clear that a Nash equilibrium exits, for x = y = 0.
Suppose we try to learn this equilibrium using a simple optimisation algorithm like GD
(see Equation 4.11). To simplify the problem, we let GD be a continuous time process
with an infinitesimal learning rate. Then the trajectory of that of GD for this problem can
be defined as the following system of equations:

dx

dt
= − ∂

∂x
V (x(t), y(t))

dy

dt
=

∂

∂y
V (x(t), y(t)) ,

(4.46)

which evaluates to

dx

dt
= −y(t)

dy

dt
= x(t).

(4.47)

If we now differentiate the latter expression in Equation 4.47, we get

d2y

dt2
=
dx

dt
= −y(t). (4.48)

Solving this differential equation finally yields

x(t) = x0 cos (t)− y0 sin (t)

y(t) = x0 sin (t) + y0 cos (t),
(4.49)

for initial values x0, y0. If we plot this trajectory, as in Figure 4.6, we observe that it will
forever orbit the equilibrium and never reach it. Choosing a larger learning rate would lead
to a trajectory spiralling outwards, away from the equilibrium.

This simple example illustrates that even for some trivial games, certain optimisa-
tion algorithms might not converge. In a game of two players, optimisation would mean

36

Figure 4.6: Plot showing the trajectory of simple GD for the value function V (x, y) = xy. It will
orbit the equilibrium solution at x = y = 0 at a constant radius.

”downhill progress”. But even if each player moves downhill on their own update, the
same update might move the other player uphill. Sometimes an equilibrium is reached for
both players, but often they just repeatedly undo their opponent’s progress. This illustrates
the scenario we face. For GANs, there exist no theoretical prediction whether convergence
is guaranteed using simple optimisation algorithms. Developing a fitting theoretical foun-
dation and developing optimisation algorithms guaranteed to converge remains an open
field of research.

Mode collapse

One of the many challenges in the learning process of GANs is avoiding mode collapse
or the Helvetica scenario (Goodfellow et al., 2014). A mode collapse is occurring when
the output of the model is the same no matter what the input looks like. The task of the
generator is to produce the output that is most likely to be real from the discriminator’s
point of view. Usually, when the generator tries to produce the same small subset of
outputs, the discriminator would learn to always reject that output. But if the discriminator
gets stuck in a local minima there is a chance that it does not discover this optimal strategy
and accepts the output from the generator. The generator produces a large imbalance of
modes of the target distribution which ultimately deteriorates its capabilities to find other
plausible modes. Both networks are thus over-optimised to exploit short-term opponent
weaknesses to try to win the game. The game turns into a ever-lasting swirl that does not
converge.

An attempt to fix this issue is to introduce minibatch features (Salimans et al., 2016).
This allows the discriminator to compare an example to a minibatch of generated sam-
ples and a minibatch of real samples. By comparing the example to the minibatches, the
discriminator can decide if the example is unusually similar to generated samples. This
method is shown to produce excellent results.

A different attempt to overcome the issue is through unrolled GANs (Metz et al., 2016).
The idea is to build a computational graph that describes k steps of learning in the discrim-
inator and backpropagate through all these steps to calculate the gradient of the generator.

37

This helps stabilising the gradient and helps reducing mode collapse, even for small k.
There are also numerous other versions of GANs whose main goal is to reduce mode
collapse.

Vanishing gradient

Another major problem with training GAN models is the occurrence of vanishing gra-
dients. The problem is particularly present in the vanilla GAN setup. It can be shown
(Arjovsky and Bottou, 2017) that, for the vanilla GAN,

lim
||D−D∗||−→0

∇θEz∼pz [log (1−D(gθ(z)))] = 0. (4.50)

This shows that as the discriminator improves, it successfully rejects generator samples
with high confidence, the gradient of the generator vanishes and training process slows
down before it eventually stops. To overcome this, one would have to be extremely precise
in the amount the discriminator is trained for and carefully interplay the improvements
of the generator and the discriminator or use another, more robust gradient step for the
generator. The latter is the most common choice.

4.3 CycleGAN

In this project, we will study one of the many successors of the original GAN model,
namely the cycleGAN (Zhu et al., 2017). The model was proposed as a generalisation of
the pix2pix model, where image-to-image translation is conducted using conditional GANs
(Isola et al., 2017). In the pix2pix model, the generator and discriminator use structured
data to learn the distribution of the desired output in order to do the mapping. Thus, this
requires supervised training with pairs of images {xi, yi}Ni=1 as dataset.

However, in real life paired datasets like this seldom exists without extensive prepro-
cessing. Developing a model which is not dependent on structured training of this sort
is therefore highly attractive. This is something cycleGAN addresses, making the trans-
lation completely independent of data that is paired. The model is taking one more step
towards an unsupervised method, using only images from the two domains it wishes to
map between, but where any direct correspondence between the domains is absent. This
means that if we were to translate horses to zebras, we train the model with images with
one thing in common: they would contain either a horse or a zebra. The model then learns
the characteristics of horses and the characteristics of zebras, and − given an image of a
horse − identify the horse and replace it with a zebra with the identical shape as that of
the horse.

The general design of the model also avoids having to rely on task-specific and prede-
fined similarity-functions, nor assuming that the input and output of the model must lie in
the same low-dimensional embedding space. This makes the model a versatile, all-purpose
model, suitable for a variety of tasks.

Figure 4.7 shows the architecture of the cycleGAN and how the two GANs map input
between two domains.

38

Figure 4.7: The cycleGAN architecture. The model consists of two separate GANs, mapping images
from opposite domains. Figure reproduced from Wang and Deng (2018).

4.3.1 Definition and mathematical description
The model is fundamentally based on cycle-consistency: if one performs a mapping {G :
x −→ y}, and then a mapping in the opposite direction {F : y −→ x} one is back at
where one started. We thus ideally want x −→ G(x) −→ F (G(x)) −→ x, and the other way
around. This can be utilised to form a cycle-consistent loss, where ||x−F (G(x))||1 is the
forward-consistent loss and ||y −G(F (y))||1 is the backward-consistent loss, and where
|| · ||p is the p-norm, defined as

||x||p :=

(∑

i∈N
|xi|p

)1/p

. (4.51)

Optimising this loss will help push F and G to be consistent with each other. We
define two domains of imagesX and Y , with training data {xi}Ni=1 ∈ X and {yi}Ni=1 ∈ Y
respectively. Furthermore, we denote their common data distribution as x ∼ pdata(x) and
y ∼ pdata(y). The model itself will consist of two separate GANs. We introduce two
generators G and F as previously defined, performing the mappings {G : X −→ Y }
and {F : Y −→ X}. We also introduce two discriminators DY and DX , where DX

tries to distinguish between images {x} and F (y) and, similarly, DY between images
{y} and G(x). In theory, the two GANs presented so far will have their own adversarial
loss, similar to the loss presented in the GAN section. So for the generator G and its
discriminator DY we get:

LAdv(G,DY) = Ey∼pdata(y)
[logDY (y)] + Ex∼pdata(x)

[log (1−DY (G(x)))] , (4.52)

and similarly for F and DX . But as we have previously discussed, the theoretical loss
functions are of little practical use. Instead, the authors of the original cycleGAN paper
apply a least squares (LS) loss, based on the LSGAN implementation by Mao et al. (2017).
In general, a LS loss can be defined as ||o− ô||22, for labels o and predictions ô. The loss
used in the LSGAN paper (and thus also here), is described as

LLSGAN(G,DY) = Ey∼pdata(y)

[
(DY (y)− 1)2

]
+ Ex∼pdata(x)

[
DY (G(x))2

]
, (4.53)

and similar for the opposite translation. This loss provides more stable training and also in-
creases output quality (Zhu et al., 2017). In addition, we will also use the cycle-consistent
loss to measure the performance of the complete model. Translating images from one do-
main to another using unpaired data is an under-constrained problem. The cycle-consistent

39

loss helps reducing the size of the space of possible mapping functions, as it requires e.g.
F (G(x)) ≈ x and G(F (y)) ≈ y, and is a crucial part of the cycleGAN structure. The
cyclic loss is defined as

LCyc(G,F) = Ex∼pdata(x) [||F (G(x))− x||1] + Ey∼pdata(y) [||G(F (y))− y||1] . (4.54)

Lastly, identity loss is used to preserve colour composition between the translations so
that the generators are heavier constrained when choosing the tint of its generated images.
This loss is meant to guide the generators to perform a near-identity mapping of the target
domain. Here, it can be seen as not making too drastically alterations to model input. The
identity loss is defined as

LI(G,F) = Ex∼pdata(y) [||G(y)− y||1] + Ey∼pdata(y) [||F (x)− x||1] . (4.55)

The total objective for the loss of the cycleGAN model will thus be

LcycleGAN(G,F,DX , DY) = LLSGAN(G,DY)+LLSGAN(F,DX)+λCLCyc(G,F)+λILI(G,F),
(4.56)

where λC , λI are penalising weights. Since we can view this system of GANs as a GAN
in itself, we seek to find the solution of the following minimax problem:

arg min
G,F

max
DX ,DY

LcycleGAN(G,F,DX , DY). (4.57)

We then opt to train the model by optimising the loss function over the parameters of
the generators and discriminators to find (θ∗g,θ

∗
dY) and (θ∗f ,θ

∗
dX).

40

4.3.2 CycleGAN algorithm
To better understand how the cycleGAN works, we include a short block of pseudocode
explaining the training procedure of the basic model.

Algorithm 2: Training procedure for a basic cycleGAN model in pseudocode.
Result: Returns a cycleGAN model trained for a given number of epochs.
Initialisation: randomisation of weights;
Sample minibatch of samples {x(1), ..., x(m)} from domain X;
Sample minibatch of samples {y(1), ..., y(m)} from domain Y ;
for number of epochs do

for each (x(i), y(i)) in minibatch do
Optimise discriminator loss functions

L(D)
real = (DX(x(i))− 1)2 + (DY (y(i))− 1)2

and
L(D)

fake =
(
DY (G(x(i)))

)2
+
(
DX(F (y(i)))

)2
.

Update the discriminators;
Optimise generator loss functions

L(F) =
(
DX(F (y(i)))− 1

)2
+ λCL(Y−→X−→Y)

Cyc + λIL(Y−→X−→Y)
I

and

L(G) =
(
DY (G(x(i)))− 1

)2
+ λCL(X−→Y−→X)

Cyc + λIL(X−→Y−→X)
I .

Update the generators;
end

end

The LCyc is computed as described in the previous section, i.e. with

L(X−→Y−→X)
Cyc = ||y(i) −G(F (y(i)))||1 (4.58)

for the X −→ Y −→ X translation, while the LI is computed as

L(X−→Y−→X)
I = ||y(i) −G(y(i))||1, (4.59)

for the same translation. The opposite translation is analogous in both cases. To optimise
the losses we use an optimisation algorithm like Adam or SGD.

4.4 Model architecture
For the experiments conducted later in this thesis we use a cycleGAN model similar to
the one described previously in this chapter. The generators used are based on the U-Net

41

architecture (see Section 4.1.4). The idea here is that the design of the network is fit and
able to capture the seismic features and reproduce them accurately. The encoder of the
U-Net consists of 9 convolutional layers with ReLU as activation function, and instance
normalisation (Ulyanov et al. (2016)): a normalisation procedure normalising across the
channels of each training image. The decoder is built by 7 transposed convolutional lay-
ers, instance normalisation, dropout (a regularisation technique for reducing overfitting in
NNs) applied to the three first layers, and leakyReLU activation function. Additionally,
there are skip connections between the encoder and decoder. Skip architecture skips some
layers in the network. Exactly why this works is still unclear, but it has shown to improve
network performance (He et al., 2016).

The discriminators in the model we use are based on so-called PatchGANs (Li and
Wand, 2016). A patchGAN works by dividing the actual image into patches of size
equal to its receptive field, similar to how CNNs operate. Then, it models the image
as a Markov Random Field (Kindermann, 1980), where pixels separated by more than a
patch are assumed to be independent. It will classify each of these patches as either real or
fake. This procedure is run convolutionally across an input image, averaging the responses
to provide a final classification. Layers in this network consists of regular convolutional
operations, with instance normalisation and leakyReLU activation functions. The size of
the receptive field used here is 70× 70 pixels.

To describe the U-Net and PatchGAN architectures we have been using in this thesis,
we use a special notation. We define the following: we let c7s1-k denote a 7 × 7 block
consisting of convolutions, instance normalisation and ReLU with k filters and a stride of
1. Further, we let dk denote a 3 × 3 block of convolutions, instance normalisation and
ReLU with k filters and a stride of 2. Rk indicates a residual block containing two 3 × 3
convolutional layers, both with the same number of filters k. Lastly, uk denotes a 3 × 3
block with convolutions, instance normalisation and ReLU with k filters and a stride of 1

2 .
Thus, we can describe the encoder part of the U-Net we use as c7s1-64, d128, d256,
R256, R512, R512, R512, R512, R512, and the decoder part as R512, R512, R512,
R512, R256, u128, c7s1-3.

For the PatchGAN, we define: Ck a convolutional, instance normalisation, leakyReLU
block with k filters and a stride of 2. Then, we can describe the architecture as: C64,
C128, C256, C512.

Model parameters

The model uses an Adam optimiser to learn, with the following parameters: learning rate
η = 0.0002, forgetting factors β1 = 0.5 and β2 = 0.999, and ε = 1 · 10−7. For the model
loss function we use λC = 10 and λI = 5. The weights are initialised from a Gaussian
distribution,N(0, 0.02). Whenever leakyReLU is applied as an activation function, a slope
of 0.2 is used.

42

Chapter 5
CycleGAN with Additional Penalty
Term

One of the main purposes of this thesis is to build an improved cycleGAN model. In
this chapter we present some theory and results related to different strategies. We first
introduce the theory behind the ideas, and then their respective results.

5.1 Theory
A central objective is to increase accuracy of a model based on the cycleGAN architec-
ture. This may be done by addressing a certain flaw or weakness in the predictions the
model makes and try to learn it to avoid the mistake by introducing a penalty. The penalty
accentuates the flaw and helps the model correct it.

The penalty is placed on the two generators, guiding them to produce more precise
interpretations. Perhaps the most challenging aspect when it comes to penalties in a cycle-
GAN framework is that it relies on unpaired training data. This means that we are unable
to e.g. compare a generated image directly to its reference because this image will most
likely not be available at the time. A regular least squares loss will for example be of little
use, since the motif of the images will be slightly different, at best. Hence, instead of
penalising the quality of the generated image explicitly, we will need to penalise by com-
paring certain features that are present in every image, i.e. by focusing on the underlying
distribution the images all come from. For this, statistical tools may be appropriate to use.

5.1.1 Covariance penalty

Early tests using the basic cycleGAN model have shown that generated images may suffer
from a high level of noise in certain areas of the image. This noise appears as clusters of
pixels with a higher or lower intensity than the surrounding area would indicate. A case
illustrating this is shown in Figure 5.1.

43

Figure 5.1: A figure illustrating how the basic cycleGAN occasionally makes predictions that are
noisy. Notice the area in the upper left part of the predicted image.

To reduce this, one idea is to compute and use the covariances of a generated image
and a reference image from the target distribution, and penalise by the distance between
the covariances to make the generated output be more similar to the target distribution.
The noise that can be found in the generated images can be considered to be outliers of
the distribution of the image. By correcting this, i.e. by inducing a high loss value when
many outliers are present in the generated image, the number of outlier pixels eventually
may be reduced. We end up with the following objective function:

L(G,F,DX , DY) = LcycleGAN(G,F,DX , DY) + γCd
(
Σ(pdata)− Σ(pG(z))

)
, (5.1)

where d is a distance metric, γC is a tunable hyperparameter weighting the influence of
the penalty term, and Σ denotes the covariance of an image. This proposed solution is
also discussed in one of the papers we have reviewed. Wu et al. (2020) did something
similar, but on a regular GAN model instead. The cycleGAN objective function we used
here is the same as described in Section 4.3. The covariance is computed by considering
grayscale images (to reduce image dimensions from 3 to 1) and using a built-in covariance
function in our actual implementation. The distance metric used here is the Frobenius
norm, defined as

||A||F :=

√√√√
n∑

i=1

m∑

j=1

|aij |2, (5.2)

where A is a m× n matrix, with elements aij . We thus end up with

L(G,F,DX , DY) = LcycleGAN(G,F,DX , DY) + γC ||Σ(pdata)− Σ(pG(z))||F . (5.3)

5.1.2 Correlation penalty

As in the previous case, the idea behind the penalty term is based on how statistical prop-
erties of a distribution can be used as a regularisation in GAN training as seen in Wu et al.
(2020). Now, we try to address the noise artefacts by looking at the correlations in the
traces of the image. The idea is that by measuring how similar neighbouring pixels are
− either lateral or by depth − and penalise accordingly, one would obtain more smooth,

44

clean and less distorted outputs. Images where there is noise present are to be harder pe-
nalised because of less correlation between neighbouring pixels. Thus, the accuracy of the
model interpretations could be slightly increased.

For our model we will have the following objective function

L(G,F,DX , DY) = LcycleGAN(G,F,DX , DY) + γ||Rτ (pdata)−Rτ (pG(z))||F , (5.4)

where Rτ is the correlation of the maximum vicinity of a point of τ units, either lateral
or depth-wise. R is calculated using the principle of autocorrelation (Gubner, 2006): the
correlation between a signal and a delayed copy of itself. It can be computed as

Rτ =
1

σ̂2(n− τ)

n−τ∑

t=1

(xt − µ̂) (xt+τ − µ̂), (5.5)

where {x1, ..., xn} are measurements and µ̂ and σ̂2 are the estimated sample mean and
variance of the sequence of measurements. We go through each trace iteratively, com-
puting the autocorrelation for a shift of 1, ..., τmax, and add the vectors of length |τmax|
belonging to each trace, to a matrix, i.e.

RTot,τ (I) =

N∑

i=1

Rτ (xi), (5.6)

for an image I with N traces xj . We end up with a matrix of dimensions τmax × N . We
do this for each a generated and a reference image and measure the distance between them
using the Frobenius norm. The distance is used as a weighted penalty.

5.1.3 Kullback-Leibler Divergence penalty

In this section we explore the capabilities of the Kullback-Leibler divergence (KLD) as a
penalty measure. KLD provides a way to measure how similar two probability distribu-
tions are, or the ”distance” between them.

The idea is the same as before: KLD penalty should help reducing some of the noise
present in the generated images, and smooth out the overall appearance. It will penalise
depending on how different the generated image, or rather its distribution, is from the
reference image. We use KLD in the same way as previously defined, namely

KL(η||µ) = Ex∼η
[
log

η(x)

µ(x)

]
, (5.7)

for two probability distributions η and µ defined on the same probability space X . We turn
every trace (i.e. depth-wise) of the target generated image and the reference image into
distributions, pG and pdata respectively. This is done by considering grayscale versions of
the images and make a histogram of the pixel intensities in the trace (here, we use 50 bins).
We then compute the KLD based on the histogram distributions of traces of the generated
and the reference image. This is done for every trace in the images, and the divergences

45

are added up to a total divergence for the whole image. Based on this, we arrive at the
following objective function:

L(G,F,DX , DY) = LcycleGAN(G,F,DX , DY) + γK

N∑

i=1

KL(pGi||pdatai), (5.8)

where N denotes the number of traces in the images. The parameter γK denotes the
tuneable hyperparameter weighting the influence of the KLD penalty.

5.2 Results
The tests and evaluations of the additional penalty terms discussed previously in this chap-
ter are displayed here. In these experiments, N = 40 images are generated and used for
comparison with N reference images based on the same seismic images the generated
images as based on. The experiments are performed using a synthetic seismic dataset,
and includes faults and a pinch-out (see Section 3.3.1). We focus on seismic data with
moderate amount of noise (see Figure 3.7), and vary how much training data is fed to
the model and how long learning process lasts, to learn as much as possible about how the
penalty affects the performance. As for the implementations, all code is written in Python1

and Tensorflow2 with extensive use of libraries like Numpy and Matplotlib. The training
sessions are run on a Tesla K80 GPU using Google Colab3.

The quantitative measurements for quality evaluations we mainly use throughout this
chapter and the next are computed by using the mean squared error (MSE), but interpreta-
tion over union (IoU) is also used. We omit metrics like PSNR and SSIM because of their
similarities to the MSE, thus providing little extra depth to the quality evaluation. Below
follows a summary of the named evaluation metrics.

5.2.1 Evaluation metrics
In this thesis, we perform experiments which we need to quantitatively evaluate. For this
we use an evaluation metric. There exist numerous evaluation metrics, and for this task we
need metrics that may reflect the accuracy of the structural interpretations in a clear way.
Therefore, we present a few alternatives commonly used in tasks like these.

Mean squared error

A common metric used to compare predictions to the true labels is the mean squared error
(MSE). It measures the average of squares of errors, i.e. the average squared difference
between predicted values and true values. For images, we may use

MSE =
1

N

N∑

n=1

∑

i,j∈Yn

(
Ynij − Ŷnij

)2
, (5.9)

1www.python.org
2www.tensorflow.org
3colab.google.com

46

www.python.org
www.tensorflow.org
colab.google.com

where we sum up the squared differences between a reference image Y and a generated
image Ŷ , pixel-wise, so that indices i, j represents pixels in images {Y }Nn=1.

Jaccard index

The Jaccard index (Jaccard, 1901), also known as Intersection over Union (IoU), is an
evaluation metric used for evaluating the amount of overlap between a target and a predic-
tion. It can be defined as the size of the intersection divided by the union of the sample
sets, or

IoU =
Area of overlap
Area of union

=
| A ∩B |
| A ∪B | , (5.10)

for two sets A and B. The intersection (A ∩ B) is comprised of the common pixels we
can find both in the prediction and the reference regions, whereas the union (A ∪ B) is
comprised of all pixels either found in the prediction or the reference regions. A larger
value indicates a good segmentation.

PSNR

Peak signal-to-noise ratio (PSNR) is a term measuring the ratio between a noise-free im-
age and a noisy approximation. PSNR (in decibel) is defined via MSE as

PSNR = 10 · log

(
MAX2

I

MSE

)
, (5.11)

with MAXI denoting the maximum number of pixel values of the image.

SSIM

Structural similarity (SSIM) index is a method for measuring the similarity between two
images (Wang et al., 2004). SSIM is perception-based, incorporating important perceptual
attributes like structural information. Structural information in this sense is based on the
fact that spatially neighbouring pixels usually contain a significant inter-dependency, es-
pecially when they are close to each other. This dependency carry important information
about the general structures in the images. SSIM is computed in the following way:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (5.12)

for two equal-sized images x and y, where µx and µy denotes the average and σ2
x and σ2

y

the variance of image x and y, with σ2
xy being their covariance. The variables c1 = (k1L)2

and c2 = (k2L)2 are used avoid instability when the denominator is close to zero, with
k1 = 0.01 and k2 = 0.03 being default constants and L is the dynamic range of the pixel
values (usually 255).

SSIM bases its comparisons on a distortion-free image as reference, i.e. it should be
well-suited for comparing a generated image against a reference or ground truth.

47

5.2.2 Covariance penalty
The hypothesis that there is a slightly higher chance of converging to a good local mini-
mum when additional covariance penalty is added, is attempted tested in Figure 5.7. We
conducted four sessions with an equal initial set of parameters: number of epochs set to
200, γC set to 0.13 (fixed after initial results indicating that this is in the vicinity of an
optimal value) and total size of training data, n = 5.

(a) Accuracy plot after first run. (b) Accuracy plot after second run.

(c) Accuracy plot after third run. (d) Accuracy plot after fourth run.

Figure 5.2: Comparison of accuracies of baseline model (without any additional penalty terms) and
a model where a covariance distance penalty is added. We observe how the MSE has sudden drops
in the plots where additional penalty is added.

As we can see from this small test, there might be a tendency of a lower MSE from
the outputs where the model also includes the additional penalty term. It is also interesting
to see how the MSE suddenly drops in two of the cases for the model with the additional
penalty term. However, based on several more training sessions, the difference in MSE
is often small and an actual improvement is not very easy to verify from looking at the
actual outputs. Based on examining the quality of actual outputs, it is hard to notice any
difference in prediction accuracy from when additional penalty is included compared to
when it is excluded. This applies at least in smaller training sessions. When training is
prolonged, with sessions around 300 epochs or more, there seems to be a higher chance of

48

a reaching a good local or global minimum so that predictions are of acceptable quality,
considering high amount of noise and 5 training images. But there is no guarantee of the
model reaching such a minimum, and this does not occur very often.

Figure 5.3: MSE of model with additional penalty term trained for 300 epochs.

We also did a longer training session, to investigate how the model responds. From
looking at the MSE in Figure 5.3 it is clear that this does not improve accuracy. But from
looking at how the MSE regularly make sudden drops, there seems to be small increments
in accuracy throughout the session, which may indicate that if the model is trained for a
much longer period, the overall performance may increase.

Based on this, there are some evidence indicating that the covariance penalty leads
to better performance. However, the difference is not striking in the long run. It can
be observed that the penalty makes a slight difference in some cases, but more often the
performance is about the same as that of the basic cycleGAN model. Additionally, the
computation cost is substantial: an epoch may run for up to 80 seconds. If the strategy
of using the covariance as a penalty is decided further pursued it would be natural to seek
ways to optimise the method. Either through hyperparameter tuning, or investigating more
sophisticated ways of capturing the covariance of the distributions, while also decreasing
computation time drastically. For now, we proceed with pursuing other penalty options.

49

5.2.3 Correlation penalty
In this case we focus on measuring the correlation depth-wise. This has proven to yield
the best results, as well as being easier to implement. The number of max shifts in the
autocorrelation calculation, τ , is here set to be 6, but may probably be optimised through
extensive hyperparameter tuning. The data we test the model on here is synthetic seismic
data, with a training set size of n = 5.

We start with a more thorough investigation of how different values of the hyperpa-
rameter γ affects the accuracy. This may give an indication of which range of values may
be best suited for weighting the correlation penalty. In Figure 5.4b we show the MSE for
four different values of γ, each with a difference in order of 10.

(a) MSE of four different values of γ. The plots are
based on a mean of five simulations per parameter
value.

(b) Mean MSE of four different values of γ af-
ter model has started to learn, i.e. after around 50
epochs.

Figure 5.4

We observe that values of γ in the range of 0.01− 0.001 are yielding the best results.
Higher values leads to over-penalising, which interrupts the learning process. On the other
hand, going lower than 0.001 leads to the correlation penalty being almost insignificant in
the learning process. The accuracy here looks to be on level with the accuracy of a model
without the additional penalty term.

It is interesting to note that the curves for the first 20 epochs are steeper for higher
values of γ, which may indicate that penalising harder in early training is beneficial, but
this advantage quickly turns into a disadvantage later, as learning also stops at a higher
level.

Further, we wish to investigate whether the accuracy improves or deteriorates when
we apply the additional correlation penalty. In Figure 5.5 we see how accuracy varies over
150 epochs for both models. We use γ = 0.01.

We observe that the additional penalty term indeed helps in reducing MSE. We can
further quantify this effect by calculating the relative change (in percent), which we here
define as

∆ :=
xafter − xinitial

xinitial
· 100%. (5.13)

We use the mean values of MSE for the last 60 epochs in both cases. This yields a relative
change of ∆ = 9601−12224

12224 · 100% ≈ −21.5%, which is a significant reduction. We

50

Figure 5.5: MSE of the model accuracy where γ = 0.01 and γ = 0. The plots represents a mean
of 10 simulations each, to get a more representative result.

further proceed to investigate whether the size of the training set has any influence in how
the model with the correlation penalty term performs. This is easy to test, and is visualised
in Figure 5.6.

We observe that even when the size of the training set is doubled it does not lead to
a significant reduction in MSE when the model has converged, even with the correlation
penalty. It may appear that a MSE around 10000 is a threshold, at least on this dataset.
However, more training data seem to help the model converge earlier. When the training
dataset size is reduced the difference between including the penalty term and not including
it becomes clearer. The less data is used in training, the more the penalty term helps in
accuracy.

In Figure 5.7 we compare generated images from the model with and without addi-
tional penalty term. As we can see, when we include the correlation penalty we are able
to remove some of the most noticeable noise. However, some of the noise is still present.
And the penalty term does not help in correcting segmentation completely. All in all, the
correlation penalty provides a small, but noticeable increase in accuracy in the tests we
have done.

51

Figure 5.6: MSE of the model accuracy where n denotes the size of the training set. Here, γ is set
to 0.01 where correlation penalty is included. The data is based on the mean of five simulations.

(a) Model output without additional penalty term. (b) Model output with additional penalty term.

(c) Model output without additional penalty term. (d) Model output with additional penalty term.

Figure 5.7: Comparison of model output with and without additional penalty term. The model is
trained for 50 epochs in all four cases and γ = 0 and γ = 0.01 respectively.

5.2.4 Kullback-Leibler Divergence penalty

In Figure 5.8 we illustrate how the KLD evaluates the difference between a random sample
image and a generated image. Low KLD means high similarity, and vice versa. As previ-
ously stated, since cycleGAN learns with unpaired images, a direct comparison between
reference and generated images is impossible. Nonetheless, it is clear that the KLD is able

52

to find similarities in the structure even if the images are not related. The left parts of
the images are the most similar, but from approximately epoch 100, noise and disturbance
leads to large oscillations. Time per epoch for this penalty is slightly lower than for the
correlation penalty.

(a) A reference image of a geological model. (b) A generated image of a geological model.

(c) The resulting KLD from comparing each
trace of the reference image to the generated
image.

Figure 5.8: An illustration of how the KLD evaluates the distance in distribution of histograms of a
reference and a generated image.

To tune the hyperparameter we run training sessions with γK varying from 0.0001 to
1. We run 5 sessions per value of γK and average these to get a more accurate indication
of how the model performs with the respective weighting of the additional penalty term.

(a) MSE of five different values of γK . The plots
are based on a mean of five simulations per param-
eter value.

(b) Mean MSE of five different values of γK af-
ter model has started to learn, i.e. after around 50
epochs.

Figure 5.9

The results are displayed in Figure 5.9a. As we can see from the plots, the performance

53

is fairly equal despite the variation in γK . However, for the lowest value the MSE is
slightly higher overall. This indicates that the regularisation is almost insignificant here,
providing almost no guidance to the learning process. For γK = 1 we observe that the
performance is irregular, with a sudden drop in MSE at about 60 epochs. This may indicate
that the penalty term is regulating the learning process too hard, leading to sub-optimal
learning. For the three remaining parameter values, the performance is more even and
more tests will be needed to find the optimal hyperparameter value. But for now, we
proceed with a value of 0.01, which seems to be in the vicinity of the optimal parameter
value here.

If we compare performance with and without the KLD penalty term, we see that there
is a significant improvement. This is illustrated in Figure 5.10. Following the procedure
from the last section, we quantify the reduction by looking at the relative change, ∆. In
this case, we get a reduction of ∆ = 19.6%, which is also significant. We do not include
any plot of tests with different training set size in this section, as we assume that the effect
is similar to that of Figure 5.6.

Figure 5.10: MSE of an average of 5 sessions with γK = 0.01 and γK = 0. The reduction of MSE
when KLD penalty is added is significant.

We also include a figure showing how the KLD penalty term improves the actual in-
terpretations. In Figure 5.11 we compare outputs of a model with no additional penalty to
those of a model with the KLD penalty activated, with γK = 0.01. It is clear that there is
an improvement in the interpretations from the model with the KLD penalty. The outputs
are more clean, with less occurrence of dots of dark noise, and the visuals are smoother
overall. However, this improvement is not always as clear as it is here; some variability
in quality when many outputs are compared is present. One reason why this is the case,
may be that the penalty term regularises the pixel intensity distribution, which just indi-

54

rectly helps reducing the noise. Yet, the figures illustrates that in many cases the additional
penalty term helps in enhancing interpretation quality.

(a) Model output without additional KLD penalty term. (b) Model output with additional KLD penalty term.

(c) Model output without additional KLD penalty term. (d) Model output with additional KLD penalty term.

Figure 5.11: Comparison of model output with and without additional KLD penalty term. The
model is trained for 150 epochs in all four cases and γK = 0 and γK = 0.01 respectively.

5.3 Summary
In this chapter we have experimented with three different penalty terms. Two of them,
the correlation penalty and the KLD penalty terms described in the previous two sections
prove to be the most promising. As we have seen, they both provide a significant drop in
MSE, with a relative reduction in MSE of 21.5% and 19.6%, respectively. This clearly
implies an increase in interpretation quality, with the penalties also not being too compu-
tationally expensive. To decide which one of the two that are best suited for the task of
interpreting seismic data we may need to do further analysis. For now, we settle with using
the correlation penalty, which tests indicate may give a slightly more stable performance
overall.

55

56

Chapter 6
Results

In this chapter we present the results from training our modified cycleGAN model on real
seismic data from the F3 dataset . We present some initial results as well as results where
we examine how training with rich and sparse datasets affects performance. We also look
at what effect extended training has on the quality of the interpretations. We use inlines
and crosslines from the dataset described in Chapter 2, composing a training dataset by
evenly extracting lines from the volume. Figure 6.1 is a sketch illustrating this.

Figure 6.1: A figure illustrating how we extract lines from a given volume. The light blue area
represents the seismic volume, while the light yellow planes indicates evenly extracted 2D lines.

For the evaluations, we use MSE and Jaccard Index. As in the previous chapter, the
test set used for comparison contains 40 images, extracted from the volume in a similar
way as described above.

57

6.1 Initial results and tuning of hyperparameter
For the real seismic data, we re-tune the hyperparameter γ to see whether the MSE accu-
racy behaves differently when the training data basis is changed from synthetic to real. We
run training sessions with values of γ ranging from 1 to 0.0001. The results are shown in
Figure 6.2.

(a) MSE for models where the penalty term hyper-
parameter varies from 1 to 10−4. Each curve is a
result of an average of 5 training sessions.

(b) Mean MSE of four different values of γ af-
ter model has started to learn, i.e. after around 50
epochs.

Figure 6.2

As we observe in Figure 6.2, we get the lowest MSE when γ = 0.1. This is higher than
what we saw when we tested with synthetic data. Although we observe that the plot clearly
indicates an optimal value for γ, the general trend of the plot is somewhat ambiguous, and
not very similar to Figure 5.9b. More data points would have been preferred to strengthen
the assumption that a minimum is present in the vicinity of γ = 0.1. For now, we proceed
with the optimal hyperparameter value, γopt = 0.1.

When we run the first training sessions on the dataset, it is immediately clear that
this is a more challenging task than using synthetic data, due to the increased complexity.
Hence, more training data is in general needed. Additionally, an initial impression is that
the training set should be well-designed in order to facilitate constructive learning. We
will see examples of why this is important later.

Figure 6.3 shows a couple of the initial results we performed on the two regions of the
volume.

We observe that the model is capable of interpreting and reproducing certain shapes
and patterns, while others are more difficult. A way to illustrate this is to study which
pixels are correctly interpreted, and which are not. This is illustrated in Figure 6.4, where
the green pixels in the black-white contrast representation indicates the inaccuracies of the
model. In the generated image, the lighter green layer located directly above the yellow
surface is not always recognised by the model.

From the figure, it is clear that the model is able to reproduce decent interpretations.
Given some initial conditions from the labelled training set (e.g. how many and what
colours we want to display, their order etc.) the model is able to interpret the seismic and
pick the correct horizons for segmentation in the majority of the cases. However, some

58

(a) Model output 1 on the Western region. (b) Model output 1 on the Eastern region.

(c) Model output 2 on the Western region. (d) Model output 2 on the Eastern region.

Figure 6.3: Model-generated outputs compared to its reference. The model is trained for 150 epochs
in both cases.

Figure 6.4: A figure illustrating how a prediction may differ from its true label. Green pixels
indicates areas where the difference between the generated label and the actual label is bigger than
some small threshold (here, 0.1 is used).

predictions are inaccurate. Especially when the seismic includes fewer reflectors than our
model anticipates. The model seems determined in always including all the colours. This
special case is illustrated in Figure 6.5. This is an illustration of what might happen if we
not, through the training set, prepare the model for this special case.

We also include Figure 6.6 to illustrate why the cycleGAN is considered to be practis-
ing steganography: the art of hiding data inside an ordinary image. As we observe, several
reflectors are visible in the generated images. This is seen as a way of ”cheating”. The
model can, by hiding data, use the information later to reproduce the original image and
thus trick the cyclic loss (Chu et al., 2017). This artefact is particularly visible in the early
stages of training, and mostly disappears when the learning matures. It is an interesting
demonstration of the smartness, or laziness, of the cycleGAN.

6.2 Rich versus sparse data
To get a more realistic training scenario, we from now on include both inlines and crosslines
in the training data. In this way, the model in principle learns the full body of the domain

59

Figure 6.5: A special case where the model tries to include more colours/horizons than what is
present in the seismic.

(a) Model output example 1 with disguised, hidden reflectors.

(b) Model output example 2 with disguised, hidden reflectors.

Figure 6.6: Model output after a training session of 60 epochs.

of interest.
In this section, we experiment with how model output quality varies from training with

rich and sparse datasets. The seismic volume is, as previously mentioned, divided into
smaller regions. This is is done to standardise the input image dimensions. The volume is
split into cubes of dimension 286× 286× 255.

We define a sparse dataset as a dataset containing 5 inlines and 5 crosslines evenly
spread across the domain, in this case the F3 dataset. A rich dataset is defined as containing
20 inlines and 20 crosslines extracted from the domain. How we extract training lines can
be seen in Figure 6.1. The size of the training sets we use here would in most settings

60

involving training a deep learning model, be considered very small. The sparse dataset
consists of 1.75% of the inlines and crosslines, while the rich dataset consists of 7.00% of
the total number of inlines and crosslines in the volume. We test the model both on the
simple and complex seismic, to get a better understanding of the capabilities of the model.

Figure 6.7: MSE for models trained on rich and sparse datasets. The rich dataset is based on 20
inlines and 20 crosslines. The sparse dataset consists of 5 inlines and 5 crosslines. Complex seismic
indicates the Eastern region, while simple seismic indicates training and predicting on the Western
region.

In Figure 6.7, the difference between using the rich and the sparse dataset for training
is visualised. As we can see, the results are reasonable: MSE is lower for the rich datasets
than for the sparse datasets. The MSE is also higher when the model is trying to interpret
the more complex seismic. We also observe that there noticeably more oscillations in
the MSE when the seismic is complex. An explanation for this might be that it is more
difficult for the model to understand the structures here, so it keeps doing changes to the
interpretations as learning evolves.

Simple Complex

Sparse 6692.77 17945.12
Rich 4623.10 17263.06
∆ 30.9% 3.8 %

Table 6.1: MSE values for the four
cases.

Simple Complex

Sparse 0.442 0.286
Rich 0.457 0.293
∆ 3.4% 2.4 %

Table 6.2: Jaccard index values for the
four cases.

61

Figure 6.7 is also summarised in table form. Table 6.1 shows the respective MSE
values, with Jaccard index values for the four cases in Table 6.2. We also include relative
change, here denoted by ∆. The Jaccard index and MSE values are calculated at epoch
150, at the end of training. It should be noted that, usually, a Jaccard index score of 1
implies a perfect segmentation. On this task, however, a very good segmentation scores in
the range of 0.5− 0.6. This is due to the way we represent images here. To provide some
context, the single image displayed in Figure 6.3a has a measured Jaccard index score
of 0.51, and MSE of 1368, while Figure 6.3b has Jaccard index score of 0.25 and MSE
of 18768. In essence, the tables confirms the impression from the figure. More training
data improves interpretation quality. From the numbers, however, the difference is mostly
small, with one exception. We observe that the relative change for MSE in simple seismic
is as large as 30.9%. The accuracy is approximately the same for both sparse and rich
datasets trained on complex seismic, but with a slight improvement. The reason for this
may be due to the complex seismic being too difficult to handle for datasets this small,
but may also partially be explained by the fact that MSE (and Jaccard index here) are not
being very sophisticated evaluation metrics, thus failing to capture a possibly more correct
structure for the model trained with the rich dataset. The verdict is that for the complex
dataset we work with here, both the size of the training set and the number of epochs we
train the model with must be greatly increased to get decent results. We mostly focus on
the simpler seismic from this point forward, to narrow our scope slightly.

(a) Model output after 50 epochs, trained on the
sparse dataset.

(b) Model output after 50 epochs, trained on the
rich dataset.

(c) Model output after 150 epochs, trained on the
sparse dataset.

(d) Model output after 150 epochs, trained on the
rich dataset.

(e) Model output after 300 epochs, trained on the
sparse dataset.

(f) Model output after 300 epochs, trained on the
rich dataset.

Figure 6.8: Comparison of model outputs after 50, 150 and 300 epochs, training on a sparse and a
rich dataset.

62

To visualise how these various training conditions affects the model performance, we
refer to Figure 6.8. Here, we add results from training sessions with three different lengths,
50, 150 and 300 epochs. The figure shows how more data and more epochs influence the
interpretations, when trained on simple seismic. Clearly, the poorest results are obtained
with the fewest epochs and the smallest training set. And for the sparse dataset, it seems
like obtaining a ”correct” segmentation, takes time. Even after 150 epochs, the model
has not found a way to successfully separate the two lower, main horizons. As Figure
6.8f indicates, a clear segmentation may be possible after many enough epochs. After 300
epochs, there are signs showing that constructive learning still takes place.

When we train on the rich dataset, this goes faster: already after 150 epochs we achieve
an almost clear segmentation in the lower region of the image. The upper region of the
image is still a bit different from the labelled image it is compared to, but overall the output
is tidy with a minimal presence of noise artefacts.We explore further what effect epochs
have on quality in greater detail in the next section.

We are also interested in how good the model predictions are overall. To study this,
we examine a horizontal slice in the predicted macro model. This is illustrated in Figure
6.9.

As we can see, improvement over a total volume is far slower than for single cross-
sections. This is also anticipated, given that there are far more details in a slice covering
the whole volume than there are in a single lateral slice. However, it is worth mentioning
that the model is these cases the model is not trained on any seismic from about line 285
and onwards. This is also visible in the figure. The type of seismic we find in this area is
thus completely unseen. This shows that out model has some restrictions when it comes to
facing data it has not learned anything about. However, it may be able to reproduce certain
areas accurately also here.

63

(a) Model output after 150 epochs, trained on the
sparse dataset.

(b) Model output after 150 epochs, trained on the
rich dataset.

(c) Model output after 300 epochs, trained on the
sparse dataset.

(d) Model output after 300 epochs, trained on the
rich dataset.

(e) Model output after 600 epochs, trained on the
sparse dataset.

(f) Model output after 600 epochs, trained on the
rich dataset.

Figure 6.9: Comparison of model outputs trained on sparse and rich datasets for a horisontal slice
across the volume, at depth 210.

6.3 Training length

To investigate whether the model interpretations can be improved even more, we extend
the training process. We let the model train for 600 epochs on a sparse dataset and observe
if there are any reductions in MSE and evaluate prediction quality manually. Figure 6.10
shows the MSE for three training sessions of extended length, compared to an averaged set
of sessions where no additional penalty is added to provide some context. As we observe,
convergence is apparently reached eventually. It may seem like the phase where conver-

64

gence has been reached (the time when the small oscillations have stopped) is varying. In
the second training session, this may have been reached just before reaching 600 epochs,
while it occurs much earlier for the first session. In general, as we have previously seen,
we obtain better predictions when we include the additional penalty term. However, in
what may here be described as the early learning phase (from 0 to around 150 epochs) we
observe that the oscillations are larger when we include the additional penalty. A reason
for this might be that we then allow the model objective function to jump from minimum
to minimum to a larger extent, increasing the probability to eventually find a (close to)
optimal local minimum.

Figure 6.10: MSE for three sessions where the model is trained on a sparse dataset, with a bench-
mark consisting of several sessions averaged into one where no additional penalty term is included.

In Figure 6.11 we compare model outputs from training sessions of varying length. As
we have previously seen, interpretation quality improves continuously when we run long
training sessions. This is also evident here. After 600 epochs, the cross-sections provided
here seem to be fairly accurately interpreted. Although this is the case here, this progress
may vary from session to session. This is due to the randomness in the learning process,
which prompts the local minima the model finds to not always be equal. This also means
that they vary in quality. However, these plots indicate that the probability of finding a
good local minima definitively increases when training sessions are longer.

Time per epoch is of interest, as it is an indication of the efficiency of the model as
a useful tool. Note here that we throughout this chapter are using the extended model:
the model where the correlation penalty term is included. This leads to higher accuracy,
but also to epochs being slightly slower. Tests show that the reduction in speed per epoch
when the penalty term is added is about 30%. The performance of the GPU we have used
through Google Colab varies, probably due to variable traffic and load, but time per epoch

65

(a) Model prediction of inline 1 after 50 epochs, trained
on the sparse dataset.

(b) Model prediction of inline 2 after 50 epochs, trained
on the sparse dataset.

(c) Model prediction of inline 1 after 150 epochs,
trained on the sparse dataset.

(d) Model prediction of inline 2 after 150 epochs,
trained on the sparse dataset.

(e) Model prediction of inline 1 after 300 epochs,
trained on the sparse dataset.

(f) Model prediction of inline 2 after 300 epochs,
trained on the sparse dataset.

(g) Model prediction of inline 1 after 600 epochs,
trained on the sparse dataset.

(h) Model prediction of inline 2 after 600 epochs,
trained on the sparse dataset.

Figure 6.11: Comparison of model outputs after a various number of epochs. We compare output
from two different inlines.

when training on the sparse dataset seem to be around 9 to 15 seconds. For the rich dataset,
time per epoch varies between 26 and 44 seconds. This indicates a relative change in time
per epoch of about 170%, assuming times in the middle of the respective intervals. If time
is to be seriously considered when using the model, there is much to gain with using a
smaller training set.

66

Chapter 7
Discussion

In this chapter we provide a more in-depth discussion where we reflect on the results pre-
sented in the previous chapter, and what value that lies within our model in practical use,
including its strengths and weaknesses. We also include some suggestions to peers inter-
ested in this particular subject, based on the experiences we have accumulated throughout
this project, particularly related to interesting alternatives to pursue in future studies.

7.1 Main remarks
The initial results on real data show that the hyperparameter value γ that was found in
Chapter 5 needs to be adjusted when tested with real data. The new value clearly improves
the performance of the model. This emphasises the importance of correctly tuning hyper-
parameters in order to get optimal results. In this case it would be beneficial to include
more data points in the tuning process to determine the correct value with confidence. Ad-
ditionally, it illustrates how vulnerable such a deep learning model can be. There are a
variety of different, tunable parameters involved in the architecture of models like the one
we apply here. A slight inaccuracy in tuning one of them may corrupt the results. There-
fore, a serious amount of time should be invested in taking care of the hyperparameters
involved.

Nevertheless, from the results it is clear that the model also exceeds the basic cycle-
GAN model when applied to a real data case. We have mainly used a modified model
where the correlation penalty term is added, but using a model with the KLD penalty term
instead might have yielded promising results on real data as well. The fact that we are able
to increase the performance in these two cases also gives a reason to believe that there lies
potential in developing penalty terms with greater sophistication and theoretical embed-
ding. This may further increase model performance, as seemingly, the results based on the
vanilla cycleGAN model is far from optimal.

Moreover, we have in this thesis solely focused on enhancing performance through
modifying the objective functions in the GANs, leaving no attention to the residual parts
of the architecture. There might lie unreleased potential in experimenting with gener-

67

ator/discriminator setups, e.g. replacing the U-Net generator with newer technology (a
promising replacement could be the HRNet (Wang et al., 2020)), or just make incremental
changes to the U-Net structure itself. Furthermore, it may be useful to review the codework
as better solutions to certain parts of the framework definitively exist.

It is fair to say that the current overall setup presented in this thesis is far from op-
timised, and is working merely as a demonstration of what the promising technology of
GANs is capable of showing us.

When we turn to the actual results, it is obvious that an increase in training dataset
size, i.e. from a sparse to a rich dataset, leads to an increase in prediction accuracy. We
experience a 30.9% relative increase in MSE accuracy when working with simple seismic,
as well as an increase (albeit lower) when the seismic is complex. This is well anticipated
from general deep learning theory. And this especially comes to sight in regions of the
images which are harder to interpret. For instance, the lower part of the a certain part of
the seismic contains a reflector which is difficult to capture (as seen in Figures 6.8 and
6.11). More data makes the model more capable of handling the strenuous parts, like this
area. It is also evident from the results that the complex region is too demanding to produce
good quality results overall, given the small datasets we have been working with in this
thesis. Failure to produce good results here also displays the limits of the model, and how
it is yet not able to fully understand the fundamental principles behind the seismic. What
a further increase in training set size could lead to in this matter seems to be a plausible
option to explore.

An increase in training set size also leads to slower epochs. Going from the sparse to
the rich dataset increases time per epoch with approximately 170%. This highlights the
trade-off between size of the dataset and the training time, which ultimately should be a
choice made by the user, based on the overall goals determined in the actual exploration
project.

An important aspect of the training dataset discussion is its composition. Even though
the GAN is able to learn abstractions, its abilities are somewhat restricted. Here, it can
best be visualised by training a model on exclusively complex seismic (eastern region)
and try to predict on the simpler seismic structures in the western region. There are few
similarities in the geological shapes in the two regions, and the model will attempt to fit
certain complex looking structures to simple seismic. This is illustrated in Figure 7.1.

Figure 7.1: Model output from a case where we train on complex seismic but predict on simple
seismic. The model is trained for 300 epochs.

68

Due to this problem, an interesting topic to pursue in further work would be to apply a
mild form of transfer learning (Pratt, 1993) to the model. Transfer learning is the ability to
store knowledge about one problem and apply it to a different, but related problem. Here,
this may be used to learn the model to generalise seismic data and possibly make it more
robust when exposed to geological structures dissimilar to those it has been trained on.

In general, to ensure that the base for model predictions is as good as possible, de-
liberate dataset preprocessing is a necessity. The training dataset should reflect the target
geological macro model extensively. This e.g. requires diversity in training data so that
decent results across the target volume is obtainable. A good strategy is to pick data evenly
across the volume, to make sure that most of the structures in the seismic volume is repre-
sented in the training data. As we have seen, Figure 6.5 is a special case illustrating how
things can go wrong when the model comes across something it does not comprehend be-
cause of a lack of explicit learning. This discussion also sheds light on another aspect of
the human versus machine debate: even though we want to leave certain trivial and tedious
tasks to be automatised with the aid of deep learning, humans will still be imperative in
facilitating the task to be automatised.

It can also be argued about what would be a representable number of training images
used to predict on a volume in a real case. What we may conclude with on this matter is
that the more complex and variable the seismic is, the more data is needed to ensure good
quality in model output. However, even this is not a guarantee for good results, because as
we have seen: training GANs can be difficult, and there is always a risk of converging to a
suboptimal local minimum.

Moreover, based on the results we can conclude that the arbitrary cutoff we initially
fixed at 150 epochs in many cases is not sufficient for producing accurate enough predic-
tions. This is especially evident in cases where the training dataset is sparse. Even though
training is slower, i.e. it takes more epochs to reach the same level of accuracy as with
a rich dataset, improvement does not stop at 150 or 300 epochs. Based on visual inspec-
tions, we can see that even after 600 epochs, incremental improvements in some cases still
may take place. Learning progress is varying in individual training sessions, so that the
amount the model has learned after a given time may be different from session to session.
However, it is evident that letting the training last for more epochs is beneficial for model
output quality, up to a certain extent. This observation helps emphasise the fact that even-
tually there are other ways than to continuously increase training dataset size to achieve
predictions of good quality.

This is also illustrated in Figure 7.2, which shows the time perspectives of training
with rich and sparse datasets. As we can see from the figure, a model trained on a sparse
dataset may reach about 750 epochs by the same time a model trained on the rich dataset
reaches 300 epochs. This takes about 2.8 hours. Hence, there is evidently a clear trade-off
between choosing to include more data in the training process and how much time is spent
on the training itself. This knowledge may be useful in cases where the amount of good
quality training data is limited. As we have seen, training the model on a sparse dataset for
approximately 3 hours in some cases is sufficient for decent results. This is also considered
to be a relatively short training time for a deep learning model, which in many cases could
take days. In other cases, perhaps in places where the geology is more complex, letting the
model train over night with a richer dataset might be a profitable trade for better results.

69

Figure 7.2: Time plotted as a function of epochs for training sessions on a sparse and a rich dataset.

A question that emerges is how long one in general would want to train the model to
ensure good enough interpretations. In order to determine this, we need to define what
is good enough. This is also something that is likely to be a highly subjective opinion.
With good enough interpretations, we here assume interpretations that with a fair accuracy
is able to reproduce the geological structures, e.g. clearly highlights the different strata.
Based on several experiments we suggest that training the model for 600 − 900 epochs
should be enough to, with a high confidence, provide good interpretations. This applies
for simpler seismic data, like the type we find in the western region of our dataset. For
more complex seismic, longer training must be expected in order to produce decent quality
output.

Lastly, the way we choose to evaluate the quality of the generated outputs in this thesis
should also briefly be addressed. We have mostly been using the MSE as an evaluation
metric. However, this metric has its flaws when it comes to image evaluation. Compar-
ing images pixel by pixel may say something about how similar the single pixels are, but
does not completely capture the similarity or dissimilarity of the structure of the images
as a whole. In this sense, MSE may be viewed as somewhat ”primitive”. It has proven
to be difficult to find an evaluation metric that allows for differentiating incremental, but
significant, improvements in the structural interpretations. For future studies, a hybrid be-
tween the MSE and the IoU measuring the per-pixel segmentation accuracy could perhaps
be an improvement. Nevertheless, using MSE plots along with visual inspections seem to
provide an acceptable compromise and solution to the problem, for now.

70

7.2 Value of model in practical use
The results we provide in this thesis is a great demonstration of what problems deep learn-
ing is capable of potentially simplifying. One of the criteria such a model should satisfy
in order to be useful in practice is scalability, i.e. be able to handle large datasets without
consuming proportional amounts of resources. Our model proves to be scalable, given
a training dataset. Once the model is trained, predictions are generated almost instantly.
Moreover, the time it takes to train a model is, as we have seen, highly manageable. The
limited amount of training data the model needs is one of its strengths. We only need a
very small portion of the total volume (about 1.75%−7.00%) as training data and train the
model for only a few hours in order to most likely receive decent results. If done manually,
this process could potentially take weeks. This is a sound proof of value. But this again
comes with a certain cost: the training set composition should be well-thought out if good
quality results are to be expected. Nevertheless, the value here is significant.

The somewhat limited ability of making abstractions beyond what the model has been
trained on, and therefore its limited robustness currently restricts its usefulness to some ex-
tent. With the current setup we are dependent on data engineering to compose an optimal
training dataset for learning, which is a key to achieve high quality results. It is beyond
doubt that the value of such a model would increase significantly if it was able to under-
stand seismic data on a fundamental, deeper level. This is also something that potentially
be targeted in further studies.

When we compare our model to similar, already existing models, we can conclude
that what the model potentially lacks in interpretation accuracy it simultaneously gains
in speed and small training set size. It is also in possession of one clear advantage: the
absence of the need of paired training data, which comes in handy in a field where good
quality training data is scarce. It proves to be a competitive alternative to already existing
methodology used to solve these types of problems.

71

72

Chapter 8
Conclusion

In this thesis we have explored the capabilities of a modified cycleGAN model through
testing it on subsurface data segmentation. More specifically, we have assessed its abilities
to interpret seismic data in order to build a geological macro model of a given volume. As
the work conducted in this thesis is inspired by Mosser et al. (2018b), some of our results
can be viewed as a validation of the results published in the named paper. However, our
scope spans slightly wider. We improve the deep learning tool used and perform extensive
analysis on the significance of the length of training and quantity of training data, widening
the general understanding of this technology further and giving a thorough demonstration
of its capabilities.

To do this, we have experimented with including additional penalty terms to a vanilla
cycleGAN model with the intention of denoising its generated images. For this, we used
three different approaches, mainly targeting statistical properties in the images. First, we
experimented with the covariance of the image distributions. The idea here is that images
with less noise will have a lower covariance overall. Thus, by penalising by a weighted
distance between the covariances of a generated image and a reference image, we would
obtain clearer predictions. Secondly, we looked at the correlations of the images. By
considering the traces of the images, we penalise by a weighted distance between the
autocorrelations of the generated image and a reference image. Lastly, we experiment with
the KLD between a generated image and a reference image. With KLD being a measure of
the difference between two distributions, the idea is that this difference between a noisy,
generated image and a reference image in general would be larger when the generated
image is noisier, and thus result in a larger penalty.

Based on the conducted experiments involving all three penalty versions, we conclude
that both the correlation penalty term and the KLD penalty term achieve promising re-
sults in combination with a vanilla cycleGAN, clearly reducing the amount of noise in the
predicted images. Quantitatively, we find that MSE is relatively reduced with 21.5% and
19.6% for the correlation penalty and the KLD penalty, respectively. For the second part
of this thesis, we choose to proceed with a model including the correlation penalty term.

Next, we test this modified cycleGAN on real seismic data from the Dutch F3 block

73

dataset. We evaluate how the model performs on a variety of cases related to training
dataset size and the length of training sessions. We find that the more data the model is
given for training, the better the quality of the predictions become. However, even though
the model is given less training data (as little as 1.75% of the total dataset), it is still able
to produce decent predictions across the whole volume, given that the training time is
reasonably long and that the seismic is quite simple.

Ultimately, given that we train the model with very little data, and that the training
time is relatively short (also compared to other deep learning methods), we still receive
useful output. This is evidence of the potential value in utilising this type of model for this
use case, even in practice.

The model can possibly be improved by a thorough review of its architecture, by ex-
perimenting with a different setup through replacing and changing key parts, e.g. the gen-
erator or discriminator networks, changing the existing layout, or improving the general
code. Improving the code could also decrease computation time, leading to faster epochs.

Further, more penalty research may be conducted. It could be interesting to investigate
whether gradient-based penalties can improve the edge detection (see e.g. Vincent et al.
(2009)) and thus result in more accurate horizon interpretations. Exploring the concept of
transfer learning in GANs would also be interesting. If this is successfully implemented
in a model, it could lead to increased robustness in performance as it makes the model less
prone to misinterpretation of unseen data. Little research has yet been conducted in this
field, but promising results can be found in Wang et al. (2018) and Frégier and Gouray
(2019).

An even more relevant and realistic application to this project would be to use more
local data. The subsurface structures vary greatly from area to area, implying that data
from the Netherlands may not be very similar to the type of data we find on the Norwegian
Continental Shelf. Testing the model on data from eastern parts of the North Sea or the
Norwegian sea (for instance the Norne dataset) may thus be of great interest in future
studies.

74

Bibliography

Akhmadiev, R., Kanfar, R.S., 2019. Subsurface Imaging using GANs. N.p. URL: http:
//cs229.stanford.edu/proj2019aut/.

Alaudah, Y., Michałowicz, P., Alfarraj, M., AlRegib, G., 2019. A machine-learning bench-
mark for facies classification. Interpretation 7, SE175–SE187.

Arjovsky, M., Bottou, L., 2017. Towards principled methods for training generative adver-
sarial networks, in: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, OpenRe-
view.net. URL: https://openreview.net/forum?id=Hk4_qw5xe.

Benaim, S., Wolf, L., 2017. One-sided unsupervised domain mapping, in: Advances in
neural information processing systems, pp. 752–762.

Bhandare, A., Bhide, M., Gokhale, P., Chandavarkar, R., 2016. Applications of convo-
lutional neural networks. International Journal of Computer Science and Information
Technologies 7, 2206–2215.

Chen, X., Xu, C., Yang, X., Tao, D., 2018. Attention-gan for object transfiguration in wild
images, in: Proceedings of the European Conference on Computer Vision (ECCV), pp.
164–180.

Cho, Y., Jeong, D., Jun, H., 2020. Semi-auto horizon tracking guided by strata histograms
generated with transdimensional markov-chain monte carlo. Geophysical Prospecting ,
1456–1475.

Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J., 2018. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image translation, in: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 8789–8797.

Choi, Y., Uh, Y., Yoo, J., Ha, J.W., 2019. Stargan v2: Diverse image synthesis for multiple
domains. arXiv preprint arXiv:1912.01865 .

Chu, C., Zhmoginov, A., Sandler, M., 2017. Cyclegan, a master of steganography. arXiv
preprint arXiv:1712.02950 .

75

http://cs229.stanford.edu/proj2019aut/
http://cs229.stanford.edu/proj2019aut/
https://openreview.net/forum?id=Hk4_qw5xe

Dorn, G.A., 1998. Modern 3-d seismic interpretation. The Leading Edge 17, 1262–1262.

Farnia, F., Ozdaglar, A., 2020. Gans may have no nash equilibria. arXiv preprint
arXiv:2002.09124 .

Franci, B., Grammatico, S., 2020. A game-theoretic approach for generative adversarial
networks. arXiv preprint arXiv:2003.13637 .

Frégier, Y., Gouray, J.B., 2019. Mind2mind: transfer learning for gans. arXiv preprint
arXiv:1906.11613 .

Fu, H., Gong, M., Wang, C., Batmanghelich, K., Zhang, K., Tao, D., 2019. Geometry-
consistent generative adversarial networks for one-sided unsupervised domain mapping,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2427–2436.

Goodfellow, I., 2016. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160 .

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y., 2014. Generative adversarial nets, in: Advances in neural
information processing systems, pp. 2672–2680.

Gubner, J.A., 2006. Probability and random processes for electrical and computer engi-
neers. Cambridge University Press.

Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S., 2000.
Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.
Nature 405, 947.

Harrigan, E., Kroh, J., Sandham, W., Durrani, T., 1992. Seismic horizon picking using
an artificial neural network, in: [Proceedings] ICASSP-92: 1992 IEEE International
Conference on Acoustics, Speech, and Signal Processing, IEEE. pp. 105–108.

He, J., Wang, C., Jiang, D., Li, Z., Liu, Y., Zhang, T., 2020. Cyclegan with an improved
loss function for cell detection using partly labeled images. IEEE Journal of Biomedical
and Health Informatics , 1–1?

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition,
in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778.

Hiasa, Y., Otake, Y., Takao, M., Matsuoka, T., Takashima, K., Carass, A., Prince, J.L.,
Sugano, N., Sato, Y., 2018. Cross-modality image synthesis from unpaired data using
cyclegan, in: International workshop on simulation and synthesis in medical imaging,
Springer. pp. 31–41.

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al., 2001. Gradient flow
in recurrent nets: the difficulty of learning long-term dependencies. A field guide to
dynamical recurrent neural networks. IEEE Press.

76

Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A., Darrell, T.,
2018. CyCADA: Cycle-consistent adversarial domain adaptation, in: Proceedings of
the 35th International Conference on Machine Learning, PMLR. pp. 1989–1998.

Hossain, M.A., Sajib, M.S.A., 2019. Classification of image using convolutional neural
network (cnn). Global Journal of Computer Science and Technology .

Huang, K.Y., Chang, C.H., Hsieh, W.S., Hsieh, S.C., Wang, L.K., Tsai, F.J., 2005. Cellular
neural network for seismic horizon picking, in: 2005 9th International Workshop on
Cellular Neural Networks and Their Applications, IEEE. pp. 219–222.

Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with condi-
tional adversarial networks, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1125–1134.

Jaccard, P., 1901. Distribution de la flore alpine dans le bassin des dranses et dans quelques
régions voisines. Bull Soc Vaudoise Sci Nat 37, 241–272.

Jiang, S., Tao, Z., Fu, Y., 2019. Segmentation guided image-to-image translation with
adversarial networks, in: 2019 14th IEEE International Conference on Automatic Face
& Gesture Recognition (FG 2019), IEEE. pp. 1–7.

Karras, T., Aila, T., Laine, S., Lehtinen, J., 2018. Progressive growing of GANs for im-
proved quality, stability, and variation, in: International Conference on Learning Repre-
sentations. URL: https://openreview.net/forum?id=Hk99zCeAb.

Kaur, H., Pham, N., Fomel, S., 2019. Seismic data interpolation using cyclegan, in: SEG
Technical Program Expanded Abstracts 2019. Society of Exploration Geophysicists, pp.
2202–2206.

Kindermann, R., 1980. Markov random fields and their applications. American mathe-
matical society .

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. International
Conference on Learning Representations .

Koryagin, A., Mylzenova, D., Khudorozhkov, R., Tsimfer, S., 2020. Seismic horizon
detection with neural networks. arXiv preprint arXiv:2001.03390 .

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep con-
volutional neural networks, in: Advances in neural information processing systems, pp.
1097–1105.

Kullback, S., Leibler, R.A., 1951. On information and sufficiency. The annals of mathe-
matical statistics 22, 79–86.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al., 1998. Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86, 2278–2324.

77

https://openreview.net/forum?id=Hk99zCeAb

Leggett, M., Sandham, W., Durrani, T., 1994. 3d seismic horizon tracking using an artifi-
cial neural network, in: 56th EAEG Meeting, European Association of Geoscientists &
Engineers. pp. cp–47.

Lemaréchal, C., 2012. Cauchy and the gradient method. Doc Math Extra 251, 254.

Li, C., Wand, M., 2016. Precomputed real-time texture synthesis with markovian genera-
tive adversarial networks, in: European Conference on Computer Vision, Springer. pp.
702–716.

Lu, P., 2019. Deep learning realm for geophysics: Seismic acquisition, processing, inter-
pretation, and inversion. arXiv preprint arXiv:1909.06486 .

Maas, A.L., Hannun, A.Y., Ng, A.Y., 2013. Rectifier nonlinearities improve neural net-
work acoustic models, in: Proc. icml, p. 3.

Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S., 2017. Least squares
generative adversarial networks, in: Proceedings of the IEEE International Conference
on Computer Vision, pp. 2794–2802.

Maschler, M., Solan, E., Hellman, Z., Borns, M., Zamir, S., 2018. Game Theory. Cam-
bridge University Press.

McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics 5, 115–133.

Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J., 2016. Unrolled generative adversarial
networks. URL: https://openreview.net/pdf?id=BydrOIcle.

Mo, S., Cho, M., Shin, J., 2019. Instagan: Instance-aware image-to-image translation, in:
ICLR 2019.

Mosser, L., Dubrule, O., Blunt, M., 2018a. Stochastic seismic waveform inversion using
generative adversarial networks as a geological prior, in: First EAGE/PESGB Workshop
Machine Learning.

Mosser, L., Kimman, W., Dramsch, J., Purves, S., De la Fuente Briceño, A., Ganssle,
G., 2018b. Rapid seismic domain transfer: Seismic velocity inversion and modeling
using deep generative neural networks, in: 80th EAGE Conference and Exhibition 2018,
European Association of Geoscientists & Engineers. pp. 1–5.

Nabian, M.A., Meidani, H., 2020. Physics-driven regularization of deep neural networks
for enhanced engineering design and analysis. Journal of Computing and Information
Science in Engineering 20, 1–14.

Nanda, N.C., 2016. Seismic modelling and inversion, in: Seismic Data Interpretation and
Evaluation for Hydrocarbon Exploration and Production. Springer, pp. 187–204.

Nash, J., 1951. Non-cooperative games. Annals of mathematics , 286–295.

78

https://openreview.net/pdf?id=BydrOIcle

Nikodym, O., 1930. Sur une généralisation des intégrales de mj radon. Fundamenta
Mathematicae 15, 131–179.

Osborne, M.J., Rubinstein, A., 1994. A course in game theory. MIT press.

Pan, J., Liu, Y., Dong, J., Zhang, J., Ren, J., Tang, J., Tai, Y.W., Yang, M.H., 2018. Physics-
based generative adversarial models for image restoration and beyond. arXiv preprint
arXiv:1808.00605 .

Picetti, F., Lipari, V., Bestagini, P., Tubaro, S., 2018. A generative adversarial network
for seismic imaging applications, in: 88th Society of Exploration Geophysicists Inter-
national Exposition and Annual Meeting, SEG 2018, pp. 2231–2235.

Pratt, L.Y., 1993. Discriminability-based transfer between neural networks, in: Advances
in neural information processing systems, pp. 204–211.

Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 .

Ricker, N., 1953. The form and laws of propagation of seismic wavelets. Geophysics 18,
10–40.

Robbins, H., Monro, S., 1951. A stochastic approximation method. The annals of mathe-
matical statistics , 400–407.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedi-
cal image segmentation, in: International Conference on Medical image computing and
computer-assisted intervention, Springer. pp. 234–241.

Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review 65, 386.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al., 1988. Learning representations by
back-propagating errors. Cognitive modeling 5, 1.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X., 2016.
Improved techniques for training gans, in: Advances in neural information processing
systems, pp. 2234–2242.

Sen, M., 2006. Seismic Inversion. Society of Petroleum Engineers, U.S.A.

Shen, Z., Zhou, S.K., Chen, Y., Georgescu, B., Liu, X., Huang, T., 2020. One-to-one
mapping for unpaired image-to-image translation, in: The IEEE Winter Conference on
Applications of Computer Vision, pp. 1170–1179.

Sheriff, R.E., Geldart, L.P., 1995. Exploration seismology. Cambridge university press.

Siahkoohi, A., Kumar, R., Herrmann, F., 2018. Seismic data reconstruction with generative
adversarial networks, in: 80th EAGE Conference and Exhibition 2018.

Ulyanov, D., Vedaldi, A., Lempitsky, V.S., 2016. Instance normalization: The missing
ingredient for fast stylization. CoRR abs/1607.08022.

79

Vincent, O.R., Folorunso, O., et al., 2009. A descriptive algorithm for sobel image edge
detection, in: Proceedings of Informing Science & IT Education Conference (InSITE),
Informing Science Institute California. pp. 97–107.

Von Neumann, J., Morgenstern, O., Kuhn, H.W., 2007. Theory of games and economic
behavior (commemorative edition). Princeton university press.

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang,
X., et al., 2020. Deep high-resolution representation learning for visual recognition.
IEEE transactions on pattern analysis and machine intelligence .

Wang, M., Deng, W., 2018. Deep visual domain adaptation: A survey. Neurocomputing
312, 135–153.

Wang, Y., Wu, C., Herranz, L., van de Weijer, J., Gonzalez-Garcia, A., Raducanu, B.,
2018. Transferring gans: generating images from limited data, in: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 218–234.

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing 13,
600–612.

Wu, H., Zhang, B., Lin, T., Cao, D., Lou, Y., 2019. Semiautomated seismic horizon
interpretation using the encoder-decoder convolutional neural network. Geophysics 84,
B403–B417.

Wu, J.L., Kashinath, K., Albert, A., Chirila, D., Xiao, H., et al., 2020. Enforcing statistical
constraints in generative adversarial networks for modeling chaotic dynamical systems.
Journal of Computational Physics 406, 109209.

Xie, Y., Franz, E., Chu, M., Thuerey, N., 2018. tempogan: A temporally coherent, volu-
metric gan for super-resolution fluid flow. ACM Transactions on Graphics (TOG) 37,
1–15.

Yang, L., Zhang, D., Karniadakis, G.E., 2018. Physics-informed generative adversarial
networks for stochastic differential equations. arXiv preprint arXiv:1811.02033 .

Yang, Z., Wu, J.L., Xiao, H., 2019. Enforcing deterministic constraints on generative
adversarial networks for emulating physical systems. arXiv preprint arXiv:1911.06671
.

Yilmaz, Ö., 2001. Seismic data analysis: Processing, inversion, and interpretation of
seismic data. Society of exploration geophysicists.

Zell, A., Mache, N., Huebner, R., Mamier, G., Vogt, M., Schmalzl, M., Herrmann, K.U.,
1994. Snns (stuttgart neural network simulator), in: Neural Network Simulation Envi-
ronments. Springer, pp. 165–186.

Zhu, J.Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks, in: Proceedings of the IEEE international
conference on computer vision, pp. 2223–2232.

80

Appendix

Extended abstract, based on the results in the thesis, submitted for the EAGE Digital 2020
conference is shown on the next page.

81

Introduction

Seismic interpretation workflows tend to rely on much manual labour involving human presence for
various tasks. These tasks, which could for instance entail the picking of key geological horizons from
a three-dimensional seismic cube, are in many cases tedious, time-consuming and resource demanding.
With technology evolving, many new tools have become available for seismic processing workflows,
and in recent years there has been much focus on machine learning approaches to facilitate elements
of this work process (Dorn, 1998). Semi-automated horizon picking has been around since the 1990s
(Harrigan et al., 1992; Leggett et al., 1994), and with the developments in computing resources and
algorithms, there is by today enormous opportunities for automising the horizon picking as well as other
seismic processing tasks. Machine learning techniques will never replace human knowledge, but they
can ease the interpreters role in workflows, so the professional work is spent where it is most needed.

Recent advances in deep learning research has led to the development of a promising class of methods
called Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). These generative nature of
these methods means that they are highly capable of generating images that resemble what is seen with
only limited training data, at least compared to that of other deep learning approaches. Mosser et al.
(2018) showed promising results when applying GAN to seismic data set.

In this paper, we present a method for creating a geological macro model through seismic segmentation
by using semi-supervised deep learning GANs. We build on the work done by Mosser et al. (2018), by
transforming the problem into that of domain translation. In particular, we use a state-of-the art method
for unsupervised domain translation, the CycleGAN (Zhu et al., 2017) model, and combine this with a
penalty function for the autocorrelation in the data and in the generated images. The approach is tested
on different levels of training, which in our case meands labeling or picking of geological horizons. We
compare results obtained by sparse training where only five inlines and five crosslines are labeled, and
rich training where twenty inlines and twenty crosslines are labeled.

GANs and Cycle GANs

The newly developed GANs consist of two neural networks that play a game against each other. As a
simplification, one could say that a GAN is a neural network with a different neural network working as
a loss function. One of the networks, the generator G, tries to fool the other network (the discriminator
D) by generating images as close to some target distribution as possible. The discriminator evaluates
both generated images and images from the target distribution, and tries to separate the generated (fake)
images from the real (target distribution). Both the networks improve over time: the generator generates
better replicas, and the discriminator improves its evaluation accuracy.

The cycleGAN extends the original setup by having two GANs. This has been advantageous in situations
where one aims to have a domain translator between two domains X and Y . One generator G learns a
forward generative model, from X to Y , while the other generator F learns an inverse generative model,
mapping from Y to X . These two GANs work together by forming a cycle-consistent setup (Zhu et al.,
2017). Ideally, the output resembles the input, so that for a given input x ∈ X , one gets F(G(x))≈ x.

Each GAN in the setup has its own adversarial loss, so for (G,DY) we have

LLSGAN(G,DY) = Ey∼pdata(y)

[
(DY (y)−1)2]+Ex∼pdata(x)

[
DY (G(x))2] (1)

and similarly for (F,DX). To ensure cycle-consistency, i.e. for both the forward pass x[]F(x)[]G(F(x))≈
x and the opposite, backward pass y[]G(y)[]F(G(y))≈ y the cyclic loss (Zhu et al., 2017) is defined as

LCyc(G,F) = Ex∼pdata(x) [||F(G(x))−x||1]+Ey∼pdata(y) [||G(F(y))−y||1] , (2)

where || · ||1 denotes the 1-norm, defined in the following way: ||x||1 := ∑n
i=1 |xi| for a vector x of length

n. Additionally, identity loss is used to preserve colour balance in the translations,

LI(G,F) = Ex∼pdata(y) [||G(y)−y||1]+Ey∼pdata(y) [||F(x)−x||1] . (3)

First EAGE Digitalization Conference and Exhibition
30 November – 3 December 2020, Vienna, Austria

The complete cycleGAN loss function is thus

LCycleGAN(G,F,DX ,DY) = LLSGAN(G,DY)+LLSGAN(F,DX)+λCLCyc(G,F)+λILI(G,F), (4)

where λC,λI are penalising weights.

Modified Loss Function in GANs

Because of the semi-supervised properties of the cycleGAN, i.e. the unpaired data training, no direct
comparison between the generated image and its reference is possible. Hence, we propose to use sta-
tistical methods to capture the underlying similarities between the distributions of the generated and the
reference images (Wu et al., 2020). In doing so, we introduce the correlation penalty to the cycleGAN
model. This is used to maintain reasonable smoothness in generated images, leading to higher quality in
the interpretations.

Our modified loss function is defined as

L (G,F,DX ,DY) = LcycleGAN(G,F,DX ,DY)+ γ||Rτ(pdata)−Rτ(pG(z))||F , (5)

where || · ||F denotes the Frobenius norm, summing the squared entries of a given matrix and then taking
the squared root of the sum. Furthermore, γ is a penalty weight and Rτ is the correlation in the vicinity of
a point in the depth direction on the seismic grid domain. Mathematically, for distance τ the correlation
is defined as

Rτ =
1

σ̂2(n− τ)

n−τ

∑
t=1

(xt − µ̂)(xt+τ − µ̂), (6)

where {x1, ...,xn} are measurements and µ̂ and σ̂2 are estimated sample mean and variance of the se-
quence of measurements. We compute the correlations for trace by trace, in sequential order, before
summing them up, i.e

RTot,τ(I) =
N

∑
i=1

Rτ(xi), (7)

for an image I with N traces. We add each of the traveltime distances up to a specified τmax to our matrix
Rτ and do this for both our generated image and a reference image.

Case Study and Network Characteristics

We train the model on a dataset containing real seismic data; the publicly available Netherlands F3 block
dataset. We also use labelled data based on this particular seismic dataset, prepared by Alaudah et al.
(2019), in order to let the model learn the domain transfer. The training data thus consist of unpaired
images from both a seismic dataset and a labelled macro model dataset of the F3 volume.

In a comparative study, we use a sparse dataset (5 inlines and 5 crosslines) consisting of 1.75% of the
total dataset, and a rich dataset (20 inlines and 20 crosslines) consisting of 7.0% of the total dataset. The
inlines and crosslines are evenly extracted from the seismic volume.

The generators in our cycleGAN model are so-called U-Nets (Ronneberger et al., 2015), while the dis-
criminators are PatchGANs (Zhu et al., 2017). The model is implemented in Python and TensorFlow,
and run on a Tesla K80 GPU through Google Colab.

The model is trained for up to 300 training iterations, or epochs. Here, one epoch takes about 13 seconds
for the sparse dataset and about 35 seconds when trained on the rich dataset.

Results

We show the improvements the modified cycleGAN model with correlation loss in Figure 1. This is
shown for the mean square error (MSE) for the test data, where the model is trained on the sparse data.

First EAGE Digitalization Conference and Exhibition
30 November – 3 December 2020, Vienna, Austria

The proposed model leads to a relative decrease in MSE of 21.5%, due to a significant reduction of noise
present in the generated images.

Figure 1: Comparison of mean squared error (MSE) of GAN models with and without the proposed
penalty term. The correlation penalty appears to give faster convergence and better predictions.

(a) Model output after 50 epochs, trained on the sparse
dataset.

(b) Model output after 50 epochs, trained on the rich
dataset.

(c) Model output after 150 epochs, trained on the sparse
dataset.

(d) Model output after 150 epochs, trained on the rich
dataset.

(e) Model output after 300 epochs, trained on the sparse
dataset.

(f) Model output after 300 epochs, trained on the rich
dataset.

Figure 2: Comparison of model outputs after 50, 150 and 300 epochs. Sparse training (left) is based on
10 labeled seismic lines, while rich training (right) is based on 40 labeled seismic lines.

In Figure 2 we present results showing the actual interpretations made by the GAN model. This is shown
for one test line in the seismic data sets, and the displayed results are compared to their reference images

First EAGE Digitalization Conference and Exhibition
30 November – 3 December 2020, Vienna, Austria

(Ground Truth). We train the modified CycleGAN on the sparse (left) and the rich (right) training data.
The model is able to obtain reasonable results even in the case with sparse data. Still, it tends to miss
more detail in the geological horizons for the sparse situation. We observe that the size of the dataset
has an impact on how many epochs are required to run before a decent interpretation is found. This is
clearly faster when the training basis is richer.

The results show that there are different alternatives to pursue when seeking decent quality in model
output, either by including more data in the training or to let the model train longer. We believe that
the method presented here can be used as an aid in building geological macro models because of its low
computation cost and rapid predictions.

Conclusions

We have presented a method to perform seismic inversion using a semi-supervised approach only trained
on a small dataset. The method presented here is a modified cycleGAN model where we have added
an additional correlation penalty term to further enhance interpretation quality. The trained model allow
for very fast macro model building, given a seismic volume. The model proves to be robust, yielding
accurate interpretations on unseen seismic data. This is a demonstration of what these semi-supervised
deep learning methods are capable of.

Acknowledgements

We thank the Norwegian Research Council and the industry partners of the GAMES consortium at
NTNU for financial support (grant No. 294404).

References

Alaudah, Y., Michałowicz, P., Alfarraj, M. and AlRegib, G. [2019] A machine-learning benchmark for
facies classification. Interpretation, 7(3), SE175–SE187.

Dorn, G.A. [1998] Modern 3-D seismic interpretation. The Leading Edge, 17(9), 1262–1262.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and

Bengio, Y. [2014] Generative adversarial nets. In: Advances in neural information processing systems.
2672–2680.

Harrigan, E., Kroh, J., Sandham, W. and Durrani, T. [1992] Seismic horizon picking using an artificial
neural network. In: [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics,
Speech, and Signal Processing, 3. IEEE, 105–108.

Leggett, M., Sandham, W. and Durrani, T. [1994] 3D Seismic horizon tracking using an artificial neural
network. In: 56th EAEG Meeting. European Association of Geoscientists & Engineers, cp–47.

Mosser, L., Kimman, W., Dramsch, J., Purves, S., De la Fuente Briceño, A. and Ganssle, G. [2018]
Rapid seismic domain transfer: Seismic velocity inversion and modeling using deep generative neural
networks. In: 80th EAGE Conference and Exhibition 2018, 2018. European Association of Geosci-
entists & Engineers, 1–5.

Ronneberger, O., Fischer, P. and Brox, T. [2015] U-net: Convolutional networks for biomedical image
segmentation. In: International Conference on Medical image computing and computer-assisted
intervention. Springer, 234–241.

Wu, J.L., Kashinath, K., Albert, A., Chirila, D., Xiao, H. et al. [2020] Enforcing statistical constraints in
generative adversarial networks for modeling chaotic dynamical systems. Journal of Computational
Physics, 406, 109–209.

Zhu, J.Y., Park, T., Isola, P. and Efros, A.A. [2017] Unpaired image-to-image translation using cycle-
consistent adversarial networks. In: Proceedings of the IEEE international conference on computer
vision. 2223–2232.

First EAGE Digitalization Conference and Exhibition
30 November – 3 December 2020, Vienna, Austria

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Erik Arne Huso

Generative Adversarial Networks for
Seismic Interpretation

CycleGAN: A novel approach

Master’s thesis in Industrial Mathematics

June 2020

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Literature Review on GANs
	Related GAN models
	Papers on deep learning methods for seismic image data
	Papers discussing different loss functions

	Background on Seismic Data
	Introduction to seismic
	Reflection seismology
	Data
	Synthetic data
	Netherlands Offshore F3 block

	Generative Adversarial Networks
	Fundamental deep learning theory
	Activation functions
	Learning process
	Convolutional Neural Networks
	U-Net

	Introduction to GANs
	Definition and mathematical description
	Game theory
	Training GANs

	CycleGAN
	Definition and mathematical description
	CycleGAN algorithm

	Model architecture

	CycleGAN with Additional Penalty Term
	Theory
	Covariance penalty
	Correlation penalty
	Kullback-Leibler Divergence penalty

	Results
	Evaluation metrics
	Covariance penalty
	Correlation penalty
	Kullback-Leibler Divergence penalty

	Summary

	Results
	Initial results and tuning of hyperparameter
	Rich versus sparse data
	Training length

	Discussion
	Main remarks
	Value of model in practical use

	Conclusion
	Bibliography
	Appendix

