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Abstract

A new latent-variable statistical method for detecting the cost of plasticity in a
population has been tested using simulations. Individual fitness was modeled by
a Poisson distribution with expectation according to the selective mechanisms in
the relevant population. The simulated populations were under a phenotypic sta-
bilizing selection and a cost of plasticity. The individual breeding values and plas-
ticity values were latent variables in the model. Thus, the model inferred them
by applying the result of the infinitesimal model to the pedigree chart of the cur-
rent population. The objective was to find the conditions under which the model
attains its highest statistical power for detecting the cost of plasticity in the pop-
ulation. This was done by varying the family structure of the populations, the
model for the environmental contribution to the phenotype, and the level of plas-
ticity variance. Results were obtained using maximum likelihood estimation on
the marginal likelihood function in R software with the open R-package TMB, and
using the asymptotic normality of the ML estimators in a power analysis.

The results revealed that, depending on the exact assumptions on the effect
of the cost of plasticity, there is an optimal family structure which maximizes the
asymptotic power of each model. Two different models for the environmental
contribution to the phenotype were applied to the simulated populations. The
environmental model which split each family of the population into two distinct
groups was the superior choice in the models which assumed that the cost of plas-
ticity had both a linear and quadratic effect. The other environmental model drew
environmental contributions independently from a standard normal distribution.
In the statistical selection models which considered either an exclusive linear or
an exclusive quadratic effect of the cost of plasticity, the environmental models
performed equally well. The results also confirmed that, in a population where
the plasticity variance is at a higher level, the potential cost of plasticity is more
detectable.
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Sammendrag

En ny latent variabel-metode for å oppdage kostnaden av plastisitet i en popula-
tion har blitt testet ved hjelp av simuleringer. Individuell fitness ble modellert av en
Poisson-fordeling med forventningsverdi i henhold til de selektive mekanismene
i den gjeldende populasjonen. De simulerte populasjonene var under fenotypisk
stabiliserende seleksjon og en kostnad av plastisitet. De individuelle avlsverdiene
og plastisitetsverdiene var latente variabler i modellen. Modellen måtte derfor
inferere dem ved å anvende den infinitesimale modellen på stamtavlen over fam-
iliestrukturene til den gjeldende populasjonen. Målet var å finne forholdene der
modellen oppnår høyest statistisk styrke for å oppdage kostnaden av plastisitet
i populasjonen. Dette ble gjort ved å variere familiestrukturen i populasjonene,
modellen for miljøpåvirkningen til fenotypen, og varians av plastisitet. Resultater
ble til ved å bruke ‘Maximum likelihood estimation’ på den marginale rimelighet-
sunkfjonen med R sotftware og den åpne R-pakken TMB, og ved å benytte den
asymptotiske normalfordelingen til ML-estimatorene i en analyse av statistisk test-
styrke.

Resultatene avslørte at, avhenig av antagelsene på effekten av kostanden av
plastisitet, finnes det en optimal familiestruktur som maksimerer den asymptot-
iske styrken til hver modell. To ulike modeller for miljøpåvirkningen på fenotypen
ble anvendt på de simulerte populasjonene. Miljømodellen som deler hver fam-
ilie i populasjonen inn i to distinkte grupper var det overlegne valget i model-
lene som antok at kostnaden av plastisitet både hadde en lineær og kvadratisk
effekt. Den andre miljømodellen samplet miljøbidragene uavhengig fra en stand-
ard normalfordeling. I de statistiske seleksjonsmodellene som antok enten en
utelukkende lineær eller utelukkende kvadratisk effekt av kostnaden av plastisitet,
fungerte begge miljømodellene like bra. Resultatene bekreftet også at kostnaden
av plastisitet er lettere å oppdage i en populasjon med høyere varians i plastisitet.
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Chapter 1

Introduction

In 1859, Charles Darwin introduced the theory of natural selection, which states
that some individuals survive longer and produce more offspring than others due
to differences in phenotype. The measurement of the survival and reproduction
skills of an individual is known as its biological fitness, or Darwinian fitness. A
selection is fluctuating if there is variation in the optimal trait values of the pop-
ulation over a relatively brief period of time. The fluctuations mainly occur as
a result of environmental changes, and, consequently, populations living in het-
erogeneous environments are subject to fluctuating selection. Species living in
heterogeneous environments are thereby dependent on mechanisms which allow
them to adapt to the fluctuating conditions they are experiencing. Changes in gene
frequencies by natural selection is an adaptation in itself, however, it is extremely
time-demanding. Today, many species are experiencing environmental change at
a critical rate which may exceed the capacity of genetic change of the population,
and they must rely on other adaptation methods. Another relevant evolutionary
response to fluctuating selection is phenotypic plasticity (Chevin et al. 2010; King
and Hadfield 2018), which means the ability of a single individual to express dif-
ferent phenotypes in different environments.

Phenotypic plasticity provides an individual with the capacity to change its
phenotype as a direct response to the fluctuations it is subject to, such that the
plastic individual can adapt to the changes of its heterogeneous surroundings.
Adaptive plasticity can be detrimental for individual survival, and, can thus also
be significant to the survival of entire species. At first glance, it may appear that
plasticity is exclusively advantageous. One could thereby expect that evolution
by natural selection caused an increase of phenotypic plasticity in all individuals,
such that they could exhibit the optimal phenotype at all times. However, em-
pirical studies suggest constraints on the evolution towards higher plasticity. One
plausible constraint is that the exhibition of plasticity poses a cost to fitness. A cost
of plasticity must be defined as a direct reduction to individual fitness as a con-
sequence of exhibiting plasticity beyond the direct fitness effect of the phenotype
(Dewitt et al. 1998).

Unfortunately, no matter the source of the cost of plasticity, it is not directly
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2 Rønning: A new latent-variable method

measurable, and there have therefore been several attempts at estimating the cost
of plasticity by several scientists (Dewitt et al. 1998; Scheiner and Berrigan 1998;
Donohue et al. 2000; Agrawal et al. 2002; Relyea 2002). The results indicate that
costs of plasticity are not common. This is however not necessarily true, as the
applied methods might be infested with hidden bias. These attempts have mainly
considered models for biological fitness in a population and included a plasticity
covariate which is assumed to have a decreasing effect. However, the plasticity co-
variates of the models are not actual observations, they are best linear unbiased
predictors (BLUPs) which are provided from an external linear mixed model. Best
linear unbiased prediction is a method for obtaining point estimates of a random
effect in a mixed effect model, and it has been frequently used for estimation of
individual breeding values and plasticity values. The statistical model for fitness
makes no compensation for the uncertainty of the estimators, which may lead to
inaccuracies in the model. An article by Jarrod D. Hadfield (Hadfield et al. 2009)
highlights the problem of using BLUPs from a linear mixed model as explanatory
variables in a separate model. It shows that BLUP often provides anticonservative
and biased estimators for parameters of selection. Thus, there is a demand for a
selection model which takes the inaccuracy of the unobserveable variables into
account.

This thesis presents a novel approach for estimating the cost of plasticity,
where individual breeding values and plasticity levels are latent variables in a joint
statistical model. The degree of plasticity in individuals is included as an explan-
atory variable in both the submodel for the observed phenotype and the submodel
for the observed selection. Plasticity is not a directly observeable trait, so, instead,
the model infers the plasticity values by making assumptions on their distribu-
tions. The distribution of plasticity in an individual is determined by its genetic
background, which in turn is determined by the family relations of the respective
individual. Hence, the model relies on observations of related individuals. It is in
particular the family structure of populations and its impact on the performance
of the statistical model which is the centre of this thesis.

The model is made with the intention of being applied to a set of observations
of an actual population. In this thesis we thus try to uncover the circumstances
under which the model works best. So, at a later time, if someone decides to
perform an experiment for estimating the cost of plasticity, they can, hopefully,
use the results of this thesis as a guidance for the design of their experiment. The
results may also be used for assessing the value of a data set of observations of
a population which are already made. The thesis evaluates the performance of
the model on simulated populations using statistical power analysis. The main
objective is to answer the following question:

Given a set of N individuals of the same species which are separated into m
distinct families, in which each family consists of n full siblings, what are the
concurrent optimal values of m and n for uncovering the cost of plasticity in
the population?
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Other conditions which are expected to affect the power of the statistical model
are also examined. These conditions are: the environmental contributions to indi-
vidual development, the variance of plasticity in the population, and the strength
of the cost of plasticity in terms of selection.

The thesis starts by presenting the relevant theoretical results of quantitative
genetics which are directly applied in the statistical model. It then proceeds to
introduce necessary computational and statistical theory for assessing the model.
Chapter 3 provides a detailed description of the aspects of the model, and ex-
plains the procedure of assessing the model using power analysis. In addition, all
the different conditions of the populations and selections which will be explored
are introduced in this chapter. The results of the power analysis are presented in
chapter 4. Finally, chapters 5 and 6 respectively contain the discussion and con-
clusion of the thesis.





Chapter 2

Background theory

The purpose of this chapter is to present the applied theory which justifies the
method of the thesis. This includes theory which is specific to the field of quant-
itative genetics, and statistical theory which is relevant to analysis of statistical
power.

Section 2.1 presents the infinitesimal model, which accounts for the distribu-
tional assumptions on the individuals of the simulated populations. Section 2.2
then goes on to explain the mechanisms of selection in detail, and the impacts of
a stabilizing phenotypic selection on a population. The cost of plasticity and the
possible sources for it are accounted for in 2.3. Section 2.4 describes the process
of performing maximum likelihood on a latent-variable model using computa-
tional software tools. Finally, 2.5 derives the asymptotic distribution of maximum
likelihood estimators, which will be applied in the power analysis.

5
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2.1 The infinitesimal model

The infinitesimal model, introduced for the first time by Ronald Fisher (Fisher
1918), is a statistical model for the inheritance of quantitative traits. The indi-
vidual breeding value with respect to a trait is the expected trait value of its off-
spring, measured as the deviation from the population mean (Etterson and Kliman
2016). Under the conditions of the infinitesimal model, the breeding value of an
individual is approximately normally distributed around the mean breeding value
of its parents with a variance which remains constant in the population despite
selection (Barton et al. 2017).

Assume a large population of N individuals that is outcrossing, which entails
that only individuals with no common ancestors can mate. The population is un-
der linkage equilibrium and Hardy-Weinberg equilibrium, such that the allele fre-
quencies at two or more loci are independent and the population-wide genetic
variation remains constant through generations. Assume that we are considering
m traits on each individual of the population. For k = 1, . . . , N , let the vector of
breeding values of individual k be denoted by xk, xk ∈ Rm. Let n denote the num-
ber of loci of each individual of the population, and, for all i = 1, . . . , n, denote
the additive contribution of locus i in individual k to its breeding value by x(i)k .
Then, xk is defined as

xk = x(1)k + x(2)k + . . .+ x(n)k .

Denote the average parental breeding value of individual k by x̄k. Now, let n tend
towards infinity while, for each i = 1, . . . , n, x(i)k tends towards the zero vector. In
this limit, the breeding value has the following conditional probability distribu-
tion;

xk | x̄k ∼ N
�

x̄k,
1
2

V
�

, for k = 1, . . . , N ,

where V is the genetic variance-covariance matrix. The genetic variance-covariance
matrix is the sum of all the variance-covariance matrices of the additive effects of
each loci (Barton et al. 2017). A proof which reaffirms the applicability of the ap-
proximations of the infinitesimal model is given in the same article by Barton. It
relies on some restrictive model conditions, and, applying the central limit the-
orem to the breeding values for achieving normality.

The infinitesimal model is only applicable under certain conditions. The num-
ber of loci must be sufficiently large, and each contribution must be sufficiently
small for the infinity-infinitesimal approximation to hold. It is necessary that the
population is large and outcrossing, because inbreeding decreases genetic vari-
ance, and the population must be sufficiently large to remain outcrossing and
avoid inbreeding. Several common genetic phenomena are not accounted for by
the model applied here, such as mutation and dominance. The effect of these must
thus be sufficiently small.

An illustration of the distributions of breeding values for m = 1 trait in a
population under the infinitesimal model is given in figure 2.1. Each breeding
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value is normally distributed with the same variance, while the mean values differ
between individuals.

x̄k x̄k+1 x̄k+2 x̄k+3 x̄k+4 x̄k+5 x̄k+6

x
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Figure 2.1: Probability density functions of the distributions of the breeding val-
ues of individuals in a population under the infinitesimal model.



8 Rønning: A new latent-variable method

2.2 Selection and fitness

Selection is the differential survival and reproduction skills of individuals caused
by trait differences. In a population under the influence of selection, selected in-
dividuals survive longer and produce more offspring than other individuals. The
population will then experience an accompanied change in gene frequencies. The
biological fitness of an individual is given by the genetic contribution of the indi-
vidual to the next generation of the population in proportion to the contributions
of other individuals in the same generation of the population. It is thus a measure
of an individual’s reproductive success.

Assume that there is selection acting on a phenotype in a given population.
This implies that there is at least one optimal trait value, and that individuals with
trait value equal to this optimum have enhanced fitness. The selection is fluctuat-
ing if this optimal trait value is variant in the population, which means that dif-
ferent individuals may experience different optimal values due to environmental
fluctuations (Haldane and Jayakar 1963). In practice, all natural selection is fluc-
tuating, but they fluctuate in different proportions. The changes of the optimum
with the environment is called the environmental sensitivity of selection, and this
feature of the selection determines how fluctuating it is. Low environmental sens-
itivity of selection on a population indicates that there is little spatial variation
in the population habitat, and consequently the different individuals experience
selection towards trait values of little diversification. A non-fluctuating selection
is called a static selection, and means that the optimal trait value is constant in
time and space.

Stabilizing selection is the process in which non-extreme trait values are selec-
ted above extreme values. Non-extreme means that they are close to the average
trait value of the population, and thus, individuals which are closer to average
are selected above other individuals. Stabilizing selection on a trait will eventu-
ally decrease the trait variance in the population, as illustrated in figure 2.2. It
can be modeled by letting fitness be a Gaussian function centered around the
non-extreme optimum (Bull 1987). Let the fitness and trait value of an individual
be denoted by w and z, respectively. Gaussian stabilizing selection on the trait z
towards its optimum θ is given by

w(z) = e−
1
2

�

z−θ
ω

�2

, (2.1)

where ω is the width of the fitness function on the trait. The strength of a Gaus-
sian stabilizing selection is determined by the width of the fitness function and
the variance of the selected-upon trait. The narrower the fitness function and the
larger the trait variance, the stronger the selection.
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Figure 2.2: The distribution of trait values of a given quantitative trait z in a population
before and after a stabilizing selection on z.
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2.3 The cost of plasticity

Phenotypic plasticity quantifies the interaction between the phenotype and the
surrounding environment, and it is a genetically determined component. Let in-
dividual phenotypic plasticity be denoted by b until further. A cost of plasticity is
a direct reduction in biological fitness caused by the act of exhibiting non-optimal
plasticity. It is thus a direct relation between plasticity and fitness that acts inde-
pendently of the phenotypic selection which persists in the population (DeWitt
and Scheiner 2003). This implies that there is an independent selection on the
plasticity trait. This can be modeled by an additional fitness function which de-
pends solely on plasticity, such that the fitness function of an individual which is
under a phenotypic selection and a cost of plasticity is equal to the product of the
two fitness functions of the independent selections. This has, for example, been
performed by King and Hadfield (King and Hadfield 2018), and was explored in
the final chapter of my specialization project (Rønning 2020).

Some concepts of selection were introduced in the previous section, and they
apply here as well. An independent selection in b implies that there must be at
least one optimum which maximizes the fitness function on plasticity. Optima in
this sense means the plasticity values which are least costly. The value of the op-
tima and the formulation of the fitness function of the selection on b depend on the
mechanism of the cost. An article by Thomas J. DeWitt lists five plausible reasons
for a cost — maintenance costs, production costs, information acquisition costs,
developmental instability and genetic costs (Dewitt et al. 1998). The definition of
each cost is taken from the same article. The effects of the different types of costs
were discussed in my specialization project (Rønning 2020).

A maintenance cost of plasticity is the energy consumption and consequent
fitness reduction which comes from constantly perceiving the environment and
regulating the plastic phenotype accordingly. All degrees of plasticity exhibition
demand maintenance costs, so it follows that the optimum would be positioned
at 0 if a maintenance cost is the only active cost.

Production costs are the costs from producing the phenotype, and it is not
specific to plastic phenotypes. Production costs constitute a cost to plasticity only
when the cost of production is greater for a plastic phenotype than for a non-
plastic phenotype under the exact same conditions. The opposite — that plasticity
to a certain extent is the least costly alternative — is also possible. Thus, with
respect to production costs, there might be several, non-zero least costly degrees
of plasticity.

Information acquisition costs include costs which are forced upon the indi-
vidual from acquiring information about its surroundings. These include, among
others, energetic costs, risks of being eaten by predators and the absence of fitness-
enhancing activities, for example mating. The presence of information acquisition
costs pleads an optimal value of 0 to the fitness function on plasticity.

Developmental instability means high phenotypic variance, which may pose
a cost and lower fitness. This occurs if plastic development (the evolution of b)
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is more variable than fixed development, such as the evolution of the breeding
value. These costs are however related to genetic variance, and they don’t imply
that there is an independent fitness function in b, or a clear optimum of such a
function.

Genetic phenomena can also lead to a cost of plasticity. If, for example. the
is population is under linkage disequilibrium, and a plasticity allele is linked to
some alleles which lower fitness, the exhibition of plasticity directly lowers fitness.
Epistatic effects between different loci, for example suppression of each other gene
effects, may also reduce fitness. Genetic costs may arise in a number of ways, and
can imply several optimal values of plasticity.
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2.4 Maximum Likelihood Evaluation of a latent variable
model with TMB

A latent variable model is a model that makes statistical assumptions on a set
of variables, a subset of which are latent variables, which means they can not
be measured directly. It is assumed that the latent variables determine the de-
pendency of all the observations, and that the observeable variables of the model
have nothing in common after removing the effect of the latent variables. Some
examples of latent variable models are linear mixed models (LMMs), generalized
linear mixed models (GLMMs) and state space models (SSMs). LMMs and GLMMs
are ‘Random effects’-models, in which the latent variables serve as random effects,
which model the heterogeneity between different groups of the data. In SSMs, the
latent variables represent a hidden state, and the objective is to compute the op-
timal estimate of the hidden state given the observed data.

Assume that we have a latent variable model. Because of the latent vari-
ables, some crucial data points are missing from the respective likelihood function.
Hence, the likelihood function must be marginalized on the observeable variables.
This means integrating the likelihood function with respect to the latent variables,
such that the marginal likelihood becomes a function of the observeable variables
and the model parameters. Then, we can apply maximum likelihood estimation
(MLE) to the model and obtain estimators for the model parameters. Let the data
(observations of the observeable variables) of the model be denoted by y, let u
denote the latent variables and θ be the model parameters. The marginal likeli-
hood of the model, denoted by L(θ ), is then given by the marginal distribution of
the joint probability distribution of the model,

L(θ ) = f (y) =

∫

f (y | u) f (u) du, (2.2)

where f (y) is the marginal probability density function (pdf) of the data, f (y | u)
is the conditional pdf of the data, and f (u) is the pdf of the latent variables. This
equation is often without an analytic solution, and the solution is thus usually
approximated by some integration approximation method. For example, Markov
Chain Monte Carlo methods can be applied to obtain a numerical approximation,
or we can use other numerical integration methods. Or, if the integrand of (2.2)
is written as an exponential, the Laplace approximation can be applied.

TMB (Template Model Builder) is an open R package that uses the Laplace
approximation to obtain the marginal likelihood of latent variable models. The
approximation is obtained using automatic differentiation, which is a method for
computing the derivatives of a computer-implemented function. The use of the
Laplace approximation and automatic differentiation will be further explained in
the next two subsections. Applying MLE to a latent variable model using TMB
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requires a R-file and a C++-file, and is done as follows. The joint negative log-
likelihood of a model is defined as a C++ template function in a C++ file. The
associated R-file sends the required data and initial parameter values to the C++-
file, which, by means of the Laplace approximation and automatic differentiation,
evaluates the negative marginal log-likelihood, the score vector and the Hessian
matrix of the model, and returns it to the R-file. All further work, such as min-
imization of the negative log-likelihood and further analysis, is performed by the
R-file. An overview chart of the process is given in figure 2.3.

Pre-processing data

R-file

Evaluate Laplace approx-
imation of the likelihood
function and derivatives

C++-file

Calling optimization al-
gorithm, post-processing

R-file

Data, initial values

Likelihood + derivatives

Figure 2.3: The process of performing MLE on a latent variable model using TMB.

2.4.1 The Laplace approximation of the marginal likelihood

For a latent variable model with data y, latent variables u ∈ Rn and parameters
θ ∈ Rm, where n, m ∈ N, let f (y,u;θ ) be the negative joint log-likelihood of the
model. The marginal likelihood function of the model is given by

L(θ ) =

∫

Rn

exp(− f (y,u;θ )) du. (2.3)

The Laplace approximation, introduced by the mathematician Pierre-Simon Laplace
(Laplace 1774), is a method for estimating the solution to an integral of an ex-
ponential. The method is used by TMB to obtain the approximated likelihood
function of the model.

The following derivation is taken from two articles (Fog 2008; Kristensen et
al. 2016). Let û(θ ) be the minimizer of f (y,u;θ ) with respect to u, such that the
score vector evaluated at û is the zero vector,

û(θ ) = argmin
u

f (y,u;θ ).

Denote by H(θ ) the Hessian of f (y,u;θ ) with respect to u and evaluated at û(θ ),

H(θ ) =
∂ 2

∂ u∂ uT
f (y,u;θ )

�

�

�

u=û(θ )
.
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Applying the Taylor expansion around û to f yields an approximation given by

f (y,u;θ )≈ f (y, û;θ ) +
1
2

H(θ )(u− û)2. (2.4)

The Laplace approximation to the marginal likelihood function in (2.3) is then
obtained by replacing the function f with the Taylor approximation of f , as given
in (2.4). Then, a Gaussian integral arises, which is solved analytically using sub-
stitution in two variables, and exploiting that the integrand is proportional to the
pdf of the Gaussian distribution. The approximation is

L∗(θ ) =

∫

Rn

exp
�

f (y, û;θ ) +
1
2

H(θ )(u− û)2
�

du,

= exp( f (y, û;θ ))

∫

Rn

exp
�

1
2

H(θ )(u− û)2
�

du,

=
p

2π
n
det(H(θ ))−

1
2 exp(− f (y, û;θ )).

Now we have obtained a formulation for an approximation of the marginal like-
lihood of the model. The ML estimator for the parameter vector, denoted by θ̂ , is
finally found by minimizing the negative log of the Laplace approximation to the
likelihood function,

θ̂ = argmin
θ

�

− log L∗(θ )
�

= arg min
θ

�

−n log
p

2π+
1
2

logdet(H(θ ))+ f (y, û;θ )
�

.

Observe that, obtaining the final solution poses a nested optimization prob-
lem; the minimizer of f with respect to the latent variables, û, is required for
minimizing the negative log of L∗(θ ). So, TMB must solve the inner optimiza-
tion problem of minimizing f before solving the outer optimization problem and
obtaining the ML estimator of the parameters. Solving this nested optimization
problem requires evaluation of many partial derivatives, and this is performed by
TMB using automatic differentiation.

2.4.2 Optimization using automatic differentiation

Automatic differentiation (AD) is a technique that enables the evaluation of deriv-
atives of any objective function defined by an algorithm such that no user-defined
derivative code is required. TMB uses AD to obtain the Hessian matrix of the like-
lihood and to solve the nested optimization problem associated with MLE of the
Laplace approximation.

When a computer program uses the AD technique for differentiating a func-
tion, it starts by decomposing the computational sequence of the user-defined ob-
jective function into elements. Every objective function defined by an algorithm is
a sequence of elementary operations, such as multiplication or addition, and, ele-
mentary functions, such as the exponential function or trigonometric functions.
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By constantly applying the chain rule and differentiating with respect to a single
elementary operation or a single elementary function at a time, the function is fi-
nally decomposed into partial derivatives (Kristensen et al. 2016). After obtaining
the first derivative of an objective function, the program can proceed to calculate
the second derivative of the objective function by the same means.

A clear advantage of AD is that the user doesn’t have to define the derivatives
of the objective function analytically. This is however not a unique quality, as it
also holds for symbolic differentiation and numerical differentiation. Symbolical
differentiation also applies the chain rule to decompose an expression, however,
it manipulates mathematical expressions to obtain a formulation of the derivat-
ive of those expressions. AD has the advantage that it manipulates a computer
algorithm to obtain numerical values. So, as opposed to AD, symbolic differenti-
ation can lead to complicated expressions and thereby produce inefficient calcula-
tions. Numerical differentiation means evaluating the objective function at many
places to measure the slope of the function without using the formulation of the
objective function, merely sampled values of it. This method is very sensitive to
the amount of data needed. A function of many dimensions may require a lot of
computation and numerical differentiation may thus be quite inefficient. Thus,
AD is preferable to both symbolic differentiation and to numerical differentiation
(Neidinger 2010).



16 Rønning: A new latent-variable method

2.5 Asymptotic distribution of Maximum Likelihood Es-
timators

The purpose of this section is to give a brief review on the derivation of the asymp-
totic distribution of maximum likelihood estimators.

The derivation is taken from a book by Simon Wood (Wood 2015). Assume
that a statistical model of data from a continuous probability distribution with
parameter vector θ is given. The log-likelihood function is denoted by l, and
the accompanied maximum likelihood estimator for θ is denoted by θ̂ . Let the
true parameter value be denoted by θ t . First, we present some necessary res-
ults regarding the log-likelihood function. Under certain restrictions, the following
holds,

E
�

∂ l
∂ θ

�

�

�

θ=θ t

�

= 0. (2.5)

The proof of (2.5) rests upon the definition of the expected value, and the Leibniz
integral rule for interchanging the differentiation and integration operators, so
the pdf of the data and its first derivative must be continuous (Protter and Morrey
1985). By writing out the expression for the variance-covariance matrix of the
score, applying (2.5), and, applying the chain rule to the definition of the expected
value, we obtain

Cov
�

∂ l
∂ θ

�

�

�

θ t

�

= E
�

∂ l
∂ θ

�

�

�

θ t

∂ l

∂ θ T

�

�

�

θ t

�

= −E

�

∂ 2l

∂ θ∂ θ T

�

�

�

θ t

�

= I,

where I denotes the Fisher information matrix. It is called the Fisher information
because it is a way of measuring the amount of information the data carries about
θ , and it is named after the aforementioned statistician, Ronald Fisher, who em-
phasized the role of this matrix in MLE. Now, apply the Taylor approximation to
the score vector around θ t . This gives

∂ l
∂ θ

�

�

�

θ=θ̂
'
∂ l
∂ θ

�

�

�

θ=θ t

+
∂ 2

∂ θ∂ θ T

�

�

�

θ=θ t

�

θ̂ − θ t

�

. (2.6)

By the definition of θ̂ , the left hand side must be the zero vector. Denote the
sample size (number of observations in the data set) by n. Asymptotic distribution
means the distribution of θ̂ in the large sample limit, which is when n→∞. ML
estimators are asymptotically unbiased, so, in this limit,

�

θ̂ − θ t

�

tends towards
0. Assume that I increases without limit in a way such that I/n is constant in the
large sample limit. Then, as n→∞,

1
n

∂ 2

∂ θ∂ θ T

�

�

�

θ=θ t

−→
1
n
I, and,

∂ l
∂ θ

�

�

�

θ=θ t

∼ I,

which means that the score vector evaluated at the true parameter value is a
random vector with mean 0 and variance-covariance matrix I in the large sample
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limit. Finally, if we apply all the asymtptoic results for n →∞ to (2.6), we get
that

�

θ̂ − θ t

� asymp.
∼ I−1 ∂ l

∂ θ

�

�

�

θ=θ t

.

So, θ̂ has some large-sample-limit distribution with mean θ t and variance I−1.
When the observations are independent, the log-likelihood is a sum of inde-

pendent contributions from each observation. It follows that ∂ l/∂ θ is a sum of
independent identically distributed random variables. If the sample size is suffi-
ciently large, the central limit theorem, which states that the sum of n i.i.d. random
variables tends towards a normal distribution as n goes to infinity, can be applied
to the sum. Then, the asymptotic distribution of the ML estimator is obtained,

θ̂
asymp.
∼ N

�

θ t ,I−1
�

. (2.7)

This distribution can also be achieved when the likelihood is not a sum of inde-
pendent contributions. As long as I increases without limit as the sample size
increases, such that I/n remains constant in the n→∞ limit, (2.7) often holds
anyway.
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Methods

This chapter covers all of the methods which are applied in the thesis, and de-
scribes the implementation and computation of these methods.

The first section describes all the assumptions of the composite statistical
model in detail — including the assumptions on the populations and the select-
ive forces acting on it. Section 3.2 goes on to explain how the data sets onto
which the model will be applied are simulated. Then, section 3.2 elucidates how
the power analysis is performed on the model, particularly how the asymptotic
power of a model of certain assumptions on the cost of plasticity is obtained. Sec-
tion 3.4 presents the different conditions which will be applied to the model, and
explains our expectations. The exact details around these conditions are given in
3.5. Section3.6 justifies the choice of parameter values in the model, and finally,
3.7 describes the computational process for obtaining results.

19
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3.1 Statistical model

The statistical model attempts to explain the relationship between the biological
fitnesses, phenotypes and levels of plasticity of individuals in a given population
under selection. The observed biological fitness of an individual is the number of
offspring produced, and this is the response variable of the statistical model. The
observeable variables of the model are the number of offspring and the phenotypes
of individuals, while individual breeding values and plasticity values are latent
variables. The populations to which the statistical model is applied are assumed
to have non-overlapping generations, and for each population, the observations
are collected from one single generation.

This statistical model is a latent variable model which differs from (general-
ized) linear mixed models and state space models. As in mixed models, there are
hierarchical structures to all the relevant populations; observations are sampled
from individuals within different families. In this model, however, there are latent
variables at two levels. Individuals are divided into groups according to relation,
and their relation determines the distribution of their latent variables. In addition,
parameters of the distribution of the latent variables of individuals are in turn lat-
ent variables. The upper-level latent variables can not be considered random ef-
fects, so, the hierarchical structure of this particular model is extended from those
of LMMs and GLMMs. This hierarchy is also what contradicts an SSM — the hid-
den states of an SSM are assumed to have observeable distributional parameters,
while the distributional parameters are latent variables in this model.

The next subsection describes the hierarchical structure of the distribution
of the latent variables in detail. Then, the chosen model for the phenotype is
presented in 3.1.2, the selection assumptions are presented in 3.1.3, and, lastly,
the likelihood function of the model is given in 3.1.4.

3.1.1 Distribution of the latent variables

The latent variables of a model are those variables that can’t be measured directly.
In a statistical selection model such as this one, these are the breeding values and
plasticity values of individuals. Together, the breeding value and plasticity value
of an individual constitute the genotype of the individual, which is the genetic
contribution to its phenotype. The relation between the latent variables, the phen-
otype and the phenotypic selection will be presented in the next two subsections.
For now, it is sufficient to know that they are genetically determined compon-
ents which are decisive on the phenotype, and that they are latent variables in
the statistical model. The distributional assumptions on the latent variables are
obtained from knowing the family structure of the population and applying the
infinitesimal model, as presented in section 2.1. As it is a genetically determined
component, the plasticity value is assumed to be subject to the results of the in-
finitesimal model.

Each considered population has a family structure as follows. Let N be the
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population size. The N individuals are split into m distinct families, where each
family consists of n full siblings. Two arbitrary individuals of this given generation
of the population are thus either completely unrelated or have the same parents.
Recall that, under the assumption of the infinitesimal model, the breeding value of
an individual is normally distributed around the midparental breeding value, and
that the variance is constant in the population. Thus, in this statistical model, the
genotypes of the n full siblings of any arbitrary family are i.i.d.. Let i, i = 1, . . . , m
be the family index and j, j = 1, . . . , n denote which sibling. Denote the breeding
value of sibling j of family i by ai j , and let bi j denote the plasticity level in the
same individual, for all i = 1, . . . , m, j = 1, . . . , n. The vector [ai j , bi j]T constitutes
the genotype of individual i j. The genotype of any sibling of a given family i has
conditional distribution

�

ai j
bi j

� �

�

�

�

�

āi
b̄i

�

∼ N

��

āi
b̄i

�

,
1
2

�

Gaa Gab
Gab Gbb

��

, for j = 1, . . . , n, (3.1)

where āi and b̄i are the midparental breeding value and plasticity value, respect-
ively, of the parents of family i, Gaa is the population-wide variance of the breeding
value, Gbb is the population-wide variance of plasticity and Gab is their population-
wide covariance.

The parental generations are assumed to be panmictic, which means that re-
production occured without selection and all individuals had equal expected fit-
ness. With consecutive generations of random mating, the population as a whole
rapidly converges towards a Gaussian distribution (Barton et al. 2017). Thus, the
genotypes of the immediate parental generation are normally distributed in the
population around some overlying population mean value, denoted by [¯̄a, ¯̄b]T ,

�

āi
b̄i

�

∼ N

�� ¯̄a
¯̄b

�

,
1
2

�

Gaa Gab
Gab Gbb

��

, for i = 1, . . . , m. (3.2)

The genotypes of the parental generation are just as immeasurable as those of
the current generation. Hence, the family-specific mean values of the breeding
value and plasticity are also latent variables of the model, while the overlying
means, ¯̄a and ¯̄b, are parameters. An illustration of the hierarchical distributional
assumptions of the latent variables is given in figure 3.1.

3.1.2 The phenotype

Individual phenotypes are dependent on the respective genotypes and on environ-
mental impact. Let zi j denote the phenotype of sibling j of family i of the popula-
tion, and let its genotype be given by ai j and bi j , for all i = 1, . . . , m, j = 1, . . . , n.
The environmental contribution to the phenotype of individual i j at development
is denoted by εi j . In all models, the unconditional expected value of the environ-
mental contribution is 0. The environmental component is drawn from a distinct
model, and is simply a given value to the statistical model. Thus, the model makes
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Overlying
population

mean [¯̄a, ¯̄b]T

Family 1,
mean [ā1, b̄1]T

Family 2,
mean [ā2, b̄2]T
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mean [ām, b̄m]T

. . .

Full-sib 1,
genotype
[a11, b11]T

Full-sib 2,
genotype
[a12, b12]T

Full-sib n,
genotype
[a1n, b1n]T

. . .
Full-sib 1,
genotype
[a21, b21]T

Full-sib 2,
genotype
[a22, b22]T

Full-sib n,
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[a2n, b2n]T

. . .
Full-sib 1,
genotype
[am1, bm1]T

Full-sib 2,
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[am2, bm2]T

Full-sib n,
genotype
[amn, bmn]T

. . .

Figure 3.1: Hierarchical structure of the genotypic distributions of the theoretical pop-
ulations, as given in (3.1) and (3.2). The genotypes of the child nodes are drawn from
distributions centered around the values of the respective parental nodes. The lower level
represents the observed generation under selection, the middle level represents the par-
ental generation, and the upper node represents all the previous generations.

no attempts at estimating the parameters and formulations of the models of the
environmental contributions. Recall that plasticity is the interaction of the pheno-
type with the environment, while the breeding value constitutes an elevation. The
model assumes a linear relationship with the environment. Hence, the phenotype
is modeled as

zi j = ai j + bi jεi j + ei j , (3.3)

where ei j ∼ N(0,σ2
e ). The last term can represent environmental variation which

is not captured by εi j or observational errors, and imposes a lower limit to the
variance of the phenotype. Note that the phenotype is a linear combination of
normally distributed variables, and has a normal distribution itself. For all indi-
viduals i = 1, . . . , m, j = 1, . . . , n, the conditional phenotypic distribution is

zi j | ai j , bi j ,εi j ∼ N
�

ai j + bi jεi j , σ
2
e

�

.

3.1.3 Selection

The selection which persists in the notional population consists of a stabilizing
phenotypic selection and a cost of plasticity. A stabilizing selection on the phen-
otype is chosen because it is thought to be the most common type of selection
in most populations (Charlesworth et al. 1982). Selection is assumed to occur
simultaneously for all individuals and to be static.

The number of offspring produced by any given individual of the relevant
generation is assumed to have a Poisson distribution with an expectation that
depends directly on the phenotype and on plasticity. The Poisson distribution is
a discrete probability distribution which models the probability of events occur-
ring in an interval, so, given that all individuals of the same generation produce
offspring in the same temporal interval, and, that there is selection present such
that the distribution parameter (expected number of offspring) is inhomogeneous
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in the population, this distribution fits well. The Poisson distribution assumption
is inspired by the mating patterns of idealized Wright-Fisher (WF) populations
as described by Felsenstein (Felsenstein 2015). Here, the number of offspring of
each individual is binomially distributed, and is thus approximately Poisson dis-
tributed in the large population limit. An idealised WF population is under the
random mating assumption, so the number of offspring of individuals are i.i.d.. In
the model presented here, however, the producing generation is under selection,
so the expected number of offspring of individuals varies according to their trait-
and plasticity values. Additionally, this model poses no constraint on the number
of offspring, while idealized WF populations have constant size.

For all i = 1, . . . , m, j = 1, . . . , n, let yi j denote the number of offspring pro-
duced by sibling j of family i, and denote its phenotype and plasticity value by zi j
and bi j , respectively. Denote the expected number of offspring of individual i j by
wi j . It follows from the selection assumptions that wi j is a function of zi j and bi j .
For all i = 1, . . . , m, j = 1, . . . , n, the number of offspring of individual i j has the
following conditional Poisson distribution,

yi j | zi j , bi j ∼ Poisson
�

wi j(zi j , bi j)
�

.

The parameter of interest is the expected number of offspring of each individual.
We will apply the canonical link function, which is the log-link function, such that
selection is given by a log-linear Poisson model. This entails that log wi j is a linear
function in the covariates of the model, and imposes a lower bound 0 ≤ wi j . The
exact covariates of the model will be presented in the next three paragraphs.

As previously mentioned, the statistical model presented here is intended to
be relevant for an authentic biological experiment on the cost of plasticity. This
notional experiment is the study of a population under phenotypic stabilizing se-
lection and an alleged cost of plasticity in some controlled habitat. The selection
on the phenotype is modeled as a static selection, so it is important that the habitat
of the experiment is customized in such a way that the environmental sensitivty of
selection is sufficiently low, such that the optimal phenotype is virtually equal for
all individuals of the population. The stabilizing phenotypic selection is modeled
by a Gaussian function, as presented in section 2.2. Thus, for each individual i j,
i = 1, . . . , m, j = 1, . . . , n, the expected fitness must obey

wi j ∝ e−
1
2

� zi j−θ
ω

�2

,

for some population-wide optimum θ and width ω of the fitness function on the
phenotype. It follows that log wi j is linear to both zi j and z2

i j , and thus both zi j

and z2
i j are included as model covariates (provided that θ is non-zero, if θ = 0,

then zi j can be omitted). For θ 6= 0, this assumption also imposes an intercept
component to the model.

We have established that both the linear and quadratic effect of the phenotype
are covariates in the statistical model. The remaining covariates depend on how
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the costliness of plasticity unfolds. The cost of plasticity is assumed to arise from
one of the causes presented in section 2.3, and it is assumed to be static in the
population. It is reasonable to assume that a cost of plasticity which persists in
a population is static. Individuals of the same population are virtually equally
exposed for developmental instability and a cost of plasticity as a result of some
genetic phenomena. They may also have similar maintenance costs, production
costs and information acquisition costs.

Now, let’s consider the fitness effect of the cost of plasticity on each individual.
For example, plasticity could have a strict linear relationship to the logarithmic fit-
ness, which implies that an additional linear plasticity covariate to the model is
sufficient. Alternatively, there could be a Gaussian stabilizing selection on plasti-
city towards 0 due to maintenance costs, as modeled by King and Hadfield (King
and Hadfield 2018). Then, the expected fitness wi j of sibling j of family i with
phenotype zi j and plasticity bi j is

wi j ∝ e−
1
2

� zi j−θ
ω

�2
− 1

2

� bi j
ωb

�2

,

for all i = 1, . . . , m, j = 1, . . . , n, where ωb is the population-wide width of the
fitness function of plasticity. In this case, only the quadratic effect is significant,
such that, in the model for fitness of individual i j, b2

i j is a covariate of the model
while bi j is not. A third option is that there is a Gaussian stabilizing selection on
plasticity towards a non-zero least costly degree of plasticity, which would im-
ply both a linear and quadratic dependence. The statistical model accommodates
for all aforementioned possibilities of a cost of plasticity (and some others). Both
linear and quadratic effects of the cost plasticity are relevant, as well as the inter-
cept. The phenotypic stabilizing selection and the cost of plasticity are assumed
to act independently of each other. In other words, an interaction covariate is not
included in the model. Phenotypic selection is assumed to be an ‘exterior’ contrib-
utor, as it depends on the environmental conditions, while the cost of plasticity is
a self-inflicting mechanism which only depends on an individual’s plasticity level.
By reparameterizing the previous equations and assumptions, the following model
for expected fitness is obtained; for all i = 1, . . . , m, j = 1, . . . , n, sibling j of family
i has expected fitness given by

log wi j = β0 + β1zi j + β2z2
i j + β3 bi j + β4 b2

i j , (3.4)

where β0, β1, β2, β3 and β4 are the unknown model parameters that determine
selection in the population.

Note that, as plasticity is detrimental on the phenotype, a change in the plas-
ticity component of individual i j, bi j , inflicts a change to the phenotype zi j for all
i = 1, . . . , m, j = 1, . . . , n (unless individual environmental contribution at devel-
opment is valued at zero, but this is not the general case). Hence, alterations of
the degree of plasticity will influence fitness whether plasticity is costly or not, by
changing the phenotype. However, if either of the two latter coefficients of (3.4),
β3 and β4, are nonzero, this would imply a direct dependence between the degree
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of plasticity and the biological fitness of each individual. This direct relationship
is the cost of plasticity. If β1 and/or β2 are nonzero, on the other hand, this means
that plasticity has an indirect impact on fitness through dependence of the phen-
otype. This significance does however not imply that there is a cost of plasticity in
the population.

3.1.4 The likelihood function

At this point, the relevant assumptions on the selection and the distribution of the
relevant populations have been presented. There are a total of 11 unknown para-
meters. These are the β-values, β0, β1, β2, β3 and β4, that determine selection,
σ2

e , which determines the conditional phenotypic variance, and the parameters

of the genotypic distribution, ¯̄a, ¯̄b, Gaa, Gab and Gbb. The latent variables are the
individual genotypes, ai j and bi j , and the genotypic family means āi and b̄i , for
all j = 1, . . . , n, i = 1, . . . , m. The input data of the model consists of the number
of offspring produced by each individual, the phenotype, the given environmental
contribution to the phenotype and, lastly, the pedigree chart of the family struc-
ture of the population, which determines the distribution of the lower-level latent
variables. Let

β = [β0,β1,β2,β3,β4]
T , G=

�

Gaa Gab
Gab Gbb

�

.

The marginal log-likelihood function of the model is given by

l(β ,σ2
e , ¯̄a, ¯̄b,G) =

m
∑

i=1

∫∫ �

log f (āi , b̄i) +
n
∑

j=1

∫∫

log f (yi j , zi j | ai j , bi j)

+ log f (ai j , bi j | āi , b̄i) dai j d bi j

�

dāi d b̄i ,

where f (āi , b̄i) is the pdf of the distribution of the genotypic mean of family i,
f (yi j , zi j | ai j , bi j) is the conditional joint pdf of the number of offspring and the
phenotype of sibling j of family i, and f (ai j , bi j | āi , b̄i) is the distribution of the
genotype of sibling j of family i, for i = 1, . . . , m, j = 1, . . . , n.

By inserting the formulations of the pdf’s into the expression, we will find that
the marginal log-likelihood function has a quite awkward formulation. Obtaining
it also requires a lot of integration — integration must be done with respect to
two parameters for each population member, and, with respect to two parameters
for each family. The objective function can not be computed explicitly, and the ML
estimators of the model parameters are thus obtained by using the approximation
methods of the TMB package as described in section 2.4.
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3.2 Data simulation

This section explains how each data set is obtained. Each data set is thought to
imitate observations on an actual population. A data set of a single population is
realized as follows. First, all the necessary parameter values are set. This includes
the population size N , the number of families, m, and the number of siblings, n, as
well as ¯̄a, ¯̄b, Gaa, Gbb, Gab, σ2

e , β0, β1, β2, β3, and β4. Then, the m family means
are sampled from the distribution of (3.2) and n distinct genotypes, correspond-
ing to the n full siblings, are sampled from the distribution of (3.1) for each of the
m families. Now the genotypes of all individuals are obtained. The model of the
environmental contribution to the phenotype is decided, and the necessary para-
meters for this model are set. The contributions are drawn from the respective
model, and the ei j-values are drawn from a N(0,σ2

e ) distribution. The phenotype
is computed, along with expected fitness, and the number of offspring produced
by each individual is sampled from a Poisson distribution. Realizations of all the
observeable variables in the population are now obtained, and the data set is thus
complete.

In a real-life case study, the same exact data set could be obtained in the follow-
ing way. The initial population consists of 2m genetically uncorrelated individuals
which are the product of several consecutive generations of random mating. By
selective breeding, monogamous mating occurs, such that m couples of mating
partners are formed, and each of the m couples of parents produce exactly n off-
spring (without breaking the random mating assumption, so the monogamous
parents must be paired at random). Thus, a generation of N = m × n offspring
is produced. These individuals are placed in controlled and measurable environ-
ments. The phenotype of each individual of the second generation is measured.
Selection occurs, and each of the N individuals produce a certain number of off-
spring each. The mating patterns of this selection are irrelevant, as the observed
fitness is solely determined by total quantity of offspring. It is essential that the
different environmental contributions and the family affiliation of each individual
is known at all times.

Clearly, the simulated populations have a simplified structure that does not
easily appear on its own. In the generation which constitutes the dataset, two in-
dividuals picked at random are either full siblings or come from different families,
in which case they are unrelated and genetically uncorrelated. Realistically, two
individuals of the same population can be genetically correlated in an immense
number of ways, and there is always some correlation. (This amount can how-
ever be of a negligible size.) Fortunately, the results and knowledge obtained in
this thesis are easily generalized to populations of a more intricate family struc-
ture. The family structure mainly affects the distribution of the latent variables
of individuals of the population, and an intricate family structure can lead to a
hierarchy with more levels and more branching than the one presented in figure
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3.1. Thus, the likelihood function may get an even more awkward formulation for
those populations. Nevertheless, the model is applicable to those populations as
well. Additionally, recall that the the model is thought to be applied to case stud-
ies, in which artificial selection can be applied to obtain less challenging pedigree
charts than those that may persist in nature.
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3.3 Model assessment and test power

This section explains the power analysis which will be used for assessing the stat-
istical model on different simulated populations. When the statistical model is
applied to the observations, estimators for each of the unknown model paramet-
ers are obtained using MLE. The model seeks to establish if there is a cost of
plasticity present in the observed population or not, which is done by performing
a significance test on the associated model parameters. The significance tests are
given by

H0 : β3 = β4 = 0 vs. H1 : β3 6= 0∪ β4 6= 0, (3.5)

and each test has a chosen significance level α. The statements of the alternative
hypothesis are united with a union sign as opposed to an intersection, because,
finding that only one the statements holds is sufficient for concluding that plasti-
city is costly. One-dimensional tests on either β3 and β4 are also relevant in this
thesis. The first subsection of this section derives the asymptotic power of a one-
dimensional significance test, while the second derives the asymptotic power of a
two-dimensional test.

The power of a hypothesis test is defined as the probability of correctly re-
jecting H0, which, with respect to this statisticl model, means the probability of
detecting a cost of plasticity when such a cost is present. The test power for the
parameters of this model cannot be found explicitly, so, we exploit what we know
about ML estimators and hypothesis testing to obtain approximations and assess
the models thereafter. We will use the asymptotic normality of ML estimators, as
presented in section 2.5. The pdf of the observations of the model are continuous,
and observations from different individuals are independent (though not identic-
ally dsitributed), so the asymtptoic distribution applies to the parameters of this
statistical model.

An alternative approach to obtain the model power is to perform simulation-
based analysis (Bolker 2008). This method involves simulating many populations
for which H1 is true and perform tests on all the data sets. Each test is viewed as a
Bernoulli trial, where success means the rejection of H0. The number of rejections
out of n trials is then binomially distributed with success probability p equal to
the model power and n as parameters. MLE can be performed on the binomial
distribution to obtain estimates for the model power. This method has not been
chosen because it requires the execution of a large number of tests and is thus
much more computer intensive. Also, the outcome of each test is based on the
comparison of α to the p-value of the test. The p-value is taken from the compu-
tations performed by TMB, and it is obtained based on the asymptotic normality
of the test parameters and on the Fisher information matrix. Thus, we are reli-
ant on the asymptotic normality of the test parameters no matter which method
is chosen. One benefit of a simulation-based power analysis as opposed to the
method which we will apply, is that we can, to some extent, control the accuracy
of the asymptotic power by averaging over several simulations.
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3.3.1 Asymptotic power of the reduced model

The reduced model refers to the case where one of the two ‘cost of plasticity’-
parameters is fixed at zero, such that the significance test is applied to only one
parameter. For example, we could have a reduced model where β4 = 0 is fixed,
and β3 is unknown. The model then assumes that the logarithm of expected fitness
of each individual i, j, i = 1, . . . , m, j = 1, . . . , n, follows

log wi j = β0 + β1zi j + β2z2
i j + β3 bi j ,

and thus performs estimation on a subset of the parameters of the full model.
The hypothesis test on the cost of plasticity is, in this case, a one-dimensional,
two-sided test on β3 with null value β3 = 0. As the sample size is increasing,
the ML-estimator for β3, denoted by β̂3, converges towards a normal distribution.
Thus, given that H0 is correct,

β̂3
asymp.
∼ N

�

0,SE(β̂3)
2
�

| H0,

where SE(β̂3) is the standard error of β̂3, as estimated by the computations of
TMB. The null hypothesis is rejected if the estimator deviates too much from this
distribution, which means that H0 is rejected if either

β̂3 ≤ −zα/2 SE(β̂3), or β̂3 ≥ zα/2 SE(β̂3),

where zα/2 is the α/2-quantile of the standard normal distribution.
Let the true value of β3 be known, and let it be non-zero such that H0 is in

fact false. The estimator then has a shifted asymptotic normal distribution with
non-zero mean β3 and the same standard error under H1. Denote the cumulative
distribution function of the standard normal distribution by Φ. The asymptotic test
power is then the probability of rejecting H0, when the test estimator follows the
distribution actual distribution as given by H1,

Power
asymp.
= P

�

β̂3 ≤ −zα/2 SE(β̂3) | β3

�

+ P
�

β̂3 ≥ zα/2 SE(β̂3)) | β3

�

,

= Φ

�

−zα/2 SE(β̂3)− β3

SE(β̂3)

�

+

�

1−Φ

�

zα/2 SE(β̂3)− β3

SE(β̂3)

��

.

Figure 3.2 shows the area that constitutes the asymptotic power of a significance
test on β3. The asymptotic test power of a one-dimensional significance test on
β4 can be derived in an equivalent way, using the asymptotic normal distribution
and the standard error of β4.

3.3.2 Asymptotic power of the full model

Now consider the bivariate test on both parameters, as presented in (3.5). For
this subsection, let β = [β3,β4]T , and let β̂ denote the associated ML estimator,
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Figure 3.2: One-dimensional significance test on β3 with β3 ≤ 0.

β̂ = [β̂3, β̂4]T . The submatrix of the Hessian matrix of the model which contains
the variances and covariance of β̂3 and β̂4 is denoted by I,

I =





SE(β̂3) Cov(β̂3, β̂4)
∧

Cov(β̂3, β̂4)
∧

SE(β̂4)



 .

The estimator β̂ then has an asymptotic bivariate normal distribution under H0
with mean equal to the zero vector and a variance of I−1. The Wald statistic,
denoted by W , is defined as the quadratic form of β̂ under H0,

W = β̂
T
Iβ̂ , (3.6)

such that W has a chi-squared distribution with 2 degrees of freedom under the
asymptotic distribution of the ML-estimator under H0. Thus, the null hypothesis
is rejected if

W ≥ χ2
1−α,2,

where χ2
1−α,2 is the (1−α)-quantile of the chi-squared distribution with 2 degrees

of freedom.
Again, let the true parameter values β3 and β4 be known, and let at least

one of them be non-zero such that H1 is true. Then, under H1 and given the true
parameter values, the ML estimator has a shifted asymptotic normal distribution
with mean β ,

β̂
asymp.
∼ N

�

β ,I−1
�

| H1. (3.7)

It follows that the distribution of the Wald statistic is also shifted under H1. In
fact, W has non-central chi-squared distribution under H1 (Hélie 2007). A sum of
k squared independent standard normal variables is chi-squared distributed with
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k degrees of freedom. A sum of k squared independent normal variables with
unit variances and means µi , i = 1, . . . , k, where at least one µi is non-zero, has a
non-central chi-squared distribution with non-centrality parameter

λ=
k
∑

i=1

µ2
i .

Thus, W has a non-central chi-squared distribution under H1 with some non-
centrality parameter, λ. We transform the normally distributed random variable
of (3.7) to obtain a vector variable of uncorrelated, unit-variance normally dis-
tributed variables. This gives us

I1/2β̂
asymp.
∼ N

�

I1/2β , I2

�

| H1,

where I2 denotes the 2× 2 identity matrix. Finally, under H1, and given the true
values of β3 and β4, the Wald statistic has a non-central chi-squared distribution
with non-centrality parameter λ, where

�

µ1
µ2

�

= I1/2β , and λ= µ2
1 +µ

2
2.

The asymptotic power of a two-dimensional test is then

Power
asymp.
= P

�

W > χ2
1−α,2 |W ∼ χ

2
2 (λ)

�

= 1− P
�

W ≤ χ2
1−α,2 |W ∼ χ

2
2 (λ)

�

.

An illustration which shows the area that constitutes the asymptotic power of
a two-dimensional test using the Wald statistic is given in figure 3.3. The two
dashed lines represent the expected value of W under H0, which is 2, and, the
expected value of W under H1, which is (2+λ), respectively. The colored area is
the asymptotic power.
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Figure 3.3: Two-dimensional significance test on β3 and β4 with at least one significant
parameter.
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3.4 Experimental design

This thesis attempts to discover the optimal way to design a field experiment for
which the objective is to estimate the cost of plasticity using the statistical model
presented in 3.1. This is done by varying some of the factors which are possible
to control when performing such an experiment, and observe how different con-
ditions affect the asymptotic test power of the associated models. An expedient
distribution of individuals into families of full siblings is of biggest interest. Differ-
ent models for the environmental contribution is also worth considering, as it is a
manipulable factor. Several studies have shown that sufficient genetic variation is
a prerequisite for evolution of all traits. Although this factor may be hard to con-
trol or manipulate in a case study, different levels of genetic variation and their
influence on the model will be explored. Finally, recall that the expected fitness of
an individual as of (3.4) states that both a direct linear effect and a direct quad-
ratic effect of individual plasticity is possible. However, costs may arise in different
ways and persist in different manners in different populations. The values of the
‘cost of plasticity’-parameters will be varied to test how the model performs under
different types of costs.

The relationship between the population arrangement of relatives and the
power of a hypothesis test on the cost of plasticity is elucidated by simulating
several dissimilar populations of N individuals for which the number of famil-
ies, m, and thus the number of full siblings, n, is varied while N and all the other
parameters remain unchanged, and computing the asymptotic test power for each
population setup. The optimal values of m and n for a set of parameters are those
which produce the highest test power. The family structure of a population is ex-
pected to be decisive for the test power, because it determines the heterogeneity
between individuals in the data set. It is expected that, for each value of N , there
are some concurrent m, n-values which maximize the test power of the statistical
model on the associated populations. The data sets represent actual populations,
so m and n need to take suitable values such that a similar pedigree chart can be
recreated.

When performing a case study it may also be possible to place individuals into
different surroundings, which directly affects the environmental influence on the
phenotype. It is worth exploring whether this factor is decisive on the test power
of the statistical model. Two different modelings of the environmental contribu-
tions to the phenotype will be tested in this experiment. Both options produce
individual contributions with an unconditional expected value of 0. The first op-
tion is to draw contributions independently from zero-mean a normal distribution,
εi j ∼ N(0,σ2

ε), for i = 1, . . . , m, j = 1, . . . , n. This can model a design in which all
individuals of the population move freely in some restricted area with microenvir-
onmental fluctuations. The alternative approach which will be considered in the
thesis is to let εi j ∈ {ε1,ε2}, for all i = 1, . . . , m and j = 1, . . . , n, where ε1 6= ε2.
This could model the case for which the population is divided 50 : 50 into two
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separate areas of complete distinction. It would then be necessary to divide the
siblings of each family by 50 : 50 in the two distinct locations, such that environ-
mental correlation is not mistaken for genetic correlation by the model. The latter
model is expected to produce the highest power. This is because the environment
more distinctly influences the phenotypes of different individuals, such that the
model can distinguish between the environmental impact to the phenotype and
the genetic contributions more easily. The two different models are applied to the
same populations, and the associated test powers are observed and compared.

Sufficient variation of the explanatory variables of a statistical model is a ne-
cessary presupposition for the model to detect the significance of the explanatory
variables. Thus, populations will be simulated from different values on Gbb in
order to observe the importance of variance in plasticity for detecting a cost of
plasticity. Higher values of Gbb are assumed to increase the test power.

Several alternatives of the cost of plasticity will be tested. This entails varying
the values of the model parameters β3 and/or β4. It is expected that the model
power increases when the absolute value of the ‘cost of plasticity’-parameter(s)
increases.

Each statistical model for fitness is obtained by performing MLE on the data of
a simulated population. Because each population data set is made from sampling
from distributions with a significant variance parameter, two populations can be
quite dissimilar even though they are obtained from the same parameter- and
m, n-values. Thus, fitness models which are derived from the data of two different
populations which are sampled from the exact same parameter values and m, n-
values may be slightly different from each other. The extent is unknown until ex-
periments are completed, but, hopefully, fitness models derived from populations
of the same fundamental values are closely related, and easily distinguishable
from models derived from populations of other values.
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3.5 Implementation

All results are obtained from simulating a population under a cost of plasticity,
such that the alternative hypothesis, H1, is true, and calculating the asymptotic
power. All tests have a significance level of α = 0.05, and all tests are two-sided
with a null-value of zero (or the zero vector for the multidimensional case). The
results will be presented as plots showing the asymptotic test power of models
from different simulations, with asymptotic power either as a function of n, or as
a function of β3 or β4. Details on the different simulations will be explained in the
following subsections.

3.5.1 Selection assumptions

Simulations are executed for three different assumptions on the effect of the cost
of plasticity. Firstly, the assumption of an exclusive linear cost effect to the logar-
ithm of expected fitness, such that the expected fitness of sibling j of family i of a
population is

log wi j = β0 + β1zi j + β2z2
i j + β3 bi j ,

where zi j and bi j is the phenotypic trait- and plasticity value, respectively, for all
i = 1, . . . , m, j = 1, . . . , n. For these experiments, β4 is fixed at zero and the model
makes no attempt at estimating β4. The second assumption is that the cost has an
exclusive quadratic effect, such that sibling j of family i with trait- and plasticity
value zi j and bi j , respectively, has an expected fitness which follows

log wi j = β0 + β1zi j + β2z2
i j + β4 b2

i j ,

for all i = 1, . . . , m, j = 1, . . . , n. For these experiments, β3 is fixed at zero and the
model makes no attempt at estimating β3. Finally, the last assumptions is the full
model, in which both β3 and β4 are assumed to be significant and are inferred by
the model. For this case, individual expected fitness obeys (3.4).

As mentioned in the previous section, we expect that the asymptotic power of
the significance test will increase as the deviation from the null value of the given
test parameters increase. This will be tested for the first two assumptions on the
cost of plasticity, by plotting the asymptotic test power as a function of β3/β4 on
a given population. Recall that we compute the asymptotic power by computing
the probability of rejecting the null hypothesis when the true value of the test
parameter is given. When the test parameter is zero, such that H0 is actually true,
rejecting the null is equivalent to committing a type I-error. The probability for
committing a type I-error is equal to the significance level of the test, α. Thus, we
expect that the asymptotic power is α when the test parameter is 0, and that the
asymptotic power increases as the absolute value of the test parameter increases.

3.5.2 Population structure

The values of m and n must be chosen such that both m and n are positive in-
tegers, the product m · n is exactly N , where N denotes the population size, and
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n is an even number. (The latter requirement is added because a subset of the
experiments entail the division of n siblings into two equally sized groups, so n/2
should be an integer.) At the same time, we also want to apply the model to as
many populations of different structures as possible. The population sizes are set
to be N = 10000 for all simulated populations. This number produces a sufficient
sample size, while keeping the computational time at an acceptable level. The ap-
plied test values are given in the following table , where each column represents
a population setup.

n-value 2 4 8 10 16 20 40 50 80 100 200 250 500 1000
m-value 5000 2500 1250 1000 625 500 250 200 125 100 50 40 20 10

3.5.3 Environmental models

Recall that the parameters of the environmental contribution is not studied by the
model. The individual contributions are drawn from their respective models and
are simply treates as given values. However, they are still expected to have an
impact on the model results. Simulations are implemented for the two different
environmental models introduced in the previous section, which will be denoted
by ‘env 1’ and ‘env 2’. More specifically,

• Model ‘env 1’ is the case where all environmental contributions are drawn
independently from a standard normal distribution, and

• Model ‘env 2’ models the even division of the population and full siblings
into two distinct environments. For each family of a simulated population,
half of the full siblings have an environmental contribution valued at 1 and
the other half have a contribution valued at -1.

3.5.4 Variance of plasticity

Populations will be simulated from several distributions of different levels of plas-
ticity variance. Three different levels will be applied to population of all the differ-
ent selection assumptions. The associated asymptotic powers will be plotted into
the same figures and compared.
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3.6 Appropriate parameter values

This section justifies the choice of parameter values of the simulated populations.
The parameters will be presented as estimators by the model, but, as this experi-
ment considers simulated populations rather than real ones, the parameter values
must also be set prior to simulation. To imitate the scenario of a real case study
to the biggest possible extent, and to enable a decent data analysis, some con-
straints should be applied to the range of the different parameter values. There
needs to be some compliance between the trait values which can be observed in
an actual population and the simulated trait values, such that the obtained know-
ledge of this thesis is transmissible to a real experiment. The model parameters
include those of the genotype distribution,σ2

e , and theβ-values. The different con-
siderations regarding the different parameters will be presented in the next three
subsections.

3.6.1 Genetically determined parameters

The parameters ¯̄a, ¯̄b, Gaa, Gbb, Gab are those that constitute the genotype dis-
tribution. The overlying mean breeding value, ¯̄a, represents the mean phenotype
across all environments, and ¯̄b represents the impact to the trait of the environ-
ment. The exact values of ¯̄a and ¯̄b are not that interesting in a simulation study —
they can easily be scaled to represent any trait which is given by a model equal to
(3.3). It is first and foremost the variance components of the distribution which
are worth considering. The variance parameters, Gaa and Gbb, must be sufficiently
large such that genetic adaptation is possible. Insufficient genetic variation may
constrain the evolution of traits in the population. It is assumed that the breed-
ing value and the plasticity value in any given individual are uncorrelated due
to genetic canalization in the mean environment (Lande 2009). It follows that
the population-wide genotype covariance, Gab, is minimized. All the populations
considered in this thesis will be simulated from distributions of Gab = 0.

3.6.2 Heritability and additive variance

The heritability of a phenotypic trait, denoted by h2, is the fraction of the trait
variance that is due to additive, genetic variance in the population. It has been
shown that the selection response is proportional to h2 (Lande and Arnold 1983).
Thus, if h2 is close to zero, then there is approximately no genetic variability in the
population, and selection becomes negligible. If h2 becomes close to 1 this means
that the environment contributes nothing to the phenotypic variance, and model-
ing selection in this way is unconvenient. It is desirable that the heritability of the
phenotypic trait under selection is approximately 0.50, as h2 = 0.50 implies that
the inherited genes and the environment with other possible factors contribute
equally to the phenotypic variance. The approach will be to insure that the expec-
ted fraction for each individual is 0.50. Recall that a commonality of all the applied
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environmental models is that the contribution experienced by each individual is
zero-meaned; for individual i, j, E(εi j) = 0, for all i = 1, . . . , m, j = 1, . . . , n. Thus,

h2 =
additive variance

phenotypic variance
=

Gaa

Gaa +σ2
e
= 0.50,

which gives σ2
e = Gaa. This restriction will be applied to all the simulations.

3.6.3 Selection

The presence of the Gaussian phenotypic stabilizing selection is realized through
parameters β1 and β2, with analytical values given by

β1 =
1
ω2
θ , β2 = −

1
2ω2

,

as of the definition in (2.1). (This selection may of course also affect the intercept,
but, as the β0-value is also influenced by other mechanisms which are unrelated
to the phenotypic selection, the phenotypic selection forces no constraints onto
β0.) The selection is thought to be stabilizing, which entails that θ should be non-
extreme relative to the trait values of the population. Thus, θ should be valued
such that it is close-to-centered in the trait distribution of the population. Theω2-
parameter affects the strength of the selection, and it is inverse proportional to
both β1 and β2. Thus, high values ofω2 lowers the significance of the trait values
to fitness. This is equivalent to widening the fitness function.

A cost of plasticity is present if either β3 or β4 are non-zero. These should
be valued such that they reflect that non-optimal plasticity is costly. A cost can
have several effects. For example, there can be either a linear or quadratic effect,
or both, and, the optimal levels of plasticity can take different values. Various
options of a cost of plasticity will be imposed on the populations, and the two
latter β-parameters will take values accordingly.

An example on how the cost of plasticity may affect individual fitness is given
in figure 3.4. It shows a surface plot of the fitness function with a stabilizing phen-
otypic selection in two cases. In the leftmost figure, there is no cost of plasticity
present, and, in the rightmost figure, there is a stabilizing selection on plasticity.
Observe that the surface of the fitness function is curved in the b-dimension when
a cost of plasticity is introduced.
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Plasticity is not costly Plasticity is costly

Figure 3.4: 3-dimensional surface plots of fitness as a function of the phenotype
and plasticity. In the plots, z denotes the phenotype and b denotes the plasticity,
respectively, of a given individual.
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3.7 Computation

The process of computing the results are briefly described in this section. Results
are produced using R, and C++ via the R-package TMB. Fixation of parameter val-
ues and data simulation is performed in R. The input of the model, which is the
data representation of a population, is simulated from sampling data values based
on the respective distributional assumptions in R. The ML estimators of each of the
unknown parameters of the statistical model is obtained by the means described in
section 2.4 — the data set is sent to a C++-file which returns the negative marginal
log-likelihood of the model, which is later minimized in an R-file. The asymptotic
test power is computed straightforwardly in R. All plots given in the figures of
chapter 4 are obtained using the open R-package ggplot2.
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Results

This chapter contains all the results which were produced. Each result is presented
as a plotted figure which show the asymptotic power of models. They are given
as drawn lines between data points, where each point represents the asymptotic
power of the model applied to a population simulated under the given parameters
and model assumptions. Asymptotic power is plotted either as a function of the
logarithm of n, or as a function of either β3 or β4. A logarithmic scale for n was
chosen to narrow some of the intervals between different n-values on the figures.
The results showing asymptotic power as a function of n are easier to interpret in
a log-plot.

The results are shown for statistical models of three different assumptions on
the cost of plasticity, as introduced in subsection 3.5.1. First, the model which
assumes that the cost of plasticity has an exclusive linear effect, such that β3 is
non-zero and estimated by the model while β4 = 0 is fixed. The results on the
statistical models of this assumption are given in section 4.1. The test results for
the model which assumes that the quadratic effect is significant while the linear
effect is insignificant, such that β3 = 0 is fixed in each model and β4 is inferred,
are then given in 4.2. Finally, the asymptotic powers of the models which assume
that the cost of plasticity has both a linear and quadratic effect, are shown in
section 4.3.

Under the first two selection assumptions, the significance test for the cost of
plasticity is a one-dimensional test. Plots of the asymptotic test power as a function
of the respective test parameter are made for the two one-dimensional significance
tests. All of the three model assumptions are explored in different circumstances.
They are explored for several m, n-values, under two environmental models, ‘env
1’ and ‘env 2’, respectively, and, three levels of plasticity variance, Gbb.

Some model parameter values remain constant in all the simulations. These
are: β0 = 0, β1 = 1 and β2 = −0.20, σ2

e = 1, ¯̄a = 0, ¯̄b = 0.5, and, Gaa = 1 and
Gab = 0. The populations of every figure, except for the figures which illstrutate
the effect of different levels of plasticity variance, that is, 4.3, 4.7 and 4.11, are
simulated under a plasticity variance value of Gbb = 0.1.

41
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4.1 Linear effect

The results for the model assumptions of this section are given in figures 4.1, 4.2,
4.3 and 4.4. In the first three figures, the cost of plasticity is given by β3 = −0.20.
The quadratic effect is non-existent for this case, so β4 = 0 is fixed in all the
figures.

Figure 4.1 reveals that the family size is quite decisive on the test power of
the models with an exclusive linear cost of plasticity. It is plain to see that a high
number of full siblings per family is the preferable population structure. This claim
is also supported by figures 4.2 and 4.3. According to figure 4.2, the environmental
models have a virtually equal impact on the power of these models. There are
some minor fluctuations to observe, but no environmental model stands out as the
superior one. Figure 4.3 shows that a higher variance of plasticity gives models of
higher power. The graph of figure 4.4 shows how the asymptotic power evolves
as the strength of the cost increases for a population of n = 100 in ‘env 1’. Just
as expected, it starts at α = 0.05 for β3 = 0, and then increases towards 1 as β3
increases.

Figure 4.1: Asymptotic power as a function of log10(n) for a linear cost of
β3 = −0.20 and β4 = 0 fixed for populations in ‘env 1’.
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Figure 4.2: Asymptotic power as a function of log10(n) for a linear cost
of β3 = −0.20 and β4 = 0 fixed. Populations are simulated in different
environmental models as indicated to the right.

Figure 4.3: Asymptotic power as a function of log10(n) for a linear cost of
β3 = −0.20 and β4 = 0 fixed for populations in ‘env 1’. Populations are
simulated from different values of Gbb as indicated to the right.

Figure 4.4: Asymptotic power as a function of β3 for a population of n= 100
and β4 = 0 fixed in ‘env 1’.
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4.2 Quadratic effect

The results for the model assumptions of this section are given in figures 4.5, 4.6,
4.7, and 4.8. The cost of plasticity is given by β4 = −0.15 in the first three figures,
and β3 = 0 is fixed in this section.

We can detect a modest pattern of the effect of the values of m and n on the
model power for models of an exclusive quadratic in figure 4.5. The same pattern
is also identifiable in both figures 4.6 and 4.7. There is less variation in asymp-
totic power to observe in the figures of this section than those of the previous
section, and it appears that the choices of m and n are less decisive on the power
of models for which β3 = 0 and β4 is significant. Figure 4.6 reveal that the two
environmental models have a similar effect on the models of these section as well.
Figure 4.7 shows that an increase in plasticity variance poses an increase in asymp-
totic model power. The development of the asymptotic test power as the strength
of selection increases is shown in 4.8 for a population with n = 100 in ‘env 1’.
Again, asymptotic power is at α = 0.05 for β4 = 0 and the increases towards 1,
just as expected.

Figure 4.5: Asymptotic power as a function of log10(n) for a quadratic cost
of β4 = −0.15 and β3 = 0 fixed for populations in ‘env 1’.
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Figure 4.6: Asymptotic power as a function of log10(n) for a quadratic cost
of β4 = −0.15 and β3 = 0 fixed. Populations are simulated in different
environmental models as indicated to the right.

Figure 4.7: Asymptotic power as a function of log10(n) for a linear cost of
β4 = −0.15 and β3 = 0 fixed for populations in ‘env 1’. Populations are
simulated from different values of Gbb as indicated to the right.

Figure 4.8: Asymptotic power as a function of β4 for a population of n= 100
and β3 = 0 fixed in ‘env 1’.
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4.3 The full model

This section considers all the results for the models which assume that both the
linear and quadratic effect of the cost of plasticity is significant. The cost is given
by β3 = 0.01 and β4 = −0.05. The results are shown in figures 4.9, 4.10 and 4.11.
Note that the results for this section only consider a subset of the m, n-values which
were considered by the models of the two previous sections. This is because the
optimization algorithm generally did not converge for small values of n (n≤ 20)
when analysing models where both β3 and β4 were significant. Hence, the results
of this section are presented for populations of n ∈ [40,1000].

According to figure 4.9, a large number of full siblings is the most benefi-
cial choice. The asymptotic model power is mostly increasing with n. The two
other figures, 4.10 and 4.11, support the assertion — the model power reaches
its maximum in the populations of the highest number of full siblings per family
in both environmental models and all the considered levels of plasticity variance.
In contrast to the results of the one-dimensional tests, the choice of an environ-
mental model for the population seems to be quite crucial to the performance of
the statistical model which assumes both a linear and quadratic effect. For the
higher values of n, the ‘env 2’ model is the superior choice by far, and constitutes
a remarkable improvement to the model power. Similar to what we observed in
figures 4.3 and 4.7, figure 4.11 reveals that the model power increases with the
Gbb-value for the full model as well.

Figure 4.9: Asymptotic power as a function of log10(n) for a cost of β3 =
0.01 and β4 = −0.05 for populations in ‘env 1’.
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Figure 4.10: Asymptotic power as a function of log10(n) for a cost of β3 =
0.01 and β4 = −0.05. Populations are simulated in different environmental
models as indicated to the right.

Figure 4.11: Asymptotic power as a function of log10(n) for a cost of β3 =
0.01 and β4 = −0.05 for populations in ‘env 1’. Populations are simulated
from different values of Gbb as indicated to the right.
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Discussion

Just as we suspected, the results reveal that the various conditions which were
tested on the statistical model do have a conclusive effect on the asymptotic model
power. As mentioned before, the most gripping result of this thesis is the relation
between model power and the number of full siblings per family of the popula-
tions. Few predictions were made on this relation in advance, other than that the
choice of the m- and n-values of a population would be decisive on the power of
the applied model. It is safe to say that this expectation was satisfied. However,
it remains to establish how the m, n-values affect the model power, and why they
affect models of different assumptions on the cost of plasticity differently. This
relation will be further discussed in the next section.

It was expected that the ‘env 2’-model for the environmental contribution
would be the better choice in all the models, however, this was only true for the
models which considered both a linear and quadratic effect of the cost. This is a
surprising result, and the occurrence of this distinction is uncertain. Section 5.2
will examine the impact of the two environmental models deeper.

The results confirmed our expectation about the variance of plasticity, and,
they clearly state that sufficient variation in the plasticity trait is a necessity for
detecting a cost of plasticity in a population. This is a general result which holds
for all the model assumptions which were explored. Some dissimilarities in the
exact outlet of this result can be observed by comparing the figures — this will be
further discussed in section 5.3.

It is evident that, in the tests concerning models which assume either a linear
or a quadratic effect of the cost of plasticity, where the significance tests are one-
dimensional, the model power increases as the relevant test parameter increases
in absolute value. This is just as expected, and will not be further discussed.

Some problems were encountered underway. The biggest obstacle was mak-
ing the optimization algorithm converge for the fitting of the full model onto the
data sets where both β3 and β4 were significant. Often, it would return a Hessian
matrix which was not positive definite. The algorithm would never converge if
the model assumed a significant β3 and β4, and had a small n-value. Thus, those
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values of n had to be neglected from the power analysis for those models. Dif-
ferent parameter values and initial values were attempted, but the same problem
occured for all of them. However, there might exist some parameter values, or
seed for the optimization algorithm which would fix this problem.

The figures of chapter 4 are not necessarily as smooth as one would want
them to be. The lines on all the plots are slightly stuttering. This is partly due
to the amount of data points per plot — each of the plots showing asymptotic
power as a function of log n has data points for only 14 different n-values (8 in
the results of the final section), because of the restrictions we forced upon the
choices for different n-values in the population. Another factor is that the data
points are based on simulations. So, if there is a perfectly smooth function which
describes the relation between the model power and m and n and the rest of model
parameters, we have only been able to sample from it. Even though two distinct
populations are simulated from the exact same parameter values, there is a size-
able chance that the two populations can result in two statistical models with a
considerable difference in statistical power. We might have removed this problem
by performing simulation-based power analysis on all the models, because, then
we could control the uncertainty of the model power by increasing the number of
tests. Nevertheless, simulations from the same base parameters always returned
similar patterns. By comparing the first three figures associated to each model in
the respective sections of chapter 4 to one another, we can observe the same pat-
tern, that is, the way the asymptotic power moves with log n, in all three of them.
So, the variation of results due to the simulation inaccuracy is not problematic.
Additionally, figures 4.4 and 4.8 are slightly stuttering as well, yet they reveal a
satisfying and correct pattern.

Some of the model parameters might be slightly inconsistent. For example,
the model uses family sizes in the entire range from 2 to 1000. The possibility of
having 1000 full siblings per family might be somewhat inconsistent with the para-
meters on selection in the simulated population — the results are made for model
parameters such that sibling j of family i produces yi j siblings with yi j ∈ [0,15],
for all i = 1, . . . , m j = 1, . . . , n. Hopefully, the model can be reparameterized in
an uncomplicated matter such that the results are applicable for populations of
species which produce even more offspring. This was nonetheless never tested for.

Overall, the new latent-variable statistical method has performed well. Under
the optimal conditions, as revealed by the results of this thesis, one can achieve a
model of an adequate power level. A two-dimensional test might be preferable in
the sense that neither of the parameters need to be discarded beforehand — if we
suspect a cost of plasticity in a log-linear Poisson model, we can apply the model
without considering whether the cost is linear or quadratic. However, if the type
of effect is virtually known beforehand, and it leads to a one-dimensional test, it
is worth conditioning on, as the one-dimensional tests are easier to perform and
gives higher power in the case that one of the parameters is in fact 0.
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5.1 Family distribution

The influence of the different choices of m- and n-values on the asymptotic powers
of the models is clearly dependent on the selection assumptions of the respective
models. For the models of a one-dimensional cost with a significant β3-parameter,
it is evident that the model power increases with log n. In the one-dimensional case
with a significant β4-parameter, however, the model power is alternating weakly
in the upper layer of its range. The full model which assumes that both the linear
and quadratic effect of plasticity is significant to log fitness achieves its maximum
power for the larger values of n. For the latter case, it appears that asymptotic
power increases with log n, though with some minor alternations underway.

So, if we were to design an experiment for estimating the cost of plasticity
in a population, the optimal choices of the number of families and the sizes of
each family would depend somewhat on our assumptions and knowledge on the
cost of plasticity in the population. (We must also consider the restrictions of the
procreation habits of the relevant population — not all species have the capacity
to produce any quantity of offspring in the entire range between 2 and 1000.)
One commonality of all the results, is that the power is relatively high for large
values of n. Hence, across all the selection assumptions on the cost of plasticity,
for a population of N = 10000 individuals, n = 1000 full siblings per family (if
possible) is an optimal choice. If we assume that the cost of plasticity is linear, or,
both linear and quadratic, we would try to maximize n within the framework of
the population structure, as model power increases with n. If the cost is assumed
to be exclusive quadratic, however, we might be more considerate. For example,
in a population of N = 10000 individuals where the size of each family ranges
within [10, 100], we would prefer n = 100, which is the largest possible value
of n. However, if the range is [2, 10], we would prefer 2, which is the smallest
possible value of n, so, the approach is less straight-forward in this case.

It is not easy to recognize exactly how the values of m and n affect the power of
the significance tests of the ‘cost of plasticity’-parameters. We start by considering
how the choices of m and n affect the inference of the model. A prerequisite for
achieving a high power is precise inference. This applies to all the parameters and
latent variables of the model, even though only one or two of them are actually
being tested. There is an interaction between all of the model parameters, and,
if the model either underestimates or overestimates the effect of one of them,
it has most likely misunderstood the effect of several other parameters. For the
statistical model of this thesis, the plasticity component is a latent variable in
two submodels of the selection on each individual — it provides an interaction
between the individual phenotypes and the environment, and thus has an indirect
effect on fitness through the phenotypic selection, and, it is the main component
of the cost of plasticity in each individual. Thus, the parameters of the two distinct
selections are interacting in some sense, and it is safe to say that there is a relation
between all the model parameters.
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The family-determined mean genotype values, which, for family i, i = 1, . . . , m,
of the population, are denoted by āi and b̄i , are easier to infer the more they ap-
pear explicitly in the likelihood function. Each pair of mean values appear exactly
n+1 times in the likelihood function of the model (n times as the mean of the gen-
otype distribution of each sibling of the respective family, and, one additional time
as a latent variable of the overlying genotype distribution of the population). Thus,
when n is large, better estimators are obtained for āi and b̄i , for all i = 1, . . . , m.
However, the family-determined mean genotypes are not just parameters of dis-
tributions of indviduals — they are also latent variables in an overlying distribu-
tion of the population. For all i = 1, . . . , m, [āi , b̄i]T are random variables drawn
from the overlying genotype distribution centered around the model parameters
[¯̄a, ¯̄b]T . We might think that, just as for the family-dependent mean values, ¯̄a and
¯̄b are more easily inferred upon when they appear more frequently in the like-
lihood function. They appear in the likelihood exactly m times. The parameters
do nonetheless not appear as the mean values of known observations, but, as the
mean values of latent variables, which are also inferred upon by the model. The
quality of inference of ¯̄a and ¯̄b is largely determined by the quality of inference of
each of the [āi , b̄i]T -values, for i = 1, . . . , m.

It thus makes sense that high values of n is the preferable choice, because it
enhances the quality of inference in each of the m different mean values. This
was observed in all the results. The results of sections 4.1 and 4.3 are consistent
in the sense that the power is virtually monotonically increasing with n. The same
is not observed in the results of 4.2. These result shows that asymptotic power is
alternating with n, yet it is hard to know why.
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5.2 Environmental models

Two distinct environmental models, ‘env 1’ and ‘env 2’, as defined in subsection
3.5.3, were applied to the same populations. We expected that making a popu-
lation subject to ‘env 2’, as opposed to ‘env 1’, would significantly increase the
test power of the statistical model. This expectation was, for some reason, only
satisfied in the models which considered both a linear and quadratic effect of the
cost of plasticity.

The (lack of) impact of the choice of environmental models in the models of
the restricted cost of plasticity is a surprising result. The rationale was that ‘env 2’
would make it easier for the model to identify the environmental contribution to
the traits. There is no apparent reason why this should remain true in the cases
where both β3 and β4 are significant and remain false in the cases where only
one of them is significant while the other is not. However, as they perform equally
well in the one-dimensional tests, no model is superior to the other in this case.
Thus, in a case study of either a linear or a quadratic cost, we may choose the
most convenient option. If the assumption of the study is that both parameters
are significant, however, we should strive to make the population subject to envir-
onmental model ‘env 2’ (at least if we are able to have a sufficiently high n-value
such that the models perform differently) to increase the power.
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5.3 Variance of plasticity

The most compelling result was the impact of variation of plasticity on the model
power. A commonality of all the models is that an increase in variance of plasticity
induces an increase in the asymptotic model power.

The exact relation between the change in the Gbb-parameter and the follow-
ing change in the model power is however still mostly unknown. The increase in
asymptotic power from changing Gbb from 0.05 to 0.1 is dissimilar to the increase
in asymptotic power from changing Gbb from 0.1 to 0.15, so it is not a linear re-
lationship. For the models which assumed either a linear or a quadratic effect of
cost, the increase in model power from changing Gbb from 0.05 to 0.1 was bigger
than increase from changing Gbb from 0.1 to 0.15, while we observed the opposite
in the model which assumed that both effects of the cost were significant. Thus, it
might be that the relation between asymptotic test power and plasticity depends
on the model assumptions on the effects of the cost of plasticity as well.
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Conclusion

The latent-variable approach for detecting the cost of plasticity in a population
has been successful. As the breeding values and plasticity values of individuals
are treated as latent variables, all aspects of the uncertainty and variation of the
parameters regarding the population and the associated selection are included
in the model. Thus, there is no hidden bias to spoil the findings of the statistical
model on the cost of plasticity. Additionally, we can attain models of a relatively
high power when using this approach. A latent-variable statistical model is un-
doubtedly a suitable model for estimating the cost of plasticity in a given popula-
tion.

The results uncovered how different distributions of related individuals, dif-
ferent environmental models, and different levels of plasticity variance affected
the asymptotic power of a latent-variable statistical model for detecting the cost
of plasticity in a population. They revealed that the applied conditions have a
significant effect on the asymptotic power, and, that, if we were to perform an
experiment on a population with the objective of estimating the cost of plasticity,
we should take the state of these conditions into account. The statistical model
might have been tested for a wider range of parameter values. Also, it would have
been valuable to try performing the power analysis using a simulation study to
validate our findings even further.

If we are to perform a case-study on a population to estimate the cost of plas-
ticity, we should apply the results in the following way. If the assumption is that
the cost of plasticity is log-linear to fitness, we should maximize the number of
relatives within each family as much as possible. If, on the other hand, we assume
that the cost of plasticity exclusively consists of a quadratic effect, we should eval-
uate the situation further, and use figure 4.5, which shows the asymptotic power
of populations as a function of log n for a significant β4-parameter, as guidance for
obtaining the best value of n given the value of N . For the first two cases, the two
environmental models had a more or less equal effect on the model power, so, it
would be unnecessary to manipulate the environmental contribution in one way
or the other. Lastly, if we assume that the cost of plasticity can consist of both a
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linear and a quadratic effect, we should maximize the number of relatives within
each family as well as we can, and, use a model for the environmental model
which resembles ‘env 2’ in the best possible way. We should also take into account
that sufficient genetic variation is a necessity for detecting the cost of plasticity in
all the models of the aforementioned assumptions. If variance of plasticity in the
population is too low, it might spoil the chances for detecting the cost of plasticity.
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