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Abstract

Automated seismic data interpretation facilitates the creation of precise maps
of the underground at low costs. In this thesis, a hidden Markov model for
geological horizon propagation is defined, and two tracking algorithms based
on the model are developed. One of the tracking algorithms, which builds
on the Viterbi algorithm (Viterbi, 1967), shows promise when experimenting
with synthetic data. However, experiments on real seismic data prove that
improvements need to be implemented if the algorithm is to challenge state of
the art algorithms.
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Sammendrag

Automatisert tolkning av seismisk data muligjør kartlegging av undergrun-
nen til lave kostnader. I denne tesen definerer vi en skjult Markov model for
å forklare hvordan geologiske horisonter propagerer gjennom undergrunnen,
og vi utvikler to tolkningsalgoritmer basert p̊a modellen. En av algoritmene
bygger p̊a Viterbi-algoritmen (Viterbi, 1967). Denne algoritmen gir lovende
resultater ved forsøk med syntetiske data. Forsøk med ekte seismiske data
viser at den m̊a utvikles ytterligere for å potensielt konkurrere med tolkn-
ingsalgoritmer som brukes i dag.
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Chapter 1

Introduction

Interpretations and maps of the underground are essential for industries like
construction, mining, and the petroleum industry. To gain insights about the
underground, we can use prior knowledge about the area, drill tests, seismic
data, or other sources of information. In this thesis, we work with seismic data.
First, in this chapter, we present an introduction to exploration geophysics and
the problem we attempt to solve. More material on exploration geophysics can
be found in e.g. Simm et al. (2014) and Landrø and Amundsen (2018), while
Hobbs et al. (1976) contains an introduction to structural geology.

Seismic data is obtained by emitting seismic waves into the ground and
measuring the amplitudes of reflected waves. One kind of seismic waves is
sound waves. Sound waves are partly reflected, and partly transmitted, when
they hit a wall. This behavior is general for all seismic waves; they are partly
reflected at boundaries between different materials. A boundary which re-
flects seismic signals is called a reflector. More specifically, we call the surface
separating two layers of different rock in the underground a horizon.

There are many properties to map in the underground, like horizons, rock
types, salt bodies, faults, injectites, and fluids. Mapping of horizons and faults
are usually among the first steps of interpreting offshore seismic data. Usually,
the ultimate goal is to locate hydrocarbons. However, other industries depend
on underground maps offshore as well, like the offshore wind industry and the
potentially booming industry of deep-sea mining (Letman, 2018).

In this report, we discuss mapping, or tracking, of horizons in offshore
seismic data. Seismic data is usually represented as data cubes termed seismic
volumes. A seismic volume can consist of several terabytes of data and contain
billions of data points, and there are generally many horizons in each cube.
Consequently, tracking of horizons can be a complex and time-consuming task.

Due to the complexity of tracking seismic horizons, there is a significant
market for algorithms used to semi-automate the task. We refer to computer
programs implementing such algorithms as autotrackers. The primary user
group of seismic interpretation software is domain experts with backgrounds in
geology or geophysics. In this context, we refer to them as seismic interpreters.

1



2 CHAPTER 1. INTRODUCTION

When tracking a horizon the interpreter selects one or more locations that
belong to the horizon, often called seed points. Based on the seed points and
the seismic data, the task of the autotracker is to map the horizon throughout
the seismic volume.

Autotrackers significantly improve the efficiency of interpreters. However,
it is challenging to precisely autotrack complex seismic horizons, like horizons
spanning over many faults and horizons at depths where the data quality is
poor. The number of faults increases as the depth increases, and the quality
of the data decreases with depth. Since accurate mappings at depths of up to
several kilometers beneath the seabed may be required to find hydrocarbons,
precise and efficient autotrackers are valuable.

Several companies and researchers are working on automating horizon
tracking. Different approaches have been suggested, spanning from deep learn-
ing approaches to more traditional approaches. Wu and Fomel (2018) develop
a tracking algorithm based on a common approach where the first step con-
sists of estimating slopes of reflectors throughout a seismic volume. The slope
estimates are utilized to track horizons across the volume. Yu et al. (2013)
use a similar two-step approach. First, they find orientations of reflectors,
which is equivalent to finding slopes, by applying a log Gabor filter on fre-
quency data. Then they iteratively expand a horizon in three dimensions
from an initial point, at each iteration expanding to the location maximizing
a confidence measure. Figueiredo et al. (2014) attempt to track all horizons
in a volume automatically using a clustering approach. The similarity mea-
sure used in the clustering algorithm considers local similarities around voxels.
Dyrendahl (2018) describes a more traditional approach based on local search
methods. Autotrackers based on deep learning methods are developed by e.g.
RagnaRock Geo.

All of the approaches mentioned above are fundamentally different from
the one developed in this thesis. In the following chapters, a probabilistic
approach to horizon tracking is presented. Relevant background information
is introduced in Chapter 2. In Chapter 3, we develop a hidden Markov model
for seismic horizon propagation. Two tracking algorithms are described in
Chapter 4, where one is based on the Viterbi algorithm (Viterbi, 1967), and
the other is a greedy algorithm. In Chapter 5 we illustrate capabilities and
limitations of the model and the algorithms, on both synthetic and real seismic
data. The results and different paths for further development are discussed in
Chapter 6. In Chapter 7, we conclude our work.



Chapter 2

Background

In this chapter, we present some background information essential to under-
standing horizon autotracking challenges and to develop our model and al-
gorithms. Section 2.1 covers seismic data collection and preprocessing proce-
dures. In Section 2.2, we present an overview of the physics describing prop-
agation of seismic waves through the underground. For more on seismic data
collection and seismic wave propagation, see Simm et al. (2014) and Landrø
and Amundsen (2018). Section 2.3 introduces relevant mathematical nota-
tion. Finally, in Section 2.4, we demonstrate that non-probabilistic inversion
is unsuitable for mapping of seismic reflectors.

2.1 Seismic Data Collection and Preprocessing

There are two main groups of seismic waves: surface waves and body waves.
Surface waves mostly travel along the surface of the earth; thus they are
not relevant when studying seismic data. Body waves can travel through
geological bodies. Body waves comprise primary waves (p-waves), which are
compressional waves, and secondary waves (s-waves), which are shear waves;
see Figure 2.1. S-waves do not propagate through fluids, as fluids do not
support shear stresses. At seismic reflectors, part of the energy carried by
p-waves is transformed into s-waves. Conversely, motion caused by s-waves
induces p-waves.

As mentioned in Chapter 1, seismic data is acquired by emitting seismic
signals and measuring the amplitudes of the reflected seismic waves. On land,
explosives are usually used to create the seismic signals. This approach is not
preferable offshore. Instead, air guns, water guns, and other sources are used.
A ship tows the acoustic source and multiple receivers in a zig-zag pattern
over a large area to acquire the seismic data. Two-dimensional cross sections
of the seismic data parallel to the travel direction of the boat are called inlines,
while cross section perpendicular to inlines are called crosslines.

Seismic waves propagating from the acoustic sources are partly reflected
and partly transmitted at each geological horizon. The reflected waves travel

3



4 CHAPTER 2. BACKGROUND

Figure 2.1: Body waves comprise p-waves and s-waves. Source: Unknown
author / Public Domain.

back to the surface, and the receivers measure their amplitudes. Hence seismic
data comprises two-way travel times and amplitudes. The collection of ampli-
tudes recorded by a receiver following a single source signal emission is called
a seismic trace. Seismic traces recorded by receivers under the ocean surface
only encompass p-wave oscillations, since s-waves do not propagate through
water. Therefore, the data considered in this study is exclusively p-wave data.

The huge amount of raw seismic data collected by the receivers at sea
needs to be structured and processed to be interpretable for humans. The
first processing challenge that arises is the positioning problem, illustrated in
Figure 2.2. The distance in time to the location where the wave was reflected
only determines the half-sphere of potential locations. The half-sphere above
sea level is not considered since air itself does not reflect seismic waves. The
positioning issue is handled in a process called migration. During this process,
reflectors apparent in adjacently collected traces are positioned consistently
on their respective half-spheres of possible locations.

Since multiple receivers are used when collecting seismic data, there are
multiple data points for each discretized location in the subsurface. The data
points corresponding to the same location in the subsurface are collected with
the seismic signal travelling at different angles from the acoustic source; see
Figure 2.3. Two-way travel times increase with the angle so that they form
a hyperbola. The curvature of the hyperbola holds useful information about
the speed of the seismic waves in the different subsurface layers. Furthermore,
aggregating multiple reflections from each horizon location in a vertical column
of the underground helps filter out noise from the data. Such an aggregation
is called a common midpoint gather (CMP).

Noise in seismic data can arise from e.g. turbulence in the water around the
receivers; other sources of seismic signals; and mixed rock types and otherwise
heterogeneous layers. As the seismic waves travel deeper into the underground,
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Figure 2.2: Migration of seismic data. Several measurements made close
to each other are needed to determine the locations of a reflector. Source:
User:NebulousAether / Wikimedia Commons / Public Domain.

they are weakened. The number of noise sources, on the other hand, increases.
Thus the signal to noise ratio decreases.

Multiples and ghosts are further unwanted artifacts present in raw seismic
data, as are p-waves induced by s-wave oscillations. A multiple is a seismic
signal that has been reflected more than once by the same surface. See Fig-
ure 2.4 for an illustration of multiples and ghosts. One type of ghost is the
source ghost; the reflection of the source signal from the surface of the sea right
after transmission. The source ghost inevitably emerges since the seismic sig-
nal spreads out in all directions from the source. Ghosts are also reflected by
the underground horizons. The numerous reflections of multiples and ghosts
make it challenging to sort out the reflections of interest, particularly since
reflections arriving simultaneously at the receivers interfere with each other.

The receivers measure seismic amplitude, and the amplitude is a result
of a superposition of different waves at different frequencies. The different
frequencies should ideally be separated to make the seismic data interpretable
for humans, which is a complex task. However, it is practically impossible to
emit only one frequency from the source, and the frequencies can change as
the waves propagate. Using different frequencies also has its advantages: High
frequencies lead to high resolution, while lower frequency waves reach deeper
down into the underground. Furthermore, differences in behavior of low and
high frequent waves while propagating through fluids can be useful to detect
the fluids.

As the seismic signal propagates deeper into the underground, the signal
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Figure 2.3: Diagram of a marine seismic survey. A streamer is a collection of
cables connecting the receivers (hydrophones) and transmitting seismic signals
to the vessel. Here, V is the acoustic velocity in a layer and ρ is the density
of the rock. Source: User:Nwhit / Wikimedia Commons / Creative Commons
BY-SA 3.0.

Figure 2.4: Illustration of seismic multiples and ghosts. Source: Unknown
Author / SEG wiki / Creative Commons BY-SA 3.0.
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becomes weaker since energy is lost on the way, e.g. to heat production, and
because the area of the wavefront increases. This energy dissipation of seismic
waves is called seismic attenuation. Ususally, it is attempted to increase the
measured amplitudes to compensate for seismic attenuation during raw seismic
data processing. We want the seismic data to look as if the seismic waves have
the same energy and amplitudes as they impact each reflector, independently
of the reflector’s depth. This compensation makes it easier to interpret seismic
data.

Handling the issues mentioned in this section, amongst others, by migrat-
ing, stacking, and cleaning the data is usually referred to as preprocessing.
Every part of preprocessing is intertwined, so preprocessing is an iterative
process that is run until a satisfactory result is obtained.

Clearly, there are many potential sources of error when collecting and
processing seismic data. Nonetheless, seismic data is valuable since it offers
large spatial coverage and is relatively cheap to acquire. Drilling wells results in
more precise data, but offers low spatial coverage and is expensive. Therefore,
interpretation of seismic data is used extensively as a first step of mapping the
underground. Well logs can be used to give precise point data, which can be
combined with seismic data. Well logs are also used to detect hydrocarbons
directly after their presence is indicated by seismic data.

In this section, we have discussed some high-level properties of the seismic
data collection procedure. In the following section, we give a rough outline of
the geophysics behind seismic wave propagation.

2.2 Seismic Wave Propagation

Seismic waves are often treated as plane waves, i.e. waves that are constant
across the plane perpendicular to the direction of travel. Since seismic waves
spread out in all directions from a source, they are not truly plane waves.
But as the waves travel far from the source the curvature approaches zero, so
locally the plane wave assumption is a good approximation.

For a plane wave, the acoustic impedances of the rocks above and below
a horizon, along with the incidence angle, determine the reflection coefficient.
Generally, acoustic impedance, denoted z, is the ratio of acoustic pressure p to
acoustic (oscillating) volume flow u. For plane waves, the acoustic impedance
is equivalently given by the product of the rock density ρ and the plane wave
acoustic velocity v. The density generally increases with depth, as the pressure
from above increases. Increased density, other things equal, leads to increased
acoustic impedance. Consequently, a single layer of rock can have different
acoustic impedances at different locations.

The reflection coefficient of a horizon, which we denote q, determines the
amplitudes of reflected waves relative to the amplitudes of incident waves. The
energy of the incident waves that is not reflected carries on in transmitted
waves. If the incident angle is not 90 degrees, the transmitted waves are
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Figure 2.5: Normalized Ricker wavelet.

refracted, meaning that their direction changes. The reflection coefficient of a
horizon for a plane wave at normal incidence is

q =
z2 − z1
z2 + z1

, −1 < q < 1 ,

where z1 and z2 are the acoustic impedances of the medium the wave is trav-
eling in before incidence and the second medium, respectively. A negative
reflection coefficient implies an inversion of the reflected wave.

The signal emitted from a seismic source along a straight line is termed a
wavelet. We denote the source wavelet by w. See Figure 2.5 for an example of
a so-called Ricker wavelet, also called a Mexican hat wavelet. In this study, we
model seismic traces as convolutions of a wavelet w over vectors representing
vertical columns of discretized reflection coefficients.

If the incidence angle of a wave is not normal, the picture gets more com-
plicated than described above. In that case, some of the energy in the incident
p-wave is reflected and transmitted as s-waves, and there is a refraction effect.
The Zoeppritz equations, which we do not discuss here, describe this process.
In practice, we often work with stacked traces when interpreting seismic data.
A stacked trace is a combination of all the angle traces from a CMP into a sin-
gle trace. When working with stacked seismic data where migration and other
processing steps are readily performed, energy loss to s-waves and refraction
effects can be ignored.

2.3 Notation

In this section, we define the mathematical notation necessary to develop our
model and algorithms. We denote all vectors by bold lower case letters, e.g. v.
Matrices are denoted by bold and, with some exceptions, capitalized letters.
For instance, the Wavelet matrix defined later is denoted W . The zero vector
is denoted 0 and the identity matrix I. The context they are used in implicitly
define their dimensions.
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In this study, we work with three-dimensional seismic volumes. Consider
a volume with domain D ⊂ R3. We discretize D onto a regular grid L =
{(i, x, t) ; i = 1, . . . , I , x = 1, . . . , X , t = 1, . . . , T} to simplify the problem.
Here, I is the length, X is width and T the height of L.

We denote the (I × X × T ) sesimic data matrix by d. The i’th inline of
d is denoted di, and is a matrix of size (X × T ). Column x of inline i is
denoted dix. The columns are stacked seismic traces. Element t of trace x
is denoted dixt, where dixt ∈ R ∀(i, x, t) ∈ L. The matrix consisting of the
x1’th through x2’th inlines is denoted di1:i2 , i.e. di1:i2 = (di1 . . .di2). Trace
x1 through x2 is denoted di,x1:x2 . Furthermore, we let d−ix be the set of all
traces of d except trace ix and d−i be the set of all inlines except inline i.
The (I ×X × T ) matrix of discretized reflection coefficients corresponding to
d is denoted r, with elements rixt ∈ (−1, 1). Subscript notation is analogous
to what is defined for r.

Throughout this report, we let C denote the clique system comprising all
closest neighbor coordinate pairs in the first two dimensions of our grid, i.e.
pairs on the form {(i, x), (i, x − 1)}, {(i, x), (i, x + 1)}, {(i, x), (i − 1, x)} and
{(i, x), (i + 1, x)}. We do not use periodic or reflective boundary conditions;
we consider only the neighbor pairs actually present in the grid. We denote
the set of all cliques including (i, x) by Cix and the set of all cliques covering
inline i by Ci. Furthermore, we let C−ix = C \ Cix and C−i = C \ Ci. A clique is
typically denoted c, and we let rc = {rx ; x ∈ c}. Our clique system implicitly
defines a neighborhood system; the set of neighbors of (i, x) is defined as
Nix = ∪c∈Cixc \ (i, x).

Next, let nw > 0 be an integer such that the wavelet used in a seismic
study is a (2nw + 1)-vector denoted w, where w is indexed relative to the
center index. That is, w0 is the center element of w, w−nw is the first element
and wnw is the final element. We have implicitly assumed that wavelets are of
odd length.

Finally, we need some probability-related notation. Let x be a random
vector with discrete sample space, and let y be a random vector with contin-
uous sample space. Then p(x) is the probability mass function of x and p(y)
is the probability density function of y; i.e. the variables implicitly define the
meaning of p(·). We denote by p(x |y) the conditional probability of x given
y. Analogous notation is used for conditional densities. Finally, y ∼ NT (µ,Σ)
means that y is a T -variate normally distributed vector with mean vector µ
and covariance matrix Σ. Implicitly, it is given that µ is a T -vector and Σ is
a (T × T ) matrix.

2.4 Matrix Inversion Instability

In this study, we define our data model as

dix = W (rix + δix) + εix , i = 1, . . . , I, x = 1, . . . , n ,
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Figure 2.6: Illustration of a reflection coefficient matrix ri.
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Figure 2.7: Noise-free synthetic seismic data generated using the reflection
coefficient matrix illustrated in Figure 2.6.

where dix is a vector of observations, W is the wavelet matrix, rix is a vector of
reflection coefficients and δix and εix are noise vectors. The model is described
in more detail in Chapter 3.

Let us assume that the noise terms are small. Then

dix ≈Wrix .

Let W−1 be the inverse, or a pseudo-inverse, of W . It is tempting to use

r̂ix = W−1dix

as a predictor of rix. Matrix inversion is, however, an unstable operation. That
is, matrix inversion is highly sensitive to noise. We illustrate this instability
through an example.

Consider the two-dimensional reflection coefficient matrix ri illustrated
in Figure 2.6. First, we invert noise-free synthetic seismic data arising from
ri. The data is presented in Figure 2.7. Using a pseudo-inverse of the wavelet
matrix, we obtain the estimate presented in Figure 2.8. The estimate is highly
accurate.
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Figure 2.8: Estimate of the reflection coefficient matrix ri from the synthetic
seismic data in Figure 2.7 obtained using a pseudo-inverse of the wavelet ma-
trix W .
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Figure 2.9: Noisy and blurred synthetic seismic data generated using the re-
flection coefficient matrix illustrated in Figure 2.6.

Figure 2.9 shows noisy and blurred synthetic seismic data arising from ri.
We calculate the signal to noise ratio as the ratio of the sum of squares of
the signal to the sum of squares of the noise, but only in a band between
five points above the horizon and five points below it. This gives a signal to
noise ratio of 3.91. Inverting this data using the pseudo-inverse of W , we
obtain the estimate presented in Figure 2.10. This estimate can hardly be
said to contain any valuable information about ri. In the following chapter,
we develop a probabilistic model that can be used to provide estimates less
sensitive to noise in the data.
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Chapter 3

Bayesian Inversion Model

We define our model in a Bayesian iversion framework. The seismic traces dix,
i = 1, . . . , I, x = 1, . . . , X are modelled as discrete convolutions of rix and w
plus noise terms εix;

dix = Wrix + εix , i = 1, . . . , I, x = 1, . . . , X,

where εix = (εix1, . . . , εixT ), and W is the (T × T ) Toeplitz matrix with
w−nw , . . . , wnw on the diagonals corresponding to the indices and zeros else-
where. That is,

W =



w0 w1 · · · wnw 0

w−1 w0
. . .

. . .

...
. . .

. . .

w−nw
. . .

. . . wnw
. . .

. . .
...

. . .
. . . w0 w1

0 w−nw · · · w−1 w0



.

The convolution matrix W is symmetric if w is symmetric.

To make the method developed in the following sections computationally
feasible, and to get exact analytical solutions, we discretize the domain of each
rixt, (i, x, t) ∈ L. That is, we let rixt ∈ Ωq, where Ωq is a discrete subset of
(−1, 1).

To further reduce the complexity of the method, we make some additional
simplifying assumptions. We model the layers of rock surrounding a horizon
as homogeneous layers, so that the only non-zero reflection points in r are
at the horizons. That is, horizons appear as spikes in each rix, i = 1, . . . , I,

13



14 CHAPTER 3. BAYESIAN INVERSION MODEL

x = 1, . . . , X. Furthermore, we consider only one horizon at a time. Thus each
rix consists of one, and only one, non-zero value. Let six ∈ Ωs = {1, . . . , T} be
the depth of the non-zero value, and let qix ∈ Ωq be the reflection coefficient
of the horizon in column ix. Formally, we reparametrize rix as follows;

rix = rix(six, qix) = qixi(six) , i = 1, . . . , I, x = 1, . . . , X , (3.1)

where i(six) is a T -vector with value 1 at position six and 0 elsewhere. We
denote the domain of each rix by Ωr. The domain is defined by Equation (3.1),
Ωs and Ωq.

With these assumptions, there is a one to one relationship between rix and
{six, qix}. An example of a reflection coefficient matrix fulfilling the assump-
tions is illustrated in Figure 2.6.

By simplifying the reflection coefficients r as described above, we have
introduced a modeling error. In an attempt to account for this error, we let

dix = W (rix + δix) + εix

= W (qixi(six) + δix) + εix , i = 1, . . . , I, x = 1, . . . , X ,
(3.2)

where the δix = (δix1, . . . , δixT ) represents the modelling error. See Buland
and Omre (2003) for an extended discussion of this model.

We develop our model in a Bayesian inversion framework. Bayes’ rule
states that the posterior

p(r |d) = const× p(d | r)p(r) , (3.3)

where p(d | r) is the likelihood, p(r) is the prior probability and const =
[p(d)]−1 is a normalizing constant. The likelihood is the probability of the
observations d given the reflection coefficients r. Since r is the unknown
variable matrix, p(d | r) is not a density. The prior should incorporate prior
domain knowledge and experience.

In Section 3.1 we define our likelihood and prior models. In Section 3.2 we
derive the resulting posterior model. The derivations in these subsections are
inspired by Moja et al. (2019). All results are derived considering one inline at
a time. Analogous results hold for crosslines and can be obtained by rotating
the system or rewriting the equations.

3.1 Likelihood and Prior Models

In this section, we define our likelihood and prior models. As stated in Equa-
tion (3.2),

dix = W (rix + δix) + εix , i = 1, . . . , I, x = 1, . . . , X .

We let both the model error terms δix and the noise terms εix be independent
identically distributed (i.i.d.) normal random variables with expectation zero
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Figure 3.1: Synthetic seismic data generated according to the model described
in Section 3.1 with σδ = 0.02 and σε = 0.002, using the reflection coefficient
matrix illustrated in Figure 2.6 and the wavelet in Figure 2.5.

and constant variance. Let δix ∼ NT (0, σ2δI) and εix ∼ NT (0, σ2ε I), i =
1, . . . , I, x = 1, . . . , X. This implies that [dix | rix] ∼ NT (Wrix, σ

2
δWW ᵀ +

σ2ε I). Figure 3.1 shows an example of synthetic seismic data generated using
the model we have defined. The signal to noise ratio for the data is 4.84.

Note that independence of δix and εix, i = 1, . . . , I, x = 1, . . . , X, im-
plies that we assume the seismic traces are collected independently, i.e. that
p(dix | r) = p(dix | rix). Through Equation (3.2) we have further assumed that
a single-site response (ssr) model is suitable, so the likelihood becomes

p(d | r)
indp
=

I∏
i=1

X∏
x=1

p(dix | r)
ssr
=

I∏
i=1

X∏
x=1

p(dix | rix) (3.4)

where we have used conditional independence in the first equality. These
assumptions simplify our model considerably.

The marginal likelihoods p(dx | rx), x = 1, . . . , X, for the two-dimensional
cross-section of synthetic seismic data d shown in Figure 3.1, are presented in
Figure 3.2. With some exceptions, most of the weight of the likelihoods for
each trace is located along the horizon.

We define the prior model as

p(r) = const×
∏
c∈C

φ(rc) , (3.5)

where C is the clique system defined in Chapter 2 and φ(·) > 0 are called clique
potentials. The constant is [

∑
r′
∏
c∈C φ(r′c)]

−1. Calculation of the constant is
not tractable since the domain of r is too large to sum over all possible values.

Through Equation (3.5), we have defined our prior model as a Gibbs ran-
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Figure 3.2: Relative (column-wise) marginal likelihoods for the synthetic seis-
mic data presented in Figure 3.1.

dom field. Let φ(rc) > 0 ∀c ∈ C. Then, for all i = 1, . . . , I, x = 1, . . . , X,

p(rix | r−ix) =
p(r)∑

r′ix
p(r′ix, r−ix)

= ((((
((((

(((
const×

∏
c∈C−ix φ(rc)

∏
c∈Cix φ(rc)

(((
((((

(((
((((

const×
∏
c∈C−ix φ(rc)

∑
r′ix

∏
c∈Cix φ(r′c)

=

∏
c∈Cix φ(rc)∑

r′ix

∏
c∈Cix φ(r′c)

= p(rix | rjy : (j, y) ∈ Nix) .

That is, our prior Gibbs random field is also a Markov random field. Further-
more, we note that {ri}ni=1, can be represented by a Markov random chain;

p(ri | r1:i−1) =
p(r1:i)∑

r′i
p(r1:i−1, r′i)

=

∑
r′i+1:I

p(r1:i, r
′
i+1:I)∑

r′i:I
p(r1:i−1, r′i:I)

=
��

���
���

���
�const×

∏
c∈C\Ci:I φ(rc)

const×
∏
c∈C\Ci:I φ(rc)

×

∏
c∈Ci\Ci+1

φ(rc)
∑

r′i+1:I

∏
c∈Ci+1:I

φ(r′c)∑
r′i:I

∏
c∈Ci:I φ(r′c)

= p(ri | ri−1) i = 2, . . . , I, .

Finally, we show that [ri | r−i], i = 2, . . . , I − 1 are also Markov chains.
First, we rewrite p(ri | r−i) to a recursive formulation;

p(ri | r−i) = p(ri1 | r−i)
X∏
x=2

p(rix | ri,1:x−1, r−i) .
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Now, for x = 2, . . . , X,

p(rix | ri,1:x−1, r−i) =
p(ri,1:x, r−i)∑

r′ix
p(ri,1:x−1, r′ix, r−i)

=

∑′
ri,x+1:X

p(ri,1:x, r
′
i,x+1:X , r−i)∑

r′i,x:X
p(ri,1:x−1, r′i,x:X , r−i)

=
���

���
���

���
�const×

∏
c∈C\Ci,x:X φ(rc)

const×
∏
c∈C\Ci,x:X φ(rc)

× φ(rix, ri,x−1)uix∑
r′ix
φ(r′ix, ri,x−1)uix

p(ri1 | r−i) =
ui1∑
r′i1
ui1

,

(3.6)

where, for x = 1, . . . , X − 1,

uix = uix(rix, ri−1,x:X , ri+1,x:X)

= φ(rix, ri−1,x)φ(rix, ri+1,x)
∑

r′i,x+1:X

∏
c∈Ci,x+1:X

φ(r′c) ,

uiX = uiX(riX , ri−1,X , ri+1,X)

= φ(riX , ri−1,X)φ(rix, ri+1,X) .

(3.7)

We have, for x = 1, . . . , X − 1 the recursive relation

ui,x−1 = φ(ri,x−1, ri−1,x−1)φ(ri,x−1, ri+1,x−1)
∑
r′ix

φ(ri,x−1, r
′
ix)uix .

From Equation (3.6) and Equation (3.7), we see that

p(rix | ri,1:x−1, r−i) = p(rix | ri,x−1, ri−1,x:X , ri+1,x:X) ,

p(ri1 | r−i) = p(ri1 | ri−1, ri+1) ,

which shows that [ri | r−i], i = 2, . . . , I − 1 are Markov chains. Furthermore,
we have shown that

p(ri | r−i) = p(ri | ri−1, ri+1) .

Similarly, [r1 | r−1] and [rI | r−I ] are Markov chains with

p(r1 | r−1) = p(r1 | r2) ,
p(rI | r−I) = p(rI | rI−1) .

The prior Markov model combined with our single-site response likeli-
hood form a two-dimensional hidden Markov model. Furthermore, [ri | r−i,d],
i = 1, . . . , I can be represented by one-dimensional first-order hidden Markov
models. See Figure 3.3 for an illustration of a one-dimensional hidden Markov
model corresponding to the case I = 1.
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d1 dx−1 dx dn

r1 rx−1 rx rn. . . . . .

Figure 3.3: Illustration of a hidden Markov model.

3.2 Posterior Model

In this section, we assess the posterior probability p(r |d). First, we derive
some useful results. Then we show how to find the following: The probability
of any realization r∗; the prediction maximizing the posterior; all marginal
probabilities p(rixt |d), (i, x, t) ∈ L; and the expectation IE[r]. We also de-
scribe how to obtain simulations from the posterior distribution.

Using Equation (3.4) and Equation (3.5), we get the posterior

p(r |d) = const× p(d | r)p(r)

= const×
I∏
i=1

X∏
x=1

p(dix | rix)
∏
c∈C

φ(rc) ,

where const is the normalizing constant
∑

r′ p(d | r)p(r). Thus the posterior
is also a Gibbs random field, with a clique system including cliques of single
nodes. The clique potential (i, x) is the marginal likelihood p(dix | rix).

We state a couple of results without proof;

p(rix | r−ix,d) =
p(dix | rix)

∏
c∈Cix φ(rc)∑

r′ix
p(dix | r′ix)

∏
c∈Cix φ(r′c)

= p(rix | rjy : (j, y) ∈ Nix,dix) ,

and, for i = 2, . . . , I,

p(ri | r1:i−1,d) =
X∏
y=1

p(diy | riy)
∏

c∈Ci\Ci+1

φ(rc)

×

∑
r′i+1:I

∏I
j=i+1

∏X
y=1 p(djy | r′jy)

∏
c∈Ci+1:I

φ(r′c)∑
r′i:I

∏I
j=i

∏X
y=1 p(djy | r′jy)

∏
c∈Ci:I φ(r′c)

= p(ri | ri−1,di:I) .
The proofs are similar to the proofs of the analogous statements in Section 3.1.

As in Section 3.1, we rewrite the row-wise full-conditionals in a recursive
form. For i = 2, . . . , I − 1,

p(ri | r−i,d) = p(ri1 | r−i,d)
X∏
x=2

p(rix | ri,1:x−1, r−i,d) . (3.8)
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We have

p(rix | ri,1:x−1, r−i,d) =
p(d | ri,1:x, r−i)p(ri,1:x, r−i)∑

r′ix
p(d | r′ixri,1:x−1, r−i)p(r′ixri,1:x−1, r−i)

=
φ(rix, ri,x−1)vix∑
r′ix
φ(r′ix, ri,x−1)vix

, x = 2, . . . , X ,

p(ri1 | r−i,d) =
vi1∑
r′i1
vi1

,

(3.9)

where, for x = 1, . . . , X − 1,

vix = vix(rix, ri−1,x:X , ri+1,x:X ,di,x:X)

= vix(rix,d
′
i,x:X)

= p(dix | rix)φ(rix, ri−1,x)φ(rix, ri+1,x)

×
∑

r′i,x+1:X

X∏
y=x+1

p(diy | r′iy)
∏

c∈Ci,x+1:X

φ(r′c) ,

viX = viX(riX , ri−1,X , ri+1,X ,di,X)

= viX(riX ,d
′
iX)

= p(diX | riX)φ(riX , ri−1,X)φ(rix, ri+1,X) .

(3.10)

The simplifying notation

d′i,x:X = (ri−1,x:X , ri+1,x:X ,di,x:X),

d′i,X = (ri−1,X , ri+1,X ,di,X)

is introduced in Equation (3.10), and is used going forward.

As with the analogous result for the prior, we can express vix(·), x =
1, . . . , X − 1, recursively;

vi,x−1 = p(di,x−1 | ri,x−1)φ(ri,x−1, ri−1,x−1)φ(ri,x−1, ri+1,x−1)

×
∑
r′ix

φ(ri,x−1, r
′
ix)vix(r′ix, ri−1,x:X , ri+1,x:X) .

Furthermore, we see that

p(rix | ri,1:x−1, r−i,d) = p(rix | ri,x−1,d′i,x:X)

p(ri1 | r−i,d) = p(ri1 |d′i) ,

where d′i = (ri−1, ri+1,di), and so

p(ri | r−i,d) = p(ri |d′i) .

Corresponding results hold for i = 1 and i = I.
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d1 dx−1 dx dn

r1 rx−1 rx rn. . . . . .

Figure 3.4: Posterior Markov chain. Seismic data d, reflection coefficients r.

The row-wise full-conditionals p(ri |d′i) can be represented by a Markov
chain with transition probabilities p(rix | ri,x−1,d′i,x:X). The transition prob-
abilities are, in general, not constant with respect to x, i.e. the Markov chains
are non-stationary. The Markov chain corresponding to the two-dimensional
case I = 1 is illustrated in Figure 3.4.

We find the full-conditional posterior probabilities for an inline p(ri |d′i)
for any ri, rix ∈ Ωs, x = 1, . . . , X by inserting the transition probabilities into
Equation (3.8). The (full-conditional) maximum a posteriori (MAP) predic-
tion

r̂i,MAP = argmaxrip(ri |d′i) , (3.11)

can be found using the Viterbi algorithm, which we describe in detail in Chap-
ter 4. The MAP prediction is the most likely sequence of reflection coefficients
given all the data and the assumptions that are made in the introduction of
this chapter and in Section 3.1.

The posterior marginal probabilities for an inline conditioned on the neigh-
boring inlines p(rix |d′i), i = 2, . . . , I − 1, x = 2, . . . , n, sx ∈ Ωs, can be found
recursively;

p(rix |d′i) =
∑
r′i,x−1

p(r′i,x−1, rix |d′i)

=
∑
r′i,x−1

p(rix | r′i,x−1,d′i)p(r′i,x−1 |d′i) .
(3.12)

The distribution p(ri1 |d′i) is given in Equation (3.9). Corresponding results
hold for i = 1 and i = I. The posterior marginals indicate the uncertainty of
predictions. If the marginal is high in other locations in a column than the
MAP location, then the certainty of that specific MAP location is, all other
things equal, lower.

From the marginals, we can find the marginal maximum a posteriori
(MMAP) prediction

r̂i,MMAP = (argmaxri1p(ri1 |d′i), . . . , argmaxriXp(riX |d′i))
ᵀ
.
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The marginals also give the expectation

IE[ri |d′i] =
(
IE[ri1 |d′i], . . . , IE[sX |d′i]

)ᵀ
=

∑
r′i1

p(r′i1 |d′i)r′i1, . . . ,
∑
r′iX

p(r′iX |d′i)r′iX

ᵀ

.

The MMAP prediction and the expectation vector can be used as pre-
dictors. However, the MAP predictor, by definition, maximizes the posterior
probability. Thus it is the preferred predictor if it can be found efficiently.

Finally, we can obtain simulations from the posterior p(ri |d′i). This is
done by first drawing a sample from p(ri1 |d′i), then iteratively drawing rix,
x = 2, . . . , n from p(rix | ri,x−1,d′i) using the previously drawn vector ri,x−1.
Simulations can be used obtain different realizations that can be used as pre-
dictors.





Chapter 4

Autotracking Algorithms

In this chapter, we develop two different horizon autotracking algorithms based
on the hidden Markov model developed in Chapter 3. Recall that an auto-
tracking algorithm predicts a horizon in a seismic volume based on seismic data
and one or more seed points. The first of the two algorithms we develop finds
approximations of MAP predictions for one inline at a time; see Section 4.1.
The second is a greedy autotracker with lower computational complexity; see
Section 4.2. The greedy autotracker also has the advantage of simultaneously
operating in the entire three-dimensional seismic volume.

Both autotracking algorithms are designed to be interactive. A human
interpreter choses one or more seed points to mark the horizon in question
and to aid the tracking algorithm. Furthermore, we estimate the horizon
depths s and the reflection coefficients q sequentially, as described in detail in
the following sections.

For a tracking algorithm to outperform another, it should either require
fewer seed points to track a horizon with sufficient precision or run faster. In
this thesis, we mostly focus on precision.

4.1 Viterbi Autotracker

In this section, we develop an autotracking algorithm based on the fact that
we can find the full-conditional maximum a posteriori (MAP) prediction for
a horizon in an inline. The MAP prediction is defined in Equation (3.11). We
find it using the Viterbi algorithm (Viterbi, 1967), which we describe later.
For now, assume we know how to find the MAP prediction. The algorithm
estimates the MAP prediction one inline at a time.

When tracking a horizon, the interpreter starts by selecting one or more
seed points in an inline, say inline i − 1. When selecting a seed point, the
interpreter adds information. We incorporate this information into the like-
lihood. Let uix be a seed point given at column (i, x). We assume that the
horizon passes through the seed point, i.e. that uix = six. The data at (i, x) is
now {dix, uix}. Recall that rix = qixi(six), qix being the reflection coefficient

23
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and six the depth of the horizon at (i, x). We define the likelihood as follows;

p(dix, uix | rix) = p(uix | six) =

{
1, uix = six

0, otherwise
.

Hence, any horizon not containing all seed points has probability 0. This
ensures that the autotracked horizon covers all seed points.

To find r̂i−1,MAP as defined in Equation (3.11), we would need to know
ri−2 and ri to find the exact transition probabilities. The issue is that ri−2
and ri are unknown, and there is no information except the seed point(s) in
inline i− 1 which could lead to initial guesses. Therefore, for the initial inline
i− 1, we use the analog of Equation (3.9) corresponding to a two-dimensional
seismic volume to estimate the transition probabilities. The interpreter, if
necessary, adds seed points until the estimate r̂i−1 is sufficiently accurate.

Next, we wish to find an estimate r̂i for ri (and r̂i−2) by replacing ri−1 in
d′i = (ri−1, ri+1,di) with the estimate r̂i−1 in Equation (3.11). However, we
still need an estimate for ri+1. A reasonable initial guess would be r̃i+1 = r̂i−1.
From Equation (3.9) we know that three factors in our estimate of the posterior
transition probabilities p(rix | ri,x−1,d′i,x:X) are φ(rix, ri,x−1), φ(rix, r̂i−1,x)
and φ(rix, r̃i+1,x). However, since r̃i+1 = r̂i−1, we have φ(rix, r̂i−1,x) =
φ(rix, r̃i+1,x). Thus the weight of the contribution of r̂i−1,x is squared com-
pared to the contribution of ri,x−1, which is undesirable. However, we are free
to define the clique potentials suitably. In effect, we define them such that we
ignore φ(rix, r̃i+1,x).

In the two following subsections, we develop different parts of the algo-
rithm. First, in Section 4.1.1, we develop an algorithm to find the posterior
transition matrices for our hidden Markov model. In Section 4.1.2, we describe
an algorithm to find the MAP prediction based on the posterior transition ma-
trices. In Section 4.1.3, we put it all together.

4.1.1 Posterior Transition Matrices — Reverse Algorithm

In this subsection, we use an algorithm based on Equation (3.9) to sequen-
tially find the posterior transition matrices p(rix | ri,x−1,d′i,x:X), x = 2, . . . , n.
Algorithm 1, the Reverse Algorithm, implements this procedure, with a sub-
tle change due to the handling of small and large numbers in computers. We
explain this change at the end of this subsection.

In the following paragraphs we discuss the complexity of Algorithm 1.
The complexity is important due to the large size of seismic datasets. Re-
call that rix = qixi(six), where qix ∈ Ωq. There are T |Ωq| possible values
for rix for each x ∈ {1, . . . , X}, where |Ωq| is the cardinality of Ωq. Thus
there are (X − 1)(T |Ωq|)2 transition probabilities, as well as T |Ωq| probabil-
ities for the possible values of ri1. The complexity of the algorithm itself is
O((X − 1)(T |Ωq|)2 + T |Ωq|) = O(X(T |Ωq|)2). The space complexity is also
O(X(T |Ωq|)2), since all transition probabilities are stored.
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Algorithm 1: Reverse Algorithm

input : Data d′i with seismic data matrix di ⊂ d′i of size (X × T );
likelihood p(dix | rix), rix ∈ Ωr, x = 1, . . . , X; and clique
potentials φ(·, ·)

output: Posterior marginal probability p(ri1 |d′i), posterior transition
matrices p(rix | ri,x−1,d′i,x:X), rix, ri,x−1 ∈ Ωr, x = 2, . . . , X

1 forall riX ∈ Ωr do
2 viX(riX ,d

′
iX) = p(diX | riX)φ(riX , ri−1,X)

3 end
4 qX =

∑
riX

viX(riX ,d
′
iX)/|Ωr|

5 forall riX ∈ Ωr do
6 v∗iX(riX ,d

′
iX) = viX(riX ,d

′
iX)/qiX

7 end
8 for x← X to 2 do
9 forall rix ∈ Ωr do

10 forall ri,x−1 ∈ Ωr do

11 p(rix | ri,x−1,d′i,x:X) =
φ(rix,ri,x−1)v

∗
ix(rix,d

′
i,x:X)∑

r′
ix
φ(r′ix,ri,x−1)v∗ix(r

′
ix,d

′
i,x:X)

12 vi,x−1 = p(di,x−1 | ri,x−1)φ(ri,x−1, ri−1,x−1)×∑
r′ix
φ(ri,x−1, r

′
ix)vix(r′ix, ri−1,x:X , ri+1,x:X)

13 end
14 q′x−1 =

∑
ri,x−1

v′i,x−1(ri,x−1,d
′
i,x−1)/|Ωr|

15 forall ri,x−1 ∈ Ωr do
16 v∗i,x−1(ri,x−1,d

′
i,x−1:X) = v′i,x−1(ri,x−1,d

′
i,x:X)/q′x−1

17 end

18 end

19 end
20 forall ri1 ∈ Ωr do

21 p(ri1 |d′i) =
v∗i1(ri1,d)∑
r′
i1
v∗i1(r

′
i1,d)

22 end



26 CHAPTER 4. AUTOTRACKING ALGORITHMS

To calculate p(rix | ri,x−1,d′i,x:X), x = 2, . . . , n, for each rix, ri,x−1 one
needs vx(rix,d

′
i,x:X). Calculating vx(rix,d

′
i,x:X) involves the calculation of

p(dix | rix); recall Equation (3.10). Since [dix | rix] is multivariate normal, and
the multivariate normal pdf involves finding the determinant and the inverse
of the covariance matrix Σ = σ2δWW ᵀ + σ2ε I, the time complexity generally
is O(T 2.373) (Williams, 2012). However, since Σ is constant with respect to
i and x, the inverse and determinant only need to be calculated once. The
time complexity of computing the density with the inverse and determinant
of Σ known is O(T 2) nonetheless since it involves multiplication of a vector
with a matrix. So the total time complexity of Algorithm 1, including internal
calculations, is O(X(T |Ωq|)2T 2) = O(X|Ωq|2T 4).

Since T can be large, the dependency on T 4 is problematic. However,
as horizons are usually relatively flat, we do not have to consider the entire
depth of a seismic volume when tracking each horizon. Instead, we consider a
horizontal cross section of depth m, in effect letting |Ωs| = m. The value m
can be changed from inline to inline, but for simplicity, we keep it constant in
this study. While T can be larger than 1000, a much smaller m will mostly
be sufficient; we use m ≈ 100 ≈ T 2/3. Similarly, we can consider values of
qix in some range only. Letting |Ωq| ≈ m, the complexity of Algorithm 1 is
approximately O(Xm6) ≈ O(XT 4).

Although m is relatively small the m6 dependency is still an issue,
as indicated by the approximate T 4 dependency. We can further reduce
the complexity by estimating the horizon depths si and reflection coeffi-
cients qi separately. First, assume that qi is known. Then we can find
p(six | si,x−1, qi,x:X ,d′i,x:X) = p(six | si,x−1, qi,x−1:x,d′i,x:X), x = 2, . . . , X analo-
gously to how we find p(rix | ri,x−1,d′i,x:X). Specifically, we replace the sums
over r′ix and r′i,x+1:X in Equation (3.9) and Equation (3.10) with sums over s′ix
and s′i,x+1:X , respectively. Similarly, we can find p(qix | qi,x−1, si,x−1:x,d′i,x:X).
To utilize these facts, we would need an initial guess for either si or qi. Since
small errors in six might lead to large amplitude errors, and thus to difficulties
in estimating qix, it makes sense to start with an initial guess for qi. Further-
more, this way the interpreter can focus solely on s. And the depth of the
horizon s is usually the unknown of interest.

By first estimating si and then using the estimate of si to estimate qi, we
have reduced the complexity of estimating ri to O(Xm4) + O(X(m|Ωq|)2) ≈
O(Xm4) ≈ O(XT 8/3). This procedure can, of course, be run iteratively. How-
ever, running an average of k iterations at each inline increases time complexity
by a factor of k. Furthermore, assuming the interpreter ensures a precise es-
timate of si is found and that this leads to a good approximation of qi, we
should be able to obtain good results with just one run for each inline. To
keep the number of parameters low, we let k = 1 in this thesis.

One final step is taken to reduce the complexity even further. We consider
only the data at n < 10 depths around a point when calculating the likeli-
hood instead of at all m depths, reducing the complexity to O(Xm2n2) ≈
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O(Xm3) ≈ O(XT 2). The effects of using this method, with n = 7, are il-
lustrated in Figure 4.1. The likelihoods are calculated using a true reflection
coefficient from the middle horizon. Notice how the two top horizons, which
have negative reflection coefficients, stand more out from the area around them
when using the local likelihood method. This is due to the large spikes at the
horizons appearing at the wrong index when calculating likelihoods for depths
close to the true depths. For depths further away from the horizons, these
spikes are not included. When considering entire traces, the spikes are always
included, and as a result the background is more uniform.

The second thing to notice from Figure 4.1, is that using the full likelihoods
method generally yields higher likelihoods at the top horizon than the middle
horizon, even though the reflection coefficient is from the middle one. This
is due to the large negative seismic data from the top horizon appearing at
an unexpected location when assuming the correct location for the middle
horizon. Further experiments, which we do not discuss in this report, confirm
that the local method is not only notably faster; it tends to yield better results.

Applying Algorithm 1 for horizon depths si on the synthetic seismic illus-
trated in Figure 3.1, we find the posterior transition matrix p(si,10 | si,9, qi,di)
shown in Figure 4.2. Here the estimate of the reflection coefficient vector qi is
just a constant, and i is the index of the illustrated inline. Even though there
is a fault between x = 9 and x = 10, the most likely transition from any depth
at x = 9 is to depth 11 at x = 10, close to the true depth 12.

Algorithm technicalities

Notice that if the marginal likelihoods p(dix | rix) are mostly small or mostly
large, vx(·, ·) will become too small or large, respectively, to represent numeri-
cally as Algorithm 1 iterates towards smaller x. In practice, we solve this issue
by letting

v∗ix(rix,d
′
i,x:X) = vix(rix,d

′
i,x:X)/qix , x = 1, . . . , X ,

where qix =
∑

r′ix
vix(r′ix,d

′
i,x:X)/|Ωr|. Then Equation (3.9) can be written

p(rix | ri,x−1,d′i,x:X) =
φ(rix, ri,x−1)v

∗
ix(rix,d

′
i,x:X)∑

r′ix
φ(r′ix, ri,x−1)v

∗
ix(r′ix,d

′
i,x:X)

,

p(ri1 |d′i) =
v∗i1(ri1,d)∑
r′i1
v∗i1(r

′
i1,d)

.

When considering si and qi, an analogous adaption is made.

4.1.2 Cross section MAP Prediction — Viterbi Algorithm

We have not yet discussed how to find r̂i,MAP , i = 1, . . . , I, defined in Equa-
tion (3.11). As mentioned earlier in this section, we do not actually find true
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Figure 4.1: Top figure: Synthetic seismic data. Bottom left: Likelihoods for
each data point when considering three points above and below the points.
Bottom right: Likelihoods when considering the entire trace for each point.
The white column in the likelihood figures is due to a seed point in that
column.
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Figure 4.2: Posterior transition matrix p(s13 | s12,d13:n, q) for the synthetic
seismic data in Figure 3.1.

MAP predictions, since we use initial guesses and approximations as inputs.
Therefore, and for simplicity, we denote our estimates r̂i. Also, we estimate
si and qi sequentially — which we come back to later. To find r̂i, we use
the Viterbi algorithm (Viterbi, 1967); see Algorithm 2. The Viterbi algorithm
is a dynamic programming algorithm for hidden Markov models; we break
the problem down to sub-problems and solve them optimally in a recursive
manner. Since the problem possesses the optimal substructure property, this
yields the global optimum.

The statement about optimal substructure can be proven inductively.
We present an informal proof. The marginal probability of ri1, p(ri1 |d′i),
is given by Equation (3.9). Equation (3.9) is also used directly to find
argmaxr′i1

p(ri2 | r′i1,d′i) for all possible values of r2. The most likely path to
r3, i.e. the most likely sequence {r1, r2, r3}, has to go through the most likely
path to r2, since

p(r3, r2, r1 |d) = p(r3 | r2,d3:n)p(r2, r1, |d) .

That is, the most likely path to r3 is the path maximizing the probability of
the sub-path to r2 multiplied by the probability of going from r2 to r3. So
we do not have to consider suboptimal paths to r2. An analogous argument
holds for rx, x = 4, . . . , n.

As discussed before, we define ri through si and qi and estimate them
separately. For the MAP prediction of si, the algorithm needs to store the
optimal path to each of the m possible values of six, x = 1, . . . , X, along with
the probabilities of those paths. The paths can be stored in an X×m matrix,
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Algorithm 2: Viterbi Algorithm

input : Posterior marginal probability p(ri1 |d′i); posterior transition
matrices p(rix | ri,x−1,d′x:X), rix, ri,x−1 ∈ Ωr, x = 2, . . . , X

output: Estimated MAP horizon prediction r̂i
1 forall ri2 ∈ Ωr do

2 maxri1 p(ri,1:2 |d′i) = maxri1

[
p(ri2 | ri1,d′i,2:X) p(ri1 |d′i)

]
3 end
4 for x← 3 to n do
5 forall rix ∈ Ωr do
6 maxri,1:x−1 p(ri,1:x |d′i,x:X) =

maxri,x−1

[
p(rix | ri,x−1,d′i,x:X)×maxri,1:x−2 p(ri,1:x−1 |d′i)

]
7 end

8 end
9 maxri p(ri |d′i) = maxri,X

[
maxri,1:X−1 p(ri |d′i)

]
10 r̂i = argmaxrip(ri |d′i)

while the probabilities can be stored in a m-vector. The time complexity of
the algorithm is O(Xm2); one needs to check the probability of going from m
depths to m depths for all the X traces. Constructing the path from the stored
array is done by backtracking and requires indexing into the array X times,
an O(X) operation. Similarly, the Viterbi algorithm’s space complexity for
estimating qi is O(X|Ωq|), and the time complexity is O(X|Ωq|2). The total
time complexity is O(Xm2) +O(X|Ωq|2) ≈ O(Xm2) ≈ O(XT 4/3).

The estimated MAP horizon prediction for the seismic data shown in Fig-
ure 3.1 is presented in Figure 4.3a. Again, we have used a constant as initial
guess for the reflection coefficient vector qi. A single seed point is used, at
x = 20. The analog of Equation (3.8) for s is used to calculate the posterior
probability the horizon prediction [ŝ | qi]. The horizon prediction is close to
the true horizon.

Figure 4.3b shows the horizon prediction for a neighboring inline. Notice
that the posterior probability for this prediction is an order of magnitude larger
than for the initial inline. There are two main reasons for this increase. The
first reason is that the horizon prediction for the initial inline is utilized when
finding predictions for the neighboring inlines, as discussed in the introduction
of this chapter. The second reason is that after predicting the depths of the
horizon for the initial inline, we estimate the reflection coefficients of this
inline and use those estimates as initial guesses for the neighboring inlines.
These inital guesses are more precise than the constant used for the initial
inline. This illustrates that the tracking algorithm becomes more powerful
after being kickstarted by the interpreter with one or more seed points.

Using the analog of Equation (3.12) for s, we find the marginal probabilities



4.1. VITERBI AUTOTRACKER 31

0 4 8 12 16 20 24 28 32 36

x

0
2
4
6
8

10
12
14
16
18

T
w

o
-w

ay
tr

av
el

ti
m

e
s

Probability: 0.0024

−0.2

0.0

0.2

(a)

0 4 8 12 16 20 24 28 32 36

x

0
2
4
6
8

10
12
14
16
18

T
w

o
-w

ay
tr

av
el

ti
m

e
s

Probability: 0.035

−0.2

0.0

0.2

(b)

Figure 4.3: Posterior probabilities for horizon predictions in two neighboring
synthetic seismic inlines. The green dots show the locations of the predictions.
The black crosses show where the predicted depths differ from the true horizon
depths.
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Figure 4.4: Posterior marginals for the synthetic seismic shown in Figure 4.3a.

for a seismic data inline. The marginal probabilities for the data shown in
Figure 4.3a are presented in Figure 4.4. Due to the seed point and the prior,
the posterior marginals are more closely centered around the horizon than the
marginal likelihoods shown in Figure 3.2.

4.1.3 3D Volume Prediction — Autotracking Algorithm

In this subsection, we define the Viterbi based autotracking algorithm. We
have outlined how the tracking algorithm works, but we have yet to define
the clique potential function φ(·). Since we condition on the reflection co-
efficients qi when estimating the depths si and vice versa, we only need to
define φs(six, sjy | qix, qjy) and φq(qix, qjy | six, sjy), i = 1, . . . , I, x = 1, . . . , X,
(j, y) ∈ Nix. We let φs(six, sjy | qix, qjy) = φs(six, sjy) = φs(|six − sjy|) and
φq(qix, qjy | six, sjy) = φq(qix, qjy) = φq(|qix − qjy|). That is, φ(·) depends only
on the absolute value of the difference between the inputs. We consider qix
in steps of 0.01, i.e. Ωq ⊂ {−1,−0.99, . . . , 0.99, 1}, around the initial guesses,
and set φs = φq.

We let

φ(six, sjy) = p∗t (τ ; ν) =

(
1 +

kτ2

ν

)− ν+1
2

, x = 2, . . . , n ,

where p∗t (· ; ν) is an unnormalized version of the pdf of the t-distribution with
ν degrees of freedom and τ = |six − sjy|, and with k as a scaling factor. For
the results presented this report, ν = 5 and k = 1 is used unless otherwise
specified. The reasoning behind using the t-distribution is that heavy tails are
desired, since larger jumps occur at faults. Figure 4.5 illustrates a normalized
version of the clique potential function for m = 20. The value marked by an
arrow illustrates that although the probability of each big change is relatively
small, the total probability of any big change is not negligible.

As we have seen, it can be sufficient to use a constant as intial guess for the
reflection coefficients at the initial inline qi. At least for simple seismic data.
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Figure 4.5: Example of a clique potential function φ(sx | sx−1).

Let uix be the depth of the first seed point chosen by the interpreter. A naive
estimate of qix is q̃ix = dixuix/w0, which can be used as the constant initial
guess. Since the seismic data at each point is somewhat smoothed, a better
estimate may be q̂ix = cq̃ix, with c ∈ (1.5, 2). Alternatively, the interpreter can
manually estimate the reflection coefficient together with the horizon depth.
If several seed points are provided, we use linear interpolation for the initial
reflection coefficient guesses between the columns with seed points.

With the clique potentials and a procedure to generate initial reflection
coefficient guesses defined, all the pieces of the Viterbi-based autotracking al-
gorithm are in place. The algorithm, used to track seismic horizons in three
dimensions, is summarized in Algorithm 3. Within Algorithm 3, Algorithm 1
and Algorithm 2 are run 2I times each. Thus the complexity of the autotrack-
ing algorithm is approximately O(IXT 4/3) +O(IXT 2) = O(IXT 2).

Multiple horizon tracking

To track multiple horizons, we can run Algorithm 3 as it is once for each hori-
zon. However, we can make some improvements. First, we utilize the fact that
horizons generally can not cross each other. We incorporate this constraint by
setting the likelihoods to 0 for depths that violate it. Secondly, after tracking
each horizon, we use our model to subtract the theoretical expected effects of
the horizons on the seismic data. That is, we subtract the expected values of
[dix | r̂ix] ∼ p(dix | r̂ix), i = 1, . . . , I, x = 1, . . . , X from d.

Finally, since there is some correlation between how different horizons prop-
agate through a particular seismic volume, we can use this to adapt the clique
potentials for neighboring horizons. Let us assume that the interpreter be-
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Algorithm 3: Viterbi Autotracking Algorithm

input : Seismic data matrix d of size (I ×X × T ); likelihood
p(dix | rix), rix ∈ Ωr, x = 1, . . . , X; clique potentials φ(·, ·);
and seed points on the form (i, x, six, qix)

output: Horizon prediction r̂(ŝ, q̂)

1 Choose any seed point (i, x, six, qix)
2 Use all seed points in inline i to create inital guess q̂i for the inline

reflection coefficients qi by interpolating
3 p(si1 |d′i); p(six | si,x−1,d′i,x:X)← output of Algorithm 1 for input

d′i = (q̂i,di); p(dix | six, q̂ix); φ(·, ·)
4 ŝi ← output of Algorithm 2 for input p(si1 |d′i); p(six | si,x−1,d′i,x:X)

5 p(qi1 |d′i); p(qix | qi,x−1,d′i,x:X)← output of Algorithm 1 for input

d′i = (ŝi,di); p(dix | ŝix, qix); φ(·, ·)
6 q̂i ← output of Algorithm 2 for input p(qi1 |d′i); p(qix | qi,x−1,d′i,x:X)

7 for j ← i+ 1 to I do
8 p(sj1 |d′j); p(sjx | sj,x−1,d′j,x:X)← output of Algorithm 1 for input

d′j = (ŝj−1, q̂j−1,dj); p(djx | sjx, q̂jx); φ(·, ·)
9 ŝj ← output of Algorithm 2 for input p(sj1 |d′j);

p(sjx | sj,x−1,d′j,x:X)

10 p(qj1 |d′j); p(qjx | qj,x−1,d′j,x:X)← output of Algorithm 1 for input

d′j = (ŝj , q̂j−1,dj); p(djx | ŝjx, qjx); φ(·, ·)
11 q̂j ← output of Algorithm 2 for input p(qj1 |d′j);

p(qjx | qj,x−1,d′j,x:X)

12 end
13 for j ← i− 1 to 0 do
14 p(sj1 |d′j); p(sjx | sj,x−1,d′j,x:X)← output of Algorithm 1 for input

d′j = (ŝj+1, q̂j+1,dj); p(djx | sjx, q̂jx); φ(·, ·)
15 ŝj ← output of Algorithm 2 for input p(sj1 |d′j);

p(sjx | sj,x−1,d′j,x:X)

16 p(qj1 |d′j); p(qjx | qj,x−1,d′j,x:X)← output of Algorithm 1 for input

d′j = (ŝj , q̂j+1,dj); p(djx | ŝjx, qjx); φ(·, ·)
17 q̂j ← output of Algorithm 2 for input p(qj1 |d′j);

p(qjx | qj,x−1,d′j,x:X)

18 end
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gins by tracking the top horizon of interest. In general, the top horizon is
the simplest to track, since the seismic data from smaller depths is less noisy.
Furthermore, faults have had less time to develop. When tracking the sec-
ond horizon from top, we center the clique potentials for depths around the
changes in depth from the top horizon, and so on. That is, if six − si−1,x = k
for the top horizon, then we let φs(six, si−1,x) = φs(six − si−1,x) for the next
horizon have its largest value for φs(k) instead of at 0. This adaptation of the
clique potentials is equivalent to shifting the seismic data so that the tracked
horizon appears as flat. We are also more certain about the changes, so we
increase ν by a factor of 10. This increase moves the t-distribution closer to
the normal distribution, reducing the weight of the tails.

The Viterbi based autotracking algorithm is demonstrated in Chapter 5.
In the next section, we develop a greedy autotracking algorithm.

4.2 Greedy Autotracker

In this section, we develop a greedy autotracking algorithm based on the hid-
den Markov model developed in Chapter 3. The algorithm is greedy in the
sense that at each step it expands the horizon to a depth at some column, and
the depth is chosen based on what seems optimal locally. No global properties,
or properties for entire inlines, are considered.

The algorithm takes one or more seed points as input. Certain depths in
columns neighboring the seed point columns are added to a list termed the
frontier. The horizon is expanded to one new column at each step of the
algorithm, where the new column is one of the columns in the frontier. When
the depth in a new column is determined, the column is removed from the
frontier. Next, all columns neighboring the new column, and for which we
have not yet determined the depth of the horizon, are added to the frontier.
This procedure is repeated until the frontier is empty, at which point the
horizon depth is determined for all columns. See Figure 4.6 for an illustration
of a frontier at a certain time step.

At each step, we need to determine which column and depth to ex-
pand the horizon to. Assume that the depth of the horizon at column
(i, x) is set to six. Assume further that the depth is not set for column
(i+ 1, x), implying that this column must be in the frontier. To decide which
depth to expand the horizon to in this column, we consider the product
ψ(si+1,x, six, qix,di+1,x) = φ(six, si+1,x)p(di+1,x | si+1,x, qix), which we call the
score of si+1,x. We use the reflection coefficient for the neighboring point when
expanding the horizon. After the depth at (i + 1, x) is determined, we use
q̂i+1,x = argmaxqi+1,x

p(di+1,x | si+1,x, qi+1,x) as an estimate for the coefficient.
The score is considered for depths si+1,x not to distant from six, e.g. the
interval {six−m/2, six−m/2+1, . . . , six+m/2−1, six+m/2}, where m is an
even integer. Here, m serves about the same function as for the Viterbi based
autotracking algorithm. However, m can generally be smaller here, since it
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Figure 4.6: Illustration of frontier at a certain time step when using the greedy
tracking method. Black: Seed columns. Dark grey: Tracked columns. Light
grey: Frontier columns.

limits the differences as opposed to putting a limit on the depths of the entire
horizon. At each step, we expand the horizon to the depth with the highest
score, considered across all columns in the frontier.

It is possible that a column is added to the frontier multiple times before
the algorithm expands the horizon to that particular column — in theory up
to four times. To account for this, we let the score be

ψ1(six, s
(1)
ix ,dix) = ψ(six, s

(1)
ix ,dix)

4

the first time six is added to the frontier, where s
(1)
ix is the predicted depth in

the first column resulting in six being added to the frontier. Furthermore, we
let

ψ2(six, s
(2)
ix ,dix) = ψ(six, s

(2)
ix ,dix)

2
ψ(six, s

(1)
ix ,dix)

2
,

ψ3(six, s
(3)
ix ,dix) =

3∏
k=1

ψ(six, s
(k)
ix ,dix)

4/3
,

ψ4(six, s
(4)
ix ,dix) =

4∏
k=1

ψ(six, s
(k)
ix ,dix) .

This way the scores are comparable across columns and depths added to the
frontier more than once.

The greedy autotracking algorithm is summarized in Algorithm 4. It is not
straightforward to find the algorithm’s complexity , and we will not attempt
to do it exactly. However, assuming a somewhat arbitraty average of IXm
locations are in the frontier on average, we can find an estimate. If we maintain
a list of locations sorted by the score, finding the location with maximum score
is an O(1) operation. Calculating each score in the first place is an O(n2)
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operation since it involves a likelihood calculation. Estimating q̂ix involves
calculating the likelihood p(dix | six, q̃ix) for about m values of q̃ix. Thus this
step has time complexity O(mn2). Inserting each of the at most 4m locations
into the sorted list is an O(log(IXm)) operation, using e.g. a binary search to
find the position of each location in the list. The complexity of the final step
of the loop is relatively low. There are IX columns, each of which are added
to the horizon once (except the seed points). Thus the estimated complexity is
O(IX[mn2 + log(IXm)]) ≈ O(IX[T 4/3 + log(IXT 2/3)]). Assuming I ≈ X ≈
T , we arrive at O(IX[T 4/3 + 8/3 log(T )]) = O(IXT 4/3).

Algorithm 4: Greedy Autotracking Algorithm

input : Seismic data matrix d of size (I ×X × T ); likelihood
p(dix | rix), rix ∈ Ωr, x = 1, . . . , X; clique potentials φ(·, ·);
and seed points on the form (i, x, six, qix)

output: Horizon prediction r̂(ŝ, q̂)

1 forall seed points (i, x, six, qix) do
2 Add (j, y, s) to frontier for all (j, y) ∈ Nix,

s ∈ {max(six −m/2, 1), . . . ,min(six +m/2, T )} if ŝjy is not set

3 end
4 repeat
5 Find (i, x, s) from frontier with maximum score
6 Let ŝix = s
7 Estimate q̂ix
8 Add (j, y, s) to frontier for all (j, y) ∈ Nix,

s ∈ {max(ŝix −m/2, 1), . . . ,min(ŝix +m/2, T )} if ŝjy is not set
9 Remove entire column (i, x) from frontier

10 until frontier is empty

Comparing the estimated complexity with the complexity of the Viterbi
based tracking algorithm, it seems that the greedy algorithm is, asymptoti-
cally, faster. The greedy algorithm also has the advantage of working in three
dimensions, compared to one inline at a time for the Viterbi algorithm. The
downside is that the greedy approach is less holistic, in the sense that it only
considers local optimality. In practice, one can imagine the greedy algorithm
overcoming a fault by tracking around it. However, it might be problematic
to track a horizon across a fault running through the entire seismic volume.

To track multiple horizons, we implement the same adaptations as dis-
cussed at the end of Section 4.1.3. In the next chapter, we present and discuss
experiments for both algorithms.





Chapter 5

Experimental Results

In this chapter, we demonstrate the horizon tracking algorithms developed
in Chapter 4, and discuss some limitations. First, in Section 5.1, we present
results from experimenting with synthetic seismic data. In Section 5.2 we show
results for real seismic data.

5.1 Synthetic Data

The synthetic seismic data used in this report, even though simple, is useful
since we can freely change it to test the performance of tracking algorithms
on specific cases. In this section, we consider a three-dimensional synthetic
data d of size (40× 40× 45). Inline i = 10 of the seismic data is presented in
Figure 5.1a. The seismic data is created from three synthetic horizons using
the model described in Chapter 3. Furthermore, we have used Gaussian con-
volution along the inlines and crosslines to introduce lateral correlations, while
also smoothing the data. The reflection coefficients of the two top horizons
are similar. Using a constant reflection coefficient from the middle horizon
as initial guess for the reflection vector qi, we get the likelihoods shown in
Figure 5.1b. As discussed in Chapter 4, we do not need to consider all depths
when tracking a horizon. Here, we consider depths t = 8 to t = 34.

The top left plot of Figure 5.2 shows the horizon prediction for the middle
horizon at inline i = 10 obtained using the Viterbi based autotracker. The
posterior marginals are presented below the prediction. We see that the au-
totracker tracks the wrong horizon between the faults. The right plots show
that the error has propagated to i = 20.

To obtain the results shown in Figure 5.2, we have used a single seed
point at (i, x) = (10, 10). Figure 5.3 shows the corresponding results when
using a single seed point at (10, 20), i.e. between the faults, instead. Here, the
correct horizon is tracked throughout inline i = 10, and this also propagates
to i = 20. We have deliberately created a challenge for the tracking algorithm
by setting similar reflection coefficients for the two top horizons, and through
the positioning and sizes of the faults. With that in mind, the results obtained
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(a) Synthetic seismic data.
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(b) Likelihoods for the synthetic seismic data shown above from depth t = 8 to t = 34.

Figure 5.1: Synthetic seismic data and likelihoods.
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Figure 5.2: Top left plot: Tracked seismic horizon at inline i = 10 with seed
point at crossline x = 10. The green dots show the locations of the predictions.
The black crosses show where the predicted depths differ from the true horizon
depths. Top right: Tracked horizon at i = 20. The lower plots show the
posterior marginals for the horizon in the corresponding inlines from depth
t = 8 to t = 34.
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Figure 5.3: Top left plot: Tracked seismic horizon at inline i = 10 with seed
point at crossline x = 20. The green dots show the locations of the predictions.
The black crosses show where the predicted depths differ from the true horizon
depths. Top right: Tracked horizon at i = 20. The lower plots show the
posterior marginals for the horizon in the corresponding inlines from depth
t = 8 to t = 34.

here illustrate the capabilities of the tracking algorithm well.
To help the algorithm track the middle horizon correctly, as shown in

Figure 5.3, we chose a particularly suitable seed point. However, as discussed
in Chapter 4, it should generally be beneficial to track the top horizon first
and then perform the steps discussed in Section 4.1.3 for tracking multiple
horizons.

In the top left plot of Figure 5.4 we see the prediction for the top horizon
obtained using suitable seed points. Using the model described in Chapter 3,
we remove the expected effects of the horizon on the seismic data. The result
of this operation is shown in the top right plot in Figure 5.4. Next, we change
the clique potential so that, in practice, we shift the seismic data as shown in
the bottom left plot, making the top horizon flat. The combined result of the
two operations is shown in the bottom right plot of Figure 5.4.

After tracking the top horizon and adapting the seismic data and the clique
potential, it should be easier to track the middle horizon. Figure 5.5 shows
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Figure 5.4: Top left plot: Tracked seismic horizon at inline i = 10. The green
dots show the locations of the predictions. The black crosses show where the
predicted depths differ from the true horizon depths. Top right: Seismic data
with predicted effects of horizon removed. Lower left: Seismic data shifted
according to depth changes of predicted horizon. Lower right: Combined
result of the two aforementioned operations.
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Figure 5.5: Tracked seismic horizon at inline i = 10 with seed point at crossline
x = 10. The green dots show the locations of the predictions. The black crosses
show where the predicted depths differ from the true horizon depths.

the result. Now the correct horizon is tracked even though we use a seed point
at (10, 10), which did not result in satisfactory results at the first attempt of
tracking the horizon.

The left plots in Figure 5.6 illustrate the tracked horizons in three dimen-
sions. The right plots illustrate the true synthetic horizons. We see that the
true horizons are somewhat more volatile than the predictions. However, the
predictions are relatively precise throughout the seismic volume.

In the examples used so far, the direction of the faults has been perpendic-
ular to the inlines. This is beneficial for the Viterbi based tracking algorithm
since it works by propagating the horizon along the inlines. The right plot of
Figure 5.7 shows the top horizon of the same data as before, but now rotated
so that the faults are parallel to the inlines instead of perpendicular to them.
The left plot shows an attempt to track the horizon. The tracking algorithm
does not track the horizon well across the faults. In Chapter 6, we discuss
possible ways of amending this issue.

Finally, we present the result of attempting to track the top horizon of the
synthetic seismic data illustrated in Figure 5.1 using the greedy algorithm.
See Figure 5.8. Even though we have used a seed point at every plateau, i.e.
before the first fault, between the faults, and after the second fault, the results
are not convincing. Before the first fault, at x = 15, the middle horizon is
tracked instead of the top one.

Since the results obtained using the greedy algorithm are poor compared
to the results obtained using the Viterbi based autotracker, we do not consider
the greedy algorithm further. This difference in performance illustrates that



5.1. SYNTHETIC DATA 45

i

04812162024283236
40

x

0 4 8 12 16 20 24 28 32 36
40

T
w

o
-w

ay
trav

el
tim

e
s

0

5

10

15

20

25

30

35

40

45

i

04812162024283236
40

x

0 4 8 12 16 20 24 28 32 36
40

T
w

o
-w

ay
trav

el
tim

e
s

0

5

10

15

20

25

30

35

40

45

i

04812162024283236
40

x

0 4 8 12 16 20 24 28 32 36
40

T
w

o
-w

ay
trav

el
tim

e
s

0

5

10

15

20

25

30

35

40

45

i

04812162024283236
40

x

0 4 8 12 16 20 24 28 32 36
40

T
w

o
-w

ay
trav

el
tim

e
s

0

5

10

15

20

25

30

35

40

45

Figure 5.6: Left: Horizon predictions. Right: True horizons.
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Figure 5.7: Left: Horizon prediction. Right: True horizon.
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Figure 5.8: Left: Horizon prediction obtained using a greedy method. Right:
True horizon.

the large scale properties considered when optimizing one inline at a time are
important. In the next section, we present some results on real seismic data
obtained using the Viterbi based autotracker.

5.2 Real Data

Next, we test the Viterbi based autotracking algorithm developed in Sec-
tion 4.1.3 on real synthetic, seismic data. We need an estimate of the wavelet
used to acquire the data, and we need estimates for the structured noise vari-
able σ2δ and the white noise variable σ2ε . When working with synthetic data,
these are known variables. In this section, we consider the open-source Volve
dataset (2020). There are some open-source horizon interpretations available
for the Volve dataset. Unfortunately, we have not been able to acquire a
wavelet estimate created by an expert.

Figure 5.9 shows an inline of the Volve seismic data. Some areas in the plot
are magnified, illustrating some challenges real data may present. The first
magnified area from the top illustrates that real seismic data can have areas
with missing data. This might stem from processing or the data collection
procedure itself. Note also that the spacial coverage increases with depth in
this dataset. The second magnified area illustrates that there may be lots of
small and large faults. Even though faults are often considered to exist in
two-dimensional planes, it is more precise to think of them as thin volumes
where different layers are mixed by the movements that create faults. This
makes it all the more challenging to track horizons across faults.

The estimated wavelet we use to track a horizon is shown in Figure 5.10.
The method used to estimate the wavelet is described in SEG Wiki (2020).
We do not describe the method in this report.



5.2. REAL DATA 47

0 200 400 600

0

100

200

300

400

500

600

700
−0.1

0.0

0.1

Figure 5.9: Seismic data cross section from the open-source Volve dataset
(2020) released by Equinor under the Creative Commons BY-NC-SA 4.0 li-
cense.

−20 −15 −10 −5 0 5 10 15 20

Time

0

1

A
m

p
li
tu

d
e

Figure 5.10: Estimated wavelet for the Volve seismic data.
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For our experiment, we consider the seismic data from crosslines x = 150
to x = 550 and depths from t = 600 to t = 719. The data is shown in
Figure 5.11a. The horizon we focus on is shown in Figure 5.11b. Using the
constant −0.06 as initial guess for the reflection coefficient vector qi, and let-
ting σδ = 0.005 and σε = 0.0005, we get the likelihoods shown in Figure 5.11c.
The noise variables are chosen so that the likelihoods stand out as much as pos-
sible at the true horizon depths. The likelihoods stand out along the horizon
at some crosslines, but at other crosslines they do not.

Figure 5.12a shows the result of attempting to track the horizon with a
single seed point at x = 55. The result is not impressive, as one might expect
considering the likelihoods from Figure 5.11c. We illustrated in Section 5.1
how the tracking algorithm can become more powerful after tracking the initial
inline. To test this effect on the real data, we provide enough seed points to
track the horizon well in the initial inline; see Figure 5.12b. Figure 5.12c shows
the tracked horizons 5 inlines later. Again, the results are not convincing.

The tracked horizon illustrated in Figure 5.12a is too volatile compared
to the true horizon. It is natural to attempt tracking the horizon using a
stricter prior, i.e. a prior restricting the volatility of the horizon more. Fig-
ure 5.13 shows the results of tracking the horizon using a single seed point
with ν = 100 and k = 2. These parameter values give a very strict prior.
However, the tracked horizon is still not smooth enough. Using even stricter
priors results in numerical issues since the likelihoods are close to zero at some
of the true horizon locations while large jumps also have close to zero prob-
abilities. Furthermore, such strict priors would make it challenging to track
horizons with faults. In Chapter 6, we discuss possible reasons for the chal-
lenges illustrated here and in Section 5.1, as well as potential ways to improve
the performance of the algorithm.
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(a) Subset of Volve seismic data inline.
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(b) Subset of Volve seismic data inline with true horizon in black.

0 40 80 120 160 200 240 280 320 360

x

0
15
30
45
60
75
90

105

T
w

o
-w

ay
tr

av
el

ti
m

e
s

0.00

0.25

0.50

0.75

1.00

(c) Likelihoods for the seismic data above using the constant −0.06 as initial guess
for the reflection coefficient vector qi.

Figure 5.11: Subset of Volve seismic data inline, true horizon and likelihoods.
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(a) Green: Tracked horizon using a single seed point.
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(b) Green: Tracked horizon using several seed points.
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(c) Green: Tracked horizon 5 inlines after initial inline.

Figure 5.12: The top two plots show attempts to track the horizon marked
with black points in the initial inline, first with a single seed point and then
with several seed points. The lower plot shows the tracked horizons five inlines
after the initial inline.
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Figure 5.13: Green: Tracked horizon using a single seed point and a relatively
strict prior.





Chapter 6

Discussion

In this chapter, we summarize and discuss the results from Chapter 5. Further-
more, we compare some aspects of the Viterbi based autotracking algorithm
developed in Chapter 4 with approaches that may be considered state of the
art of horizon autotracking. Finally, we discuss potential ways to improve the
Viterbi based autotracker.

We demonstrated in Section 5.1 that the Viterbi based tracking algorithm
performs well on synthetic data with properties closely resembling those of the
model the algorithm is based on. The greedy algorithm did not perform well,
indicating that using global properties for each inline pays off. The problem
is that when the greedy algorithm encounters a fault, the jump may be too
large to be considered worthwhile when considering local properties only.

The Viterbi based autotracking algorithm also fell short when attempting
to track a horizon across faults propagating parallelly to the inlines. Real data
can contain faults propagating in different directions, so rotating the data is
not a universal solution. The interpreter could add seed points at multiple
inlines, but this would require more effort from the interpreter. Another alter-
native is to use the algorithm iteratively, going back and forth sequentially or
randomly, and possibly considering crosslines and not only inlines. We could
also use Markov chain Monte Carlo sampling to simulate the horizon in one
inline or crossline at a time and see if the result converges towards the true
horizon.

Testing the Viterbi based autotracker on real data revealed further chal-
lenges, as the results are not convincing. One reason may be a poor wavelet
estimate. This hypothesis is strengthed by the fact that removing the effects
of the predicted horizon on the seismic data is not successful; see Figure 6.1.
It seems like the estimated wavelet is not smooth enough. Since the model
behind the method is not an exact representation of reality, we hypothesize
that the best way to estimate the wavelet would be to extend the algorithm to
a three-step algorithm. As described in Chapter 4, we first estimate the hori-
zon depths, and then use those estimates to find an estimate for the reflection
coefficients. Based on those estimates, we could estimate the wavelet.
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Figure 6.1: Subset of Volve seismic data inline, where we have removed the
predicted effects of the tracked horizon illustrated in Figure 5.12b.

The real data experiments also revealed that even with a precise esti-
mate of the horizon at the initial inline, the algorithm did not properly
propagate the horizon to nearby inlines. As mentioned in the previous para-
graph, a poor wavelet estimate may partly be to blame. However, it is likely
that changing from a 4-neighborhood system as we have used here to an
8-neighborhood system will increase the performance of the algorithm. In
practice, this would mean including the clique potentials φ(six, ŝi−1,x−1) and
φ(six, ŝi−1,x+1) as factors when estimating the posterior transition probabili-
ties p(six | si,x−1, qi,x:X ,d′i,x:X), and an analogous adaption for the reflection
coefficients. Such a neighborhood system should be particularly helpful for
smooth horizons, as all three neighboring horizon points from the previous
inline are usually at about the same depth. The computational cost of this
change is relatively small.

Real seismic data is more complex than the synthetic seismic data con-
sidered in this thesis. One specific difference is that the number of seismic
data voxels above and below the depth of a horizon having the same sign as
at the horizon is more variable in real data; see Figure 5.11. Thus a better
wavelet estimate might not be sufficient to track a real horizon precisely. A
potential solution is using a univariate likelihood model, e.g. by letting dixsx
be normally distributed around the maximum amplitude of the wavelet multi-
plied by the reflection coefficient qix. This would involve only using the center
index of the wavelet, and dismissing the rest of the information contained in
the wavelet when tracking a horizon. Nonetheless, it is a possibility that may
be worthwhile exploring.

Figure 6.2 presents an inline from the open-source Netherlands offshore
F3 dataset (2020). We have magnified two particularly complex areas. The
F3 data is clearly more complex than the Volve data. Due to the suboptimal
results when testing the autotracking algorithm on the relatively simpler Volve
data, and since there are limited open-source expert interpretations, we do not
discuss tracking of horizons in this complex dataset.
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Figure 6.2: Seismic data cross section from the open-source F3 dataset (2020)
released under the Creative Commons BY-SA 3.0 license.

In Chapter 1, we briefly discussed some of the state of the art autotracking
methods. Wu and Fomel, 2018 develop a method consisting of two steps,
the first of which is to estimate slopes in the seismic volume. The method
developed in this study also consists of two steps; the horizon depths and
the reflection coefficients are estimated separately. However, these steps can
be run iteratively, each time benefitting from each other. Furthermore, the
method is developed with the possibility of interaction in mind, which might
be difficult when using a clustering-based approach such as the one developed
by Figueiredo et al., 2014.

It might also be a challenge to allow for interactivity when using machine
learning-based approaches. One advantage of machine learning based methods
is that, assuming there is enough data covering all frequent edge cases, one does
not need to think of and find solutions for all those edge cases. In this context,
edge cases refers to irregular behaviour or shape of a horizon. Examples of
edge cases are irregularities caused by to faults, salt bodies, injectites, etc.

We have not discussed the runtime of the algorithms. Since little effort is
spent on optimizing the implementation of the algorithms, and since our focus
has not been on efficiency, we do not discuss runtimes in detail. However,
it can be said that tracking the horizon in six inlines from the Volve data,
providing the results presented in Figure 5.12, takes less than one minute on
an average laptop.

Future work

As mentioned above, implementing a step for wavelet estimation into the au-
totracking algorithm seems likely to be important to improve the performance
of the algorithm. Or we could go the other way and use only the center in-
dex of the wavelet. Testing the use of an 8-neighborhood system would be a
simple first step going forward. In the following paragraphs, we discuss other
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potential ways to improve the tracking algorithm.
When considering the closest neighbors only at each step of the algorithm,

we do not look at larger-scale trends in horizon depths and reflection coeffi-
cients. For instance, we would not recognize if a horizon is trending upwards
or downwards along a particular direction. It might be worthwhile to examine
such trends when tracking a horizon. Another aspect we have not considered in
this study is that horizons may vanish due to a layer of rock being completely
eroded away in some areas. Theoretically, the algorithm we have developed
might highlight such areas by estimating a reflection coefficient close to zero.
However, it may be that including the possibility of a horizon vanishing di-
rectly as an option when estimating the depths, i.e. adding the possibility to
Ωs, is a better approach.

Interactivity is a key aspect of a tracking algorithm. Utilizing a combi-
nation of human expertise and the speed and thoroughness of an algorithm
is often beneficial when working with complex data like seismic data. As de-
scribed in this report, the Viterbi based autotracking algorithm would have
to run a complete new process if new seed points are added after an initial
attempt to track a horizon. This process can be performed more elegantly,
e.g. by starting tracking from the inline with the new seed point and stopping
when the horizon coincides with the initial prediction to a certain degree.

Other interesting extensions to explore include: using expectation maxi-
mization to estimate parameters like σδ and σε, as well as ν used in the prior
model; starting with a smaller grid containing a subset of the data points to re-
duce complexity and increase efficiency, i.e. a multi-grid model; and exploring
the feasibility of using a multi-site response model.



Chapter 7

Conclusion

In this thesis, after relevant background information is discussed, we define
a hidden Markov model for propagation of seismic horizons through seismic
volumes. We develop two different algorithms for tracking seismic horizons.
The algorithms are both interactive, in the sense that they take seed points
as input. Seed points are horizon locations selected by a human interpreter.
The horizon is tracked so that all seed points are included in the result.

One of the two algorithms is based on the Viterbi algorithm (Viterbi,
1967). The Viterbi algorithm finds maximum a posteriori (MAP) predic-
tions for one-dimensional hidden Markov models. The Viterbi based tracking
algorithm finds estimated MAP predictions for one two-dimensional seismic
cross-section at a time, resulting in predicted depths of the horizon throughout
the seismic volume. This method shows promise when working with synthetic
data. However, we illustrate that there are issues when tracking horizons in
real seismic data.

The second autotracking algorithm developed is a greedy algorithm that
utilizes local information only at each step when expanding the horizon. How-
ever, this method exhibits stronger weaknesses than the Viterbi based algo-
rithm when experimenting with relatively simple synthetic data.

We hypothesize that the main reason for the shortcomings of the Viterbi
based algorithm when working with real seismic data is a poor wavelet esti-
mate. Subsequently, we propose adding a step in the algorithm for wavelet
estimation as a first step for building on the work presented in this thesis.
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