
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Mathias Opland

Forecast Uncertainty for Univariate
Time Series Using Generative
Adversarial Networks

Master’s thesis in Applied Physics and Mathematics

Supervisor: Erlend Aune

June 2020

Mathias Opland

Forecast Uncertainty for Univariate
Time Series Using Generative
Adversarial Networks

Master’s thesis in Applied Physics and Mathematics
Supervisor: Erlend Aune
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Summary

The forecast uncertainty is an important aspect of assessing the quality of a forecast.
Recent forecasting competitions have shown the power of deep neural networks in time
series forecasting, however, for a standard neural network, the forecast uncertainty is
not a mathematically grounded statistic. Concurrently, generative adversarial networks
have proved to be a powerful tool for generating realistic images. This thesis aims to
show how generative adversarial networks can be used to estimate the forecast uncertainty,
and compare the results to well-known baseline models and a state-of-the-art method
for estimating forecast uncertainty with neural networks. Further, the thesis also aims to
investigate how forecasting multiple steps ahead affect the performance of the uncertainty
estimates and the forecast accuracy.

Inspired by recent research in the field, a conditional generative adversarial network for
forecasting is presented, namely ForGAN. We first investigate the ability of a GAN to
estimate simple distributions without temporal dependencies, and thereafter explore how
some key hyperparameters affect the performance of the distribution estimation. Further,
the ForGAN is compared to the baseline and state-of-the-art models across one synthetic
and three real time series data sets, forecasting multiple steps ahead. Prediction intervals
are used to measure the quality of the uncertainty estimates, where the coverage and the
mean scaled interval score (MSIS) is used as a measure of the performance. The multi-step
performance is investigated through the coverage of the prediction intervals over the forecast
horizon, using a recursive strategy to forecast multiple steps ahead.

The results show that the generative adversarial network is able to estimate the forecast
uncertainty comparable to the baseline models and the state-of-the-art model. For two
of the three real time series, the ForGAN scores best in terms of MSIS. Although some
problematic behavior occurs, the ForGAN model shows promising results. Investigating the
performance, some ideas for further research arises, in order to improve the performance of
the ForGAN.

i

Sammendrag

Når man skal predikere fremtidige verdier av en tidsrekke er usikkerheten i prediksjonene
en viktig faktor. Nylig har konkurranser innen tidsrekke-prediksjon vist at nevrale nettverk
presterer svært godt, men usikkerhetsmålet for disse er ikke matematisk basert. Samtidig har
generative adverseriale nettverk (GAN) vist seg å være et nyttig verktøy for å generere real-
istiske bilder. Denne masteroppgaven vil undersøke hvordan GAN kan brukes til å estimere
den nevnte prediksjonsusikkerheten. Resultatene sammenlignes så med kjente statistiske
modeller og moderne metoder for å estimere prediksjonsusikkerheten i nevrale nettverk.
Videre vil vi vise hvordan prediksjon flere steg frem i tid påvirker usikkerhetsestimatene og
prediksjonsnøyaktigheten.

Vi presenterer et betinget generativt adverserialt nettverk for tidsrekkeprediksjon som er
inspirert av andre studier på området, referert til som ForGAN. Først undersøker vi GAN’en
sin evne til å estimere enkle sannsynlighetsfordelinger, deretter analysere hvordan noen av
de viktigste parameterne påvirker resultatene. Videre sammenligner vi ForGAN modellen
med de statistiske metodene og det moderne nevrale nettverket på én syntetisk tidsrekke og
tre ekte tidsrekke-datasett, hvor vi predikerer flere steg frem i tid. Prediksjonsintervaller blir
brukt for å representere usikkerhetsestimatene, der dekningen og gjennomsnittlig skalert
intervallverdi (MSIS) måler kvaliteten på prediksjonsintervallene. Masteroppgaven vil også
ta for seg hvordan prediksjonshorisonten påvirker prediksjonsintervallenes dekningen, ved
bruk av en rekursiv metode for å predikere flere steg fram i tid.

Resultatene viser at ForGAN’en klarer å estimere gode prediksjonsintervaller for prediksjon-
susikkerheten sammenlignet med de statiske modellene og det moderne nevrale nettverket.
ForGAN-modellen har også best MSIS for to av de tre ekte tidsrekke-datasettene. Selv
om vi oppdager noe problematisk oppførsel, viser ForGAN modellen lovende resultater.
Som følge av å ha undersøkt resultatene presenterer vi noen idéer for videre arbeid med å
forbedre modellen.

ii

Preface

This thesis finalizes my master’s degree in Industrial Mathematics, as part of the study
program Applied Physics and Mathematics M.Sc. at the Norwegian University of Science
and Technology. The work continuous my specialization project, and has been conducted
in the spring of 2020.

I would like to direct a huge thanks to my supervisor, Associate Professor Erlend Aune, for
giving me the opportunity to explore topics that I find truly exciting. The ideas, guidance
and knowledge he has shared throughout the last year have been invaluable.

This marks the end of five years in Trondheim, where I have had the opportunity to evolve,
both academically and on a personal level. I would like to thank my friends, family and
girlfriend for their support, and for making this the best experience of my life so far.

Trondheim, June 2020

Mathias Opland

iii

iv

Table of Contents

Summary i

Sammendrag ii

Preface iii

Table of Contents vii

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Research Questions . 2

2 Literature Review 5
2.1 Forecast Uncertainty . 5

2.1.1 Classical Models . 5
2.1.2 Deep Neural Networks . 6
2.1.3 State of the Art . 6

2.2 Generative Adversarial Networks . 7
2.2.1 Forecasting with Generative Adversarial Networks 8
2.2.2 Forecast uncertainty with Generative Adversarial Networks . . . 8

3 Theory 11
3.1 Forecasting . 11

3.1.1 Naive Forecast . 12
3.1.2 Average Forecast . 12
3.1.3 Trend . 12
3.1.4 Seasonality . 13

3.2 Exponential Smoothing . 13
3.2.1 State Space Formulation . 14
3.2.2 Prediction Uncertainty in Exponential Smoothing 15
3.2.3 Model Selection with AICc . 16

3.3 ARIMA . 16
3.3.1 Forecasting with ARIMA Models 17

v

3.3.2 Prediction Uncertainty in ARIMA Models 18
3.4 Neural Networks . 18

3.4.1 Simple Recurrent Neural Networks 21
3.4.2 Long Short-Term Memory . 21

3.5 Monte Carlo Dropout in Neural Networks 22
3.5.1 Dropout . 22
3.5.2 Prediction Uncertainty in Neural Networks 23

3.6 Generative Adversarial Networks . 25
3.6.1 Conditional Generative Adversarial Networks 27
3.6.2 Forecasting with Generative Adversarial Networks 28
3.6.3 Mode Collapse . 29
3.6.4 Wasserstein Generative Adversarial Networks 30
3.6.5 Hyperparameter Tuning in Generative Adversarial Networks . . . 32

3.7 Recursive Multi-Step Forecast . 33
3.8 Performance Metrics . 34

3.8.1 Mean Squared Error . 34
3.8.2 Symmetric Mean Absolute Percentage Error 34
3.8.3 Mean Absolute Scaled Error . 35
3.8.4 Prediction Interval Coverage . 36
3.8.5 Mean Scaled Interval Score . 37
3.8.6 Kullback-Leibler Divergence . 37
3.8.7 Jensen-Shannon Divergence . 38

4 Experimental Setup 39
4.1 Data . 39

4.1.1 Data Processing . 39
4.1.2 Distribution Estimation . 40
4.1.3 Sine Curve with Gaussian Noise 41
4.1.4 Oslo Temperature Data Set . 43
4.1.5 Avocado Price Data Set . 43
4.1.6 Electricity Consumption Data Set 45

4.2 Models . 46
4.2.1 Baseline Models . 46
4.2.2 Generative Adversarial Networks 47
4.2.3 Monte Carlo Forecasting . 48

4.3 Hypotheses . 49

5 Results and Discussion 51
5.1 Distribution Estimation . 51

5.1.1 Gaussian Distribution . 51
5.1.2 Bimodal Distribution . 52

5.2 Sine Curve with Gaussian Noise . 53
5.2.1 Choosing Models for Comparison 56
5.2.2 Results . 56

5.3 Oslo Temperature Data Set . 60
5.3.1 Choosing Models for Comparison 60

vi

5.3.2 Results . 60
5.4 Avocado Price Data Set . 65

5.4.1 Choosing Models for Comparison 65
5.4.2 Results . 66

5.5 Electricity Consumption Data Set . 71
5.5.1 Choosing Models for Comparison 71
5.5.2 Results . 72

5.6 Discussion . 75

6 Conclusion and Further Work 77
6.1 Conclusion . 77
6.2 Further Work . 78

Bibliography 80

Appendix 87

vii

List of Tables

5.1 Results distribution estimation changing the latent code dimension 52
5.2 Hyperparameters sine data set. 53
5.3 Validation results comparing latent code dimensions on the sine data set. . 54
5.4 Validation results comparing discriminator iterations on the sine data set. . 55
5.5 Validation results comparing ForGAN and ForWGAN on sine data set. . . 55
5.6 Results of the point forecast error on the sine data 56
5.7 Results of the forecast uncertainty metrics on the sine data 57
5.8 Hyperparameters used for the ForGAN for the Oslo temperature data set. 60
5.9 Results of the point forecast error on the Oslo temperature data set. 61
5.10 Results of the forecast uncertainty on the Oslo temperature data set. . . . 61
5.11 Hyperparameters used for the ForGAN for the avocado price data set. . . 65
5.12 Results of the point forecast error in the avocado data set. 66
5.13 Results of the forecast uncertainty error in the avocado data set. 67
5.14 Hyperparameters used for the ForGAN for the electricity data set. 71
5.15 Results of the point forecast on the electricity data set. 72
5.16 Results of the forecast uncertainty on the electricity data set. 72

A1 Hyperparameters distribution estimation 87
A2 Hyperparameters used for bimodal distribution estimation with GAN and

WGAN. 87
A3 Hyperparameters used for the ForWGAN estimating the sine data. 88
A4 Hyperparameters used for MC dropout model for forecasting on sine data. 88
A5 Hyperparameters used for MC dropout model for forecasting on Oslo

temperature data set. 88
A6 Hyperparameters used for MC dropout model for forecasting on avocado

price data set. 89
A7 Hyperparameters used for MC dropout model for forecasting on electricity

consumption data set. 89

viii

List of Figures

3.1 Feed forward neural network . 18
3.2 Illustration of the RNN cell . 21
3.3 Illustration of the LSTM cell . 21
3.4 Generative Adversarial Network . 25
3.5 Conditional Generative Adversarial Network 27
3.6 Forecasting generative adversarial network 28

4.1 Gaussian distribution . 40
4.2 Bimodal distribution . 41
4.3 Synthetic sine time series with Gaussian noise 42
4.4 Oslo temperature data set . 43
4.5 Avocado price data set . 44
4.6 Electricity consumption data set . 46

5.1 Training progress comparing GAN and WGAN 53
5.2 The figure shows the MSE and MASE on a test set as a function of the

forecast horizon. 58
5.3 Coverage over the forecast horizon on the sine data set. 58
5.4 MSE and MASE over the forecast horizon on the Oslo temperature data set. 62
5.5 Coverage over the forecast horizon on the Oslo temperature data set. . . . 62
5.6 The MSIS and prediction interval width over the forecast horizon on the

Oslo temperature data set. 63
5.7 Forecasts on the Oslo temperature data set. 64
5.8 The MSE and sMAPE over the forecast horizon on the avocado price data set. 67
5.9 Coverage over the forecast horizon on avocado price data set. 68
5.10 Forecasts on conventional avocado price in Albany 69
5.11 Forecasts on organic avocado price in Albany 70
5.12 The MSE and sMAPE over the forecast horizon on the electricity data set. 73
5.13 Coverage over the forecast horizon on the electricity data set. 73
5.14 Forecasts on the electricity consumption. 74

ix

Chapter 1
Introduction

Finding a way of looking into the future has intrigued the human mind through centuries.
The Babylonians tried to forecast the weather using cloud formations as early as 650
B.C (NASA Earth Observatory (2002)). Astrologers have looked to the stars for answers,
whereas religious populations have looked for foreshadows through scriptures, prayers and
revelations. As a greater understanding of nature and physics rose from the Renaissance
and Scientific Revolution through the work of scientists such as Nicolaus Copernicus,
Galileo Galilei and Isaac Newton, the predicting power increased substantially. The idea of
statistical analysis of time series dates back to the introduction of modern statistics (Tsay
(2000)), however, the usage did not really start until the 1950s, when computer modeling
became established.

Today, forecasting is everywhere. We plan our lives around the weather forecast and expect
it to be precise. The finance sector rely heavily on forecasting to predict stock prices,
insurance profit and loan defaults. The tourism industry forecasts where you are going
on vacation years from now and the electricity companies are forecasting future power
consumption. Real estate developers are predicting which housing areas will increase in
price in the next few years, and betting companies are forecasting the odds of different
sports results. Hundreds of similar examples can be made, and illustrate how forecasting
plays an important part in many industries. However, as the domain can vary greatly, the
forecasting task is quite similar; forecast the next value(s) of a quantity given previously
observed values and possible auxiliary information.

Forecasting is a difficult task, as the dynamics may vary from domain to domain and even
between related time series. While one can obtain a long time series, the observations way
back may not be as relevant for the succeeding time series. Therefore one might not have
as many samples available as one has for other tasks, such as image recognition and text
classification. We may also have external factors that affect the dynamics of the time series,
however, it might be hard to know which ones. Including all relevant information may lead
to high dimensional data, with a relatively limited number of samples, which can make it

1

hard to distinguish temporal dynamics1 from random noise. Learning across multiple time
series can be a way to obtain more data, battling difficulties related to high dimensional data
and further hoping that there is some common temporal dynamic that can be transferred
between the time series. Despite the difficulties, researchers continue to invest time and
resources into inventing and improving forecast models due to the benefits of improved
forecasts.

A common aim of model development is to create the most accurate forecasting model,
however a likewise important metric is the forecast uncertainty. In everyday life, humans
rely not only on forecasts but also uncertainty estimates of those forecasts. For example,
if one has plans that depend on avoiding rain, a weather forecast of sunny weather may
help, but the more relevant information is the probability of downfall. Likewise, a forecast
of a stock price increasing in value may be rendered useless if the uncertainty is large.
Uncertainty estimates increase the insight and interpretability of the forecasts, which
increases the usefulness and our chance of making good decisions based on forecasting.

Whereas statistical models have defined the forecast uncertainty through theoretical know-
ledge of the models, neural networks are considered ”black-box” models where no such
statistic is theoretically defined. However, as deep learning has advanced in image classific-
ation, speech recognition and latest time series forecasting, as shown in the M4 competition
(Makridakis et al. (2020)), a natural step forward is to find ways to estimate the forecast
uncertainty. While the M4 competition appointed a winner for the best uncertainty estima-
tion with regards to the 95% prediction interval, the latest edition, and now ongoing M5
competition2, aims to compare the estimated uncertainty distribution using 50%, 67%, 95%
and 99% prediction intervals. This shows how the forecasting community has recently
come to emphasize uncertainty estimation.

1.1 Research Questions
Generative adversarial networks (GANs) have seen extensive use in the image generation
task, due to the ability to generate realistic images3. Due to its success, the GAN framework
has been adapted to other domains. In this thesis, we will use GAN to forecast both point
forecasts and uncertainty estimates, and compare them to baseline models, as well as a
state-of-the-art model to assess forecast uncertainty in neural networks. This will be done
by first investigating the properties of the proposed model on two synthetic data sets, before
comparing the forecast results to the baseline models on three real time series data sets.
The data sets are chosen from different domains and with different seasonal frequency, to
hold dissimilar dynamics.

The aim of this thesis is stated in the following research questions:

• Can generative adversarial networks be used to estimate forecast uncertainty?

• How well does the estimated uncertainty perform compared to theoretically grounded

1Temporal dynamics are dependencies and patterns in a time series.
2https://mofc.unic.ac.cy/m5-competition
3https://thispersondoesnotexist.com

2

https://mofc.unic.ac.cy/m5-competition
https://thispersondoesnotexist.com

uncertainties for statistical methods and forecast uncertainty obtained by state-of-the-
art methods?

• How does the forecasting horizon affect the uncertainty estimates?

In order to investigate the research questions, we have to determine a scope for the thesis.
To simplify the data processing, we will only investigate time series with on variable,
namely univariate time series. Univariate time series also works well with regard to the
recursive multi-step method chosen. Further, multivariate time series will make the training
both more computational and time-demanding. We will also only investigate simple neural
network architectures, with only one recurrent layer. More complex architectures may
increase the performance, however, the models will also be more computational demanding
and probably more data-hungry.

The thesis will include a literature review in Chapter 2, where we will investigate what has
been done related to the topic of forecasting uncertainty in a neural network, and time series
forecasting with generative adversarial networks. Further in Chapter 3 we will introduce
the theory related to the models used to conduct the experiments, as well as discuss the
performance metrics used to evaluate the models. In Chapter 4 we will introduce the
experimental setup, the data sets and the specific model used to conduct the experiments.
Chapter 5 will present results for each of the data sets, compare the performance of the
different models and discuss the results obtained. Finally, in Chapter 6 we will provide
a conclusion of the experiments and results, answer the research questions and propose
further work related to the topic and results presented in this thesis.

3

4

Chapter 2
Literature Review

In this chapter we will investigate work related to forecasting and especially forecast
uncertainty; both well-known statistical models and more recent models for estimating the
forecast uncertainty with neural networks. The aim is to provide context to forecasting
and forecast uncertainty estimation, and further investigate what has been done in order to
estimate the forecast uncertainty with deep neural networks. Finally, we will present work
related to time series modeling and forecasting with generative adversarial networks.

2.1 Forecast Uncertainty
Forecast uncertainty estimation is a subtask of forecasting, where the goal is to capture the
error distribution of a future event. This error can be related to how well the model is able
to capture the time series dynamics, but also to the amount of irreducible error in the data
set. The irreducible error accounts for the noise not explained by the data, and as indicated
by the name, cannot be reduced unless supplying additional data. On the other hand, the
model uncertainty can be reduced by achieving more accurate models. Moreover, the goal
of forecast uncertainty estimation is to correctly assess both the model uncertainty and the
irreducible error.

2.1.1 Classical Models

As time series modeling and forecasting is a difficult task, less complex models have been
regarded the best for decades (Makridakis and Hibon (2000)). It is only recently that
more complicated models, such as neural networks, has shown superior performance to the
older statistical models (Makridakis et al. (2020)). We will therefore present two statistical
models for time series modeling and forecasting, which will later be used as baseline models
in order to compare the performance of the proposed generative adversarial network.

5

Exponential Smoothing

Exponential smoothing was suggested in the late 1950s (Holt (2004), Winters (1960)) as a
way of modeling and forecasting time series. The model bases its forecast on a weighted
sum of past observations, where the weights are exponentially decaying, thereof the name.
In addition, trend and seasonality can be added in order to model basic temporal dynamics.
Despite its simplicity, the M3 competition (Makridakis and Hibon (2000)) identified a
variant of exponential smoothing, dampen trend exponential smoothing, as one of the best
performing forecasting models. Due to its good performance and longevity in the field of
forecasting, we will use it as a baseline model. The variations of exponential smoothing
will be discussed in section 3.2.

ARIMA

Autoregressive integrated moving average (ARIMA) (Brockwell and Davis (2016)) models
have been a staple of time series modeling for decades. It is however somewhat more
sophisticated than the aforementioned exponential smoothing. The autoregressive (AR)
part of ARIMA models a value as a linear combination of prior values, the integrated
(I) part removes trends and seasonality by differencing1 the time series, and the moving
average (MA) models the output as a linear combination of prior residuals. By combining
these components, the ARIMA is able to model a wide variety of time series dynamics. In
addition, one can add seasonal AR, I, and MA components, all of which will be explained
in detail in section 3.3.

2.1.2 Deep Neural Networks
Deep learning and deep neural networks have shown remarkable results across various
domains, including forecasting (Makridakis et al. (2020)). The introduction of recurrent
neural networks (Rumelhart et al. (1986)) and later Long Short-Term Memory (LSTM)
networks (Hochreiter and Schmidhuber (1997)) aimed to solve problems where there is
some temporal dynamic between the inputs, for example natural language processing,
speech recognition or time series modeling. The correlation between the past values is not
established prior to fitting the model, making for a flexible model where the actual dynamics
of the data can be captured despite prior beliefs made by humans or model limitations.
However, as the model is more flexible, the optimization task becomes correspondingly
harder. The model can overfit easily, and pick up random noise as temporal dynamics. Large
amounts of data can be a cure, however, time series may not have that much correlated data.
Despite these difficulties, it has been developed well-performing deep neural networks for
time series forecasting, some of which will be presented below.

2.1.3 State of the Art
We will now introduce some state-of-the-art techniques, the MC dropout and the pinball
loss, for estimating the forecast uncertainty with neural networks, where the former will be

1y′t = yt − yt−1 is a differencing, where y′t replaces yt in the time series. More information on ARIMA and
differencing can be found in section 3.3.

6

used as a comparison for the generative adversarial network.

Gal and Ghahramani (2015) suggested that the model uncertainty in a neural network
could be modeled by a well-known regularization technique; dropout (N. Srivastava and
Salakhutdinov (2014)). Usually, dropout is applied during training to regularize the model,
however by introducing this stochastic behavior during testing, it approximated a Gaussian
process over the weights. Thus by sampling from the neural network, one could sample
the model uncertainty, a method which is referred to as Monte Carlo dropout (MC dro-
pout). Zhu and Laptev (2017) built further on this uncertainty estimate by adding model
misspecification through dropout in an encoder-decoder and estimating the inherent noise
as the validation mean squared error to obtain the forecast uncertainty. We will explain this
solution later in section 3.5 and use it as our state-of-the-art comparison model, where the
implementation was carried out as a specialization project (Opland (2020)).

As the winning solution of the M4 competition (Makridakis et al. (2020)), Smyl and Pasqua
(2018) suggests a hybrid model where an exponential smoothing is modeling the trend
and seasonality, and a recurrent neural network is modeling the random component of the
time series. To obtain accurate point forecasts, the Pinball loss (Steinwart and Christmann
(2011)) is used to counter some positive bias. The prediction intervals are obtained by
minimizing the mean scaled interval score (MSIS) (Gneiting and Raftery (2007)). However,
as the MSIS is merely a way to score the performance of the prediction interval, which
was used as the comparison metric in the M4 competition, it has some bias which we will
discuss later in section 3.8.5.

2.2 Generative Adversarial Networks

Goodfellow et al. (2014) introduced a machine learning framework that has made a sub-
stantial impact on the machine learning field: generative adversarial networks (GAN).
The goal is to model a generative network G to capture and generate samples from a data
distribution. This is done by creating a min-max two-player game where a discriminative
network D wants to label the generated samples as ”fake” and real samples as ”real”. On
the other hand, the generator G aims to ”fool” the discriminator D to label the generated
samples as ”real”. The idea is not radically new, Schmidhuber (2019) even claims that it
is only a special case of artificial curiosity (Schmidhuber (1990), Schmidhuber (1991b))
and related to predictability minimization (Schmidhuber (1991a)), which was introduced
three decades ago. Further work on the subject by Mirza and Osindero (2014) introduced
the conditional GAN, cGAN, which is able to capture multimodal distributions better,
and instrumental in generating samples with specific behavior. This could be generating
images of handwritten numbers, where the condition may determine which number to be
generated. Following these introductions, the use of GANs has skyrocketed. Revolutionary
applications in image generation such as style transfer of images (Karras et al. (2019), Zhu
et al. (2017)), deepfakes (Tolosana et al. (2020), Wang (2019)) and image-to-text generation
(Gorti and Ma (2018)) has led to intensive publicity related to GANs.

7

2.2.1 Forecasting with Generative Adversarial Networks
Due to the obvious properties of generative adversarial networks, namely generating data,
the GAN framework has been most utilized in the image and text generation context.
However, there has been some effort lately in adopting the successful GAN framework to
other tasks, among these time series forecasting.

Esteban et al. (2017) propose a recurrent conditional GAN architecture in order to generate
synthetic data from a real time series data set. They show results where models trained
on the synthetic generated data only have minor degradation in performance when tested
on real time series. Brophy et al. (2019) further investigate the properties of time series
generation through mapping real time series to grayscaled images, then using an image-
based GAN to generate new images of time series, and mapping them back to synthetic time
series. Yoon et al. (2019) introduce a more sophisticated architecture using a mixture of a
supervised and adversarial framework for time series generation. This allows for a more
accurate capture of the temporal dynamics that can be found in deterministic models, while
still possessing the stochastic properties of generative models. Whereas these examples are
not directly related to the forecasting task, they show that the generator has the ability to
learn time series dynamics through the GAN framework.

Further, Husein et al. (2019) aim to forecast the drug sales for the following week using
the GAN framework. The performance is measured in both point accuracy through MAE2,
RMSE3 and MAPE4, and classification error of either sales increasing or decreasing in
relation to current level. While the paper claims that the model performs well in terms of the
aforementioned metrics, the results are not compared to any baseline model performance or
any known results on the data set used. It is therefore infeasible to assert the performance
of the models used.

Zhou et al. (2018) forecast one-step-ahead stock prices on high-frequency stock market
time series, using a conditional GAN framework where the conditional input is previously
observed stock prices. The model is using an LSTM layer in the generator and convolutional
layers in the discriminator, and they compare the performance to baseline models such
as ARIMA-GARCH5 and a non-adversarial version of the generator. They obtain better
forecasting accuracy for their proposed GAN model than any of the baseline and comparison
models. Work done by Zhang et al. (2019) show similar results on stock market data where
they forecast the closing price of the next day using the previous five days. They also
show that their proposed GAN model performs better than a standard LSTM network and a
Support Vector Regression (SVR) on the data set.

2.2.2 Forecast uncertainty with Generative Adversarial Networks
While there has been work related to forecasting with GANs, as shown in the previous
section, not many have focused on forecast uncertainty. However, we will present work

2Mean absolute scaled error, see section 3.8.3.
3Root mean squared error, see section 3.8.1.
4Mean absolute percentage error, see section 3.8.2.
5https://www.mssanz.org.au/modsim2013/F2/yaziz.pdf

8

https://www.mssanz.org.au/modsim2013/F2/yaziz.pdf

by Fu et al. (2019), Koochali et al. (2019) and Koochali et al. (2020), whose work we will
build on in this thesis.

Fu et al. (2019) simulate financial time series data with the use of a conditional GAN with
feed-forward architecture and shows that it can generate predictive conditional distributions.
While the examples are most related to point forecasting, they show the uncertainty estima-
tion through Value-at-Risk (VaR) and Expected Shortfall (ES), which are two uncertainty
measures especially related to financial and economic uncertainty estimates. VaR (Holton
(2014)) estimates the risk of loss, and how much it potentially looses. ES (Acerbi and
Tasche (2001)) is the average loss in the q · 100% worst-case scenarios. Although these
performance measures are not that relevant in the general time series forecasting case,
the results still show the abilities of GANs. They restrict the architectures of the neural
networks to feed forward connections, and suggest further work where deep convolutional
or recurrent layers are utilized. They also use the Wasserstein loss (Frogner et al. (2015)),
which has shown improved training stability and convergence in GANs (Arjovsky et al.
(2017)). Both applying recurrent layers and using the Wasserstein loss is something we
will investigate in this thesis.

Koochali et al. (2019) introduce ForGAN as a one-step-ahead probabilistic forecasting
model. By utilizing a conditional GAN setup with previous values of the time series as input,
they argue that the generator is able to model the full probability distribution of the forecast.
The model employs a recurrent layer, either LSTM or GRU, in both the generator and the
discriminator. Further, they use this model to forecast the one-step-ahead distribution on
three different data sets, two synthetic and one real time series data set. They compare
the results obtained to a G-regression, a non-adversarial trained generator, along with the
state-of-the-art results on the respective data sets. The performance is measured in both
point forecast accuracy and Kullback-Leibler divergence (section 3.8.6). While they report
excellent performance in terms of Kullback-Leibler divergence, the state-of-the-art model
does not provide this quantity, and the G-regression is not well suited for a probabilistic
forecast. The G-regression has also higher point forecast accuracy for two of the three
data sets, among them the real time series. Concluding the paper, Koochali et al. (2019)
mention that forecasting multiple steps ahead and comparing it to state-of-the-art models is
a way to further research GAN in the forecast setting. This thesis will further investigate
the ForGAN framework suggested by Koochali et al. (2019), and further forecast multiple
steps ahead with comparisons of the results to well-known statistical models described in
section 2.1.1.

Koochali et al. (2020) provide a probabilistic conditional GAN model for multivariate time
series forecasting. In addition, they propose a framework for transforming a deterministic
forecast model into a probabilistic model and compare results on two real time series data
sets. The performance is measured in the negative form of Continuous Ranked Probability
Score (CRPS∗) (Gneiting and Raftery (2007)), which can be interpreted to measure the
sharpness and precision of the probabilistic forecast, however, reduces to the mean absolute
error (MAE) for a deterministic forecast. Thus it is useful for comparing probabilistic
and deterministic models. They show that the probabilistic conditional GAN performs
better than a deterministic trained variant of the generator in terms of CRPS∗ for the one-
step-ahead forecast.Likewise, in this thesis we will compare the ForGAN to a standard

9

neural network, however, we will use the MC dropout (section 2.1.3) to obtain probabilistic
forecasts with the neural network.

10

Chapter 3
Theory

In this section, the theory behind the methods used when running experiments will be
introduced. This includes various forms of forecasting techniques such as exponential
smoothing, ARIMA models, different neural network architectures and lastly the generative
adversarial network. In addition, we assess how we can use these models to forecast, and
how the forecast uncertainties are estimated. We derive the recursive multi-step method
used for forecasting multiple steps ahead, and finally introduce the performance metrics
used to compare the results. A lot of the theory presented here is included in Python
packages, making a good foundation and lowering the probability of error. However, an
understanding of the theory behind is crucial in order to develop the right models, interpret
results and making necessary adjustments.

3.1 Forecasting
A time series {Yt} is a set of observations yt, where t denote the specific time they were
recorded (Brockwell and Davis (2016)). The time t does not need to correspond with a
specific time format, but has to define the timely order of the data. It is also useful to know
which time-frequency the observations yt corresponds to, as this can be used to develop
better models. An example will be observations of the temperature, where we would expect
the temperature to correlate with the season. If the observations are daily, we know that the
year consists of 365 days (or 366), and we would expect similar temperatures a year apart.
Also, one often wants time series with the same time interval between each observation,
so-called equally spaced. An equally spaced time series can have any given frequency, as
long as it is consistent within the time series. In this thesis, we will look at equally spaced
time series, some with monthly observation frequency, some with weekly observation
frequency and a high-frequency time series with hourly observations.

A univariate time series is the most simple form of time series, where yt only consists of one
observation. This can be the weather temperature, stock prices, number of passengers on

11

public transportation, demand for taxi transportation, electricity consumption, etc. Common
for the univariate time series is that we only have past values of the given quantity, called the
endogenous variable. On the contrary, a multivariate time series consists of not only a time
dependent sequence of observations, but multiple time dependent components where there is
some interdependence between the different components of the time series (Brockwell and
Davis (2016)). These can be additional explanatory variables to the endogenous time series,
named exogenous variables, or one model forecasting multiple time series of the same
quantity simultaneously due to the interdependence. Examples of this can be forecasting
the temperature over closely related areas simultaneously, or exogenous variables such as
precipitation and ocean current, in order to improve the temperature forecast. In this thesis,
we will focus on the univariate time series, where the models will base their predictions
solely on past values of the quantity at hand.

The goal of time series modeling is to find the optimal function f , such that:

yt = f(Xt−1) + εt, (3.1)

where Xt−1 is any previously observed values of y and possible auxiliary information, and
εt is the irreducible error at time t with mean 0 and finite variance σ2

ε (Tsay (2000)). There
are various ways to estimate the function f , which we will explore in this chapter.

3.1.1 Naive Forecast
The simplest form of forecasting can be achieved by simply guessing that the value will
stay the same, so called last-day forecast:

ŷt+1|t = yt. (3.2)

Here ŷt+1|t is the prediction of the value yt+1 at time t, called a one-step-ahead forecast.
Forecasting multiple steps in the future, is referred to as an h-step-ahead forecast, and is
denoted as ŷt+h|t. The last-day method can be extended to an h-step-ahead forecast:

ŷt+h|t = yt. (3.3)

3.1.2 Average Forecast
Another way to perform a simple forecast is by taking the average of past values. This can
either be done by taking the average value of all previous values:

ŷt+h|t = (yt + yt−1 + ...+ y1)/t, (3.4)

or a rolling average given a window length `:

ŷt+h|t = (yt + yt−1 + ...+ yt+1−`)/`. (3.5)

3.1.3 Trend
Some usual characteristics of a time series are trend and seasons and are often modeled
in order to obtain a more accurate forecast. Trend accounts for an increase or decrease

12

over time, which we often want to model as a rather smooth function. This can be either
linear, polynomial, exponential, or logarithmic, depending on the nature of the change. A
time-independent trend is called drift, and we can add drift to the equation (3.2):

ŷt+1|t = c+ yt, (3.6)

where c is the drift term. Further, we can expand the model to include time-dependent trend
by:

ŷt+1|t = c+ bt+ yt, (3.7)

where bt is the trend term. Thus expanding this, the h-step-ahead forecast can then be given
by:

ŷt+h|t = c+ b(t+ h− 1) + ŷt+h−1|t = ch+ b

h−1∑
i=0

(t+ i) + yt. (3.8)

3.1.4 Seasonality
Seasonality is another important characteristic of time series, and likewise important to
model in order to obtain accurate forecasts. m denotes the seasonal period, corresponding
to the number of observations within a season. The seasonal period depends on the nature
of the data source and the observation frequency. For example, weather temperature data is
expected to have yearly seasonality, and if the observation frequency is monthly, m = 12 is
a natural choice. A naive seasonal forecast can be to predict the value of the last observation
of the same seasonal occurrence (as shown in Hyndman et al. (2008)), which for the case
of temperature data is the previous observation of the same month. This can be expressed
as a forecast function:

ŷt+h|t = yt+h−m·(k+1), (3.9)

where k = int((h− 1)/m).

Now we will move to more complicated models, but the fundamentals are based on the
concepts explained in this section.

3.2 Exponential Smoothing
Simple exponential smoothing was suggested in the late 1950s, and has since been one
of the most used forecasting methods (Hyndman and Athanasopoulos (2018)). Whereas
in the moving average, the last observations are weighted equally, the idea of exponential
smoothing is a weighted average where the weights are decaying exponential. The one-
step-ahead forecast at time t is given by:

ŷt+1|t = αyt + (1− α)ŷt|t−1, (3.10)

where 0 ≤ α ≤ 1 is a smoothing parameter. Notably, we can rewrite this function to be:

ŷt+1|t = ŷt|t−1 + αzt = ŷt|t−1 + α(yt − ŷt|t−1), (3.11)

13

where zt is the residual of time-step t. Further, his is a recursive function such that:

ŷt+1|t = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + ...+ (1− α)ty0

= (1− α)ty0 +

t−1∑
j=0

α(1− α)jyt−j ,
(3.12)

where y0 is the initial value of the exponential smoothing. As the residual zt+1 is unknown,
a simple assumption is that ẑt+1 = 0, and the multiple steps forecast function of a simple
exponential smoothing is thus given by (Hyndman et al. (2008)):

ŷt+h|t = ŷt+1|t = αyt + (1− α)ŷt|t−1, (3.13)

which forecasts the h-step-ahead forecast as a last day forecast of the previous forecast.
This forecast is not very enlightening, and will not model trend or seasonality. Thus Holt-
Winters’ additive method with trend and seasonality can be used to obtain more accurate
forecasts:

ŷt+h|t = `t + hbt + st+h+m(k+1)

`t = α(yt − st−m) + (1− α)(`t−1 + bt−1)

bt = β(`t − `t−1) + (1− β)bt−1

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m,

(3.14)

where α, β and γ are smoothing parameters for the level `t, the trend bt and the seasonal
component st respectively. m denotes the seasonal frequency and k = int((h − 1)/m).
The multiplicative method of Holt-Winters can be written as:

ŷt+h|t = (`t + hbt)st+h−m(k+1)

`t = α
yt

st−m
+ (1− α)(`t−1 + bt−1)

bt = β(`t − `t−1) + (1− β)bt−1

st = γ
yt

(lt−1 + bt−1)
+ (1− γ)st−m,

(3.15)

A more thorough derivation can be seen in chapter 7.1-7.3 in Hyndman and Athanasopoulos
(2018).

3.2.1 State Space Formulation
As shown in Hyndman et al. (2008), formulating the exponential smoothing as a State Space
model will make it possible to derive forecasting uncertainty for Holt-Winters’ exponential
smoothing models. We will not go into detail on State Space models in this thesis, but
one can find the derivations in Hyndman et al. (2008). In short terms it is a general form
of writing a number of forecast methods, including exponential smoothing. However,
we will refer to versions of exponential smoothing as ETS(Error, Trend, Season), where

14

the error can be additive (A) or multiplicative (M), the trend can be absent (N), additive
(A) or dampened additive (Ad), and the season can be additive (A) or multiplicative. As
an example, the simple exponential smoothing (3.10) will take the State Space form of
ETS(A,N,N), the additive Holt-Winters’ (3.14) will be referred to as ETS(A,A,A) and the
multiplicative Holt-Winters (3.15) as ETS(A,A,M).

3.2.2 Prediction Uncertainty in Exponential Smoothing
Assuming independently distributed Gaussian noise, it is possible to derive the uncertainty
of a forecast. From Hyndman et al. (2008), we have the following uncertainty estimate for
the h-step-ahead forecast for a ETS(A,N,N) (3.10) model:

σ2
h =

[
1 + (h− 1)α2

]
σ2. (3.16)

Further, we can add a trend, ETS(A,A,N), and this gives the forecast uncertainty:

σ2
h =

[
1 + (h− 1)

[
α2 + αβh+

1

6
h(2h− 1)β2

]]
σ2. (3.17)

Lastly, we can add seasonality to the model, ETS(A,A,A), and from Hyndman et al. (2008)
we have the uncertainty of the h-step-ahead forecast:

σ2
h =

[
1 + (h− 1)

[
α2 +αβh+

1

6
h(2h− 1)β2

]
+ γk

[
2α+ γ+βm(k+ 1)

]]
σ2, (3.18)

where m denotes the seasonal frequency and k the integral part of h/m. It should be noted
that removing the seasonality (setting γ = 0) in equation (3.18) will lead to equation (3.17).
Further removing trend (setting β = 0) will reduce the expression to equation (3.16).

Estimating σ2 as the residual variance:

σ̂2 =
1

n− 2

n∑
i

(yi − ŷi)2, (3.19)

we can obtain an estimate σ̂2
h of σ2

h using equation (3.16), (3.17) or (3.18). Due to the
model being linear, we have that if the error εi is Gaussian, then yt+h|yt is also Gaussian
(Hyndman et al. (2008)). Thus we can use that the forecast is Gaussian distributed, and
express the prediction interval of the h-step-ahead forecast ŷt+h|h as:

[ŷt+h|t − zα/2 · σ̂h, ŷt+h|t + zα/2 · σ̂h], (3.20)

where zα/2 is the upper α/2 quantile of a standard Normal distribution.

It should be noted that the uncertainty estimates only apply to additive exponential smooth-
ing models, and if any of the terms are multiplicative, as shown in (3.15), the calculations
would be more complicated. We will not go into estimating uncertainty of multiplicative
models in this thesis, but this can be seen in Hyndman et al. (2008).

15

3.2.3 Model Selection with AICc
The Holt-Winters’ exponential smoothing with lowest corrected Akaike information cri-
terion (AICc) will be chosen for the data set at hand. The AICc is a extention of the Akaike
information criterion (AIC), which aims to find the model with the maximum logarithmic
likelihood. AICc will in addition penalize the number of parameters used, which makes it
better for comparing models with different complexity. AIC and AICc is given by:

AICc = −2 lnL
(
φ̂, θ̂,

S(φ̂, θ̂)

n

)
+

2kn

n− k − 1

= AIC +
2k(k + 1)

n− k − 1
,

(3.21)

where k = p+ q + 1 is the model complexity. L
(
φ̂, θ̂, S(φ̂,θ̂)

n

)
is the likelihood function,

given the estimated parameters φ̂ and θ̂. As the goal is to maximize the likelihood function,
the AIC and AICc has to be minimized. AICc will also be used for model selection for the
ARIMA model.

3.3 ARIMA
Auto-regressive integrated moving average (ARIMA) has been the staple of time series
analysis and forecasting for years, and is a class of models that represents a time series as a
linear function of previous values and previous residuals. An ARIMA process is composed
of different dependencies to model the time series as well as possible. First, an AR(p)
model describes a linear combination of previous values, and we have that {Yt} is an AR(p)
process if:

φ(B)Yt = Zt, (3.22)

where φ(B) = (1 − φ1B − φ2B
2 − ... − φpB

p), B is the backshift operator so that
BkYt = Yt−k and Zt ∼ WN(0, σ2) (Brockwell and Davis (2016)). Further, we have a
MA(q) model that describes the value as a linear combination of previous residuals (or
forecast errors). We have that {Yt} is a MA(q) process if:

Yt = θ(B)Zt, (3.23)

where θ(B) = (1− θ1B− θ2B
2− ...− θqBq), and B and Zt is given above. Differencing

is also a common technique that is being used to obtain stationary time series by removing
trend or seasonality. The idea is to transform the time series by:

Y ′t = (1−B)dYt, (3.24)

where Y ′t is the differenced time series, and d is a non negative integer. Thus we have that
{Yt} is an ARIMA(p, d, q) process:

16

φ(B)(1−B)dYt = θ(B)Zt, (3.25)

where φ(B), θ(B) and Zt is given above.

Handling seasonality, we can analogous to the ARIMA process obtain a model for the
seasonal part as an ARIMA process with seasonal parameters P, D and Q, and seasonal
frequency s. A seasonal ARIMA(p, d, q)x(P, D, Q)s-process (often referred to as SARIMA)
is then defined by:

φ(B)Φ(Bs)(1−B)d(1−Bs)DYt = θ(B)Θ(BS)Zt, (3.26)

where φ(z) = (1−φ1z− ...−φpzp), Φ(z) = (1−Φ1z− ...−ΦP z
P), θ(z) = (1−θ1z−

...− θqzq), Θ(z) = (1−Θ1z − ...−ΘQz
Q). (1−B)d and (1−Bs)D are differencing

and seasonal differencing respectively (Brockwell and Davis (2016)). Note that if both
regular and seasonal components of either AR or MA is present, we will obtain cross-terms.

The ARIMA model can be fitted by finding p, d, q, P , D, and Q, and then finding the para-
meters (φ̂1, ..., φ̂p, Φ̂1, ..., Φ̂P , θ̂1, ..., θ̂q, Θ̂1, ..., Θ̂Q) by maximum likelihood estimation.

3.3.1 Forecasting with ARIMA Models
As shown, an ARIMA model will try to model the dynamics of the time series. Thus by
assuming the same dynamics will continue into the future, one can use the obtained ARIMA
model to forecast. Forecasting an ARIMA process is shown in great detail in Brockwell
and Davis (2016), p. 87, however we will show the main results here. For a simple AR(p)
process, the obtained forecast function will be:

ŷt+1|t =

p∑
j=1

φjyt+1−j = φ1yt + φ2yt−1 + ...+ φpyt+1−p, (3.27)

which can be computed from equation (3.22). Further, a MA(q) process can be forecast by:

ŷt+1|t = µ−
q∑
j=1

θjzt+1−j = µ− θ1zt − θ2zt−1 − ...− θqzt+1−q, (3.28)

where µ is the mean of the time series.

Combining the AR(p) and the MA(q) formulas gives us the forecasting formula of an
ARMA(p, q) process:

ŷt+1|t = µ+

p∑
j=1

φjyt+1−j −
q∑
j=1

θjzt+1−j . (3.29)

Analogous, the explicit forecast function can be derived for a SARIMA(p,d,q)x(P,D,Q)s
model.

17

3.3.2 Prediction Uncertainty in ARIMA Models
Analogous to exponential smoothing, we want to estimate the prediction error of the h-
step-ahead forecast, in order to obtain prediction intervals. We will show how this can also
be done for an ARMA model, but this can be done with SARIMA models as shown in
Brockwell and Davis (2016).

An ARMA process is causal if it is possible to represent the ARMA process as a MA
process. We first define ψ(z) = (1 − ψ1z − ψ2z

2 − ...), analogous to the definitions of
φ(z) and θ(z). If the ARMA process is causal, we can write θ(B) = φ(B)ψ(B), and then
rewrite the ARMA process:

φ(B)Yt = θ(B)Zt

Yt =
θ(B)

φ(B)
Yt = ψ(B)Zt.

(3.30)

In order for this to be valid, we need that ψ(z) 6= 0 for |z| ≤ 1. Further, we can obtain the
forecast error by:

σ̂2
n =

1

n

n∑
i=1

(yi − ŷi)2 =
1

n

n∑
i=1

Z2
i , (3.31)

and from Brockwell and Davis (2016) we have that the h-step-ahead forecast error is:

σ̂2
n(h) =

h−1∑
j=0

ψ2
jσ

2. (3.32)

3.4 Neural Networks

Figure 3.1: Feed forward neural net-
work architecture (Glosser.ca (2019)).

For classical statistical methods, the theory regard-
ing the models were often developed before one had
the data and computational power available to utilize
the methods. The idea of neural networks were de-
veloped long before they were usable, but they have
stepped into the light in the last two decades. And
while there has been research around the statistical
properties of neural networks, the practical use has
skyrocketed. In the hunt for better performance on
specific task, the architectures have become more
sophisticated and advanced. Due to the advances in
practical use, it is not developed a theoretical founda-
tion in the same degree as for statistical methods. In
this section we will introduce the theory behind the
basic neural network architectures and nodes utilized
in this thesis. We will also introduce some newer
developed theory to obtain uncertainty estimates of
neural networks in the next section.

18

Deep learning has shown great results in many areas of computing; as regression models,
image recognition and processing sequential data. In many cases, sophisticated architectures
are utilized, however we will first define the basic architecture of feed forward networks.
A feed forward network consists of one or multiple layer(s), each with at least one node
(neuron). The layers are connected by feed forward connections, where for a fully connected
structure, the input of a layer is the weighted sum of the output of the previous layer. Figure
3.1 illustrates a fully connected feed forward network with three layers. Mathematically, a
fully connected feed forward layer can be defined as:

z(l+1) = g
(
W (l+1)z(l) + b(l+1)

)
, (3.33)

where z(l+1) ∈ Rd(l+1)

denotes the output of layer (l + 1) with dimension d(l+1). Thus
z(l) ∈ Rd(l) denotes the output of the previous layer. We also have that W (l+1) ∈
Rd(l+1)×d(l) denotes the weights from layer (l) to layer (l + 1), and g is an activation
function.

Activation Function

The activation function can be any appropriate function, but the functions below are the
most commonly used. Rectified Linear Units (ReLU) is defined as:

gReLU(z) = z+ = max(0, z), (3.34)

and thus obtain nonlinearity in z = 0. Nonlinearity is necessary in order to approximate
nonlinear functions. If g is a linear function in equation (3.33), then the output will be a
linear combination of the inputs, which is a linear regression. As ReLU is nonlinear, it can
be used in Neural Networks to approximate nonlinear function. It also has the application
of being unbounded, which can be useful in some cases. In addition, the gradient is easy to
compute, and linear. To avoid ”dying” nodes, where the gReLU = 0 and ∂gReLU(z)

∂z = 0, one
can use Leaky ReLU, as defined by:

gLeaky ReLU(z) = max(0.01z, z), (3.35)

which will avoid nodes outputting zeros. Further we have two hyperbolic activation
functions that see some usage in neural networks. The sigmoid activation function is
defined as:

gσ(z) =
1

1 + e−z
. (3.36)

Sigmoid has the property of being bounded by the interval [0, 1], as e−z ∈ (0,∞), z ∈ R.
Thus it proves useful as a gate, by either squashing the input to 0 or 1. As |z| → ∞, the
gradient ∂gσ(z)

∂z → 0, which leads to the problem of vanishing gradients, where the weight
wont update. Thus ReLU (3.34) is often preferred, unless the gating/squashing nature of
sigmoid is needed.

Another activation function that resembles sigmoid, is the hyperbolic tangent function:

gtanh(z) =
sinh(z)

cosh(z)
=
ez − e−z

ez + e−z
, (3.37)

19

which is bounded on [−1, 1] for all z ∈ R. Equal to sigmoid, the gradient of the hyperbolic
tangent approaches zero as |z| get large. Thus we have the same issues of vanishing gradient
as with sigmoid.

Loss Function

In the general regression and forecasting setting, minimizing the distance from the predicted
value to the real value is usually the goal. The mean squared error (section 3.8.1) is common
choice when the objective is to minimize this distance. Let ŷ be the predicted value of y,
then we have the mean squared error (MSE) loss function:

LMSE =
1

N

N∑
i

(yi − ŷi)2, (3.38)

where N is the number of samples. Other loss functions can be used depending on the task
at hand, which we will introduce later.

Mini-batch Stochastic Gradient Descent

In order to improve the performance of the neural network, the parameters have to be
updated, referred to as back-propagation. It has proven suboptimal to update over the entire
set of samples at the same time, due to poor generalization (Yao et al. (2018)). On the other
hand, updating the weights with regard to one sample at the time is not optimal either. Thus
some mini-batch of size m, referred to as batch size, of samples Y = (y1, . . . , ym) with
the respective predictions Ŷ = (ŷ1, . . . , ŷm) is stochastically chosen. The parameters θ are
updated according to:

θi = θi−1 − ηf
(
∇θi−1

L(Y, Ŷ)
)
, (3.39)

where θi is the trainable parameters, including but not limited to the weights W , within
the neural network at the ith update. η is the learning rate, f an optimization function and
∇θi−1

L the gradient of an arbitrary loss function with respect to the parameters θi−1. In
the simplest case, f

(
∇θi−1

L(Y, Ŷ)
)

= ∇θi−1
L(Y, Ŷ), which means the parameters θ are

updated along the gradient of the L. In this thesis, we will use the optimization function
Adam (Kingma and Ba (2014)), which uses the momentum of the weights in order to adapt
the learning rate accordingly.

20

3.4.1 Simple Recurrent Neural Networks

Figure 3.2: An illustration of the RNN
cell (Mani (2019b)) as described in equa-
tion 3.40.

Recurrent neural networks (RNN) has shown prom-
ising results in time series forecasting, and recently
being a part of the winning solution of the M4
competition (Makridakis et al. (2020)). In addi-
tion, RNNs has shown great results in other recur-
rent tasks, such as speech recognition and sentiment
analysis. This makes it a natural choice when ex-
ploring uncertainty estimation in forecasting with
neural networks. The method used is often referred
to as simple RNN cell, and contains stacked fully-
connected recurrent layers, where the output is fed
back to the input. To simplify notation, x will de-
note the input of a layer, while y will denote the
output, analogous to z(l) and z(l+1) from equation
3.33. From (Sezer et al. (2019), equation 8 and 9)
we have a system of equations for a recurrent neural
network, and by modifying according to the imple-
mentation of the ’Simple RNN’ in Keras (Chollet et al. (2015)) we have:

yt = g(Whyt−1 +Wxxt + bh), (3.40)

where bh is a bias term, Wh and Wx are weights, xt the input, and yt−1 and yt are the
output of the previous and the current RNN cell respectively. In addition g is an activation
function, usually the hyperbolic tangent function (3.37) for recurrent cells.

3.4.2 Long Short-Term Memory

Figure 3.3: An illustration of the LSTM cell (Mani
(2019a)) as described in equation 3.41.

Long short-term memory (LSTM)
units was introduced by Hochreiter and
Schmidhuber (1997), and has seen frequent
use in sentiment analysis and speech
recognition due to its ability to capture
long-term dependencies (Hewamalage
et al. (2019)). LSTM was also a part of
Uber’s winning hybrid ES-RNN solution
of the highly regarded M4 competition
(Smyl and Pasqua (2018), Makridakis
et al. (2020)). The LSTM builds upon
the simple recurrent neural network from
equation (3.40), and are described by the
following set of equations (Hewamalage

21

et al. (2019)):

it = gσ(Wiht−1 + Vixt + bi)

ot = gσ(Woht−1 + Voxt + bo)

ft = gσ(Wfht−1 + Vfxt + bf)

C̃t = gtanh(Wcht−1 + Vcxt + bc)

Ct = it � C̃t + ft � Ct−1

ht = ot � gtanh(Ct)

zt = ht.

(3.41)

Here ht ∈ Rd is the hidden state which accounts for short-term dependencies (as in simple
RNN) and Ct ∈ Rd is the cell state that captures long-term dependencies. it, ot, ft ∈ Rd
is the input, output and forget gate vectors. The input gate determines how much of the
input xt should be added to the cell state Ct. The output gate determines how much of the
cell state Ct should be outputted, and the forgot gate determines how much of the previous
cell state Ct−1 will be relied upon. Wi,Wo,Wf ,Wc ∈ Rdxd, Vi, Vo, Vf , Vc ∈ Rdxd and
bi, bo, bf , bc ∈ Rd are weights for the hidden state, input and the bias term respectively.
Further, � is the element wise multiplication, gtanh(z) the hyperbolic tangent activation
function (3.37) and gσ the sigmoid activation function (3.36).

3.5 Monte Carlo Dropout in Neural Networks
This section will introduce the theory behind the MC dropout model, which is used as
a state-of-the-art model of comparison to the generative adversarial network. Predicting
uncertainty in neural networks is not a task that has been greatly explored. However the
recent explosion in use of neural networks naturally provokes such research, as it entails
great value. This section contains theory developed by Zhu and Laptev (2017), which in
turn is based upon theory developed by Gal and Ghahramani (2015). Here it is suggested
under the Bayesian neural network framework that uncertainty can be divided into three
parts: model uncertainty, model misspecification and inherent noise. In this thesis we will
only try to estimate the model uncertainty and the inherent noise, and leave the model
misspecification out of the uncertainty estimate. Firstly, we will introduce dropout, as it is
central to the methodology of the MC dropout.

3.5.1 Dropout
Dropout is a regularization technique that is widely used, easy to implement and has
shown great results when training deep neural networks. The idea is to remove a random
selected proportion of the units in a neural layer, ”dropping” those units from the network
temporarily. In addition, newer findings such as Gal and Ghahramani (2015) suggests
that dropout approximates a deep Gaussian process, and thus can be used to estimate the
uncertainty.

The standard form of dropout will for a given layer remove an unit with probability p
(called dropout rate) when feeding a training batch through the network. The same units

22

will be removed during back-propagation, in order to train the correct weights. For each
training batch, a different subset of units from a layer is being dropped. This will be
analogous to sampling smaller networks from the full network architecture (N. Srivastava
and Salakhutdinov (2014)). The network will train slower, due to only parts of the weights
being trained for each batch, but will in many cases lead to better generalizing. The idea
is to disable the dropout during testing, which practically will be combining the sampled
networks, making for a more robust and better model (N. Srivastava and Salakhutdinov
(2014)). However, to estimate model uncertainty, dropout would be enabled during testing
as well.

Let z(l) be the output vector of layer (l) with size d(l)x1. Further, let r(l) ∼ Bernoulli(p(l))
be a vector of independent Bernoulli distributed values with probability p(l) of being 1, and
with size d(l)x1. 1− p(1) will be the dropout rate for layer (l). Thus we have the following
modification from equation (3.33):

z̃(l) =
1

p(l)
r(l) � z(l)

z(l+1) = g
(
W (l+1)z̃(l) + b(l+1)

)
,

(3.42)

where � is the element wise multiplication. Dropout can be applied to recurrent and
convolutional layers as well, but it is only the feed forward connections that can be dropped
out. Equation (3.40) can thus be rewritten to:

x̃t =
rt
p
xt

yt = Whg(yt−1 +Wxx̃t + bh),
(3.43)

where rt ∼ Bernoulli(p) is a binary value.

As suggested by Gal and Ghahramani (2015), by sampling a prediction multiple times with
dropout active, name Monte Carlo dropout, one can obtain a estimate of the distribution of
the model predictions. As this approximates a deep Gaussian process (Gal and Ghahramani
(2015)), the expected distribution is Gaussian, and one can obtain the model uncertainty.

3.5.2 Prediction Uncertainty in Neural Networks

Let fθ̂(·) define the trained neural network, with model parameters θ̂, that tries to approx-
imate the true model, fθ(·). Further, we denote the validation set as (X ′, Y ′), and the test
set of new observations as (X∗, Y ∗). By assuming Gaussian distributed noise, we have
that y ∼ N(fθ(x), σ2) (Zhu and Laptev (2017)), and thus we can make a estimation of y∗

by ŷ∗ = fθ̂(x
∗). Further we have that the prediction interval for a Gaussian distribution is

given by:
[y∗ − zα/2σ̂, y∗ + zα/2σ̂], (3.44)

where σ̂ is the prediction standard error σ̂ =
√
V ar(y∗), and zα/2 is the upper α/2 quantile

of a standard Normal distribution. To estimate the (1− α) · 100% prediction interval, we
need to estimate y∗ and σ̂.

23

Further, we have from Zhu and Laptev (2017) that the distribution of the prediction is given
by marginalizing out the parameters θ, and we obtain the following equation:

p(y∗|x∗) =

∫
θ

p(y∗|fθ(x∗))p(θ|X,Y)dθ. (3.45)

Then we have from the law of total variance that:

Var(Y) = E[Var(Y |X)] + Var(E[Y |X])

= σ2 + Var(fθ̂(X)).
(3.46)

Here σ2 can be seen as the inherent noise in the observations: y − fθ(x) = σ2, and
Var(fθ̂(X)) the model uncertainty.

Model Uncertainty

As shown by Gal and Ghahramani (2015), doing Monte Carlo estimations with dropout
active, named MC dropout, approximates a probabilistic deep Gaussian process. Let x∗ be
an input, and (ŷ∗(1), ..., ŷ

∗
(B)) be B Monte Carlo forecasts of y∗. In one-step ahead forecast,

x∗ will denote (yt−`, ..., yt), where ` is the sequence length , and y∗ denote yt+1. Thus we
can obtain a estimate for the model uncertainty:

ˆV ar(fθ̂(x
∗)) =

1

B

B∑
b=1

(
ŷ∗(b) − ŷ

∗)2
, (3.47)

where ŷ
∗

is the sample mean.

Inherent Noise

From Zhu and Laptev (2017), we estimate the inherent noise level σ2, by the residual sum
of squares:

σ̂2 =
1

V

V∑
v=1

(y′v − fθ̂(x
′
v))

2, (3.48)

where X ′ = (x′1, ..., x
′
V), Y ′ = (y′1, ..., y

′
V) is a validation set. As further shown by Zhu

and Laptev (2017), if one assumes that fθ̂(·) is an unbiased estimator of the true model
fθ(·), that is E[fθ̂(·)] = fθ(·), we have for large training data that σ̂2 is an unbiased
estimator for σ2. By the use of Bias-Variance Trade-off, we obtain:

E[σ̂2] =
1

V

V∑
v=1

E
[
(y′v − fθ̂(x

′
v))

2
]

= Bias[fθ̂(X
′)]2 + Var(fθ̂(X

′)) + σ2,

(3.49)

where Bias[fθ̂(X
′)]2 can be removed, due to the assumption of fθ̂(·) being an unbiased

estimator. Thus, as shown by Zhu and Laptev (2017), σ̂2 is an asymptotically unbiased
estimator of σ2.

24

3.6 Generative Adversarial Networks
Generative Adversarial Network (GAN), introduced by Goodfellow et al. (2014), is a
machine learning framework that has gotten a lot of recognition due to promising results in
image generation and transformation. Among the most publicly available uses is Deep Fake
(Tolosana et al. (2020)), where realistic videos and photos of people have been generated in
order to create fake news, financial fraud etc. thispersondoesnotexist.com 1(Wang (2019))
is a website that generates realistic images of persons that are generated according to a
StyleGAN suggested by Karras et al. (2019). Another use is the transformation of image-
to-image translation by the use of CycleGAN (Zhu et al. (2017)). Examples show that
paintings can be transformed to realistic looking pictures and reversely images can be
transformed to look like paintings in the style of famous painters such as Van Gogh and
Monet. Even tasks such as generating images from text and reversely describing images
can be done using GAN (Gorti and Ma (2018)).

Figure 3.4: Generative Adversarial Network

The GAN framework is motivated by game theory; a generative model G aims to generate
samples that fools the discriminative model D. The discriminative model D on the other
hand is fed both real data and samples generated by the generator G, and tries to distinguish
and label the real data and generated data as real and fake respectively. This is corresponds
to a minimax two-player game, where the two models have competing objectives. In reality,
if trained correctly to a minimum, this leads to the generator G capturing the distribution of
the real data and being able to generate samples from the distribution. In order to achieve
stochastic generation of samples, the generator G take a random latent code z as input.
It may therefore be more correct to refer to the generator G as a transformer, as it is a
transformation from random noise to the distribution of the real data. Figure 3.4 shows the
framework, where the generator G and the discriminator D can be any functions. However,
the functions G and D often refers to neural networks. Let V (D,G) be the value function:

min
G

max
D

V (D,G) = Ex∼pdata(x)

[
logD(x)

]
+ Ez∼pz(z)

[
log (1−D(G(z))

]
, (3.50)

where x ∼ pdata(x) is data drawn from the true distribution pdata (data samples) and
z ∼ pz(z) is the latent code drawn from a noise distribution pz . As noted by Goodfellow

1https://thispersondoesnotexist.com/

25

et al. (2014), a unique solution exists, and is shown to be where G learns the true distribution
pg = pdata, where pg denotes the distribution generated from the generator. Further, the
optimal discriminator given a fixed generator is given by:

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
, (3.51)

which for pg = pdata yields D = 1
2 . Further Goodfellow et al. (2014) shows that the

maximization object of D can be formulated as:

max
D

V (D,G) = Ex∼pdata(x)

[
log

pdata(x)

pdata(x) + pg(x)

]
+ Ez∼pz(z)

[
log

pg(x)

pdata(x) + pg(x)

]
,

(3.52)

which for pg = pdata yields max
D

V (D,G) = −2log(2). We can further rewrite V (D,G)
as:

V (D,G) =

∫
x

pdata(x) logD(x) dx+

∫
z

pz(z) log
(
1−D(G(x))

)
dz

=

∫
x

pdata(x) logD(x) + pg(x) log
(
1−D(x)

)
dx,

(3.53)

which for an optimal discriminator D∗G is given by:

C(G) = V (D∗G ,G) = DKL(pdata || pdata + pg) +DKL(pg || pdata + pg), (3.54)

where DKL(P ||Q) is the Kullback-Leibler distance of the probability distribution P
relative to the probability distribution Q (see more detailed explanation in section 3.8.6).
Further, we can see that by extracting the optimal solution C(G∗) = −2log(2) from C(G),
we get:

C(G) = DKL

(
pdata ||

pdata + pg
2

)
+DKL

(
pg ||

pdata + pg
2

)
− log(4)

= 2 ·DJS(pg || pdata)− 2 log(2).
(3.55)

Here DJS(P ||Q) is the Jensen-Shannon divergence (section 3.8.7), which is non-negative
and DJS = 0 only if P = Q. This was shown by Goodfellow et al. (2014), which
implicates that given an optimal discriminator D∗G , the value function of the generator C(G)
minimizes the Jensen-Shannon divergence, with global minimum at pg = pdata.

Loss Function

In order to minimize the value functions described in equation 3.50, we use the loss function
binary cross-entropy2:

LBCE = −(y log(p̂) + (1− y) log(1− p̂)), (3.56)
2https://keras.io/api/losses/probabilistic_losses/binarycrossentropy-class

26

https://keras.io/api/losses/probabilistic_losses/binarycrossentropy-class

where y is the true class of the label {0, 1} and p̂ the predicted class by the discriminator.
As the activation function of the final layer is given as the sigmoid function (3.36), the
predicted class label will be (0, 1), however not exactly 0 or 1. This gives lim

p̂→y
LBCE → 0+,

i.e. the loss function will minimize as the discriminator predicts the right class. When
training the generator we will freeze the weights of the discriminator, however, we still
feed the generated samples from the generator through the discriminator. By labeling the
generated data as real during the training of the generator, the loss function will minimize
when the discriminator interprets generated data as real.

3.6.1 Conditional Generative Adversarial Networks

As the performance of Generative Adversarial Networks (GAN) showed promising results,
extensions in order to enhance performance and expand its use has been suggested. The
conditional version of the GAN framework (CGAN), suggested by Mirza and Osindero
(2014), is a useful extension that has seen widespread use. Conditional information, such
as class labels or other modalities, can be fed to both the generator G and the discriminator
D in order to control the mode of the generated samples. In the standard GAN setting,
training the generator G to produce samples of handwritten numbers, one has no control of
which number from the original data set the generator generates. However, by feeding the
label to the generator and discriminator as a condition, one can then control which number
is generated by the conditional label. The results of this example is shown by Mirza and
Osindero (2014), and show success in generating the correct number given the condition.

Figure 3.5: Conditional Generative Adversarial Network

Figure 3.5 shows the CGAN, where most of the setup is similar, but the conditional data is
fed to both the generator G and the discriminator D. The value function is similar to the
value function of the GAN (3.50):

min
G

max
D

V (D,G) = Ex∼pdata(x)

[
logD(x|c)

]
+Ez∼pz(z)

[
log (1−D(G(z|c)|c))

]
, (3.57)

where c is the conditional information.

27

3.6.2 Forecasting with Generative Adversarial Networks
ForGAN, as proposed by Koochali et al. (2019), is a natural setup when forecasting with
a generative adversarial network. The ForGAN setup is identical to CGAN (3.57), where
the conditional information c is defined as the previous observation of a time series {Yt}.
Let yt denote a observation from the time series {Yt}, and Xt = (yt, yt−1, . . . , yt−`)
be the previous observations of window length `. Further, let Z = (z1, · · · , zk) be the
latent vector of dimension k, where (z1, . . . , zk) are i.i.d.3 and zi ∼ pz(z), Z ∈ Rk.
The discriminator will then distinguish the real next observation yt+1 from the generated
forecast ŷt+1 = G(Z|Xt) given the conditional information Xt. The value function can
thus be defined as:

min
G

max
D

V (D,G) =Ey∼pt(y)

[
logD(yt+1|Xt)

]
+ Ez∼pz(z)

[
log (1−D(G(Z|Xt)|Xt)

]
.

(3.58)

Figure 3.6 illustrates the ForGAN framework as described above. Algorithm 1 further
shows the training loop, where θd and θg is the trainable parameters ofD and G respectively.
(X(i), y(i)) are samples randomly drawn from the training set, and the latent code Z(i) is
independent of the time.

Figure 3.6: Forecasting generative adversarial network framework inspired by Koochali et al. (2019).

Estimating the Forecast Distribution

After the generator G is trained, then we want to use it to forecast time series values. As it
is trained to sample from the estimated forecast distribution, rather than estimate the most
likely value, we have to sample multiple values in order to obtain any useful information.
We have that:

ŷ
(b)
t+1|t = G(Z(b)|Xt), (3.59)

is a Monte Carlo sample of the estimated forecast distribution, where b = 1, · · · , B. Further,
we can estimate the forecast mean:

ŷt+1|t =
1

B

B∑
b=1

ŷ
(b)
t+1|t. (3.60)

3Independent and identically distributed random variables.

28

Algorithm 1: Generative adversarial network training loop, where Diter denotes the
number of discriminator iterations per training iteration, which we will discuss later.

for number of training iterations do
for number of Diter do

Sample mini-batch of m/2 samples {(X(1), y(1)), ..., (X(m/2), y(m/2))} from
pdata(y), where X(i) = (yt, yt−1, . . . , yt−`), y(i) = (yt+1).

Sample mini-batch of m/2 latent code samples {Z(1), ..., Z(m/2)}, where
Z(i) = (z

(i)
1 , . . . , z

(i)
k) and z(i)

j ∼ pz(z).
Forecast samples from G(Z|X):

ŷ(i) = G(Z(i)|X(i))

Update the discriminator to maximize correct predictions on real data:

∇θd
2

m

m/2∑
i=1

[
logD

(
y(i)|X(i)

)]
Update the discriminator to maximize correct predictions on false data:

∇θd
2

m

m/2∑
i=1

[
log
(

1−D
(
ŷ(i)|X(i)

))]
end
Train G to make D label forecasted values as real (D is not trainable in this update):

∇θg
1

m

m∑
i=1

[
log
(

1−D
(
G(Z(i)|X(i))|X(i)

))]
end

Now, let (ŷ
(1)
t+1|t, . . . , ŷ

(B)
t+1|t) be the strictly increasing order of the Monte Carlo samples,

the estimated quantile function q̂α can be computed as:

q̂α
(
ŷ

(1)
t+1|t, . . . , ŷ

(B)
t+1|t

)
= ŷ

(B·α)
t+1|t . (3.61)

Thus we have the estimated (1− α) · 100% prediction interval given by:[
q̂α/2

(
ŷ

(1)
t+1|t, . . . , ŷ

(B)
t+1|t

)
, q̂1−α/2

(
ŷ

(1)
t+1|t, . . . , ŷ

(B)
t+1|t

)]
. (3.62)

3.6.3 Mode Collapse
One issue related to generative adversarial networks, and brought up already by Goodfellow
et al. (2014), is ”the Helvetica scenario”, later named mode collapse. It refers to the
situation where the generator G fails (to some degree, or completely) to generate from

29

some of the modes contained in the data set. An example would be where one wants to
generate images of handwritten numbers from 0 to 9. If the data set contains samples of all
numbers, however, the generator G only generates images of some of the numbers, we have
a mode collapse. However, the discriminator may then be able to learn that the generator
only generates some of the numbers, say 5 and 9, and then predict all images of 5 as false.
This may lead the generator to produce samples of another number, which may lead to an
oscillation between collapsing to different modes.

However, one can also experience mode collapse where a GANs fail to generate from all
of the distribution. This is due to many values of the latent code z collapses to the same
value of G(z). This can be especially challenging in conditional GANs where some form
of variation is also introduced through the auxiliary input, however not real randomness. In
extreme cases this can lead to a deterministic transformation, where randomness introduced
to the latent code z will be ignored (Yang et al. (2019)).

When estimating the forecast uncertainty, both aforementioned forms of mode collapse
are unwanted. The former will lead to an underfitting of the time-series dynamics, where
the generator G is not able to model and forecast time dependency. The second form will
prevent the ForGAN (3.6.2 from sampling from the whole forecast distribution, which will
lead to underestimation of the forecast uncertainty. Usually one wants to overestimate the
uncertainty rather than underestimate it, which will be discussed more in section 3.8.4.
Both forms of mode collapse are therefor unwanted properties when estimating the forecast
uncertainty.

There are various ways to address the issue of mode collapse. Goodfellow et al. (2014)
indicated that ”G must not be trained too much without updatingD” to avoid mode collapse.
This can be achieved by iterating multiple times over the discriminator for each generator
iteration, and it’s fairly standard to have Diter larger than 1. Wasserstein GAN (Arjovsky
et al. (2017), Gulrajani et al. (2017)) is a popular choice, using Wasserstein distance
(Frogner et al. (2015)) in order to assess the distance between two probability functions,
and have some other useful properties we will discuss in the next section. There are other
versions such as Diversity-Sensitive GAN (Yang et al. (2019), which aims to penalize
deterministic behavior of the generator by regularizing the relative distance of two samples
generated by the generator in relation to the distance between their respective input latent
code vectors. Boundary Equilibrium GAN (Berthelot et al. (2017) is another method trying
to solve issues related to low diversity and mode collapse. The discriminator is here an
auto-encoder, and the contribution of incorrect labeling of false samples to the discriminator
loss is given some weight in order to balance the generator and discriminator.

3.6.4 Wasserstein Generative Adversarial Networks
The Wasserstein distance is derived from the cost of the optimal transport plan moving mass
from one probability distribution to match the target distribution (Frogner et al. (2015)).
The usual analogy is that if two probability distributions represent two piles of dirt, then the
Wasserstein distance is the amount of dirt one has to move times the mean distance it has to
be moved, and therefore often referred to as the earth mover’s distance.

Mathematically it can be defined in many ways, however Arjovsky et al. (2017) introduce it

30

in the GAN context as:

W (P, Q) = inf
γ∈Π(P,Q)

Eγ∼(x,y)

[
||x− y||

]
, (3.63)

where P is the predicted distribution and Q the target distribution. Π(P, Q) is the set of
joint probability distributions γ(x, y) having P and Q as margins. This can be interpreted
as the transport plan where γ(x, y) is the function describing the mass to be moved from x
to y.

The value function of the Wasserstein loss can be found using the Kantorovich-Rubinstein
duality (Arjovsky et al. (2017), Gulrajani et al. (2017)).

min
G

max
D∈D

V (D,G) = Ex∼pdata(x)

[
D(x)

]
− Ez∼pz(z)

[
D(G(z))

]
, (3.64)

where D is the set of K-Lipschitz4 functions.

To enforce Lipschitzness of the discriminator, Arjovsky et al. (2017) suggest weight
clipping5 as a measure of constraint the weights W . However, they admit that this is
a terrible way to enforce the Lipschitzness due to either slow convergence or vanishing
gradients when the weights reach the boundary. Gradient penalty suggested by Gulrajani
et al. (2017) is a way of assuring Lipschitzness, while avoiding vanishing gradients. An
additional term penalizing large gradients is added to the value function 3.64.

Arjovsky et al. (2017) show that if Ez∼pz(z)[|z|] <∞, where z is the latent code as denoted
earlier, then the Wasserstein distance is continuous everywhere and differentiable almost
everywhere. On the other hand, this is not true for the Jensen-Shannon divergence used in
the original GAN, due to a locally saturated discriminator may lead to vanishing gradients.
Arjovsky et al. (2017) further conclude that the Wasserstein loss leads to a loss metric
that correlates with the sample quality of the generator, and improved stability during the
optimization. They also note that there is no evidence of mode collapse during their empiric
experiments.

Loss Function

From the value function (3.64), we have that the discriminator will maximize the value
function, whereas the generator will minimize it. If labeling the class negative/positive, for
example such that G(z) is labeled −1 and x is labeled 1, the problem reduces to the simple,
unbounded loss function:

LW = y · p̂. (3.65)

4f is Lipschitz continuous if there exists a positive constant L such that |f(x1)− f(x2)| ≤ L|x1 − x2|.
5The weightsW is bounded by w ∈ [a, a], ∀w ∈ W , and will be ”clipped” to be within this range after

updating.

31

3.6.5 Hyperparameter Tuning in Generative Adversarial Networks
An important part of obtaining well-performing neural networks is using the right hyper-
parameters. These are parameters that will not get optimized during the learning process
of neural networks, but we rather have to tune them ourselves. There are however many
optimization methods that can be used to find the best set of hyperparameters, such as grid
search, random search, genetic algorithms (Liashchynskyi and Liashchynskyi (2019)) and
Bayesian optimization (Frazier (2018)). In addition to common hyperparameters tuned in
neural networks, such as number of training iterations, batch size, learning rate, number of
layers, type of layers, number of nodes, optimizer, activation function and loss function.
We also have GAN-specific hyperparameters, such as type and dimension of the latent code
inputted to the generator, number of discriminator iterations per generator iteration and
one can design the generator and the discriminator differently, with different batch sizes,
learning rates, optimizers, network architecture, etc.

A study regarding how the hyperparameters affect the performance of various GAN ar-
chitectures was carried out by Lucic et al. (2017). Here, the learning rate, the number of
discriminator iterations per training iteration, the β in Adam (”The exponential decay rate
for the 1st moment estimates”, Kingma and Ba (2014)), batch normalization layers and
some more model-specific hyperparameters that will not be relevant for our models were
tested. The findings were that some hyperparameters such as β of Adam (Kingma and Ba
(2014)) did not significantly affect the performance, whereas other hyperparameters such
as learning rate where found improving the performance in a smaller range [10−4, 10−3].

They also found that the number of discriminator iterations, when testing 1 and 5 iterations,
did not affect performance in any notably way, leading to the preference of Diter = 1 due
to drastically faster learning. However, as Goodfellow et al. (2014) discuss in the closing
arguments, updating G without updating D enough will lead to mode collapse. Due to
the importance of avoiding mode collapse in our experiments, we will investigate how the
number of discriminator iterations per training iteration Diter affects the performance.

The original paper introducing batch normalization (Ioffe and Szegedy (2015)) argues that
reduction of the internal covariate shift is the reason for improved and accelerated conver-
gence, however, newer findings suggest that this may not be the reason for the increased
performance of batch normalization. Santurkar et al. (2018) shows that the distributional
stability obtained by reducing internal covariate shift does not explain the improvements
gained by using batch normalization, and instead argues that batch normalization smooths
the objective function. This in turn increases the Lipschitzness of both the optimization
function and the gradients, which makes the convergence faster and more stable (Santurkar
et al. (2018)). However, they both agree that batch normalization in fact accelerates the
convergence of the training, regardless of the reasons behind. Lucic et al. (2017) is more
lukewarm about the performance of batch normalization in the GAN setting, finding that it
depends on the GAN framework, and suggest that it is a hyperparameter worth exploring.

32

3.7 Recursive Multi-Step Forecast
There are many ways of forecasting, depending on the wanted outcome. With neural
networks, it depends both on network structure and on the partition of the training data.
The obvious forecast will be the one-step-ahead forecast, which for a neural network fŴ (·)
is defined as:

ŷt+1|t = fŴ (yt, . . . , yt−`). (3.66)

However, when wanting to forecast multiple steps ahead there are multiple ways to do this.
One way can be to fit a model to forecast h-steps-ahead directly:

ŷt+h|t = fŴ (yt, . . . , yt−`), (3.67)

where h is the forecast horizon. However, this model will not be as flexible if we want
different forecast lengths, as we may have to train the model again. It is also possible to
train the model to forecast all horizons up till h:

(ŷt+h|t, . . . , ŷt+1|t) = fŴ (yt, . . . , yt−`), (3.68)

although this can complicate the optimization task substantially.

Another way to forecast multiple steps ahead is by recursively feed the previous prediction
into the network as a previously observed value. The benefit of doing this is that the model
is really flexible in terms of the forecast horizon. On the other hand, we may observe drifts
over time, where a slight incorrect prediction accumulate to large errors. However, we will
in this thesis use this method, but will observe the forecast error and uncertainty estimates
as the forecast horizon increases.

Let us define the recursive multi-step forecast; let yt denote the true value of the time series
and ŷt denote the predicted value. Then we have a chain of one-step-ahead forecasts in
order to obtain the recursive multi-step forecast of yt+h|t:

ŷt+1|t = fŴ (yt, . . . , yt−`)

ŷt+2|t = fŴ (ŷt+1|t, yt, . . . , yt+1−`)

...

ŷt+h|t = fŴ (ŷt+h−1|t, ŷt+h−2|t, . . . , yt+h−1−`).

(3.69)

Notably, if h > `, then the input will only contain previously forecasted values.

Combining the recursive multi-step forecast method with the Monte Carlo sampling of
forecast distribution, we have that a multi-step Monte Carlo sample of an observation yt+h
is given by:

ŷ
(b)
t+h|t = fŴ (ŷ

(b)
t+h−1|t, ŷ

(b)
t+h−2|t, . . . , yt+h−1−`). (3.70)

33

3.8 Performance Metrics
In this section we will introduce the performance measures we will use in this thesis. This
includes point accuracy metrics (section 3.8.1, 3.8.2 and 3.8.3) and distribution accuracy
metrics (section 3.8.4, 3.8.5, 3.8.6 and 3.8.7).

3.8.1 Mean Squared Error
Mean squared error (MSE) is a widely used benchmark metric for measuring regression
error in statistics and machine learning, along with its root-transform, root mean squared
error6. Similarly, it can be used in the forecasting setting by measuring the squared distance
from a forecast to the actual observation. The MSE is given by:

MSE =
1

N

N∑
i=1

(yi − ŷi)2, (3.71)

where ŷ is the predicted value of y.

The benefit of using squared error measures, compared to absolute error measurements
is the heavy penalty of large errors. The mean absolute error7 will penalize two medium
errors (ε1 = ε2 = 1/2) equally to one large error and one perfect fit (ε1 = 1, ε2 = 0).
However, the MSE will penalize the inconsistency in a larger degree. This will in turn favor
a consistent model over an inconsistent one, given similar absolute errors.

The MSE is scale-dependent, which means that comparing results for different data sets
may not be very informative. However, it has the property of being symmetric, which in
many cases is useful.

3.8.2 Symmetric Mean Absolute Percentage Error
Symmetric mean absolute percentage error (sMAPE) (Fildes and Armstrong (1979), p.
348) is another error measurement that is common in the forecasting domain, for example
in the M4 forecasting competition (Makridakis et al. (2020)). Contrary to MSE, sMAPE
is unit-free, so it can be used to compare the performance across different data sets. It is
based on the mean absolute percentage error MAPE = 100 · 1

N

∑N
i=1

|yi−ŷi|
yi

, however
addresses the issue of MAPE where forecasts ŷi lower than the actual value yi are favored.
Th sMAPE is given by:

sMAPE =
200

N

N∑
i=1

|yi − ŷi|
yi + ŷi

, (3.72)

and is 0 if yi = ŷi = 0.

However, as suggested by Hyndman and Koehler (2006), there can occur problems for
small values of y, as ŷ also likely will be close to zero. In addition, the sMAPE can take

6RMSE =
√

1
N

∑N
i=1(yi − ŷi)2

7MAE = 1
N

∑N
i=1 |yi − ŷi|

34

negative values, which does not coincide with ”percentage error”. A way to address the
issues of negative values is to apply absolute values in the denominator:

sMAPE =
200

N

N∑
i=1

|yi − ŷi|
|yi|+ |ŷi|

, (3.73)

however, it will still be problematic around zero. Hyndman and Koehler (2006) ar-
gues further that the sMAPE is indeed not symmetric either, due to the denominator
of sMAPE(y, ŷ = y + a) not being equal to the denominator of sMAPE(y, ŷ = y − a),
where a 6= 0, and further introduces a new forecasting measure, mean absolute scaled error
(MASE), which avoid those problems.

While sMAPE is a widely used measure of the forecast error, it also has a rather circum-
stantial usage, where the interpretation of the relationship of the time series quantity is
important. In the general setting, forecasting 2 units for the true value of 1 unit will yield
an sMAPE of 67%. To achieve the same sMAPE for a true value of 20 units, the forecast
has to be either 10 or 40 units. In cases where the percentage relationship between the
quantities is relevant, this percentage behavior is a desired property. For example, we often
denote a sale discount as the percentage off the original price, and therefore a percentage
error measure is useful. On the other hand, the weather temperature is a quantity where we
will not consider the two aforementioned forecast errors as equally precise. Consequently,
we have to consider when to rely on this forecast error measurement based on the quantity
at hand.

3.8.3 Mean Absolute Scaled Error
Hyndman and Koehler (2006) introduces a forecasting metric that scales according to some
benchmark method. Thus, it should be comparable across data with different scales. It is
used together with the sMAPE (3.8.2) in the M4 forecast competition. The MASE is the
mean absolute forecast error scaled with the in-sample mean absolute error of the naive
last-day forecast (3.2) for non-seasonal data:

MASE =
1
h

∑T+h
t=T+1 |yt − ŷt|

1
T−1

∑T
t=2 |yt − yt−1|

, (3.74)

with the t = 1, . . . , T being training data and h being the forecast horizon. However, as
we have seasonal data, this may be very misleading. Therefore, one can use the naive
last-season forecast (3.9) as the scale. The seasonal mean absolute scaled error is given by:

MASE =
1
h

∑T+h
t=T+1 |yt − ŷt|

1
T−m·(k+1)

∑T
t=m·(k+1)+1 |yt − yt−(k+1)·m|

, (3.75)

where k = int((h − 1)/m). As it is scaled by a naive forecast, the value is immediately
easier to interpret. Values larger than 1 indicate poor performance in terms that it has a
higher mean absolute error than the naive method.

35

3.8.4 Prediction Interval Coverage
A common metric to assess the uncertainty of a prediction is the prediction interval. It is
defined by a coverage probability (1 − α) · 100%, that represents the probability of the
prediction interval covering the next observation P (l < y < u) = 1 − α, where l is the
lower bound and u the upper bound of the prediction interval.

Under the assumption of Gaussian distributed noise, which in many cases is a reasonable
assumption and an often used assumption, the estimated (1− α) · 100% prediction interval
can be calculated by:

[ŷt+1|t − zα/2 · σ̂t+1|t, ŷt+1|t + zα/2 · σ̂t+1|t], (3.76)

where ŷt+1|t is the estimated value of yt+1, σ̂t+1|t is the estimated forecast standard

deviation and zα/2 = Φ
(

1 − α
2

)
, where Φ is the cumulative distribution function of a

standard Gaussian distribution.

Avoiding the assumption of Gaussian distributed noise, one can find the prediction interval
by the quantiles of the forecast distribution:

[qα/2, q1−α/2], 0 < α < 1, (3.77)

where qp = inf{y ∈ R : p ≤ F (y)} is the discrete quantile function and F is the
cumulative forecast distribution. In the numeric setting, one can sample from the estimated
forecast distribution f̂ , and then estimate the quantiles of the estimated forecast distribution
discussed in section 3.6.2.

When the prediction interval is estimated, the coverage is the proportion of samples covered
by the prediction interval, and given by:

c =
1

N

N∑
i=1

I(li < yi < ui), (3.78)

where I(·) is the indicator function. The coverage is a useful metric for evaluating the
performance of prediction intervals, however as concluded by Askanazi et al. (2018),
defining the ”best” prediction interval is an ambiguous task. In most settings, one can
measure the distance from a target, and then assess the quality of the prediction. For
prediction intervals, however, it is not that easy. As discussed by Askanazi et al. (2018), one
can satisfy the ”Christoffersen conditions” (CC) that requires P (l < y < u) ≥ 1−α. Thus
the optimal prediction interval can be calculated as min

u,l
(u− l) st. P

(
y ∈ [l, u]

)
= 1− α.

However, as Askanazi et al. (2018) further argue, when comparing prediction intervals we
would then write off any prediction interval estimate with coverage lower than the coverage
probability. In addition any prediction interval, regardless of the width, satisfying the CC
will be better than all prediction intervals not satisfying the CC, regardless of how close it is
to satisfy the CC. As this seems unreasonable, Askanazi et al. (2018) discuss measurements
that trade off the coverage against the width of the prediction intervals, while still heavily
favors prediction intervals that satisfy the CC. One of which will be discussed in the next
section.

36

When we are going to investigate the results, it is not an unambiguous interpretation of
the best performing model in terms of prediction interval coverage. We rather have to
analyse additional factors, such as the prediction interval width, to assess the quality of the
prediction intervals. The correct trade-off between coverage and prediction interval width
may change depending on the application and the data set at hand. If the application requires
certainty of the prediction interval coverage, satisfying the ”Christoffersen conditions” may
be required. When interpreting the results in this thesis, we have no specific application in
mind and must assess a more nuanced conclusion regarding the performance.

3.8.5 Mean Scaled Interval Score
The mean scaled interval score (MSIS) (Gneiting and Raftery (2007)) is a metric used in the
M4 forecasting competition (Makridakis et al. (2020)) to measure the performance of the
prediction intervals. It is heavily based on the Winkler score (Doraiswami (1977)), which
is commonly used for prediction interval evaluation. It is given by:

Winkler score = |u− l|+ 2

α
(l − y)I(y < l) +

2

α
(y − u)I(u < y), (3.79)

where l, u is the lower and upper bound of the (1 − α) · 100% prediction interval. The
Winkler score is given by the width of the prediction interval, however, if the prediction
interval does not cover the actual value, it is added a penalty corresponding to the distance
from the nearest bound to the actual value. This distance is scaled by a factor of 2/α,
ensuring that too narrow prediction intervals are heavily penalized for any value outside
the prediction interval. As a reference, the scale for a 95% prediction interval will be
2/0.05 = 40, ensuring that prediction intervals satisfying or almost satisfying the CC are
favored.

The mean scale interval score, similarly to MASE (section 3.8.3) is scaled according to the
naive one-season-ahead forecast (3.9):

MSIS =
1

h

∑t+h
i=t |ui − li|+

2
α (li − yi)I(yi < li) + 2

α (yi − ui)I(ui < yi)
1

N−m
∑N
i=m+1 |yt − yt−m|

, (3.80)

where h is the forecast horizon.

3.8.6 Kullback-Leibler Divergence
The Kullback-Leibler divergence is a popular measure of the similarity between a probability
distribution relative to a reference probability distribution. The Kullback-Leibler divergence
(DKL) is non-negative (≥ 0) and DKL = 0 indicates that a probability distribution is equal
to the reference distribution, and given by:

DKL(P || Q) =
∑
x∈X

P (x) log
(
P (x)

Q(x)

)
. (3.81)

The Kullback-Leibler divergence is asymmetric, which means that DKL(P || Q) 6=
DKL(Q || P). In addition, it requires that for all x, Q(x) = 0 implies P (x) = 0. In
addition, we can ignore P (x) = 0, as we have that lim

x→0+
x log(x)→ 0.

37

3.8.7 Jensen-Shannon Divergence
The Jensen–Shannon divergence is also a similarity measure of two probability distribu-
tions, derived from the Kullback Leibler divergence. However, instead of comparing the
probability distribution to a reference distribution, both distributions are compared to a
mixture distribution M . This introduces some useful properties, which prompt us to use
the Jensen-Shannon divergence as a similarity measure. The Jensen-Shannon divergence is
given by:

DJS(P || Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q ||M) (3.82)

where M = 1
2 (P +Q). Firstly, we have that DJS(P || Q) = DJS(Q || P), in other words

it is a symmetric distance metric. Similar to the Kullback-Leibler divergence, the Jensen-
Shannon divergence is non-negative, but is also bounded. If one uses the natural logarithm
(with e as base), we have that:

0 ≤ DJS(P || Q) ≤ ln(2). (3.83)

38

Chapter 4
Experimental Setup

In this chapter, we will go through how the experiments are conducted. The theory
behind the methods used are presented in chapter 3, but many of the models are used
through the packages keras (Chollet et al. (2015)), pmdarima (Smith et al. (2017-)) and
statsmodels (Seabold and Perktold (2010)). The use of those packages will reduce the
risk of error, simplify code and reduce the time necessary to develop the code. We will
go through the data sets used for experiments, model setup and present some hypotheses
related to the experiments. The code necessary for running the experiments is available at
https://github.com/mattaop/ForGan/tree/Release/1.0.

4.1 Data

4.1.1 Data Processing
The data is split into a training set (first t observations) and a test set (last T−t observations),
where the test set is exclusively used for obtaining unbiased results of the forecasts. When
training models where hyperparameter tuning is not part of the ordinary training process,
or model selection has to be done on a separate set of data, a small percentage of the last
training observations will be used as a validation set. This can discover overfitting of the
training, and still not compromising the test results.

The data is scaled using scikit-learn MinMaxScaler, which transforms the data in the
range of [0, 1]. As multiplicative versions of exponential smoothing models (3.15) are not
usable with zero values, the scaling for exponential smoothing will be in the range [1, 2]
instead. The scaling is done according to the range of the training data, and then the test
data is transformed according to the same scale, in order to not use information that should
not be available. This means that one can obtain test data outside the scale range. When
calculating metrics, the data is transformed back, in order to obtain error measurements in
the same scale as the original data. It is worth noting that the coverage is scale-independent.

39

https://github.com/mattaop/ForGan/tree/Release/1.0

For neural networks, the data is transformed into overlapping sequences of a specific length
`. The responding target is thus given by the next value in the time series:

X1 = [y1, y2, ..., y`], Y1 = [y`+1]

X2 = [y2, y3, ..., y`+1], Y2 = [y`+2]

...
XT−` = [yT−`, yT−`+1, ..., yT−1], YT−` = [yT].

(4.1)

4.1.2 Distribution Estimation
The first experiment is done on two synthetic data sets draw from a Gaussian distribution,
x ∼ N (µ, σ), and a bimodal distribution, x ∼ N (µ1, σ1), N (µ2, σ2). This is not time
dependent data sets, however we want to verify the distribution estimation properties of
generative adversarial networks.

For the Gaussian distribution, we sample 5000 observations from the known distribution,
N (0, 0.1), which is used as the ”real” data. This distribution is not conditional, as the time
series are, so we can compute the Jensen-Shannon divergence (3.8.7) between the real and
the generated data. We can also compare the estimated standard deviation σ̂ to the known
standard deviation of the data, σ = 0.1. Figure 4.1 shows a silhouette plot of the sampled
distribution.

Figure 4.1: The figure shows the distribution of 5000 samples drawn from a Gaussian distribution,
N (0, 0.1).

The bimodal distribution is defined as f(x) = p · f1(x) + (1− p) · f2(x), where f1 and f2

are the first and second probability distribution respectively and p is the mixing parameter.
In practice, we sample from probability distributionN (µ1, σ1) with probability p and from
probability distribution N (µ2, σ2) with probability 1 − p. The parameters used will be

40

µ1 = −0.5, σ1 = 0.1, µ2 = 1, σ2 = 0.2, and 5000 samples from this bimodal distribution
is shown in figure 4.2.

Figure 4.2: The figure shows the distribution of 5000 samples drawn from a bimodal distribution,
N (−0.5, 0.1),N (1, 0.2).

4.1.3 Sine Curve with Gaussian Noise
To investigate the performance of the GAN in the forecasting setting, we will introduce data
that has some time dependency. We will still control the noise with a known probability
distribution as earlier. The data will therefore consist of a seasonal component, a sine
function, and a noise component, Gaussian noise. Thus, the t observation yt will be given
by:

yt = sin
(π

6
t
)

+ ε, (4.2)

where t = 1, 2, 3, ..., ε ∼ N (0, 0.1) and π/6 converts the seasonality to 12, corresponding
to monthly data.

As we know the underlying model, as well as the noise component, we can define the
optimal forecast model as the sine component, with expected mean squared error (MSE):

E[MSE] = E
[

1

N

N∑
t=1

(
A sin

(π
6
t
)

+ ε−A sin
(π

6
t
))2
]

=
1

N

N∑
t=1

E[ε2] = σ2
ε = 0.01.

(4.3)
This result can be used both to compare the MSE of the models against the optimal forecast
model and compare the estimated standard deviation of the models to σε . It is worth
noting that for the estimated standard deviation σ̂ should reflect both the noise, the model

41

variance and the model bias, so we want σ̂ → σ+
ε as MSE

(
fŴ (·)

)
= Var

[
fŴ (·)

]
+

Bias
[
fŴ (·), fW (·)

]2
+ σ2

ε → σ2+
ε .

We can also derive some theoretical quantities from the mean absolute scaled error (MASE).
As shown in section 3.8.3, the MASE is scaled by the mean in-sample error of the naive
forecast. For the sine curve with Gaussian noise, the expected scale can be computed as
the mean absolute difference, E(MD) = E[|X − Y |] = 2√

π
σ, where X,Y ∼ N (µ, σ).

Further we can compute the expected mean absolute deviation (MAD), of the optimal

forecast model, E(MAD) = E[|X|]√
E(X2)

=
√

2
πσ, where X ∼ N (µ, σ). Thus, we can

compute the theoretical optimal obtainable mean scaled absolute error for the sine curve
with Gaussian distributed noise:

E(MASE) =

E[|X|]√
E(X2)

E[|X − Y |]
=

√
2
πσ

2√
π
σ

=

√
2

2
≈ 0.7071. (4.4)

This can be used as a comparison for the models when forecasting the sine time series.

Figure 4.3: Plot that shows the first 200 of 5000 observations of sine data with added Gaussian noise.

The data set consists of 2000 observations according to the sine data (equation 4.2),
{y1, . . . , y2000}, where the first 60% of the observations {y1, . . . , y1200} will be the train-
ing set and the remaining 40% of the observations {y1201, . . . , y2000} will be the test set. In
addition, for the Monte Carlo dropout and the ForGAN, we want to tune hyperparameters
using a validation set. The validation set will be the last 12.5% of the training observations,
corresponding to {y1051, . . . , y1200}. In addition, using the sliding window approach for
neural networks (equation 4.1), we will have ` = 24 corresponding to a look-back window
of two seasons.

42

4.1.4 Oslo Temperature Data Set
The Oslo temperature data set (Meteorologisk Institutt (MET) (2019)) contains minimum,
mean and maximum air temperature for each month from February 1937 to October 2019
in Oslo. In this thesis, the mean temperature will be used as a univariate time series, and as
the nature of the data is similar to the sine data with a distinct seasonality of 12, we will not
diverge much from that approach.

The data set contains 993 observations, and dividing the data set into 72% training set, 8%
validation set and 20% test set, we obtain training data of size 715, validation data of size
80 and test data of size 198. Further, we will use the sliding window approach (4.1), with
sequence length ` = 24 corresponding to two seasons, resulting in 692 training examples.

Figure 4.4: Plot that shows the mean temperature each month in Oslo from February of 1937 to
October of 2019.

Figure 4.4 shows the data set and shows distinct seasonal behavior as a cyclic function
corresponding with a yearly seasonality of 12 months.

As discussed in section 3.8.2, the temperature is a quantity where the sMAPE can be quite
misleading. We will therefore not rely too much on this error metric when assessing the
point forecast accuracy for this data set.

4.1.5 Avocado Price Data Set
The Avocado Price data set is a time series data set published through Kaggle by the Hass
Avocado Board (2018). It contains the average weekly price for both conventional and
organic avocado from 53 different regions in the United States (US), as well as an average
price for all of the US. The prices span from the start of 2015 and through March 2018,
resulting in 169 observations for each avocado type in each region. Given that there are 53
regions and an average price series, with data for both conventional and organic avocado,

43

there are 108 different time series, resulting in 108 · 169 = 18252 observations. In addition,
there are multiple regressors beyond the price available, such as sales volume, both total
and for three different avocado sizes. However, as the scope of this thesis is univariate time
series, we will only utilize the weekly average avocado price.

Based on domain knowledge, we would expect a yearly seasonality, as the demand and
availability of avocados would depend on the season. Where the avocados are possible to
grow would differ from the time of the year, and it is reasonable that this will affect the
availability and the price. Further, there may also be a higher demand at certain times of
the year. As the data is the weekly average price, we will implement the seasonal ARIMA
model with seasonality s = 52.

(a) Albany - conventional (b) Albany - organic

(c) Los Angeles - conventional (d) Los Angeles - organic

Figure 4.5: Examples of time series from the avocado price data set. Each time series is divided into
a training set (orange) and a test set (blue).

Each time series will be divided into training, validation and test data as before, resulting in
123 training samples, 13 validation samples and 33 test samples per time series. In addition,
we will use the sliding window technique (equation 4.1) to split the data into equal-length
sequences for the neural networks. We will try some different sequence lengths, as the
networks may pick up seasonal dependencies, however long window lengths will decrease

44

the number of training samples. We will utilize a forecast horizon of h = 13, so we obtain
enough forecasts of each forecast horizon.

Figure 4.5 shows the weekly price for conventional and organic avocado in two different
regions. As argued earlier, an expectation is some sort of yearly seasonality, however,
the seasonality is not as distinct as observed in the temperature data set. However, it is
indeed possible to see some yearly fluctuations, especially in Los Angeles prices. Here the
price seems to be at its highest during the fall, whereas after the new year, in the months
of January and February the price is at is yearly lowest. In addition, we see some spikes
indicating some sort of extreme event which may not be explained by past values of the
price. However, these spikes are not that present in the Albany prices. In addition, looking
at the price of the organic avocado in Albany (figure 4.5b), we see some seasonal behavior.
If we observe where the lowest prices are positioned, we see the first in January 2015, the
following during the summer of 2016 and finally late 2017. This contradicts the theory of a
yearly seasonality, which may make it harder for the models to capture the cyclic behavior.

For this data set, the sMAPE can be a more suitable measure of the performance. As
discussed in section 3.8.2, price is a quantity where we often denote differences as a
percentage.

4.1.6 Electricity Consumption Data Set

The electricity consumption data set was found through the UCI Machine Learning Re-
pository (Dua and Graff (2017)) and contains the electricity consumption in kW per 15
min of 370 consumers over three years. In this thesis, the data set has been resampled to
contain hourly consumption in kWh. In addition, we have taken a fairly small subset of the
data set: only one consumer for two months. This is due to available computational power
and time, and thus we have the data set shown in figure 4.6. The time series contains 1417
observations, where the last 20%, corresponding to 283 observations, will be used for test
data. This leaves us with 1134 training examples, where for neural networks we will use
the last 10% of the training data as a validation set.

The data seem to have a strong seasonal effect every 24 observations, corresponding to a
daily seasonality. Notably, we can observe an additional seasonal effect corresponding to
weekly seasonality, where there is a higher electricity consumption two of the days in a
week. This can be due to weekends, where if this is a private household, one would expect
the residents to be more at home during the day. However, this characteristic is not as
prominent in the last part of the time series, which in our case is the test set. However, we
will omit this knowledge in order to uphold the independence of the test set.

Similarly to the avocado price, the electricity consumption is a quantity where one may be
inclined to use a percent-wise error. It depends on the goal of the forecasting, where if one
wants to model the spikes accurately, a non-percentage error is to be preferred. On the other
hand, if the goal is to estimate the income, sMAPE may be preferred.

45

Figure 4.6: Plot that shows the hourly electricity consumption of a consumer.

4.2 Models
The models used in the thesis are based on the ForGAN (section 3.6.2), proposed by
Koochali et al. (2019), which shares the architecture with the CGAN setup (Lucic et al.
(2017)). We will test both the standard binary cross-entropy loss and the Wasserstein loss
in the ForGAN architecture. The Monte Carlo Dropout (section 3.5.2) method (Gal and
Ghahramani (2015), Zhu and Laptev (2017)) is used as a state-of-the-art model for forecast
uncertainty in neural networks. In addition, the performance will be compared to well
known models for time series modeling and forecasting, seasonal ARIMA (section 3.3) and
Exponential smoothing (section 3.2).

4.2.1 Baseline Models
The baseline models is a SARIMA model, obtain by the auto arima function from pm-
darima (Smith et al. (2017-)), and a Holt-Winters’ exponential smoothing from stats-
models (Seabold and Perktold (2010)). Model selection based on training data will be
done for both methods. For SARIMA models using auto arima, the function will fit
models in a range of values for p, d, q, P , D, and Q in a seasonal ARIMA(p,d,q)x(P,D,Q)s,
and choose the best performing model based on the lowest corrected Akaike information
criterion (AICc (3.21)). For Holt-Winters’ exponential smoothing, we have the option
of having the trend and/or season as a multiplicative or additive. Model selection is not
done automatically by statsmodels, so we have therefore created a custom loop where
models with each combination is fitted similarly to auto arima. The best performing
models is chosen based on the lowest AICc.

The Monte Carlo dropout methodology was developed as a project thesis (Opland (2020))
and contains one layer of either the Simple RNN or LSTM exclusively (and will for a
further reference to be named as such), with one hidden dense layer and a dense output

46

layer. Dropout is applied to all layers, both during training and test. Hyperparameters such
as number of nodes, batch size, learning rate and training iterations are chosen based on best
performance on a hold-out validation set, and are shown in the appendix for reproducibility.

4.2.2 Generative Adversarial Networks
The ForGAN (Koochali et al. (2019)) framework presented in section 3.6.2, where the
generator is trained to generate the forecast distribution of yt+1 given (yt, yt−1, . . . , yt−`),
is utilized. The first layer of both the generator G and the discriminatorD is a recurrent layer,
SimpleRNN or LSTM, with a given number of nodes. The default activation function(s)
are used in the case of recurrent layers (more details in section 3.4.1 and 3.4.2). Batch
normalization is applied to the output of the first layer (Ioffe and Szegedy (2015)) of the
discriminator. For the generator, the latent code input is concatenated to the output of
the recurrent layer, introducing stochasticity after the initial assessment of the temporal
dependencies. For the discriminator, the either true next value or the generated forecast
is concatenated before the recurrent layer, to model the temporal dynamics between the
previous observed values and the next.

The second layer is a dense layer with activation function ReLU (3.34) for the generator
and Leaky ReLU (3.35) for the discriminator, which is based on observation of training
stability done by Radford et al. (2015). The third layer is a dense layer where there is one
output node, and the activation function is linear (glinear(x) = x) for the generator in order
to forecast values from R.

In the case of the standard GAN framework (section 3.6), the discriminator has sigmoid
activation function (3.36) to classify real samples as ”1” and fake samples as ”0”. For the
Wasserstein GAN (3.6.4, which is unbounded, the output function of the discriminator is
linear, and represents how much the discriminator believes the sample to be either real or
fake. Real samples are therefore denoted ”1” and fake samples denoted ”-1”. Either Weight
clipping or gradient penalty is applied to the discriminator in order to enforce Lipschitzness,
as discussed in section 3.6.4.

Training a generative adversarial network using keras requires a custom training loop
outside the usual model.fit. The training algorithm is described by algorithm 1, and
shows how the discriminatorD is first trained to label real time series as real, then forecasted
values from the generator G is trained to be labeled false. This is done Diter times, which
is a hyperparameter we will investigate later. After training the discriminator, the generator
G is trained to make the discriminator label the forecast as real.

Hyperparameter Tuning

To obtain a well-performing model, hyperparameter tuning is important. In section 3.6.5
we presented typical hyperparameters that need tuning in order to achieve well-performing
models. While Lucic et al. (2017) investigate the performance of different hyperparameters
in the GAN setting, the task and objective are somewhat different. In the image generating
setting, avoiding mode collapse is not as essential as for forecasting uncertainty. In addition,
the GAN architecture is quite different, with convolutional cells in the network layers

47

and with a bounded output function, whereas we have an unbounded output range and
recurrent cells. It is strenuous to archive optimal performance, however finding a set of
hyperparameters suitable for the task should be within our reach. We will present the
hyperparameters to be investigated in the results.

The batch size refers to the number of samples trained simultaneously. Whereas in the
standard neural network setting, common knowledge among researchers is that large batch
training leads to poor generalization (Yao et al. (2018)). As we will present in the hypothesis
(section 4.3), due to the distribution estimation task, we suspect that there is a conflicting
interest between generalization and distribution estimation accuracy.

Further, the learning rate is a hyperparameter frequently tuned in order to achieve con-
vergence. Too low learning rate can lead to the weights getting stuck in local minimums,
whereas too large learning rates can lead to divergence. The learning rate is often highly
interactive with the batch size, optimization function, number of training samples and
number of training iterations, so it has to be optimized over each task.

The number of training iterations refers to how many times the neural networks will back-
propagate over the batches. The goal is to stop training when the networks have trained
sufficiently such that they can generalize the task, however not starting to pick up random
noise in the training data, namely overfitting. We will monitor the performance in mean
squared error and coverage of the prediction intervals on a hold-out validation set during
training, such that we will detect when the models start overfitting the training data.

The choice of network architecture is an important task of hyperparameter tuning. For
temporal data, recurrent layers such as SimpleRNN (section 3.4.1) and LSTM (section
3.4.2) are suitable. We will test out these two cells in the first layer of both the generator and
the discriminator, as well as tuning the number of nodes in each of these layers. We have
chosen to have more nodes in the discriminator, with the goal of having a discriminator
able to model the time series as least as good as the generator to avoid mode collapse.

The latent code dimension and the number of discriminator iterations per training iteration
Diter are specific hyperparameters to the GAN framework. As there is not as much research
on how these parameters affect the performance, we will investigate them in chapter 5.
Diter may be a way to avoid mode collapse, as discussed in section 3.6.5, and will therefore
be especially interesting when estimating the forecast uncertainty.

The loss function is also a hyperparameter which can be tuned. We have introduced the
standard GAN framework with a binary cross-entropy loss, as well as the Wasserstein loss.
We will for the synthetic data present comparisons between using these losses, while for
the real time series data sets this hyperparameter is tuned similarly to the others, where the
best performing model with respect to the hold-out validation set is chosen.

4.2.3 Monte Carlo Forecasting
In order to estimate the forecast distribution, Monte Carlo sampling from the generator
is utilized. By sampling the latent code Z = (z1, . . . , zk), where zj ∼ pz(z), we can
sample forecast values ŷt+1 from the generator G(Z|yt, . . . , yt−`). By sampling B = 1000
samples from the generator G, we estimate the point forecast by the distribution mean ŷt+1

48

(3.60) and the (1− α) · 100% prediction intervals by [q̂
(
α
2

)
, q̂
(
1− α

2

)
]. The procedure is

shown in algorithm 2.

The forecast is then fed back into the network in order to provide the next forecast according
to the recursive multi-step framework (3.69). We will do a recursive multi-step forecast
up to a specific forecast horizon, then provide the next test value and repeat. This way we
can obtain the coverage as a function of each forecasting horizon, and see if the coverage
changes over forecast horizon. Thus, we can investigate if the coverage of the prediction
interval for forecast ŷt+1|t differ from the coverage of the prediction interval for forecast
ŷt+2|t or ŷt+h|t.

Algorithm 2: Monte Carlo Forecast using the generator G to estimate the forecast
distribution.
Input: Condition window {yt, yt−1, yt−2, ..., yt−`}
Output: Prediction mean ŷt+h|t, (1− α) · 100% prediction interval
B: number of Monte Carlo forward passes
H: max forecast length
for b in B do

for h in H do
Sample latent code Z(b) = (z

(b)
1 , . . . , z

(b)
k), where z(b)

j ∼ pz(z)
ŷ

(b)
t+h|t = G(Z(b)| ŷ(b)

t+h−1|t, ..., yt+h−`)

end
end
Prediction mean ŷt+h|t is computed according to equation 3.60.
Estimated (1− α) · 100% prediction interval is computed according to equation 3.62.

4.3 Hypotheses
Before we analyze the results, we will present some hypotheses related to the experiments
and what kind of results we expect. These hypotheses also motivate the tuning and
interpretation of some of the hyperparameters, as we will show in the next chapter.

As the generator is trained to fool the discriminator, not minimize the forecast error, the
optimization of the forecast error depends on the strength of the discriminator as well.
Further, the gradients of the parameters will depend on the discriminator’s ability to
distinguish the samples, meaning that it may take longer before convergence. A measure to
improve this performance is the amount of discriminator training iterations Diter, which
we will investigate. Due to not directly minimizing the forecast error, it will be natural to
think that the GAN avoids, at least to some degree, overfitting. We will also expect that the
GAN will be trained for more iterations than the MC dropout, which explicit minimizes the
forecast error.

The standard GAN can experience a saturated discriminator, which can lead to convergence
problems. The Wasserstein GAN however, should not encounter these problems. Further,
Wasserstein loss should have improved stability (section 3.6.4), which will further favor

49

the Wasserstein GAN. As reported by Arjovsky et al. (2017), they did not observe any
mode collapse, which was a motivation for utilizing the Wasserstein loss for estimating the
forecast uncertainty. We will therefore expect better performance with a Wasserstein loss,
where it is able to asses the prediction intervals with more correct coverage.

Further, we think that large batch sizes can increase the accuracy of the distribution
estimation, as the discriminator will have a larger sample size of the distribution to compare
with. However, small batch sizes lead to better generalization (Yao et al. (2018)). Therefore,
we might observe conflicting interests, where one wants to balance the size of the batch
size to accurately estimate the forecast distribution, while still being able to generalize the
forecasting task. We will therefore expect larger batch sizes for the generative adversarial
network than the MC dropout.

Regarding the data sets we will be using, it is hard to make very specific hypotheses of the
performance. The synthetic sine time series holds simple temporal dynamics, which the
statistical models are able to model explicitly. It should therefore be expected that these
models performs better than the complex neural networks with thousands of parameters,
which often pick up noise in the training data, a form of overfitting. For the real time
series data sets we do not know the temporal dynamics, and can therefore not disregard the
statistical models. However, the neural networks can model complex time series dynamics
if trained correctly. Neural networks often require a lot of training samples to distinguish
noise from temporal dynamics, though ”a lot” will differ from time series to time series.

50

Chapter 5
Results and Discussion

This chapter will contain results using the models presented in chapter 3 and the experi-
mental setup described in chapter 4. Each section will present results regarding a specific
data set; Gaussian and bimodal distribution (section 4.1.2), sine curve with Gaussian noise
(4.1.3), Oslo temperature data set (4.1.4), avocado price data set (4.1.5) and the electricity
consumption data set (4.1.6). The validation results will be used for tuning and investigating
the hyperparameters in the MC dropout and ForGAN models, whereas the test results are
used to compare and interpret performance between the proposed ForGAN model, the MC
dropout model and the baseline models. The results are discussed in each section, and a
short summary of the discussion is provided at the end. Finally, we will summarize the
findings and discuss how they relate to the hypotheses.

5.1 Distribution Estimation
Generative adversarial networks aim to minimize the distance between the distribution of the
real data and the distribution of the data generated from the generator network (section 3.6).
In order to verify those properties, we will investigate results when simulating data from a
known probability distribution. The performance will be measured in the Jensen–Shannon
divergence, the closeness of the estimated standard deviation and the coverage of the 80%
and 95% prediction intervals. As this task is not the most computational demanding, we
will run the experiments multiple times and provide the mean score along with the standard
deviation.

5.1.1 Gaussian Distribution
The Gaussian samples are drawn according to x ∼ N (0, 0.1), as described in section 4.1.2.
We will confirm the GANs’ ability to estimate the Gaussian distribution, and simultan-
eously investigate how the latent code dimension k affects the results. The remaining

51

hyperparameters are shown in the appendix (table A1).

Coverage

k DJS σ̂ 80% 95%

1 0.0313± 0.0159 0.1033± 0.0140 77.94%± 4.93 pp 91.79%± 4.49 pp
5 0.0140± 0.0088 0.0934± 0.0094 75.14%± 5.49 pp 91.86%± 3.09 pp

10 0.0070± 0.0044 0.1010 ± 0.0023 80.02%± 1.93 pp 94.40%± 0.92 pp
50 0.0056± 0.0019 0.0976± 0.0018 78.19%± 0.99 pp 94.44%± 0.51 pp
100 0.0054 ± 0.0018 0.0987± 0.0014 78.56%± 0.97 pp 94.66%± 0.41 pp

Table 5.1: GAN with different latent code dimensions estimating a Gaussian distribution with zero
mean and 0.1 standard deviation, x ∼ N(0, 0.1). Results show the Jensen-Shannon divergence DJS,
uncertainty estimate of the distribution σ̂ and coverage of the 80% and the 95% confidence interval
with standard deviation averaged over 10 runs. pp denotes the percentage points. Best performing
model for each metric is shown in bold.

Table 5.1 shows the results for different latent code dimensions k ∈ {1, 5, 10, 50, 100}.
Judging by the estimated standard deviation and the prediction interval coverage, the GAN
is able to estimate the Gaussian distribution pretty precisely for all values of k. The GAN
with dimension k = 100 scores lowest in terms of the Jensen-Shannon divergence, and
estimates the probability distributions closest. The GAN with latent code dimension k = 10
estimates the standard deviation slightly closer to the theoretical value than k = 100. With
regard to the coverage, we observe generally good performance, where k = 10 has the
highest coverage for the 80% prediction interval, and k = 100 the highest for the 95%
prediction interval. Further, the stability of the models increase with larger dimension k,
and the standard deviation for the metrics is at its lowest for dimension k = 100. Doing
similar experiments with the batch size, we observe best performance for smaller batch
sizes, namely 32 and 64.

5.1.2 Bimodal Distribution
To further investigate the properties of estimating more complex distributions than the
Gaussian distribution, we will sample from the bimodal distribution. We will now visually
compare the performance of a standard GAN to a Wasserstein GAN (WGAN).

Figure 5.1 illustrates the estimated distributions with GAN and the WGAN using the same
hyperparameters trained to generate a bimodal distribution. The GAN (5.1a) is only able to
capture one of the modes, resulting in a mode collapse. On the other hand, the Wasserstein
GAN (5.1b) shows convergence, where the generator learns both modes relatively close
to the actual distribution. Notably, the batch size had to be large, 1024, in order to obtain
convergence to a bimodal distribution, as showed by the hyperparameters in table A2.

52

(a) GAN (b) WGAN

Figure 5.1: GAN and WGAN trained to generate a bimodal distributionN (−0.5, 0.1),N (1, 0.2)

5.2 Sine Curve with Gaussian Noise
We now introduce a time-dependent synthetic data set, a sine curve with Gaussian noise.
We can still verify the distribution estimation properties through the known standard
deviation σN of the noise. As the data is time-dependent, we will utilize the ForGAN
model as described in section 3.6.2, which can model the forecast distribution conditioned
on past observations. The 80% and 95% prediction intervals are used to investigate the
distribution estimation quantities through coverage, width and mean scaled interval score
(MSIS) (section 3.8.5). In addition we will investigate the point forecast accuracy through
mean squared error (MSE) (section 3.8.1), symmetric mean absolute scaled error (sMAPE)
(section 3.8.2) and mean absolute scaled error (MASE) (section 3.8.3). As we know that
both the baseline models and the neural networks are able to model the dynamics of this
synthetic time series, we expect the simpler models to perform better.

Hyperparameters Value
Type of cells in the Generators first layer SimpleRNN
Type of cells in the Discriminators first layer SimpleRNN
Number of nodes per layer in Generator 16
Number of nodes per layer in Discriminator 64
Latent code dimension 100
Training iterations 1500 / 3000
Batch size 32
Learning rate 0.001
Discriminator iterations per generator iteration 3
Condition window length 24

Table 5.2: Hyperparameters used for ForGAN unless otherwise specified.

Table 5.2 shows the hyperparameters used unless otherwise specified, which are deduced
from the results of the distribution estimation in the last section. This may not indicate that

53

they are optimal in the forecast setting, and we will further investigate how some of the
hyperparameters affect the performance of the model.

Latent Code Dimension

We will investigate how the dimension of the latent code, as earlier denoted by k, affects the
results of the forecasting. The results reported are averaged over a forecast horizon of h =
1, ..., 24, as this will disclose hyperparameters that may lead to an unstable performance in
the recursive forecast setting. The number of training iterations is 1500 for this experiment,
and the results are computed on a hold-out validation set.

MSIS Coverage Width

Model k MSE 80% 95% 80% 95% 80% 95%

ForGAN 1 0.0163 4.443 5.805 77.44% 96.49% 0.331 0.563
ForGAN 5 0.0132 3.755 4.906 81.00% 94.21% 0.298 0.458
ForGAN 10 0.0305 6.081 9.168 66.57% 84.81% 0.345 0.536
ForGAN 50 0.0166 4.302 6.065 65.84% 86.98% 0.246 0.384
ForGAN 100 0.0104 3.266 4.262 82.55% 97.18% 0.285 0.437

Table 5.3: The table shows the mean squared error and 80% and 95% prediction interval metrics
on the validation set averaged over the forecast horizon of 24 steps. The hyperparameters used are
shown in table 5.2, where the number of training iterations is 1500. The only hyperparameter changed
between the models is the latent code dimension k.

Table 5.3 shows the validation results of the MSE and uncertainty estimates, namely the
80% and 95% prediction intervals, averaged over the forecast horizon. We observe that
the dimension k = 100 scores best in terms of MSE and MSIS. Moving further to the
coverage, we can see that in terms of closeness to the coverage probability, the latent code
dimension of k = 5 is closest with 81.00% and 94.21% coverage for the 80% and 95%
prediction intervals respectively. While not being closest to the coverage probability, the
model with a dimension of k = 100 has sufficient coverage for both prediction intervals. In
addition, it has the narrowest prediction intervals among those with sufficient, or close to
sufficient, coverage for both prediction intervals. Couple that with the lowest MSIS and
MSE, preferring the latent code dimension k = 100 is well grounded in the results.

Discriminator Iterations

Another quantity to investigate is the number of training iterations for the discriminator D
per training iteration for the generator G, Diter. As discussed in section 3.6.3, insufficient
training ofD compared to G may lead to mode collapse. On the other hand, a too largeDiter

will increase training time substantially, without increased training of G. Therefore, we will
investigate how Diter affects the performance on a validation set, as before averaged over a
forecast horizon of h = 24. The experiments are run according to the hyperparameters in
table 5.2, with 3000 training iterations.

54

MSIS Coverage Width

Model Diter MSE 80% 95% 80% 95% 80% 95%

ForGAN 1 0.0214 5.503 8.647 50.86% 73.81% 0.224 0.344
ForGAN 3 0.0141 3.821 5.428 86.66% 97.38% 0.342 0.524
ForGAN 5 0.0135 3.794 5.108 79.44% 94.66% 0.295 0.453
ForGAN 10 0.0113 3.467 4.651 84.16% 97.51% 0.313 0.480
ForGAN 20 0.0137 3.739 4.866 81.40% 96.35% 0.311 0.478

Table 5.4: The table shows the validation results for the mean squared error and 80% and 95%
prediction interval metrics on the validation set averaged over the forecast horizon of 24 steps. The
hyperparameters used are shown in table 5.2, where the number of training iterations is 3000. The
only hyperparameter changed between the models is the Diter .

Table 5.4 shows the validation results of the MSE, and the 80% and 95% prediction intervals.
The best performing model in regard to the MSE and MSIS is Diter = 10. In addition,
we can see that the prediction intervals have sufficient coverage. One can argue that
both Diter = 5 and Diter = 20 is performing better, as they have coverage closer to
the coverage probability and narrower prediction intervals. As discussed in section 3.8.4,
too high coverage is not an unwanted feature if the intervals are not too wide. The best
performing model when tuning the latent code dimension in the last subsection performs
better than any model in table 5.4. This can indicate that the effect of Diter is correlated
with the total number for training iterations. We will thus choose the model trained for
1500 iterations and with Diter = 3 as it performed the best.

Wasserstein GAN

For the bimodal distribution, we observed that the Wasserstein GAN (WGAN) was able to
model the complex distribution without the severe mode collapse observed for the GAN.
This corresponds well with the theory described in section 3.6.4, where the properties of the
Wasserstein loss should lead to a more stable convergence where mode collapse is avoided.
As the time series setting might differ, we will investigate the performance of the WGAN
and compare the results to the standard ForGAN. The ForWGAN is train as a ForGAN with
Wasserstein loss, and with the set of hyperparameters yielding best performance (table A3).

MSIS Coverage Width

Model MSE 80% 95% 80% 95% 80% 95%

ForGAN 0.0104 3.266 4.262 82.55% 97.18% 0.285 0.437
ForWGAN 0.0104 4.523 6.823 98.32% 100.00% 0.487 0.746

Table 5.5: The table shows the validation results for the mean squared error and 80% and 95%
prediction interval metrics on the validation set averaged over the forecast horizon of 24 steps. The
ForWGAN are trained according to hyperparameters showed in table A3.

55

Table 5.5 shows the validation MSE and the performance of the 80% and 95% prediction
intervals averaged over the forecast horizon of 24 steps. While the models perform equally
in terms of MSE, we observe that the ForGAN has lowest MSIS for both prediction
intervals, as well as coverage closest to the coverage probability. Further the ForGAN has
the narrowest prediction intervals, making the binary cross-entropy loss an obvious choice.

5.2.1 Choosing Models for Comparison
The ARIMA model is fitted using auto arima with seasonality m = 12, which will find
the model with lowest AICc (3.21). This results in a seasonal ARIMA(0, 0, 1)x(1, 0, 1)12

model. For forecast horizons h ≥ m, we have that ŷy+h = ŷy+h−m, since ẑt+h−m =
0. Doing model selection of exponential smoothing using the lowest AICc leads to a
additive error and seasonality, ETS(A,N,A). The ForGAN model utilizes the best set of
hyperparameters found previously in this section and are shown in table 5.2, where the
number of training iterations is 1500. The hyperparameters for the MC dropout model
is found similarly to the ForGAN’s, by comparing results on the validation set. The
hyperparameters yielding the best performance can be found in the appendix (table A4).

5.2.2 Results
We will now compare the performance of the proposed ForGAN model with the baseline
models and state-of-the-art model on the test set. Similarly to the previous results, the
metrics are averaged over the forecast horizon of 24. In addition, figures will show the
results as a function of the forecasting horizon, increasing insight into the performance as
the forecast horizon increases.

Point forecast

Model MSE sMAPE MASE

ARIMA 0.0099 37.91% 0.723
ETS 0.0097 40.32% 0.720
MC dropout 0.0115 36.83% 0.789
ForGAN 0.0112 36.33% 0.780

Table 5.6: The table shows the forecast error metrics for the different baselines and state-of-the-art
model, as well as the proposed ForGAN, averaged over a forecast horizon of 24 steps.

Table 5.6 shows the performance of the models in terms of point forecast. The best
performing model is the exponential smoothing, with an MSE of 0.0097. This is less
than the argued minimum MSE (section 4.1.3), which is due to sample variance of the
Gaussian noise is σ2

N = 0.0096. The ARIMA is performing close to the exponential
smoothing, followed by the ForGAN. We will not rely too much on the sMAPE, as it
may be problematic due to the time series includes values close to, and equal to 0. We
observe the similar results for the MASE as the MSE. The baseline models are close to
the theoretically best obtainable value for the MASE given by ≈ 0.7071, whereas the MC
dropout and ForGAN performs a little worse. They are however much closer to the optimal

56

value than to 1, which makes them considerable better than the in-sample naive last season
forecast error. It is expected that less complex models perform best on this data set that has
such simple dynamics, and as ARIMA and exponential smoothing are sufficient to model
the data, the results correspond with Occam’s razor1.

MSIS Coverage Width

Model σ̂ 80% 95% 80% 95% 80% 95%

ARIMA 0.099 3.206 4.237 78.95% 94.80% 0.254 0.389
ETS 0.098 3.163 4.088 79.39% 94.92% 0.250 0.382
MC dropout 0.161 3.682 5.223 93.59% 99.24% 0.412 0.631
ForGAN 0.112 3.402 4.438 80.91% 95.77% 0.284 0.437

Table 5.7: The table shows the forecast 80% and 95% prediction interval metrics for the different
baselines and state-of-the-art model, as well as the proposed ForGAN, averaged over a forecast
horizon of 24 steps.

Table 5.7 shows the models compared on the uncertainty measures, with the addition of the
estimated standard deviation. The standard deviation is a known metric for this data set,
and is showed to be σ = 0.1 in section 4.1.3. We observed that the sample variance was
slightly lower than the theoretical variance, which leads to the sampled standard deviation
being σN = 0.098. The baseline models estimate this quantity pretty precise, whereas the
MC dropout and the ForGAN overestimate the standard deviation. This is not necessarily
undesirable behavior, but rather reflects the lack of forecast accuracy as showed in table
5.6. Further, the exponential smoothing has the best MSIS for both the 80% and the 95%
prediction intervals. The ForGAN shows a better estimate of the standard deviation and
lower MSIS than the state-of-the-art MC dropout model. The coverage showed by both
the exponential smoothing and ARIMA, as well as the ForGAN approaches the coverage
probability for both the 80% and the 95% prediction intervals relatively closely. The
ForGAN has a coverage larger than the coverage probability, which is a desired feature if
the prediction intervals are correspondingly narrow. The prediction intervals are wider than
that of the baseline models, while compared to the MC dropout the ForGAN performs well.
The MC dropout overestimates the forecast uncertainty largely and has too high coverage,
which combined with too wide prediction intervals is undesirable.

Figure 5.2 shows the MSE (5.2a) and MASE (5.2b) as a function of the forecast horizon.
The baseline’s MSE stay rather constant, whereas the MC Dropout and the ForGAN has a
slight increase in MSE over the forecast horizon. The neural networks have more variance
in the MSE over the forecast horizon, as showed by the fluctuating plots. In figure 5.2b we
observe a step-like behavior around h = 12, h = 13, which can be explained by the naive
forecast scale going from one-season-ago prediction ˆNaivet+h, h ≤ m to two-seasons-ago
prediction ˆNaivet+h, h > m. Knowing that the expected mean absolute difference (section
4.1.3) between observations one season apart is the same as two seasons apart, the step-like
attribute can in this case be explained by randomness in the sampling of Gaussian noise.
Further, we observe that the ForGAN’s MASE seems to increase more over the forecast

1The idea of the simplest solution to a task is to be preferred until evidence proves otherwise.

57

(a) Mean squared error (MSE) (b) Mean absolute scaled error (MASE)

Figure 5.2: The figure shows the MSE and MASE on a test set as a function of the forecast horizon.

horizon than the MSE. As discussed in section 3.8.1, an absolute error will penalize the
absolute error equally, whereas the squared error will favor more consistent models. Thus
we can deduct that while the absolute error of the ForGAN is equal to the MC dropout for
the 18-24 steps ahead forecasts, the forecast accuracy of the ForGAN is more consistent.

(a) 80% prediction interval coverage (b) 95% prediction interval coverage

Figure 5.3: The figure shows the coverage of 80% and 95% prediction intervals as a function of the
forecast horizon, computed on the test set of the sine data set.

Figure 5.3 shows the coverage of the prediction intervals as a function of the forecast horizon.
Here we can clearly see that the prediction intervals produced by the baseline models cover
a consistent percentage of observations, whereas the neural networks, ForGAN especially,
increase the coverage throughout the forecast horizon. This can be a consequence of the
recursive forecast technique (section 3.7) used to obtain a multi-step forecast, which the
model is not trained to optimize. Notably, we tried different numbers of Monte Carlo
samples from the generator, both B = 200 and B = 5000 without observing significant

58

improvement in performance as the number of samples increased. Thus, we can conclude
that the accuracy of the estimation is not to fault for the drift of the coverage. These figures
show that the average coverage value presented in table 5.7 may be misleading, and that
changing the forecast horizon would give a different result. However, it is better that the
coverage is increasing rather than decreasing over the forecast horizon.

After inspecting the results of this experiment, the baseline models perform as expected
close to the optimal performance, whereas the neural networks are less accurate. Although
we see an improved performance of the ForGAN compared to the MC dropout, where
the coverage is close to the coverage probability and the prediction intervals are narrower.
Moreover, the ForGAN has sufficient coverage for both prediction intervals, making it
promising model for more complex time series. Notably, the Wasserstein GAN was not
able to improve the performance over the standard GAN, scoring poor in terms of the MSIS
due to wide prediction intervals.

59

5.3 Oslo Temperature Data Set
As time series forecasting usually applies to real data where the dynamics often are unknown
and complex, we will compare the proposed ForGAN method to the baseline models on a
time series created from observations of the temperature in Oslo. The data is a low-frequency
time series with monthly observations, reminiscent of the sine curve with Gaussian noise.

5.3.1 Choosing Models for Comparison
Fitting the auto arima model, we obtain a SARIMA(0, 0, 2)x(2, 0, 1)12. This model is
similar to the SARIMA model obtained for the sine data, with two additional parameters
in MA(2) and seasonal AR(2). The best performing exponential smoothing (ETS) model
with respect to the AICc is as previousily with no trend and additive error and seasonality
ETS(A,N,A). This corresponds well with observations of the time series, as there is no
visual increase or decrease in temperature over time.

Hyperparameters Value
Type of cells in the Generators first layer SimpleRNN
Type of cells in the Discriminators first layer SimpleRNN
Number of nodes per layer in Generator 16
Number of nodes per layer in Discriminator 64
Latent code dimension 100
Training iterations 5000
Batch size 64
Learning rate 0.001
Discriminator iterations per generator iteration 10
Condition window length 24

Table 5.8: Hyperparameters used for the ForGAN for the Oslo temperature data set.

Table 5.8 shows the hyperparameters used for the ForGAN trained on the Oslo temperature
data set. They are found similarly to the experiments showed in the previous section, where
the hyperparameters in the table are tuned. The model chosen is the best performing with
regard to both mean squared error and prediction interval performance on the hold-out
validation set. Notably, we observe better performance with increased training iterations
than previously, even though it is less training samples. The hyperparameters for the MC
dropout method are found similarly, and table A5 shows the hyperparameters used.

5.3.2 Results
Table 5.9 shows the point forecast error metrics for the models averaged over a forecast
horizon of 24. Regarding the mean squared error (MSE), exponential smoothing is the
best performing model, followed by ARIMA. Additionally, we observe that the ForGAN
performs closer to the baseline models than the MC dropout model. As discussed in section
4.1.4, the sMAPE can be quite misleading for this particular data set. We will therefore
not rely too much on the sMAPE results for this data set, but can note that they seem to

60

Point forecast

Model MSE sMAPE MASE

ARIMA 3.8936 43.28% 0.698
ETS 3.8699 44.66% 0.702
MC dropout 4.3461 48.65% 0.771
ForGAN 4.0994 47.53% 0.740

Table 5.9: The table shows the forecast error metrics for the different baselines and the state-of-the-art
model, as well as the proposed ForGAN, averaged over a forecast horizon of 24 steps.

mostly concur with observed results of the MSE. Lastly, we observe slightly better values
for the mean average scaled error (MASE) than for the previous data set. This strengthens
the theory that the models capture a more complex dynamics.

MSIS Coverage Width

Model 80% 95% 80% 95% 80% 95%

ARIMA 3.520 4.886 82.97% 94.78% 5.385 8.236
ETS 3.512 4.840 83.18% 94.80% 5.458 8.358
MC dropout 4.057 7.069 84.53% 96.46% 6.062 9.282
ForGAN 3.356 4.613 79.52% 95.06% 4.935 7.831

Table 5.10: The table shows the forecast 80% and 95% prediction interval metrics for the different
baselines and state-of-the-art model, as well as the proposed ForGAN, averaged over a forecast
horizon of 24 steps.

Further, we inspect the uncertainty measures in table 5.10. The mean scaled interval score
(MSIS) shows that the ForGAN model is performing best for both prediction intervals,
having the lowest score. The MC dropout has substantially higher MSIS than the other
models, suggesting either poor coverage or wide intervals. Looking at the coverage we
have relatively good performance by all models, and the models having too low coverage
are very close to the coverage probability. Due to the ambiguity of prediction intervals, one
might argue that it is insignificant in this case. Further, we observe that the ForGAN has the
narrowest prediction intervals, while still having almost exact coverage. While not largely
overestimating the uncertainty, the MC dropout has wide prediction intervals, explaining the
poor MSIS. Judging by these results, the ForGAN is able to asses the narrowest prediction
interval with coverage close to the coverage probability, and is arguably the best performing
model in terms of forecast uncertainty estimates.

Figure 5.4 displays the MSE and MASE over the forecast horizon. Similarly to observations
for the sine data, the baseline models show less variance over the forecast horizon. We
also see that both the MC dropout and the ForGAN seem to have the same behavior over
the horizon, reminiscent of cyclic behavior. Investigating the mean absolute scaled error
(MASE) in figure 5.4b we observe a distinct drop after a season, similar to what observed
for the sine time series. This indicates that the naive seasonal forecast is less accurate

61

(a) Mean squared error (MSE) (b) Mean absolute scaled error (MASE)

Figure 5.4: The figure shows the MSE and MASE over the forecast horizon on the Oslo temperature
data test set.

forecasting two seasons ahead. The models on the other hand are clearly able to model
two seasons ahead more accurately, resulting in the decrease of MASE after one season.
Omitting the level differences, the results appear quite similar to the MSE.

(a) 80% prediction interval coverage (b) 95% prediction interval coverage

Figure 5.5: The figure shows the coverage of 80% and 95% prediction intervals over the forecast
horizon on the Oslo temperature data test set.

Figure 5.5 shows tendencies conflicting with results obtained earlier in table 5.10. Here the
ForGAN has poor coverage for the first 2-6 forecast horizons but increasing along with the
forecast horizon. This makes the illusion of a well performing model when averaging as in
table 5.10, whereas in reality, it has both poor performances for the first forecasting horizon
and changing coverage over the forecast horizon. In contrast, the remaining models having
much more consistent performance, which indeed is favorable.

To investigate the conflicting results obtained regarding the performance of the ForGAN

62

(a) Mean scaled interval score (MSIS) (b) Prediction interval width

Figure 5.6: The figure shows the MSIS and width of the 95% prediction interval on the test set as a
function of the forecast horizon

prediction intervals, figure 5.6 exhibits the mean scaled interval score (MSIS) and the width
of the 95% prediction interval over the forecast horizon. We are assuming similar behavior
for the 80% prediction interval MSIS and width. The ForGAN MSIS in figure 5.6a stays
rather constant over the forecast horizon, whereas the coverage in figure 5.5 increases
over the forecast horizon. As showed in section 3.8.5, the MSIS will heavily penalize
observations outside the prediction interval, with a scaled distance from the prediction
interval boundary to the observation, at the scale of 40 for the 95% prediction interval. Thus,
as the MSIS does not decrease over the forecast horizon, we can assume the prediction
interval boundary lies close to the observations. Figure 5.6b shows the 95% prediction
interval width over the forecasting horizon. Except for the first two forecast horizons, the
ForGAN prediction interval widens with the same factor as the exponential smoothing,
which will not account for the constant MSIS while the coverage increases. This strengthens
the theory that the observations lie close to the prediction interval boundary for the ForGAN,
resulting in a low MSIS while not quite sufficient coverage.

Figure 5.7 shows examples of forecasts over the forecast horizon with the four models
on the test set, along with the 80% and 95% prediction intervals. Notably, all the models
perform relatively equal and capture the seasonal behavior. The ForGAN estimates the
uncertainty at the lower temperatures to be slightly larger than at the upper points. We do
not observe similar behavior in the other models, indicating that the ForGAN either has
captured an uncertainty related to colder temperatures or it just not being able to capture the
dynamics precisely. As we have seen that the ForGAN produces the narrowest and most
accurate prediction intervals, it suggests the former.

To summarise the results of the Oslo temperature data set, we have seen that while the
ForGAN was not the most accurate in terms of point forecast, it scored best in terms of MSIS.
It had sufficient coverage for the 95% prediction interval, and close to sufficient coverage
for the 80% prediction intervals. Moreover, the prediction intervals were the narrowest,
indicating precise uncertainty estimate. We observed some unsatisfactory behavior related

63

(a) ARIMA (b) Exponential smoothing

(c) MC dropout (d) ForGAN

Figure 5.7: Examples of the different models doing out-of-sample prediction with uncertainty
estimates for a multi-step forecasting on the Oslo temperature data set. None of the test data where
known during prediction.

to the coverage for the first forecast horizon. However, by inspecting the MSIS and the
prediction interval width for the 95% prediction intervals, the low coverage for the first
forecast horizon is not as alarming as it seems.

64

5.4 Avocado Price Data Set
As discussed in section 4.1.5, this data set contains multiple time series with the weekly
avocado price across different regions in the US. The time series are shorter than the
previously observed time series. On the other hand, neural networks can be trained across
all time series, so we can gain learning between the time series. Visual inspection suggests
that the time series are more complex than the previous time series encountered, and that
the exogenous variables may be necessary to model the time series to its full extent. We
will only use previous values of the average price, making it a univariate time series, where
information about the dynamics may be lost. Nevertheless, a well performing prediction
interval estimate should have sufficient coverage regardless of the model’s ability to model
the time series dynamics.

5.4.1 Choosing Models for Comparison
As earlier, we will use pmdarima’s auto arima to fit the best SARIMA/ARIMA
model. An individual model is fitted for each of the time series. As there will be 108
different ARIMA models, we will not list all configurations here, although in most cases
the best model does not include seasonal components. We choose the same strategy of
fitting an exponential smoothing to each individual time series. When looking at the models
obtaining the lowest AICc, for most regions it takes the form of an ETS(A,N,N), with the
linear, trendless forecast function (3.13). However, for a small amount of the time series it
takes the form of an ETS(A,A,N), which models an additive trend.

The MC dropout model is trained across all the time series simultaneously. The model
performed best when inputting the previous ` = 26 observations, which corresponds to half
a year. Table A6 shows the hyperparameters used, and we observe a lower learning rate and
some additional training iterations than for the previous data set.

Hyperparameters Value
Type of cells in the Generators first layer SimpleRNN
Type of cells in the Discriminators first layer SimpleRNN
Number of nodes per layer in Generator 16
Number of nodes per layer in Discriminator 64
Latent code dimension 100
Training iterations 30000
Batch size 32
Learning rate 0.0001
Discriminator iterations per generator iteration 3
Condition window length 52

Table 5.11: Hyperparameters used for the ForGAN for the avocado price data set.

The ForGAN is also trained across all the time series simultaneously, and table 5.11 shows
the hyperparameters used. In contrast to the MC dropout model, the ForGAN performed
best with a window size of ` = 52, which corresponds to a year. This will reduce the

65

number of samples compared to the MC dropout, however, there is a higher possibility of
picking up seasonal effects. In addition, the model performs better with a lower learning
rate and an additional number of training iterations, which can be explained by the training
data size being larger than previously.

5.4.2 Results
In this section we will analyze the results of the avocado price data set. As there is only 33
test samples per time series in this data set, the estimated coverage per time series will be
rather imprecise. A 95% prediction interval covering 31 of the samples will yield a coverage
of 93.93%, whereas covering 32 test samples will yield 96.93% coverage. Small variations
can drastically affect the results, and we will consequently present the results averaged over
the 108 time series. To further gain insight in the variability of the performance, a standard
deviation of each metric is provided along with the mean value across the time series.

Point forecast

Model MSE sMAPE MASE

ARIMA 0.259 17.24% 0.870
(0.170) (6.71 pp) (0.344)

ETS 0.293 19.97% 1.036
(0.210) (7.68 pp) (0.504)

MC dropout 0.171 14.46% 0.706
(0.123) (6.13 pp) (0.300)

ForGAN 0.185 15.14% 0.745
(0.121) (4.31 pp) (0.272)

Table 5.12: The table shows the forecast error metrics for the different baselines and state-of-the-art
model, as well as the proposed ForGAN, averaged over a forecast horizon of 13 steps. The mean
value over the time series is shown, with the standard deviation in parentheses below. pp denotes the
percentage point.

Table 5.12 shows the model performances in point forecast accuracy averaged over the time
series from each region. The MC dropout performs best on all metrics, followed closely
by the ForGAN. Moreover, the order of performance is identical for all metrics, indicating
that the performance is so different that the nature of the metrics does not influence the
order. In addition, the neural networks have the lowest standard deviation of the metrics,
suggesting generally better performance across the time series. Contrary to previous results,
exponential smoothing is the worst performing model. This may not come as a shock, as
the time series appears to be non-stationary. ARIMA however should be able to deal with
such data better, and while it does, the neural networks are performing better.

When examining the uncertainty results in table 5.13, we can see that the ForGAN scores
lowest in terms of MSIS for both the 80% and 95% prediction interval. We further observe
that the MC dropout does not maintain the performance seen in the point forecast accuracy,
scoring worst in terms of 95% prediction interval MSIS. The ForGAN is the only model

66

MSIS Coverage Width

Model 80% 95% 80% 95% 80% 95%

ARIMA 4.371 7.086 69.41% 85.59% 0.955 1.461
(1.854) (4.164) (17.44 pp) (11.04 pp) (0.176) (0.270)

ETS 4.893 7.574 65.57% 84.20% 1.101 1.687
(2.470) (4.829) (21.95 pp) (14.02 pp) (0.213) (0.326)

MC dropout 4.573 11.727 77.36% 90.31% 0.864 1.324
(2.362) (7.868) (14.61 pp) (9.31 pp) (0.048) (0.074)

ForGAN 3.600 5.384 82.61% 93.81% 1.035 1.587
(1.281) (2.485) (10.80 pp) (5.50 pp) (0.071) (0.102)

Table 5.13: The table shows the forecast 80% and 95% prediction interval metrics for the different
baselines and state-of-the-art model, as well as the proposed ForGAN, averaged over a forecast
horizon of 13 steps. The mean value over the time series is shown, with the standard deviation in
parenthesise below. pp denotes the percentage point.

having coverage close to the coverage probability, followed by the MC dropout. This may
suggest that the prediction intervals of MC dropout are quite wide despite the coverage
being better than the baseline models. However, the prediction interval width reveal that this
is not the case. As discussed earlier, the MSIS will penalize values outside the prediction
interval by a scaled distance from the prediction interval boundary, suggesting that values
not covered are far from the prediction intervals. The remaining models have similar
prediction interval widths, which suggests that the ForGAN does estimate the uncertainty
most accurate due to both the best MSIS and the highest prediction interval coverage.

(a) Mean squared error (MSE) (b) Symmetric mean absolute percentage error (sMAPE)

Figure 5.8: The figure shows the MSE and sMAPE over the forecast horizon of 1 to 13 on the
avocado price data set.

The exponential smoothing stands out for the point forecast accuracy (figure 5.8) as having
large forecast error for the one-step-ahead forecast. While it stays rather constant over the

67

forecast horizon, we see the three other models performing substantially better for shorter
forecast horizons. However, as the forecast horizon increases further, the forecast error of
the neural networks decrease. The figures in section 4.1.5 showed for some of the time
series large variations within the first few observations of the test data. The tendency was a
substantial decrease in the avocado price within the first observations. The larger forecast
horizons are not forecasted on the first observations in the test set, explaining why we might
observe this behavior. It could be avoided if we have had more test data, spanning over a
more extended time period. The hypothesis of decreasing error due to decrease in price
over the test set is strengthened by figure 5.8b, where the tendencies are not as strong. A
lower average price will penalize the absolute percentage error more heavily, as the sMAPE
is scaled by the price level (section 3.8.2).

(a) 80% prediction interval coverage (b) 95% prediction interval coverage

Figure 5.9: The figure shows the coverage of 80% and 95% prediction intervals over a forecast
horizon of 1 to 13 on the avocado price data set.

Figure 5.9 displays the 80% and the 95% prediction interval coverage over the forecast hori-
zon. Again, the exponential stands out in terms of different behavior than the other models
and low coverage for the one-step-ahead prediction interval. Recall that the exponential
smoothing was not able to model any significant dynamics of the time series either, with
the forecast uncertainty calculated according to equation 3.16 in the cases of ETS(A,N,N)
or in some cases ETS(A,A,N) with forecast uncertainty according to equation 3.17. This
is not a sophisticated forecast uncertainty, hence it is not unexpected that the model is not
able to produce more accurate prediction intervals. The other models appear to capture the
uncertainty in a similar fashion, however, we have seen earlier that the ForGAN expands
the prediction intervals more as the forecast horizon increases than the other models. This
can further explain why it increases its coverage slightly over the forecast horizon. While
neither increase nor decrease of the coverage over the forecast horizon are optimal, the
figure does not weaken the interpretation that the ForGAN is able to asses the forecast
uncertainty more accurately than the other models.

An example of the models forecasting the price of the conventional avocado in Albany 1
to 13 weeks ahead, with 80% and 95% prediction intervals, is shown in figure 5.10. The

68

(a) ARIMA (b) Exponential smoothing

(c) MC dropout (d) ForGAN

Figure 5.10: Examples of the models doing out-of-sample prediction with 80% and 95% prediction
intervals, forecasting the price of the conventional avocado in Albany 1 to 13 weeks ahead. None of
the test data where known during prediction.

ARIMA and exponential smoothing seem to produce more sensible forecasts, however, the
prediction intervals are not widening as the forecast horizon increases. For the ARIMA
model, this suggests that φj for j > 0 is small, as according to h-step-ahead forecast
uncertainty (3.32). The same behavior in the exponential smoothing can be explained by
the trend and seasonality smoothing parameters, α and β being small, as seen in equation
3.16 and 3.17. The neural networks on the other hand predict a decrease in the avocado
price, however, it is not an accurate prediction in this case. The ForGAN predictions seem
to be smoother than the MC dropout’s, and it also has the prediction intervals widening over
the forecast horizon. While this in it self is not a desired feature, generally speaking the
h-step-ahead forecast is expected to be more inaccurate than the one-step-ahead forecast.

Figure 5.11 shows the same forecasts for the price of the organic avocado in Albany. Now,
the ForGAN seems to make a more sensible forecast than the other models, as it is able to
predict the decrease in avocado price. The other models expect the prices to stay on the
level of the previous observations. Notably, the ForGAN forecasts seem to be suspiciously

69

similar to the forecasts for the conventional avocado, thus one might be inclined to think
that it makes a more general prediction, rather than model each time series separately.

(a) ARIMA (b) Exponential smoothing

(c) MC dropout (d) ForGAN

Figure 5.11: Examples of the models doing out-of-sample prediction with 80% and 95% prediction
intervals, forecasting the price of the organic avocado in Albany 1 to 13 weeks ahead. None of the
test data where known during prediction.

Supported by the results where the ForGAN and MC dropout were able to produce both
more accurate point forecasts and prediction intervals, the decreasing trend might be a
concurring tendency among the majority of the time series, in which the neural networks
were able to forecast. While the MC dropout was able to produce more accurate point
forecasts, the ForGAN had both the best MSIS and closest coverage to the coverage
probability. Judging by the results presented for this data set, we observe a clear case where
the ForGAN is assessing the best forecast uncertainty estimates.

70

5.5 Electricity Consumption Data Set

The electricity consumption data set is a high-frequency time series with hourly observations.
As discussed in section 4.1.6, we observed both daily and weekly seasonality. We choose to
only select one of the time series provided in the data set due to limited availability of time
and computational power. We also encountered exceeding the available random-access
memory (8 GB) when fitting the auto arima on a larger proportion of the time series,
leading to execution error.

5.5.1 Choosing Models for Comparison

The ARIMA is as previously fitted using auto arima with a seasonality of m = 24,
resulting in a seasonal ARIMA(1, 0, 2)x(2, 0, 2)24. We have autoregressive and moving
average components, as well as seasonal autoregressive and moving average components.
It is worth noting that as the model does not have the seasonal component of Φ7, Θ7, it
can not capture the secondary seasonality we discussed in section 4.1.6. The ETS(A,N,A)
has the lowest AICc, and is thus the model that will be utilized. As we could observe
a distinct seasonality, but no trend in figure 4.6, this result is sensible. The ForGAN is

Hyperparameters Value
Type of cells in the Generators first layer LSTM
Type of cells in the Discriminators first layer LSTM
Number of nodes per layer in Generator 64
Number of nodes per layer in Discriminator 256
Latent code dimension 100
Training iterations 2000
Batch size 64
Learning rate 0.0001
Discriminator iterations per generator iteration 5
Condition window length 336

Table 5.14: Hyperparameters used for the ForGAN for the electricity data set.

trained according to hyperparameters showed in table 5.14. Notably, the model performed
best when utilizing LSTM layers as the recurrent layers, with additional nodes; 64 for the
generator and 256 for the discriminator. This gives an idea of the time series dynamics
being more complex than observed for the previous data sets, as the LSTM is able to model
more long term dependencies. The ForGAN also performed best with a window size of
` = 336, which corresponds to two weeks. The hyperparameters of the MC dropout is
shown in table A7, and notably, the model performed best with a window size of ` = 168.
In contrast to the ForGAN, the MC dropout performed best utilizing SimpleRNN as a
recurrent layer.

71

5.5.2 Results
The point forecast accuracy metrics are shown in table 5.15. The MC dropout performs best
on all metrics, with an MASE at 0.731, which suggests that it models a more sophisticated
dynamic than the naive seasonal forecast. We also observe that the ARIMA performs fairly
well, however, the MASE at 0.976 suggests it does not perform substantially better than a
naive seasonal forecast. The ForGAN does not have an MASE below 1, suggesting that it
has not been able to model the seasonality to its full extent. With an MSE double of what
the MC dropout has, the ForGAN appears to be performing quite bad. Notably, the sMAPE
for the ForGAN is close to that of the ARIMA, which motivates the idea that the ForGAN
forecasts more accurate on the time series, apart from the peaks. This is due to the sMAPE
will scale errors at the peaks largely.

Point forecast

Model MSE sMAPE MASE

ARIMA 60.08 26.20 0.976
ETS 136.65 32.65 1.448
MC dropout 40.21 20.77 0.731
ForGAN 88.58 27.56 1.103

Table 5.15: The table shows the forecast error metrics for the different baselines and state-of-the-art
model, as well as the proposed ForGAN, averaged over a forecast horizon of 48 steps.

MSIS Coverage Width

Model 80% 95% 80% 95% 80% 95%

ARIMA 4.037 5.161 78.93% 96.60% 19.668 30.080
ETS 8.169 12.336 91.14% 96.80% 49.200 75.337
MC dropout 3.768 6.589 87.03% 97.18% 18.952 29.020
ForGAN 5.172 6.958 75.55% 89.91% 21.312 32.606

Table 5.16: The table shows the forecast 80% and 95% prediction interval metrics for the different
baselines and state-of-the-art model, as well as the proposed ForGAN, averaged over a forecast
horizon of 48 steps.

The prediction interval performance is shown in table 5.16. With regard to the MSIS,
the MC dropout scores best for the 80% prediction interval, and the ARIMA for the
95% prediction interval. Looking at the coverage, we see as previous tendencies, the
MC dropout overestimates the uncertainty. However, it also has the narrowest prediction
intervals, making the prediction intervals more informative. Notably, the MC dropout has
both highest coverage and narrowest prediction intervals for the 95% prediction interval,
while still score substantially worse than the ARIMA in terms of MSIS. Accordingly, the
observations not covered by the 95% prediction interval must be far from the prediction
interval boundaries. The ForGAN, while not being too far off the coverage probability,

72

underestimates the uncertainty. Further, it has wider prediction intervals than both the MC
dropout and the ARIMA, which both have higher coverage. Coupling that with the fact that
the ForGAN was not able to point forecast as accurate as the ARIMA and MC dropout, one
would suspect some sort of mode collapse where it overestimates its ability to model the
dynamics of the time series.

(a) Mean squared error (MSE) (b) Symmetric mean absolute percentage error (sMAPE)

Figure 5.12: Figures show the MSE and sMAPE as a function of the forecast horizon, computed on
the test set of the electricity consumption data set.

Figure 5.12 shows the mean squared error and symmetric mean absolute scaled error over
the forecast horizon. There is clearly a significant decline in forecast accuracy during
the first forecast steps for all models except exponential smoothing. The MSE nearly
doubles over the first two forecast horizons, whereas the sMAPE increases with about 5-7
percentage points for the three aforementioned models.

(a) 80% prediction interval coverage (b) 95% prediction interval coverage

Figure 5.13: The coverage of 80% and 95% prediction intervals over the forecast horizon, computed
on the test set of the electricity consumption data set.

73

Further we have the prediction intervals over the forecast horizon in figure 5.13. We observe
that the ForGAN seems to have sufficient coverage for the one-step-ahead forecast, however
the coverage decreases after the first forecast horizon and from there stays rather persistent.
This behavior stands out from earlier observations, where the coverage has increased over
the forecast horizon. Similar tendencies can be observed for the MC dropout, although at a
higher coverage. This behavior can be attributed to the forecast error increases drastically
during the first forecast horizon. Thus judging by the forecast horizon behavior, one can
suspect that there is an instability where errors accumulate through the recursive forecast
technique.

(a) ARIMA (b) Exponential smoothing

(c) MC dropout (d) ForGAN

Figure 5.14: Examples of the models doing out-of-sample forecasts with 80% and 95% prediction
intervals, forecasting the electricity consumption up to 48 hours ahead.

Figure 5.14 shows 1 to 48-hour forecasts on a test set, along with prediction intervals. While
the MC dropout seems to somewhat underestimate the peaks of the power consumption,
the other models rather overestimate it. In addition, the MC dropout has wide prediction
intervals at the peaks of the electricity consumption, and narrower prediction intervals
between the peaks. Conversely, the other models do not have such a noticeable change
in the prediction interval width. We also observe that the ForGAN seems to forecast the
smoothest function, similar to the previous data set, not modeling the small variations in the

74

time series. However, it is hard to observe the dramatic differences in the forecast accuracy
observed earlier. This can indicate that large fluctuations in the dynamics can affect the
performance to a large extent.

Summarizing the results presented in this section, we observe a case where the ForGAN
underestimates the uncertainty of the multi-step forecast. Conversely to the results for the
previous data sets, some of the other models are able to assess the uncertainty much better,
with higher coverage and narrower prediction intervals. This prompts for more research
related to estimate forecast uncertainty with GAN, and further improve performance.

5.6 Discussion
In this section, we will summarize and discuss the findings in the previous sections of this
chapter, as well as discuss the results against the hypotheses presented in section 4.3. We
explored the properties of generative adversarial networks when estimating a Gaussian
and a bimodal distribution, along with investigating how some hyperparameters influenced
the convergence. We have also compared the proposed ForGAN method to three different
time series models across a synthetic time series, as well as three real time series data sets
with different frequencies. Both the point forecast accuracy and the forecasted prediction
intervals have been compared, and we have investigated how the forecast horizon affects
the aforementioned quantities.

First, we confirmed that the GAN was able to estimate a Gaussian distribution, and that
the experimental setup was working correctly. The latent code dimension is a GAN
specific hyperparameter, which makes for an interesting investigation of how it affects the
performance of the GAN. The performance was explored for both the Gaussian distribution
estimation and the synthetic sine time series with Gaussian noise. We observed for the
Gaussian distribution that the performance for dimensions k = 10, k = 150, and k = 100
were fairly equivalent, whereas in the time series setting we observe a clear advantage of
using a latent code dimension of k = 100.

Contradictory to the hypothesis, smaller batch sizes of 32 or 64 have yielded better perform-
ance across all the time series. When estimating the bimodal distribution with a Wasserstein
GAN, the batch size had to be quite large to converge to a bimodal distribution. As we were
only able to get the WGAN to converge to the bimodal distribution, these findings may be
specific to the Wasserstein loss.

One of the ways to battle mode collapse is to ensure a strong discriminator D, in the terms
that it is able to distinguish real forecasts from the generated forecasts. In these experiments,
we have tried updating D multiple times each training step, with the goal of a better trained
discriminator. The optimal number of discriminator iterations have varied depending on
the remaining hyperparameters, as well as the time series. However, we have seen the best
results when Diter has been between 3 and 10, updating the parameters considerable more
than the generator.

Another measure to address mode collapse and more stable convergence is the Wasserstein
loss. For the distribution estimation, we observed that the WGAN was able to generate

75

samples from a bimodal distribution. However, in the time series forecasting setting we
were not able to obtain as good results. Although research related to Wasserstein loss
in the generative adversarial networks (Arjovsky et al. (2017), Gulrajani et al. (2017))
suggest that WGAN should indeed converge more stable, the findings in this thesis indicate
otherwise. We should not disregard the fact that the WGAN will indeed perform better
given a set of suitable hyperparameters, but for the range of hyperparameters tested in this
thesis, Wasserstein loss did not yield any better results for the forecasting task. Both weight
clipping and gradient penalty were applied, without success. Notably, Fu et al. (2019)
were able to successfully use the Wasserstein loss with weight clipping in the forecast
setting, although they did not utilize recurrent layers. There may be some incompatibility
or adjustments that has to be done in order to work for recurrent layers.

After tuning the hyperparameters in the proposed ForGAN according to performance on
a validation set, we compared the performance to two statistical baseline models and a
state-of-the-art model for estimating forecast uncertainty using neural networks. Whereas
we for the synthetic sine time series with Gaussian noise observed that the statistical models
performed most accurately, we also observed quite well performance from the ForGAN.
The coverage was sufficient, and it scored quite good with regard to the MSIS.

For the real time series data sets, the ForGAN was able to model low-frequency time
series quite well, by scoring best in terms of MSIS for both the monthly temperature in
Oslo and the weekly avocado price. It had sufficient, or close to sufficient, coverage for
most prediction intervals. However, we also observed that the coverage was too low for
the first forecast steps, and increasing over the forecast horizon for the Oslo temperature
data set. Although this is undesirable behavior, the MSIS and prediction interval width
was investigated, and revealed that it was not as problematic as we first though. For the
avocado price data set, we observed a persistent coverage over the forecast horizon. In
addition to scoring the best MSIS, the ForGAN had the highest and closest coverage to
the coverage probability. While it did not forecast the dynamics of the time series to the
full extent, none of the models were able to model it any significantly better, only the MC
dropout was slightly more accurate. This may suggest that the univariate time series is
not sufficient information to model the dynamics, and that external factors, such as the
exogenous variables provided in the data set, is necessary in order to model the time series
dynamics. Still, well-performing uncertainty estimates should have the correct coverage,
independent of the model’s ability to model the time series dynamics. The ForGAN was
clearly able to estimate the uncertainty best for the avocado price data set, with close to
sufficient coverage.

For the more high-frequency time series, the electricity consumption data set, the ForGAN
had a slight decline in the coverage over the forecast horizon. The forecast accuracy nor
the forecasted prediction intervals for the ForGAN performed as well on the electricity
consumption data set compared to the ARIMA and the state-of-the-art MC dropout. A
tendency in these observations is that the ForGAN was able to model the more low-
frequency time series better, whereas the MC dropout was able to model the high-frequency
time series more accurately.

76

Chapter 6
Conclusion and Further Work

6.1 Conclusion
The research aimed to investigate how generative adversarial networks can be used to
estimate the forecast uncertainty. The approach is inspired by related work by Koochali
et al. (2019) and Koochali et al. (2020), where the GAN successfully has been used to
estimate the forecast distribution. Theory related to how generative adversarial networks are
able to estimate distributions was presented in section 3.6, and further the GAN architecture
for time series modeling was described; the ForGAN inspired by Koochali et al. (2019).
Finally, we discussed some pitfalls of GANs related to mode collapse.

Further, this thesis has contributed with comparisons to a state-of-the-art model for estim-
ating forecast uncertainty in neural networks, as well as well-known statistical models.
We have confirmed that the GAN is able to estimate a simple distribution, using sampled
noise without a time-dependency. We further explored the behavior when introducing a
time dependency in the data, while still having a known noise distribution. We observed
that the ForGAN was able to model the noise satisfying, however, the statistical baseline
models were more accurate. This is expected behavior, as the statistical models have fewer
parameters and are able to model the relationship of this time series exact. The more
complex neural networks, with between 103 and 106 trainable parameters, will probably
model some random noise as a time-dependent dynamic.

Finally, we compared the performance on three real time series data sets across both point
accuracy metrics and metrics for assessing the quality of the 80% and the 95% prediction
intervals. The metrics used for investigating the point forecast accuracy was mean squared
error (section 3.8.1), symmetric mean absolute percentage error (section 3.8.2) and mean
absolute scaled error (section 3.8.3). The quality of the prediction intervals were explored
through the mean scaled interval score (section 3.8.5), prediction interval coverage (section
3.8.4) and prediction interval width. We observed that for some time series, the proposed

77

ForGAN produced the most accurate prediction intervals, whereas, for the high-frequency
time series, the ARIMA and MC dropout were more accurate.

The neural networks are trained to forecast one step ahead, however, we wanted to invest-
igate the uncertainty over the forecast horizon. Thus, the recursive multi-step forecasting
method (section 3.7) has been utilized. We have seen the ForGAN both increasing and
decreasing the coverage over the forecast horizon, which makes it hard to conclude that the
recursive multi-step forecasting method has a bias when propagating the forecast uncer-
tainty. The MC dropout also utilized the recursive multi-step forecast method, however,
we did not necessarily observe the same drifts in the coverage across the forecast horizon.
One might suspect that the ForGAN is sensitive to the input, and if the previous forecasted
values are not exact, the coverage might drift.

6.2 Further Work
We find the proposed ForGAN to be promising, however avoiding mode collapse is essential
to correctly estimate the uncertainty. We have seen behavior that was suspected to be related
to mode collapse, where the ForGAN was either not able to model the time series to its full
extent or the coverage was too low. As discussed in section 3.6.3, there are various ways to
address this issue. In this thesis, we have investigated the Wasserstein loss (section 3.6.4) to
address mode collapse, without observing any improved performance. Diversity-Sensitive
(Yang et al. (2019)), Boundary Equilibrium GAN (Berthelot et al. (2017)) and mixed-batch
training (Lucas et al. (2018)) are other ways to address this issue which can be adapted to
the forecasting setting.

The avocado price data set contains exogenous variables, however, we omitted them to
narrow the scope of the thesis. Using these variables in the multivariate forecasting setting,
as seen by Koochali et al. (2020), is another way to further research the use of GAN for
forecasting uncertainty. One will probably be able to model the time series dynamics, as
well as the dynamics concerning the uncertainty better.

We have trained the ForGAN to forecast one step ahead, however, it is possible to train
the GAN to forecast multiple steps ahead as discussed in section 3.7. Thus, one will
optimize the GAN to forecast the h steps ahead, and avoid problems related to small error
accumulating through the recursive multi-step forecast. The observed increase and decrease
of the coverage over the forecast horizon are further issues that can be addressed and solved
through a different multi-step forecasting technique.

In addition, we have only investigated architectures with one recurrent layer, but more com-
plex architectures can be utilized. Additional layers and improved optimizers are examples
of such improvements. More intricate framework architectures, such as Metropolis-Hastings
GAN (Turner et al. (2018)), have shown improved results in the image generating task
and can be adapted to further improve the performance of the generator in the forecasting
setting.

Regularization techniques, such as dropout and weight regularizes can reduce the model’s
tendency to overfit. We have experienced that the generator in the ForGAN performed best

78

when trained for fewer training steps than the MC dropout, suggesting that it is prone to
overfitting. The MC dropout clearly uses dropout, which can reduce overfitting, and it is
possible that the ForGAN could increase the performance when utilizing this technique.
However, as the ForGAN is a stochastic model, introducing more randomness in the model
during training will probably lead to an underestimation of the forecast distribution. We
would therefore suggest that techniques such as dropout would be applied during forecasting
as well, to avoid mode collapse.

79

80

Bibliography

Acerbi, C., Tasche, D., 2001. Expected shortfall: a natural coherent alternative to value at
risk. arXiv:cond-mat/0105191. (last accessed on 2020-06-26).

Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein gan. arXiv:1701.07875.
(last accessed on 2020-06-16).

Askanazi, R., Diebold, F.X., Schorfheide, F., Shin, M., 2018. On the Comparison of
Interval Forecasts. PIER Working Paper Archive 18-013. Penn Institute for Economic
Research, Department of Economics, University of Pennsylvania. URL: https://
ideas.repec.org/p/pen/papers/18-013.html. (last accessed on 2020-06-
18).

Berthelot, D., Schumm, T., Metz, L., 2017. Began: Boundary equilibrium generative
adversarial networks. arXiv:1703.10717. (last accessed on 2020-06-02).

Brockwell, P., Davis, R., 2016. Introduction to Time Series and Forecasting. Springer Texts
in Statistics, Springer International Publishing. URL: https://books.google.
no/books?id=P3fhDAAAQBAJ. (last accessed on 2020-06-24).

Brophy, E., Wang, Z., Ward, T.E., 2019. Quick and easy time series generation with
established image-based gans. CoRR abs/1902.05624. URL: http://arxiv.org/
abs/1902.05624, arXiv:1902.05624. (last accessed on 2020-06-10).

Chollet, F., et al., 2015. Keras. https://keras.io.

Doraiswami, R., 1977. A decision theoretic approach to parameter estimation. Automatic
Control, IEEE Transactions on 21, 860 – 866. doi:10.1109/TAC.1976.1101385.
(last accessed on 2020-06-08).

Dua, D., Graff, C., 2017. UCI machine learning repository. URL: http://archive.
ics.uci.edu/ml. (last accessed on 2020-05-10).

Esteban, C., Hyland, S.L., Rätsch, G., 2017. Real-valued (medical) time series generation
with recurrent conditional gans. arXiv:1706.02633. (last accessed on 2020-06-10).

81

http://arxiv.org/abs/cond-mat/0105191
http://arxiv.org/abs/1701.07875
https://ideas.repec.org/p/pen/papers/18-013.html
https://ideas.repec.org/p/pen/papers/18-013.html
http://arxiv.org/abs/1703.10717
https://books.google.no/books?id=P3fhDAAAQBAJ
https://books.google.no/books?id=P3fhDAAAQBAJ
http://arxiv.org/abs/1902.05624
http://arxiv.org/abs/1902.05624
http://arxiv.org/abs/1902.05624
https://keras.io
http://dx.doi.org/10.1109/TAC.1976.1101385
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1706.02633

Fildes, R., Armstrong, J., 1979. Long-range forecasting: From crystal ball to computer.
The Journal of the Operational Research Society 30, 673. doi:10.2307/3009390.
(last accessed on 2020-06-02).

Frazier, P.I., 2018. A tutorial on bayesian optimization. arXiv:1807.02811. (last
accessed on 2020-06-08).

Frogner, C., Zhang, C., Mobahi, H., Araya-Polo, M., Poggio, T., 2015. Learning with a
wasserstein loss. arXiv:1506.05439. (last accessed on 2020-06-16).

Fu, R., Chen, J., Zeng, S., Zhuang, Y., Sudjianto, A., 2019. Time series simulation
by conditional generative adversarial net. arXiv:1904.11419. (last accessed on
2020-06-10).

Gal, Y., Ghahramani, Z., 2015. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning, in: ICML. (last accessed on 2020-05-30).

Glosser.ca, 2019. Artificial neural network. URL: https://commons.wikimedia.
org/w/index.php?curid=24913461. (last accessed on 2020-01-10).

Gneiting, T., Raftery, A.E., 2007. Strictly proper scoring rules, pre-
diction, and estimation. Journal of the American Statistical As-
sociation 102, 359–378. URL: https://doi.org/10.1198/
016214506000001437, doi:10.1198/016214506000001437,
arXiv:https://doi.org/10.1198/016214506000001437. (last accessed
on 2020-06-14).

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y., 2014. Generative adversarial networks. arXiv:1406.2661.
(last accessed on 2020-06-21).

Gorti, S.K., Ma, J., 2018. Text-to-image-to-text translation using cycle consistent adversarial
networks. CoRR abs/1808.04538. URL: http://arxiv.org/abs/1808.04538,
arXiv:1808.04538. (last accessed on 2020-05-14).

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A., 2017. Improved
training of wasserstein gans. arXiv:1704.00028. (last accessed on 2020-06-16).

Hass Avocado Board, 2018. Avocado price. URL: https://www.kaggle.com/
neuromusic/avocado-prices. (last accessed on 2019-10-12).

Hewamalage, H., Bergmeir, C., Bandara, K., 2019. Recurrent neural networks for time
series forecasting: Current status and future directions. arXiv:1909.00590. (last
accessed on 2020-06-10).

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural computation 9,
1735–80. doi:10.1162/neco.1997.9.8.1735. (last accessed on 2020-06-27).

Holt, C.C., 2004. Forecasting seasonals and trends by exponentially weighted moving
averages. International Journal of Forecasting 20, 5 – 10. URL: http://www.
sciencedirect.com/science/article/pii/S0169207003001134,

82

http://dx.doi.org/10.2307/3009390
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1506.05439
http://arxiv.org/abs/1904.11419
https://commons.wikimedia.org/w/index.php?curid=24913461
https://commons.wikimedia.org/w/index.php?curid=24913461
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1198/016214506000001437
http://arxiv.org/abs/https://doi.org/10.1198/016214506000001437
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1808.04538
http://arxiv.org/abs/1808.04538
http://arxiv.org/abs/1704.00028
https://www.kaggle.com/neuromusic/avocado-prices
https://www.kaggle.com/neuromusic/avocado-prices
http://arxiv.org/abs/1909.00590
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.sciencedirect.com/science/article/pii/S0169207003001134
http://www.sciencedirect.com/science/article/pii/S0169207003001134

doi:https://doi.org/10.1016/j.ijforecast.2003.09.015. (last
accessed on 2020-06-12).

Holton, G., 2014. Value-at-risk: Theory and practice second edition, e-book. URL:
https://www.value-at-risk.net/. (last accessed on 2020-06-26).

Husein, A., Arsyal, M., Sinaga, S., Syahputa, H., 2019. Generative adversarial networks
time series models to forecast medicine daily sales in hospital. SinkrOn 3, 112–118.
URL: https://jurnal.polgan.ac.id/index.php/sinkron/article/
view/10044, doi:10.33395/sinkron.v3i2.10044. (last accessed on 2020-06-
10).

Hyndman, R., Athanasopoulos, G., 2018. Forecasting: principles and practice, 2nd edition.
OTexts: Melbourne, Australia. URL: https://otexts.com/fpp2. (last accessed
on 2020-06-02).

Hyndman, R., Koehler, A., Ord, K., Snyder, R., 2008. Forecasting with exponential
smoothing. The state space approach. doi:10.1007/978-3-540-71918-2. (last
accessed on 2020-06-25).

Hyndman, R.J., Koehler, A.B., 2006. Another look at measures of forecast accur-
acy. International Journal of Forecasting 22, 679 – 688. URL: http://www.
sciencedirect.com/science/article/pii/S0169207006000239,
doi:https://doi.org/10.1016/j.ijforecast.2006.03.001. (last
accessed on 2020-06-02).

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR abs/1502.03167. URL: http://arxiv.
org/abs/1502.03167, arXiv:1502.03167. (last accessed on 2020-06-02).

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T., 2019. Analyzing
and improving the image quality of stylegan. arXiv:1912.04958. (last accessed on
2020-05-25).

Kingma, D., Ba, J., 2014. Adam: A method for stochastic optimization. International
Conference on Learning Representations arXiv:1412.6980.

Koochali, A., Dengel, A., Ahmed, S., 2020. If you like it, gan it. probabilistic multivariate
times series forecast with gan. arXiv:2005.01181. (last accessed on 2020-06-15).

Koochali, A., Schichtel, P., Dengel, A., Ahmed, S., 2019. Probabilistic forecasting of
sensory data with generative adversarial networks – forgan. IEEE Access PP, 1–1.
doi:10.1109/ACCESS.2019.2915544. (last accessed on 2020-06-20).

Liashchynskyi, P., Liashchynskyi, P., 2019. Grid search, random search, genetic algorithm:
A big comparison for nas. arXiv:1912.06059. (last accessed on 2020-06-08).

Lucas, T., Tallec, C., Verbeek, J., Ollivier, Y., 2018. Mixed batches and symmetric
discriminators for gan training. arXiv:1806.07185. (last accessed on 2020-06-18).

Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O., 2017. Are gans created
equal? a large-scale study. arXiv:1711.10337. (last accessed on 2020-06-08).

83

http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2003.09.015
https://www.value-at-risk.net/
https://jurnal.polgan.ac.id/index.php/sinkron/article/view/10044
https://jurnal.polgan.ac.id/index.php/sinkron/article/view/10044
http://dx.doi.org/10.33395/sinkron.v3i2.10044
https://otexts.com/fpp2
http://dx.doi.org/10.1007/978-3-540-71918-2
http://www.sciencedirect.com/science/article/pii/S0169207006000239
http://www.sciencedirect.com/science/article/pii/S0169207006000239
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2006.03.001
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2005.01181
http://dx.doi.org/10.1109/ACCESS.2019.2915544
http://arxiv.org/abs/1912.06059
http://arxiv.org/abs/1806.07185
http://arxiv.org/abs/1711.10337

Makridakis, S., Hibon, M., 2000. The m3-competition: results, conclusions and
implications. International Journal of Forecasting 16, 451 – 476. URL: http://www.
sciencedirect.com/science/article/pii/S0169207000000571,
doi:https://doi.org/10.1016/S0169-2070(00)00057-1. (last accessed
on 2020-06-12).

Makridakis, S., Spiliotis, E., Assimakopoulos, V., 2020. The m4 competition:
100,000 time series and 61 forecasting methods. International Journal of Fore-
casting 36, 54 – 74. URL: http://www.sciencedirect.com/science/
article/pii/S0169207019301128, doi:https://doi.org/10.1016/j.
ijforecast.2019.04.014. (last accessed on 2020-06-10).

Mani, K., 2019a. Lstm cell. URL: https://towardsdatascience.com/
grus-and-lstm-s-741709a9b9b1. (last accessed on 2020-01-10).

Mani, K., 2019b. Rnn cell. URL: https://towardsdatascience.com/
grus-and-lstm-s-741709a9b9b1. (last accessed on 2020-01-10).

Meteorologisk Institutt (MET) , 2019. Oslo mean temperature. URL:
https://wiki.math.ntnu.no/lib/exe/fetch.php?tok=5deb8a&
media=https%3A%2F%2Fwww.math.ntnu.no%2Femner%2FTMA4285%
2F2019h%2Fpdf%2Fdata.xlsx. (last accessed on 2019-10-12).

Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets.
arXiv:1411.1784. (last accessed on 2020-06-10).

N. Srivastava, G. E. Hinton, A.K.I.S., Salakhutdinov, R., 2014. Dropout: A simple way
to prevent neural networks from overfitting URL: http://jmlr.org/papers/
volume15/srivastava14a.old/srivastava14a.pdf. (last accessed on
2020-05-25).

NASA Earth Observatory, 2002. Weather forecasting through the ages. URL: https:
//earthobservatory.nasa.gov/features/WxForecasting/wx2.php.
(last accessed on 2020-05-07).

Opland, M., 2020. Forecasting uncertainty in neural networks with dropout. URL: http:
//folk.ntnu.no/mathiaop/. (last accessed on 2020-06-26).

Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv:1511.06434. (last accessed
on 2020-06-02).

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning Representations by Back-
propagating Errors. Nature 323, 533–536. URL: http://www.nature.com/
articles/323533a0, doi:10.1038/323533a0. (last accessed on 2020-06-25).

Santurkar, S., Tsipras, D., Ilyas, A., Madry, A., 2018. How does batch normalization help
optimization? arXiv:1805.11604. (last accessed on 2020-06-02).

Schmidhuber, J., 1990. Making the world differentiable: On using fully recurrent
self-supervised neural networks for dynamic reinforcement learning and planning in

84

http://www.sciencedirect.com/science/article/pii/S0169207000000571
http://www.sciencedirect.com/science/article/pii/S0169207000000571
http://dx.doi.org/https://doi.org/10.1016/S0169-2070(00)00057-1
http://www.sciencedirect.com/science/article/pii/S0169207019301128
http://www.sciencedirect.com/science/article/pii/S0169207019301128
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014
https://towardsdatascience.com/grus-and-lstm-s-741709a9b9b1
https://towardsdatascience.com/grus-and-lstm-s-741709a9b9b1
https://towardsdatascience.com/grus-and-lstm-s-741709a9b9b1
https://towardsdatascience.com/grus-and-lstm-s-741709a9b9b1
https://wiki.math.ntnu.no/lib/exe/fetch.php?tok=5deb8a&media=https%3A%2F%2Fwww.math.ntnu.no%2Femner%2FTMA4285%2F2019h%2Fpdf%2Fdata.xlsx
https://wiki.math.ntnu.no/lib/exe/fetch.php?tok=5deb8a&media=https%3A%2F%2Fwww.math.ntnu.no%2Femner%2FTMA4285%2F2019h%2Fpdf%2Fdata.xlsx
https://wiki.math.ntnu.no/lib/exe/fetch.php?tok=5deb8a&media=https%3A%2F%2Fwww.math.ntnu.no%2Femner%2FTMA4285%2F2019h%2Fpdf%2Fdata.xlsx
http://arxiv.org/abs/1411.1784
http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
https://earthobservatory.nasa.gov/features/WxForecasting/wx2.php
https://earthobservatory.nasa.gov/features/WxForecasting/wx2.php
http://folk.ntnu.no/mathiaop/
http://folk.ntnu.no/mathiaop/
http://arxiv.org/abs/1511.06434
http://www.nature.com/articles/323533a0
http://www.nature.com/articles/323533a0
http://dx.doi.org/10.1038/323533a0
http://arxiv.org/abs/1805.11604

non-stationary environments. URL: http://people.idsia.ch/˜juergen/
FKI-126-90_(revised)bw_ocr.pdf. (last accessed on 2020-05-23).

Schmidhuber, J., 1991a. Learning factorial codes by predictability min-
imization. URL: http://people.idsia.ch/˜juergen/FKI-126-90_
(revised)bw_ocr.pdf. (last accessed on 2020-05-23).

Schmidhuber, J., 1991b. A possibility for implementing curiosity and boredom in model-
building neural controllers, in: J. A. Meyer and S. W. Wilson, editors, Proc. of the
International Conference on Simulation of Adaptive Behavior: From Animals to Animats,
pages 222–227., MIT Press/Bradford Books. (last accessed on 2020-05-23).

Schmidhuber, J., 2019. Generative adversarial networks are special cases of artifi-
cial curiosity (1990) and also closely related to predictability minimization (1991).
arXiv:1906.04493. (last accessed on 2020-05-23).

Seabold, S., Perktold, J., 2010. Statsmodels: Econometric and statistical modeling with
python, in: 9th Python in Science Conference.

Sezer, O.B., Gudelek, M.U., Ozbayoglu, A.M., 2019. Financial time series forecasting
with deep learning : A systematic literature review: 2005-2019. arXiv:1911.13288.
(last accessed on 2020-05-25).

Smith, T.G., et al., 2017-. pmdarima: Arima estimators for Python. URL: http://www.
alkaline-ml.com/pmdarima.

Smyl, s., R.J., Pasqua, A., 2018. M4 forecasting competition: Intro-
ducing a new hybrid es-rnn model. URL: https://eng.uber.com/
m4-forecasting-competition/. (last accessed on 2020-06-10).

Steinwart, I., Christmann, A., 2011. Estimating conditional quantiles with the help of
the pinball loss. Bernoulli 17, 211–225. URL: http://dx.doi.org/10.3150/
10-BEJ267, doi:10.3150/10-bej267. (last accessed on 2020-06-10).

Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., Ortega-Garcia, J.,
2020. Deepfakes and beyond: A survey of face manipulation and fake detection.
arXiv:2001.00179. (last accessed on 2020-05-25).

Tsay, R.S., 2000. Time series and forecasting: Brief history and future research. Journal of
the American Statistical Association 95, 638–643. URL: http://www.jstor.org/
stable/2669408. (last accessed on 2020-06-20).

Turner, R., Hung, J., Frank, E., Saatci, Y., Yosinski, J., 2018. Metropolis-hastings generative
adversarial networks. arXiv:1811.11357. (last accessed on 2020-06-18).

Wang, P., 2019. https://thispersondoesnotexist.com/. (last accessed on 2020-05-25).

Winters, P.R., 1960. Forecasting sales by exponentially weighted mov-
ing averages. Management Science 6, 324–342. URL: https://
doi.org/10.1287/mnsc.6.3.324, doi:10.1287/mnsc.6.3.324,
arXiv:https://doi.org/10.1287/mnsc.6.3.324. (last accessed on
2020-06-18).

85

http://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf
http://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf
http://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf
http://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf
http://arxiv.org/abs/1906.04493
http://arxiv.org/abs/1911.13288
http://www.alkaline-ml.com/pmdarima
http://www.alkaline-ml.com/pmdarima
https://eng.uber.com/m4-forecasting-competition/
https://eng.uber.com/m4-forecasting-competition/
http://dx.doi.org/10.3150/10-BEJ267
http://dx.doi.org/10.3150/10-BEJ267
http://dx.doi.org/10.3150/10-bej267
http://arxiv.org/abs/2001.00179
http://www.jstor.org/stable/2669408
http://www.jstor.org/stable/2669408
http://arxiv.org/abs/1811.11357
https://doi.org/10.1287/mnsc.6.3.324
https://doi.org/10.1287/mnsc.6.3.324
http://dx.doi.org/10.1287/mnsc.6.3.324
http://arxiv.org/abs/https://doi.org/10.1287/mnsc.6.3.324

Yang, D., Hong, S., Jang, Y., Zhao, T., Lee, H., 2019. Diversity-sensitive conditional
generative adversarial networks. arXiv:1901.09024. (last accessed on 2020-05-
10).

Yao, Z., Gholami, A., Arfeen, D., Liaw, R., Gonzalez, J., Keutzer, K., Mahoney, M., 2018.
Large batch size training of neural networks with adversarial training and second-order
information. arXiv:1810.01021. (last accessed on 2020-06-18).

Yoon, J., Jarrett, D., van der Schaar, M., 2019. Time-series generative adversarial
networks, in: Wallach, H., Larochelle, H., Beygelzimer, A., d Alché-Buc, F., Fox,
E., Garnett, R. (Eds.), Advances in Neural Information Processing Systems 32. Cur-
ran Associates, Inc., pp. 5508–5518. URL: http://papers.nips.cc/paper/
8789-time-series-generative-adversarial-networks.pdf. (last ac-
cessed on 2020-06-10).

Zhang, K., Zhong, G., Dong, J., Wang, S., Wang, Y., 2019. Stock market
prediction based on generative adversarial network. Procedia Computer Sci-
ence 147, 400 – 406. URL: http://www.sciencedirect.com/science/
article/pii/S1877050919302789, doi:https://doi.org/10.1016/j.
procs.2019.01.256. 2018 International Conference on Identification, Information
and Knowledge in the Internet of Things. (last accessed on 2020-06-10).

Zhou, X., Pan, Z., Hu, G., Tang, S., Zhao, C., 2018. Stock market prediction on high-
frequency data using generative adversarial nets. Mathematical Problems in Engineering
2018, 1–11. doi:10.1155/2018/4907423. (last accessed on 2020-06-10).

Zhu, J., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks. CoRR abs/1703.10593. URL: http:
//arxiv.org/abs/1703.10593, arXiv:1703.10593. (last accessed on 2020-
05-14).

Zhu, L., Laptev, N., 2017. Deep and confident prediction for time series at uber. 2017 IEEE
International Conference on Data Mining Workshops (ICDMW) URL: http://dx.
doi.org/10.1109/ICDMW.2017.19, doi:10.1109/icdmw.2017.19. (last
accessed on 2020-06-10).

86

http://arxiv.org/abs/1901.09024
http://arxiv.org/abs/1810.01021
http://papers.nips.cc/paper/8789-time-series-generative-adversarial-networks.pdf
http://papers.nips.cc/paper/8789-time-series-generative-adversarial-networks.pdf
http://www.sciencedirect.com/science/article/pii/S1877050919302789
http://www.sciencedirect.com/science/article/pii/S1877050919302789
http://dx.doi.org/https://doi.org/10.1016/j.procs.2019.01.256
http://dx.doi.org/https://doi.org/10.1016/j.procs.2019.01.256
http://dx.doi.org/10.1155/2018/4907423
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593
http://dx.doi.org/10.1109/ICDMW.2017.19
http://dx.doi.org/10.1109/ICDMW.2017.19
http://dx.doi.org/10.1109/icdmw.2017.19

Appendix

Link to GitHub repository containing code used to run the experiments in this thesis
https://github.com/mattaop/ForGan/tree/Release/1.0.

Hyperparameters Value
Type of cells in the Generators first layer Dense
Type of cells in the Discriminators first layer Dense
Number of nodes per layer in Generator 16
Number of nodes per layer in Discriminator 64
Latent code dimension 100
Training iterations 2000
Batch size 32
Learning rate 0.0005
Discriminator iterations per training iteration 3

Table A1: Hyperparameters used for distribution estimation with GAN unless otherwise specified.

Hyperparameters Value
Type of cells in the Generators first layer Dense
Type of cells in the Discriminators first layer Dense
Number of nodes per layer in Generator 16
Number of nodes per layer in Discriminator 64
Latent code dimension 100
Training iterations 3000
Batch size 1024
Learning rate 0.002
Discriminator iterations per generator epoch 3

Table A2: Hyperparameters used for bimodal distribution estimation with GAN and WGAN.

87

https://github.com/mattaop/ForGan/tree/Release/1.0

Hyperparameters Value
Type of cells in the Generators first layer SimpleRNN
Type of cells in the Discriminators first layer SimpleRNN
Number of nodes per layer in Generator 16
Number of nodes per layer in Discriminator 64
Latent code dimension 100
Training iterations 5000
Batch size 32
Learning rate 0.0001
Discriminator iterations per generator iteration 5
Condition window length 24

Table A3: Hyperparameters used for the ForWGAN estimating the sine data.

Hyperparameters Value
Type of cells in the first layer RNN
Number of nodes per layer 64
Number of layers 3
Training iterations 32062 (2000 epochs)
Batch size 64
Learning rate 0.001
Optimizer Adam
Dropout rate 0.4
Activation function first layer tanh
Activation function second layer ReLU
Activation function last layer Linear
Loss MSE

Table A4: Hyperparameters used for MC dropout model for forecasting on sine data.

Hyperparameters Value
Type of cells in the first layer RNN
Number of nodes per layer 64
Number of layers 3
Training iterations 5406 (500 epochs)
Batch size 64
Learning rate 0.001
Optimizer Adam
Dropout rate 0.4
Activation function first layer tanh
Activation function second layer ReLU
Activation function last layer Linear
Condition window length 24

Table A5: Hyperparameters used for MC dropout model for forecasting on Oslo temperature data set.

88

Hyperparameters Value
Type of cells in the first layer RNN
Number of nodes per layer 64
Number of layers 3
Training iterations 8184 (50 epochs)
Batch size 64
Learning rate 0.0001
Optimizer Adam
Dropout rate 0.4
Activation function first layer tanh
Activation function second layer ReLU
Activation function last layer Linear
Condition window length 26

Table A6: Hyperparameters used for MC dropout model for forecasting on avocado price data set.

Hyperparameters Value
Type of cells in the first layer RNN
Number of nodes per layer 64
Number of layers 3
Training iterations 8859 (500 epochs)
Batch size 64
Learning rate 0.0001
Optimizer Adam
Dropout rate 0.4
Activation function first layer tanh
Activation function second layer ReLU
Activation function last layer Linear
Condition window length 168

Table A7: Hyperparameters used for MC dropout model for forecasting on electricity consumption
data set.

89

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Mathias Opland

Forecast Uncertainty for Univariate
Time Series Using Generative
Adversarial Networks

Master’s thesis in Applied Physics and Mathematics

Supervisor: Erlend Aune

June 2020

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research Questions

	Literature Review
	Forecast Uncertainty
	Classical Models
	Deep Neural Networks
	State of the Art

	Generative Adversarial Networks
	Forecasting with Generative Adversarial Networks
	Forecast uncertainty with Generative Adversarial Networks

	Theory
	Forecasting
	Naive Forecast
	Average Forecast
	Trend
	Seasonality

	Exponential Smoothing
	State Space Formulation
	Prediction Uncertainty in Exponential Smoothing
	Model Selection with AICc

	ARIMA
	Forecasting with ARIMA Models
	Prediction Uncertainty in ARIMA Models

	Neural Networks
	Simple Recurrent Neural Networks
	Long Short-Term Memory

	Monte Carlo Dropout in Neural Networks
	Dropout
	Prediction Uncertainty in Neural Networks

	Generative Adversarial Networks
	Conditional Generative Adversarial Networks
	Forecasting with Generative Adversarial Networks
	Mode Collapse
	Wasserstein Generative Adversarial Networks
	Hyperparameter Tuning in Generative Adversarial Networks

	Recursive Multi-Step Forecast
	Performance Metrics
	Mean Squared Error
	Symmetric Mean Absolute Percentage Error
	Mean Absolute Scaled Error
	Prediction Interval Coverage
	Mean Scaled Interval Score
	Kullback-Leibler Divergence
	Jensen-Shannon Divergence

	Experimental Setup
	Data
	Data Processing
	Distribution Estimation
	Sine Curve with Gaussian Noise
	Oslo Temperature Data Set
	Avocado Price Data Set
	Electricity Consumption Data Set

	Models
	Baseline Models
	Generative Adversarial Networks
	Monte Carlo Forecasting

	Hypotheses

	Results and Discussion
	Distribution Estimation
	Gaussian Distribution
	Bimodal Distribution

	Sine Curve with Gaussian Noise
	Choosing Models for Comparison
	Results

	Oslo Temperature Data Set
	Choosing Models for Comparison
	Results

	Avocado Price Data Set
	Choosing Models for Comparison
	Results

	Electricity Consumption Data Set
	Choosing Models for Comparison
	Results

	Discussion

	Conclusion and Further Work
	Conclusion
	Further Work

	Bibliography
	Appendix

