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Abstract

The Integrated Nested Laplace Approximation (INLA) is a deterministic approach
to Bayesian inference on latent Gaussian models (LGMs) and focuses on fast and
accurate approximation of posterior marginals for the parameters in the models.
In practice, applications of INLA are limited to the class of models implemented
in the R package R-INLA. Recently, methods have been developed to extend this
class of models to those that can be expressed as conditional LGMs by fixing some
of the parameters in the models to descriptive values. These methods differ in the
manner descriptive values are chosen. This thesis considers the three following
INLA within Monte Carlo methods: Markov chain Monte Carlo (MCMC) with INLA,
importance sampling (IS) with INLA, and a novel approach that combines INLA
and the adaptive multiple importance sampling (AMIS) algorithm.

This thesis compares the INLA within Monte Carlo methods on a series of ap-
plications with simulated and observed datasets and evaluates their performance
based on accuracy, efficiency, and robustness. The implementation of the meth-
ods are validated by exact posteriors in a simple bivariate linear model and tested
on a spatial autoregressive combined model. Then, it presents a new approach to
Bayesian quantile regression using AMIS with INLA, which is verified in a simu-
lation study and applied to two observed datasets. Also, this thesis attempts to
approximate the posteriors in a Gamma frailty model using AMIS with INLA.

The examples show that the AMIS with INLA approach, in general, outper-
formed the other methods on more complex models, but the IS with INLA al-
gorithm could be considered for faster inference when good proposals are avail-
able. Also, the Bayesian quantile regression approach produced promising quantile
curves in the simulation study, and the applications present a small portion of the
large class of models that are facilitated through INLA for this type of quantile
regression. In addition, the AMIS with INLA algorithm produced accurate posteri-
ors in the Gamma frailty model with few clusters but attained a slight bias for a
higher number of dimensions in the AMIS algorithm.
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Sammendrag

Integrated Nested Laplace Approximations (INLA) er en deterministisk metode for
å oppnå bayesiansk inferens på latente gaussiske modeller (LGMer) og fokuserer
på raske og nøyaktige approksimasjoner av marginale posteriori-fordelinger for
parametrene i en modell. I praksis er applikasjonene av INLA begrenset til de mod-
ellene som er implementert i R pakken R-INLA. I senere år har det blitt utviklet
flere metoder for å utvide disse modellene til de som kan uttrykkes som betingede
LGMer ved å fiksere noen av parameterne i modellen til beskrivende verdier. Met-
odene er forskjellige i hvordan de velger disse beskrivende verdiene. Denne opp-
gaven betrakter de tre følgende INLA med Monte Carlo-metodene: Markov chain
Monte Carlo (MCMC) med INLA, importance sampling (IS) med INLA, og en ny
metode som kombinerer INLA og adaptive multiple importance sampling (AMIS).

Denne masteroppgaven sammenligner INLA med Monte Carlo-metodene på
flere applikasjoner med simulerte og observerte datasett, og vurderer deres ytelse
basert på nøyaktighet, effektivitet og robusthet. Implementeringen av metodene
er validert av eksakte posteriori-estimater i en enkel bivariat lineær modell og
testet på en romlig autoregressiv kombinert modell. Deretter presenterer den en
ny tilnærming til bayesiansk kvantileregresjon ved bruk av AMIS med INLA, som
er evaluert i en simuleringsstudie og anvendt på to observerte datasett. Denne op-
pgaven prøver også å approksimere posteriori-verdier i en Gamma frailty modell
ved å bruke AMIS med INLA.

Resultatene fra eksemplene indikerer at AMIS med INLA-metoden generelt
gjorde det bedre enn de andre metodene på mer komplekse modeller, men IS med
INLA-algoritmen kan vurderes for raskere inferens når det er lett å velge forslags-
fordeling. Den bayesianske kvantileregresjonen produserte lovende kvantilekur-
ver i simuleringsstudien, og applikasjonene på observerte datasett presenterer en
liten del av alle modellene som er tilgjengelig gjennom INLA for denne typen
for kvantileregresjon. I tillegg produserte AMIS med INLA-algoritmen nøyaktige
posterioreri-resultater i Gamma frailty modellen med få grupper, men viste en viss
grad av bias for et større antall dimensjoner i AMIS.
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Chapter 1

Introduction

In the realm of Bayesian inference, there is no distinction between unknown
quantities, and all are considered random variables. Prior knowledge about the
phenomenon being modeled allows us to formulate prior distributions and like-
lihood functions relating the unknown quantities to observations, and inference
is based on the posterior distribution obtained from Bayes’ theorem. A large and
frequently used model in Bayesian inference is hierarchical models.

The most common approach to inference on hierarchical models is Markov
chain Monte Carlo (MCMC, Gilks et al., 1996). The technique constructs Markov
chains with posteriors of interest as limiting distribution, and provides arbitrarily
accurate results, depending on the number of posterior samples. However, wide-
spread and revolutionary, MCMC has its drawbacks. The process requires a lot of
CPU-time, and there is no great way to run computations in parallel. Also, the
manual tweaking of model parameters and subsequent re-running of simulation
to achieve convergence of the Markov chain, sum up to an underestimated time
investment in view of the applied user.

An alternative well-known Monte Carlo technique is the class of importance
sampling (IS, Robert et al., 2004) methods. The standard IS technique draws
samples from a single proposal distribution and assigns them weights according
to the dissimilarity between the target and the proposal distribution, and the per-
formance of the IS methods highly depends on the choice of proposal distributions.
In general, inference on hierarchical models using IS is relatively challenging be-
cause of the usually high dimensional target distributions. Several advanced IS
methods have been proposed to produce more robust algorithms. One effective
approach is to employ a population of proposal distributions, namely multiple
importance sampling (MIS, Elvira et al., 2019), which avoids entrusting the per-
formance of the algorithm to one single proposal distribution. Another effective
method is to gradually increase the performance of the algorithm by sequentially
adapting the proposal distribution to more accurately approximate the target dis-
tribution. This leads to the concept of adaptive IS (AIS; Bugallo et al., 2017) and,
furthermore, employing the population of adapted proposal distribution outlines
the promising strategy called adaptive multiple IS (AMIS, Corneut et al., 2012).

1



2 Berild: INLA within MC

Rue et al. (2009) introduced a deterministic approach to approximate Bayesian
inference for hierarchical models that can be represented as latent Gaussian mod-
els (LGMs). This new approach, called the integrated nested Laplace approxima-
tion (INLA), focuses on approximating the posterior marginals, and it is argued
to outperform MCMC methods in both accuracy and speed (Rue et al., 2009).
The INLA approach is implemented in the R package R-INLA, and is available
at http://www.r-inla.org (Rue, 2020). In practice, fitting models with INLA is
restricted to the class of models available in R-INLA, as the implementation of
INLA is a demanding process. The framework allows for some user-defined mod-
els, but there are models and task that falls outside the scope of R-INLA. INLA is
not able to provide joint inference on the unknown parameters, nor does it handle
missing values in the covariates, and it can’t have non-additive terms in the linear
predictor.

Several methods have been proposed in the literature that fixes one or multiple
unknown parameters in the model to representative values so that the conditional
models can be fit with R-INLA. These methods differ in the way representative
values are found. Li et al. (2012) fixed some of the parameters to their maximum
likelihood estimates, thereby fitting models conditioned on the parameter estim-
ates with R-INLA. However, this method ignores the uncertainty about the fixed
parameters and does not produce inference about them.

Bivand et al. (2014), Bivand et al. (2015a) proposed a different method of
constructing a grid on some of the parameters and fitting multiple models with
R-INLA conditioned on the individual grid points. Inference about the parameters
in the grid is achieved using the conditional marginal likelihoods approximated
with INLA, and the prior distribution of the parameters. It is thereby constructing
a weighted grid that can be normalized with numerical integration. The posterior
marginals of the remaining parameters are obtained with Bayesian model aver-
aging (BMA, Hoeting et al., 1999) using the conditional posterior marginals from
the fitted models.

Recently, authors have proposed to generate these representative values using
Monte Carlo techniques; thus, combining INLA and Monte Carlo methods, and
we will refer to them in collection by the umbrella term INLA within Monte Carlo
methods. Gómez-Rubio et al. (2018) proposed the use of Markov chain Monte
Carlo techniques to generate samples from the posterior distribution of some of
the parameters in the model, and apply INLA to fit the models conditioned on
the generated samples. Similarly, Gómez-Rubio (2019) proposed the use of INLA
within importance sampling, resulting in a more efficient sampling strategy than
MCMC with INLA if provided with a suitable proposal distribution. However, find-
ing a such distribution might be difficult in more complex models. For this reason,
following the recent developments within importance sampling, we propose a
novel approach based on the adaptive multiple importance sampling method.

The work presented in this thesis is a continuation of our specialization project
(Berild, 2020). Therefore the theoretical development and implementation of the
methods have carried over, and some code and parts of this thesis are similar.

http://www.r-inla.org
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1.1 Goals and structure

This thesis aims to give an introduction to the theory behind, and development
of, the combined INLA and Monte Carlo approaches, with the core of the focus
on the novel AMIS with INLA methodology. We aim to compare the INLA within
Monte Carlo methods on efficiency, robustness, and accuracy, and to justify our
implementations empirically by comparing the approximations to exact inference
methods. Next, we aim to extend the set of models that can be fit through the R-

INLA package, and introduce a novel application for Bayesian quantile regression.
In addition, we present an application of the AMIS with INLA algorithm on a
Gamma frailty model, testing the capabilities of the algorithm.
The thesis is divided into the following parts:

Chapter 2 establishes the overall theory behind all components in the com-
bined approaches. It contains a simple introduction to Bayesian inference, and
the class of models we consider in this thesis. The chapter also describes three
simulation-based inference methods, MCMC, IS, and AMIS, and the approximate
inference method INLA, with comments on their advantages and drawbacks.

Chapter 3 presents the INLA within Monte Carlo methods; MCMC with INLA
(Gómez-Rubio et al., 2018), IS with INLA (Gómez-Rubio, 2019), and introduces
the novel AMIS with INLA algorithm. Initially, we describe the approximation of
conditional models in INLA, the combination of these approximations to obtain
unconditional posteriors, and the general type of models compatible with the com-
bined approaches. Then, we detail our implementation of the three methods and
sketch them in pseudo-code.

Chapter 4 contains a collection of applications of the combined approaches.
First, we consider a bivariate linear model, where we present the behavior of
each algorithm and compare their approximations to exact posteriors. Next, we
consider the spatial autoregressive combined model, comparing the results to the
posteriors obtained with an MCMC algorithm. Then, we introduce a novel model-
aware Bayesian quantile regression based on the INLA within Monte Carlo meth-
ods, focusing on the AMIS with INLA approach. Lastly, we attempt to approximate
a Gamma frailty model for different number of clusters using AMIS with INLA.

Chapter 5 sum up the results presented in the thesis, discussing the methods
advantages or drawbacks. In addition, it indicates some future applications and
research.

1.2 Implementation

The INLA is only available through the R package R-INLA, so the conditional
models are fit using its toolbox and, consequently, we use the programming lan-
guage R in our implementations. The INLA within MCMC algorithm is available
in the package INLABMA, but we have chosen to implement our function to have
more control over input, output, and flow, which allows us to better compare
the methods. For the AMIS with INLA and IS with INLA algorithms, there are
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no available tools, so their functions were implemented from scratch, and par-
allel computations are added wherever possible using the parallel package. In
all simulations, a CPU with a total of 10 cores is used. All our implementations
of the algorithms, models, and experiments are publicly available in the GitHub
repository (https://github.com/berild/master-thesis-code).

https://github.com/berild/master-thesis-code


Chapter 2

Bayesian Inference

In this chapter, the relevant inference methods and model architecture needed to
develop the combined approaches in Chapter 3 are presented.

The Bayesian approach to inference assumes that the parameters of the model
are random, and that predictive and parametric inference is achieved by updating
our beliefs about the parameters in light of newly acquired information (Bernardo
et al., 2000). Let us denote the parameter of interest x; for example, the effect
of some covariate on response y . The core of Bayesian inference is to obtain the
posterior distribution as a synthesis of our knowledge about the parameter of
interest before observing the data, the prior distribution with density π(x), and
the likelihood function or conditional distribution of y given the effects π(y | x),
obtained from some model about the observed data. The relationship between
these densities expressing the posterior density is called Bayes’ rule:

π(x | y) =
π(x , y)
π(y)

=
π(y | x)π(x)

π(y)

=
π(y | x)π(x)

∫

π(y | x)π(x)dx
.

(2.1)

Here, π(y) is the marginal likelihood which sometimes is referred to as the nor-
malizing constant, and can be computed using the law of total probability, integ-
ratingπ(y |x)π(x) over all possible values of x . In general, the marginal likelihood
can be hard to obtain; however, since it is not dependent on x , and is constant,
many Bayesian inference methods employs Bayes’ rule (2.1) in its unnormalized
form:

π(x | y)∝ π(y | x)p(x).

5
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2.1 Bayesian hierarchical models

The models we regard in this paper are of a hierarchical structure split into three
stages. These models occur when the diversity of the prior information or the
variability of the observations requires the introduction of several levels of prior
distributions (Robert et al., 2004).

Let us consider n observations y = (y1, y2, ..., yn), where we define a like-
lihood model, conditioned on some latent variables x and hyperparameters θ1
as

Stage 1: y | x ,θ1 ∼ π(y | x ,θ1).

This defines the first stage of our model. Furthermore, the set of latent variables
given some hyperparameters θ2 is distributed according to

Stage 2: x | θ2 ∼ π(x | θ2),

and forms the seconds stage. To complete the hierarchical structure the third and
last stage is to assign the hyperparameters, θ = (θ1,θ2) appropriate priors

Stage 3: θ ∼ π(θ ).

2.1.1 Additive Latent Gaussian models

A special class of Bayesian hierarchical models is the family of Latent Gaussian
models (LGMs). These hold the necessary properties that are required by the ap-
proximate inference method detailed in Section 2.3, and are important for the
development of the combined approaches presented in Chapter 3. In LGMs, the
response yi is assumed to belong to a distribution family (not necessarily the expo-
nential family, Martins et al., 2013a), with a mean µi that is linked to a predictor
through a link function, such that g(µi) = ηi . In the predictor, the effects of the
covariates are included in an additive manner, and this additive linear predictor
is defined as

ηi = α+
nβ
∑

j=1

β jz ji +
n f
∑

k=1

fk(uki) + εi , i = 1, . . . , n. (2.2)

Here, α is the intercept, {β j} regulate the fixed effects of the covariates {z j}. Fur-
thermore, the model components { fk(·)} are unknown functions of the covariates
{uk}, which map the kth covariate to the random effect or spatial effect on the
response. i = 1, . . . , n represents the individual observations of the response and
covariates, nβ is the total number of fixed effects, and n f the total number of ran-
dom effects and model components. Lastly, εi holds the unstructured terms. The
components fk(·) are used to model non-linear effects of the covariates, or spatial
and temporal dependencies in the data.

We assume that the joint distribution of the unknown components in the linear
predictor,

x = (α,η1, . . . ,ηn,β1, . . . ,βnβ , f1, . . . , fn f
),
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is Gaussian conditioned on the hyperparameters θ2. Note that the vector x corres-
ponds to the second stage of a hierarchical model as defined in Section 2.1. Models
where the latent field x is assigned a prior Gaussian distribution are called LGMs.
The latent field in LGMs can therefore be expressed as

x |θ2 ∼N (x ;0,Q−1(θ2))

∝ |Q(θ2|1/2 exp{−
1
2

x T Qx},
(2.3)

where N (·, ·) denotes a multivariate Gaussian distribution with zero mean and
precision matrix (inverse of covariance matrix) Q(θ2).

We are interested in a particular type of LGMs, with conditional independ-
ence properties in the latent field, such that the precision matrix Q(θ2) attains
a sparsity. A multivariate Gaussian field with a sparse precision matrix outline a
Gaussian Markov random field (GMRF; see Rue et al., 2005). This model property
is essential in the models applied to the approximate inference method detailed
in Section 2.3, as it provides a substantial computational advantage (Rue et al.,
2017).

Observations of the response are assumed conditionally independent given
the latent field x , and the vector of hyperparameters θ1. Thereby, the first stage
in the hierarchical structure of LGMs is the likelihood function defined as

y |x ,θ1 ∼
n
∏

i=1

π(yi|ηi ,θ1), (2.4)

where each observation yi only depends on one element in the latent Gaussian
field, the linear predictor ηi , and the hyperparameters θ1.

To finalize the hierarchical structure of LGMs, appropriate priors are assigned
to the hyperparameters of the model. With the stages set, the joint posterior dis-
tribution of all the unknown components z = (x ,θ ) in the model is expressed
as

π(z|y)∝ π(θ )π(x |θ )
∏

i∈I
π(yi|x i ,θ )

∝ π(θ )|Q(θ )|1/2 exp

¨

−
1
2

x T Q(θ )x +
n
∑

i=1

lnπ(yi |ηi ,θ )

«

,
(2.5)

The posterior π(z | y) is most often very high dimensional, such that analytical
results are not achievable. Several methods have been developed to perform infer-
ence on (2.5) and, in the following sections, we will review some of them. These
include two sampling based methods (Markov chain Monte Carlo and importance
sampling), and one method for approximate inference (integrated nested Laplace
approximations). Each of these methods will be describe with reference to the pos-
terior distribution π(z | y) in (2.5); even though one should be aware that both
sampling based methods are general algorithms that also can be applied outside
the scope of LGMs. The aim is for the reader to have an overview of such methods,
as it is necessary to understand why and how, in Chapter 3, we propose to merge
some of them.
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2.2 Monte Carlo Methods

The classical Monte Carlo method is based on generating independent realizations
of z from its probability distributionπ(·). In general, this is achieved by simulating
a number of independent samples for the distribution of interest and, then, using
these samples as the basis for our inference on π(z | y), which is in this setting
referred to as the target distribution.

Monte Carlo methods can be used to achieve different tasks, for example:
approximating the target distribution

z | y ∼ π(z | y), (2.6)

estimating some quantity of interest

Eπ[( f (z)] =
∫

f (z)π(z | y)dz, (2.7)

where f (·) is any integratable function with respect to the target. Or optimize, i.e.
obtaining posterior modes

ẑ = arg max
z

π(z | y). (2.8)

However, if the distribution of interest is unknown or a non-standard distribution,
realizations are unobtainable with the aforementioned approach. In this case, we
must employ more sophisticated but related methodologies. We will collect these
in the umbrella term of their antecedent, Monte Carlo methods. More specifically,
we will describe three Monte Carlo methods; Markov Chain Monte Carlo (MCMC),
Importance Sampling (IS), and Adaptive Multiple Importance sampling (AMIS),
as they are relevant for the development of the combined approaches detailed in
Chapter 3.

2.2.1 Markov Chain Monte Carlo

The most common methods for inference on Bayesian hierarchical models are
Markov chain Monte Carlo (MCMC). It comprises many different algorithms that
are all variations of the general framework proposed by Metropolis et al. (1953),
and generalized to its current form by Hastings (1970), namely the Metropolis-
Hastings algorithm by the surname of its authors. We will only describe MCMC
from a general point of view, covering only the Metropolis-Hastings algorithm,
and the reader is referred to Robert et al. (2004) for an extensive introduction to
the theory of MCMC.

In essence, an MCMC algorithm produces an ergodic Markov chain (Robert
et al., 2004, chap. 6.6) with the target distribution as limiting distribution. The
Markov chain is a stochastic system with states governed by transition probabil-
ities p(z( j) | z( j−1) . . . ), and the order of the chain depict the number of previous
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states, z( j−1), . . . , z(1), the current state, z( j), is dependent on. The target distribu-
tion is in this setting unknown, and using (2.1), it is generally known up to the
normalizing constant such that the likelihood is known, and we can assert some
prior on the parameters.

To construct the Markov chain, a simpler distribution q(z( j+1) | z( j)) is em-
ployed, which is simpler in that it is explicitly available; i.e., we can sample from
it and obtain probabilities by evaluation. Henceforth, this simpler distribution will
be referred to as the proposal distribution. New candidate states, z∗, are drawn
from the proposal distribution conditioned on the current state, z( j). The can-
didate state is then accepted or rejected according to the acceptance probability
α(z∗, z( j)). This probability is derived using the assumed properties of the Markov
chain and the detailed balanced conditionπ(z∗|y)p(z( j)|z∗) = π(z( j)y)p(z∗|z( j)),
where the transition probability is given by p(z( j) | z∗) = q(z( j) | z∗)α(z( j) | z∗);
which can be interpreted as: the probability of going from state z∗ to state z( j)

and oppositely going from state z( j) to z∗ is equivalent. Thereby, the acceptance
probability can be formulated as

α(z∗ | z( j)) =min

�

1,
π(z∗ | y)q(z( j) | z∗)
π(z( j) | y)q(z∗ | z( j))

�

. (2.9)

If the candidate is accepted, then the candidate state is set as the new state,
z( j+1) = z∗, and oppositely if the candidate is rejected the current state is set
as the new state, z( j+1) = z( j).

The posterior distribution π(z | y) in (2.5) can be expressed using Bayes’ rule
(2.1), where the unknown normalizing constant π(y) conveniently cancels out as
it occurs in both the numerator and denominator. The resulting acceptance rate
and the general representation of the acceptance rate in the Metropolis-Hastings
algorithm is given by

α(z∗ | z( j)) =min

�

1,
π(y | z∗)π(z∗)q(z( j) | z∗)
π(y | z( j))π(z( j))q(z∗ | z( j))

�

, (2.10)

Here, π(z) is the prior of z and π(y | z) the known likelihood.
In MCMC, starting at an initial state z(0), the development of the Markov chain

is a sequential process of accepting/rejecting candidate states until the conver-
gence of the chain is promised under mild conditions. Once the stationary state
has been reached, one can consider the MCMC samples as correlated samples
from the target distribution. The initial part of this chain, before reaching this
stationary state, is indicated as burn-in and removed prior to inference. The issue
of convergence is an essential topic when constructing the MCMC algorithm for
a particular problem, and the investigation of this property is paramount for the
effectiveness of the algorithm. Usually, a diagnostic of convergence can be determ-
ined by looking at the trace of state values, and if an equilibrium of these values
is reached. Another important measure to determine the quality of the Markov
chain is to inspect the acceptance rate. Too low acceptance rate is an indication
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that the Markov chain could get stuck in some local maxima, and convergence is
slow; oppositely, too high acceptance rate might indicate that the sampler moves
very slowly and, therefore, takes a long time to explore the parameter space fully.
An approach in improving convergence is to adjust the proposal distribution q(·);
for example, by altering its variance and rerun the simulation. Less variance al-
lows for smaller jumps in the parameters space and, oppositely, a larger variance
allows for bigger jumps.

Let us now assume that the Markov chain has been constructed according
to the Metropolis-Hastings algorithm, and that the chain has converged to our
target distribution. Then, estimating quantities of interest, (2.7), can be obtained
empirically as

Eπ[ f (z) | y] =
∫

Z
f (z)π(z | y)dz ≈

1
M

M
∑

j=1

f (z( j)), (2.11)

where Z is the state space of z. With the introduction of (2.11), another useful dia-
gnostic is the effective sample size of the Markov chain. As the samples produced by
the MCMC method typically will be autocorrelated, the variance of the estimator
in (2.11) is increased. Thereby, given the dependent states of the Markov chain,
the effective sample size is the number of independent states with the same es-
timator variance as produced by the autocorrelated states. The effective sample
size generated by a MCMC simulation is defined as

ÔESS=
N

1+ 2
∑∞

t=1ρt
,

where ρt is the autocorrelation function at lag t. In a practical setting, the upper
bound of the sum is a finite number t = T , where the autocorrelation is close to
zero.

To achieve numerical results of tasks (2.6) and (2.8), the samples are gener-
ally placed into bins according to their sample values, where each bin is weighted
according to the number of samples within. Thereby, the kernel of the target distri-
bution can easily be approximated with these points, yielding a solution to (2.6).
The optimization of the target distribution is simply solved by picking the bin
containing the highest number of samples. It is important to note that these are
approximations and will, in a practical manner, carry some numerical errors. How-
ever, if the number of samples grows to infinity, and the bin-size tends towards
zero, the approximations intuitively becomes exact.

2.2.2 Importance Sampling

Importance sampling (IS) may be considered a precursor to MCMC methods, and
was first introduced by Kahn (1950) to estimate the probability of nuclear particles
penetrating shields. The method is based on the identity

∫

f (z)π(z | y)dz =

∫

f (z)π(z | y)
q(z)

q(z)dz, (2.12)
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and is commonly used to compute (2.7) in situations where the domain f (z) lies
in the area of low probability of the target distribution π(z | y). In this setting, the
classical Monte Carlo approach, which generates samples from π(z | y), would
obtain poor approximations of (2.7) because most of its samples would be in a re-
gion where f (z) = 0. It is apparent that, similar to MCMC, a simpler distribution
(or proposal distribution) q(z)must be employed to generate samples that eclipse
the important region, the region where f (z)π(z | y) 6= 0. Then, by taking advant-
age of the identity in (2.12), the estimate of (2.7) is adjusted to account for the
use of this proposal distribution. The IS method is commonly used in high energy
physics, rare event simulation, and rendering in computer graphics. Moreover, it
can also substitute the accept-reject design in MCMC, and be used for Bayesian
inference.

In Bayesian inference, the interest lies in approximating the target distribution
or a particular moment about it, such that the important region must overweigh
the sample space of the target distribution instead of the domain of f (z). The
question then arises; why invoke this proposal distribution to generate samples as
the classical Monte Carlo method could be used on this problem? However, similar
to the setting in MCMC, our target distribution is unknown, such that samples are
unobtainable from the target distribution itself.

Consider the M generated samples {z}Mj=1 from the proposal distribution; an
unbiased and consistent estimator (Bugallo et al., 2017) of the expected value of
a function f (z) with respect to the target distribution π(z | y), can be expressed
as

Eπ[ f (z)] =
∫

Z
f (z)

π(z | y)
q(z)

q(z)dz

'
1
M

M
∑

j=1

f (z( j))π(z( j) | y)
q(z( j))

.
(2.13)

Here, q(z) is a multivariate proposal distribution, where q(z) > 0 whenever
f (z)π(z | y) 6= 0, such that the tail of the proposal is heavier than the target.
The choice of proposal is important, as the variance of the estimator in (2.13)
directly depends on the dissimilarity between the shape of the proposal and the
target distribution (Robert et al., 2004). This dissimilarity, representing the signi-
ficance of one sample in approximating the target, is generally referred to as the
importance weight.

ω( j) =
π(z( j) | y)

q(z( j))
. (2.14)

To compute the importance weight in (2.14) the normalizing constant ofπ(z|y)
needs to be obtainable. This is not the case in many practical situations and, in gen-
eral, is not the case for LGMs. An alternative is then to employ the self-normalized
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importance weights:

ω̄( j) =
π(y | z( j))π(z( j))

q(z( j))

,

M
∑

j=1

π(y | z( j))π(z( j))
π(q(z( j))

= ω( j)
,

M
∑

j=1

ω( j) ,

(2.15)

where the unknown normalizing constant conveniently cancels out. The resulting
estimator for the quantity of interest is

Ẽπ[ f (z)] =
M
∑

j=1

ω̄( j) f (z( j)). (2.16)

It can be shown that (2.16) is biased for finite M but consistent (Geweke, 1989).
Considering the importance weight ω̄( j) represents the target distribution evalu-
ated at z( j), i.e. π(z( j); z | y) ' ω̄( j), and assuming that the number of samples
M →∞, the approximation of the target distribution, and the solution of (2.6),
can be found with the expression

π̃(z | y) =
M
∑

j=1

ω̄( j)δ(z − z( j)),

where δ(·) is the Dirac delta function. In a practical manner, where M →∞ is
infeasible, the target distribution can approximated with non-parametric kernel
density estimation (see Silverman, 1986), using the self-normalized weights and
their corresponding samples. Furthermore, the mode can be found with the argu-
ment of the maximum value of the now approximated kernel density. The mode
can also be found by viewing the corresponding sample value of the maximum
weight, but the accuracy of this method is highly dependent on the number of
samples within the probability mass of the target distribution.

In extreme settings, some weights might be significantly larger than others,
achieving a limited number relevant samples; similarly, all weights might be zero,
ruling all samples insignificant; in other settings, the conclusion about the quality
of the samples might be difficult to draw. In this latter case, a common diagnostic
is the effective sample size:

dESS=
1

∑M
j=1 ω̄

( j)2

=

�

∑M
j=1ω

( j)
�2

∑M
j=1ω

( j)2
,

(2.17)

which is the number of independent samples generated from the target distribu-
tion required to obtain the same estimator variance of (2.7) as the self-normalized
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estimator (2.16) using the M generated samples from the proposal distribution.
The theoretical development of (2.17) will not be detailed here, and the reader is
referred to Martino et al. (2017) for a thorough account.

Compared to MCMC, IS has the advantage to be easily parallelized since the
samples are drawn independently from each other. On the other hand, the per-
formance of the basic IS algorithm highly depends on the choice of proposal dis-
tribution, which remains constant during the whole simulation.

2.2.3 Adaptive Multiple Importance Sampling

In the IS method, the validity of the method is promised under mild conditions;
however, the variance of the estimator (2.16) is dependent on the dissimilarity
between the shape of the target distribution and the proposal (Elvira et al., 2019;
Robert et al., 2004). Following the development of more robust IS schemes, we
will, in this section, present the adaptive multiple importance sampling methodo-
logy (AMIS) proposed by Corneut et al. (2012). The AMIS method combines two
modern concepts in IS; multiple importance sampling (MIS), employing a mixture
of distributions as proposal distribution (Owen et al., 2000); adaptive importance
sampling (AIS), adapting the proposal distribution to better approximate the tar-
get (Cappé et al., 2004). The AMIS merge these concepts by constructing a mixture
distribution through the adaptation of the proposal. We will first describe the MIS
method and the estimators associated with it. Then, we sequentially develop the
AMIS algorithm and, lastly, outline its convergence properties.

The main idea behind the MIS is to use a series of T proposal densities {qt(·)}Tt=1
combined in a mixture as

ψ(·) =
T
∑

t=1

ρ(t)qt(·), (2.18)

where ρ(t) are the mixture weights, such that
∑T

t=1ρ
(t) = 1 to ensure that ψ(·)

is probability density. The result is that the performance of MIS depends on a
series of proposals, instead of entrusting the approximation of the target distri-
bution to the dissimilarity with one single proposal distribution (IS). Assume that
Nt samples {z(t, j)}Nt

j=1 are generated from the corresponding proposal distribution

qt(·), such that the total number of samples is
∑T

t=1 Nt = N . The mixture weight
ρ(t) is determined by the fraction of samples drawn from the tth proposal distri-
bution, i.e. ρ(t) = Nt/N , and the resulting mixture distribution can be expressed
as

ψ(·) =
1
N

T
∑

t=1

Ntqt(·). (2.19)

Similar to the importance weights calculated in (2.14), the importance weights
in the MIS scheme is calculated by

ω(t, j) =
π(z(t, j) | y)
ψ(z(t, j))

, (2.20)
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where the single proposal distribution in the denominator is replaced with the
mixture of many proposal distributions. The estimator for a quantity of interest in
MIS is computed with (2.13), where the single proposal distribution is replaced
with the mixture of proposal distribution:

bEπ[ f (z) | y] =
1
N

T
∑

t=1

Nt
∑

j=1

f (z(t, j))π(z(t, j) | y)
ψ(z(t, j))

=
1
N

T
∑

t=1

Nt
∑

j=1

ω(t, j) f (z(t, j)),

(2.21)

which is an unbiased and consistent estimator (Elvira et al., 2019). When the
normalizing constant of the target distribution π(z | y) is unknown, we can rely
on the self-normalizing importance weights:

ω̄(k,l) =
π(y | z(k,l))π(z(k,l))

ψ(z(k,l))

,

T
∑

t=1

Nt
∑

j=1

π(y | z(t, j))π(z(t, j))
ψ(z(t, j))

= ω(k,l)

,

T
∑

t=1

Nt
∑

j=1

ω(t, j) .

(2.22)

Here, k ∈ (1, T ) denotes the proposal distribution the sample z(k,l) is drawn
from, and l ∈ (1, Nk) the lth sample from the kth proposal distribution. The self-
normalized estimator of a quantity of interest, using weights calculated by (2.22),
is expressed in (2.16), which is biased for finite

∑T
t=1 Nt but consistent as shown

in Elvira et al. (2019).
In both IS and MIS, the proposal distribution(s) are static throughout the

whole sampling process; thereby, bad proposals will lead to a low-quality infer-
ence. A strategy to improve the algorithm would be to let the algorithm "learn" a
better proposal during the sampling process. This is exactly the idea behind the
AIS methods, where the proposal is adapted sequentially, gradually increasing the
accuracy in approximating the target distribution. Consider the proposal distribu-
tion belonging to a parametric family of distributions {q(·;φ) |φ ∈ Φ}, where Φ is
the parameter space. The initial proposal distribution is assigned the parameters
φ1 ∈ Φ. From this proposal, N1 samples are generated and weighted according to
(2.15). The proposal distribution is then adapted by updating the parameters φ1
following some criterion. This updating procedure is repeated T times, obtaining
the sequence of parameters φ1 → φ2 → ·· · → φT for the proposal distribution,
where the use of the last parameters φT , should best explain the probability mass
of the target distribution.

A common approach in adapting the proposals is the moment matching cri-
terion (Corneut et al., 2012), using (2.16) to estimate first and second moments
(mean µ and covarianceΣ) of the target distribution, and assign them to the para-
meters of the new proposal distribution q(·;φ2) = (µ̂, Σ̂). An alternative criterion,
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is the minimization of the Kullback-Leibler divergence between the proposal and
target distribution (Cappé et al., 2008; Corneut et al., 2012).

The AMIS combines both the adaptive and multiple proposals ideas, and in
the following, we will describe the sequential development of the mixture in the
AMIS methodology. Similar to the AIS method, the algorithm starts with a single
proposal distribution q1(·;φ1), where N1 samples are drawn and weighted ac-
cording to (2.15). Then, φ1 is updated according to one of the aforementioned
criterion’s, and N2 new samples are generated from the new proposal distribution
q2(·,φ2). Here, the standard AIS and AMIS method diverge. Borrowing strength
from MIS weighting scheme, the AMIS method weights the new samples accord-
ing to (2.22), where the mixture distribution in (2.19) comprise of the previous
proposal q1(·) and the new q2(·). Furthermore, to gain this strength in all samples,
the past N1 samples are re-weighted using (2.22) and this mixture.

In general, the AMIS method follows this sequential process for a predeter-
mined number of epochs T ; where a epoch refers to one cycle of generating
samples, expanding the mixture with the new proposal distribution, calculating
and updating weights, and adapting the proposal. Thereby, similar to MIS, the
mixture in the AMIS weighting scheme will ultimately consists of the T proposal
distributions, where posterior estimates is calculated with (2.16). The number of
epochs T and the generated samples in each epoch, N1, N2, . . . , NT , is referred to as
our sampling strategy, and the values are related to the dimensions d of the target
distribution π(z | y). In Corneut et al. (2012), it is recommended that Nt >= 25
when d is small (around d = 2), and Nt >= 500 when d is large (> 20). Corneut
et al. (2012) also note that an increasing sample size after each adaptation, i.e.
N1 < N2 < · · · < NT , is favorable because this increases the importance of later
proposals in the mixture (2.19), and more samples are drawn from essentially
better proposal distributions.

The performance of the AMIS algorithm is still highly dependent on the choice
of initial proposal distribution q1(·), as the algorithm only sees the sample space
of the proposal distribution. Therefore, if the probability mass of the target dis-
tribution is outside the sample space of the proposal, the method would require
many adaptations and long computing times to move the proposal distributions
accordingly. The convergence and unbiasedness of (2.21) as established by Owen
et al. (2000) and Corneut et al. (2012), implies that the convergence of the AMIS
algorithm is promised. However, with the introduction of adaptive proposal distri-
butions, the importance weights of new samples are dependent on prior samples,
impeding the unbiasedness property. Also, even the convergence is challenged as
it would require the compactness restriction on the sample space (Corneut et al.,
2012). One could show unbiasedness of (2.21) in the AMIS setting, by letting
N1, . . . , NT−1 and T be finite when NT →∞, making (2.21) only dependent on
the last proposal distribution qt(·); thus, removing the dependency in the samples
and bias in the weights (Corneut et al., 2012). However, this is infeasible in prac-
tical situations, and not a recommended application of AMIS according to Corneut
et al. (2012).
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Similar to IS, the quality of the samples generated by the AMIS algorithm can
be evaluated by the estimated effective sample size, which is calculated by (2.17)
using the self-normalized mixture weights from (2.22). The estimate refers to the
number of independent samples drawn from the target distribution required to
obtain the same estimator variance of (2.7) as the (2.16) using all AMIS samples.

In the implementation of the algorithm, the updating of past samples is done
in an inexpensive way to avoid multiple evaluations of the prior and previous
proposal distribution for one sample; thereby, only the new proposal distribution
is evaluated when updating past weights. The updating scheme, introducing the
δ(t, j) parameter, and the individual steps of the generic AMIS algorithm as pro-
posed by Corneut et al. (2012) is presented in Algorithm 1.

Algorithm 1: Generic AMIS as proposed by Corneut et al. (2012)
- Initialize Nt = (N1, . . . , NT ), q1(·;φ1)
for j from 1 to N1 do

- Generate sample z(1, j) ∼ q1(·;φ1)
- Compute:

δ(1, j) = N1q1(z
(1, j);φ1) and ω(1, j) =

π̃(y | z(1, j))π(z(1, j))
q1(z(1, j);φ1)

- Calculate φ2 using the weighted set of samples:

({z(1,1),ω(1,1)}, . . . , {z(1,N1),ω(1,N1)})

for t from 2 to T do
for j from 1 to Nt do

- Generate sample z(t, j) ∼ qt(·;φt)
- Compute:

δ(t, j) =
t
∑

l=1

Nlqt(z
(t, j);φt) and ω(t, j) =

π̃(y | z(t, j))π(z(t, j))
�

δ(t, j)
�∑t

l=1 Nl

�

for l from 1 to t − 1 do
for j from 1 to Nl do

- Update past importance weights:

δ(l, j)← δ(l, j)+Nlqt(z
(l, j);φt) and ω(l, j)←

π̃(y | z(l, j))π(z(l, j))
�

δ(l, j)
�∑t

k=1 Nk

�

- Calculate φt+1 using the weighted set of samples:

({z(1,1)
c ,ω(1,1)}, . . . , {z(t,Nt )

c ,ω(t,Nt )})
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2.3 Integrated Nested Laplace Approximations

An alternative approach to inference is the integrated nested Laplace approximation
(INLA) proposed by Rue et al. (2009). INLA differs from MCMC in many ways.
First of all, its use is limited to the LGM class described in Section 2.1.1. INLA
is a deterministic algorithm that relies upon Laplace approximations to compute
integrals of specific densities that are coupled together to obtain approximations
to the posterior marginals of π(z | y). For LGMs, when compared to MCMC, INLA
is much faster and reliable, not having to deal with convergence issues (Rue et al.,
2009). INLA deals in different ways with the elements of z, x and θ , so we will
in this section keep them separate.

For clarity, we sum up the critical assumptions about the LGMs required by
INLA (Rue et al., 2017):

1. Each observation yi only depends on one components of the latent field x ,
the linear predictor ηi , resulting in the likelihood (2.4).

2. The dimensions of the hyperparameters θ is small (2-5, not >20)
3. The latent field x |θ is Gaussian, and can be high dimensional but is required

to be a Gaussian Markov random field, such that the precision matrix Q(θ )
is sparse.

4. The linear predictor is in the form (2.2), i.e. additive with the effects of
covariates.

In this section, we will outline the basic ideas behind the INLA, and for a
thorough introduction see Martino et al. (2019).

2.3.1 Laplace Approximations

A classic approach to approximations of posterior moments and marginals is the
Laplace method (Tierney et al., 1986). Consider a probability density function
π(x) of the random variable X ∈ X ⊆ R, and suppose that we are interested in
the integral

∫

X
π(x)dx =

∫

X
exp(ng(x))dx , (2.23)

where n is a samples size or a parameter allowing n →∞. To find a numerical
approximation of (2.23), the second order Taylor series expansions of g(x) about
a point x = x0 is computed as

g(x)' g(x0) + (x − x0)g
′(x0) +

(x − x0)2

2
g ′′(x0) + R(x), (2.24)

where the remainder is R(x) =O
�

((x − x0)3
�

. Choosing x0 to be the global max-
imum of g(x), which is a stationary point if it is not a endpoint of X , such that
g ′(x0) = 0 removing the linear term in (2.24). By substituting the Taylor expan-
sion (2.24) with g(x) in (2.23), we have the approximation

∫

X
π(x)dx ' exp(ng(x0))

∫

X
exp

�

n(x − x0)2

2
g ′′(x0)

�

dx . (2.25)
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Note that (2.25) is only valid in the neighborhood of x0. We observe that the in-
tegrand in (2.25) is the core of the Gaussian probability density function, denoted
φ(·), with mean x0 and varianceσ2

0 = −(ng ′′(x0))−1. Then, by taking the integral
over the interval [α,β] ⊆ X , the approximation in (2.25) can be expressed as

∫ β

α

π(x)dx ' π(x0)
q

2πσ2
0

∫ β

α

φ(x; x0,σ2
0)dx

= π(x0)
q

2πσ2
0

�

Φ(β; x0,σ2
0)−Φ(α; x0,σ2

0)
�

,

(2.26)

where Φ(·) denotes the Gaussian cumulative density function.

2.3.2 Approximate inference with INLA

The INLA approach does not attempt to estimate the joint posterior distribution
in (2.5), but rather the posterior marginals of the components in the latent field
and hyperparameters, expressed as

π(x i|y) =
∫

π(x i|θ , y)π(θ |y)dθ (2.27)

π(θ j|y) =
∫

π(θ |y)dθ− j . (2.28)

The main idea in the INLA methodology is to build an approximation for π(θ | y)
and π(x i | θ , y), and solve the integrals in (2.27) and (2.28) numerically by

π̃(x i|y) =
∑

j

π̃(x i | θ j , y)π̃(θ j | y)∆ j (2.29)

π̃(θ j|y) =
∑

k

π̃(θ j ,θ
(k)
− j | y)∆k, (2.30)

where∆ j and∆k are appropriate weights. We now need to obtain approximations
to π(θ | y) and π(x i |θ , y), and find representative values of θ to solve (2.29) and
(2.30).

First, we consider the approximation of the joint posterior of the hyperpara-
meters as

π(θ | y)∝
π(y | x ,θ )π(x | θ )π(θ )

π(x | θ , y)

'
π(y | x ,θ )π(x | θ )π(θ )

π̃(x | θ , y)

�

�

�

�

x=x0(θ )
:= π̃(θ | y),

(2.31)

where we substitute the denominator π(x |θ , y), which is hard to compute expli-
citly, with its Gaussian approximation π̃(x | θ , y). This approximation is built by
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matching the mode and the curvature at the mode as

π(x | θ , y)∝ |Q(θ )|1/2 exp

�

−
1
2

x T Q(θ )x +
∑

i∈I
lnπ(yi | x i ,θ )

�

' |P(θ )|1/2 exp
�

−
1
2
(x − x0(θ ))

T P(θ )(x − x0(θ ))
�

.

(2.32)

Here, P(θ ) = Q(θ )+diag(C(θ )) is the precision and x0(θ ) is the mode ofπ(x |θ , y)
for a given θ . The matrix C(θ ) is the negative second derivative of the log-likelihood
evaluated at the mode, which is the inverse ofσ2

0 from (2.26) in a multivariate set-
ting. The Gaussian approximation is accurate on π(x |θ , y) since it is a-priori dis-
tributed as a GMRF, and y only shifts the mean, reduces the variance and presents
some skewness.

The main use of π̃(θ | y) is to estimate the posterior marginals π(θ j | y) and
π(x i |y) by integrating out the uncertainty about θ according to (2.29) and (2.30).
This is achieved by using the approximation π̃(θ | y) to locate the area of high
density and, thereby, choose some representative points in the space of θ . The
posterior mode of π(θ | y) is obtained using a quasi-Newton method to maximize
ln π̃(θ | y) with respect to θ . Furthermore, the negative Hessian matrix H > 0
is computed using finite differences at the mode θ ∗. Next, a reparametrization
of θ is performed to correct for scale and rotation, and simplify the numerical
integration:

θ = θ ∗ +VΛ1/2z,

where the inverse Hessian is decomposed using the eigenvalue decomposition
H−1 = VΛVT .

Two methods can be used to locate the representative points: the first one,
constructs a grid of step size h around the mode, where points, z∗, are kept only
if

�

� ln π̃(θ (0) | y)− ln π̃(θ (z∗) | y)
�

�< δ,

and δ is a given threshold. The second alternative, is to create a central compos-
ite design (CCD, see George E. P. Box, 1987) around θ (0). This method strategic-
ally chooses relevant points, given the mode θ ∗ and the Hessian H, to perform a
second-order approximation to a response variable. The CCD method is generally
used when the dimensions of the hyperparameters is high, because it utilizes much
less points than the grid exploration but still manages to capture the variability of
the hyperparameters (Rue et al., 2009, Section 6.5). Following this grid explora-
tion the posterior marginals π̃(θ | y) is found using an interpolation algorithm on
the weighted points {θ (z j),π(θ (z j) | y)} (Martins et al., 2013b).

To obtain an approximation to the posterior marginals of the latent compon-
ents, the hyperparameters need to be integrated out according to (2.29) using
the weighted set of θ . Here, π̃(x i | θ , y) is an approximation to π(x i | θ , y). Rue
et al. (2009) propose three different methods for this approximation. The first
easy possibility is to use the marginal of the Gaussian approximation π̃(x | θ , y)
described in (2.32). Thereby, the marginals can be computed, where the Cholesky
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decomposition is used for the precision matrix (Rue et al., 2007). Despite being
computationally very fast, it generally isn’t very precise. The second option is to
split the latent components, x = (x i , x−i), and use Bayes’ rule as

π(x i | θ , y)∝
π(x ,θ | y)

π(x−i | x i ,θ , y)

≈
π(x ,θ | y)

π̃(x−i | x i ,θ , y)

�

�

�

�

x−i=x−i,0(x i ,θ )
:= π̃(x i | θ , y),

(2.33)

where π(x−i | x i ,θ , y) is approximated using the Laplace method describe in Sec-
tion 2.3.1. This approach is computationally very expensive since π(x−i | x i ,θ , y)
needs to be re-estimated for each value θ and x i , but the approximations are typ-
ically very accurate by the denominator being fairly Gaussian (Rue et al., 2009).
The third and last method is termed simplified Laplace approximation and it relies
on a Taylor expansion around the mode of the Laplace method. This adds a linear
and cubic term to the Gaussian approximation as

lnπ(x i | θ , y)≈ −
1
2

x2
i + bi(θ )x i +

1
6

ci(θ )x
3
i . (2.34)

Moreover, skew-Gaussian distribution is assigned to (2.34), such that (2.29) is
approximated with a mixture of skew-Gaussian distributions, where linear term
provides correction to the mean and the cubic term provide corrections to the
skewness. This method increases the computational speed, but with a slight loss
in accuracy from the second method in (2.33). All three approaches are described
in Section 3.2 in Rue et al. (2009), and in Section 3.2 in Rue et al. (2017).

As a byproduct of the previous computations, the INLA methodology allows
for approximations of other quantities useful for example in model comparison.
The marginal likelihood is one of such quantities and can be derived as

π̃(y) =

∫

π(y | x ,θ )π(x | θ )π(θ )
π̃(x | θ , y)

�

�

�

�

x=x ∗(θ )
dθ , (2.35)

where x0(θ ) is the mode ofπ(x |θ , y) for a given θ , and π̃(x |θ , y) is the Gaussian
approximation described in (2.32). The approximation in (2.35) is derived from
(2.30) as the normalizing constant of π̃(θ | y). This method of approximating the
marginal likelihood using INLA has proven to be quite accurate when compare
with the computational speed of other approaches (see Hubin et al., 2016), and
will be very useful in the development of the algorithms in Chapter 3.

As previously mentioned, INLA provides fast and accurate inference on pos-
terior marginals for the additive LGMs described in Section 2.1.1. The efficiency of
the INLA procedures relies on a careful implementation of the different algorithms
within. A such implementation is available in the R package R-INLA, which allows
us to fit complex models in a matter of seconds.

Implementing INLA from scratch is a daunting task so, in practice, the ap-
plications of INLA are limited to the (large) class of models implemented in R-

INLA. Although R-INLA offer the possibility for some user-defined models shown
in Gómez-Rubio (2020), there are models that do not fit the scope of R-INLA.
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In the next chapter, we will present an approach that allows us to extend the
class of models that can benefit from the fast inference of INLA by coupling INLA
with some of the Monte Carlo algorithms presented earlier in this chapter.





Chapter 3

INLA within Monte Carlo
Methods

As described in Section 2.3, INLA obtains posterior inference on the LGMs detailed
in Section 2.1.1, and is restricted to the class of models implemented in R-INLA.
However, many models are excluded from this list, and it is difficult to add new
models to the framework in R. Multiple methods to extend the set of models that
can be fit with INLA through the R-INLA package have been proposed. They are
similar in that they fix some of the unknown parameters to suitable values, and
fit the models conditioned on these parameters with R-INLA. The parameters are
conveniently chosen, such that the conditional models are LGMs, and we will refer
to these models as conditional LGMs. That is, we assume that while the model z | y
cannot be approximated with R-INLA, the conditional model z−c | y , zc can. Here,
we indicate z = (z−c , zc) as the vector of all unknown parameters of the model
z = (x ,θ ), where zc is the subset of parameters we condition on, and z−c is its
complement.

Assume that we have a way to sample a series of values z( j)c for j = 1, . . . , N ,
and that the model z−c | y , zc = z( j)c can be fitted with INLA. We can then obtain
approximate conditional posterior marginal π̃(z−c,i | y , zc = z( j)c ) for all z−c,i ∈
z−c . In addition, we can recover the approximate conditional marginal likelihood
π̃(y | zc = z( j)c ). Assuming that multiple values of zc are chosen, and that the
conditional models are fit with INLA obtaining the conditional posterior marginals
and conditional posterior likelihoods, such that an approximation of the posterior
distribution π(zc | y) is found; then, the posterior marginals of the elements of z−c
can be approximated using (2.7) as

π̃(z−c,i | y) = Eπ[π̃(z−c,i | y , zc)]

=

∫

π̃(z−c,i | y , zc)π(zc | y)dzc .
(3.1)

This approximation is generally referred to as Bayesian model averaging (BMA;
see Hoeting et al., 1999). Posterior quantities of interest, e.g. posterior moments,

23
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about the estimated posterior marginals π̃(z−c,i | y) in (3.1) is estimated with

E[ f (z−c,i) | y]'
∫

f (z)π̃(z−c,i | y)dz, (3.2)

where f (·) is any integrated function on the domain of the approximated posterior
marginal. In practice, the integral is solved by numerical integration; for example,
using Simpson’s rule. The approximation of (3.2) is also available in the R-INLA

package, where the function inla.emarginal can be used for a self-defined func-
tion f (·), and inla.zmarginal for posterior statistics.

In this chapter, we will describe three algorithms that combine Monte Carlo
techniques and INLA; MCMC with INLA proposed by Gómez-Rubio et al. (2018),
IS with INLA introduced by Gómez-Rubio (2019), and a new methodology com-
bining AMIS with INLA. In common, these methods employ a Monte Carlo method
to generate samples to obtain the posterior distribution of zc . Moreover, they use
INLA to approximate conditional posterior marginals of z−c , which are combined
with (3.1) using the result of the Monte Carlo simulations. These combined ap-
proaches are entirely made possible by the approximation of the conditional mar-
ginal likelihood (2.35) provided by INLA, π̃(y | zc), which actuates the accept-
reject design in MCMC and weighing scheme in IS.

The situations described below is an overview of models that can be repres-
ented as conditional LGMs. These models can be applied to INLA within Monte
Carlo methods and are either covered by other authors, or in our experiments.
The INLA methodology requires all elements in (2.2) to be additive and Gaus-
sian, such that the linear predictor η also is Gaussian. This is, for example, not
the case in a Bayesian lasso model, where the linear coefficients β in (2.2) are
assigned Laplace priors. The Bayesian lasso, therefore, does not fulfill the require-
ments in R-INLA. Gómez-Rubio et al. (2018, Section 6.1) show how to perform
Bayesian lasso combining INLA and MCMC. Another situation where INLA cannot
be directly applied is when there exists non-additive terms in the predictor, e.g the
autocorrelation parameters in spatial lag models (Gómez-Rubio et al., 2018, Sec-
tion 6.3), or spatial autoregressive combined models (Gómez-Rubio et al., 2019
or Section 4.2). Moreover, INLA does not handle models where one or more para-
meters θ1 in (2.4) are dependent on some of the covariates in the model. These
situations might occur in time-series data, where the variance of the likelihood
changes over time; or in measurements, where the variance of the measurement
increase with distance from the location being measured. Another case is missing
values in the covariates. R-INLA provides a predictive distribution of missing val-
ues in the response but does not handle missing values in its covariates. However,
if these covariates are fixed to some imputed values, the model can be approxim-
ated (Gómez-Rubio et al., 2018, Section 6.2). Lastly, INLA approximates posterior
marginals of the parameters in z, and if one is interested in the joint posterior dis-
tribution of a subset of these zc; then, joint inference can be provided by another
inference method, and the remaining conditional LGM is approximated with INLA
(Gómez-Rubio et al., 2019, Section 4.2).
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3.1 MCMC with INLA

To extend the number of models that can be fit with INLA, Gómez-Rubio et al.
(2018) proposed the combination of MCMC algorithm with the INLA. More spe-
cifically, they use the Metropolis-Hastings algorithm detailed in Section 2.2.1. We
will adopt the hierarchical model architecture described in Section 2.1 and the
ensemble notation, z = (x ,θ ) = (zc , z−c). Furthermore, we assume that the con-
ditional latent field z−c | zc is Gaussian distributed for zc fixed to some value z( j)c .
The Metropolis-Hastings algorithm then tries to construct a Markov chain of the
parameters zc , with their joint posterior distribution, π(zc | y), as limiting distri-
bution. The trick is now to fix zc to the generated states of the Markov chain, and
employ the INLA to fit the conditional LGMs.

The MCMC algorithm start from a chosen initial state, z(0)c ; then, the condi-
tional model given this initial state is fit with INLA, obtaining the initial posterior
marginals π̃(z−c,i | y , z(0)c )) and the conditional marginal likelihood π̃(y | z(0)c ).
Consider the proposal distribution q(z∗c | z

( j)
c ), used to draw candidate states z∗c

dependent on the previous state z( j)c . The candidates states are then accepted ac-
cording to a acceptance probability, which found by rewriting (2.10) as

α=min

(

1,
π̃(y | z∗c )π(z

∗
c )q(z

( j)
c | z∗c )

π̃(y | z( j)c )π(z
( j)
c )q(z∗c | z

( j)
c )

)

. (3.3)

Note that we use a block update, which means that all the parameters in zc is
either rejected or accepted altogether (see Gilks et al., 1996, Chapter 1.4.1). In
(3.3), π̃(y | z( j)c ) and π̃(y | z∗c ) denotes the conditional marginal likelihoods of
the current state, z( j), and the candidate state, z∗, obtained by the approximation
in (2.35). π(zc) is the known prior distribution, which is set before starting the
simulation and hold our prior knowledge about the parameters zc .

As described in Section 2.2.1, if the candidate is accepted, then z( j+1)
c = z∗c ,

and if the candidate is rejected, then z( j+1)
c = z∗c . Similarly, for the conditional

posterior marginals and the conditional marginal likelihoods, if the candidate is
accepted, then π̃(z−c,i | y , z( j+1)

c ) = π̃(z−c,i | y , z∗c ) and π̃(y | z( j+1)
c ) = π̃(y | z∗c ), or

if rejected, then π̃(z−c,i | y , z( j+1)
c ) = π̃(z−c,i | y , z( j)c ) and π̃(y | z( j+1)

c ) = π̃(y | z( j)c ).
This accept/reject design continues until convergence is reached and a predeter-
mined number of samples from the target distribution are generated. After the
simulation, the diagnostics described in Section 2.2.1 are considered, and conclu-
sions are drawn about the results.

Assume now that we have N samples z( j)c for j = 1, . . . , N of the target dis-
tribution, and that for each sample we have the conditional posterior marginal
{π̃(z−c,i | y , z( j)c )}Nj=1 for all z−c,i ∈ z−c . The posterior distribution and posterior
quantities of zc is obtained using the standard MCMC estimates described in Sec-
tion 2.2.1. Moreover, the posterior marginal of z−c,i is found by BMA, estimating
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(3.1) with (2.11) as

π̃(z−c,i | y) =
∫

π̃(z−c,i | y , zc)π(zc | y)dzc

'
1
M

M
∑

j=1

π̃(z−c,i | y , z( j)c ).
(3.4)

Posterior quantities of interest about the posterior marginals approximated with
(3.4) can then found with numerical integration in (3.2). The steps of the INLA
within Metropolis-Hastings algorithm are summarized in Algorithm 2.

The MCMC with INLA methodology is computationally very slow, as it is a
sequential algorithm, wherein each iteration an approximation of the model is
made with INLA. Although the INLA alone is quite fast, only a few seconds to a
minute, running the approximations in sequence sums up to an underestimated
time investment. We will address the MCMC with INLA algorithm as a "proof of
concept" for the other INLA within Monte Carlo methods.

3.2 IS with INLA

Gómez-Rubio (2019) proposed the use of a different Monte Carlo method com-
bined with INLA, namely importance sampling (IS; Section 2.2.2). The IS al-
gorithm benefits from its samples being independently drawn from a proposal
distribution, allowing INLA to fit the conditional LGMs in parallel. We adopt the
model notation from Section 3.1, where z = (x ,θ ) = (zc , z−c), and we assume
that the conditional latent field z−c | zc is Gaussian if zc is fixed to some value z( j)c .
The IS algorithm is in this setting responsible for generating these values of zc ,
and INLA will fit the conditional LGMs on these samples; ultimately, obtaining all
posteriors of interest.

Say that the we have the proposal distribution q(zc) that eclipse the region
of all values zc , where the posterior distribution π(zc | y) 6= 0. A sample of z( j)c is
then generated from this proposal distribution and fixed zc = z( j)c . Then, the condi-
tional LGM on zc( j) is fit with INLA to obtain the conditional posterior marginals,
π̃(z−c,i | y , zc = z( j)c ) for all z−c,i ∈ z−c , and the conditional marginal likelihood

π̃(y | zc = z( j)c ).
Assuming that the normalizing constant in this model is unknown, the import-

ance weights of the jth sample is calculated by

ω( j)∝
π̃(y | z( j)c )π(z

( j)
c )

q(z( j)c )
, (3.5)

where the z in (2.14) is replaced with zc . In (3.5), π(z( j)c ) is the evaluation of
our chosen prior distribution for the parameters in zc , π̃(y | z

( j)
c ) the conditional
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Algorithm 2: Metropolis-Hastings algorithm with INLA (Gómez-Rubio
et al., 2018)

- Set zc = z(0)c
- Fit INLA to model model conditioned on z(0)c :

π̃(y | z(0)c ) and π̃(z−c,i | y , z(0)c ), ∀z−c,i ∈ z−c

for j from 2 to N − 1 do
- Generate proposal z∗c ∼ q(· | z( j)c )

- Fit INLA to model model conditioned on z∗c :

π̃(y | z∗c ) and π̃(z−c,i | y , z∗c ), ∀z−c,i ∈ z−c

- Compute acceptance probability (usually log scale):

α=min

(

1,
π̃(y | z∗c )π(z

∗
c )q(z

( j)
c | z∗c )

π̃(y | z( j)c )π(z
( j)
c )q(z∗c | z

( j)
c )

)

- Sample u∼ U[0,1]

if u< α then
- z( j+1)

c ← z∗c
- π̃(z−c,i | y , z( j+1)

c )← π̃(z−c,i | y , z∗c ), ∀z−c,i ∈ z−c

else
- z( j+1)

c ← z( j)c

- π̃(z−c,i | y , z( j+1)
c )← π̃(z−c,i | y , z( j)c ), ∀z−c,i ∈ z−c

- Estimate π̃(zc | y) from {z( j)c }Nj=1 using kernel density estimation
- Compute posterior marginals using BMA:

π̃(z−c,i | y) =
1
N

N
∑

j=1

π̃(z−c,i | y , z( j)c ), ∀z−c,i ∈ z−c

marginal likelihood approximated with INLA, and q(z( j)c ) the evaluation of the
proposal distribution.

Suppose that the simulation of the IS with INLA algorithm has obtained the
weighted set of N samples {z( j)c ,ω( j)}Nj=1, and the corresponding N conditional
posterior marginals approximated with INLA for all z−c,i ∈ z−c . Then, the import-
ance weights calculated with (3.5) is normalized according to (2.15), and the
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self-normalized estimator from (2.16) is given as

Eπ[ f (zc)] =

∫

f (zc)π(zc | y)dzc

'
N
∑

j=1

f (z( j)c ) · ω̄
( j) = bEπ[ f (zc)],

(3.6)

where ω̄( j) is the self-normalized version of the importance weights in (3.5). Note
that to compute the normalization term

∑

ω( j) we need to have access to all
simulated elements.

An approximation of the posterior distribution π(zc | y) is found using non-
parametric kernel density estimation as described in Section 2.2.2, and the pos-
terior mode is found with the resulting kernel. Other posterior quantities, for ex-
ample, mean, variance, and correlation is estimated with (3.6). Similar to MCMC,
the posterior marginals of z−c,i is approximated using BMA, which in IS with INLA
is achieved by solving (3.1) with (3.6) as

π̃(z−c,i | y) =
∫

π̃(z−c,i | y , zc)π(zc | y)dzc

'
N
∑

j=1

ω̄( j) · π̃(z−c,i | y , z( j)c ), ∀ z−c,i ∈ z−c .
(3.7)

Posterior quantities about these marginals are estimated using the numerical in-
tegration method in (3.2).

If it is easy to choose a good enough proposal for π(zc | y); then, the standard
IS with INLA algorithm described above can be used. However, in some applic-
ations, the dimensions of zc is high, and it is not easy to choose an appropriate
proposal distribution. To account for this, we have, in our implementation of IS
with INLA, decided to add an initial search for the probability mass of the tar-
get distribution. This search is not mentioned in Gómez-Rubio (2019), but we
have observed in our experiments that it generally improves the effectiveness of
the algorithm. The search is carried out similarly to the adaptation in the AMIS
algorithm, and we assume that the proposal distribution belongs to a paramet-
ric family of distributions {q(zc;φ) | φ ∈ Φ}, where Φ is the parametric space.
Then, consider the initial parameters φ0 describing the initial proposal distribu-
tion, whereby N0 samples are generated and weighted according to the IS with
INLA scheme. Using the now obtained weighted set of samples, moments can be
approximated with (3.6), and the parameters φ0 are updated with these directly
or some transformation of them; for example, location, shape, and scale. Follow-
ing the search mentioned above, the initial N0 samples are thrown away, and the
IS with INLA algorithm employs the updated proposal distribution q(zc; φ̂) to sim-
ulate the posteriors of the model. The individual steps of our implementation of
IS with INLA are summarized in Algorithm 3.
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We want to mention that this initial search does not guarantee any improve-
ments of the proposal distribution. In some situations, it might even prove detri-
mental to the posterior estimates. Its accuracy also highly relies on the choice of
N0 and the vagueness of the initial proposal distribution. Even though increasing
N0 might improve the search, throwing away more samples is a waste.

Algorithm 3: IS with INLA (Gómez-Rubio, 2019), with search
- Initialize N0, q0(·;φ0), N
for j from 1 to N0 do

- Generate sample z(0, j)
c ∼ q0(·;φ0)

- Fit INLA to model conditioned on z(0, j)
c :

π̃(y | z(0, j)
c ) and π̃(z−c,i | y , z(0, j)

c ), ∀ z−c,i ∈ z−c

- Compute

ω(0, j) =
π̃(y | z(0, j)

c )π(z(0, j)
c )

q0(z
(0, j)
c ;φ0)

- Compute parameter estimates φ̂ for the new proposal q(·; φ̂) from the
weighted set of samples :

({z(0,1)
c ,ω(0,1)}, . . . , {z(0,N0)

c ,ω(0,N0)})

for j from 1 to N do
- Generate sample z( j)c ∼ q(·; φ̂)
- Fit INLA to model conditioned on z( j)c :

π̃(y | z( j)c ) and π̃(z−c,i | y , z( j)c ), ∀ z−c,i ∈ z−c

- Compute

ω( j) =
π̃(y | z( j)c )π(z

( j)
c )

q(z( j)c ; φ̂)

- Estimate π̃(zc | y) from {z( j)c }Nj=1
- Compute posterior marginals using BMA:

π̃(z−c,i | y) =
N
∑

j=1

ω( j)π̃(z−c,i | y , z( j)c )

,

N
∑

j=1

ω( j)
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3.3 AMIS with INLA

Following the development of more robust IS schemes, we now propose the adapt-
ive multiple importance sampling (AMIS) with INLA algorithm to extend the mod-
els that can be fit with INLA through the R-INLA package. The AMIS algorithm
is presented in Section 2.2.3, and is similar to the initial search for the probab-
ility mass of the target distribution in our implementation of the IS with INLA
method, where AMIS performs many of these adaptations without discarding the
generated samples. There is a significant computational cost of fitting a model
with INLA, and to throw away potentially valuable information is not favorable,
particularly in very complex models. The samples are kept by constructing a mix-
ture of all adapted proposal distribution, taking advantage of the strengths the
multiple IS weighing scheme in (2.20) carries.

We maintain the ensemble notation of the unknown parameters in the hier-
archical model described in Section 2.1, z = (x ,θ ) = (zc , z−c), and with zc fixed to
some value z( j)c assume that the latent field is Gaussian. We will use AMIS to gener-
ate a series of these values for zc , and use INLA to fit the conditional models. Con-
sider the initial parameters φ1 of the parametric proposal distribution q1(zc;φ1),
whereby N1 samples of zc are generated. Conditioned on these samples the model
is fit with INLA obtaining N1 conditional posterior marginals, π̃(z−c,1 | y , z(1, j)

c ),
and conditional marginal likelihoods π̃(y | z(1, j)

c ) for j = 1, . . . , N1. Furthermore,
the samples are weighted according to

ω(t, j)∝
π̃(y | z(t, j)c )π(z(t, j)c )

ψt(z
(t, j)
c )

, (3.8)

where in this particular case, t = 1. In (3.8), π(zc) is the chosen prior distribution
of zc , andψt(zc) is the mixture distribution (2.19) at step t. For t = 1, the mixture
consists of only the initial proposal distribution q1(·;φ1). Note that we assume that
the normalizing constant π(y) is unknown, such that during the simulation the
weights are set equal to (3.8); then, after the simulation or when a estimate is
required, the weights are normalized similar to (2.22).

To adapt the proposal distribution, we will use the moment matching criterion
between the proposal and the joint posterior distribution of zc . In the AMIS with
INLA algorithm, the posterior expected value of any function on zc is estimated
as

Eπ[ f (zc)] =

∫

f (zc)π(zc | y)dzc

'
t
∑

l=1

Nl
∑

j=1

f (z(l, j)c ) · ω̄(l, j) = bEπ[ f (zc)].
(3.9)

Here, ω̄(l, j) denotes the normalized weights of the jth sample drawn from the lth
proposal distribution. For example, a approximation of the mean z̄c is obtained
with f (zc) = zc in (3.9), and the variance is estimated with f (zc) = (zc − z̄c)2.
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Conclusively, the moments are matched by applying these estimated moments
to the moments of the proposal distribution and, in effect, the parameter φ1 is
updated and the proposal distribution is adapted to q2(zc;φ2)

Ensuing this initial adaptation, the new proposal distribution is added to the
mixture distributionψ2(·) according to (2.19), and the process continues by draw-
ing N2 new samples and weighing them with (3.8) for t = 2. In addition, the im-
portance weights of all past samples are update with this new mixture in (3.8).
The AMIS with INLA algorithm comprise of T such adaptations or epochs, and
in an epoch arbitrary epoch t ∈ (1, T ), Nt samples are generate and weighed ac-
cording to (3.8); then, an estimate of (3.9) is calculated to adapt the proposal;
lastly, the proposal distribution is added to the mixture (2.19), and the weights
of all accumulated samples are update with this new mixture. At epoch T , the
algorithm has generated N =

∑T
t=1 Nt weighted samples {z(t, j)c }T,Nt

t=1, j=1, and the

corresponding conditional posterior marginal {π̃(z−c,i | y , z(t, j)c )}T,Nt
t=1, j=1.

The posterior distribution of zc is approximated with non-parametric kernel
density estimation (Silverman, 1986), and the mode is obtained by the maximum
value of this kernel. Using BMA, the posterior marginals π(z−c,i | y) are obtained.
They are attained by estimating (3.1) with (3.9):

π̃(z−c,i | y) =
∫

π̃(z−c,i | y , zc)π(zc | y)dzc

'
T
∑

t=1

N
∑

j=1

ω̄(t, j) · π̃(z−c,i | y , z(t, j)c ), ∀ z−c,i ∈ z−c .
(3.10)

If posterior estimates of the expected value of some function f (·) about these
posterior marginals is of interest, they can obtained with the method in (3.2).

Note that it is also possible to determine if the proposal distribution needs to
continue adapting by calculating the effective sample size per sample, i.e., divid-
ing (2.17) by the number of generated samples. Thereby, if the estimate is higher
than a set threshold, the adaptation stops, and the last proposal distribution gen-
erates samples until some predetermined number of effective samples is obtained.
However, we have decided not to add this criterion to our implementation.

Similar to IS, the samples in the AMIS algorithm are drawn independently
of each other within an epoch. This allows the approximation of the conditional
models with INLA to be computed in parallel between the adaptations, resulting
in a significant increase in computation speeds. The individual steps in the AMIS
with INLA algorithm are shown in Algorithm 4.



32 Berild: INLA within MC

Algorithm 4: AMIS with INLA
- Initialize Nt = (N1, . . . , NT ), q1(·;φ1)
for j from 1 to N1 do

- Generate sample z(1, j)
c ∼ q1(·;φ1)

- Fit INLA to model conditioned on z(1, j)
c :

π̃(y | z(1, j)
c ) and π̃(z−c,i | y , z(1, j)

c ), ∀ z−c,i ∈ z−c

- Compute:

δ(1, j) = N1q1(z
(1, j)
c ;φ1) and ω(1, j) =

π̃(y | z(1, j)
c )π(z(1, j)

c )

q1(z
(1, j)
c ;φ1)

- Compute parameter estimates φ2 of the weighted set of samples:

({z(1,1)
c ,ω(1,1)}, . . . , {z(1,N1)

c ,ω(1,N1)})

for t from 2 to T do
for j from 1 to Nt do

- Generate sample z(t, j)c ∼ qt(·;φt)
- Fit INLA to model conditioned on z(t, j)c :

π̃(y | z(t, j)c ) and π̃(z−c,i | y , z(t, j)c ), ∀ z−c,i ∈ z−c

- Compute:

δ(t, j) =
t
∑

l=1

Nlqt(z
(t, j)
c ;φt) and ω(t, j) =

π̃(y | z(t, j)c )π(z(t, j)c )
�

δ(t, j)
�∑t

l=1 Nl

�

for l from 1 to t − 1 do
for j from 1 to Nl do

- Update past importance weights:

δ(l, j)← δ(l, j)+Nlqt(z
(l, j)
c ;φt) and ω(l, j)←

π̃(y | z(l, j)c )π(z(l, j)c )
�

δ(l, j)
�∑t

k=1 Nk

�

- Compute parameter estimates φt of the weighted set of samples:

({z(1,1)
c ,ω(1,1)}, . . . , {z(t,Nt )

c ,ω(t,Nt )})

- Estimate π̃(zc | y)
- Compute posterior marginals using BMA:

π̃(z−c,i | y) =
T
∑

t=1

Nt
∑

j=1

ω(t, j)π̃(z−c,i | y , z(t, j)c )

,

T
∑

t=1

Nt
∑

j=1

ω(t, j)
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Examples

This chapter will present some application of the INLA within Monte Carlo meth-
ods and compare each algorithm on efficiency, accuracy, and robustness. To de-
termine the effectiveness of a method, we will use the effective sample size per
second. Note that this estimate may not be the best method for comparing the ef-
ficiency of the methods (Elvira et al., 2018); however, as the methods highly rely
on Monte Carlo integration (2.7), and since the effective samples size convey the
variance of this integration, it will give some indication of efficiency. The accur-
acy of the methods is deduced by either comparing posterior densities or posterior
statistics to the truth, exact methods, or more established methods (e.g. MCMC).
The robustness is evaluated by the degree of manual tweaking and re-simulations
needed in the methods to reach convergence and obtain good approximations.

Section 4.1 will illustrate the performance and behavior of the combined INLA
and Monte Carlo methods on a simple bivariate linear model. The posteriors are
compared to the INLA, which is exact for this model up to an integration error.
In the second example Section 4.2, we apply the algorithms on a spatial autore-
gressive combined model, presented in Gómez-Rubio et al. (2019). They use a grid
exploration with INLA to obtain posteriors, and our goal is to investigate the per-
formance of the INLA within Monte Carlo methods on the same problem. Next, we
present a novel approach to Bayesian quantile regression using AMIS with INLA,
and validate it in a simulation study before applying it to existing datasets. In the
last example, we attempt an approximation of a Gamma frailty model using AMIS
with INLA, and analyze it in a simulation study.

4.1 Bivariate linear model

In the first example, we consider a bivariate linear model on a simulated dataset.
A dataset of 100 observations is obtained by drawing samples of the covariates
x1i and x2i from a uniform distribution between zero and one. Furthermore, we
apply a Gaussian noise term εi with mean zero and precision τ, such that the

33
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response is calculated by

yi = β0 + β1 x1i + β2 x2i + εi , for i = 1, . . . , 100.

We have chosen the parameters β0 = 1, β1 = 1, β2 = −1 and τ = 1. In all
methods, we have assigned the linear effects β = (β1,β2) the default prior in
R-INLA; a product of two Gaussian distributions with zero mean and precision
0.001. Moreover, we have applied the default priors in R-INLA to the intercept β0
and precision τ; a Gaussian distribution with zero mean and zero precision and
Gamma distribution with parameters 1 and 5e− 5, respectively.

This model can be easily fitted using INLA alone, and since the likelihood is
Gaussian, the INLA approximations are exact up to an integration error. However,
the INLA will only obtain the posterior marginals so, for example, joint inference
on β1 and β2 is not possible. Therefore, the scope of this example is double; on
one side, we can compare the results of the combined algorithms with the exact
INLA results; on the other side, we can show how the combined strategy also
allows for joint inference. For this example the vector of unknown parameters is
z = (β0,β1,β2,τ), and we set zc = (β1,β2) and z−c = (β0,τ).

In the INLA within Metropolis-Hastings algorithm, we have chosen a bivari-
ate Gaussian proposal distribution with mean equal to the previous state β ( j) and
variance of 0.752 · I, and we set β (0) = 0 as starting value. For the proposal dis-
tribution in the AMIS with INLA and IS with INLA methods, we have chosen a
bivariate Gaussian with initial parameters φ1 = (µ1,Σ1), where µ1 = 0 is the ini-
tial mean and Σ1 = 5 · I is the initial variance-covariance matrix. These proposal
distributions are a little vague but will be illustrative for the adaptation in the
algorithms.

In the MCMC with INLA algorithm, 10500 samples are drawn, where a burn-
in of 500 is used. Figure 4.1 shows the trace of samples values for β1 and β2.
The MCMC appears to converge and mix well. The IS with INLA algorithm gen-
erates N0 = 800 samples and adapts the proposal distribution throwing away
these samples. Then, it generates N = 10000 samples. For the AMIS with INLA
algorithm, a total of 10000 samples are drawn by adapting the proposal distri-
bution T = 27 times. The initial distribution draws N1 = 250 samples, and the
remaining distributions generates Nt = (250, 260, . . . , 490,500) samples, where
t = 2, . . . , T . Figure 4.2 shows the adaptation of the proposal distribution in AMIS
with INLA and IS with INLA. The methods have no issues finding the probability
mass of the posterior distribution in just one adaptation, and in this example, it
would be better to stop the adaptation in AMIS with INLA at t = 2. This could have
been done using the effective sample size per sample stopping criterion described
in Section 3.3.

In Figure 4.3, the approximated posterior marginals of β0, β1, β2, and τ from
the combined approaches are presented. The posterior marginal from INLA alone
and the true values of the parameters are also included for reference. Here, all
posterior marginals seem to follow the guidelines set by INLA, where the MCMC
with INLA provides some small inaccuracies around the posterior mode of β1 and
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Figure 4.1: Trace plot of the Markov chain of the βs in the bivariate linear model
constructed by the MCMC with INLA method with the burn-in highlighted (grey).

β2. Similar inaccuracies are present in Figure 4.4, where the joint posterior distri-
bution of β is shown.
In addition, Figure 4.4 presents the running effective samples size obtained with
the combined approaches, and the MCMC with INLA method has achieved much
fewer effective samples than the other methods in a much longer time. The IS
with INLA method achieved an effective sample size of 9137 in 3 minutes and
5 seconds, 49.2 effective samples per second; AMIS with INLA obtained 9618
effective samples in 8 minutes and 12 seconds, 19.5 effective samples per second;
Lastly, the MCMC with INLA found a Markov chain of 1120 effective samples in
53 minutes, 0.35 effective samples per second.

4.2 Spatial autoregressive combined model

In this example, we will apply the IS with INLA and AMIS with INLA algorithms on
a specific kind of spatial econometric model (SEM; see LeSage et al. (2009) for a
thorough account). These models comprise of one or many spatial autoregressive
terms that control the spatial dependencies and interactions in the data. We will
consider the spatial autoregressive combined (SAC) model proposed by Manski
(1993), where the response y is modelled by a autoregressive term ρ on the
response:

y = ρWy +Xβ +WXγ+ u. (4.1)

Here, the data is collected over n areas and X are the covariates of effect β , W is
the adjacency matrix of the n areas, and WX are the lagged covariates of effect
γ. The adjacency matrix W of size n× n is constructed such that if the area i and
area j are neighbors, the element (i, j) in W will be 1. Subsequently, the matrix is
row-standardized such that every row sum to one, which in turn makes the spatial
autocorrelation parameters bound to the interval (1/λmin, 1), where λmin is the
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in the bivariate linear model. The x-axis is the number of adaptations T of the
proposal distribution.
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Figure 4.5: Values of the election turnover in 2001 (left) and GDP per capita in
1997 (right) from single-member districts in Italy.

minimum eigenvalue of W. In this model, u is an error term that is modelled with
a spatial autoregressive term λ on the error term as

u = λWu + ε1, (4.2)

where ε1 is Gaussian noise term with zero mean and precision τ.
The response in (4.1) is rewritten as

y = (I−ρW)−1(Xβ +WXγ) + ε2, (4.3)

with the revised error term:

ε2 ∼N
�

0,τ(I−ρWT )(I−λWT )(I−λW)(I−ρW)
�

. (4.4)

Observe that we have the non-additive term (I−ρW) in (4.3), and that the error
term in (4.4) have a very complex structure. Hence, the model cannot be fit with
INLA directly unless we condition on the spatial autoregressive terms ρ and λ
and, thus, zc = (ρ,λ).

In this example, we consider the turnover dataset described in Michael D.
Ward (2008), which is obtainable at http://ksgleditsch.com/srm_book.html.
The dataset contains election turnovers in Italy from 2001, and the GDP per cap-
ita (GDPCAP) from 1997 for n = 477 areas. These areas are the single-member
districts in Italy. The spatial distribution of the variables, turnover and GDP per
capita, are shown in Figure 4.5, and we want to model the turnover using the
SAC model with ln(GDPCAP) as covariate and a intercept, i.e. the effect β1 for
ln(GDPCAP) and β0 for the intercept.

This example is similar to the one presented in Gómez-Rubio et al. (2019),
where they construct a grid on ρ and λ, and use INLA to obtain weighted grid

http://ksgleditsch.com/srm_book.html
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points. The conditional models from INLA are then combined with Bayesian model
averaging. Their aim is to estimate the impacts of covariates on the neighboring
responses; however, we will, in our example, focus on posterior statistics. We have
used the same adjacency of areas as Gómez-Rubio et al. (2019), where areas with
centroids closer than 50 km are neighbors. The exact dataset we used, with this
adjacency matrix included, is found in the code repository of Gómez-Rubio et al.
(2019) (https://github.com/becarioprecario/SAC_INLABMA).

We know apriori that the autoregressive terms are in the range (1/λmin, 1),
and that the minimum eigenvalue of W is λmin = −0.82. Thus, the auto regressive
terms in zc are assigned a uniform prior distribution between −1 and 1. Further-
more, the parameters β0 and β1 are given a Gaussian prior with mean zero and
variance 1000, and the precision τ of ε1 is assigned a Gamma prior with shape
0.01 and rate (inverse-scale) 0.01. These are the same priors used by Gómez-
Rubio et al. (2019).

In the AMIS with INLA and IS with INLA algorithm, we have used the bivari-
ate Student’s t proposal distribution with three degrees of freedom for zc , where
initial parameters for the proposal distribution in both methods are a zero mean
and variance 2 · I. We apply an initial search of N1 = 800 samples for the prob-
ability mass of the posterior distribution of zc in the IS with INLA algorithm;
then, N2 = 10000 is drawn from the new proposal. In the AMIS with INLA al-
gorithm, we initially generate N1 = 250 samples. Next, the proposal distribu-
tion is adapted T = 27 times, and each new proposal distribution draws Nt =
(250,260, . . . , 490,500) samples. This results in a total of N = 10000 samples
and conditional model approximations with INLA.

To compare our results, we have estimated the model with a standalone MCMC
algorithm for SAC models available in the R package spatialreg in the func-
tion spBreg_sac (Bivand et al., 2013; Bivand et al., 2015b), which was also used
for comparison in Gómez-Rubio et al. (2019). In the MCMC simulation, 110000
samples where drawn with a burn in of 10000, and every 10th samples are kept
to reduce auto-correlation. Resulting in Markov chain of 10000 samples obtained
with the MCMC algorithm.

The posterior marginals of the intercept β0, the effect of log GDP per capita β1,
and the precision of the noise τ are presented in Figure 4.6. The INLA with Monte
Carlo methods approximated close to similar posterior marginals as the MCMC
method. Figure 4.6 also show the approximated joint posterior distribution of the
spatial autoregressive terms in zc . Again, the distribution is quite similar between
the methods. Overall, the MCMC algorithm estimates a slightly smaller variance
than the combined approaches, and there are also some noticeable differences in
the posterior mean. The effective sample size obtained with the MCMC algorithm
was 295 for the ρ parameter. The IS with INLA method found 3222 effective
samples in 62 minutes, 0.86 effective samples per second, and AMIS with INLA
4999 in 75 minutes a resulting in 1.1 effective samples per second.

We have omitted the results of the MCMC with INLA algorithm from tables
and figures because of its low performance compared to the others. It obtained an

https://github.com/becarioprecario/SAC_INLABMA
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effective sample size of 64 in 8 hours, such that even with the unfeasible number of
10000 effective samples, it would sill have lower effective samples size per second
than the AMIS with INLA and IS with INLA algorithms. The posterior distributions
obtained with MCMC with INLA is compared to those from AMIS with INLA in
Figure A.1.

Parameter MCMC IS with INLA AMIS with INLA

β0 5.76(2.34) 6.17(2.46) 6.11(2.42)
β1 1.75(0.59) 1.84(0.61) 1.83(0.61)
ρ 0.86(0.04) 0.84(0.07) 0.84(0.07)
λ 0.21(0.11) 0.25(0.13) 0.24(0.13)
τ 0.26(0.02) 0.26(0.02) 0.26(0.02)

Table 4.1: Posterior mean and standard deviation (in parenthesis) estimated by
the MCMC, IS with INLA, and AMIS with INLA algorithm on the SAC model.

4.3 Model-aware Bayesian quantile regression

Quantile regression is used to understand the relationship between the quantiles
of the response and the covariates and was introduced by Koenker et al. (1978).
The frequentists’ approach to quantile regression is well developed and relying
on minimizing a loss function. In the Bayesian framework, a common approach
to quantile regression is to employ a likelihood function based on the asymmet-
ric Laplace distribution (Yu et al., 2001). These approaches are generally non-
parametric (no unknown parameters in the model) or semi-parametric, and have
a likelihood but no model for the data. Padellini et al. (2019) proposed a fully
parametric approach by modifying the link function in R-INLA to link the linear
predictor to the quantiles of the response. Their approach is model-based and
assumes Poisson distributions for the data, which conveniently has only one like-
lihood parameter because the mean is equivalent to the variance and the model
can, therefore, be approximate with R-INLA.

Our approach is similar to Noufaily et al. (2013) and Padellini et al. (2019) in
that we assume a likelihood model that describes the data generation process and
is not a mere working likelihood as the asymmetric Laplace. Moreover, we follow
Noufaily et al. (2013), which show that by modeling all likelihood parameters as
a function of covariates, interesting shapes are found in the quantile curves. R-
INLA does not allow the user to link more than one likelihood parameter to the
covariates, and for this reason, we employ our combined methods.

Consider the Gaussian likelihood y | x ∼N (µ,σ2). The p quantile yp is given
by yp = σy∗p +µ, where y∗p is the p quantile of a standard Gaussian distribution.
It is clear that having a fixed scale parameter σ, as is the case in INLA, results in
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parallel quantile curves, which are not so interesting. We instead use the model

µ(x) = a+ bx

log(σ) = c + d x ,

such that both µ and σ are allowed to vary with the covariates, and we have the
likelihood

y = a+ b · x + eced·x · ε, (4.5)

where ε is a realization of the standard normal distribution. Thus, the model is
non-additive and cannot be approximated with INLA alone unless we fix c and d
to some value.

In the following, we will only consider Gaussian or Gamma likelihoods but
many other distributions for the response can be used. For the Gaussian case,
similar to (4.5), the likelihood is modeled by the mean µ(x) and precision τ(x)
as

yi ∼N
�

µ(x i),
1

τ(x i)

�

=N
�

a+ b · x i ,
1

exp(c + d · x i)

�

.
(4.6)

In the case of a Gamma likelihood, the mean is modeled by µ(x) = exp(a+ b · x),
and instead of the precision we use the shape k(x) = exp(c+ d · x). The resulting
Gamma likelihood is

yi ∼ Gamma
�

k(x i),
µ(x i)
k(x i)

�

, (4.7)

where µ(x)/k(x) is the scale, and the precision can be found with k(x)/µ(x)2.
Assuming that a model follows the Gaussian likelihood in (4.6), the associated
quantile function can be calculated by

yp(x) = a+ b · x +
1

p

exp(c + d · x)
QN (p), (4.8)

where p denotes the quantile and QN (p) the quantile function of the standard
normal distribution. Lastly, the quantile function of the Gamma likelihood in (4.7)
is formulated as

yp(x) =
µ(x)
k(x)

·QGamma (p ; 1, k(x)) , (4.9)

where QGamma(p; 1, k(x)) is the Gamma quantile function with scale one and
shape k(x).

As shown in (4.5), the change in the precision as an effect of the covariates is
not handled by R-INLA alone; however, if conditioned on the values of precision
the model can be fit with R-INLA. Thus, we propose a new approach to Bayesian
quantile regression using the AMIS with INLA algorithm. The other INLA within
Monte Carlo methods are also used, but most of their results are presented in
the Appendix A. This is due to the fact that IS with INLA algorithm struggles to
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obtain good approximations when employed with the same proposal distribution
as AMIS with INLA, and requires more investigation of the data. The same could
be said for the MCMC with INLA, which generally has low acceptance rates and
requires many re-runs and manual tweaking. In addition, we choose not to clutter
the figures with quantile curves from many methods. We collect the parameters in
z = (a, b, c, d) and follow the notation in Section 3.3, where inference about the
elements in z−c = (a, b) are obtained with INLA by conditioning on the generated
samples of zc = (c, d, ) obtained with the AMIS algorithm. We assume that the
parameters z−c are Gaussian given zc , such that inference with INLA is feasible.

Note that this approach is fully parametric for the linear predictors used in
(4.6) and (4.7). However as described in Section 2.1.1, INLA can model smooth ef-
fects f (·) of the covariates in the linear predictor (2.2), which is a non-parametric
estimation (Gómez-Rubio, 2020, Chapter 9). Thus, our quantile regression ap-
proach is in some models semi-parametric and, in Section 4.3.2, we demonstrate
the application of such a smooth effect. An important consequence of our ap-
proach to quantile regression is that the quantile curves cannot cross, which is a
major issue in many quantile regression methods and a problem covered in many
studies (Rodrigues et al., 2017). If quantile curves were to cross, it would suggest
a negative probability, which is highly unreasonable.

In Section 4.3.1, we will conduct a simulation study on two Gaussian and
Gamma models to validate our quantile regression approach. Next, the method
is applied to a LIDAR dataset, which is modeled with a smooth effect on the co-
variate, and we assume a Gaussian model. Lastly, we test the approach on the
Immunoglobulin G dataset used in Noufaily et al. (2013), and assume a Gamma
likelihood. If not otherwise specified, we have in all these examples used a vague
prior for the parameters in zc , a Gaussian distribution with mean zero and preci-
sion 0.01. Furthermore, b is assigned a Gaussian prior with mean zero and preci-
sion 0.001, and a is assigned a Gaussian prior with zero mean and zero precision
(the default priors in R-INLA).

In the AMIS with INLA algorithm, we have employed a bivariate Student’s
t-distribution with three degrees of freedom as proposal distribution, where the
initial parameters φ1 are set to mean zero and variance-covariance matrix 10 · I2.
Similar to the simulation strategy used in Section 4.1, a total of 10000 by the AMIS
with INLA algorithm. Initially N1 = 250 are generated; then, the proposal distribu-
tion is adapted T = 27 times, where in each adaptation Nt = (250, 260, . . . , 500)
samples are drawn with the new proposal for t = 2, . . . , 27.

4.3.1 Simulation study

In the first examples, we will perform Bayesian quantile regression using the AMIS
with INLA algorithm on four simulated datasets of n = 500 observations. The
covariate x is generated from a uniform distribution between zero and one, and
the parameters in the models are set according to Table 4.2. Then, the response is
simulated using the associated likelihood, (4.6) or (4.7), which is also highlighted
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for the respective models in Table 4.2.

Model a b c d

M1 Gaussian 1 -0.1 -1.5 -2
M2 Gaussian -2 -5 -2 3.5
M1 Gamma 3 -1 -1 6
M2 Gamma -3 2 4 -1

Table 4.2: Coefficients of the simulated data for quantile regression.

The sampling strategy and proposal distribution of the AMIS with INLA al-
gorithm, and the priors of the Bayesian parametric quantile regression model is
detailed in the introduction of Section 4.3. The posterior statistics and effective
sample sizes of all the simulations are presented in Table 4.3. There are some
deviations from the parameters set during simulation, and some vary as much as
±0.4 from its actual value. However, since only n= 500 observations are included
in the dataset, the deviations between the true values of the parameters and the
estimated values can be caused by the randomness in the dataset.

Model a b c d ÔESS

M1 Gaussian 1.28(0.23) 0.14(0.53) -1.49(0.12) -2.02(0.22) 7879
M2 Gaussian -1.64(0.14) -5.38(0.18) -1.99(0.12) 3.48(0.22) 7961
M1 Gamma 3.03(0.05) -1.02(0.06) -0.87(0.11) 5.73(0.20) 7653
M2 Gamma -3.02(0.01) 2.07(0.03) 3.94(0.12) -0.88(0.22) 7549

Table 4.3: Estimated posterior statistics of the coefficients in the quantile regres-
sion models with simulated data. The standard deviations are presented in the
parenthesis, and the last column are the estimated effective sample sizes in the
models.

The approximated quantile curves of the four models found using (4.8) or
(4.9), and the estimated parameters obtained with AMIS with INLA is presented
in Figure 4.7. Here, the quantile curves seem to explain the relationship between
the response and the covariates in the data well. Again, there are some slight
deviations between the true quantile curves and the estimated ones, but they are
quite similar in shape.

4.3.2 Ratio of received light in LIDAR measurements

We will now consider an existing dataset of light detection and ranging (LIDAR)
measurements found in Sigrist et al. (1994), where they use the LIDAR data to
monitor pollutants. It contains n = 221 observations of two variables; the first is
the log of the ratio of light received by two lasers, and the second is the distance
the light has traveled before it is reflected back to its source. The data are plotted in
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Figure 4.7: Quantile curves of the simulated data sets detailed in Table 4.2 ap-
proximated using the AMIS with INLA approach to Bayesian parametric quantile
regression and the true quantile curves.
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Figure 4.8, and it is apparent that both the mean and dispersion of the observation
depends on the observed value of the covariate. In our model, we will use the log
ratio of received light as the response y (logratio), and model it by a smooth effect
of the distance the light has traveled before it is reflected x (range):

ηi = a+ f (x i) (4.10)

Smooth effects are simple to use in R-INLA, and we choose the second order
random walk model as prior distribution for the smooth effects f (·) as

π( f | θ )∝ θ (n−2)/2 exp

�

−
θ

2

n−2
∑

n=1

( f (x i)− 2 f (x i+1) + f (x i+2))
2

�

.

Here, f | θ is Gaussian distributed with mean zero and precision given by Q(θ )
(see Martino et al., 2019, Section 3). The model is completed by assigning a log
Gamma prior for log(θ ) with parameters 1 and 5e− 5.

A Gaussian likelihood is assumed for the model, and its precision is modelled
by the parameters c and d as described in (4.6), and the mean µ(x) is given
by (4.10). Like in the other models, we will generate samples of zc = (c, d) using
AMIS, and conditional on these to obtain the conditional marginal likelihood with
INLA. After the simulation, an estimate of the posterior mean of zc is found, and
R-INLA is used to predict the mean µ(x). Then, the quantile curves are calculated
using (4.8).

Before running the AMIS with INLA algorithm, we have scaled the covariate x
by its maximum value to have a higher chance of convergence with the proposal
distribution described in the introduction of this section. After the simulation, the
range covariate and the parameters associated with it are re-scaled, such that
there is no clear effect of the scaling other than the convergence. In addition, we
have used the same priors for a, c, d as described in Section 4.3. In this example,
we have also applied the MCMC with INLA and IS with INLA algorithms. Suffi-
cient acceptance rates were achieved with the MCMC with INLA algorithm using a
bivariate Gaussian proposal distribution with the variance-covariance matrix 2 · I.
For the IS with INLA algorithm, acceptable results were only obtained when the
bivariate Student’s t proposal distribution was moved to fit the posterior distri-
bution better, and we specified a mean µ = (10,−10) and variance-covariance
matrix 3 · I.

Table 4.4 shows the posterior statistics of the parameters in the random walk
model for the LIDAR data. They are approximated by fitting N = 10000 condi-
tional models with INLA on the samples drawn with the Monte Carlo methods.
Here, we observe very similar posterior estimates between the methods. How-
ever, the effective sample size, also presented in Table 4.4, is very small for the IS
and MCMC with INLA methods. This is after several reruns and changing of ini-
tial parameters. In addition, the posterior marginals shown in Figure A.2 are also
pretty poor for the IS with INLA and MCMC with INLA methods. The resulting
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quantile curves obtained with the AMIS with INLA algorithm are shown in Fig-
ure 4.8. We have also included the joint posterior distributions of zc in Figure A.3,
where we observe a significant negative correlation between the parameters.

Method a c d ÔESS

AMIS w/ INLA -0.291(0.006) 13.679(0.598) -0.014(0.001) 6340
IS w/ INLA -0.291(0.005) 13.656(0.589) -0.014(0.001) 1770
MCMC w/ INLA -0.291(0.005) 13.644(0.622) -0.014(0.001) 144

Table 4.4: Posterior means and standard deviations (in parenthesis) estimated
with all INLA within Monte Carlo methods for the coefficients in the random
walk model on the LIDAR data.

4.3.3 Serum immunoglobulin G concentrations in children

The dataset used in this example is collected from the research by Isaacs et al.
(1983), where parametric quantile regression models are fit to the data. Moreover,
it is also used in a Bayesian semi-parametric method in Jara et al. (2011), and in
the parametric quantile regression method using the generalized Gamma likeli-
hood by Noufaily et al. (2013). The dataset contains measurements of the serum
immunoglobulin G concentrations (IgG; in grams per liter) from 298 children,
where their age was also recorded.

Consider the model with response y of immunoglobulin G concentrations and
covariate x holding the children’s age. The aim is to perform Bayesian quantile
regression with the INLA within AMIS algorithm to explain the effect of the age
on the quantiles of immunoglobulin levels. Furthermore, we assume that the re-
sponse is Gamma distributed according to (4.7) and, thereby, the quantile curves
can be obtained with the quantile function in (4.9). We also assume that the para-
meters zc = (c, d) and z−c = (a, b) have the same prior distributions as described
earlier, and we use the same Student’s t proposal distribution of three degrees of
freedom for the AMIS with INLA algorithm.

We have also attempted to approximate the model using the IS with INLA,
and MCMC with INLA approaches. In the former, we choose a bivariate Gaussian
proposal distribution with mean µ = (2,0) and variance σ = (1,0.5), which is
very close to the posterior distribution of zc . The MCMC with INLA algorithm is
assigned a bivariate Gaussian with variance σ = (0.1,0.15).

The posterior statistics estimated with the INLA within Monte Carlo methods
on the Immunoglobulin G dataset are presented in Table 4.5, and we observe
that these estimates are almost identical. However, looking at the effective sample
size, the MCMC with INLA algorithm seems to have highly correlated samples.
The approximated posterior marginals presented in Figure A.4 is also pretty poor
for the MCMC with INLA algorithm. Using the coefficients found by the AMIS
with INLA method in Table 4.5, and the quantile function in (4.9), we obtain
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Figure 4.8: Estimated quantile curves of the second order random walk model
on the LIDAR dataset obtained using the AMIS with INLA algorithm. The light
grey lines are quantile curves in the range p ∈ (0.025,0.975).
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Method a b c d ÔESS

AMIS w/ INLA 1.28(0.05) 0.13(0.01) 1.68(0.15) 0.08(0.04) 6260
IS w/ INLA 1.28(0.05) 0.13(0.01) 1.69(0.15) 0.08(0.04) 8344
MCMC w/ INLA 1.28(0.05) 0.13(0.01) 1.69(0.15) 0.08(0.05) 212

Table 4.5: Posterior statistics estimated with all INLA within Monte Carlo meth-
ods for the coefficients in the Gamma model for immunoglobulin G concentra-
tions.

the quantile curves shown in Figure 4.9. We observe that these quantile curves
are quite similar to the results presented in Noufaily et al. (2013) and Jara et al.
(2011) but diverge for small values of x , where their estimates attain a substantial
drop in quantile values. This is most likely caused by the added bias from our
assumption that the response follows a Gamma likelihood.

4.4 Gamma Frailty Model

In this example, we will consider a parametric proportional hazard model with
Gamma frailty terms (Duchateau et al., 2008) on simulated datasets. The frailty
term is used to describe the effect of unobserved covariates in the survival model;
for example, it could explain the resilience a specific family has on a disease, i.e.
there is dependency within groups (see Gómez-Rubio, 2020).

Consider the data y with only right censored data at time t , and the fixed ef-
fects β1 of some covariates x . We will model the survival data with a proportional
hazard as

hi j(t) = αtα−1 exp
�

β0 + x T
i jβ +wi

�

= αtα−1ui exp
�

β0 + x T
i jβ
�

,
(4.11)

where hi j is the conditional hazard function of subject j = 1, . . . , Ni and cluster
i = 1, . . . , M , and t is its censoring time. The random effect of cluster i, wi , is the
logarithm of ui , which are the frailty parameters. The linear predictor can in this
model be formulate as ηi j = β0 + x T

i jβ1 + wi . In addition, we consider a Gamma
frailty ui with prior distribution

π(ui | γ) = Gamma(γ,γ). (4.12)

Here, γ is the shape and rate of the Gamma distribution, and is a unknown para-
meter in the model.

Frailty models can be fit with INLA alone if one assumes that wi is Gaussian dis-
tribution, such that the frailty ui is log-normal. However, with the Gamma frailty,
the linear predictor is not Gaussian unless we fix the frailty terms to some repres-
entative values. Therefore, we will employ the AMIS with INLA method to provide
posterior inference about the parameters of the model. Samples of zc = (u,γ) are



Chapter 4: Examples 51

0.1

0.25

0.5

0.75

0.9

4

8

12

16

0 2 4 6
Age (years)

Ig
G

 (
g/

L)
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generated using AMIS, and the conditional model z−c |zc is fit with R-INLA, where
z−c = (α,β0,β1). We assume a Gamma prior for γ with parameters 1 and 0.01.
The other parameters are assigned their default priors in R-INLA; log(α) a log-
Gamma with parameters 25 and 25, β1 a Gaussian with zero mean and precision
0.001, and β0 a Gaussian with zero mean and precision.

For the proposal distribution of zc , multivariate log-normal distribution is em-
ployed. Note that the dimension of zc in some model might be very high (100-
200+) because of the number of clusters/groups in ui; therefore, the AMIS al-
gorithm might struggle to find the probability mass of the joint posterior distribu-
tion of zc . To account for this, we set the initial parameters of the proposal distri-
bution to the posterior estimates of the frailty from a INLA approximation using
its default log-normal prior, which has proven to be quite similar to the Gamma
frailty estimates. To clarify, the AMIS weights are in this example calculated as

ω(k,t) =
π(y | u(k,t),γ(k,t))π(u(k,t) | γ(k,t))π(γ(k,t))

ψt(u(k,t),γ(k,t))
,

where k and t denotes the kth sample from the tth epoch, and ψt(·) the mixture
of all adapted proposal distributions at epoch t. To further account for the high
dimensions of zc , we have altered the sample strategy to follow the recommend-
ations by Corneut et al. (2012) described in Section 2.2.3. The sampling strategy
is as follows: first, we generate N1 = 5000 samples, and the proposal distribution
is adapted; then, Nt = 500 samples are generated for t ∈ (2,21) epochs, which
results in a total of N = 15000 samples.

We simulate a dataset of 300 observations from model (4.11) with paramet-
ers: β0 = 1, β1 = 2.2, α = 1.1, and γ = 1. First, the covariate x is drawn from
a uniform distribution between zero and one; then, the frailty terms are gener-
ated from (4.12) for each cluster i, and the linear predictor ηi j for each subject
j in cluster i is calculated. Lastly, the censoring times are drawn from a Weibull
distribution with shape α and scale exp(η)−1/α.

We consider two examples, one with M = 4 and one with M = 20 clusters.
Increasing the number of clusters makes the problem more difficult as the size of
the set zc grows. First, we examine the simple example of M = 4, and the result-
ing posterior estimates of the log frailty terms w are presented in Figure 4.10. In
addition, the posterior marginals of the remaining parameters are shown in Fig-
ure 4.12. The approximations are relatively accurate for a zc of dimension five.

Then, we consider a model with M = 20 clusters using a similar sampling
strategy as M = 4. Figure 4.11 shows a 95% confidence interval (CI) for the
frailty terms together with their true values. The CI covers the true value even
if the estimates appear to be less precise than for the M = 4 case. The other
parameters are reported in Figure 4.12, where there seems to be a slight bias in
the estimation.
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Figure 4.11: The estimated posterior mean of the log frailty wi using AMIS with
INLA on a simulated dataset of M = 20 clusters. The bands are the 0.025 and
0.975 quantiles of wi , where i is the x-axis. The dark red points are the values of
wi in the simulation of data.
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Chapter 5

Summary and Discussion

5.1 Summary

In this thesis, we have investigated the properties of three INLA within Monte
Carlo methods to extend the class of models that can be fit with INLA; namely
MCMC with INLA, IS with INLA, and the novel AMIS with INLA approach. We
have built up the theory of Bayesian inference and model assumptions. Then,
we presented the considered Monte Carlo methods, and INLA, motivating the
merging of Monte Carlo techniques and INLA. Then, we described the general
models compatible with these approaches and built the algorithms of the INLA
within Monte Carlo methods formulating many posterior estimates.

We have evaluated the performance of these methods on four types of models.
First, we validated our implementation of the methods on a bivariate linear model
by comparing posteriors with the exact INLA. We also investigated the behavior
of the Markov chain in MCMC with INLA and the adaptation in IS with INLA and
AMIS with INLA. Next, we tested the performance of the approaches on a spatial
autoregressive combined (SAC) model, comparing posteriors to MCMC results.
Then, we proposed a novel model-aware Bayesian quantile regression approach
using AMIS with INLA, and evaluated it on several simulations before applying it
to two existing datasets; second-order random walk model on LIDAR data, and
a Gamma model on immunoglobulin G concentration in children. Lastly, we ap-
proximated Gamma frailty models in a simulation study using AMIS with INLA
for different numbers of clusters.

5.2 Discussion

On the simplest models, the IS with INLA algorithm has proven the most effect-
ive method for inference. This is because it can be parallelized indefinitely if
one wanted. In our experience, it resembles that of grid exploration with INLA
(Gómez-Rubio et al., 2019), since the choice of proposal distribution is very sim-
ilar to choosing the range of the grid. In Section 4.1, we set good proposals for all
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methods, and IS with INLA outperforms all of them. For the SAC model, it is also
simple to set good proposal distributions because the autoregressive parameters
are bound to -1 and 1. However, the R-INLA approximation runs much slower
for this model, such that adapting the proposal to better approximate the target
makes AMIS with INLA the more effective method for the set amount of samples.

In the Bayesian quantile regression Section 4.3, we have purposely focused on
the AMIS with INLA algorithm, and chose very vague proposal distributions. In
doing so, the IS with INLA algorithm struggled to obtain good approximations un-
less we drastically altered the proposal. Similarly, the INLA within MCMC method
needed many re-runs and tweaking before obtaining acceptable results. Neverthe-
less, our approach to Bayesian quantile regression shows promise and is accurate
when compared to the actual quantile curves in the simulation study, or by just
looking at the data. In Section 4.3.3, it is clear that it lacks some of the flexibility
of non model-aware Bayesian quantile regression approaches, but it reduces the
variance in the extreme quantiles and is fully parametric except for smooth ef-
fects in the linear predictor. Noufaily et al. (2013) uses a more flexible likelihood
function, the generalized Gamma, which is a three-parameter distribution that in-
cludes the Gamma, Weibull, and exponential distribution. We would employ the
same likelihood if it were available in R-INLA.

The Gamma frailty models tested the AMIS with INLA algorithm to the limits
of its capability, where we deliberately increased the number of clusters to make
the parameter space of the AMIS very high. On a simple model with four clusters,
the method obtained promising posterior estimates when compared to their ac-
tual values. However, when the number of clusters increased to 20 or more, the
AMIS algorithm struggled to adapt the proposal to fit the target accurately. In this
example, we refrained from applying the IS with INLA because of the complexity
of the model, and it would struggle to find proper posteriors in these many di-
mensions. Similarly, we forgo the application of MCMC with INLA algorithm on
this example, but acknowledge that it would eventually converge if ran for a very
long time.

In our opinion, the AMIS with INLA algorithm is in a practical setting the most
robust algorithm, as it requires the least effort to obtain good results compared
to the other methods. The posterior statistics are generally very accurate for all
methods, but the AMIS with INLA really shines when approximating posterior
densities. We recommend the use of IS with INLA on simple models or when a
proper proposal distribution is known; however, we could say the same for the
BMA with INLA method proposed by Gómez-Rubio et al. (2019). In more complex
models, or when it is difficult to find a good proposal, we will encourage the
application of AMIS with INLA if computation time is of interest.

We have intentionally not discussed MCMC with INLA that much. It is a com-
putationally intensive and sequential algorithm that, in our experience, takes a
too long time to provide accurate results. As observed in the SAC model, if the
MCMC with INLA obtained the unfeasible 10000 effective samples, it would still
have a lower effective sample size per second than the other methods. Neverthe-
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less, the approach is theoretically sound, and convergence is promised under mild
conditions and, in general, we would view MCMC with INLA as a proof of concept
for the combined approaches.

Lastly, we want to acknowledge that a standalone MCMC algorithm might run
faster than the INLA within Monte Carlo methods, but the development of the
algorithm might be a demanding process. The INLA with Monte Carlo framework
serves as a simple tool if you have some knowledge of R-INLA, to obtain fast
inference on models that can "almost" be approximated with INLA alone.

5.3 Further work

For the INLA within Monte Carlo methods to be a simple tool for Bayesian infer-
ence, it needs to be easily available. For this, some work is still required on our
implementations to create a R package or to include it in an existing one. It would
also be interesting to investigate the optimization of effective sample size as an
adaptation criterion in AMIS with INLA. However, this would require some more
theoretical development of the AMIS effective samples estimator (Elvira et al.,
2018). Another compelling addition to the AMIS with INLA algorithm is that the
decision of whether or not the proposal should be adapted is determined by the
effective sample size per sample, as described in Section 3.3. This would improve
the AMIS with INLA algorithm on the simple bivariate linear model, and could in
general, make the method run faster. However, this requires some investigation
of the best threshold of effective sample size per sample.

It would also be interesting to explore other likelihoods in the Bayesian para-
metric quantile regression approach. There are many likelihoods available in the
R-INLA package (see inla.list.models() in R for a extensive list), and many
of these are compatible with this approach. Also, there are several random ef-
fects easily available in R-INLA that can be explored for some interesting quantile
regression models.

Further testing of the Gamma frailty model is required to draw any particular
conclusion about the applications of AMIS with INLA algorithm. However, it seems
unlikely that the approach can handle more than 100 clusters. Future research on
this approach could also involve some application on an existing Gamma frailty
dataset, and compare it to inference provided by other methods.

Future development of the AMIS with INLA algorithm could involve combining
more modern AMIS algorithms with INLA. For example, the modified AMIS (MA-
MIS) proposed by Marin et al. (2014), and the effective AMIS (EAMIS) presented
by El-Laham et al. (2019). MAMIS proves the convergence of AMIS by modifying
the AMIS algorithm slightly, and EAMIS employs an approximate version of the
temporal mixture development in AMIS that lowers the computational complex-
ity of the algorithm. We have not investigated the compatibility of these methods
with INLA, but they might be an interesting consideration in future research.
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Appendix A

Additional Figures

A.1 SAC model
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Figure A.1: Joint posterior distribution of the autoregressive terms ρ and λ (bot-
tom right) and the posterior marginals of the intercept β0, log GDP per capita β1,
and the precision of the noise τ in the SAC model approximated with AMIS with
INLA and MCMC with INLA.
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A.2 Ratio of received light in LIDAR measurements
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Figure A.2: Posterior marginals of z = (a, c, b), and the running effective sample
size (bottom right) in the second order random walk model for LIDAR data ap-
proximated with AMIS with INLA, IS with INLA, and MCMC with INLA.
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Figure A.3: Joint posterior distribution of zc = (c, b) in the random walk model
for LIDAR data approximated with AMIS with INLA, IS with INLA, and MCMC
with INLA.
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A.3 Serum immunoglobulin G concentrations in children
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Figure A.4: Posterior marginals of z = (a, b, c, b) in the gamma model for Immun-
oglobulin G data approximated with AMIS with INLA, IS with INLA, and MCMC
with INLA.
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