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Summary

Let k be a field. We investigate an algebraic description of the set [P1
,P1]A

1

of A1
-

homotopy classes of pointed k-scheme endomorphisms of the projective line P1. Inspired
by the methods of Cazanave in [6], we look for a group structure on [J ,P1]A

1

from the
Jouanoulou device J associated to P1. Since J is an affine k-scheme, a theorem of Asok–
Hoyois–Wendt implies that the [J ,P1]N is isomorphic to [P1

,P1]A
1

. Our main result
is a new description of the set [J ,P1]N by use of concrete algebro-geometric methods
avoiding the abstract A1-homotopy machinery.
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Chapter 1
Introduction

A1-homotopy theory, introduced by Morel and Voevodsky, gives a convenient framework
to use homotopy theory in the setting of algebraic geometry. Morel and Voevodsky defined
for a fixed field k the notion of homotopies of morphisms between smooth schemes over
k. Thus, given two smooth schemes X and Y , the set [X,Y ]A

1

of A1-homotopy classes
of pointed morphisms from X to Y is well defined. However, the homotopy relation
arises from an abstract construction which makes computation of homotopy classes of
morphisms rather mysterious.

A potential starting point for A1-homotopy is the naive homotopy. It mimics the def-
inition of homotopies from algebraic topology. However, since the unit interval, [0, 1], is
not an algebraic variety, one replaces it by its algebraic analogue, the affine line A1.

Definition 1.0.1. Let X and Y be two smooth schemes over k. A naive homotopy is a
morphism schemes

F : X ⇥ A1
�! Y.

The restriction �(F ) := F|X⇥{0} is the source of the homotopy and ⌧(F ) := F|X⇥{1} is
its target. When X and Y have base points, say x0 and y0, we say that F is pointed if its
restriction to {x0}⇥ A1 is constant equal to y0.

When X = Spec(R) for some ring R, and the homotopy can be expressed as an
element F of some R[T ]-module. We can think of the source homotopy as F evaluated at
T = 0, and the target as F evaluated at T = 1.

With this definition we define the set [X,Y ]N of pointed naive homotopy classes of
morphisms from X to Y as the quotient of the set of pointed morphisms from X to Y with
the equivalence relation generated by pointed naive homotopies.

Consider a base field k, and let Pn = Proj(k[x0, . . . , xn]) denote projective n-space
as a k-scheme. Cazanave’s paper [6] computes the set of naive homotopy classes [P1

,P1]N

of pointed k-scheme endomorphisms and finds that the set [P1
,P1]N admits a monoid

structure. In the end, he also proves that the group completion of the monoid [P1
,P1]N

coincides with the group [P1
,P1]A

1

.

1



The group [P1
,P1]A

1

has been calculated by Morel using the machinery provided by
A1-homotopy theory. The main goal of this thesis is to give an alternative description of
this group making use of the following two observations:

1. In [3, Theorem 5.1.3] Asok, Hoyois and Wendt prove the following theorem:

Theorem 1.0.2. For a smooth affine scheme X and for a smooth scheme Y satisfy-
ing some technical conditions, we have an isomorphism

[X,Y ]N ⇠= [X,Y ]A
1

.

The proof of this theorem is beyond the scope of this thesis and will therefore not
be discussed. We only point out that the projective line P1 and the punctured affine
plane A2

\ {0} satisfy the technical conditions on the scheme Y in this theorem.
Hence we can apply the theorem to Y = P1. However, P1 is not affine and therefore
Theorem 1.0.2 does not apply to X = P1. Nevertheless, there is a well known trick
that remedies this defect.

2. Associated to P1 there is a Jouanoulou device J defined as follows:

J := Spec
⇣

k[x, y, z, w]

(x+ w � 1, xw � yz)

⌘
.

The key point for us is that J is an affine scheme and the canonical morphism J !

P1 is an A1-homotopy equivalence [10]. Hence, we obtain a chain of isomorphisms:

[J ,P1]N ⇠= [J ,P1]A
1
⇠= [P1

,P1]A
1

.

The main achievement of the thesis is calculating [J ,P1]N in an algebro-geometric way,
refraining from using as much A1-homotopy theory as possible. The work is inspired by
Cazanave’s approach in [6]. We first describe morphisms from J to P1 through the use of
line bundles. We then try to find a group structure on [J ,P1]N . We do get the following
description of homotopy classes in [J ,P1]N . Throughout this thesis we will assume all
rings to be commutative with 1 and all fields to be perfect.

Theorem 1.0.3. The datum of a k-scheme morphism f : J �! P1 up to naive homotopy
is equivalent to an integer n and an element (A,B) 2 R

2 where there exists (U, V ) 2 R
2

such that AU+BV = 1. A group structure on this description of [J ,P1]N can be created.
However, describing which morphisms lie in which homotopy class, or find representatives
of homotopy classes is difficult.

We would like to point out that the results on [J ,P1]N are original and have not ap-
peared in the literature to the best of our knowledge.

1.0.1 Thesis structure

Chapter 2 covers background material needed to understand Cazanave’s article [6]. In
section §2.1, the Sylvester matrix and the Bézout form are described, connecting them

2



both to the resultant of two polynomials. Section §2.2 covers some basic properties of
bilinear forms and the Witt monoid.

In Chapter 3, we proceed with a literature review of the paper ”Algebraic homotopy
classes of rational functions” [6] by Cazanave. In section §3.1 naive homotopies are in-
troduced and a description of [P1

,P1]N as a set of homotopy classes of rational functions
over a field k is made. In section §3.2 a monoid law�N on the scheme of rational function
F , is defined. In section §3.3, the main result of Cazanave’s paper is treated. The monoid
of pointed rational functions is connected to the monoid of symmetric non-degenerate bi-
linear forms through the Bézout map from section §2.1. The main theorem 3.3.1 shows
that this correspondence distinguishes exactly all homotopy classes of rational functions.
Lastly, we use the result to compute some examples of [P1

,P1]N over various fields.
Chapter 4 is the beginning of original material in this thesis. In §4.1 we prove some

general properties of the scheme J . Section §4.2 focuses on computing the line bundles
of J , and we get a description of the line bundles Pn and Qn. In section §4.3 we describe
morphisms from J to P1. Theorem 4.3.1 gives the initial description, but throughout the
section we establish several other equivalent conditions.

Chapter 5 covers the study of homotopy classes of morphisms from J to P1. In section
§5.1, we examine some candidates for a group operation on [J ,P1]N . In section §5.2 we
make a conjecture that connects the naive homotopy classes of morphisms from J to P1

to the rational functions discussed in chapter 3.
In chapter 6 we study morphisms from J to A2

\ {0}. In §6.1 we explain why these
morphisms are of interest. In §6.2 we describe morphisms from J to A2

\ {0}. We do
it through scheme theory, but also present a way by using homotopy theory. In §6.3 we
explain the connection between morphisms of degree 0 from J to P1 and morphims from
J to A2

\ {0}. In §6.4 we turn our problem into a problem in SL2(R). A problem with
morphisms from J to A2

\ {0} is that it is difficult to determine if a morphism is homo-
topically trivial or not. In §6.5 we prove that certain morphisms are not homotopically
trivial through the use of realization over the real numbers.

1.0.2 Acknowledgements

The results presented in this thesis have been obtained through joint work with my fellow
student Viktor Balch Barth. I would like to thank my supervisors Gereon Quick and Glen
Wilson for all the advice and discussions during the past six months.
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Chapter 2
Resultants and bilinear forms

2.1 Resultants and Bézout relations

Determining when two polynomials are coprime can be done in many ways. A common
way of doing it can be by using Euclid’s algorithm to figure out what the greatest common
divisor is. Another way of doing it is due to Sylvester.

Definition 2.1.1. Let R be an integral domain. Let A,B 2 R[x] where n = deg(A) �
deg(B). Write A =

Pn
i=0 aix

i and B =
Pn

j=0 bix
i, where bi = 0 when i > deg(B).

The Sylvester matrix S(A,B) is the 2n⇥ 2n matrix given by

Sij =

(
an�i+j 0  j  n� 1,

bj�i n  j  2n� 1.

Define res(A,B) := detS(A,B).

Sylvester proved the following theorem about the matrix S.

Theorem 2.1.2. We have res(A,B) 2 R
⇥ if and only if A and B are coprime.

Proof. The matrix S(A,B) corresponds to a linear map

' : Pn�1 ⇥ Pn�1 �! P2n�1

'(U, V ) = AU +BV

where Pn is the n+1 dimensional vector space of polynomials of degree less than or equal
to n. We have

gcd(A,B) /2 R
⇥
() 9U, V 2 Pn�1 such that AU +BV = 0,

() nullspace of S(A,B) is nontrivial,

() res(A,B) /2 R
⇥
.
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To get a better intuition of how this works, we will calculate some examples. Consider
the general case where A = a2x

2+a1x+a0 and B = b2x
2+b1x+b0 are two polynomials

of degree 2 with arbitrary coefficients. The matrix S(A,B) is then given by

S(A,B) =

0

BB@

a2 0 b2 0
a1 a2 b1 b2

a0 a1 b0 b1

0 a0 0 b0

1

CCA .

Now let us look at a couple of polynomials in Z[x]. Let A = x
2 + x and B = x. We

can see that B divides A. We expect the determinant of S(A,B) to be 0.

S(x2 + x, x) =

0

BB@

1 0 0 0
1 1 1 0
0 1 0 1
0 0 0 0

1

CCA .

which due to the whole bottom row being 0’s makes it clear that res(x2 + x, x) =
detS(x2 + x, x) = 0. Now for an example where A and B are coprime. Let A = x

2,
B = 1. One can see that S(A,B) = I4, which has determinant 1, hence A and B are
coprime.

Proposition 2.1.3. Let A,B 2 R[x] where n = deg(A) � deg(B). If res(A,B) 2 R
⇥
,

then there exist polynomials U, V of degree strictly less than n such that 1 = AU +BV

Proof. S(A,B) is invertible since detS(A,B) 2 R
⇥. One can write

S(A,B)�1 =
1

res(A,B)
adj(S(A,B)),

where adj(S(A,B)) is the adjugate matrix of S(A,B), which is the transopose of the
cofactor matrix of S(A,B). Now

S(A,B)adj(S(A,B)) = res(A,B)I2n.

Let y be the (2n� 1)th column vector of adj(S(A,B)). The vector y corresponds to two
polynomials in R[x] with degree strictly less than n. Multiplying y by the scalar res(A,B)
gives the two desired polynomials U, V such that

AU +BV = 1.

Another way of calculating the resultant for a pair of polynomials is through the Bézout
matrix. Before explaining how the matrix is constructed, we need the following result.

Proposition 2.1.4. Let A,B 2 R[X] then X � Y divides A(X)B(Y ) � A(Y )B(X) in
R[X,Y ].

6



Proof. Write A =
Pn

i=0 aiX
i and B =

Pn
j=0 bjX

j , where bj = 0 when j > deg(B).
We have

A(X)B(Y )�A(Y )B(X) =
X

i,jn
i 6=j

= aibj(X
i
Y

j
�X

j
Y

i).

If (X � Y ) divides each term in the sum, it is a divisor of the sum. When i > j one can
write

X
i
Y

j
�X

j
Y

i = (XY )j(Xi�j
� Y

i�j).

Let d = i� j. In the case where d = 1, and we have

(XY )j(Xd
� Y

d) = (XY )j(X � Y ),

which is divisible by (X �Y ). In the case d = 2, (X2
�Y

2) = (X �Y )(X +Y ), which
is also divisible by (X � Y ). Assume that (X � Y ) is a divisor of (Xk

� Y
k) for all

numbers less than d. Carrying out Euclid’s algorithm yields

(Xd
� Y

d) : (X � Y ) = X
d�1 + Y

d�1 +XY
X

d�2
� Y

d�2

X � Y
.

By assumption, (Xd�2
� Y

d�2) is divisible by (X � Y ) and so the the claim holds by
induction.

Definition 2.1.5. Let A and B be two polynomials and n = max(degA, degB). The
Bézout matrix of A and B denoted Béz(A,B) is the symmetric matrix given by the coef-
ficients of the polynomial

�A,B(X.Y ) :=
A(X)B(Y )�A(Y )B(X)

X � Y
=:

X

0p,qn�1

cp,qX
p
Y

q
.

Béz(A,B) is the (n⇥ n) symmetric matrix [cp,q]0p,qn�1.

It can be shown [4] that the Bézout matrix can be written as

Béz(A,B) =

0

B@
a1 . . . an
.
.
. . .

.

an 0

1

CA

0

B@
b0 . . . bn�1

. . .
.
.
.

0 b0

1

CA�

0

B@
b1 . . . bn
.
.
. . .

.

bn 0

1

CA

0

B@
a0 . . . an�1

. . .
.
.
.

0 a0

1

CA .

The coefficients in Béz(A,B) can then be calculated

cp,q =

min(p,n�1�q)X

k=0

aq+k+1bp�k � ap�kbq+k+1.

In the case where A is a monic polynomial and deg(A) > deg(B), we have the fol-
lowing result.

Proposition 2.1.6. Let A be a monic polynomial of degree n and B be a polynomial with
degree strictly lower than A. Then detBéz(A,B) = (�1)

n(n�1)
2 res(A,B).

7



Proof. The Sylvester matrix S(A,B) can be broken down into block matrices

S(A,B) =

✓
A

�
B
�

A
+

B
+

◆
.

Where the matrices A� and A
+ are as follows:

A
� =

0

B@
an 0
.
.
.

. . .

a1 . . . an

1

CA , A
+ =

0

B@
a0 . . . an�1

. . .
.
.
.

0 a0

1

CA .

B
� and B

+ are defined similarly. Since A is monic, we have detA� = 1. Since bn = 0,
the determinant of B� is 0. We wish to reduce S(A,B) to a lower diagonal form. Since
multiplication of lower triangular matrices commute, we can do it by

✓
A

�
B
�

A
+

B
+

◆✓
In B

�

0 �A
�

◆
=

✓
A

� 0
A

+
A

+
B
�
� B

+
A

�

◆
.

Denote by B̄ = A
+
B
�
�B

+
A

�. Since the determinant of a triangular block matrix is the
product of the determinant of the diagonal blocks, we have

detS(A,B) · det In · det(�A�) = detA�
· det B̄,

(�1)nres(A,B) = det B̄.

The coefficients b̄p,q of B̄ can be written as

b̄p,q =
nX

k=max(i,j)+1

ak�q�1bn+p+1�k � an+p+1�kbk�q�1.

We want to show that cp,q = �b̄p,n�1�q . We have

b̄p,n�1�q =
nX

k=max(p,n�1�q)+1

ak�(n�1�q)�1bn+p+1�k � an+p+1�kbk�(n�1�q)�1

=
nX

k=max(p,n�1�q)+1

ak+q�nbn+p+1�k � an+p+1�kbk+q�n.

Assume p � n� 1� q.

b̄p,n�1�q =
nX

k=p+1

ak�(n�1�q)�1bn+p+1�k � an+p+1�kbk�(n�1�q)�1

=
d=n�k

n�p+1X

d=0

aq�dbd+i+1 � ad+i+1bq�d = �cq,p = �cp,q.

8



In the other case where p  n� 1� q.

b̄p,n�1�q =
nX

k=n�q

ak�(n�1�q)�1bn+p+1�k � an+p+1�kbk�(n�1�q)�1

=
d=n�k

qX

d=0

aq�dbd+p+1 � ad+p+1bq�d = �cq,p = �cp,q.

So B̄ differs from Béz(A,B) by a factor of �1 and bn2 c column shifts. So we have

(�1)nres(A,B) = det B̄ = (�1)b
n
2 c+n detBéz(A,B)

(�1)b
n
2 cres(A,B) = detBéz(A,B).

At last, we have used the fact that (�1)bn
2 c = (�1)

n(n�1)
2 . This concludes the proof.

The last result is about how we can interpret the resultant of a pair of homogeneous
polynomials.

Proposition 2.1.7. Let s0 = anx
n
0 + . . . + a0x

n
1 and s1 = bnx

n
0 + . . . + b0x

n
1 be two

homogeneous polynomials in two variables with ai, bi coefficients from some ring A.
Then

res(
s0

x
n
0

,
s1

x
n
0

) = (�1)nres(
s0

x
n
1

,
s1

x
n
1

).

Proof. Consider the Sylvester matrix S( s0
xn
0
,
s1
xn
0
)

S(
s0

x
n
0

,
s1

x
n
0

) =

0

BBBBBBBB@

an 0 bn 0
.
.
.

. . .
.
.
.

. . .

a1 . . . an b1 . . . bn

a0 . . . an�1 b0 . . . bn�1

. . .
.
.
.

. . .
.
.
.

0 a0 0 b0

1

CCCCCCCCA

.

Switching the top n rows, with the bottom n rows yields

S(
s0

x
n
0

,
s1

x
n
0

) ⇠

0

BBBBBBBB@

a0 . . . an�1 b0 . . . bn�1

. . .
.
.
.

. . .
.
.
.

0 a0 0 b0

an 0 bn 0
.
.
.

. . .
.
.
.

. . .

a1 . . . an b1 . . . bn

1

CCCCCCCCA

.

Switching column 1 and n, 2 and n� 1 etc. and n+ 1 and 2n, n+ 2 and 2n� 1 etc. and

9



then switching row 1 and n, 2 and n�1 etc. and n+1 and 2n, n+2 and 2n�1 etc. gives

S(
s0

x
n
0

,
s1

x
n
0

) ⇠

0

BBBBBBBB@

a0 0 b0 0
.
.
.

. . .
.
.
.

. . .

an�1 . . . a0 bn�1 . . . b0

an . . . a1 bn . . . b1

. . .
.
.
.

. . .
.
.
.

0 an 0 bn

1

CCCCCCCCA

= S(
s0

x
n
1

,
s1

x
n
1

).

We then have

res(
s0

x
n
1

,
s1

x
n
1

) = detS(
s0

x
n
1

,
s1

x
n
1

) = (�1)n detS(
s0

x
n
0

,
s1

x
n
0

) = (�1)nres(
s0

x
n
0

,
s1

x
n
0

).

2.2 Bilinear forms and the Witt monoid

Let R be a ring. Let V = R
n be a n�dimensional vector space. An (R-)bilinear form is a

bilinear map V ⇥ V �! R such that 8u, v, w 2 V and 8� 2 R

1. B(u+ v, w) = B(u,w) +B(v, w) and B(�u, v) = �B(u, v).

2. B(u, v + w) = B(u, v) +B(u,w) and B(u�, v) = �B(u, v).

All bilinear forms can be represented by matrices. Let {e1, . . . , en} be a basis for Rn.
The matrix Ai,j = B(ei, ej) is the matrix of the bilinear form on the basis {e1, . . . , en}.
The matrix of a bilinear form differs depending on choice of basis. If {f1, . . . , fn} is a
different basis, then there exists an invertible matrix C such that

fi =
nX

i=1

Ci,jei.

Then the matrix of the bilinear form in the new basis is CT
AC.

Definition 2.2.1. Let B1 and B2 be the matrix representation of two n-ary bilinear forms
with respect to some bases. We say that B1 is isomorphic to B2 if there exists an invertible
matrix C such that B2 = C

T
B1C.

Definition 2.2.2. A bilinear form is called symmetric if its matrix representation is a sym-
metric matrix.

Definition 2.2.3. A bilinear form is called non-degenerate if its matrix representation is
an invertible matrix.

Definition 2.2.4. The rank of a bilinear form the rank of its matrix representation.

10



Example 2.2.5. Consider the matrix
✓
1 0
0 2

◆
. It is symmetric and non-degenerate of rank

2. It is also isomorphic to the matrix
✓
1 1
1 3

◆
because

✓
1 0
1 1

◆✓
1 0
0 2

◆✓
1 1
0 1

◆
=

✓
1 1
1 3

◆
.

Let Sn(R) be the scheme of non-degenerate (n ⇥ n) symmetric matrices with coeffi-
cients in the ring R. We will write Sn when the choice of R is obvious.

Definition 2.2.6. A pointed homotopy of symmetric bilinear forms is an H(T ) 2 Sn(R[T ]).
It yields a homotopy between the bilinear forms H(0) and H(1). We say that two forms
B1, B2 2 Sn(R) are in the same pointed naive homotopy class if there exists a finite
sequence (Hi) 2 Sn(R[T ]) with 0  i  N , such that

- H0(0) = B1 and HN (1) = B2;

- Hi(1) = Hi+1(0) for every 0  i  N � 1.

If B1 is in the same pointed naive homotopy class B2, we write B1
p
⇠ B2.

We denote the set Sn�p
⇠

by ⇡
N
0 Sn.

Example 2.2.7. The homotopy
✓
1 T

T 2 + T
2

◆
gives us

✓
1 0
0 2

◆
p
⇠

✓
1 1
1 3

◆
.

For bilinear forms over a field, we can create a monoid structure on the isomorphism
classes.

Definition 2.2.8. 1. Let k be a field. The Witt monoid of the field k is the monoid with
the orthogonal sum � as its operation and isomorphism classes of non-degenerate
symmetric k-bilinear forms as its elements. The Witt monoid of k is denoted
MW(k).

2. Let MWs(k) be the monoid of stable isomorphism classes of non-degenerate sym-
metric k-bilinear forms. This is the quotient of MW(k) where two forms b and b

0

are identified if there exists a form b
00 such that b � b

00 ⇠= b
0
� b

00. It comes with a
natural grading induced by the rank, and for every positive integer n, we denote by
MWs

n(k) the degree n component of MWs(k).

One can construct the Grothendieck–Witt group GW(k) as the Grothendieck group of
the monoid MWs(k). It is the group satisfying the following universal property. There
exists a monoid morphism i : MWs(k)! GW(k). Such that for any abelian group A and
any monoid morphism f : MWs(k) ! A, there exists a unique group homomorphism h

such that the following diagram commutes:

MWs(k)

f
%%

i // GW(k)

9!h

✏✏
A.

11
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Chapter 3
Literature review

Consider a base field k, and let Pn = Proj(k[x0, . . . , xn]) denote projective n-space
as a k-scheme. In [6], Cazanave computes the set of naive homotopy classes [P1

,P1]N

of pointed k-scheme endomorphisms and finds that the set [P1
,P1]N admits a monoid

structure. In the end, he also proves that the group completion of the monoid [P1
,P1]N

coincides with the group [P1
,P1]A

1

. In this chapter we will cover results with pointed
naive homotopies of endomorphisms.

3.1 Homotopies of rational functions

Definition 3.1.1. For an integer n � 1, the scheme Fn of pointed degree n rational func-
tions is the open subscheme of the affine space A2n = Spec k[a0, ..., an�1, b0, ..., bn�1]
complementary to the hypersurface of equation

resn,n(X
n + an�1X

n�1 + . . .+ a0, bn�1X
n�1 + . . .+ b0) = 0.

By convention, F0 := Spec k.

Proposition 3.1.2 ([6, Theorem 2.3]). Let R = k or R = k[T ]. The datum of a pointed
k-scheme morphism f : P1

R �! P1
R is equivalent to the datum of a non-negative integer

n and of an element A
B 2 Fn(R). The integer n is called the degree of f and is denoted

deg(f); the scalar resn,n(A,B) 2 R
⇥ = k

⇥ is called the resultant of f and is denoted
res(f).

Proposition 3.1.3. The datum of a pointed naive homotopy F : P1
⇥ A1

�! P1 is
equivalent to the datum of a non-negative integer n and of an element in Fn(k[T ]). The
source �(F ) and the target ⌧(F ) of F are obtained by evaluating the indeterminate T at 0
and 1 respectively.

Example 3.1.4. Let n be a positive integer.

13



1. Let A = X
n + an�1X

n�1 + . . .+ a0 and b0 2 k
⇥. The homotopy

X
n ++an�1TX

n�1 + . . .+ a0T

b0
2 Fn(k[T ])

gives a pointed naive homotopy between A
b0

and Xn

b0
.

2. Let B = bn�1X
n�1 + . . .+ b0, with b0 2 k

⇥. The homotopy

X
n

bn�1TX
n�1 + . . .+ b1XT + b0

2 Fn(k[T ])

gives a pointed naive homotopy between Xn

B and Xn

b0
.

3.2 Addition of rational functions

A remarkable property of the pointed rational functions is that they create a monoid. Let
Ai
Bi
2 Fni(R) for i = 1, 2. These two functions uniquely define two pairs (Ui, Vi) such

that AiUi +BiVi = 1. Observe that degUi  ni � 2 and deg Vi  ni � 1. We define the
polynomials A3, B3, U3 and V3 by setting

✓
A3 �V3

B3 U3

◆
:=

✓
A1 �V1

B1 U1

◆✓
A2 �V2

B2 U2

◆
.

Since the matrices
✓
A1 �V1

B1 U1

◆
and

✓
A2 �V2

B2 U2

◆
both have determinant 1, the same

holds for their product. This means we have a Bézout relation A3U3 + B3V3 = 1. Since
A3 = A1A2 � B2V1 it is monic of degree n1 + n2. We also have B3 = B1A2 + U1B2

which is of degree strictly less than n1 +n2. Since the polynomials A3, B3 have a Bézout
relation, it means their resultant is nontrivial. Thus, the pointed rational function A3

B3
is an

element of Fn1+n2(R). We write

A1

B1
�

N A2

B2
=

A3

B3
.

Notice that this operation is associative, because matrix multiplication is associative.
We have the following result.

Proposition 3.2.1 ([6, Proposition 3.1]). Let F :=
`

n�0 Fn be the scheme of pointed
rational functions. The morphism

�
N : F ⇥ F �! F

defines a graded monoid structure on F .

Example 3.2.2. 1.

X �
N
X =

X
2
� 1

X

14



2. Let A
B be any pointed rational function, one has

X �
N A

B
=

AX �B

A
and

A

B
�

N
X =

AX � V

BX + U
.

3. Given the trivial homotopies X p
⇠ X and X

2 + TX + T
p
⇠ X

2 we can produce a
new homotopy

X �
N X

2 + TX + T

1
=

X
3 + TX

2 + TX � 1

X2 + TX + T
.

Which means X3
�1

X2

p
⇠

X3+X2+X�1
X2+X+1 .

4. Let P 2 k[X] be a monic polynomial and b0 2 k
⇥, then

P

b0
�

N A

B
=

AP �
B
b0

b0A
=

P

b0
�

1

b
2
0
A
B

.

The examples give rise to the following remarks

Remark 3.2.3. 1. The binary operation �N is not commutative.

2. The sum of ”trivial” homotopies can yield ”non trivial” homotopies.

3.3 The monoid of naive homotopy classes

Recall the Bézout form of a pair of polynomials A,B is a symmetric matrix. Denote by
Bézn the function that sends a rational function to its Bézout matrix.

Bézn :Fn �! Sn

A

B
�! Béz(A,B)

This leads us to the main result of Cazanave’s paper.

Theorem 3.3.1 ([6, Theorem 3.6]). The following map is an isomorphism of graded
monoids:

⇣ a

n�0

(⇡N
0 Fn)(k),�

N
⌘

`
n�0

⇡N
0 Bézn

��������!

⇣ a

n�0

(⇡N
0 Sn)(k),�

⌘

Where � is block matrix concatenation.

Combining the theorem with the following proposition lets us describe [P1
,P1]N .

Proposition 3.3.2 ([6, Proposition 3.9]). Let n be a positive integer.

15



1. The canonical quotient map qn : Sn(k) �! MWs
n(k) factors through (⇡N

0 Sn)(k) :

Sn(k)
qn //

✏✏

MWs
n(k)

(⇡N
0 Sn)(k).

qn

88

2. Let MWs
n(k) ⇥

k⇥
/k⇥2

k
⇥ be the canonical fibre product induced by the discriminant

map MWs
n(k) �! k⇥

/k⇥2 . Then the map

⇣ a

n�0

(⇡N
0 Sn)(k),�

⌘ `
n�0 qn⇥det

���������!

⇣ a

n�0

MWs
n(k) ⇥

k⇥
/k⇥2

k
⇥
,�

⌘

is a monoid isomorphism. Above, the right-hand term is endowed with the canonical
monoid structure induced by the orthogonal sum in MWs(k) and the product in k

⇥.

Proof. A proof can be found in [13, §VII.3].

Even though addition of rational functions is not commutative, we have the following
result.

Corollary 3.3.3 ([6, Corollary 3.7]). The monoid
⇣ `

n�0
(⇡N

0 Sn)(k),�
⌘

is abelian, and

thus, so is
⇣
[P1

,P1]N ,�
N
⌘

.

Theorem 3.3.1 combined with Proposition 3.3.2 gives the following description of
[P1

,P1]N .

Corollary 3.3.4 ([6, Corollary 3.10]). There is a canonical isomorphism of graded monoids:
⇣
[P1

,P1]N ,�
N
⌘
⇠=
⇣ a

n�0

MW
s
n(k) ⇥

k⇥
/k⇥2

k
⇥
,�

⌘
.

Example 3.3.5. 1. When k is algebraically closed, we have an isomorphism of monoids

[P1
,P1]N

⇠=
������!
deg⇥ res

N⇥ k
⇥
.

2. When k is the field of real numbers R, we have an isomorphism of monoids:

[P1
,P1]N

⇠=
���������!
(sign�Béz)⇥ res

(N⇥ N)⇥ R⇥
,

sign denoting the signature of a real symmetric bilinear form. In this case, the
Bézout invariant is sharper than the resultant and the degree invariants.

16



3. When k is the field of two elements F2, there is only one homotopy class in each
degree.

[P1
,P1]N

⇠=
��!
deg

N.

Theorem 3.3.6 ([6, Theorem 3.22]). The canonical map
⇣
[P1

,P1]N ,�
N
⌘
!

⇣
[P1

,P1]A
1

,�
A1
⌘

is a group completion.
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Chapter 4
The Jouanoulou Device

The Jouanolou device J over P1 is the affine smooth scheme defined as follows:

J = Spec(
k[x, y, z, w]

(x+ w � 1, xw � yz)
) = Spec(

k[x, y, z]

(x(1� x)� yz)
).

We can think of J as the algebraic variety of 2⇥ 2 matrices over k with trace 1 and rank
1. There is a canonical map from J to P1 given by ⇡ : J ! P1, given intuitively by

sending a matrix A in J to its rows. Consider the matrix
✓
x y

z w

◆
2 J . It describes

the projection to P1 by sending a matrix in
✓
a b

c d

◆
in J to [a : b] or [c : d], whichever

of them that is nonzero. In the case where they are both nonzero, they describe the same
point in P1 since d

ba = c and d
b b = d.

Example 4.0.1. 1. The matrix
✓

2 4
�

1
2 �1

◆
maps to the point [2 : 4] = [� 1

2 : �1].

2. The matrix
✓
0 0
5 1

◆
maps to the point [5 : 1].

This map exhibits J as an affine vector bundle torsor over P1 [18, Proposition 4.3].
We will now study the basic properties of J in detail.

We will write R for the ring k[x,y,z,w]
(x+w�1,xw�yz) . In this section we present new results

regarding the Jouanolou device of P1.

4.1 Some properties of J

Proposition 4.1.1. J is a Noetherian scheme.

Proof. Since R is a Noetherian ring, J is a Noetherian scheme.
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Proposition 4.1.2. J is an integral scheme.

Proof. We need to prove that R is an integral domain, so we want to show that (x(1 �
x)� yz) is irreducible in k[x, y, z]. It is irreducible if it can not be written as the product
of two degree 1 polynomials. Assume there exists

p(x, y, z) = ax+ by + cz + d,

q(x, y, z) = ↵x+ �y + �z + �,

such that pq = �x
2 + x � yz. First all we get that d = 0 or � = 0. Assume d = 0,

this implies that b� = 0 and c� = 0. If we look at the case where � 6= 0,we get that
b = 0 and c = 0. This is not possible, because we also wish to have b� + c� = �1. This
means � = 0. However, this is not possible as well since a�+d↵ = 1. This means our first
assumption of d = 0 is wrong. Carrying out a similar argument with the initial assumption
that � = 0 also leads to a contradiction. This means our assumption of the existence of p
and q is incorrect, hence proving that (x(1� x)� yz) is irreducible.

Proposition 4.1.3. J is separated.

Proof. We need to prove that the diagonal map � : J �! J ⇥ZJ is a closed immersion.
Since J and Z are both affine, we have J ⇥Z J = Spec(J ⌦Z J ) and the map

�⇤ : J ⌦Z J �! J on the level of rings, sending the pair (a, b) to the product ab 2 J .
Since �⇤ is surjective, � is a closed immersion.

Proposition 4.1.4. J is a smooth scheme.

Proof. Since R is flat over k, we get that J is flat over Spec(k). By [2, §10 Theorem 3’],
J is smooth if and only if it is flat over k and that the fiber over any geometric point is
smooth. We can check the smoothness of fibers by looking at the Jacobian of the variety
defining R. Let f = x(1� x)� yz, we have

@f

@x
= 2x� 1,

@f

@y
= �z,

@f

@z
= �y.

When the characteristic of k is 2, there are no singularities, and when the characteristic is
different from 2, we get the singularity ( 12 , 0, 0). However, this is not a point on J , so all
the fibers are smooth.

Additionally, when k is algebraically closed, we can say even more about J .

Proposition 4.1.5. If k is algebraically closed J is locally factorial (All local rings are
UFD).

Proof. We will need two more lemmas to prove this statement.

Lemma 4.1.6 ([9, Remark II.6.11.1A]). All regular local rings are UFD.
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Lemma 4.1.7 ([9, Theorem I.5.1]). Let V ⇢ An be an affine variety. Let P 2 V be a
point. Then V is nonsingular at P if and only if the local ring OP,V is a regular local ring.

Since J is smooth it is nonsingular at all geometric points. When k is algebraically
closed, all points in J are geometric points. This means that all its local rings are UFD
and and hence it is locally factorial.

4.2 Line bundles of J

Line bundles are a common concept in differential geometry, but they do in fact have
an algebraic geometric counterpart. In algebraic geometry we first need to introduce the
concept of sheaves of modules on a ringed space.

Definition 4.2.1. 1. Let (X,OX) be a ringed space. A sheaf of OX -modules (or sim-
ply an OX -module) is a sheaf F on X , such that for each open set U ⇢ X , the
group F(U) is an OX(U)-module, and for each inclusion of open sets V ⇢ U , the
restriction homomorphism F(U) �! F(V ) is compatible with the module struc-
tures via the ring homomorphism OX(U) �! OX(V ).

2. We define the tensor product F⌦OX G of two Ox-modules to be the sheaf associated
to the presheaf U 7! F(U)⌦OX G(U).

3. An OX -module F is free if it is isomorphic to a direct sum of copies of OX . It
is locally free if X can be covered by open sets U for which F

��
U

is a free OX

��
U

-
module. In that case the rank of F on such an open set is the number of copies of
the structure sheaf needed (finite or infinite).

4. A locally free sheaf of rank 1 is called an invertible sheaf.

Invertible sheaves play an essential role for figuring out morphisms J to P1, as can be
seen in the following theorem.

Theorem 4.2.2 ([9, Theorem II.7.1]). Let A be a ring, and let X be a scheme over A.

1. If ' : X �! Pn
A is an A-morphism, then '

⇤(O(1)) is an invertible sheaf on X ,
which is generated by the global sections si = '

⇤(xi), i = 0, 1, . . . , n, where the
xi are global sections of O(1) of Pn

A.

2. Conversely, if L is an invertible sheaf on X , and if s0, . . . , sn 2 �(X,L) are global
sections which generate L, then there exists a unique R-morphism ' : X �! Pn

A
such that L ⇠= '

⇤(O(1)) and si = '
⇤(xi) under this isomorphism.

The theorem makes it clear that if we wish to understand the morphisms from J to
P1, we need to figure out all the invertible sheaves of J first. The invertible sheaves up to
isomorphism on a scheme X create a group with the tensor product over the structure sheaf
as its group action. This group is called the Picard group, denoted by Pic(X). There exists
motivic cohomology, where the Picard group of a smooth scheme X is the cohomology
group H

2,1(X,Z) [14, Corollary 4.2]. Since Pic(P1) = Z [17, Tag 0BXJ], naturally since
P1 is A1-homotopic to J , we get Pic(J ) = Z.
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For commutative rings, there exists the notion of algebraic line bundles, and it turns
out for affine schemes there is a connection between the invertible sheaves and algebraic
line bundles of the base ring. Before we get into the details, we need some more defintions.

Definition 4.2.3. Let A be a commutative ring. The rank of a finitely generated A-module
M at a prime ideal p of A is rankp(M) = dimk(p)M ⌦A k(p), where k(p) = Ap/pAp.
Since Mp/pMp

⇠= k(p)rankp(M), rankp(M) is the minimal number of generators of Mp.
We say that M has constant rank n, if it is n = rankp(M) for all p.

Definition 4.2.4. We say that an R-module P is projective, if there exists an R-module
Q, such that P �Q is a free module.

Definition 4.2.5. An algebraic line bundle over a commutative ring A is a finitely gener-
ated projective A-module of constant rank 1.

Proposition 4.2.6 ([8, Corollary 7.41]). Let X = Spec(A) be an affine scheme. Each
algebraic line bundle on A gives rise to an invertible sheaf. Similarly, each invertible sheaf
on X corresponds to an algebraic line bundle on A.

Since J is affine, we now need to find all the finitely generated projective modules of
constant rank 1 up to isomorphism. Since R is a domain, if e is an idempotent in R, then
e(1� e) = 0. So e = 0 or e = 1. This lets us use the following lemma.

Lemma 4.2.7 ([19, Exc. 2.4]). The following are equivalent for every commutative ring
A

1. Spec(A) is topologically connected

2. Every finitely generated projective A-module has constant rank

3. A has no idempotent elements except 0 and 1.

The lemma above ensures that we only need to focus on finitely generated projective
modules, as they all have constant rank. Let P be a finitely generated projective R-module,
then the projection-inclusion composition

R
n
�! P �! R

n
,

corresponds to some matrix e in Mn(R). Notice that this composition is in fact idempotent
and that P is the image of e. It is not hard to see that ker(e) is a projective module as well,
since ker(e) � im(e) ⇠= R

n. This means we can study projective modules over R by
studying idempotent matrices instead.

Definition 4.2.8. We define Mn+1 = (mij) to be the (n+ 1)⇥ (n+ 1) matrix where

mij =

✓
n

j

◆
x
↵x(i,j)y

↵y(i,j)z
↵z(i,j)w

↵w(i,j)
,

with ↵x(i, j),↵y(i, j),↵z(i, j) and ↵w(i, j) given by

↵x(i, j) = min(n� i, n� j),

↵y(i, j) = n� j � ↵x(i, j),

↵w(i, j) = min(i, j),
↵z(i, j) = j � ↵w(i, j).
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For example when n = 2, we have

M3 =

2

4
x
2 2xz z

2

xy 2xw zw

y
2 2yw w

2

3

5 .

We now need to prove that our constructed matrix is idempotent.

Proposition 4.2.9. For all n > 0. The matrix Mn+1 is idempotent.

Proof. For f 2 {x, y, z, w}, define

�f (i, j, k) = ↵f (i, k) + ↵f (k, j)� ↵f (i, j).

Let m2
ij denote the ij-th entry of the matrix M

2
n+1. We can write m

2
ij as

m
2
ij =

X

k

mikmkj = mij

X

k

✓
n

k

◆
x
�x(i,j,k)y

�y(i,j,k)z
�z(i,j,k)w

�w(i,j,k)

It suffices to treat the case when i � j, the rest follows by symmetry. We will now inspect
the exponents. In the case when i � j � k we have

�x(i, j, k) = n� j,

�y(i, j, k) = j � k,

�z(i, j, k) = j � k,

�w(i, j, k) = 2k � j.

In the case when i � k � j we have

�x(i, j, k) = n� i,

�y(i, j, k) = 0,

�z(i, j, k) = 0,

�w(i, j, k) = k.

and finally, when k � i � j:

�x(i, j, k) = n+ i� 2k,

�y(i, j, k) = k � i,

�z(i, j, k) = k � i,

�w(i, j, k) = i.

Notice that in all of the cases we have that �y(i, j, k) = �z(i, j, k). We can use the relation
xw = yz to convert (yz)�y(i,j,k) to (xw)�y(i,j,k). This gives

�x(i, j, k) + �y(i, j, k) = n� k,

�w(i, j, k) + �y(i, j, k) = k,
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for all k, as long as i � j. Inserting this into the expression for M2
ij gives

m
2
ij = mij

X

k

✓
n

k

◆
x
n�k

w
k = mij(x+ w)n = mij .

This concludes the proof.

Proposition 4.2.10. For all n > 0. The rank of Mn+1 is 1.

Proof. The trace of Mn+1 is (x + w)n+1 = 1. As the trace of an idempotent matrix is
equal to its rank, it has rank 1.

Define the line bundles P1 and Q1 as follows:

Q1 := Im
✓
x z

y w

◆
,

P1 := Im
✓
x y

z w

◆
.

These images correspond to projective modules of rank 1, hence they are line bundles
over J . In the following results, all tensor products are taken over R. We will start out by
showing that P1 is the inverse of Q1 in Pic(J ).

Proposition 4.2.11. P1 ⌦Q1
⇠= R.

Proof. An element of P1 ⌦Q1 can be written as

X
(↵i


x

z

�
+ �i


y

w

�
)⌦ (ai


x

y

�
+ bi


z

w

�
), ↵i,�i, ai, bi 2 R.

One can see that the R-module P1 ⌦Q1 is generated by the four elements
n

x

z

�
⌦


x

y

�
,


x

z

�
⌦


z

w

�
,


y

w

�
⌦


x

y

�
,


y

w

�
⌦


z

w

�o
.

Using the module homomorphism P1 ⌦Q1 �! R
2, sending


x

z

�
⌦


x

y

�
to

x
2

yz

�
etc., we

get that each of the four basis elements corresponds to the following elements in R
2

n
x


x

w

�
, z


x

w

�
, y


x

w

�
, w


x

w

�o
.

Since (x + w) = 1, we can see that they generate a rank 1 submodule of R2 which is
isomorphic to R. Thus, P1 ⌦Q1

⇠= R.

We would like to understand the tensor powers of P1 and Q1. It turns out they can
be described by the following R-modules. Denote by Qn, the R-module generated by the

elements
n

x
n�i

z
i

y
n�i

w
i

�o

0in
and Pn the one generated by

n
x
n�i

y
i

z
n�i

w
i

�o

0in
. Next,

we want to show that P⌦n
1 coincides with our definition of Pn.
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Proposition 4.2.12. We have P
⌦n
1
⇠= Pn and Q

⌦n
1
⇠= Qn.

Proof. We will prove this by induction for the Pn-case, the Qn-case is similar. In the case
when n = 2, we have that the module P1 ⌦ P1 is generated by the elements

n
x

z

�
⌦


x

z

�
,


x

z

�
⌦


y

w

�
,


y

w

�
⌦


x

z

�
,


y

w

�
⌦


y

w

�o
.

Notice that 
x

z

�
⌦


y

w

�
= (x+ w)


x

z

�
⌦


y

w

�
=


y

w

�
⌦


x

z

�
,

so one actually just needs three elements to generate the module. We can map these the an

R-module morphism sending

x

z

�
⌦


x

z

�
to

x
2

z
2

�
etc. Thus, the element

r0


x
2

z
2

�
+ r1


xy

zw

�
+ r2


y
2

w
2

�
2 P2,

corresponds to the element

r0


x

z

�
⌦


x

z

�
+ r1


x

z

�
⌦


y

w

�
+ r2


y

w

�
⌦


y

w

�
2 P1 ⌦ P1.

We will now assume it holds for all n and prove that Pn ⌦ P1
⇠= Pn+1. First notice that

when i � 1

x
n�i

y
i

z
n�i

w
i

�
⌦


x

z

�
= (x+ w)


x
n�i

y
i

z
n�i

w
i

�
⌦


x

z

�
=


x
n�i+1

y
i�1

z
n�i+1

w
i�1

�
⌦


y

w

�
.

The module Pn ⌦ P1 is generated by the n+ 2 elements
n

x
n

z
n

�
⌦


x

z

�
,


y
n

w
n

�
⌦


y

w

�
,


y
n

w
n

�
⌦


x

z

�
,


xy

n�1

zw
n�1

�
⌦


x

z

�
, . . . ,


x
n�1

y

z
n�1

w

�
⌦


x

z

�o
.

Using a similar R-module morphism as before, we can map these to basis elements of
Pn+1 and create an isomorphism.

We can combine Proposition 4.2.11 and 4.2.12 to prove the following theorem. We
need to remark that Pn � Pm for n 6= m.

Theorem 4.2.13. The line bundle P1 generates Pic(J ), and Q1 is its inverse.

Elements of interest are the minimal generating bases for various R-modules.

Proposition 4.2.14. The elements {xn
, x

n�1
y, . . . , xy

n�1
, y

n
} are contained in the ideal

(xn
, y

n) ⇢ R, and similarly for the pairs {z, w}, {x, z}, and {y, w}.

Proof. We will only prove it for the pair {x, y}, because the other proofs are similar. Fix
n and pick an integer 0  i  n. Consider the element

x
n�i

y
i = x

n�i
y
i(x+ w)n =

nX

d=0

✓
n

d

◆
x
n�i

y
i
x
n�d

w
d =

nX

d=0

✓
n

d

◆
x
2n�i�d

y
i
w

d
.
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For each d, if 2n�i�d � n, it then contains a factor of xn. In the case where 2n�i�d <

n, we have that n� i < d. One can then convert n� i pairs of xw into yz.

x
2n�i�d

y
i
w

d = x
2n�i�d�(n�i)

y
i+(n�i)

z
n�i

w
d�(n�i) = x

n�d
y
n
z
n�i

w
d�(n�i)

.

It now contains the factor yn and we are done.

A similar proof also yields the following result.

Proposition 4.2.15. Pn is generated by the vectors

x
n

z
n

�
and


y
n

w
n

�
. Similarly we have

that Qn is generated by the vectors

x
n

y
n

�
and


z
n

w
n

�
.

Using a similar result as Proposition 4.2.15, one can see that we can express Im(Mn+1)
similarly,

Im(Mn+1) = Span
⇣

2

666664

x
n

x
n�1

y

.

.

.

xy
n�1

y
n

3

777775
,

2

666664

z
n

z
n�1

w

.

.

.

zw
n�1

w
n

3

777775

⌘
.

Now, we can create an isomorphism between Qn and Im(Mn+1) by mapping the genera-
tors to each other. Similarly we can create an isomorphism between Pn and Im(MT

n+1).
Up until now, we have only considered Pn and Qn as R-modules. However, since we

care about naive homotopies, we also need to consider them as R[T ]-modules.

Definition 4.2.16. Let A = R or A = R[T ]. Pn(A) is the A-module generated by the

elements

x
n

z
n

�
and


y
n

w
n

�
. Similarly, Qn(A) is the A-module generated by the elements


x
n

y
n

�
and


z
n

w
n

�
.

Note that Pn(R[T ]) and Qn(R[T ]) are the line bundles on the scheme J ⇥A1
k. Since

J and J ⇥ A1
k have the same Picard group [9, Proposition II.6.6] we know that we have

all the information we need for calculating naive homotopies of morphism from J to
P1. Also note that Proposition 4.2.11, 4.2.12, 4.2.15 and Theorem 4.2.13 all hold when
considering Pn(R[T ]) and Pn(R[T ]).

4.3 Morphisms from J to P1

Theorem 4.2.2 gives us a way to characterise all morphisms from a scheme X to P1 by
knowing all the invertible sheaves of X and their global sections. If we let X = J and
A = k in the Theorem 4.2.2 above, we have already calculated what the invertible sheaves
are. The global sections correspond to elements of the projective module. So we have the
following description of morphisms from J to P1.
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Theorem 4.3.1. Let A = R or A = R[T ]. The datum of a k-scheme morphism ' : J �!

P1
k is equivalent to the datum of one of the following:

1. A positive integer n, and two elements of f, g 2 Pn(A) (resp. Qn(A)) such that f
and g generate Pn(A) (resp. Qn(A)).

2. Two elements f, g 2 A, where there exists U, V 2 A, such that fU + gV = 1.

Definition 4.3.2. A = R or A = R[T ]. We will say that a morphism (f, g) has degree n

(resp. �n) if it generates Pn(A) (resp. Qn(A)). We will say that it has degree 0 if (f, g)
generate A.

Note that the condition describing morphisms of degree 0 arises from using the struc-
ture sheaf OJ as the invertible sheaf.

In [6], Cazanave studies the naive homotopy classes of pointed endomorphisms of P1.
We need to define pointedness for morphisms from J to P1.

Definition 4.3.3. We say that a morphism f : J �! P1 is pointed if it sends the point
corresponding to the maximal ideal (x� 1, y, z, w) to the point [a : 0] 2 P1, with a 2 k

⇥.

In the following two propositions, we give other ways of describing a morphism f :
J �! P1.

Proposition 4.3.4. Let A = R or A = R[T ]. For the the pair of sections

(f, g) =
⇣

f0x
n + f1y

n

f0z
n + f1w

n

�
,


g0x

n + g1y
n

g0z
n + g1w

n

�⌘
2 Pn(A)2,

the following statements are equivalent.

1. They generate Pn(A).

2. The ideals (f0xn + f1y
n
, g0x

n + g1y
n) ⇢ A[x�1] and (f0zn + f1w

n
, g0z

n +
g1w

n) ⇢ A[w�1] are unit ideals.

3. There exist X,Y, Z,W 2 A such that

X(xn
f0 + y

n
f1) + Y (xn

g0 + y
n
g1) +Z(znf0 +w

n
f1) +W (zng0 +w

n
g1) = 1.

Proof. We will start by proving that (1) implies (2). Assume that (f, g) are a pair of
sections that generate Pn(A). Then there exists some elements U, V 2 A such that

Uf + V g =


x
n

z
n

�
.

In the localization A[x�1] we have that w = yz
x . If we work with Uf + V g in the ring

A[x�1], we get that

(U(f0 + f1
y
n

xn
) + V (g0 + g1

y
n

xn
))


x
n

z
n

�
=


x
n

z
n

�
.
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We need the coefficient to be equal to 1. So we have

U

xn
(xn

f0 + y
n
f1) +

V

xn
(xn

g0 + y
n
g1) = 1.

This is equivalent to saying that the ideal (f0xn + f1y
n
, g0x

n + g1y
n) ⇢ A[x�1] is the

unit ideal. Carrying out a similar argument in the localization A[w�1] gives the condition
that (f0zn + f1w

n
, g0z

n + w1y
n) ⇢ A[w�1].

We will now prove that (2) implies (3). We know that there exists Ux, Vx 2 A[x�1]
and Uw, Vw 2 A[w�1] such that

Ux(x
n
f0 + y

n
f1) + Vx(x

n
g0 + y

n
g1) = 1, (⇤)

and
Uw(z

n
f0 + w

n
f1) + Vw(z

n
g0 + w

n
g1) = 1. (⇤⇤)

For each set of Ux, Vx, Uw, Vw, there exists an integer d � 0, such that

x
d
Ux, x

d
Vx, w

d
Uw, w

d
Vw 2 A.

Multiplying (⇤) by x
d and (⇤⇤) by w

d yields the following equations

x
d
Ux(x

n
f0 + y

n
f1) + x

d
Vx(x

n
g0 + y

n
g1) = x

d
,

w
d
Uw(z

n
f0 + w

n
f1) + w

d
Vw(z

n
g0 + w

n
g1) = w

d
.

By proposition 4.2.14, we know that xd and w
d span the space {x

d�i
w

i
}. This means

that 1 = (x+ w)d can be expressed as a linear combination of xd and w
d. So there exists

X,Y, Z,W 2 A such that

X(xn
f0+ y

n
f1)+Y (xn

g0+ y
n
g1)+Z(znf0+w

n
f1)+W (zng0+w

n
g1) = 1. (4.1)

We will finish it off by proving that (3) implies (1). We will do this by proving that

(Xx
n + Zz

n)f + (Y x
n +Wz

n)g =


x
n

z
n

�
,

and that
(Xy

n + Zw
n)f + (Y y

n +Ww
n)g =


y
n

w
n

�
.

Notice that we have

(Xx
n + Zz

n)f + (Y x
n +Wz

n)g =
⇣
X(xn

f0 + y
n
f1) + Y (xn

g0 + y
n
g1)

+ Z(znf0 + w
n
f1) +W (zng0 + w

n
g1)
⌘

x
n

z
n

�

=


x
n

z
n

�
.
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Similarly we get that

(Xy
n + Zw

n)f + (Y y
n +Ww

n)g =


y
n

w
n

�
.

We can now generate Pn(A) with these two elements.

An analogous result for Qn also exists.

Proposition 4.3.5. Let A = R or A = R[T ]. For the the pair of sections

(f, g) =
⇣

f0x
n + f1z

n

f0y
n + f1w

n

�
,


g0x

n + g1z
n

g0y
n + g1w

n

�⌘
2 Qn(A)2,

the following statements are equivalent.

1. They generate Qn(A).

2. The ideals (f0xn + f1z
n
, g0x

n + g1z
n) ⇢ A[x�1] and (f0yn + f1w

n
, g0y

n +
g1w

n) ⇢ A[w�1] are unit ideals.

3. There exist X,Y, Z,W 2 A such that

X(xn
f0 + z

n
f1) + Y (xn

g0 + z
n
g1) +Z(ynf0 +w

n
f1) +W (yng0 +w

n
g1) = 1.

Proof. The proof is similar to the result for Pn(A).

Before we give some examples of morphisms, we will define some notation for de-
scribing a pair of sections.

Definition 4.3.6 (Compact form). Let A = R or A = R[T ]. For f0, f1, g0, g1 2 A, we
define

(f0, f1 : g0, g1)
p
n :=

⇣
f0x

n + f1y
n

f0z
n + f1w

n

�
,


g0x

n + g1y
n

g0z
n + g1w

n

�⌘
2 Pn(A)2,

and
(f0, f1 : g0, g1)

q
n :=

⇣
f0x

n + f1z
n

f0y
n + f1w

n

�
,


g0x

n + g1z
n

g0y
n + g1w

n

�⌘
2 Qn(A)2.

Definition 4.3.7 (Expanded form). Let A = R or A = R[T ]. For any integer n > 0, let
r0i, r1i 2 A, for 0 < i < n. We define

(r00, . . . , r0n : r10, . . . , r1n)
p

:=
h 

r00x
n + r01x

n�1
y + . . .+ r0ny

n

r00z
n + r01z

n�1
w + . . .+ r0nw

n

�
:


r10x

n + r11x
n�1

y + . . .+ r1ny
n

r10z
n + r11z

n�1
w + . . .+ r1nw

n

� i
,

and

(r00, . . . , r0n : r10, . . . , r1n)
q

:=
h 

r00x
n + r01x

n�1
z + . . .+ r0nz

n

r00y
n + r01y

n�1
w + . . .+ r0nw

n

�
:


r10x

n + r11x
n�1

z + . . .+ r1nz
n

r10y
n + r11y

n�1
w + . . .+ r1nw

n

� i
.

29



We can also restate Proposition 4.3.4 in terms of expanded forms. A similar restate-
ment of Proposition 4.3.5 also exists.

Corollary 4.3.8. Let A = R or A = R[T ]. For the the pair of sections

(r00, . . . , r0n : r10, . . . , r1n)
p
2 Pn(A)2,

the following statements are equivalent.

1. They generate Pn(A).

2. The ideals (r00xn + . . . + r0ny
n
, r10x

n + r1ny
n) ⇢ A[x�1] and (r00zn + . . . +

r0nw
n
, r10z

n + r1nw
n) ⇢ A[w�1] are unit ideals.

3. There exist X,Y, Z,W 2 A such that

X(r00x
n + . . .+ r0ny

n) + Y (r10x
n + . . .+ r1ny

n)

+Z(r00z
n + . . .+ r0nw

n) +W (r10z
n + . . .+ r1nw

n) = 1.

Proof. Since all expanded forms can be written as elements of compact form, it follows
directly.

Example 4.3.9. 1. (1, 0 : 0, 1)pn and (1, 0 : 0, 1)qn for all positive n. These correspond
to the basis of Pn(R) and Qn(R) as in Proposition 4.2.15, so they are morphisms.

2. (x, 0 : 0, 1)pn and (x, 0 : 0, 1)qn. Since x is a unit in R[x�1], the ideal (xn+1
, y

n) is
the unit ideal. Similarly, since w is a unit in R[w�1], the ideal (xzn, wn) is the unit
ideal. This proves that (x, 0 : 0, 1)pn is a morphism. Likewise for (x, 0 : 0, 1)qn, the
ideals (xn+1

, z
n) ⇢ R[x�1] and (xyn, wn) ⇢ R[w�1] are both unit ideals.

Since [P1
,P1]N naturally sits inside [J ,P1]N , one can expect a map sending endo-

morphisms of P1 to a morphism from J to P1.

Proposition 4.3.10. Any pointed rational function f = Xn+an�1X
n�1+...+a0

bn�1Xn�1+...+b0
2 Fn(k)

describing a morphism P1
�! P1 corresponds to two pointed morphisms P,Q : J �!

P1. These are (1, an�1, . . . , a0 : 0, bn�1, . . . , b0)p and (1, an�1, . . . , a0 : 0, bn�1, . . . , b0)q .

Proof. We will prove that (1, an�1, . . . , a0 : 0, bn�1, . . . , b0)p is a morphism, the proof
for (1, an�1, . . . , a0 : 0, bn�1, . . . , b0)q is similar. We will use method 2 from Corollary
4.3.8. We want to show that

I := (zn + an�1wz
n�1 + . . .+ a0w

n
, bn�1wz

n�1 + . . .+ b0w
n) ⇢ R[w�1],

generates the unit ideal. If we divide through by w
n, and substitute z

x with X , we get f .
The resultant of f is a unit and this implies that there exists U, V 2 k[ zw ] such that

U((
z

w
)n + an�1(

z

w
)n�1 + . . .+ a0) + V (bn�1(

z

w
)n�1 + . . .+ b0) = 1.

This means that I is in fact the unit ideal. By Proposition 2.1.7 the homogeneous polyno-
mials

(xn + an�1yx
n�1 + . . .+ a0y

n
, bn�1yx

n�1 + . . .+ b0y
n),
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also have a unit resultant, so they generate the unit ideal in R[x�1]. So (1, an�1, . . . , a0 :
0, bn�1, . . . , b0)p is a morphism J �! P1. One can easily see that the morphism is
pointed.

We can define an automorphism ⌧ on R. Defined as follows:

⌧(1) = 1,

⌧(x) = x,

⌧(w) = w,

⌧(y) = z,

⌧(z) = y.

This automorphism gives rise to the following proposition.

Proposition 4.3.11. Let (f0, f1 : g0, g1)pn be a morphism, then (⌧(f0), ⌧(f1) : ⌧(g0), ⌧(g1))qn
is a morphism as well.

Proof. For any ↵ 2 R, denote ↵̄ := ⌧(↵). Since (f0, f1 : g0, g1)pn is a morphism, we
know that there exist X,Y, Z,W 2 R such that

X(xn
f0 + y

n
f1) + Y (xn

g0 + y
n
g1) + Z(znf0 + w

n
f1) +W (zng0 + w

n
g1) = 1.

Applying ⌧ to this yields

X̄(xn
f̄0 + z

n
f̄1) + Ȳ (xn

ḡ0 + z
n
ḡ0) + Z̄(ynf̄0 + w

n
f̄1) + W̄ (ynḡ0 + w

n
ḡ1) = 1.

This proves that (f̄0, f̄1 : ḡ0, ḡ1)qn is a morphism.

At last we will define the sets Pn(A) and Qn(A). We will define them as the sets
containing all morphisms coming from Pn(A) and Qn(A).

Pn(A) :=
n
(f, g) 2 (Pn(A))2

��f, g generate Pn(A)
o

Qn(A) :=
n
(f, g) 2 (Qn(A))2

��f, g generate Qn(A)
o

We will use the sets P•
n(A) and Q•

n(A) for the sets consisting of pointed morphisms. Note
that ⌧ induces isomorphisms Pn(A) ⇠= Qn(A) and P•

n(A) ⇠= Q•
n(A).
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Chapter 5
Homotopies of morphisms from J

to P1

Since we want to create something that resembles the monoid structure on [P1
,P1]N , we

will start by looking for a group structure on [J ,P1]N .

5.1 The hunt for group structures on [J ,P1]N

Since one has that the elements of Pic(J ) is achieved from tensoring the bundles P1 and
Q1, it is natural to think that these isomorphisms could be a clue to the group operation.
We will first start by looking for a monoid structure on

`
Pi(R). As the group operation

would first and foremost be a monoid operation as well. We begin by ruling out a natural
first choice.

Proposition 5.1.1. The binary operation sending M : P2
i ⇥ P

2
j �! P

2
i+j , defined

M((a0, a1 : b0, b1)
p
i , (c0, c1 : d0, d1)

p
j )

:=
h  (a0xi + a1y

i)(c0xj + c1x
j)

(a0zi + a1w
i)(c0zj + c1w

j)

�
:


(b0xi + b1y

i)(d0xj + d1x
j)

(b0zi + b1w
i)(d0zj + d1w

j)

� i
,

does not define a monoid structure on
`

Pi(R) or
`

P•

i (R).

Proof. We will prove it by counterexample. We pick the two morphisms (1, 1 : y, z)p2 =
(1, 0, 1 : 0, 1, 0)p and (1, 0 : 0, 1)p1. We then get

M((1, 0, 1 : 0, 1, 0)p, (1, 0 : 0, 1)p1) = (1, 0, 1, 0 : 0, 0, 1, 0)p.

When working over Pi(k), M simply works as multiplication of numerators and denomi-
nators of pointed rational functions.

M((1, 0, 1 : 0, 1, 0)p, (1, 0 : 0, 1)p1  !
X

2 + 1

X

X

1
=

X
3 +X

X
 ! (1, 0, 1, 0 : 0, 0, 1, 0)p.
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One can see that X3+X
X is not a pointed morphism, due to the common root of the numer-

ator and denominator.

Intuitively, we need some way to ensure that our operation preserves the morphism
property. For pointed rational functions, we ensure this by representing morphisms as
elements of SL2(k[X]). Recall that for any morphism (a0, a1 : b0, b1)pn there exist related
Bézout relations in R[x�1] and R[w�1]. We will write

Ux(x
n
a0 + y

n
a1) + Vx(x

n
b0 + y

n
b1) = 1

and
Uw(z

n
a0 + w

n
a1) + Vw(z

n
b0 + w

n
b1) = 1.

From these Bézout relations, we can create the matrices

Mx :=

✓
x
n
a0 + y

n
a1 �Vx

x
n
b0 + y

n
b1 Ux

◆
2 SL2(R[

1

x
]),

Mw :=

✓
z
n
a0 + w

n
a1 �Vw

z
n
b0 + w

n
b1 Uw

◆
2 SL2(R[

1

w
]).

For example, for the morphism (1, 0 : 0, 1)p1, we get the matrices:

Mx =

✓
x 0
y

1
x

◆
,

Mw =

✓
z �

1
w

w 0

◆
.

Squaring the matrices yields

M
2
x =

✓
x
2 0

yx+ y
x

1
x2

◆
,

M
2
w =

✓
z
2
� 1 �

z
w

zw �1

◆
.

These matrices describe new Bézout relations, but they do not seem to determine a unique
element of P•

n(R).

5.2 A conjecture and its implications

Observe that if we study P•
n(k[T ]) and Q•

n(k[T ]), Propositions 4.3.10 and 4.3.11 give us
a bijection between the sets P•

n(k[T ]), Q•
n(k[T ]) and Fn(k[T ]).

Definition 5.2.1. Let A = R or A = k. Denote by [P•
n(A),P]N (resp. [Q•

n(A),P]N ) the
pointed naive homotopy classes of maps from J to P1 arising from elements in P•

n(A)
(resp. Q•

n(A)). Also denote

P
N (A) :=

Y

i�0

[P•

i (A),P1]N ,
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Q
N (A) :=

Y

i�0

[Q•

i (A),P1]N .

Since every element of P•
n(k) and Q•

n(k) can be expressed as a pointed rational func-
tion. We may use the monoid operation �N to create a monoid structure on P

N (k) and
Q

N (k).

Theorem 5.2.2. The follwing are isomorphisms of monoids.

P
N (k) ⇠= [P1

,P1]N and Q
N (k) ⇠= [P1

,P1]N .

Proof. The induced monoid structure on P
N (k) and Q

N (k) creates an isomorphism

P
N (k) ⇠= Q

N (k) ⇠=
⇣ a

n�0

(⇡N
0 Fn)(k),�

N
⌘
⇠= [P1

,P1]N .

Since [P1
,P1]A

1

is the group completion of [P1
,P1]N , it is reasonable to assume that

P
N (k) and Q

N (k) act as inverses to each other in the group structure. However, we need
some way of handling P

N (R) and Q
N (R). The following conjectures are a shot at that.

Conjecture 5.2.3. 1. Any element of P•
n(R) (resp. Q•

n(R)) is naively homotopic to
an element of P•

n(k) (resp. Q•
n(k))

2. Moreover, If F,G 2 P•
n(R) (resp. Q•

n(R)) and F
p
⇠ G in P

N (R) (resp. QN (R)).
F is homotopic to some F̃ 2 P•

n(k) (resp. Q•
n(k)) and G is homotopic to some

G̃ 2 P•
n(k) (resp. Q•

n(k)). Then F̃ and G̃ lies in the same homotopy class in
P

N (k) (resp. QN (k)).

The conjecture can also be further specified. We will start by an example. Consider
the morphism (x, 1, 0 : 0, y, w)p. We have that

(x, 1, 0 : 0, y, w)p = (1� w, 1, 0 : 0, y, 1� x)p.

Since x


y

w

�
= y


x

z

�
, and w


x

z

�
= z


y

w

�
, we can ”move” the x’s to the right and the

w’s to the left.

(1� w, 1, 0 : 0, y, 1� x)p = (1, 1� z, 0 : 0, y � y, 1)p = (1, 1� z, 0 : 0, 0, 1)p

We can do this trick to remove any x’s and w’s from the expanded form of any morphism.

Conjecture 5.2.4. Let F := (f0, . . . , fn : g0, . . . , gn)p 2 Pn(R) (resp. Qn(R)), with
fi, gi 2 k[y, z]. Then

F
p
⇠ (f0(0, 0), . . . , fn(0, 0) : g0(0, 0), . . . , gn(0, 0))

p
.

We will now proceed with some results assuming that Conjecture 5.2.3 is true.
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Theorem 5.2.5 (Assuming Conjecture 5.2.3 is true).

P
N (R) ⇠= [P1

,P1]N ,

Q
N (R) ⇠= [P1

,P1]N .

Proof. If Conjecture 5.2.3 is true, it immediately follows that PN (R) = P
N (k) and

Q
N (R) = Q

N (k).

This allows us to do explicit calculations when working over any algebraically closed
field.

As seen in Example 3.3.5,when k is algebraically closed we have

P
N (k) ⇠= Q

N (k) ⇠= N⇥ k
⇥
.

For elements of (n,↵)P 2 P
N and (m,�) 2 Q

N ,where n,m 2 N and ↵,� 2 k
⇥. We

can also look at (n,↵)P as the (n ⇥ n) identity matrix, but with one entry replaced with
↵. The binary operation is as follows:

(n,↵)P �N (m,�)Q =

8
><

>:

(0, ↵
� )

P = (0, �
↵ )

Q
p = q,

(n�m,
↵
� )

P
p > q,

(m� n,
�
↵ )

Q
q < p.

5.3 What we know about Conjecture 5.2.3

Conjecture 5.2.3 might only be true for algebraically closed fields, as it can not be true for
R. The conjecture reduces [J ,P1]N to two copies of the monoid [P1

,P1]N . Over the real
numbers we have

[P1
,P1]N ⇠= (N⇥ N)⇥ R⇥

,

where N ⇥ N can be thought of as the signature of a bilinear form. Since [J ,P1]N is
isomorphic to the group completion, we have

[J ,P1]N ⇠= (Z⇥ Z)⇥ R⇥
.

Conjecture 5.2.3 says all elements of P•
n(R) and Q•

n(R) can be expressed as pointed
rational functions. This means that in the group completion, an element of PN (R), can
be represented by (np,mp, rp) 2 (Z ⇥ Z) ⇥ R⇥, where np,mp � 0. Similarly, an
element QN (R) can be represented by (nq,mq, rq) with nq,mq  0. Morphisms of
degree 0, will correspond to elements (a,�a, r), with a 2 Z. Note that there are elements
in this group which can not be expressed as a pointed rational function. An example is
(2,�1, r) 2 (Z ⇥ Z) ⇥ R⇥. This element is not in P

N (R) or Q
N (R), but it can be

expressed as a sum of elements. (2, 0, r)� (0,�1, 1) = (2,�1, r).

36



Chapter 6
Homotopies of morphisms from J

to A2
\ {0}

We shift our focus to [J ,A2
\ {0}]N , because it turns out understanding [J ,A2

\ {0}]N

can help us understand [J ,P1]N .

6.1 Why we study [J ,A2
\ {0}]N

In [16], Morel computes [P1
,P1]A

1

. The proof is rather involved and requires more A1-
homotopy theory than we are going to cover here. However, we will paraphrase the proof
to highlight why [J ,A2

\ {0}]N is an object of interest. The full proof can be read in
Chapter 7.3 of [16]. Morel starts off with the fibre sequence

A2
\ {0} �! P1

�! P1
.

Here P1 is the direct limit of Pn. The fibre sequence gives rise to the following short
exact sequence for homotopy classes,

1 �! [P1
,A2

\ {0}]A
1

�! [P1
,P1]A

1

�! [P1
,P1]A

1

�! 1.

This can be further simplified to

1 �! [J ,A2
\ {0}]N �! [J ,P1]N �! [J ,P1]N �! 1.

Morel then makes the crucial observation that the sequence splits and [P1
,P1]A

1
⇠= Z.

This means we have
[J ,P1]N ⇠= [J ,A2

\ {0}]N � Z.

So it turns out we can describe homotopy classes of maps from J to P1 by understanding
the homotopy classes of maps from J to A2

\ {0}.
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6.2 Morphisms from J to A2
\ {0}

6.2.1 A scheme theoretic way

Any morphism f : J �! A2
\ {0} can be composed with the inclusion morphism

i : A2
\ {0} �! A2. This gives a morphism f̄ = i � f , as in the commutative diagram

below.

J
f̄ //

f

✏✏

A2

A2
\ {0}.

i

;;

Since J and A2 are affine schemes, a morphism from J to A2 is a ring homomorphism

f̄
⇤ : k[s, t] �! R.

We get that f̄⇤ is determined by where it sends the elements s and t. These elements are
denoted by p := f̄

⇤(s) and q := f̄
⇤(t). The ideal (s, t) ⇢ k[s, t] is the ideal corresponding

to the point (0, 0) 2 A2. If f̄ is a morphism coming from a morphism f : J �! A2
\{0},

f̄
�1((s, t)) should be empty. If there exists a point m 2 J such that f̄(m) = (s, t), that

implies p, q 2 m. Since we want this to never happen, we need that (p, q) is the unit ideal.

Proposition 6.2.1. The datum of a k-scheme morphism f : J �! A2
\ {0} is equivalent

to an element (A,B) 2 R
2 where there exists (U, V ) 2 R

2 such that AU +BV = 1.

Similar calculations can be done to determine what the naive homotopies are, yielding
the following proposition.

Proposition 6.2.2. The datum of a naive homotopy from f : J �! A2
\{0} is equivalent

to an element (A,B) 2 R[T ]2 where there exists (U, V ) 2 R[T ]2 such that AU+BV = 1.

6.2.2 A shortcut using homotopy theory

Proposition 6.2.3 (Corollary 4.45 [1]). The scheme A2
\ {0} is A1-homotopic to the

scheme SL2(k) := Spec(k[a, b, c, d]/(ad� bc� 1)).

As we are now studying morphisms between affine schemes, we can now work with
ring homomorphisms from the base rings. In this case we only need to look at ring homo-
morphisms from k[a, b, c, d]/(ad � bc � 1)) to R. The morphisms are decided by where
we send the elements a, b, c and d. We can see that these elements are sent to a matrix in
SL2(R), ✓

a b

c d

◆
7!

✓
A �V

B U

◆

where A,B,U, V 2 R satisfy the Bézout relation. We can now pick (A,B) 2 R
2 as our

representative of the morphism J �! A2
\ {0}. This is because the homotopy class of
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(A,B) is independent of our choice of U and V . Let A,B,U1, U2, V1, V2 2 R such that
AU1 +BV1 = AU2 +BV2 = 1. Then we have that the matrices

✓
A �V1

B U1

◆
p
⇠

✓
A �V2

B U2

◆
.

This is done through the matrix

✓
A �TV1 � (1� T )V2

B TU1 + (1� T )U2

◆
2 SL2(R[T ]).

6.3 The connection to maps of degree 0

Recall that a morphism of degree 0 from J to P1 can be described by two elements of R
which generate R as an R-module. As we have just seen, the data of maps J �! A2

\{0}
is the same as that of degree 0 maps from J to P1. As elements of P•

n(R) have degree n

and elements of Q•
n(R), have degree �n. We can create the following exact sequence

0 �! [J ,A2
\ {0}]N �! [J ,P1]N

deg
��! Z �! 0.

The sequence splits because we can create a map d : Z! [J ,P1]N by sending an integer
n to some homotopy class of elements of degree n in [J ,P1]N . Since deg � d = id
on Z, the sequence splits. Because the sequence splits, any element in [J ,P1]N can be
represented by an element in [J ,A2

\{0}]N and an integer. Since there is a group structure
on [J ,P1]N , there exists an element f1 that acts as the identity on [J ,A2

\ {0}]N , and
has degree 1. This means it can effectively be used to translate any element of P•

n(R) and
Q•

n(R) to their representative in [J ,A2
\ {0}]N . We will use  to indicate subtraction in

[J ,P1]N . For g 2 P•
n(R), we have

g f1  . . . f1| {z }
n times

2 [J ,A2
\ {0}]N .

Example 6.3.1. Over the complex numbers, we can find a candidate for f1. Since [J ,P1]N =
C⇥

⇥ Z we are looking for a morphism from J to P1 of degree one which lies in the ho-
motopy class (1, 1) 2 C⇥

⇥ Z. Assuming that Conjecture 5.2.3 is true, we can pick
f1 := (1, 0 : 0, 1)p1. Our choice corresponds to the pointed rational function X

1 . This has
resultant 1 and degree 1, so it represents the homotopy class we are looking for.

Due to the splitting of the sequence, we get another way of describing a morphism
from J to P1 up to naive homotopy.

Theorem 6.3.2. The datum of a k-scheme morphism f : J �! P1 up to naive homotopy
is equivalent to an integer n and an element (A,B) 2 R

2 where there exists (U, V ) 2 R
2

such that AU +BV = 1.
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6.4 How the problem becomes a problem in SL2(R)

As mentioned in the previous section there is a connection between elements of [J ,A2
\

{0}]N and homotopy classes of matrices in SL2(R). This means we can study naive ho-
motopies of morphisms from J to A2

\ {0} by studying elements of SL2(R[T ]). Any
element of SL2(R[T ]) can be converted to an element of R2 by ”forgetting” the second
column. Now that we have a representation in SL2(R[T ]), we can create a binary opera-
tion akin to �N for pointed rational functions. Let (Ai, Bi) 2 R

2 be unimodular rows for
i = 1, 2. One can find elements (Ui, Vi) 2 R

2 such that AiUi + BiVi = 1. We define
A3, B3, U3 and V3 by setting

✓
A3 �V3

B3 U3

◆
:=

✓
A1 �V1

B1 U1

◆✓
A2 �V2

B2 U2

◆
.

It does not matter which Ui and Vi we pick, since the naive homotopy classes of (Ai, Bi)
are independent of our choice. We write

(A1, B1)� (A2, B2) = (A3, B3).

Example 6.4.1. 1. The matrix multiplication
✓
x� w �4z

y x� w

◆✓
x� w �4z

y x� w

◆
=

✓
(x� w)2 � 4yz �8z(x� w)

2y(x� w) (x� w)2 � 4yz

◆
,

yields that (x� w, y)� (x� w, y) =
⇣
(x� w)2 � 4yz, 2y(x� w)

⌘
.

2. We can use this to create homotopies. For example:
✓
x� w �4z

y x� w

◆✓
3 0
5T 1

3

◆
=

✓
3(x� w)� 20zT �

4
3z

3y + 5T (x� w) 1
3 (x� w)

◆
.

The homotopy yields that
⇣
3(x� w), 3y

⌘
p
⇠

⇣
3(x� w)� 20z, 3y + 5(x� w)

⌘
.

For a 2 R, the matrices
✓
1 aT

0 1

◆
and

✓
1 0
aT 1

◆

yield homotopies between elementary matrices and the identity matrix. This gives us the
following proposition.

Proposition 6.4.2. Any element of SL2(R) which can be written as a product of elemen-
tary matrices is homotopic to the identity.

Naturally, one can now ask the question, do there exist matrices that are not homotopi-
cally trivial? The following result makes use of homotopy trivial matrices to give us an
interesting homotopy relation.

Proposition 6.4.3. Let (A,B) 2 R
2 be a morphism from J to A2

\ {0}. For all elements
u 2 k

⇥, we have (A,B)
p
⇠ (u2

A,B)
p
⇠ (A, u

2
B).
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Proof. Consider
✓
A �V

B U

◆
, the representation of (A,B) in SL2(R). For u 2 k

⇥, the

matrix
✓
u 0
0 1

u

◆
can be decomposed into elementary matrices, so it is homotopic to the

identity matrix. We will use this matrix to create our homotopies. We have
✓
u 0
0 1

u

◆✓
A �V

B U

◆✓
u 0
0 1

u

◆
=

✓
u
2
A �V

B
U
u2

◆

and ✓
1
u 0
0 u

◆✓
A �V

B U

◆✓
u 0
0 1

u

◆
=

✓
A �

V
u2

u
2
B D

◆
.

this shows that (A,B)
p
⇠ (u2

A,B)
p
⇠ (A, u

2
B).

6.5 Real realization

Figure 6.1: Real realization of J

Recall that J = Spec(k[x, y, z]/(x(1�x)�yz)). We can visualize our scheme J by
realizing it over the real numbers. In Figure 6.1, there is a picture of the real realization of
J . Notably, it has a hole in the middle, so it is homotopic to a cylinder, hence having the
same fundamental group as R2

\ (0, 0). With some clever projection from J (R) to R2
\

(0, 0), it is possible to gain information about [J ,A2
\ {0}]N . The following proposition

gives some insight about relationships between naive homotopies and homotopies in the
realization.

Proposition 6.5.1. The real realization of a naive homotopy H : J ⇥ A1
�! A2

\ {0}
gives a homotopy in R2

\ (0, 0) with respect to euclidean topology.
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Proof. Consider the matrix corresponding to the naive homotopy in SL2(R[T ])

H =


f(T ) �V (T )
g(T ) U(T )

�
.

For all T this matrix has determinant 1, so for any ring homomorphism R[T ] �! R[T ],
the matrix is an element of SL2(R[T ]). Any matrix representing (0, 0) 2 R2

\ (0, 0) is a
matrix with determinant 0, so it is not in SL2(R[T ]). This means that the image of H(T )
is in R2

\ (0, 0) for all T 2 R. So it is a homotopy.

Proposition 6.5.1 implies that if one can find a nontrivial loop in the realization, its
preimage is nontrivial in [J ,A2

\{0}]N . What is now needed is a suitable projection from
the realization to R2

\ (0, 0). We will pick the map C✓ : R! R for ✓ 2 [0, 2⇡) defined as
follows:

C✓(1) = 1,

C✓(x) =
1

2
cos ✓ +

1

2
,

C✓(y) = �
1

2
sin ✓,

C✓(z) = �
1

2
sin ✓.

One can see that C✓ is a ring homomorphism, because

C✓(x(1� x)� yz) = (
1

2
)2 �

cos2 ✓

4
�

sin2 ✓

4
= 0.

All that is left is to find a nontrivial morphism. We will first look at the morphism of
F = (x� w, 2y) under C✓,

C✓(x� w, 2y) = (cos ✓,� sin ✓).

By letting ✓ vary from 0 to 2⇡, we see that this describes a loop in R2
\ (0, 0). Note that if

we consider the image of the element in SL2(R) representing (x� w, 2y), we get

C✓ :

✓
x� w �2z
2y x� w

◆
7!

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆
.

It follows from the trigonometric identities that one has
✓

cosn✓ sinn✓
� sinn✓ cosn✓

◆✓
cosm✓ sinm✓

� sinm✓ cosm✓

◆
=

✓
cos(n+m)✓ sin(n+m)✓
� sin(n+m)✓ cos(n+m)✓

◆
.

This implies that (x � w, 2y)�n corresponds to (cosn✓,� sinn✓). So we do in fact get
that the image of (x� w, 2y) generates the fundamental group of R2

\ (0, 0).

Theorem 6.5.2. The morphisms (x � w, uy) and (x � w, uy) are nontrivial morphisms
for all u 2 R⇥. Their realizations also generate the fundamental group of R2

\ (0, 0).
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Proof. We will examine the realization of (x� w, uy) and (x� w, uz).

C✓(x� w, uy) = C✓(x� w, uz) = (cos ✓,�
u

2
sin ✓)

The realization parametrizes an ellipse around the origin, so it is nontrivial. The realized
matrix of (x� w, uy) is

C✓ :

✓
x� w �

4z
u

uy x� w

◆
7!

✓
cos ✓ 2

u sin ✓
�

u
2 sin ✓ cos ✓

◆
.

By taking powers of the matrix, we get
✓

cos ✓ 2
u sin ✓

�
u
2 sin ✓ cos ✓

◆n

=

✓
cosn✓ 2

u sinn✓
�

u
2 sinn✓ cosn✓

◆
.

So the realization generates the fundamental group.

We can use Proposition 6.4.3, to say more about the morphisms (x� w, uy).

Proposition 6.5.3. For all u > 0, we have (x � w, uy)
p
⇠ (x � w, y). For all u < 0, we

have (x� w, uy)
p
⇠ (x� w,�y).

Proof. Over the R, Proposition 6.4.3 lets us multiply by any positive number. So (x �

w, uy)
p
⇠ (x � w, y) for all u > 0. Similarly for (x � w,�y), we get homotopies to the

element (x� w,�uy) for all u > 0.

We will now shift our focus to another realizable morphism, (x�u, y), where u 6= 0, 1.
Its matrix representation is

✓
x� u

z
u2�u

y
w�u
u2�u

◆
=

 
x� u

z
u2�u

y �
x�(1�u)
u2�u

!
.

Theorem 6.5.4. The morphisms (x � u, y) and (x � u, z) are nontrivial for when 0 <

u < 1.

Proof. Once again we realize the morphisms.

C✓(x� u, y) = C✓(x� u, z) = (
1

2
cos ✓ +

1

2
� u,�

1

2
sin ✓)

This only describes a loop wrapped around the origin if 0 < u < 1, so (x � u, y) and
(x� u, z) are nontrivial for those values of u.

We can relate (x � w, y) to these morphisms as well. Since we have (x � w, y) =
(2x� 1, y) and the

p
2 2 R⇥, we can create the following homotopy

(x� w, y)
p
⇠ (x�

1

2
, y).
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With some more clever conjugation of matrices, we can create more interesting iden-
tities. We have

✓
0 �1
1 0

◆ 
x� u

z
u2�u

y �
x�(1�u)
u2�u

!✓
0 1
�1 0

◆
=

 
�

x�(1�u)
u2�u �y

�
z

u2�u x� u

!
.

This gives us the homotopy (x� u, y)
p
⇠ (�x�(1�u)

u2�u ,�
z

u2�u ). Since u
2
� u < 0 for

all 0 < u < 1, we can use Proposition 6.4.3 to get (x� u, y)
p
⇠ (x� (1� u), z).
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