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Abstract

Observations of ocean surface currents are represented by direction vectors and give rise
to spatial cylindrical data, which are bivariate representations of a linear magnitude and a
circular angle. To analyse such data we develop a hidden Markov random field model. The
model segments the spatial domain into latent classes, with the structure of a Potts model.
Each class defines a cylindrical density that represents a specific circulation pattern, or
state of the ocean. The classes decide the patterns by supplying a set of fixed parameters
to the cylindrical densities. We consider two types of cylindrical distributions, the Weibull
sine-skewed von Mises distribution, which is skewed in the circular part, and the gener-
alized Pareto-type wrapped Cauchy distribution, which is heavy-tailed in the linear part.
In this way, the model can parsimoniously account for various commonly observed fea-
tures in cylindrical data, such as circular-linear dependence, multimodality, skewness, and
heavy-tailedness.

Because the likelihood function of the model is computationally unfeasible, approxima-
tions are needed to estimate the model parameters. Hence, we consider two approaches
towards forming a composite-likelihood. First, we regard pairs of observations as com-
ponents of the likelihood. This method reduces to an expectation-maximization algorithm
that is simple to implement and works iteratively by first predicting the probability of the
latent classes and then maximizing the composite-likelihood based on these probabilities.
The second method regards larger blocks of observations and computes the exact likeli-
hood of each block by a spatial extension of the forward—backward algorithm for hidden
Markov models. The properties of the two methods are investigated in a simulation study,
indicating that the former has a larger area of convergence, whereas the latter approxi-
mately halves the computation time. Based on the results, we develop a hybrid algorithm
that combines the large area of convergence of the expectation-maximization algorithm
with the computational efficiency of the block-likelihood.

We employ the hybrid algorithm to study ocean surface currents at two locations in the
Norwegian Sea. In both cases, the model is able to describe the currents in terms of in-
terpretable local regimes. We apply scoring rules to measure how well the two cylindrical
densities match the two data sets. Results indicate that both densities have merit for the
first data set, whereas the second does not display heavy tails.




Sammendrag

Observasjoner av overflatestrgmmer i havet gir opphav til romlige sylindriske data, som er
bivariate representasjoner av en linear styrke og en sirkulaer vinkel. For & kunne analysere
disse dataene utvikler vi en skjult Markov tilfeldig feltmodell. Modellen segmenterer det
romlige domenet i latente klasser, med strukturen til en Potts modell. Hver klasse definerer
en sylindrisk tetthet som representerer et spesifikt sirkulasjonsmgnster. Klassene bestem-
mer mgnstrene ved a tilfgre et sett fikserte parametere til de sylindriske tetthetene. Vi
vurderer to ulike sylindriske fordelinger, Weibull sine-skewed von Mises fordelingen med
mulighet for skjevhet i den sirkulere delen, og generalized Pareto-type wrapped Cauchy
fordelingen med mulighet for tunge haler i den linezre delen. Pa denne maten er modellen
i stand til & redegjgre for forskjellige typiske trekk i sylindriske data, slik som sirkuleer-
linezr avhengighet, multimodalitet, skjevhet og tunge haler.

Fordi modellens likelihood funksjon er for krevende & beregne, er det behov for tilnzer-
minger for & estimere modellparametrene. Vi vurderer to tilnrminger til en sammensatt
likelihood funksjon. Fgrst ser vi pa par av observasjoner som komponenter i likelihood
funksjonen. Denne metoden reduseres til en forventnings-maksimeringsalgoritme som er
enkel & implementere og fungerer iterativt ved fgrst & predikere sannsynligheten for de
latente klassene og deretter maksimere den sammensatte likelihood funksjonen basert pa
disse sannsynlighetene. Den andre metoden betrakter stgrre blokker av observasjoner og
beregner den eksakte likelihood funksjonen for hver blokk ved hjelp av en romlig utvidelse
av forward-backward algoritmen for skjulte Markov-modeller. En simuleringsstudie in-
dikerer at fgrstnevnte metode har et stgrre konvergensomrade, mens sistnevnte halverer
beregningstiden. Basert pa resultatene utvikler vi en hybrid algoritme som kombinerer det
store konvergensomradet til forventnings-maksimaliseringsalgoritmen med beregningsef-
fektiviteten til blokk likelihood algoritmen.

Vi benytter den hybride algoritmen for a studere overflatestrgmmer to steder i Norskehavet.
I begge tilfeller er modellen i stand til & bryte stramningene ned i tolkbare lokale regimer.
For & kunne sammenligne egnetheten til de to sylindriske tetthetene for hvert datasett,
benytter vi sakalte ”scoring rules”. Resultatene indikerer at begge tetthetene kan veare
nyttige for det fgrste datasettet, mens det andre datasettet ikke viser tegn til tunge haler.
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Chapter

Introduction

In this chapter, we motivate the thesis and provide a general introduction to ocean surface
currents (OSC) and how they are monitored. OSC data are represented by direction vectors
or equivalently by their components as angles and magnitudes, and we also provide an
introduction to such kind of cylindrical data in a statistical setting. Then we present a
problem description and an outline for the chapters in the thesis.

1.1 Ocean Surface Currents

The ocean is ever-changing, chaotic in nature, and always in motion. The motion is visu-
ally manifested in breaking waves at the ocean surface, but these are merely one of many
forms of motion. Other kinds of motion include eddies, narrow currents, filaments, and
turbulence. These span a vast diversity of spatial scales, from over 100 km to less than
1 m. Temporal scales also range from decadal climate-related changes to hourly tidal cur-
rents. Global surface motions are induced by the earth’s rotation, global winds, and the
continent borders. Also, interplay between global and local conditions makes the motions
even more complex.

OSC can be described as a coherent horizontal and vertical movement of water — in
contact with the surface and over a specific depth regime — with a given velocity that
persists over a region and time period [Chapron et al., 2015]. Going forward, we consider
OSC as only water moving horizontally close to the surface. OSC are the results of local
and external characteristics such as winds, waves, tides, mixed layer depth, and turbulence.
When these random characteristics interact with flows of larger scale they create complex
current structures. Hence, stochastic models are needed to estimate OSC drift.

There are several influential forces affecting the water masses that make up the oceans.
Some of them include forces relating to variations in surface elevation, wind friction, Cori-
olis force connected to Earth’s rotation, and forces due to density disparity in the wa-
ter. These forces generate several flows and currents, among others tidal motion, internal
waves, Kelvin waves, and Rossby waves, but our focus is on the geostrophic and Ekman
currents.




For large scales, the ocean is approximately hydrostatic, meaning that the height and
density of the water column determine pressure. Then, the balance of force is between
horizontal pressure differences and the Coriolis effect [Dohan and Maximenko, 2010],
and currents are parallel to lines of constant pressure, so-called isobars. These currents
are known as geostrophic currents and can be calculated from gradients of the sea surface
height, because the pressure depends on the surface height. In other words, geostrophic
currents come as a result of small differences in the surface height. In the Northern (South-
ern) hemisphere, high pressure is to the right (left) of the flow. Large scales dominate the
open ocean, thus the mean ocean motion is treated as approximately geostrophic. Major
currents such as the Gulf Stream and the Agulhas Current are examples of geostrophic
currents.

As already stated, geostrophic currents dominate large-scale regions, but this does not
mean that all large-scale motions are geostrophic. In the Ekman balance, introduced by
Ekman [1905], the Coriolis effect is balanced by the vertically decaying stress induced by
wind friction. Assuming steady winds, infinitely deep ocean, and constant vertical eddy
viscosity, the theoretical Ekman current flows at 45° to the right (left) of the wind direction
in the Northern (Southern) hemisphere at the surface [Dohan and Maximenko, 2010]. The
angle increases and the speed decreases with depth. Ekman currents can be computed by
estimates of wind stress from measurements of wind speed and direction.

In this thesis, we consider OSC in the Norwegian Sea, which is part of the Arctic
Ocean. The Arctic plays a crucial role in the climate system and has been substantially
affected by the ongoing climate change. Changes to the Arctic are easily observable,
with increased ocean and air temperatures, stark shrinking of sea ice areas, and decreased
sea ice thickness. Because of this, the OSC in the Arctic Ocean is expected to endure
changes, but quantification is difficult [Johannessen et al., 2014]. Undoubtedly, changes to
the Arctic environment will pose severe consequences for its surroundings, and both local
and global ecosystems will get affected. Also, flow of warm and saline Atlantic water to
the Arctic Ocean has great impact on the Arctic climate. This is why broad knowledge and
quantification of ocean circulation and its variability is needed for the Arctic Ocean.

The ocean circulation in the Arctic region has been extensively studied ever since the
first approaches by Helland-Hansen and Nansen [1909]. The dominating current in the
Norwegian Sea is the warm Norwegian Atlantic Current, extending the North Atlantic
Current, which again is a continuation of the Gulf Stream. The Norwegian Atlantic Cur-
rent comprises three currents: one at the coast, one at the edge of the continental shelf, and
one further offshore [Mork and Blindheim, 2000]. These three currents merge west of Lo-
foten and Vesteralen. The Norwegian Sea also gets inflow from the East Icelandic Current,
which is a mix between Atlantic water (warm and salty) and Arctic water (cold and fresh).
At the Barents Sea entrance, the Norwegian Atlantic Current splits into two branches, one
going eastwards into the Barents Sea, and the other continuing north towards Spitsbergen.
The inflow from the Norwegian Atlantic Current to the Barents Sea has been studied to
examine the current velocity field and describe its seasonal variability [Ingvaldsen et al.,
2002, 2004]. The Norwegian Coastal Current flows along the Norwegian coast and trans-
ports fresh water from the Baltic Sea towards the Barents Sea. The interaction between
the coastal and the Atlantic currents is also of high importance for the circulation in the
Norwegian Sea.

2
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Figure 1.1: Schematic presentation of the circulation pattern in the Nordic Seas. Deep currents are
represented by black arrows. Cold and fresh surface currents are represented by dark grey arrows,
whereas the light gray arrows represent warm and saline currents. Taken from @sterhus et al. [1996].

Figure 1.1 is taken from @sterhus et al. [1996] and presents the large scale currents in
the Nordic Seas in a schematic way. The northward flowing Norwegian Atlantic Current
is depicted in light grey to indicate that it contains warm and saline Atlantic water. The
Norwegian Coastal Current flows closer along the Norwegian coast. It is important to note
that this image merely displays the general large scale flow of the currents. In practice
and at smaller scales, the currents behave in a chaotic manner and even interact with each
other. This calls for stochastic models to accurately represent the current patterns.

1.2 Monitoring

Initially, sailors and oceanologists were dependent on their personal observations to map
and study OSC. Over the past few decades there has been an extensive deployment of
various types of satellites, buoys, gliders, and drifters. These provide synoptic images as
well as in situ measurements, and major advances have been made towards combining
these two forms of observations [Chapron et al., 2015]. As we discussed in the previ-
ous section, OSC have a complex behaviour. They span a broad range of both spatial
and temporal scales and depend on both global and local factors. Thus, remote sensing




through satellites is an ideal tool to study the dynamics of ocean surfaces. Satellites offer
the possibility to consistently and systematically do repeated measurements of specific ar-
eas, which is unfeasible with in sifu measurements. However, the repeated synoptic view
comes at the cost of lower spatial and temporal resolution. Consequently, remote sensing
observations should ideally be accompanied by observations with higher resolution, and
capturing synergies from such a diverse range of observations is an important challenge.
Because accuracy varies in all types of observations, it is of high importance to quantify
and model the uncertainty in data involving ocean processes. In light of these demands,
Oceanographic research formed in a statistical framework has been very productive [Wikle
etal., 2013].

Satellite altimetry is a way of measuring the sea surface height, and one of the most
mature techniques for mapping ocean currents [Chapron et al., 2015]. Numerous measure-
ments and calculations are needed to calculate the surface height. In addition to altimetry
data, this includes accurate information about the satellite orbit and tide water. Crucially,
the height is measured relative to the so-called geoid, the sea surface at resting state, and
precise knowledge about the geoid is also necessary [Dohan and Maximenko, 2010].

However, altimeters are limited to relatively coarse spatial grids or low temporal res-
olution. The satellite can pass over an area frequently, but this comes at the cost of large
distances between each tracking line. Hence, a compromise needs to be made between the
temporal and spatial resolution. Deploying multiple altimeters solves some of the prob-
lems, but resolution is still restricted to approximately 100 km and 10 days. In specific
areas, attempts have been made towards combining the altimeter data with other sources
of higher-resolution observations. These include in situ observations and microwave im-
ages of sea surface temperature.

Several types of instruments are able to monitor and measure winds to calculate Ekman
currents. These include scatterometers, passive polarimetric sensors and synthetic aperture
radar (SAR). For a more detailed overview of these types of sensors we refer to Bourassa
et al. [2010]. The Ekman current data we use in this thesis have been calculated by using
trajectories from SVP-type drifting buoys and Argo floats [Chapron et al., 2015]. From the
drifter velocities, the Ekman currents are extracted by subtracting the geostrophic current
component measured by altimetry.

The first set of data we consider in this thesis are collected by the GlobCurrent project.
The data, as well as extensive documentation on collection procedures and details on cal-
culations, are publicly available on the GlobCurrent web page.! OSC are not merely a
simple addition of current components, but the combined current data we consider are the
sum of the geostrophic and the Ekman current, given by

U = Ugeost + Ugk. (I.D)

Current data are provided both at the significant wave height and at 15 m depth, but we
will only use the former. The data span all the world’s major oceans and seas with a spatial
resolution of 0.25° latitude and longitude. Additionally, data are provided on a 3 hourly
time scale from 1993 to 2017.

mttp://globcurrent.ifremer.fr/
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The second data set originates from the SINMOD? ocean model, which is a numerical
ocean model that has been developed by SINTEF since the 1980s. The model is built
on a 3D hydrodynamic model that is based on the primitive Navier-Stokes equations. It
incorporates atmospheric forcings, such as wind, air temperature and air pressure, and also
freshwater runoff and tidal components. Currents are used as boundary conditions, and the
model is nested, enabling lower resolution setups to produce boundary values for higher
resolution implementations. A detailed description of the model is given by Slagstad and
McClimans [2005]. The model originally covered most of the Barents Sea, but has later
been extended to other areas. The horizontal resolution is equal in both direction and varies
from 12km to 32m. The vertical layers have varying thickness, with higher resolution
closer to the ocean surface. In this thesis, we use data with 800 m horizontal resolution.
We use the upmost vertical layer, which due to the vertical layer setup is 3 m below the
ocean surface. Critically, this data set differs from the first one in that the data are simulated
from an ocean model, rather than calculated directly from satellite observations and drifter
trajectories.

1.3 Cylindrical data

Circular data arise in applications involving directions, and are usually expressed in terms
of angles relative to a fixed reference point. When the data also contain a linear magni-
tude, they are referred to as cylindrical, because the pair of an angle and a magnitude can
be interpreted as a point on a cylinder, with the magnitude representing the height of the
cylinder. As such, the angle is called the circular part and resides on the unit circle, where
it is measured for the most part in radians, but also sometimes in degrees. The magnitude
is called the linear part and takes values on the non-negative real line. Examples of cylin-
drical data include ocean wave direction and height [Wang et al., 2015], wind direction and
speed [Modlin et al., 2012], X-ray imaging [Abraham et al., 2013], and animal migration
direction and intensity [Hanks et al., 2015].

The analysis of circular data has seen major development since the 1970s. Early sum-
marizing work include the books by Mardia [1972], Batschelet [1981], and Fisher [1993].
A more recent review was provided by Lee [2010], in addition to a comprehensive bib-
liography on the subject. Ravindran and Ghosh [2011] proposed to model circular data
taking a Bayesian approach, wrapping probability distributions defined on the real line to
obtain circular distributions. For cylindrical data, the literature revolves mainly around
conditional modelling, i.e., the linear variable depends on the circular variable (circular-
linear regression) or the circular variable depends on the linear variable (linear-circular
regression). Johnson and Wehrly [1978] developed distributions for cylindrical data based
on a maximum entropy principle, whereas Mardia and Sutton [1978] created a distribu-
tion by conditioning from a trivariate Gaussian distribution. The former distribution was
improved by Abe and Ley [2017] to increase its flexibility. They invoked a power trans-
formation to the linear part and a perturbation to the circular part to allow for asymmetric
’sine-skewing”. Recently, Tomoaki et al. [2019] also proposed a way to model cylin-
drical data with heavy-tailed linear parts. Circular and cylindrical data are two forms of

2More information about SINMOD is available on the web page: https://www.sintef.no/en/
ocean/initiatives/sinmod/
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directional data. A comprehensive treatment of all forms of directional data was given by
Mardia and Jupp [1999], with Pewsey and Garcia-Portugués [2020] providing a review of
more recent advances in this field.

Data from the GlobCurrent project and the SINMOD model are measured across space
and decomposed into a Cartesian representation of u- and v-components of the currents
at each observation point of the spatial lattice. In this representation, u corresponds to
the current speed in west—east direction, whereas v corresponds to the current speed in
south—north direction. Both components are measured in metres per second, and can be
transformed to a spatial cylindrical data series by the usual polar transform,

T = vVu?+ 02, (1.2)

¢ = arctan2(v, u), (1.3)

where arctan2(-, ) is the usual 2-argument inverse tangent function for determining an-
gles in the Euclidean plane. In this way, we get cylindrical data, with the current speed
x € [0,00) measured in metres per second and the direction of the current ¢ € (—m, 7]
measured in radians. The direction is anti-clockwise from east (¢) = 0) to north (¢ = 7/2).

The reason why we use a cylindrical representation for the OSC data instead of a
Cartesian representation is because of the complications that appear with the latter. The
correlation between the v and v components varies over the spatial domain [Reich and
Fuentes, 2007]. It is therefore beneficial to consider the cylindrical representation, as we
are able to model circular-linear dependence. However, challenges may also arise with
this representation because of the special topology of the cylindrical support for the data.
Consequently, cylindrical models need to be able to account for skewness, multimodality,
and asymmetry in the marginal distributions.

Approaches towards modelling spatial cylindrical data have been limited. Even the
field of spatial circular data is relatively unexplored, with Morphet [2009] developing
methods for Kriging as well as simulation of circular spatial data. Wang and Gelfand
[2014] proposed a Bayesian setting to model spatial dependence of circular data in the
form of ocean wave directions. They utilized the projected Gaussian process to model
stochastic circular variables on a continuous spatial domain. This enables them to model
asymmetric data and account for spatio-temporal dependencies. This is advantageous
compared to the wrapped Gaussian process proposed by Jona-Lasinio et al. [2012], which
only models symmetric spatially dependent circular data.

The projected Gaussian process was further extended by Wang et al. [2015] to cylin-
drical data by also including wave height, resulting in a framework for joint modelling of
the circular and linear component. Their model specifies a conditional Gaussian distri-
bution for height, given the direction, and a marginal spatio-temporal projected Gaussian
distribution for the direction. Another type of Bayesian hierarchical model was developed
by Modlin et al. [2012] based on a circular conditional auto-regressive model and a spatial
auto-regressive model for the logarithm of the linear part. Here, the spatial dependency is
defined on a spatial lattice, contrary to a continuous spatial domain in Wang et al. [2015].
The spatial lattice is suitable for applications with limited spatial resolution, as in our case.

6



1.4 Problem description

The incentives for studying and understanding ocean currents obviously has its roots in
long-established enterprises such as shipping and fishing. However, the importance of
ocean currents is far-reaching and does not only concern maritime industries. Surface
currents impact marine life and define migration of e.g., larvae and fish eggs, sediment
transport, and dispersal of pollution. Hence, knowledge of ocean circulation and drift is
essential for maintaining the marine environment and operating marine businesses. Also,
search and rescue missions and recreational activities depend on surface current patterns.
Classifying and understanding these patterns is therefore of utmost importance.

In this thesis, we intend to provide a way to model the OSC in the Norwegian Sea
to increase the understanding of current circulation patterns in the area. We propose a
way to segment the global pattern into a small number of specific local regimes, which
are easier to interpret than the global circulation. This is done by employing a Markov
random field (MRF) to segment the spatial domain into latent, or hidden classes. This
means that the conditional distribution of the latent classes only depend on their neighbours
and they possess the Markov property. Each latent class supplies a corresponding set of
fixed parameters to the cylindrical densities for the observations. In this way, we get a
cylindrical hidden Markov random field (HMRF). The cylindrical HMRF provides a way
of classifying typical states of the ocean, represented by the cylindrical densities, based on
observations from different dates.

The observation sites are assigned a probability of attaining each latent class. Essen-
tially, this means that the distribution of the OSC observations is a mixture of the cylindri-
cal densities corresponding to the latent classes. This provides flexible mixture distribu-
tions that allow for multimodality. The mixture weights vary according to the evolution of
a latent process across space, which captures spatial heterogeneity and correlation.

A key property of the models we develop is the need for compactness, i.e., compact
models that are sufficiently simple to be incorporated on-board autonomous marine agents
such as autonomous underwater vehicles (AUVs) and drifters. These vessels are unable to
run, for instance, full-scale differential equation systems in the form of a numerical ocean
model. Instead, we want to develop models that can be largely computed on shore and
then be updated with information captured on the go. This means that the compact model
is static, and the fixed parameters are not modified during autonomous missions. Method-
ologically this drives requirement for using a frequentist mind-set, with fixed parameters,
as opposed to the more computationally intensive Bayesian approach that assigns proba-
bility distributions to the parameters.

The research that is closest to this thesis includes work by Holzmann et al. [2006] and
Bulla et al. [2012] on methods to model cylindrical time-series data with a hidden Markov
approach. Sea current circulation, which are spatial series of cylindrical data similarly
to our OSC data, have been modelled by Lagona and Picone [2016] using a cylindrical
HMRE. They developed a computationally intensive expectation-maximization algorithm
by utilizing a mean-field approximation of the likelihood function. However, the method is
numerically unstable and was improved by Ranalli et al. [2018], who instead of consider-
ing the full likelihood, took a composite-likelihood approach, resulting in a computation-
ally efficient and more stable algorithm. We intend to further improve their algorithm in
this thesis. Segmentation of OSC data based on sea surface temperature images was also

7



studied by Tandeo et al. [2013], who proposed a model to discriminate between hidden
spatio-temporal classes of currents at the ocean surface. The latent classes were predicted
and tracked by using local satellite observations as well as patches of surface temperature
measurements.

1.5

Outline

The thesis is organized as follows:

L]

Chapter 2 presents theory behind MRFs and the Potts model. Two cylindrical prob-
ability distributions are also introduced and discussed before the combined cylindri-
cal HMRF model is defined.

Chapter 3 discusses techniques for doing inference on the HMRF model, including
parameter estimation and model selection.

Chapter 4 presents a simulation study to compare inference models and investigate
accuracy in parameter estimation.

Chapter 5 provides results and discussion from fitting the HMRF model to real data
sets of OSC observations from the GlobCurrent project.

Chapter 6 provides results and discussion from fitting the HMRF model to simulated
OSC data from the SINMOD model.

Chapter 7 gives concluding remarks and discusses possible extensions and topics
for further work.




Chapter

Models

In this chapter we present a cylindrical HMRF, where the classes determining the param-
eters of the cylindrical distribution are considered unknown or hidden. In Section 2.1, we
first give a general introduction to MRFs and specify the Potts model that determines the
underlying spatial classes. Then, Section 2.2 introduces two cylindrical distributions and
presents the probability density functions (pdf) in contention. Finally, in Section 2.3 we
describe how the models can be combined to form a cylindrical HMRF.

2.1 Markov Random Fields

We denote by s a reference variable in continuous two dimensional space, s € D C R2, A
spatial variable, I(s), with reference s can then be interpreted probabilistically by defining
arandom field (RF). First, we define the pdf of the spatial variable to be

(l(sl)v 1(52)7 ERER Z(Sn)) ~ p(l(sl)a 1(52)7 ) Z(Sn))a 2.1

for all possible (s1,S2,...,8,) € Dand all n € N,. Then I(s) is an RF if its values are
random for every s € D C R? [Abrahamsen, 1997]. The RF is called stationary if the pdf
p(l(s1),1(s2),...,1(sy)) is invariant to shift in the reference s.

The reference variable can also be discretized into s € L, where £ is a lattice of
grid points, or cells, in two-dimensional space, consisting of |£| = n grid points. Going
forward, we simplify notation by denoting the vector 1 = (I(s1),1(s2),...,(sn)). Also,
we denote the grid point s; € £ by 4, and the spatial variable at grid point ¢ is denoted ;.

The spatial variable [; is called a mosaic spatial variable if it takes discrete values, i.e.,
l; e L ={1,...,K}. Here, K is the number of possible discrete values, or classes that
the variable can take. When the spatial variable takes discrete values, its distribution is
a probability mass function (pmf) instead of a pdf, which gives the probability that the
spatial variable is exactly equal to some value. We use the following notation for the pmf
of the spatial variable 1,

1~Pr(l1=1) = p(), (2.2)

9



Clique Neighbourhood

Figure 2.1: Two examples of neighbourhood systems to the node marked with a cross (right) with
the corresponding clique system (left).

where Pr(1 = 1') is the probability that the spatial variable 1 is exactly equal to 1, i.e., the
pmf of L

MRFs have been extensively studied since the seminal papers by Besag [1974, 1975].
General introductions to MRFs are provided by, e.g., Cressie [1993] and Guyon [1995].
To define the MRF, we follow the lines of Besag [1974] by first defining a neighbourhood
system. A set N, : {Ny,...,N,} is a neighbourhood system for the lattice £ if N; C
L\{i}forallie L,andi € N; <= j € N, forall pairs ¢, j € L. Such pairs are called
neighbours. Having defined a neighbourhood system, we can define the corresponding
cliques. A set c C L is called a clique if 7 € N for all pairs 7, j € c. We then denote by
cc: {c1,...,cy, } the set of all maximal cliques on the lattice, i.e., all cliques that cannot
be extended by including another point. Two examples of neighbourhood systems and the
corresponding clique system is displayed in Figure 2.1.

Having defined cliques and neighbourhoods, we can now define the MRF. If

1~ p(1) = C x [Jvoi(ts) x ] viellys4 € c), (2.3)
=1

cEce

with vg;(+), v1c(-) € Rg, and C being a normalizing constant, then {I(s);s € L} is the
Gibbs formulation of a MRF on the grid £ with clique system c.. The function vg; ()
is a single-cell potential function, and v;.(-) represents the clique potential function, or
spatial coupling between between cells in a clique. By the Hammersley-Clifford theorem
[Hammersley and Clifford, 1971], there exists a corresponding neighbourhood system N .,
such that for all s; € £ we have

[Lills] ~ p(li1-s) = p(ls|lj5 § € Ny). (2.4)

This is called the Markov formulation of the MRF on the grid £ with neighbourhood
system N . Note here that the Gibbs formulation in Equation (2.3) consists of one n-
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dimensional pmf, whereas the Markov formulation in Equation (2.4) consists of n uni-
variate conditional pmfs. The normalizing constant C' is cumbersome to calculate for the
Gibbs formulation, as one needs to sum over K" terms. This can only be done exactly for
spatial grids of limited size, and special algorithms are necessary [Friel and Rue, 2007].
However, it is tractable for the Markov formulation, for which the pmf is given by

-1
L] ~ p(la]Ls [szl] p(1) = p(ilL;: j € N,)
l'G]L
(2.5)

-1
[va w; (1]157 € N; )] x voi(li)wi(li|lj; 7 € Ny),
ljel

where vg;(-) is the same single-cell potential function as for the Gibbs formulation in
Equation (2.3). The interaction functions w;(-|-) € Rg are related to the clique potential
functions by the formula

wz(ll\lj,] (S Nl) X H Ulc(lj;j S C)7 (26)

cEcLH

where cr,|; denotes all cliques containing grid point 1.

2.1.1 The Potts model

We will next present a special form of a MRF with its particular clique potential functions,
known as the Potts model. The Potts model was introduced in a Ph.D. thesis by Potts
[1951], but for a tidy tutorial review we refer to Wu [1982]. The clique system for the
Potts model is defined as all two closest pairs, and is denoted by c. This means that the
cliques and neighbourhoods correspond to the structure at the top of Figure 2.1. Moreover,
the clique coupling functions are

vie(li; Ij;€) = exp (pI(li = 1)), 2.7

where ¢ € c, represents any clique from the clique system, p € Rg is the coupling
parameter, and I(-) is the indicator function that takes the value 1 if the argument inside
is true and O if it is false. The model has only one parameter, hence it assumes symmetry
in all classes and the model is indifferent to the numbering of classes. Because there is
only one coupling, or dependence parameter p, the model also assumes equal dependence
in both spatial directions. In addition, all the single-site potential functions wvg;(-) are
assumed constant and equal. Consequently, the Potts model is a stationary model, except
for boundary effects on the coupling. In the special case of K = 2, i.e., only two spatial
classes, the Potts model is identical to the Ising model, which is prominent in several
applications, including neuroscience [Schneidman et al., 2006] and biophysics [Liu and
Dilger, 1993]. It is also one of the most studied models in modern physics [Niss, 2005].
The Gibbs formulation of the Potts model is given by

1~ p(l) = C(p) L exp (p 3 I = lj)), 2.8)

cece
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where C(p) is a normalizing constant, depending on p, given by

Clo) =" exvo (p D 10 =11). 29

el cEce

This implies that the normalizing constant is a sum over all K possible outcomes for each
entry in the n-vector 1. This is obviously not feasible to compute for large spatial lattices
and a large number of classes. Hence, exact computation of the normalizing constant
is only possible for small grids and requires special algorithms, see e.g., Bartolucci and
Besag [2002], Reeves and Pettitt [2004], or Friel and Rue [2007]. For large grids, the
normalizing constant needs to be approximated.

The Markov formulation of the Potts model is

. . exp (0D jen, Ll = 1))
illj; 5 € Ny) ~ p(li|lj;5 € N;) = I , (2.10)
’ ’ Srenexp (0 en, 1T =1)))

foralli € {1,...,n}. The Potts model has a neighbourhood system that includes the four
closest nodes. For this formulation the normalizing constant is tractable, as the sum is only
over K components.

One disadvantage of the Potts model is that it behaves very differently for varying
values of p. For values of p above pei = In(1 + VK ), there is a phase transition and
almost all the values of the spatial variable 1 become equal [Barkema and de Boer, 1991].
Hence, the pmf has K modes extremely located in the sample space. The spatial coupling
decreases for smaller values of p. For values below the critical value, the field then appears
with a mixing of the classes, gradually with less spatial coupling as p goes to 0. However,
the most characteristic feature of the Potts model is the transition between the two regimes
at the critical value p.y. For our application, this implies that we need to impose the
restriction p € [0, puit), because we do not want all the grid cells to take the same class.
As a final note, with p = 0 the Potts model simplifies to a spatially independent model.
Then, all grid points are independently multinomial with equal probability for each class.

Figure 2.2 shows random samples from the Potts model with different values for the
interaction parameter p on a 24 x 24 lattice with K = 3 classes. The samples are gen-
erated using the Swendsen—Wang algorithm [Swendsen and Wang, 1987], which samples
from the Potts model using McMC. The algorithm is available through the pott s package
in R. From the image with p = 0, we observe that all points are essentially independent.
Notice also that the grid points display increasing spatial dependence and larger clusters
of equal classes form for larger values of the interaction parameter p. For values of p close
to and above the critical value, almost all grid points take the same value.

2.2 Cylindrical probability distributions

Cylindrical data are on the form z = (x, ¢), where z € [0, c0) represents magnitude and
¢ € (—m, ] represents angle. The magnitude is also called the linear part of the distri-
bution, whereas the angle is called the circular part. Hence, the cylinder is a combination
of a linear and a circular part. Examples of applications for cylindrical data include ocean
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(b)p=0.2

d)p=0.6 (e)p=0.8 ®) p = perit

Figure 2.2: Samples from the Potts model over a 24 x 24 grid with K = 3 classes for different
values of the interaction parameter p.

wave height and direction, wind speed and direction, or in our case, OSC speed and direc-
tion. In this section, we present and discuss two cylindrical densities we will use to model
cylindrical data.

2.2.1 Weibull sine-skewed von Mises

We first consider the Weibull sine-skewed von Mises density (WSSVM) proposed by Abe
and Ley [2017]. The distribution combines a Weibull density for the magnitude and a
circular sine-skewed von Mises distribution for the angle. The pdf is given by

af®

- 27 cosh k

p(z, @) (14 Asin(¢ — p))z* " exp ( — (Bx)*(1 — tanh(k) cos(¢ — u))) .

(2.11)
The interpretation of the parameters is as follows: o > 0 and 8 > 0 are shape and scale
parameters for the linear magnitude, p € (—m, 7] is the circular location and A € [—1,1]
is the circular skewness. Finally, the parameter x > 0 represents the circular concentration
and dependence between the circular and linear parts.

A prominent property of the distribution is that the normalizing constant is numerically
tractable, which is not always the case for cylindrical densities [Kato and Shimizu, 2008].
Furthermore, the marginal and conditional distributions exist in closed forms, which makes
for simple sampling routines. The marginal distribution of the angle ¢ is a sine-skewed
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wrapped Cauchy distribution with location y and concentration tanh(x/2), with pdf,

1 — tanh?(x/2 1+ Asin(¢ —
(o) = (+/2) . Gl . 2.12)
27 1+ tanh®(k/2) — 2 tanh(k/2) cos(¢ — p)
In turn, the linear component x has a marginal distribution with pdf,
Iy ((Bx)= tanh(k) _
p(z) = 0( cosh(n) )aﬁo‘aﬁ(’ Lexp ( - (BJ;)“), (2.13)

where I (+) is the modified Bessel function of the first kind and order zero.

For k = 0, there is independence between the circular and linear part. Then, the joint
distribution simplifies to the product between a linear Weibull distribution with shape «
and scale f3, given by

p(z) = af*z* texp (— (Bx)*), (2.14)

and a circular cardioid distribution with location p + 7/2 and concentration A, given by

L (1+ Asin(¢ — p)). (2.15)

T o

p(¢)

Moreover, the conditional distribution of the magnitude z given the angle ¢ is a Weibull
distribution as in Equation (2.14) with shape a and scale 3(1 — tanh(x) cos(¢ — u))'/,
or,

p(]6) = aB(1 — tanh(r) cos(é — 1))z exp ( — (1 — tanh(x) cos(¢ — 1)) (Bz)°).

(2.16)
The conditional distribution of the circular part ¢ given the linear part = has a sine-skewed
von Mises distribution with concentration (Sz)* tanh(x) and pdf,

14 Xsin(¢ —p) o ]
p(@le) = o To (5o tanh(s)) =P ((Bz)* tanh(x) cos(¢ — p)). (2.17)

These distributions can be utilized to define a simple sampling routine. Sampling is
conducted by first sampling from the marginal distribution of ¢ given by Equation (2.12)
and then the conditional of = given ¢ as in Equation (2.16). Abe and Ley [2017] proposed
the following algorithm to generate a sample (X, ®) from the WSSVM distribution:

1. Generate a random variable ®; from a wrapped Cauchy distribution with location p
and concentration tanh(x/2).

2. Draw U ~ Uniform|0, 1], and let

o Py,  ifU < (1+ Asin(®1 — p))/2,
| @1, iU > (1+ Asin(®@ — p))/2.

Then, ® has a sine-skewed wrapped Cauchy distribution with location p and con-
centration tanh(x/2).
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Figure 2.3: Contour plots of the WSSVM density given in Equation (2.11) for (o, 8, 1) = (2,1,0)
and (k, \) as indicated.

3. Generate X from from a Weibull distribution with shape « and scale
B(1 — tanh(k) cos(® — ﬂ))l/a.

In Figure 2.3 we display the WSSVM density for some values of (x,A) and with
(o, B, 1) = (2,1,0). The densities, and all future plots in this thesis of cylindrical densi-
ties or data, should be interpreted bearing in mind that they are actually on a cylinder, so
the variable ¢ on the second axis is wrapped around a circle, and x represents the cylinder
height. Notice the high flexibility in both the circular and linear part of the distribution,
and the skewness of the distribution achieved by increasing A. The distribution is of course
skewed towards negative values of ¢ when A is negative. Figure 2.3a shows that the cir-
cular part is uniform for K = A = 0. This is also observed from the marginal distribution
of the angle in Equation (2.12), the distribution becomes uniform when k = A = 0. As
either k or A increases, the circular part becomes less uniform.

To make future discussions easier to follow and to familiarize the structure of the
WSSVM model and cylindrical data, we present some additional visualizations of data
from this model and discuss some critical properties of the density. First, in Figure 2.4
we have drawn 1000 samples from the WSSVM distribution with («, 8, 1) = (2, 1, 0) for
two different values of (x, A). At the top of the figure, these samples are plotted with the
magnitude X on the first axis and the angle ® on the second axis, as was done for the
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Figure 2.4: Samples from the WSSVM density for («, 3, ) = (2, 1,0) and (k, A) as indicated.

densities in Figure 2.3. At the bottom of the display, the same samples are transformed
to Cartesian coordinates and plotted as vectors originating from the origin. In the left
display, all angles are equally likely, because the circular part is uniform. Smaller angles,
® € (—2,—1.5), are much less likely in the right display. Displays like these may help
familiarize the cylindrical data structure.

All moments of the linear part are explicitly defined and the gth moment is available
through the expression

B(X) = (COS;:(K))‘Z/&F((]Za)Pg/a(cosh(ﬁ)), (2.18)

where I'(+) is the Gamma function and Pg . (+) is the associated Legendre function of the
first kind of order 0 and degree g/« [Abe and Ley, 2017]. Note that all linear moments
are independent of the circular location i and the skewness A. Both the expectation and
variance of the magnitude are easily computable from this expression. For example, the
analytical expression for the expectation of the magnitude in the left display of Figure 2.4
is /m/2 =~ 0.89, and for the right display it is approximately 1.31. Also the theoretical
variance of the linear part is 1 — 7/4 ~ 0.21 for the sample to the left, and 0.67 for the
sample to the right, verifying that the right sample has a higher observed variance in the
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linear part.

The circular part of the distribution is obtained by wrapping a sine-skewed Cauchy dis-
tribution onto the unit circle. Because the distribution is wrapped, it is not appropriate to
define linear moments, as this ignores the similarity of angles near —7 and near 7. Hence,
we consider trigonometric moments, and these are available and can be derived from the
original distribution defined on the line [Abe and Pewsey, 2011]. The trigonometric ex-
pectations and variances are given by

E(cos(®)) = tanh (g) E(sin(®)) = 2002}3(”) (2.19)
Var(cos(®)) = %(;m Var(sin(®)) = %(;m (1 - QCO:hQ()) (2.20)
2 2 2

Expressions for the covariance between the linear part and trigonometric circular part are
also explicitly given by,

F(é)Pll/a(cosh(/i)) — F(%)Pf/a(cosh(n)) tanh(%)
(cosh(x)) 1723 ’

(cosh(k)) tanh?(%) — L(152) Py, (cosh(k))
2X\~1(cosh(k))~1/*p

Cov(X,cos(®)) = (2.21)

L) Pa

Cov(X, sin(®)) = . (222)

Notably, for k = 0 both these covariance expressions equal zero. This is as expected
because x = 0 yields independence between the circular and linear parts. The correlation
between the two parts also has an explicit expression, for which we refer to Abe and Ley
[2017] for a detailed derivation. Essentially, they state that the correlation does not depend
on 3, u, or the sign of \. Moreover, the correlation increases as « or || increases. For
small values of &, the correlation increases with » until it reaches its maximum, and then
decreases with k.

2.2.2 Generalized Pareto-type wrapped Cauchy

We also consider a distribution that consists of a generalized Pareto-type distribution for
the linear part and a wrapped Cauchy distribution for the circular part (GPTWC). As op-
posed to the previous one, this distribution is not skewed, but it has heavy tails in the linear
part, and was proposed by Tomoaki et al. [2019]. The joint pdf of the magnitude and angle
is given by

—(a/7+1)

oz, ¢) = \/2;37 (;) v <1 + ;(;) 1/a(1 — K cos(d — u))) . (2.23)

Again, p € (—m, 7] is the circular location parameter, o« > 0 and 8 > 0 are linear shape
and scale parameters, and x € [0, 1] acts as circular concentration and circular-linear
dependence. Finally, 7 > 0 determines the tail behaviour of the linear part. As a limiting
case of this distribution, when 7 — 0, the distribution in Equation (2.23) reduces to the
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distribution

plx,d) = ﬁ (Z) - ( - (;) 1/a(l —~ rcos(¢ — u))>, (2.24)

which is actually the same density as the WSSVM density in Equation (2.11) with A = 0
and a reparametrization of «, (3, and &.

Crucially, the normalizing constant of the GPTWC distribution is explicitly defined,
as well as all marginal and conditional distributions. The marginal distribution of the
circular part ¢ is a standard wrapped Cauchy distribution with location i and concentration

k/(1+ V1 — k%), with pdf,

_ V1—k?
B 21 (1 — Kcos(¢ — p))

This is the same distribution as the marginal distribution for the angle in the WSSVM
distribution, except that it is not skewed. By letting A = 0 and reparametrizing x in
the expression for the marginal distribution of the angle in the WSSVM distribution in
Equation (2.12), we arrive at the expression for the marginal of the GPTWC distribution
in Equation (2.25). The marginal pdf of the linear component x is expressed by,

/ VI—rZ [z 1/a—1 N\ e —(a/7+1)
p(z) =~ af <5) (1 + = (6)

y a/t+1 a/t+2 ([ K@/B)Y
F( 2 2 ’1’(0¢/T+(x/ﬂ)”“>>’

p(9)

(2.25)

(2.26)

where o F7 (-, -5 -; +) is the Gauss hypergeometric function [Tomoaki et al., 2019].

For k = 0, the circular and linear parts are independent, as was the case for the
WSSVM distribution. Then, the joint distribution simplifies to the product between a
circular uniform distribution for the angle ¢ and a generalized Pareto-type distribution for
the linear variable x with pdf,

1 [\ Mol -\ Ve —(a/7+1)
p(x):ﬁa<6> <1+a(ﬂ> ) . 2.27)

In the limiting case of 7 — 0, the marginal distribution of the linear part = in Equa-
tion (2.26) simplifies to,

m x 1/a—1 e e
aﬂ(ﬁ) exp (= (2/B8)"*) Io(k(x/B)""), (2.28)

which is the same distribution as the marginal of x for the WSSVM distribution in Equa-
tion (2.13), with a reparametrization of «, 3, and &.

The conditional distribution of ¢ given x is listed by Tomoaki et al. [2019], and we only
write the conditional distribution of the magnitude x given the angle ¢. This distribution

p(x) —
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corresponds to a generalized Pareto-type distribution with density,

Mx¢%=(x)uwﬁl_ﬁwm*ﬁ_“)<L+;(x)wa@—w“mq¢—up

—(a/7+1)

B ap B
(2.29)
Conveniently, its cumulative distribution function,

- 1/a —o/T
Fpg(zlg) =1~ (1 + S (;) (1 — K cos(¢ — ,u))) (2.30)

has an inverse on closed form. This gives a simple procedure to generate a sample (X, @)
from the GPTWC distribution, as suggested by Tomoaki et al. [2019]:

1. Generate ® from a wrapped Cauchy distribution with location p and concentration

k/(1+V1—k2).
2. Draw U ~ Uniform[0, 1], and let

1-U)"7/*—1 \* .
8 m) o A7 0,

X = B(_;gﬁilﬁ . ifr=0.

1—k cos(P—p)

Figure 2.5 shows the GPTWC density for some values of («, 7) and with (8, u, k) =
(1,0,0.75). From the displays it is clear that the tails become heavier as 7 increases.
By also varying 3 and &, this distribution is flexible in both the circular and linear part,
and able to fit both distributions that are concentrated in the circular part and distributions
that are more evenly distributed across the circular variable. The parameter p decides
the circular location, allowing also for distributions that are not symmetric about ¢ = 0.
However, unlike the WSSVM distribution, this distribution is not able to model data with
skewness in the circular part. Rather, this distribution is tailored to fit data with heavy tails
in the linear part.

In Figure 2.6 we display samples similarly to what was done for the WSSVM density
with parameters (3, i1, k) = (1,0,0.75) and two different sets of values for (a, 7). In the
left display there is no heavy tailedness, and there are no clear outliers. The right display,
on the other hand, displays several outliers that come as a result of the heavy tails, even
with a moderate value 7 = 0.3. The heavy tails cause some of the magnitudes to be very
large, and to include all samples, the linear scale in this figure is twice as large as it was
for Figure 2.4.

We summarize some of the most important properties for this distribution. For a more
detailed discussion of its characteristics, the reader should consult Tomoaki et al. [2019].
Crucially, as the linear part of the distribution is heavy-tailed, not all linear moments are
defined. The marginal linear moments F/(X?) are only defined for 0 < ¢ < 1/7. This
implies that the expectation of the linear part only exists for 0 < 7 < 1, for which it is
given by,

B(X) = Mﬁ<(j)ar(a/75(z}£)(a+ DN gFl(O‘ et 1;f<a2>. 2.31)
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Figure 2.5: Contour plots of the GPTWC density given in Equation (2.23) for (3, u,k) =
(1,0,0.75) and (a, 7) as indicated.
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Figure 2.6: Samples from the GPTWC density for (53, i1, k) = (1,0,0.75) and (v, 7) as indicated.

20



Observe that this expression is independent of the circular location p. Further, the variance
only exists for 0 < 7 < 1/2. This means that the correlation between angle and magnitude
is only defined for 0 < 7 < 1/2. Then, correlation decreases as « or 7 increases and
increases as k increases. When the correlation does not exist, it is beneficial to consider
the conditional mode and median of the linear part, given the circular part to represent the
relation between the two. The conditional mode is given by,

l—o <1
Mode(X|D = ¢) = B <(1+T)<1—mos<¢—u))> < (2.32)
0, a>1,

and the conditional median by,

T/ _ o
Median(X|® = ¢) = 5(0‘ 2(¢1—u)> . (2.33)

71— Kcos

2.3 Cylindrical Hidden Markov Random Field

We now combine the MRF and cylindrical distributions into a joint model. The Potts
model for the MRF has an interaction parameter p, which is assumed fixed but unknown.
The classes of the MRF, [;, i € {1,...,n}, are assumed hidden, or unknown, and they
determine the parameters for the cylindrical distribution. Hence, this can be seen as a
HMRF with cylindrical distributed observations. As such, we define z = (zq,...,2,),
z; = (x;,®;) as the vector of bivariate observations. Each observation z; is assumed
to be conditionally independent, given the latent spatial class ;. The cylindrical model
parameters, denoted 0y, k € {1,..., K}, are assumed fixed but unknown. If grid point ¢
takes latent class k, or I; = k, the observation z; will have a cylindrical distribution with
parameters 8. In this way, we write the conditional distribution of the observation z;
given the latent class [; as,

po(zilli) H po, (2:)T =P, (2.34)

where @ = (64, ..., 0k) is the vector of K different sets of cylindrical model parameters,
and pg, (z;) is a cylindrical density from either Equation (2.11) or (2.23). The subscript
notation for the parameters 0}, indicates that they are fixed. Because the observations are
assumed conditionally independent, the joint conditional distribution of all observations

is,
H H o, (i) L= (2.35)

i=1k=1
This gives a joint distribution for the observed data points and latent classes of

P6.p(2,1) = pe(z(l)p,(1), (2.36)

where the distribution of the latent classes p,(1) is according to the Potts model with fixed
p, defined in Equation (2.8). We can then marginalize by summing out the hidden spatial
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Figure 2.7: Visualization of the HMRF model. Arrows indicate conditional dependence. Latent
classes are spatially dependent, whereas observations are conditionally independent, given the latent
classes.

classes and achieve the likelihood of the model parameters, given the observed data,

L(8,p|z) = po,(z) = Y _ po,(z1). (2.37)
I'E]L"

The combined cylindrical HMRF model is conceptualized in Figure 2.7. Cylindrical
observations are achieved based on a latent spatial model. Arrows from one variable to
another indicate that the latter is conditionally dependent on the former, and there are no
edges for variables that are conditionally independent. The latent classes in each cell in
turn depend on all their neighbours, due to the Potts model neighbourhood structure. Here,
ny represents the first of the grid dimensions.
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Chapter

Inference

Having presented the models we intend to employ, we now consider ways of doing infer-
ence on the model parameters. First, in Section 3.1 we demonstrate an algorithm to exactly
compute the likelihood of the HMRF model for small grid sizes. Section 3.2 provides two
ways of approximating the likelihood of the HMREF for large grid sizes, which are used
for parameter estimation. We continue by discussing the asymptotic properties of these
estimators, before posing criteria that can be used to do model selection in Section 3.3.
Finally, we present metrics for evaluating probabilistic predictions made by the models in
Section 3.4.

3.1 Exact likelihood

In this section, we provide an algorithm for computing the exact likelihood of the HMRF
model defined in Equation (2.37). First, note that the likelihood can be defined sequentially
by,

n

Po,p(2) = po,p(21) [ [ po.o(2|21:(1-1)), 3.1
t=2
where the notation z,.;_1) represents the vector (z1,...,2;1). To find the likelihood,

we therefore need to compute the sequential probabilities pg ,(z¢|z1.;—1)). However, due
to the computational complexity of the normalizing constant of the Potts model defined in
Equation (2.9), this is not feasible for large spatial grids. Yet, through a restriction on either
the number of rows or columns and a clever indexation on the grid cells, we are able to
compute the normalizing constant exactly for relatively small grid sizes. The prerequisite
for this exact algorithm to be computationally tractable is that one of the grid dimensions
is small, either rows or columns, and the other can be large. The smallest dimension of
the grid is denoted m. Further, the computation time is directly proportional to the largest
spatial dimension. When the number of rows is small, the ordering of the spatial grid is as
indicated in Figure 3.1 to create the vector representing the latent classes 1 = (I1,...,1,)
and the observations z = (z1, ..., Z,).
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1 5 9 13 | 17 | 21

2 6 10 | 14 | 18 | 22

3 7 11|15 |19 | 23

4 8 12 | 16 | 20 | 24

Figure 3.1: Illustration of the indexation of cells on a 4 x 6 grid.

By utilizing this indexation, we are able to extend the classical forward—backward
algorithm from hidden Markov chains [MacDonald and Zucchini, 1997] into a spatial set-
ting [Reeves and Pettitt, 2004]. The forward—backward algorithm was first introduced by
Baum et al. [1970] and computes the posterior marginal probabilities of all latent variables
given the observed data. The algorithm also conveniently computes the full likelihood
of the data after the forward pass. Following the lines of Friel and Rue [2007] we now
describe the extension of the forward—backward algorithm to a spatial grid indexed as in
Figure 3.1. Note that all ensuing probabilities of the latent variables and the observations
are defined with fixed model parameters (0, p) denoted by subscripts as in Equation (3.1).
In this section we drop writing the subscripts to make the derivations easier to follow.

The forward—backward algorithm moves recursively through the observations, first by
a forward pass and then by a backward pass through the observation vector. We initialize
the algorithm by finding the marginal distribution of the first latent variable, given only the
first data observation

p(z1]l) x p(l1)

p(z1) = Cl X p(Z1|ll) X p(ll), (32)

p(l1]z1) =

with p(z1|l;) being a cylindrical density from either Equation (2.11) or (2.23). As no
information about the neighbours is available, p(l1) takes a discrete uniform distribution
over the possible outcomes /; € IL. The normalizing constant for the first latent variable is
calculated as,

Cr = (f plaallh) x pua))_l, 33)

=1

and is actually the inverse of the first term in the sequential likelihood defined in Equa-
tion (3.1), i.e., C7 ' = po ,(21)-

The algorithm then moves forward through the spatial grid. In the Potts model, the
neighbours of grid point ¢ are the points {t —m,t — 1,¢ + 1,¢ + m}. This means that the
latent variable at point ¢ depends on all latent variables from ¢ — m to ¢ — 1. Hence, at
each step t in the forward recursion, the algorithm needs to keep track of the probability of
every outcome of the vector 1;;_y,y.(¢—1) = (lt—m, - - -, 1;—1), explaining the need for one
of the spatial dimensions to be small. The following forward recursion for¢ = 2, ..., nis
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carried out,

(s

K —1
> plzly)p(ii|l 17l/m)p(ll(tm):(t1)|z11(t1))) o G4
=1

=1
p(l(tfm):t|zlzt) = Cep(ze|le)p(Lelle—1, le—m) DLt —m): (. —1) | Z1:(6=1))» (3.5
K
p(l(t—m+1):t|z1:t) - Z p(IZt—'m,):t|Z1:t)7 (36)
o1

plle|z14) = Z Z (et Z1:0)- (3.7)

;=1

—m=

Again, p(z|l;) is a cylindrical density of either of the two forms (2.11) or (2.23). The
distribution of /; conditioned on ;1 and l;_,, is given by the Potts model,

exp {p([(lt =l1) + Il = lt—m))}

p(lelli—1,l—m) = )
ZZ;EL exp [p([(z; =)+ Il = gt_m))]

(3.8)

Observe now that the normalizing constants are actually the sequential conditional
distributions of the observations,

Crt = p(zelz1se-1))- (3.9)

This implies that the full likelihood of the observations, as given by Equation (3.1), is
handily computed after the forward pass as,

L(6,p|z) = pe,,(z H (3.10)

To find estimates for the model parameters, we optimize the log-likelihood, given by

1(0,p|z) = Zlog Cy). (3.11)

This can be carried out by, e.g., the opt im function in R [R Core Team, 2020].

At each step ¢ in the forward recursion, we need to compute the forward probabili-
ties p(L(y—):t|Z1:¢) for all possible outcomes 1(;_,,).¢ € L™+, ie., we need to compute
K™+ probabilities at each iteration. Also, to compute the normalizing constant in Equa-
tion (3.4) we sum m + 1 variables over K outcomes, totalling K™+! summation terms.
Finally, the sum in Equation (3.6) involves K terms and the sum in Equation (3.7) involves
K™ terms. Hence, we get an algorithm for computing the exact likelihood with complex-
ity O((n -m+ 1)K m“), as was reported by Reeves and Pettitt [2004]. Clearly, the
algorithm is unfeasible when either the number of latent classes K or the number of rows
m is large.
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By iterating backwards, we are able to compute the marginal probabilities p(l¢|z) of
each latent variable, given the complete set of observations. These are important for mak-
ing predictions of the true latent classes. The backward pass of the algorithm then consists

of the following operations, iterated backwards fort = n, ..., 2,
p(lt7171t|Z1:t)
li_1,li]z) = ————=> x p(l4|2), 3.12
p( e t| ) p(lt|Z1:t) p( t| ) ( )
K
pli-alz) = plli-y,lj|2), (3.13)
=1

where p(l;—1,1|z1.+) can be found by summing Equation (3.5) over all outcomes of the la-
tent spatial vector 1(;_,y.(1—2) € L™~2, i.e., marginalize out all variables except (I;_1, ;).
Finally, the forward-backward algorithm is very useful in practice. Essentially, the algo-
rithm reuses the same design twice, by first iterating in increasing index order to calculate
the forward probabilities in Equation (3.7), and then iterating by decreasing the index to
calculate the backward probabilities in Equation (3.13).

Conveniently, we can also use the backwards probabilities to draw samples of the latent
classes. First we define the sequential conditional probabilities,

p(lt—la lt|Z)

. 3.14
p(lr—12) G-I

p(le|li—1,2) =

Using these probabilities, the full posterior latent model can be written sequentially as

p([z) = p(h|z) [ [ pilli-1,2). (3.15)
t=2

The sequential structure is utilized to develop an algorithm for drawing a sample of the
latent segmentation 1° from the HMRF:

1. Simulate I§ ~ p(l1|z)
2. Fort =2,...,n, iteratively simulate I§ ~ p(l;|l{_;,z)

The resulting sample 1° is then distributed according to the full posterior model in Equa-
tion (3.15).

Another useful property of the forward—backward algorithm is that the hold-out prob-
abilities are easily defined. These are the probabilities of the latent classes for each grid
point, conditioned on all observations except the observation in that grid point. For grid

point i, we denote by z_; all observations except z;, Or Z_; = (Z1, ..., Zi—1,Zi41s---%Zn)-
The hold-out probabilities p(l;|z_;) are then defined by,
p(li|z)

p(lilz—;) = C; : (3.16)
| Pzl

where C; is a normalizing constant dependent only on the observations z, p(l;|z) are the
backward probabilities defined in Equation (3.13), and p(z;|l;) are the cylindrical dis-
tributions defined in Equation (2.34). The hold-out probabilities are used to define the
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predictive distribution of observing z{, given all the other observations z_;, as

p(zf)z—i) = > p(22|l})p(l}|z—s), (3.17)

Il el

where again p(z¢|l}) is a cylindrical distribution defined in Equation (2.34), and p(l}|z_;)
are the hold-out probabilities from Equation (3.16).

3.2 Composite-likelihood

In the previous section, we developed an algorithm for computing the full likelihood of
the HMRF model defined in Equation (2.37), with complexity O((n — m + 1)K™*1).
With only two latent classes, K = 2, Friel and Rue [2007] report that computation of the
likelihood is feasible for grid sizes up to m = 19. Increasing the number of latent classes
reduces the feasible grid size. With K = 3 and K = 4 latent classes, they report that
the feasible grid size decreases to m = 12 and m = 9, respectively. What is considered
tractable grid sizes have increased slightly since then, but not substantially. In addition, we
are not interested in merely computing the likelihood, we seek to maximize it to estimate
the model parameters. This reduces the feasible grid size for our application significantly.

There exists several approaches towards mitigating the unfeasible computational com-
plexity involved with large spatial grids. Possible solutions include estimations by MCMC
algorithms [Geyer and Thompson, 1995, Gelman and Meng, 1998] or approximation [Rydén
and Titterington, 1998, Austad and Tjelmeland, 2016]. Another possibility is to substitute
the full likelihood with a composite-likelihood. The composite-likelihood, also called
pseudo-likelihood, is formed by multiplying component likelihoods, that correspond to
marginal or conditional likelihoods of small subsets of data. Composite-likelihoods are
used to reduce computational complexity to deal with large datasets or complex models
[Varin and Vidoni, 2005] and have been thoroughly discussed; see, e.g., Besag [1974],
Lindsay [1988], or Cox and Reid [2004]. The composite-likelihood approach may be less
statistically efficient than the full likelihood, but it is much less expensive to calculate
and may even be more robust to model misspecification [Lindsay et al., 2011]. Hence,
the composite-likelihood can pose a valuable trade-off between statistical efficiency and
computational tractability.

3.2.1 Pairwise-likelihood

Initially, we consider the components to be the set of all cliques defined in the Potts model
in Section 2.1, i.e., the set of all pairs of neighbours. Hence, the likelihood reduces
to a pairwise-likelihood [Varin et al., 2011], and we denote this method the pairwise-
likelihood. Recall that this set of cliques is denoted c.. Similarly to the full likelihood in
Equation (2.37), we define the likelihood of each clique ¢ = (¢, ¢3) € ¢ as,

c(aap|zc) pep Zc Z pOp ZCa c (3.18)
12.€lL?
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where z. = (2., , Z., ) is the observed data on the grid points corresponding to clique ¢, and
the sum is over all K? possible outcomes for the clique latent classes 1. = (I, , L., ). Fur-
thermore, the joint distribution of the clique observations z. and the clique latent classes
1. is given as in Equation (2.36) by

P0.p(Ze;1e) = pp(1 HHpek L (3.19)

i€c k=1

Because the cliques are neighbouring pairs and necessarily neighbours in the Potts model,
the distribution of the clique latent classes is,

pp(le) = Cp) texp (pI(le, = le,)), (3.20)

with normalizing constant

Clp) =Y exp(pI(ll, =1.,)). (3.21)

1 eL?

This normalizing constant is fast to evaluate because the sum is only over the outcome of
two points in a pair, as each pair is assumed independent. The composite log-likelihood
function is given as the sum of the log-likelihood of each clique,

c(8,plz,cc) = > log (Le(8, plzc)). (3.22)

cece

Because of the fast computation of each normalizing constant, the composite-likelihood
is also cheap to calculate. This means that the function can be maximized directly by
e.g., the optim function in R. However, as will be investigated and discussed later, the
direct approach suffers from a small radius of convergence. The starting values for the
optimization of the log-likelihood need to be close to the true solution in order for the
optimization procedure to converge to the correct solution. To mitigate this problem we
use the expectation-maximization (EM) algorithm, as was done in [Ranalli et al., 2018].

The EM algorithm presents an alternative way of finding maximum-likelihood estima-
tors of model parameters with incomplete or missing data [Bilmes, 2000]. The algorithm
appears naturally in problems where the data contains missing values. Also, it is useful in
applications where the likelihood function is difficult to maximize analytically, but can be
simplified by introducing additional hidden parameters. Our problem is an example of the
latter, and we therefore exploit the EM algorithm to find the model parameters.

To define the iterations of the EM algorithm, we start by defining the complete-data
composite-likelihood, which is the joint likelihood of the observations and the latent classes,

po.o(z.1) = ] po.p(ze,le), (3.23)
cece

with pg ,(zc, lc) given by Equation (3.19). Then, note that the distribution of the clique
latent classes can be written as,

= I po1e)' %=, (3.24)

1,eL?
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The complete-data composite log-likelihood is then defined by,

clea(0,plz c) = Y (clSa(0) + clSa(p)), (3.25)
cece
with

K
=3 "log (pe, (2:))I(l; = k), (3.26)

i€c k=1
= > log (pp(le)) 11, = L) (3.27)

12.€lL2

The E-step in the algorithm reduces to predicting the latent spatial classes, or rather
the probability of each possible outcome for each clique. At iteration ¢ + 1, we have
given parameter estimates 6, and pt, and we compute the probability 1. for each latent
configuration 1. € 1.2, for each clique ¢ € c. as

Pp, (IC)pétk (Zc)

le = py 5 (le|ze) = , (3.28)
© ARl >v e P (1e)pg,, (2c)
with
pa,, (ze) =[] H pa,, (2:)" = (3.29)
i€c k=1
By marginalizing, we can obtain probabilities [;; = Pa, 5, (li = kl|zc), i € c of each grid

point in the clique belonging to each latent class. The M- step consists of maximizing the
expected value of the complete-data composite log-likelihood in Equation (3.25). Conve-
niently, this is the sum of two components that are independent with respect to the model
parameters. Hence, they can be maximized separately over their respective parameters,
and we define two functions to be maximized

9(01z,cc) = E(clg,(0)) = Y ZZz,k log (pe, (zi)), (3.30)

cEce i€c k=1

h(plz,cc) = E(cl(p) = > > lelog (py(le)). (3.31)

cece 1.€1L?

The parameter estimates are then obtained by 6, = arg max,{g(0|z,c.)} and pr41 =
arg max,{h(p|z, c.)}. We summarize the steps in the following simple algorithm:

1. Initialize values (91, p1) for the model parameters and set iteration counter ¢ = 1.

2. E-step: Given parameter estimates (9t, pt), compute the probabilities 1. for each
latent configuration 1. € L2 and for each clique ¢ € c ¢ by Equation (3.28). Also,
marginalize over each grid point to obtain probabilities lix = pp, ,, (l; = k|zc).

3. M-step: Update parameter estimates based on new latent probabilities by maximiz-
ing Equations (3.30) and (3.31).
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4. Increase iteration counter, ¢ = t+ 1 and repeat Steps 2 and 3 until some convergence
criterion is satisfied.

To maximize Equation (3.30), we make use of a handy reparametrization. By defining
the parameter vectors

0 = 01k, - .-, 05) = (log(ak),log(Bk), tan(ux/2),log(kk), tanh ™" (Ax)), (3.32)

Bk = (elk, s ;95/9) = (log(ak)a 10g(6k)7 tan(/’[/k/2)a IOg(Tk;), log(l fk[{k ))7 (3.33)

in the case of WSSVM and GPTWC, respectively, we can optimize without any con-
straints because then 8, € R®. The optimization can then be carried out by quasi-Newton
methods, and we have used the BEGS method from the function optimin R.

For the parameter p, we need to impose a constraint. As stated in Section 2.1, there
is a phase transition above some critical value p;, and because we want mixing of the
latent classes rather than all equal, we impose the constraint p € (0, peit). We carry out
the optimization through the method L-BFGS-B in optim, which allows for box-like
constraints.

3.2.2 Block-likelihood

As we have discussed, calculating the exact likelihood is only feasible when either the
number of rows or columns is small. Still, this method can be used to approximate the
likelihood for grids where both spatial dimensions are large. This is done by separating
the spatial grid into blocks. Crucially, these blocks need to have either a small number of
rows or a small number of columns. Figure 3.2 represents a toy example of this separation.
A 4 x 4 grid is separated into four blocks of size 1 x 4. Of course, the separation can also
be done vertically to create blocks of size 4 x 1.

Because these blocks have either few rows or columns, the forward—backward algo-
rithm can be used to calculate the exact likelihood of each block. The blocks can then be
used as components to form a composite-likelihood as an approximation to the full likeli-
hood, which we call the block-likelihood. The idea of splitting the spatial grid into smaller
blocks that can be evaluated separately was also studied by Eidsvik et al. [2014]. In the
same way as the pairwise-likelihood, the block log-likelihood is computed by summing
the exact log-likelihoods of all blocks. Each block b has corresponding observations zy,
and exact log-likelihood given by Equation (3.11). The resulting block log-likelihood is
on the form

bl(ea plZ, bL) = Z 1(97 p|zb)7 (3.34)

beEb,

where b represents the collection of all blocks. This block log-likelihood can be used as
a substitute for the full log-likelihood and optimized by, e.g., the opt im function in R. In
the implementation, we use the same reparametrization of the parameters for the cylindri-
cal distribution given in Equations (3.32) and (3.33), but we do not put a constraint on the
spatial dependence parameter p. In this way, we get an unconstrained optimization prob-
lem and we use the BEGS from the opt im function in R. In theory, the block-likelihood
is more statistically efficient than the pairwise-likelihood, because it accounts for depen-
dencies between entire blocks rather than dependence only between pairs.
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Figure 3.2: Toy example of the separation into blocks on a 4 x 4 grid. Dashed lines represents grid
cells in the same block.

The pairwise-likelihood in Section 3.2.1 conveniently reduces to an EM algorithm that
is simple to implement and relatively computationally efficient. This reduction is not as
simple for the block-likelihood. The latent configuration probabilities can be computed in
the E-step by the spatial extension of the forward-backward algorithm from Section 3.1,
but the M-step is problematic. The inner sum in Equation (3.31) is over all clique con-
figurations, 1, € L2, i.e., a sum over K2 components. For an EM approach to the block-
likelihood, this sum is instead over all possible configurations of the block, 1, € L™,
i.e., complexity K™, where n is the number of grid cells in the block. Clearly, this is
intractable and an approximation would be needed. A natural solution is, for example,
to consider only pairs in the block. This, however, leads us back to the original pairwise
EM algorithm in the M-step, with simply a new way of computing the latent configuration
probabilities in the E-step. Hence, not much is gained in comparison with the pairwise
EM algorithm and we only consider direct maximization of the block-likelihood.

3.3 Asymptotic theory and derived quantities

For standard maximum-likelihood problems, the maximum-likelihood estimator 6 can be
found by solving the score function, which is the gradient of the log-likelihood, /(8|z),

s(0)z) = Vol(0]2). (3.35)

Under some regularity conditions [Gurland, 1954], the maximum-likelihood estimator is
asymptotically normally distributed, or

(0 —6) % N,(0,1(0)), (3.36)

where g is the number of model parameters, or the length of the vector 6, and 1(6) is the
expected Fisher information matrix, given by

1(6) = Eg( - v?,z(9|z)). (3.37)

Here, V3 is the Hessian with respect to the model parameters 6. For more on the asymp-
totic properties of standard maximum-likelihood estimators, see, e.g., Millar [2011].
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For composite-likelihoods, each component is multiplied, even though they are not
independent. This means that composite-likelihoods can be seen as likelihoods from a
misspecified model that assumes independence between the components. As such, the
assumptions of regular maximum-likelihood estimators do no necessarily hold. Conse-
quently, we want to describe the asymptotic properties for these likelihoods and derive
quantities that can be used for model selection. As a consequence of the assumed inde-
pendence between each component, the second Bartlett identity [Bartlett, 1953],

1(0) = Eg( - vgz(e|z)) = Varg (vezw\z)), (3.38)

does not hold for composite-likelihoods [Varin et al., 2011]. Hence, denoting the score of
the composite-likelihood by s.;(8|z) = Vgcl(0|z), the sensitivity matrix,

H(9) = Eg( - Vgscl(0|z)), (3.39)

and the variability matrix,
J(8) = Varo (s.1(6]2) ). (3.40)

are not equal. Then, the Fisher information matrix is substituted by the Godambe infor-
mation matrix [Godambe, 1960], given by

G(6)=H(0)J(6) *H(H). (3.41)

This matrix is commonly named the sandwich matrix due to its sandwich-like form, where
H(0) is multiplied on both sides of J(@)~!. It is now evident that if the composite-
likelihood was a true likelihood and not a misspecification, we would have G(0) =
H(0) = I(0). Finally, we arrive at the result that, under regularity conditions, the
maximum-composite-likelihood estimator is asympotically normally distributed,

(0 — 0) 5 N,(0,G(6)™1). (3.42)

One key assumption in the model we have developed is that the number of latent
classes K is known. Hence, we need a way to determine K, or in other words a way
to do model selection. For regular maximum-likelihood a common way is to consider the
Akaike information Criterion (AIC), introduced by Akaike [1973], which is an estimator
for the quality of a model, relative to each of the other models. The AIC is given by,

AIC = —21(0)|2) + 2d,, (3.43)

where d is the number of estimated parameters. We consider the counterpart to AIC for
composite-likelihoods, introduced by Varin and Vidoni [2005]. They developed a selection
criteria that maximizes prediction power by minimizing the Kullback—Leibler distance to
a future random variable. AIC and other information criteria combine goodness of fit (the
log-likelihood) and a penalty term for the model complexity. For composite-likelihoods,
the AIC is given by,

C-AIC = —2cl(0]z) + 24z, (3.44)
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where d* is termed the effective degrees of freedom and given by d* = tr(.J(6)H (8)~1).
When the composite-likelihood is an ordinary likelihood, the effective degrees of freedom
are equal to the number of parameters in the model, and the C-AIC coincides with the
regular AIC.

Notice that .J(8) and H(6) are estimators for .J(8) and H (), respectively, and these
estimators need to be efficient. We refer to Varin and Vidoni [2005] for more elaborate
details on how to define efficient estimators, but in this thesis we use the naive observed
score and observed information matrix to calculate the effective degrees of freedom, i.e.,
we let J(8) = s¢(8.1|2)801(01|2)T and H(8) = —V3cl(6,|z). The score and Hessian
of the composite log-likelihood can be computed by, e.g., the R package numDeriv.

The AIC is designed to select models with the best prediction power. Hence, it penal-
izes complex models mildly and as a result models that over-fit the data may be preferred.
This thesis revolves around finding states of the ocean that are able to compactly explain
ocean dynamics. Predictive power is therefore not critical and we rather want a model
that parsimoniously can explain the complex surface currents. Thus, we also consider the
composite-likelihood equivalent of the Bayesian information criterion (BIC) [Schwarz,
1978], which was proposed by Gao and Song [2010]. The composite-likelihood BIC is
given by

C-BIC = —2¢l(0|z) + log(n)d}, (3.45)

where log(+) is the natural logarithm. Compared to AIC, BIC penalizes complex models
more heavily and generally leads to selection of less complex models. In contrast to AIC,
BIC has been shown to be a consistent model selection criterion [Gao and Song, 2010].

Unfortunately, our naive estimator of the variability matrix J(0) vanishes, i.e., it be-
comes singular, and the Godambe matrix becomes numerically unstable. Hence, we need a
different procedure to estimate uncertainty in the maximum-composite-likelihood parame-
ter estimates. A parametric bootstrap procedure is used in this thesis, with again Varin and
Vidoni [2005] listing other possible approaches. The parametric bootstrap is based on the
assumption that the original data set is a realization of a random sample from a parametric
model [Givens and Hoeting, 2013], in our case the cylindrical HMRF. Random samples
are then drawn from this model using the parameters estimated by maximum-composite-
likelihood. Then, for each of the random samples we again use maximum-composite-
likelihood to estimate the model parameters. These new maximum-composite-likelihood
estimates are then used to assess the variability in the original estimate. The parametric
bootstrap is a powerful tool when the parametric model is a good representation of reality,
and allows for inference in intractable situations like this.

3.4 Performance measures

A key purpose of our models is to make predictions or forecasts for future observations
and to assess the uncertainty in these forecasts. Due to the uncertainty element, the pre-
dictions take the form of probability distributions over possible outcomes. The goal is to
maximize the sharpness of this predictive distribution, while maintaining unbiased predic-
tions. Sharpness is a property of probabilistic forecasts and represents the concentration
of the predictive distribution. Sharper predictive distributions are less uncertain, giving
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better predictions. In this section, we develop scoring rules for predictions of cylindrical
data. These rules are used to assess the quality of probabilistic forecasts by assigning a nu-
merical score based on the forecast distribution and the observed value. The scoring rules
are negatively oriented penalties, implying that the best forecast is the one minimizing the
scoring rule. Scoring rules are discussed in more detail in, e.g., Gneiting et al. [2008].

In this thesis, we consider the continuous ranked probability score (CRPS), which is a
scoring rule for univariate probabilistic forecasts. It is defined as,

o0

CRPS(P, 2°) = / (F(y) — I(y > 2%))%dy, (3.46)

where P is the predictive probability distribution, z is the observed value, and F' is the
cumulative distribution function associated with P. Gneiting and Raftery [2007] showed
that the CRPS can be equivalently defined by

CRPS(P,2°) = E(|X — 2°|) — %E(\X ~- X)), (3.47)

where X and X' are independent random variables with distribution P.
The CRPS can be extended to multivariate linear variables by the energy score (ES),
which is defined by,

1
ES(P,x%) = E(|IX —x°[|) = 5 E(IX - X'|), (3.48)

where ||-|| denotes the Euclidean norm. However, the circular part in the cylindrical data
has to be handled differently. Grimit et al. [2006] proposed a circular analogue to the linear
CRPS by considering the angular distance instead of absolute difference. The angular
distance between the two angles ¢ and ¢’ is defined by

— @', if [ — ¢'| <,
a(¢,¢/) — |¢) ¢ | , ] |¢ ¢ ‘ , (3.49)
2t — o — ¢'|, ifw < |p—¢| <2m.
This is used to define the circular CRPS,
1
CRPSii. (P, ¢°) = E(a((I), gb")) — 5]&?(@({)7 <I>’)), (3.50)

where again ® and ®’ are independent random variables with distribution P and ¢° is the
observed angle.

As scoring rule for the cylindrical data, we consider the linear and circular part sepa-
rately and deploy the appropriate version of CRPS separately. Another possible approach
is to transform the cylindrical data to Cartesian coordinates. Then, the observations would
be bivariate linear and the energy score would be an appropriate scoring rule.
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Chapter

Simulated data

In this chapter, we demonstrate the proposed methods on simulated data sets. Section 4.1
begins by describing how the experiments are set up. In Section 4.2, we compare perfor-
mance of the methods with regard to convergence radius of the optimization, parameter
estimation accuracy, and run time. In Section 4.3, we use the favoured method to investi-
gate bias and variance in the parameter estimation with both cylindrical densities.

4.1 Experimental setup

In this section we describe how the succeeding simulation experiments are set up. We first
present the parameter sets that are used to simulate data from the WSSVM density and
describe how data are simulated. We then display one simulated sample, before doing the
same for the GPTWC density.

WSSVM: To study the methods for parameter estimation with the WSSVM density, we
consider two different cases of parameter sets and two values for the spatial dependence
parameter. In both cases we simulate data from a 24 x 24 grid with K = 3 latent classes.
The two cases have varying degree of separation between the true model parameters cor-
responding to each latent class. In the case of low separation, finding the true parameters
and latent classes is difficult because the cylindrical densities corresponding to each latent
class are close to each other. Hence, the method needs to be statistically robust to find the
correct parameters. For larger separation, it is easier to determine the latent class because
the cylindrical densities are further apart. As a result, the demand for robustness decreases.

To simulate data, we exploit the conditional structure of the model. First, we generate
a random realization of the latent field by the Swendsen—Wang algorithm [Swendsen and
Wang, 1987] with the true value for the spatial dependence parameter p. Then, given this
latent field, observations z; = (z;, ¢;) are generated by the WSSVM distribution from
Section 2.2.1 according to the proposed algorithm, with model parameters determined by
the latent class. Table 4.1 lists the true cylindrical model parameters for the two cases of the
WSSVM density. Contour plots of the corresponding cylindrical densities are displayed
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Table 4.1: True model parameters for the two cases in consideration with the WSSVM density.

Case 1: Low separation Case 2: High separation
a1:2 a2:2 a3:2 CZ1:3 a2:5 a3:1
Bi=1 p[a=1 B3=06 || =1 B2=5 B3 =0.8
pr=0 p2=0 pus =0 p1=0 p2 =0 pus =0
R1 = 0 R2 = 0 R3 = 1.5 R1 = 0.21 R2 = 0.21 R3 = 1.7
AM=1 JX=-1 X=0 A1 =08 A2 =0 A3 =—0.8

So = So (ML 7 So
¢ %\% ? @) 7
5 T P 3 T T B T 7 3 7 3 5 T 7 3 7 T
X X X
(a) Case 1, latent class 1 (b) Case 1, latent class 2 (c) Case 1, latent class 3
oo <(‘§>> o oo =
? //A\\ ? 7
0 1 2 X 3 a 5 0 1 2 X 3 4 5 0 1 2 X 3 a 5
(d) Case 2, latent class 1 (e) Case 2, latent class 2 (f) Case 2, latent class 3

Figure 4.1: Contour plots of the true sample distributions for each of the two sets of cylindrical
parameters with the WSSVM density.

in Figure 4.1. Observe the difference in separation between the two cases. In Case 1 with
low separation (top), the cylindrical densities overlap to a greater extent than for Case 2
with high separation (bottom).

One random sample of the data is displayed in Figure 4.2. Here, we display both the
true latent classes for both values of the spatial dependence parameter and the observed
cylindrical data for both sets of parameters. In the display of the cylindrical data, the latent
class is indicated by the colour of the points. From the displays of the true latent fields at
the top, we observe that the right display, with p = 0.8, has larger patches of equal classes
than the left display, with p = 0.5. Greater spatial dependence implies that the neighbours
are more likely to take the same latent class. For the cylindrical observations at the bottom
we see that the observations from each class are less separated in the display to the left.
Consequently, the three cylindrical densities are harder to distinguish, and the parameters
more demanding to estimate.

In Section 4.2, this setup is used to compare the pairwise-likelihood method from
Section 3.2.1 and the block-likelihood method from Section 3.2.2. We also apply the
same setup in Section 4.3.1 to investigate how the parameters of the WSSVM density be-
have. For the pairwise-likelihood, we consider both direct maximization of the composite-
likelihood function in Equation (3.22) and the EM algorithm. Direct maximization can
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Figure 4.2: One random realization of the latent classes (top) and observations (bottom) for the
cases in consideration with the WSSVM density.

be carried out by, for example, the BFGS method from the opt im function in R. For the
block-likelihood approach, we split the grid into all possible blocks of size m x 24 hor-
izontally and 24 x m vertically. This means that, e.g., for m = 2 we have in total 23
vertical and 23 horizontal overlapping blocks. For m = 1, we get 24 horizontal and 24
vertical blocks of size 1 x 24. The block log-likelihood is then computed based on this
separation. The two methods are compared regarding three critical issues: convergence
radius, parameter estimation accuracy, and run time.

GPTWC: For the GPTWC density, we again construct two cases for the cylindrical
parameter sets and consider the same two values for the spatial dependence parameter.
Data are simulated on a 24 x 24 grid with K = 3 latent classes. The two cases are
constructed with greater and lesser extent of separation between the densities linked to the
latent classes. Again, Case 1 has low separation, implying that the true parameters and also
the true latent classes are more difficult to find. Table 4.2 lists the true model parameters
for the two cases. Contour plots of the resulting cylindrical densities are displayed in
Figure 4.3. Again, we clearly observe that there is more overlap between the densities
with low separation in Case 1.

To generate data, we apply the same algorithm as for the data generation with the
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Table 4.2: True model parameters for the two cases in consideration with the GPTWC density.

Case 1: Low separation Case 2: High separation
a1 =025 =025 a3=05| a1 =025 @ =025 a3=0.25
B1=1 B2 =1 B3 = 0.5 B1=1 B2=3 B3 =0.5
pi=—% p2=73 pus =0 pr=0 p2 =0 pus =0
7‘1:0 TQZO T3:0.8 7'1:0 TQZO T3:0
K1 = 0.7 R2 = 0.7 R3 = 0.8 K1 = 0.6 R2 = 0.6 R3 = 0.2

@/ - SZD @/

d

(a) Case 1, latent class 1

i 5 [}

L
I

(d) Case 2, latent class 1 (e) Case 2, latent class 2 (f) Case 2, latent class 3

Figure 4.3: Contours of the true sample distributions for each of the two cases with GPTWC density.

WSSVM density, but the cylindrical observations are instead simulated from the proce-
dure for the GPTWC density presented in Section 2.2.2. One random realization of the
observations is displayed for both cases in Figure 4.4. The colour of the dots indicate
the latent class. The latent fields are similar to the ones presented in Figure 4.2 and are
hence not displayed. Again, notice that the observations from each latent class are more
separated for Case 2 in the right display than for Case 1 in the display to the left.

4.2 Model comparison

Here, we compare the methods presented in the previous chapter by applying them to
simulated data. We investigate convergence radius, parameter estimation accuracy and run
time. This is only reported for the WSSVM density, but similar results also apply to the
GPTWC density. When comparing models, it is advantageous to use simulated instead
of real data. This is because the models can be judged on how well they estimate the
known truth. Also, simulated data are easily controllable. This allows for the design of
experiments to test specific cases or highlight particular properties of the models.
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Figure 4.4: One random sample of the observations for the two cases in consideration with the
GPTWC density.

4.2.1 Convergence radius

To compare convergence radius of the optimization procedures, we consider three meth-
ods, the EM approach to the pairwise-likelihood, the direct pairwise-likelihood, and the
block-likelihood with m = 1. We draw 50 data samples for both cases and both values
of the spatial dependence parameter. Thus, we get 200 data samples in total, 50 for each
combination of cylindrical parameter set and spatial dependence parameter. For each data
sample, we then use all three methods to estimate the parameters, using the same starting
point for all three methods. The starting points of the optimization are chosen randomly
some distance away from the true optimum, so the method needs to be robust to find the
correct solution. In this way, less robust methods will converge to local optimums that are
not the true solution. Finally, we count the number of times each method converges to the
true parameter values.

To decide if the optimization has converged to a local optimum or the true solution, we
implement the following strategy. For each starting point we compute the RMSE versus
the true parameters. If @ are the true parameters and 8° are the starting values, the starting
point RMSE is given by

“.1)

where ¢ is the length of the parameter vector, i.e., the number of parameters. Similarly, we
compute the RMSE of the parameter estimates, 8, versus the true parameters as,

4.2)

Then, we say that the optimization converged to the true solution if the estimated param-
eters are closer to the true solution than the starting values, or RMSE < RMSE". On the

other hand, if RMSE > RMSE", the algorithm has converged to a local optimum that is
further away from the true solution than the starting values.
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Table 4.3: Number of times each method converged to the true solution.

Case 1 Case 2
Method p=05 p=038 p=05 p=028
EM pairwise 45 38 40 35
Direct pairwise 20 17 16 15
Block, m =1 17 20 17 17

Table 4.4: Average computation time of each method in minutes.

Case 1 Case 2
Method p=05 p=028 p=05 p=038
EM pairwise 547 5.22 4.31 5.25
Direct pairwise 4.08 3.92 3.30 3.10
Block, m =1 3.12 2.89 2.37 2.34

Convergence results: In Table 4.3, we display the number of times each method con-
verged to the true solution from the 50 data samples for each case. In total, the EM algo-
rithm converged to the true solution for 158 of the 200 data samples, the direct parwise
converged 69 times, and the block-likelihood converged 71 out of a possible 200 times.
This clearly shows that the EM algorithm has a larger convergence radius than the two
direct optimization strategies. Moreover, these results indicate that the convergence radius
of the two direct methods are comparable. The block-likelihood method comprises less
approximations and should in theory be more statistically robust. However, the effect is
limited in practice.

Run time: Table 4.4 displays the average run time in minutes for each method in all
four cases using an Intel Core m3 processor (0.9 GHz). As stopping criterion for the
optimization, we use a relative tolerance of T' = 1075, This means that when the relative
increase in pairwise or block log-likelihood is less than 10>, the optimization procedure
is stopped. The EM algorithm has a large area of convergence, but it is computationally
slow. Consequently, the direct pairwise approach was designed to accelerate and reduce
run time of the EM algorithm. The results show that direct pairwise optimization reduces
the run time of the EM algorithm by approximately 30%, which is also what Ranalli et al.
[2018] reported. However, this comes at the cost of a smaller convergence radius. The
block-likelihood further reduces the computational time by 25% compared to the direct
pairwise-likelihood. Each component of the block-likelihood takes longer to compute
than the components of the pairwise-likelihood. However, the pairwise-likelihood is a
summation over all pairs, and because there are so many pairs, it is slower than the block-
likelihood. Hence, if the starting point is close to the true solution so that convergence is
guaranteed, the block-likelihood is favoured.

By increasing the number of rows in each block, we expect to get a method that is more

40



exact and hence more robust. Although we did not consider m values larger than 1 in this
test, tests of smaller sample size indicate that the convergence radius does not increase
significantly by increasing m. Hence, the added computational complexity of increased m
does not pay off in a larger convergence radius.

Hybrid algorithm: As we have seen, both the direct pairwise-likelihood and the block-
likelihood are susceptible to two possible issues, namely only converging to local maxi-
mums and sensitivity to initial parameters. Hence, when considering real data in the next
chapter, we develop a hybrid algorithm that follows the short-run strategy of Ranalli et al.
[2018] to prevent converging to local maximums. The strategy revolves around running
the EM-algorithm for 50 random starting values, stopping before full convergence, i.e.,
when the relative increase in composite log-likelihood is less than some moderate toler-
ance Tipor. In our case we use Typor = 1072, Of all the 50 resulting parameter estimates,
we choose the one maximizing the composite-likelihood as starting point for the next part
of the algorithm, which is to use a direct likelihood maximization to speed up conver-
gence. As we have seen, direct likelihood maximization requires that the starting point
is sufficiently close to the maximum, which is ensured by the 50 random starting points
scheme. Direct optimization is then run until full convergence, with convergence toler-
ance Tione = 107°. Hence, we get a hybrid algorithm that combines the large area of
convergence for the EM algorithm with the computational efficiency of the direct likeli-
hood methods.

4.2.2 Parameter estimation accuracy

In this section, we assume that the starting point is close to the true solution and that
direct optimization is guaranteed to converge to the true solution. We then investigate if
the pairwise or the block-likelihood yield the most accurate parameter estimates and again
compare their computational efficiency. This is done to decide which of the two methods
should be used for the second part of the hybrid algorithm. Since convergence is ensured
for the second part of the hybrid algorithm, we prefer methods that estimate the parameters
accurately while also maintaining a low run time.

As direct likelihood methods, we consider again the direct pairwise-likelihood and
block-likelihood methods, but this time we also include m = 2. To compare the per-
formance of the methods, we consider the RMSE of the parameter estimates as in Equa-
tion (4.2) and average this over the random draws. We draw 50 replicates for both cases
and both values of the spatial dependence parameter. We set the true parameters as initial
values for the optimization procedure to ensure and speed up the convergence.

Run time: The average run times are shown in Table 4.5. Observe that these run times
are much shorter than for the convergence radius test in Table 4.4. This is because the
starting point is much closer to the optimum in this test, leading to faster convergence.
On average the block-likelihood method with m = 1 leads to roughly 30% reduction in
computational time compared to the pairwise-likelihood, which is about the same as in the
test for convergence radius. Also, m = 2 is 5.5 times slower than m = 1, showcasing the
exponential growth in computational complexity as m increases.
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Table 4.5: Average computation time of each method in minutes.

Case 1 Case 2
Method p=05 p=038 p=05 p=028
Direct pairwise 1.79 1.89 2.32 2.00
Block, m =1 1.22 1.34 1.44 1.42
Block, m = 2 6.50 8.70 7.83 6.78

Table 4.6: Average RMSE of parameter estimates.

Case 1 Case 2
Method p=05 p=028 p=05 p=028
Direct pairwise 0.200 0.203 0.194 0.199
Block, m =1 0.182 0.165 0.190 0.194
Block, m = 2 0.184 0.163 0.188 0.188

Accuracy: In Table 4.6, we list the average RMSE of the parameter estimates in all four
cases for all three methods. Table 4.7 lists the average proportion of correctly predicted
latent classes for each method and each case with a maximum probability prediction cri-
terion. This means that for each grid point we predict the latent class that maximizes the
marginal probability, given all data, defined in Equation (3.13).

From the results, we see that the block-likelihood approach outperforms the direct
pairwise-likelihood, although to a limited extent, in both estimating the parameters and
predicting the latent classes. Moreover, m = 1 has a lower average run time than the direct
pairwise-likelihood. As we would expect, m = 2 performs better than m = 1. However,
the improvement is marginal and factoring in run time, we favour m = 1. Again, tests of
smaller sample size for m = 3 and m = 4 support the claim that increasing the number
of rows only slightly improves performance, with a significant increase in run time. As a
result, we use the block-likelihood with m = 1 when estimating parameters going forward.

As expected, greater separation between the densities results in a larger proportion of
correctly predicted latent classes. That is, strong separation makes for easier prediction
of the latent class. Likewise, prediction of the latent classes improves for larger values of
the spatial dependence parameter p. For larger values of p, the dependence between grid

Table 4.7: Average proportion of correctly predicted latent classes.

Case 1 Case 2
Method p=05 p=038 p=05 p=038
Direct pairwise ~ 73.9%  76.0% 90.6%  91.7%
Block, m =1 75.4% 78.8% 91.5% 93.2%
Block, m = 2 76.8% 78.1% 92.3% 93.2%
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points is higher, implying that the prediction of the latent class of each grid point is more
dependent on the observations in neighbouring grid points. As a result, each latent class
prediction gets more support from neighbouring observations and accuracy improves.

Interestingly, the prediction of the latent classes improves with stronger separation, but
the same can not be said for the RMSE of parameter estimates. The pairwise-likelihood
exhibits lower RMSE for Case 2, but for the block-likelihood, the RMSE is lower for
Case 1. Hence, larger separation does not necessarily imply more accurate estimates of
each individual parameter. The accuracy of parameter estimates depends on both the bias
and the variability in these estimates. This is investigated in the next section.

4.3 Behaviour of parameter estimates

In this section, we investigate the behaviour of the estimates of each individual parameter.
This is done for both the WSSVM density and the GPTWC density. First, we study bias
and variance of all parameters, before checking if the normality assumption of maximum-
likelihood estimators holds.

4.3.1 WSSVM

To examine the properties of the parameter estimates with the WSSVM density, we con-
sider the two cases of parameter sets from Table 4.1 and the two values for the spatial
dependency parameter p presented in Section 4.1. For each of the 4 cases, we draw 200 re-
alizations of the latent field. For each latent field, we draw observations from the WSSVM
density, resulting in 200 sets of observations for each case. As discussed in the previous
sections, the block-likelihood method with m = 1 is favoured, and we use this method to
estimate parameters for each set of observations. The true parameters are used as initial
values to speed up convergence and prevent convergence to local maximums.

Bias: In Figure 4.5, we display box plots of the parameter estimates for all four cases in
consideration. The density class for each parameter is indicated by the colour. As there
is only one spatial interaction parameter p, this has a grey colour and class "NA”. The
true parameter values are indicated by crosses. From the display, we see that overall all
parameters look symmetric and exhibit little or no bias. Only the parameters x and A
are asymmetric. Recall from Section 2.2.1 that the boundaries for these parameters are
k > 0and A € [—1,1]. When the true value is at or close to these limits, the estimates
naturally get asymmetric. Further, there is a clear bias for p = 0.8, but not for p = 0.5.
For p = 0.8 the average of all 200 estimates is roughly 1 in both cases, close to the critical
value perir = 1.005. With p = 0.5, the averages are both close to 0.5. This clearly shows
that there is a bias in the parameter p for larger values.

We compare these results to a similar experiment carried out by Ranalli et al. [2018].
They used the direct pairwise-likelihood method to find parameter estimates. Also, they
only tested for low values of the spatial dependence parameter, p € {0,0.34,0.5}. For
these values they found little bias. Similarly to our findings, they report on asymmetry in
A and x. Contrary to our results of little or no bias in all WSSVM parameters, they find
that the bias of x and A is typically larger than the other estimates. In the paper where
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Figure 4.5: Box plots of parameter estimates for Case 1 (top) and Case 2 (bottom) of the WSSVM
density for p = 0.5 (left) and p = 0.8 (right). Parameter classes are indicated by the colour. The
crosses indicate the true parameter values.

they proposed the WSSVM density, Abe and Ley [2017] report no problems in finding
maximum-likelihood estimates with independently simulated data from a single WSSVM
density. These results are more in line with our findings.

Variance: To better highlight and ease the comparison of variability in parameter esti-
mates, we plot the empirical variance of all 200 parameter estimates for all four cases in
Figure 4.6. The variability in parameter estimates are in this case a proxy on performance
of the algorithm. Because all parameter estimates are unbiased (except for p = 0.8),
small variability means that the algorithm finds the true value consistently. On the other
hand, large variability implies that the parameter estimates deviate from the true values
to a greater extent, although their averages coincide with the truth. This means that the
parameters with large variability are harder to estimate.

Ranalli et al. [2018] claim that weakly separated classes lead to larger variability in
parameter estimates. Judging from Figure 4.6, we find no evidence for this claim, and we
even observe much higher variance for some parameters in the case of large separation
between classes. Our theory is that the variability is instead strongly linked to the prop-
erties of each class density. When densities are constructed in a way such that changing
a parameter value does not alter the density much, the variance of the estimate for that
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Figure 4.6: Empirical variance in parameter estimates for the WSSVM density for the two cases
and two values of the spatial dependence parameter p.

parameter becomes large. As an example, this is the case for po in Case 2 and to a lesser
extent a in Case 2 and A3 in Case 1. Density class 2 for Case 2 is approximately uniform
in the circular component because of Ao = 0 and ko being low. Because o determines
the circular location of this approximately circular uniform distribution, the density does
not change much when g5 varies. Hence, po gets a large variability in Case 2. The same
argument can be made for both o in Case 2 and A3 in Case 1, small increments to these
parameters have little effect on the corresponding densities.

Another interesting feature observed from the variance display is that a low value of
p yields considerably larger variance in pq and o for Case 1 and uo for Case 2. The
rationale is not obvious and calls for a thorough explanation. If we consider the class 1
and 2 densities of Case 1 displayed in Figures 4.1a and 4.1b, and also the corresponding
data sample in Figure 4.2c, we see that the combination of these two densities are almost
uniform in the circular part. Hence, if we disregard the latent classes, or assume all data
points to be independent, we are able to fit the data almost equally well by perturbing both
densities in the circular part, i.e., vary both p; and po simultaneously. Crucially, to keep
with the uniform distribution, ;; and ps need to be approximately equal. This results in
the optimization algorithm estimating values for y1 and po away from 0, and the effect is
more prevalent for smaller values of p.

In Figure 4.7, we display all estimates of u; versus po for Case 1 for three different
values of p. We observe that the estimates are heavily correlated. Moreover, there is a
clear trend that lower values of p lead to larger variation in both parameter estimates and
also a larger correlation between the two parameters. This supports the claim that p
and po need to be approximately equal to fit the data correctly. Computing the empirical
correlation between estimates of 1 and po gives a correlation of 0.95 for p = 0.2, 0.86
for p = 0.5 and 0.58 for p = 0.8. The correlation is clearly larger for smaller values of p.

Now, to explain why this is the case, we restate the fact that larger values of p imply
larger spatial dependency and a greater probability that neighbouring points take the same
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Figure 4.7: Parameter estimates for p; (z-axis) and pe (y-axis) for Case 1 for different values of
the spatial dependence parameter p.

latent class. Hence, we get better predictions of the latent classes, leading to more infor-
mation about which observations belong to which class density. Then, better segmentation
of the approximately uniformly circular distributed observations into their correct latent
classes makes for better estimations of the circular location parameters 11 and po.

The same line of reasoning also applies to w0 in Case 2. Better predictions of the latent
classes makes for better estimates of the parameters. In this case, the class 2 density in
Case 2 is almost uniform in the circular part, making po very sensitive to the segmentation
of the observations. This is why the variability increases when p decreases. For all other
parameters, the variance is approximately equal for the two values of p. As a result, these
parameters are not as sensitive to changes in the observations or the predicted segmentation
and p does not affect the estimates to the same degree.

As previously stated, there was no evidence of bias for p = 0.5, but p = 0.8 gave a
bias towards larger values. Therefore, we also check for bias with smaller values for p.
In Figure 4.8, we display a box plot of the parameter estimates for Case 1 with p = 0.2.
These estimates were also used to support the claim for increasing variation in p1 and o
for lower values of p. Apart from the increased variability in pq and po, there is not much
difference between the parameter estimates for different values of p, implying that p does
not affect the other parameters to the same extent.

For p = 0.2, we observe no bias in the spatial dependence parameter. We have also
run the same experiment with p = 0.95 and observed a mean of 2.14 and an empirical
variance of 1.58. The critical parameter value for K = 3 is p¢it = 1.005, meaning that the
model severly overestimates p, even beyond the critical parameter value. Clearly, the bias
in p becomes larger as it approaches the critical value p;; and the variance also increases.
It is hard to tell why this bias occurs and we see no obvious explanation. Hence, care needs
to be taken when we move to real data.
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Parameter classes are indicated by the colour. The crosses indicate the true parameter values.

Asymptotic normality: In Section 3.3, we stated that standard maximum-likelihood es-
timators are asymptotically normally distributed with variance as the inverse of the ex-
pected Fisher information matrix. We also stated that maximum-composite-likelihood es-
timators are asymptotically normal with variance as the inverse of the Godambe sandwich
matrix. Thus, we check if this statement is true for our problem, i.e., check the computed
parameter estimates for normality.

To check the normality assumption, we make Q-Q plots of the parameter estimates.
Figure 4.9 displays Q-Q plots of all parameter estimates for Case 1 and Case 2 with p =
0.5. The results are similar for p = 0.2 and p = 0.8, so these are not included. Note
that the Q-Q plots display the transformed parameters 6 that we optimized for, and not
the original parameters. Recalling Equation (3.32), this means that, e.g., the estimates for
log(«) are displayed instead of the estimates for . The display shows that, with some
exceptions, most parameters are approximately normally distributed. The major outliers
are the circular skewness parameter A and the circular-linear dependence parameter k.
Critically, when these parameters are at or close to their boundaries, |A| = 1 and k = 0,
the normality assumption no longer holds. For Case 1, we see that at the boundary, these
parameter estimates become extremely heavy tailed. For Case 2, the parameters are close
to the boundary and the estimates become skewed.

43.2 GPTWC

We also study properties of the parameter estimates for the GPTWC density. With the
setup described in Section 4.1, we draw 200 sets of observations for each case and each
value of the spatial dependence parameter. As for the WSSVM density, the block-likelihood
method with m = 1 is used to estimate parameters for each set of observations, with the
true parameters used as initial values for the optimization.
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Figure 4.9: Q-Q plots of parameter estimates for Case 1 (left) and Case 2 (right) of the WSSVM
density for p = 0.5. The parameter is indicated at the top left corner of each plot.

Bias: Figure 4.10 shows box plots of parameter estimates for all four cases considered.
Again, the density class for each parameter is indicated by the colour, with a grey "NA”
for p. Comparing the display to the true parameters, there is little evidence of bias in most
parameters. However, we again observe the same effect that there is a bias for p = 0.8,
with the mean of all estimates being roughly 1 in both cases. Noticeably, for this density,
all parameter estimates seem to be symmetric, even those at the limit 7 = 0.

Although it is not apparent from the box plots, we can observe a small bias in the pa-
rameter 7 by computing the means for the estimates of this parameter. For small values,
7 = 0, there is a positive bias, meaning that estimates of the parameter 7 are too large.
For large values of 7, here for Case 1, where 73 = 0.8, there is a negative bias, i.e., the
estimates are too small. The biases are very limited, typically of magnitude 0.02, but im-
portantly they are consistent across all cases and classes. These results support the findings
by Tomoaki et al. [2019], who computed maximum-likelihood estimates of parameters
with data generated from a single GPTWC density. When 7 is low, they found that 7 was
overestimated, whereas larger values of 7 lead to underestimation of the parameter. For
7 = 0.1, they observed overestimation and for 7 > 0.3 they observed underestimation.

Variance: As we did for the WSSVM distribution, we display empirical variances of the
parameter estimates in Figure 4.11. For both densities, but even more so for the GPTWC
density, we observe that the variance in p is greater for weakly separated classes than it is
for strongly separated classes. The intuition is that for weakly separated classes, the latent
classes are harder to predict accurately. As a consequence, the spatial dependence param-
eter p becomes harder to estimate and variability increases, although the bias remains the
same for both cases.

From the display of the empirical variances, we also observe that p3 in Case 2 has
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Figure 4.10: Box plots of parameter estimates for Case 1 (top) and Case 2 (bottom) of the GPTWC
density for p = 0.5 (left) and p = 0.8 (right). Parameter classes are indicated by the colour. The

crosses indicate the true parameter values.
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Figure 4.11: Empirical variance in parameter estimates for the GPTWC density for the two cases
and two values of the spatial dependence parameter p.
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Parameter classes are indicated by the colour. The crosses indicate the true parameter values.

substantially larger variance than the other parameters. The interpretation is the same as
for 119 in Case 2 of the WSSVM density. Because of k3 being low and 73 = 0 in Case 2, the
class 3 density is almost uniform in the circular part. Hence, the parameter p3 is harder
to estimate correctly because perturbations in the parameter have limited impact on the
corresponding density. This leads to a large variance in the parameter estimates. For p3 in
Case 2, we also observe increasing variance as p decreases. Again, the reason behind this
is that this parameter is highly sensitive to the latent segmentation and smaller values of p
makes the prediction of latent classes harder.

Interestingly, apart from p3 in Case 2 and p, there seems to be less variance for the
GPTWC densities than there was for the WSSVM densities. This may be because the
GPTWC densities are more sensitive than the WSSVM densities to changes in the param-
eters. This would explain why the variance is lower for the GPTWC density.

To again check for bias for lower values of the spatial dependence parameter, we run
the Case 2 experiment with p = 0.2. The box plots of these parameter estimates are
displayed in Figure 4.12. We can then verify that there is no bias for p = 0.2 for the
GPTWC density. From the display we also observe that the variance in p3 is larger than it
was for p = 0.5.

Asymptotic normality: Similarly to what we did for the WSSVM density, we also dis-
play Q-Q plots of the transformed parameter estimates for the GPTWC density in Fig-
ure 4.13. We observe that most parameters fulfil the asymptotic normality assumption,
except for the heavy-tailedness parameter 7. Crucially, when the true value of this param-
eter is at its limit, 7 = 0, the normality assumption no longer holds. We also observe some
heavy tails for p3 for Case 2. The estimates for x are closer to the normal distribution
than the estimates for x with the WSSVM distribution in Figure 4.9. This is because the
values for the WSSVM distribution were closer to the lower boundary £ = 0.
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Figure 4.13: Q-Q plots of parameter estimates for Case 1 (left) and Case 2 (right) of the GPTWC
density for p = 0.5. The parameter is indicated at the top left corner of each plot.
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Chapter

Real data

This chapter is dedicated to the analysis of a real set of ocean surface current (OSC) ob-
servations in the Norwegian Sea. We first present and motivate the data set in Section 5.1,
before estimating parameters for both densities for different number of latent classes. Then
we use model selection criteria to decide the number of latent classes and discuss the re-
sults. We estimate two separate models for summer and fall in Section 5.2 and a single
model for both seasons in Section 5.3. Then, in Section 5.4 the performance of all esti-
mated models is compared.

5.1 Data description

The OSC data we consider in this chapter consist of measurements of the combined
geostrophic and Ekman currents, as described in Chapter 1, and are provided by the
GlobCurrent project, which is funded by the European Space Agency.! The area is part
of the Norwegian Sea and ranges from 66°N to 72°N latitude and 3°W to 12°E longitude.
Figure 5.1 displays the area. It is of particular interest to study the OSC in this area be-
cause the inflow of Atlantic Water has a great impact on climate and biological production
in the Nordic Seas. From here, the Atlantic Water flows further into the Arctic Oceans,
hence impacting the climatic state of a vast region.

Motivation: Ingvaldsen et al. [2002] describe temporal variability in the total flow of
Atlantic Water from the Norwegian Sea into the Barents Sea and conclude that there are
large temporal and spatial variations in the current patterns at the opening of the Barents
Sea. These fluctuations were analyzed and decomposed using orthogonal functions by
Ingvaldsen et al. [2004]. The mean state and variations in inflow of Atlantic Water into
the Norwegian Sea was studied by Skagseth et al. [2008], with a focus on describing the
flow of heat and volume. Common for all, is that they used several time series of mooring
observations to classify the general total flow in the areas around the Norwegian Sea.

IThe data are available to the public and downloadable through the GlobCurrent website: http://
globcurrent.ifremer.fr/
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Figure 5.1: Map of the Norwegian Sea. The area in consideration is indicated by the red rectangle.

We want to go further by building a model that can classify typical current patterns
in the Norwegian Sea. This is done by using synoptic snapshot images of larger areas,
instead of time series from multiple single-site moorings. The aim is to build a compact
model that can be run on-board AUV or simple autonomous buoys in real time, similarly
to the works of, e.g., Fossum et al. [2019], or Holm [2020]. This puts constraints on the
complexity of the model. Hence, instead of looking at the entire water column, we only
consider the currents at the surface layer, and use the spatial model to borrow information
from several points in space to form classes with similar currents. These classes, or distinct
current regimes, are then allocated to positions in space for snapshots of the constantly
changing current circulation. Then, the OSC can at all times be described by the same
current patterns, with the spatial configuration of the classes changing with time.

Data set description: The data are mapped to an equal angle grid of 0.25 degrees lat-
itude by 0.25 degrees longitude. The distance between grid cells in the south—north di-
rection is 28 km. However, due to the high latitude, distance between grid cells in the
west—east is only approximately 11 km. To satisfy the Potts model assumption of equal
spatial dependence in both directions, the distance between grid points needs to be the
same in both directions. Hence, we thin the longitudinal locations and use only 2 out of
every 5 observation sites, i.e., we use only longitudinal grid point 1, 3, 6, 8, and so forth.
As a consequence, the grid points will not be evenly spaced, but it serves as a good ap-
proximation. This gives a total size of the area of 667 km in the south—north direction and
676 km in the west—east direction.
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Figure 5.2: Display of the cylindrical observations (top) and the observations mapped to vectors
at their grid points to create vector fields (bottom) for the four dates considered. The red arrow is
plotted for reference and represents a current of angle 0 and speed 0.5m/s.

With a spatial resolution of 0.25 degrees, this means that the area is of size 24 x 24,
and for each data set there are n = 576 observations. We consider data from four dates
taken from two different decades and two seasonal periods. For 2005 and 2015 we extract
data on July 5 at 12.00 and denote this by summer. We also have data from October 3
at 12.00, and these are denoted by fall. In conclusion, we get data from four dates, and
these are displayed in Figure 5.2. The scatter plots on the top display the surface current
speeds on the first axis, measured in m/s. The second axis contains the angle of the surface
current direction, with an angle of ® = 0 implying a current straight east and an angle of
® = 7/2 implying a current pointing straight north. Observe that the speeds vary from
around Om/s to 0.5 m/s. These measurements comply with typical current speeds in the
area, with, e.g., Johannessen et al. [2014] reporting mean surface current speeds of 0.2m/s
for the Norwegian Sea. Ingvaldsen et al. [2002] report that the maximal current velocities
in the Norwegian Atlantic Current are higher during fall than during summer. While this
is true for the data from 2005, the same can not be said for the 2015 data.

In the bottom part of the display, the surface currents are plotted as vectors on a grid.
The arrows point in the direction of the current at the corresponding grid point, and the
length of the arrows represent the current speeds. The vector displays give an overview
of the spatial structure of the surface current data. For reference and to better relate to
the length of the arrows, the plots also show a red arrow that represents a current pointing
directly east, i.e., angle & = 0, with speed 0.5 m/s beneath the spatial grid.

From the displays of the vector fields, we clearly observe the formation of eddies.
Most prominently, there is an eddy roughly between 0°E and 5°E longitude and 69°N
and 71°N latitude for all dates. Eddies are frequently occurring in this area, and similar
patterns have been observed in earlier studies, using both drifters [Poulain et al., 1996]
and mooring buoys [Ingvaldsen et al., 2002]. As described in Section 1.1, the Norwe-
gian Atlantic Current splits into two branches at the opening to the Barents Sea, with one
going east and the other north. Investigations into this bifurcation with numerical mod-
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els suggests that 65-70% of the flow goes north toward Spitsbergen, and 30-35% of the
flow goes eastwards into the Barents Sea [Ingvaldsen, 2003]. These proportions changed
during winter to approximately 30% northwards and 70% eastwards, and clearly there are
seasonal variations. In the displays of the vector fields, the Barents Sea entrance is close
to the north—east corner. Observe that a major part of the flow in this corner points north,
with less flow going east.

Two strategies: The problem of this thesis concerns classifying states of the ocean for
different seasonal periods or specific dates. As noted by both Ingvaldsen [2003] and Kwok
et al. [2013], the current circulation patterns in the Norwegian Sea change with the seasons.
We implement and study two different strategies for capturing the seasonal variations in
the OSC. First, we estimate two separate models to characterize the surface currents during
summer and fall. Hence, we consider data from the same season in 2005 and 2015 to be
two independently observed data sets that have been generated from the same seasonal
model. This means that we estimate one model for both data sets from the same season.
Observations from summer 2005 are denoted by z5,,s and fall 2005 by z5,s. The same
is done for the observations from 2015. Because the observations from different years
are assumed independently drawn from the same model, the total log-likelihood for each
seasonal model is a sum of the log-likelihood for the two individual years, or

1(8, p|Z300s, Z5015) = (0, plZ300s) + (O, plZ3015),

(5.1)
1(8, p|zboos, Zho1s) = (B, plzages) + (B, plzhy;s)-

To estimate the parameters of each seasonal model, this log-likelihood is optimized by the
hybrid algorithm described in Chapter 4.

The second strategy implements a single model based on all the observations. The
seasonal variability in the currents is then captured by the allocation of latent classes,
with, e.g., one season dominated by a circulation pattern corresponding to one latent class,
and the other season displaying more of other classes. The four dates are assumed inde-
pendent, implying that the total log-likelihood of the single model is a sum of the four
log-likelihoods,

S S F F /
1(8, p|Z300s 220155 Z2005> Z2015) = Z 10, plz’). (5.2)
2/ € {2505, 23015: 25005 %5015 }

The total log-likelihood is again optimized by the hybrid algorithm to estimate the model
parameters.

5.2 Seasonal model

Oceans are always in motion, and as we previously noted, the current patterns change
with the season. Hence, the first methodology we consider is to develop separate models
for the two seasons in question. The variability in currents from season to season is then
accounted for by each seasonal model having different current classes.
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5.21 WSSVM

Model estimation: The cylindrical HMRF model is first estimated with a WSSVM den-
sity for the OSC observations. Recall from Section 2.2.1 that the WSSVM is a flexible
distribution, designed to incorporate skewness in the circular part. It is not evident from
the OSC observations in Figure 5.2 that they possess skewness. Nevertheless, skewness is
commonly observed in cylindrical data and the WSSVM distribution is a natural choice.

Because the number of ocean states, i.e., the number of latent classes K, is unknown, it
needs to be decided. We estimate four different models by varying the number K of latent
classes from 2 to 5. The hybrid algorithm starts by optimizing 50 random starting points
with the EM algorithm. The initial parameters are drawn uniformly with the following
boundaries,

0 <p° < Perit,
0.9 <af <3,

5 <pp < 25,
—m <pp <,
0 <k) < 3,

—0.9 <\) <0.9,

(5.3)

for each £ € {1,...,K}. The large number of short runs makes the algorithm start
from a broad range of initial parameters, and the boundaries are selected empirically to
ensure that the algorithm does not converge to a local optimum. Yet, there is no guarantee
for reaching the global maximum after the second part of the algorithm. Unfortunately,
we have observed in some cases that the parameters maximizing the pairwise-likelihood
after the EM algorithm do not always result in the highest block-likelihood. In some
cases, starting from a point with lower pairwise-likelihood actually results in a higher
block-likelihood. As such, care needs to be taken when finding the parameter estimates,
especially as K increases.

Figure 5.3 displays results from the model fit with K ranging from 2 to 5. This figure
is intended to give an overview over how varying K alters the latent class predictions. The
colour of the observations and current vectors represents the latent class prediction with a
maximum posterior prediction criterion. Again, this means that the class with the largest
marginal probability, given all the observations, is predicted. These probabilities are given
by Equation (3.13). The figure shows how the segmentation develops as K goes from 2
to 5. Notice that there are overall fairly large areas with equal latent class predictions.
This means that the spatial dependency parameter p is large, and that the OSC is fairly
homogeneous in large areas.

Model selection: We utilize the information criteria presented in Section 3.3 to set K.
Table 5.1 presents the block log-likelihood, C-AIC and C-BIC values for all K and both
seasons. The best model (lowest information criterion) is indicated by bold text. Observe
that K = 5 yields the lowest C-AIC for both seasons, whereas K = 2 gives lowest C-BIC
for summer and K = 3 for fall. As already discussed, the C-AIC is designed for prediction
power and penalizes model complexity mildly. Hence, it tends to favour complex models.
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Figure 5.3: Resulting prediction of the latent classes with K ranging from 2 (top) to 5 (bottom) with
the WSSVM density. A maximum probability prediction criterion is used to predict the classes. The
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Table 5.1: Computed values for the block log-likelihood (bl) defined in Equation (3.34), C-BIC from
Equation (3.45) and C-AIC from Equation (3.44) for the summer and fall model with the WSSVM
density. The best model is indicated by bold.

Summer Fall
K bl C-BIC C-AIC bl C-BIC C-AIC
2 -762.3 20264 1675.5 -976.1 2515.1 2112.0
3 -559.0 2347.1 1466.7 -737.7 22121 16844
4 -445.4  2412.8 1322.6 -666.2 2511.3 1666.8
5 -331.7 21824 1094.3 -499.7 25953 1452.2

Our goal is not to develop a model with good prediction power for individual surface
current observations, but rather a model that parsimoniously represents states of the ocean.
Consequently, we prefer C-BIC and decide K = 2 for summer and K = 3 for fall.

By inspecting the displays of the observations in Figure 5.2 we observe that the simi-
larity between observations from 2005 and 2015 is higher for summer than for fall, imply-
ing that the summer observations are more homogeneous in the cylindrical domain. The
south—east corner of 2005 fall contains currents of high speed that are highly concentrated
in one direction. The same pattern is not observed for 2015. Hence, it makes sense that
the model includes more latent classes for fall to account for more current patterns.

Model properties: Now that we have made a decision for the number of latent classes,
we can move on to visualizing the models and discussing their properties. In Figure 5.4,
contour plots of the densities corresponding to the latent classes are displayed. On top
of the densities we also show the OSC observations, with observations from 2005 plotted
as dots and 2015 plotted as pluses. The transparency of the observations represents how
likely they are to take the latent class. With parameter estimates p and 0, the probability
of belonging to class k for grid point ¢ is p, ;(I¢ = k|z). Black points indicate p, ;(l; =
k|z) = 1, and for pé’ﬁ(lt = k|z) = 0 the point is completely transparent.

This figure should be interpreted together with the maximum-block-likelihood esti-
mates of the model parameters that are presented in Table 5.2. The summer observations
are described in terms of two densities that represent unique current regimes. The first
density is associated with large absolute angles, i.e., currents going west. The speeds
are higher for positive angles than negative, implying larger speeds for currents pointing
north—-west, and lower speeds for currents pointing south—west. This density is skewed
towards positive angles (A\; = 1) with moderate circular concentration (k1 = 0.8). This
current pattern is most prominent in the south part of the 2015 data set, and the south—
western corner of the 2005 data set. Some predictions of this class are also scattered
across the rest of the area, mostly for the 2005 data set.

The second density is associated with small absolute angles, i.e., currents flowing east.
This density is negatively skewed (A\y = —1) towards currents flowing south—east and
the circular concentration is lower than the first density (k2 = 0.13). A low circular
concentration implies that the density is not as concentrated around a single directional
mode, and the current directions are more spread out. Because of the low value of ko
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this means that the circular-linear dependence is lower for the second density, which is
also observable from the displayed densities. For the 2015 data set there is a large patch
displaying this current pattern in the northern part of the spatial domain. The 2005 data
set contains several smaller areas with this latent class across the spatial grid. From the
density display we further observe that there are many outliers to the two distributions.
This suggests that this compact model may be under-fitting, and that it is too simple to
capture all realistic current patterns.

The fall observations, on the other hand, are described by three distributions. Notably,
density 1 and 2 for summer and fall appear fairly similar, and the parameter estimates are
much alike. Even though we did not enforce any physical structure in the modelling, the
algorithm recognizes this interpretable aspect. The most striking difference is that they are
skewed in opposite ways, with A\; = —0.26 and Ao = 1 for the fall model. Density 1 is
most prominent in the north—east corner for 2005 and south—east corner of the 2015 data
set, whereas density 2 dominates the north—east corner for 2015.

The fall model also includes an additional third density to account for the large current
speeds observed in the south—east corner of the 2005 fall observations, and also to some
extent in the south—east and north—west corners of 2015. In these corners, the OSC are
highly concentrated in the north—east direction with high speeds. This makes the circular
concentration of the third density very high (k3 = 1.5), around a north—east modal direc-
tion (u3 = 0.69), and it is also negatively skewed (A3 = —1). Even though the modal
direction is north—east, the negative skewing means that the currents point more to the east
than to the north.

The current pattern described by this density, i.e., currents flowing north—east, repre-
sents an inflow to the Barents Sea. Ingvaldsen [2003] showed that the inflow of Atlantic
Water is stronger during winter and fall than during summer. Our results agree with this
statement. Because the inflow is stronger during fall than during summer, the fall model
includes an additional density that represents high-speed currents flowing north—east.

Figures 5.3 and 5.4 show that the summer model largely splits the observations based
on direction. Observations with low absolute angles are likely to take latent class 2, and
observations with high absolute angle are likely to take latent class 1. The same can not
be said for the fall model. Here, observations with roughly the same angle are predicted to
take all three different classes based on their speed and the spatial dependence structure.
Still, although to a lesser extent than for the summer model, we observe that the first two
densities in the fall model split the data set into small and large absolute angles. The third
density corresponds to high speeds concentrated in the north—east direction.

From the displays in Figure 5.4 we also see the spatial coupling come into play.
Clearly, the observations in the centre of a cylindrical density have high probability of
belonging to that class, and are consequently not transparent. However, we also observe
that some observations with low cylindrical density are less transparent than observations
with higher cylindrical density. This means that even though the cylindrical density is low,
the probability of belonging to that class is high, due to the spatial dependency.

Model uncertainty: We seek to investigate the uncertainty in the parameter estimates.
Recall from Section 3.3 that the maximum-block-likelihood estimates are asymptotically
normally distributed with variance as the inverse of the Godambe matrix. This means that
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Figure 5.4: Estimated densities of the best model for each season with the WSSVM density. The
observations from 2005 and 2015 are plotted as dots and pluses respectively, with transparency of
each dot/plus representing the probability of belonging to that class. Black dots/pluses represent a
probability of 1 of belonging to that class.

theoretically, standard errors of the parameter estimates can be obtained by approximat-
ing the observed Godambe matrix numerically . Unfortunately, this matrix suffers from
numerical instability, specifically the variability matrix is difficult to estimate because it
vanishes at the maximum-block-likelihood estimate. A workable alternative is to use para-
metric bootstrap to estimate empirical quantiles for the distribution of parameter estimates.
These quantiles are used to assess uncertainty in the maximum-block-likelihood estimates.

To perform parametric bootstrap, we simulate observations from the estimated models
following a similar procedure as in the previous chapter: First, latent classes are simulated
and then observations are drawn from the cylindrical density corresponding to the latent
class. For both models we have p > p.i.. As a result, it is not realistic to sample a true
latent field directly using the Swendsen—Wang algorithm. Because of the inherent phase
transition of the Potts model, sampling with spatial dependence parameter larger than the
critical value produces fields that have almost all grid points taking the same latent class.
This does not accurately represent bootstrap samples of the true observations. Instead, we
use the forward-backward algorithm to sample latent classes, as presented in Section 3.1.
This algorithm allows for sampling of latent classes for each block. However, each block
is assumed independent, so the dependence between blocks is lost. Hence, to increase
the dependence without making a complicated algorithm we do the following. First, one
horizontal block is simulated at the bottom of the lattice. Then, all vertical blocks are
simulated, starting from the already simulated bottom grid point. In this way, the only
grid point that is completely independent is the bottom left corner, compared to the even
simpler procedure of sampling 24 horizontal or 24 vertical independent blocks. We believe
this approximate sampling procedure is sufficient for our purposes.

For each bootstrap sample, two latent fields are sampled, one based on the 2005 ob-
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Table 5.2: Parameter estimates and bootstrap quantiles of the best model for each seasonal period
with the WSSVM density.

Summer Fall
2.5% . 97.5% 2.5% . 97.5%
Parameter . Estimate . . Estimate .
quantile quantile quantile quantile
ay 1.63 1.94 2.00 1.66 1.95 1.96
b1 9.67 12.17 13.53 14.01 17.02 17.12
I 0.15 1.32 1.59 1.85 1.95 2.08
K1 0.69 0.80 0.92 0.51 1.02 1.37
A1 0.26 1.00 1.00 -0.57 -0.26 -0.18
a2 1.48 1.58 1.74 1.57 1.78 1.88
B2 7.94 9.12 12.03 9.40 9.69 11.70
2 0.02 1.21 2.02 -3.13 -2.08 -1.57
K2 0.01 0.13 0.32 0.00 0.18 0.30
A2 -1.00 -1.00 -1.00 0.59 1.00 1.00
as 2.28 2.85 3.03
B3 7.53 8.61 8.78
13 0.58 0.69 0.72
K3 0.83 1.50 1.73
A3 -1.00 -1.00 -0.99
p 1.58 1.75 1.90 1.90 2.39 3.01

servations and one based on the 2015 observations. Having sampled the latent classes,
observations are then drawn from the corresponding WSSVM density with the maximum-
block-likelihood parameters. These parameters are used as initial values and new parame-
ter estimates are found for the simulated sample. In this thesis we use 200 bootstrap sam-
ples. The empirical 2.5% and 97.5% quantiles, along with the maximum-block-likelihood
estimates, are displayed in Figure 5.2.

Observe from the quantiles that all circular-linear dependence parameters x are sta-
tistically significant, except for x5 in the fall model. This supports the decision to model
the data by a cylindrical distribution. Hence, assuming independence between the current
angle and speed is not appropriate, and these variables should be modelled jointly. Further,
for both models and each density the skewness parameter A is significant. This indicates
that the current data are skewed and justifies our choice of a skewed cylindrical distribu-
tion. Also worth noting is that the spatial dependence parameter p is significant in both
models, substantiating the need for a hidden spatial process to explain the variability and
dependence between current measurements. Clearly, the current observations are tightly
connected in the spatial domain. Finally, the spatial dependence parameter is larger in fall
than in summer. This implies that the currents in summer are more heterogeneous than in
fall in the spatial domain, but more homogeneous in the cylindrical domain as the summer
model includes only two separate densities.

We also observe that some of the uncertainty intervals for the parameter )\ are very
narrow. Recall that the optimization procedure estimates a transformed version of the
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parameters, given in Equation (3.32). The narrow intervals come as a result of the trans-
formation back to the original parameters and the behaviour of the hyperbolic tangent
function when the estimate for \ is close to the limits A € [—1,1].

In Section 2.1.1, we discussed the phase transition in the Potts model for values of p
above pqi ~ log(1l + VK ). For values above this threshold, almost all grid cells take
the same latent class. Clearly, the estimated spatial dependence parameters are above this
threshold for both seasons. Still, we observe from the latent class predictions in Figure 5.3
that the spatial domain appears with mixing of the latent classes, rather than all equal.
This is because of the bias in the spatial interaction parameter discussed in Chapter 4.
Here we observed that both the bias and the variance in the parameter estimation increase
dramatically when the true value is close to the critical value. With a true value of p = 0.95
we observed a mean of 2.14 in the predictions. Hence, we conclude that for both models
the true value of the spatial dependence parameter must be close to the critical value, but
not above the threshold, as the latent classes appear with some mixing.

5.2.2 GPTWC

Model estimation: Figure 5.4 showed that there were several outliers in the linear parts
of the estimated skewed densities. To deal with these outliers, we estimate a cylindrical
HMRF model with the GPTWC density. This density can account for heavy tails in the
linear part, but not skewness. We explore whether this model is more suitable for the data
or not.

Again, the number of latent classes needs to be decided, so the model is estimated
with K varying from 2 to 5. The initial parameters for the hybrid algorithm are drawn
uniformly with boundaries

0 <p” < perit,
0.3 <af < 1.1,
0.04 <A} <0.2,
—m <pp <,
0 <7 <3,
0.5 <xj) < 0.99,
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foreach k € {1,...,K}. As for the WSSVM distribution, we use 50 random starting
points.

Figure 5.5 displays results from the parameter estimation in a similar fashion as was
done for the WSSVM density. Latent classes are predicted with a maximum posterior pre-
diction criteria for the observations and vectors mapped to the spatial grid for both seasons.
We observe that the predicted latent classes are remarkably similar to those achieved with
the WSSVM density in Figure 5.3. The biggest differences are for K = 5 in both seasons
and K = 4 for the fall model. Also for the GPTWC model, large areas with equal la-
tent class predictions are formed, suggesting a homogeneous current field and large spatial
coupling.
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Figure 5.5: Resulting prediction of the latent classes with K ranging from 2 (top) to 5 (bottom) with
the GPTWC density. A maximum probability prediction criterion is used to predict the classes. The
latent classes are indicated by the colour of the points/arrows.
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Table 5.3: Computed values for the block log-likelihood (bl) defined in Equation (3.34), C-BIC from
Equation (3.45) and C-AIC from Equation (3.44) for the summer and fall model with the GPTWC
density. The best model is indicated by bold.

Summer Fall
K bl C-BIC C-AIC bl C-BIC C-AIC
2 -878.1 2164.7 1872.1 -1040.4 26149 22323
3 -727.8 23828 1718.6 -821.2 2494.1 1884.1
4 -543.5 24069 14614 -589.7 26309 1591.2
5  -440.2 2739.8 1407.9 -494.8  2626.3 1454.0

Model selection: The block log-likehood, C-BIC, and C-AIC values are collected in
Table 5.3 for all values of K and both seasons. The results are identical to the WSSVM
density. The lowest C-AIC is achieved with K = 5 for both seasons, and K = 2 and
K = 3 give the lowest C-BIC for summer and fall, respectively. This again verifies that the
fall observations are more heterogeneous in the cylindrical domain because an additional
density is required to model the data accurately. We select the number of latent classes by
minimizing the C-BIC similarly to the WSSVM density.

Model properties: Figure 5.6 displays contour plots of the densities corresponding to
the latent classes of the best model for summer and fall. Again, observations from 2005
are plotted as dots and observations from 2015 are plotted as pluses. Transparency of the
observations also represent the probability of belonging to the given latent class. Further,
the maximum-block-likelihood estimates of the model parameters are shown in Table 5.4
and the latent class predictions in Figure 5.5. The densities should also be compared to
the densities achieved by the WSSVM density in Figure 5.4. Overall, it is observed that
the densities produced by the GPTWC density resemble the densities produced by the
WSSVM density to a great extent.

For the summer data, the best model includes K = 2 latent classes. The first density is
associated with large absolute angles, similarly to the first density of the WSSVM model,
but also includes observations of lower speed with lower absolute angles. Noticeably, the
circular concentration is lower for this density than for the first density of the WSSVM
model, which may explain the inclusion of observations with lower absolute angles. The
circular part of the density is concentrated around f1; = 1.66, which roughly corresponds
to currents flowing straight north. Moreover, this density has virtually no heavy tailedness
(r1 = 0.03). This is induced by the fact that there are very few outliers to this density
with a non-negligible probability of belonging to this density. The first density is mostly
observed in the southern parts of both the 2005 and 2015 data set, with some smaller
patches further north in 2005.

The second density is concentrated around po = 0.1, i.e., currents flowing east, and
has a lower circular concentration than the first density (ke = 0.45). This means that the
current directions are more spread out and not as concentrated around a single directional
mode. This property was also observed for the WSSVM model, with the second density
having lower circular concentration. Furthermore, the second density displays some de-
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(c) Fall, density 1 (d) Fall, density 2 (e) Fall, density 3

Figure 5.6: Estimated densities of the best model for each season with the GPTWC density. The
observations from 2005 and 2015 are plotted as dots and pluses respectively, with transparency of
each dot/plus representing the probability of belonging to that class. Black dots/pluses represent a
probability of 1 of belonging to that class.

gree of heavy tailedness (72 = 0.27) with more non-transparent outliers to the distribution.
This density dominates the northern parts for both years, with 2015 displaying larger pat-
terns of this density than 2005. The GPTWC density is designed to deal with outliers in
the linear part, but the fitted model includes heavy tailedness purely in the second density.
For the WSSVM summer model, both densities were significantly skewed, implying that
it may be more beneficial to include skewness than linear heavy tails to model the data.

Also for the GPTWC model, we observe that density 1 and 2 for summer resemble
density 1 and 2 for fall, and the parameter estimates are fairly similar. Again, the algorithm
recognized this feat without any prior knowledge. The biggest differences between the first
two densities for the summer and fall model is that the second density in the fall model
displays little heavy tailedness (72 = 0.06) and the circular concentration of the second
density is larger (k2 = 0.88). Apart from these two parameters, the two pairs of densities
are very similar. As was the case with the WSSVM density, the first density dominates
the north—east corner of the 2005 observations and the south-west corner of the 2015
observations. The allocation of the second density is also fairly similar to the WSSVM
density, with the north—eastern corner of the 2015 data set taking this class.

For the fall model, only the third density is significantly heavy tailed (73 = 0.21). This
third density is associated with current observations of high speed, centred around the
modal direction ug = 0.58, i.e., currents pointing north—east. The circular concentration
is fairly high (k3 = 0.87), and the many outliers are dealt with by the heavy tail property
of the distribution. For the WSSVM model, these outliers were accounted for by the
first two densities instead of allowing the third density to have heavy linear tails. This
density clearly resembles the third density of the WSSVM model, with currents pointing
north—east at high speed and high circular concentration. This density is prevalent in the
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Table 5.4: Parameter estimates and bootstrap quantiles of the best model for each seasonal period
with the GPTWC density.

Summer Fall
2.5% . 97.5% 2.5% . 97.5%
Parameter . Estimate . . Estimate .
quantile quantile quantile quantile
ai 0.47 0.52 0.56 0.43 0.48 0.53
b1 0.06 0.07 0.07 0.06 0.07 0.07
75t 1.58 1.66 1.78 1.64 1.81 1.98
T1 0.00 0.03 0.11 0.00 0.04 0.13
K1 0.68 0.72 0.78 0.55 0.62 0.70
a2 0.32 0.36 0.46 0.32 0.37 0.42
B2 0.09 0.10 0.11 0.05 0.06 0.06
2 0.01 0.10 0.54 -0.14 -0.07 0.01
T2 0.15 0.27 0.33 0.00 0.06 0.16
K2 0.31 0.45 0.52 0.84 0.88 0.91
as 0.16 0.18 0.24
B3 0.14 0.15 0.16
"3 0.48 0.58 0.66
T3 0.15 0.21 0.25
K3 0.82 0.87 0.89
p 1.86 2.47 2.97 2.06 2.27 2.46

south—east corner of the 2005 observations, and also for smaller patches in the south—east
and north—west corners of 2015, much like the WSSVM third density.

Model uncertainty: To investigate uncertainty in the parameter estimates, we apply a
similar parametric bootstrap procedure as was done for the WSSVM density. The resulting
parameter quantiles are displayed in Figure 5.4. Note first that also for this model, all
circular-linear dependence parameters « are statistically significant. This supports the use
of a cylindrical density to model the data. Interestingly, for both seasons only one density
is significantly heavy tailed, and it is the distribution associated with the largest speeds
that is heavy tailed. This suggests that it may not be necessary to use a heavy tailed
distribution to model the data. For the WSSVM density, all skewness parameters were
significant, indicating that it makes more sense to use a skewed distribution rather than a
heavy tailed distribution. Furthermore, the spatial dependence parameter p is significant
in both models, supporting our decision to include a hidden spatial process in the model.
Contrary to the WSSVM model, the summer model has higher spatial dependence than
the fall model with the GPTWC density. Hence, the GPTWC model indicates that the fall
observations are more heterogeneous in the spatial domain than the summer observations,
the opposite of what was indicated by the WSSVM model, but the results are not very
significant.
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5.3 Single model

In the previous section, we saw that the first two densities of the summer and fall model
were very similar for both cylindrical densities. The model identified this trait, even though
we did not supply any prior information about the current regimes and the data sets were
collected independently. This motivates us to estimate a single model that accounts for
the observable circulation patterns in both seasons simultaneously. Then, the seasonal
fluctuations can be captured by the allocation of classes, rather than the classes themselves
varying. This gives a less complex model.

5.3.1 WSSVM

Model estimation: For the seasonal models, we saw that all skewness parameters were
significant. On the other hand, only one density in each of the GPTWC models were sig-
nificantly heavy tailed. Thus, we start by implementing a model with the skewed WSSVM
density. Parameters are estimated using the hybrid algorithm, and we draw 50 sets of ini-
tial parameters using the same boundaries as in Equation (5.3). The model is estimated
with the number of latent classes K varying from 2 to 5.

Figure 5.7 displays the latent class predictions with K ranging from 2 to 5. Notice the
striking similarity between this display and the corresponding display with the seasonal
model in Figure 5.3, especially for small values of K. Both the cylindrical observations
and the spatial locations are classified similarly for the two models. This further suggests
that we do not need to specify separate models for the two seasons.

Model selection: Table 5.5 displays the total block log-likelihood, C-BIC and C-AIC
values for all values of K. Observe that for all models, the total block log-likelihood is
strictly smaller than the sum of the block log-likelihoods for the summer and fall model
with the same number of latent classes. The seasonal models were fitted to smaller data
sets than the single model, thus providing better fits and larger block log-likelihood values
than the single model. However, the larger block log-likelihood comes at the cost of two
models instead of one. The C-BIC values suggest that K = 2 classes are sufficient to
parsimoniously represent the various circulation patterns. The seasonal model included
two classes for the summer observations and 3 classes for the fall observations. For the
single model, though, adding a third density is penalized more than what is achieved in
terms of additional explanatory power.

Model properties: Figure 5.8 displays contour plots of the two cylindrical densities cor-
responding to the latent classes. In this display, observations from 2005 are plotted as dots,
observations from 2015 are plotted as pluses, observations from summer are black and ob-
servations from fall are red. Transparency of the observations represents the probability
of belonging to that class, as before. The densities should be interpreted together with the
maximum-block-likelihood estimates of the model parameters in Table 5.6 and the latent
class predictions in Figure 5.7, and compared to the densities from the seasonal model in
Figure 5.4. Certainly, these two densities compare very well to the first two densities of
the summer and fall model.
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Figure 5.7: Resulting prediction of the latent classes with K ranging from 2 (top) to 5 (bottom) with
the WSSVM density. A maximum probability prediction criterion is used to predict the classes. The
latent classes are indicated by the colour of the points/arrows.
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Table 5.5: Computed values for the block log-likelihood (bl) defined in Equation (3.34), C-BIC from
Equation (3.45) and C-AIC from Equation (3.44) for the single model with the WSSVM density. The
best model is indicated by bold.

bl C-BIC C-AIC

-1597.5 5312.1 37419
-1266.9 5388.1 3271.1

K
2 -2000.8 5228.2 4318.4
3
4
5 -1063.5 55664 3015.5

(a) Density 1 (b) Density 2

Figure 5.8: Estimated densities of the best single model with the WSSVM density. The observations
from 2005 and 2015 are plotted as dots and pluses respectively and the observations from summer
and fall as black and red, respectively. Transparency of each dot/plus represents the probability of
belonging to that class. No transparency represent a probability of 1 of belonging to that class.

The first density represents currents with low speed, and also currents pointing north—
west with higher speeds. The density has modal direction to the north—west (1 = 1.93)
and is slightly negatively skewed (A; = —0.11), with modest circular concentration (x;, =
0.69). The density is naturally very similar to the first density of both the GPTWC and
WSSVM model for both seasons. Compared to the first density of the seasonal WSSVM
models, this density has a lower circular concentration. This enables it to capture low
speed currents in all directions, and not only the currents close to the modal direction.
From the latent class predictions, we see that this density dominates the southern part of
the summer observations, the northern part of the 2005 fall observations, and the south—
west corner of the 2015 fall observations. These are areas where the speed is low, with a
few high-speed currents flowing north.

The second density is associated with currents of higher speeds. The circular con-
centration is low (ke = 0.47), meaning that the directions are fairly spread out, with
a north—east modal direction (s = 1.17). However, the density is negatively skewed
(A2 = —1.00), implying that the density also includes currents flowing east and south—
east. Consequently, this density contains currents on the eastern semicircle, with higher
speeds than the first density. Furthermore, to include the high-speed currents, the linear
scale parameter is low (82 = 6.78). For both the seasonal models, the high-speed obser-
vations from 2005 fall were captured by including a third density in the fall model. In

70



Table 5.6: Parameter estimates and bootstrap quantiles of the best model with the WSSVM density.

2.5% . 97.5%
Parameter . Estimate .
quantile quantile
i 1.89 2.02 2.14
51 10.03 14.40 15.84
Ha 0.22 1.93 2.44
K1 0.37 0.69 0.87
A1 -0.41 -0.11 0.29
Qa2 1.83 1.99 2.17
B2 5.68 6.78 10.51
m2 0.03 1.17 2.08
K2 0.28 0.47 0.57
A2 -1.00 -1.00 -1.00
P 1.51 2.18 2.95

this case, we only have two densities, and the high-speed observations are accounted for
by lowering the linear scale parameter 35, making the density include currents of higher
speed. Hence, this density can be seen as a compromise between the second density of the
summer and fall models and the third density in the fall model.

Critically, the second density contains several outliers with significant probability. For
the first density, most visible observations (those with significant probability) are within
the main density area displayed by the contours. This, however, is not the case for the sec-
ond density, and several visible observations are outside the displayed contours. The large
amount of outliers suggests that the model may be too simple to represent all possible cir-
culation patterns. Even though the C-BIC advocated only two latent classes, better results
would perhaps be achieved by adding a third class to include the high-speed currents.

Model uncertainty: Parameter quantiles achieved by a parametric bootstrap procedure,
along with the maximum-block-likelihood estimates are displayed in Figure 5.6. Again,
both circular-linear dependence parameters ~ are statistically significant. However, we
observe that the first skewness parameter \; is not statistically significant. For the seasonal
models all skewness parameters were statistically significant. Consequently, the data do
not display the same degree of skewness when considering the seasons collectively, rather
than separately. Finally, the spatial interaction parameter is significant, and its value is
between the parameter estimate for the summer and fall WSSVM models.

5.3.2 GPTWC

Model estimation: Figure 5.8 showed a large number of outliers in density 2 of the sin-
gle WSSVM model. Similarly to the seasonal models, we consider the single model with
the GPTWC density to handle the outliers. Again, the hybrid algorithm is used with 50 sets
of initial parameters drawn from the boundaries in Equation (5.4). Models are estimated
with the number of latent classes K varying from 2 to 5. Latent class predictions for all
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Table 5.7: Computed values for the block log-likelihood (bl) defined in Equation (3.34), C-BIC from
Equation (3.45) and C-AIC from Equation (3.44) for the single model with the GPTWC density. The
best model is indicated by bold.

bl C-BIC C-AIC

-1803.0 5707.8 4149.0
-1365.8 5781.7 35195

K
2 -2202.2 58414 4775.6
3
4
5 -1102.7 6008.0 3187.7

fitted models are displayed in Figure 5.9. Overall, the class predictions are similar to the
ones obtained by the single WSSVM model. However, the clustering of the observations
does not display the same skewed structure.

Model selection: Values for the block log-likelihood, C-BIC and C-AIC are displayed
for all the models in Table 5.7. Again observe that these block log-likelihood values are
smaller than the sums of the summer and fall models with the same number of latent
classes. The lowest C-BIC is achieved by including K = 3 latent classes, which is differ-
ent from the single WSSVM model. For the seasonal models, we saw that the WSSVM
and GPTWC densities agreed on the number of latent classes, but this is not the case
for the single model. Instead, the C-BIC suggests to add an additional density for the
GPTWC model. This makes sense, considering the large number of outliers observed for
the WSSVM model with K = 2.

Model properties: Contour plots of the three densities corresponding to the latent classes
with K = 3 are displayed in Figure 5.10. Similarly to what was done earlier, the observa-
tions from 2005 are plotted as dots and observations from 2015 as pluses. The observations
from summer are black, and observations from fall are red. The transparency of each ob-
servations represents the probability of belonging to the given class. The maximum-block-
likelihood parameter estimates corresponding to the densities are displayed in Table 5.8,
with latent class predictions in Figure 5.9. The first two densities are similar to the first two
densities of both seasonal models with the GPTWC density. In addition, the first density
resembles the first density of the single WSSVM model.

First and foremost, the first density accounts for currents flowing north—west with high
speed, but it also includes currents with low speed, regardless of direction. Clearly, the
modal direction is to the north—west (11 = 1.84), but the circular concentration is mod-
est (k1 = 0.85). Comparing this density to the first density of the two GPTWC seasonal
models, we see that they are remarkably similar, but the single model has a slightly higher
circular concentration. By inspecting the latent class prediction, we observe that this den-
sity is prevalent in the southern part of the summer observations and the south—west corner
of the 2015 fall observations. This density is hardly represented in the 2005 fall observa-
tions, but some small areas exist in the north—east corner.

The second density constitutes currents pointing in direction north—east and east, with
higher speeds. The density serves as a middle ground between densities 2 and 3 from the
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Figure 5.9: Resulting prediction of the latent classes with K ranging from 2 (top) to 5 (bottom) with
the GPTWC density. A maximum probability prediction criterion is used to predict the classes. The
latent classes are indicated by the colour of the points/arrows.
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(a) Density 1 (b) Density 2 (c) Density 3

Figure 5.10: Estimated densities of the best model with the GPTWC density. The observations from
2005 and 2015 are plotted as dots and pluses respectively and the observations from summer and fall
as black and red, respectively. Transparency of each dot/plus represents the probability of belonging
to that class. No transparency represent a probability of 1 of belonging to that class.

GPTWOC fall model, and to a lesser extent density 2 from the GPTWC summer model. The
circular concentration is approximately equal to the two fall model densities (k2 = 0.89).
Also, the linear shape and scale and the circular location are all between the values for
density 2 and 3 from the GPTWC fall model. The density is heavy tailed in the linear part
(19 = 0.27), which enables it to take care of the many visible outliers. The density dom-
inates the southern part of the 2005 fall observations, and smaller clusters of the density
are scattered across spatial domain for the other data sets. However, the density is more
present in the fall than during summer, which is due to the increased inflow to the Barents
Sea that was discussed previously.

The third density comprises currents with direction on the southern semi-circle, i.e.,
clockwise from west to east. The speeds are higher than the first density, but generally
lower than the second. The circular location is southward (u3 = —1.47) with a low
circular concentration (k3 = 0.55), making the density include a wide range of directions.
This density is different from all the other estimated densities in that the modal direction is
southward with relatively high speeds. Moreover, the density is heavy tailed in the linear
part (73 = 0.23) to also capture the observed high-speed currents flowing south. The
circulation pattern described by this density is present in small areas across the grid for
the summer observations, and larger areas in the northern part of the domain for the fall
observations.

Model uncertainty: To investigate the uncertainty in the parameter estimates, we dis-
play quantiles achieved by parametric bootstrap, as well as the maximum-block-likelihood
estimates in Table 5.8. As before, we observe that all circular-linear dependence parame-
ters x and the spatial coupling parameter p are significant. Also, the heavy tail parameter
T is significant for both the second and third density. For the single WSSVM model, we
saw that only one of the densities were significantly skewed, which may lead to the con-
clusion that the data display more heavy tailedness than skewness, and that the GPTWC
distribution is better suited to model the data. This conclusion is the opposite of what was
observed for the seasonal model. With the seasonal model, only one density of each model
was heavy tailed, whereas all estimated densities were skewed.
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Table 5.8: Parameter estimates and bootstrap quantiles of the best model with the GPTWC density.

2.5% . 97.5%
Parameter . Estimate .
quantile quantile
i 0.44 0.48 0.51
51 0.05 0.05 0.06
1 1.78 1.84 1.90
T1 0.00 0.03 0.08
K1 0.82 0.85 0.88
Qa2 0.23 0.26 0.30
B2 0.09 0.09 0.10
m2 0.45 0.49 0.55
T2 0.22 0.27 0.32
K2 0.87 0.89 0.92
Qas 0.39 0.44 0.49
B3 0.06 0.07 0.07
s -1.64 -1.47 -1.33
T3 0.12 0.23 0.30
K3 0.44 0.55 0.62
p 2.04 2.22 2.40

5.4 Model comparison

In this section, we compare the performance of the estimated models. The models repre-
sent a probabilistic forecast of OSC observations in terms of cylindrical densities corre-
sponding to latent spatial classes. Hence, to evaluate the performance of the probabilistic
forecasts, we deploy the scoring rules presented in Section 3.4. Now, the models are de-
signed to parsimoniously represent the typical current patterns and to segment the global
circulation into less complex local regimes. Hence, they are not developed to make predic-
tions of the OSC. Yet, there is some merit to comparing the predictive performance of the
models as more accurate representations of the typical patterns lead to better predictions.

To carry out the model comparison, we randomly draw 50 grid points. The same grid
points are used for all data sets. For all the selected grid points we compare the prediction
of each model by evaluating a scoring rule. To evaluate the scoring rules, we first need
to compute the predictive distributions for each model at the selected observation sites,
and these are computed as in Equation (3.17). Once we have computed the predictive
distributions, we use these in combination with the actual observations to compute CRPS
for the linear and circular part of the observations separately. Table 5.9 displays the average
linear CRPS for the 50 grid points for each model and each data set. Table 5.10 lists the
average circular CRPS. Similar computations for other sets of 50 random grid points gave
similar results. Hence, instead of computing the CRPS for all 576 grid points, it was
deemed sufficient for our purpose to draw only 50 sites.

CRPS is designed such that lower values indicate better predictive distributions, i.e.,
better models. Lower CRPS is a result of either less bias in the prediction or a sharper
predictive distribution. From the listed values, we first note that overall the WSSVM
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Table 5.9: Average linear CRPS for each model and each data set. The model with the lowest CRPS
is indicated with bold for each data set.

Summer Fall
Model 2005 2015 2005 2015
Seasonal WSSVM  0.0074  0.0083 0.0114 0.0085
Seasonal GPTWC  0.0073 0.0073 0.0104 0.0079
Single WSSVM 0.0082 0.0089 0.0114 0.0093
Single GPTWC 0.0073 0.0077 0.0108 0.0082

Table 5.10: Average circular CRPS for each model and each data set. The model with the lowest
CRPS is indicated with bold for each data set.

Summer Fall
Model 2005 2015 2005 2015
Seasonal WSSVM  0.1245  0.1298 0.1263 0.1211
Seasonal GPTWC 0.1330 0.1461 0.1270 0.1289
Single WSSVM 0.1302 0.1373 0.1394 0.1356
Single GPTWC 0.1258 0.1305 0.1294 0.1290

models are better at predicting the circular part, whereas the GPTWC models are better at
predicting the linear part. These are encouraging results, bearing in mind the design of the
two cylindrical distributions; WSSVM is designed to handle skewness in the circular part,
whereas GPTWC is designed to account for heavy tails in the linear part.

Model complexity plays a crucial role in prediction performance. Both seasonal mod-
els include two latent classes in the summer model and three latent classes in the fall model,
whereas the single WSSVM model includes two latent classes and the single GPTWC
model includes three latent classes. Including more latent classes makes the model more
complex, and hence better prediction performance is expected. For the single models,
we observe that the GPTWC model has better prediction performance than the WSSVM
model also for the circular part, and this is because the model is more complex. This
clearly illustrates the trade-off between parsimonious models and accurate predictions.
We also observe that the single GPTWC model has good performance on the summer
data, especially for the circular part. This is because the three other models include only
two latent classes for the summer data, and the performance of the single GPTWC model
is thus enhanced by the inclusion of a third latent class, making it more complex.

Finally, we argue that estimating a single model for both seasons is favoured over
estimating separate models. To make a fair comparison between the single and seasonal
models, we need to compare the WSSVM models for the summer data and the GPTWC
models for the fall data, as these have the same number of latent classes. We observe that
the single GPTWC model performs slightly worse than the seasonal GPTWC model on
the fall data, whereas the discrepancy between seasonal and single is somewhat larger for
the WSSVM models. Still, we consider the added complexity of separate models for the
two seasons as too large compared to the small gain in predictive power.
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Chapter

SINMOD data

This chapter analyses an OSC data set on the border between the North Sea and the Nor-
wegian Sea, closer to the Norwegian coast. The data are presented in Section 6.1, before
the models are fitted. We apply the same methodology as in Chapter 5, by estimating a
range of models and then using model selection criteria to decide the number of latent
classes. The WSSVM density is considered in Section 6.2 and the GPTWC density in
Section 6.3. Finally, Section 6.4 compares the predictive performance of the two models.

6.1 Data description

Measurements of OSC rely heavily on satellite images. The data acquisition process re-
quires sufficient satellite coverage, but is still prone to cloud cover over the region of
interest. These factors limit the ability to systematically do repeated measurements. To
mitigate these difficulties, we demonstrate in this chapter that the models can also be built
on data acquired from numerical ocean models. These models can offer repeated esti-
mates of surface currents at different scales and resolutions, without bearing the risk of
cloud cover hampering the data collection.

The OSC data considered originate from SINMOD!, a numerical ocean model system,
which has been under development at SINTEF for over 25 years. The model can deliver a
broad range of applications and services, but our data set consists of estimates of surface
currents. SINMOD models the entire water column, and due to the vertical layer setup,
estimates of the currents are only available 3 m below the ocean surface. These are mapped
to an equal-distance grid, with a spatial horizontal resolution of 800 m. At these small
scales, the variability in currents is low. Hence, to cover a large enough area to capture
any meaningful variance and still maintain a small grid size, we thin the data. We use only
every third data point, so that the horizontal resolution decreases to 2.4 km. We again use
a grid size of 24 x 24, implying that the area covers 57.6 km in both spatial dimensions.

"More information about SINMOD is available on the web page: https://www.sintef.no/en/
ocean/initiatives/sinmod/
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Figure 6.1: Map of the west coast of Norway and the Norwegian Sea, with the area in consideration
indicated by the red rectangle.

The area lies just outside the mouth of Nordfjord and is depicted in Figure 6.1. We
extract data from two dates in 2017, one in spring and one in fall. The data are displayed in
Figure 6.2. The scatter plots on the left display the surface current speeds on the first axis,
measured in m/s. The second axis represents the angle of the surface current direction,
with @ = 0 for currents flowing east. We observe that the maximal current speed is
approximately 0.5m/s, which is the same as for the data set in Chapter 5. The surface
currents are plotted as vectors at their respective spatial location on the right. From this
display, it is evident that the currents are spatially more homogeneous than the previous
data set. This comes as a result of the increased spatial resolution. When grid points
are closer, the observations naturally become more dependent, leading to increased spatial
homogeneity. We also observe that the maximum velocities are larger in spring than during
fall. Moreover, the spring measurements seem to be more spatially homogeneous. Similar
findings have been proposed by Mork and Skagseth [2010], who studied the Norwegian
Atlantic Current at the Svingy section, just north of our area.

The research related to surface currents in the vicinity of fjords is limited. Surface
currents in the Porsanger fjord was studied by Stramska et al. [2016], while Fraser et al.
[2018] studied the circulation in Isfjorden at the west coast of Spitsbergen. A more gen-
eral overview of externally forced processes and current circulation modes in fjords was
provided by Stigebrandt [2012]. Yet, circulation patterns at and just outside of the fjord
mouth is relatively unexplored. Our study intends to segment the estimated currents into
a small number of local regimes, or states of the ocean, which are easy to interpret, and
in this way increase the understanding of the current patterns in this area. To estimate
the local regimes, we use the same methodology as in Chapter 5, where we saw that not
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Figure 6.2: Display of the cylindrical observations (left) and the observations mapped to vectors at
their grid points to create vector fields (bottom) for the fall and spring data.

much is gained in terms of explanatory power by estimating separate models for different
seasons. Hence, we estimate one model for both the spring and fall data. The variability
in the currents is then captured by the allocation of latent classes.

6.2 WSSVM

Model estimation: We observe from Figure 6.2a that for large angles, the data seem to
be positively skewed. This observable skewed pattern motivates the implementation of a
model with the skewed WSSVM density. Parameters are again estimated using the hybrid
algorithm, with 50 sets of initial values drawn uniformly within the usual boundaries listed
in Equation (5.3). As always we estimate models with the number of latent classes ranging
from 2 to 5, and the resulting latent class predictions are displayed in Figure 6.3. We
observe that large areas are predicted to take the same latent class. This is because the
currents are spatially homogeneous, and the spatial dependence parameter p is therefore
large. For K = 5, none of the fall observations are predicted to take the pink latent class.
This means that the pink latent class represents a current pattern that is present only during
spring, indicating that the model is over-fitted.

Model selection: To make an informed decision about the number of latent classes, we
display the block log-likelihood, C-BIC and C-AIC values for all models in Table 6.1. Like
with the previous data set, the most complex model yields the lowest C-AIC. However,
as our focus is on constructing parsimonious models, rather than maximizing predictive
power, we choose to include K = 3 latent classes, as this minimizes the C-BIC.

Model properties: Contour plots of the three densities representing the chosen model
are displayed in Figure 6.4. The observations from the fall data set are plotted as dots
and the observations from spring as pluses. The probability of each observation belong-
ing to a given latent class is represented by the transparency of the observation. Further,
we have the maximum-block-likelihood parameter estimates in Table 6.2 and the latent
class predictions in Figure 6.3. Observe firstly that there are very few outliers in all the
three densities. This suggests that the model fits the data well, and that the three densi-
ties together are able to represent all plausible current patterns. Further, we observe that
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Figure 6.3: Resulting prediction of the latent classes with K ranging from 2 (top left) to 5 (bottom
right) with the WSSVM density. A maximum probability prediction criterion is used to predict the
classes. The latent classes are indicated by the colour of the points/arrows.

Table 6.1: Computed values for the block log-likelihood (bl) defined in Equation (3.34), C-BIC from
Equation (3.45) and C-AIC from Equation (3.44) for the SINMOD data with the WSSVM density.
The best model is indicated by bold.

bl C-BIC C-AIC

-620.0 2011.2 1458.7
154.8  833.5 14.8
201.8 8734 413
6045 8859 -667.8

UI-J;L»JNN
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Figure 6.4: Estimated densities of the best model with the WSSVM density. The observations
from fall and spring are plotted as dots and pluses, respectively. The transparency of each dot/plus
represents the probability of belonging to that class. No transparency represent a probability of 1 of
belonging to that class.

the densities generally have higher circular concentration than the previous data set. The
circular concentration is particularly large for the second and third density.

The density corresponding to the first latent class mostly comprises currents on the
southern semi-circle. Compared to the other two densities, the circular concentration is
very low (k1 = 0.28), making the density spread out in the circular domain. The modal
direction is east (1 = 0.13), but the low circular concentration combined with maximal
negative skewness (A; = —1.00) makes it so that the major part of the density represents
southward flowing currents. This density is predicted in a large patch, stretching from the
north corner to the middle of the area, for the spring measurements. The fall measurements
contain a similar, but thinner patch of this density.

The second density is highly concentrated in the circular part (k2 = 3.03) and rep-
resents currents flowing north-northwest with high speeds. The circular location is to the
north-west (2 = 2.20), but the negative skewness (Ay = —1.00) makes the density com-
prise currents pointing north-northwest. This density dominates the western part of the
spring measurements, and is less prevalent in the fall. As previously mentioned, Mork
and Skagseth [2010] found that the maximal current speeds are larger in spring than fall.
Hence, it is logical for this density to be dominating the spring measurements, and occur
less frequently in fall.

The third density constitutes currents flowing north and west. The speeds are lower
than for the second density, and the circular concentration is also lower (k3 = 1.61),
making the density include a greater spread of directions. With a modal direction to the
north (u3 = 1.71) and a strong positive skewness (A3 = 1.00), the density is shaped so
that it includes currents flowing north with higher speeds, and currents pointing west with
lower speeds. The density dominates large parts of the fall measurements, and is present
in smaller areas in the spring.

Model uncertainty: As we did for the previous data set, we also conduct parametric
bootstrap to estimate the uncertainty in the parameter estimates. The resulting parameter
quantiles are displayed in Table 6.2. Firstly, we observe that the spatial interaction pa-
rameter p is larger than for the previous data set. As we previously discussed, this data
set has a higher spatial resolution, and the measurements are consequently more spatially
homogeneous, leading to a larger value for the dependence parameter p. Moreover, we
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Table 6.2: Parameter estimates and bootstrap quantiles of the best model with the WSSVM density.

2.5% . 97.5%
Parameter . Estimate .
quantile quantile
i 1.76 1.98 2.51
51 6.20 8.05 8.96
I -0.07 0.13 0.31
K1 0.12 0.28 0.47
A1 -1.00 -1.00 -1.00
Qa2 2.60 3.84 4.65
B2 7.32 9.31 12.94
m2 2.16 2.20 2.22
K2 2.21 3.03 3.47
A2 -1.00 -1.00 -1.00
Qas 2.09 2.27 2.47
Bs 14.27 17.11 20.72
s 1.36 1.71 2.80
K3 0.84 1.61 2.11
A3 1.00 1.00 1.00
p 2.19 3.04 3.40

observe that all circular-linear dependence parameters « are statistically significant. This
supports the decision to employ a cylindrical model. Also, all skewness parameters A
are significant, justifying the use of a skewed cylindrical distribution. Interestingly, all
three distributions attain maximal skewness, with all three skewness parameters, and their
respective quantiles, being at the parameter boundary with two decimals precision.

6.3 GPTWC

Model estimation: Although the WSSVM model displayed few outliers, we also fit
a model with the GPTWC density to check if any of the heavy tail parameters become
significant. We employ the hybrid algorithm and draw 50 sets of initial parameters with
the usual boundaries from Equation (5.4). Models are estimated with the number of latent
classes K ranging from 2 to 5. The latent class predictions for each model are displayed
in Figure 6.5. Observe that these are very similar to the latent classes predicted with
the WSSVM density, especially for small values of K, but they do not display a skewed
structure. The largest discrepancies are found in the fifth (pink) class with K = 5.

Model selection: Values for the block log-likelihood, C-BIC and C-AIC for each model
are displayed in Table 6.3. As always, the C-AIC is lowest for the model with the most
latent classes, ' = 5. We also observe that the C-BIC suggests the same number of latent
classes, K = 3, as with the WSSVM density. This confirms that using K = 3 latent
classes provides the best fit to the SINMOD data, while simultaneously keeping the model
relatively simple.
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Figure 6.5: Resulting prediction of the latent classes with K ranging from 2 (top left) to 5 (bottom
right) with the GPTWC density. A maximum probability prediction criterion is used to predict the
classes. The latent classes are indicated by the colour of the points/arrows.

Table 6.3: Computed values for the block log-likelihood (bl) defined in Equation (3.34), C-BIC from
Equation (3.45) and C-AIC from Equation (3.44) for the SINMOD data with the GPTWC density.
The best model is indicated by bold.

K bl C-BIC C-AIC
2 -937.8 24418 20363
3 7.3 1058.6 289.9
4 271.8 11954 -50.3
5 3519 1199.6  -163.7
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Figure 6.6: Estimated densities of the best model with the GPTWC density. The observations
from fall and spring are plotted as dots and pluses, respectively. The transparency of each dot/plus
represents the probability of belonging to that class. No transparency represent a probability of 1 of
belonging to that class.

Model properties: Figure 6.6 displays contour plots of the three densities from the cho-
sen model to study the current patterns that the model represents. Measurements from the
fall data are displayed as dots and measurements from spring as pluses. The transparency
of the measurements indicates the probability of belonging to that class. These contour
plots will be interpreted together with the maximum-block-likelihood parameter estimates
and their quantiles from Table 6.4 and the latent class predictions in Figure 6.5. Take note
that these densities are very similar to the WSSVM model, and the predicted latent classes
are overall alike. Also, similarly to the WSSVM model, there are very few outliers to the
main distributional areas. Even though this density is designed to handle outliers in the
linear part by imposing heavy tails, none of the distributions display heavy tailedness.

The first density has a circular location to the south—southeast (411 = —1.00), but the
circular concentration is low (k1 = 0.64), making the density account for a wide range of
directions on the southern semi-circle. The density display virtually no heavy tailedness
(11 = 0.02). However, judging from the plot, the measurements seem to display skewness
in that a larger proportion of the measurements are located at lower angles than the circular
location compared to higher angles. That is, the measurements are not symmetric about
the modal direction, but rather skewed towards negative angles. Predictions of this class
are located similarly to the first density of the WSSVM model. There is a large patch
stretching from the north corner to the middle of the area for the spring measurements,
and a similar, but thinner patch for the fall measurements.

The second and third densities are very similar to the second and third densities of
the WSSVM model. They have the exact same modal directions (s = 2.20, pug = 1.71),
display high circular concentration (ko = 0.99, k3 = 0.97), and the latent class predictions
are fairly equal. However, they are not able to handle the skewness observed in the data,
similarly to the first density. This, combined with the fact that neither of the densities
are significantly heavy tailed (2 = 0.00, 73 = 0.02), leads us to the conclusion that the
WSSVM density is better suited for this data set.
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Table 6.4: Parameter estimates and bootstrap quantiles of the best model with the GPTWC density.

2.5% . 97.5%
Parameter . Estimate .
quantile quantile
i 0.44 0.49 0.54
51 0.08 0.09 0.10
1 -1.10 -1.00 -0.90
T1 0.00 0.02 0.09
K1 0.56 0.64 0.70
Qa2 0.33 0.35 0.37
B2 0.06 0.07 0.08
m2 2.18 2.20 2.21
T2 0.00 0.00 0.00
K2 0.99 0.99 0.99
Qas 0.39 0.44 0.47
B3 0.04 0.04 0.05
s 1.68 1.71 1.74
T3 0.00 0.02 0.09
K3 0.96 0.97 0.98
p 3.02 3.14 3.22

6.4 Model comparison

We now compare the predictive performance of the WSSVM and GPTWC models. We
already concluded that WSSVM is better suited to model this data set, because the skew-
ness parameters are significant, whereas the heavy tail parameters of the GPTWC model
are not significant. From Section 2.2 it is apparent that the WSSVM distribution with
no skewness and the GPTWC distribution without heavy tails are the same distribution.
Hence, the WSSVM distribution with significant skewness can be seen as a generalization
of the GPTWC distribution without heavy tails. Consequently, we want to verify that the
WSSVM model has better predictive performance than the GPTWC model.

To do the model comparison, we carry out the same procedure as in Section 5.4. First,
we draw 50 grid points for the spring and fall data sets. For all selected grid points we
compare prediction of both models by evaluating the linear and circular CRPS. These
are evaluated by first computing the predictive distributions as in Equation (3.17). The
predictive distributions are then used together with the actual observations to compute
linear and circular CRPS separately. Table 6.5 displays the average linear and circular
CRPS scores for both data sets and both models.

From the table it is evident that the WSSVM model outperforms the GPTWC model
both on the circular and the linear CRPS. The skewness in the model only affects the
circular part, but apparently the prediction of the linear part is also better with the skewed
model. These results verify that it is appropriate to employ the WSSVM distribution to
model this data set.

By comparing these CRPS values with the CRPS values from Section 5.4, we ob-
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Table 6.5: Average linear and circular CRPS for the SINMOD data. The model with the lowest
CRPS is indicated with bold for each data set.

Linear Circular
Model Fall Spring Fall Spring
WSSVM  0.0132 0.0214 0.1045 0.0970
GPTWC 0.0149 0.0221 0.1085 0.1034

serve that the linear CRPS are higher for this data set, and the circular CRPS are lower.
This means that the model is better at predicting the angle for the SINMOD data set, but
worse at predicting the speed. One possible explanation is the large values for the circular
concentration parameter . Increased concentration in the circular part also increases the
circular sharpness, which lowers the CRPS values. From the expression of the linear mo-
ments of the WSSVM distribution in Equation (2.18) it can be confirmed that the linear
variance increases as x increases. When the linear variance is increased, the sharpness is
reduced and this leads to higher values for the linear CRPS.
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Chapter

Conclusion

This chapter summarizes by giving a short review of the work. We also discuss and make
concluding remarks on the main contributions of the thesis. Finally, we propose possible
extensions and future research.

In this thesis, we have studied a cylindrical HMRF model for spatial cylindrical data.
The model hierarchically combines a cylindrical density with a latent Potts model. It serves
as a parsimonious representation in that it breaks down a global pattern into a discrete
number of local regimes. These regimes, represented by a set of parameters supplied
to a cylindrical density, are easy to interpret with traditional properties such as location,
concentration, scale, shape, skewness, and heavy tails. The regimes are assigned to all
observation sites, and in doing so, the model accounts for both spatial dependence and the
cylindrical observation at each site.

The structure of the model is motivated by the call for compact models during au-
tonomous missions at sea. For these data collection procedures, the main interest is typi-
cally in-situ observation of a range of ocean parameters, such as sea surface temperature,
salinity and ocean color, as opposed to remote sensing which covers larger areas. If the
vessel also observes the surface currents, the model can make probabilistic forecasts of
surrounding circulation patterns on-board based on model parameters estimated on shore.
To be computationally feasible in real time, the model requires relatively small grid sizes.
Another application for the model is to make predictions of surface currents based on
sparse in-situ observations. This is crucial to fill in gaps of missing data, caused by, e.g.,
cloud cover, in remote sensing observations.

Assuming a Potts model for the latent process imposes two main restrictions on the
model. First, the Potts model and subsequently the composite and block-likelihood ap-
proaches assume a nearest neighbourhood structure on the spatial lattice. Disregarding
more complex dependencies may be a too strict assumption in some cases. The second
limitation is the assumption of a stationary latent field that depends on a single spatial
coupling parameter, which implies that the spatial dependence is constant across space
and equal for both spatial directions. In Chapter 5, we had to thin the data in order to ac-
commodate the assumption of equal dependence in both directions. In our case, we were
able to achieve reasonable results with these two restrictions. However, other studies might
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require the implementation of a non-stationary Potts model, in which the spatial interaction
parameters vary by direction or across space according to some external factors.

We have shown that the cylindrical HMRF model is capable of offering an interpretable
description of surface current patterns by decomposing them into local regimes, both for
direct measurements of OSC, but also for estimations provided by an ocean model. For
the direct OSC measurements, we estimated separate models for observations from dif-
ferent seasons and a joint model for both seasons. Comparisons by scoring rules suggest
that the gain in estimating separate models is limited, and to reduce model complexity,
a single model for both seasons should be used. Further, this data set displayed both
skewness in the circular part and heavy-tails in the linear part. The ocean model data set
gave significant skewness parameters, but the heavy-tail parameters were non-significant.
By comparing the two densities through scoring rules, we found that the skewed density
provided more accurate predictions both in the circular and linear part.

Although the model is motivated by marine applications, specifically to study speed
and direction of OSC, it is readily applicable to various forms of spatial cylindrical data.
An obvious example is to study wave height and direction [Wang et al., 2015]. Other
possibilities include environmental studies of wind fields [Modlin et al., 2012] or ecolog-
ical studies of animal movement [Hanks et al., 2015]. These are both examples in which
direction and speed are measured across space.

An important contribution of this thesis is the development of the hybrid algorithm
for estimating model parameters. Through a simulation study we showed that the EM
algorithm as an optimization procedure for a composite-likelihood approach has a large
area of convergence. However, this comes at the cost of a slow convergence rate. By
deploying a block-likelihood method, with the likelihood in each block computed exactly
through a spatial extension of the forward—backward algorithm for hidden Markov models,
we were able to reduce the run time of the EM algorithm by 50%. The block-likelihood
method also reduced the run time of a direct optimization of the composite-likelihood
by 25%. Additionally, the block-likelihood is more statistically robust, as it accounts for
more dependencies in the latent structure. The hybrid algorithm exploits the large area of
convergence of the EM algorithm and the fast convergence of the block-likelihood.

One obvious unexplored path for future work is to combine the WSSVM and GPTWC
distribution to form a density that is both skewed in the circular part and heavy-tailed in the
linear part. This is simply done by sine-skewing the wrapped Cauchy distribution for the
circular part in the GPTWC distribution and in the process adding a skewness parameter
A. This creates an even more flexible distribution that allows for skewness and heavy-tails
simultaneously. However, theoretical results about this new density are not yet available
and would have to be derived. Also, the issue concerning parameter estimation would
have to be tested. A simpler approach towards combining the skewness and heavy-tails is
to estimate a model where some latent classes correspond to the WSSVM distribution and
some latent classes correspond to the GPTWC distribution.

A more ambitious extension of the model is to add a temporal element in the latent pro-
cess. One possibility in this regard is to allow the latent process to evolve in time according
to a Markov model, dependent on a temporal interaction parameter. What makes this in-
teresting is that it allows for probabilistic forecasts in time and enables studies of surface
currents as a space-time evolving process. However, adding a temporal dimension to the
latent process severely increases the computational demand for parameter estimation.
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