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Summary

In this thesis, wavelet transformations are considered as a method for condition monitoring
of railway turnouts, utilizing track geometry data collected by a track inspection vehicle.
The track geometry data are measurements of track width (gauge), rail height difference
(cant), and vertical and horizontal variations of each rail individually, sampled every 25
cm. Three turnouts with known maintenance history are considered, each observed nine
times by the track inspection vehicle for 2-4 years. The continuous wavelet transform
(CWT) is applied to the data, investigating how the track geometry degrades with time
(and tonnage) and evaluating the effect of track adjustments (ballast tamping, restoring
the geometry). Both cases are compared to the current method for assessing track qual-
ity, typically more straightforward summary statistics. Furthermore, the discrete wavelet
transform (DWT) is tested on a turnout subject to gradually increasing wear, comparing
the response of the various levels of DWT coefficients to the results of the CWT, and the
reference statistics. For the discrete symlet 7, the coarsest levels are found to correlate
most with the measurements. The turnouts under analysis showed similar characteristics
in terms of CWT frequency modes and peak positions in the geometry data. The study of
track adjustments revealed large variations in how successful track corrections are, some
lasting less than six months, others several years.
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Sammendrag

Den diskrete og den kontinuerlige bølgetransformasjonen er anvendt på geometrimålinger
som en metode for å overvåke sporgeometri i den danske jernbanens sporvekslinger. Ge-
ometrimålinger samles regelmessig for hele jernbanenettet av dedikerte måletog, og er
mål av sporvidde, -helling, og skinnenes individuelle avvik i vertikal og horisontal retning,
målt hver 25. cm. Studien tar utgangspunkt i tre sporvekslinger med kjent vedlikeholdshis-
torikk, hvis sporgeometri er målt ni ganger over en periode på 2-4 år. Den kontinuerlige
bølgetransformasjonen (CWT) er anvendt på dataene for å visualisere eventuell forver-
ring av sporgeometrien over tid. I tillegg vurderes effekten av maskinell sporjustering
(tamping), da to av sporvekslingene gjennomgår sporjustering i løpet av perioden. Ob-
servasjonene er sammenlignet med skinnenes gjennomsnittlige standardavvik i horisontal
og vertikal retning, hvilket er den nåværende metode Banedanmark (ansvarlige for jern-
baneinfrastrukturen i Danmark) benytter for å evaluere sporkvalitet (dog primært for rette
strekninger og i mindre grad sporvekslinger, på grunn av deres krevende utforming og vari-
erende geometri). I tillegg er den diskrete bølgetransformasjonen (DWT) anvendt på en
enkelt skinnes vertikale avvik i en sporveksel som utviser tegn på gradvis forringelse i både
CWT og standardavvik, der de grovere detaljnivåene (i den diskrete transformasjonen) re-
sponderte mest på den økte slitasjen. Den kontinuerlige transformasjonen avdekket en-
dringer i sporgeometri som forklarer sporvekslingens forringelse med et høyere detaljnivå
enn den nåværende praksis tillater, hvilket er særlig nyttig for evalueringen av maskinell
sporjustering. Undersøkelsene avdekket store variasjoner i justeringenes varighet; noen
sporjusteringer gav forbedret geometri i kun seks måneder før sporet var tilbake til gam-
mel oppførsel, mens andre eksempler viste forbedringer med varighet over 2 år.
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Chapter 1
Introduction

Turnouts, often referred to as switches and crossings (S&Cs), connect the railway net-
work, allowing trains to change tracks. They are vital pieces of the railway infrastructure
and must be kept in good working condition at all times, as faulty turnouts will affect all
adjoining tracks and potentially stall large parts of the railway network. Unlike ordinary
tracks, turnouts have movable parts and small discontinuities where the rails cross, but still
need to handle the large stresses of several hundred tons trains. This demands a relatively
complex structure that makes them susceptible to a broad range of wear, increasing the
forces in play when a train passes, and ultimately posing a risk of hazardous failure. S&Cs
are particularly frequent in areas where tracks are numerous, and traffic is high, complicat-
ing the maintenance planning even further. However, initiating service and maintenance
will often stall large parts of the infrastructure too, and both the railway down-time and
the maintenance operations themselves are very costly. To maintain the approximately
3500 turnouts in Denmark takes about a third of the total maintenance budget, according
to Barkhordari et al. (2017), some 900 M. DKK every year. The decision to maintain,
renew, or pass, is, therefore, a critical and difficult one.

Since maintaining the turnouts in a timely manner has such a high priority, precise condi-
tion monitoring is key. The complex structure, moving parts, and precision components of
switches and crossings make inspections mainly a manual job; however, there exist sev-
eral sources of various data types for assisting the monitoring. The data treated in this
work is track geometry measurements, provided by Banedanmark, managing the Danish
railway infrastructure. These measurements are not currently used in a systematic way
to determine the condition of turnouts specifically, only for longer track segments (wear
thresholds exist for the whole track, including turnouts, but the data for turnouts is not used
for maintenance planning, Jøndrup (2019)). It is, therefore, the ambition of this thesis to
explore a methodology that can utilize the collected track geometry data in better ways,
leading to knowledge enabling the prediction of maintenance demand.

In this work, I propose a method for condition monitoring of track geometry in turnouts

1



Chapter 1. Introduction

by applying wavelet transformations, as an alternative to the traditional condition mon-
itoring using summary statistics (typically the standard deviation of the measurements
as an indication of quality). The work is a continuation of my project thesis written in
autumn 2019, treating the same data but using less sophisticated feature extraction to re-
view the geometry. Wavelets are mathematical tools intended for signal processing and
time-frequency analysis, in particular. In contrast to Fourier analysis where the analyz-
ing functions are complex exponentials (sines and cosines) of infinite support and energy,
wavelets are analyzing functions of finite support and finite energy. This allows for the
localization of frequency content in time (or equivalently, in space) within a signal, useful
for working with non-stationary signals where the location of certain frequency matters.
Developed in the late 80s and early 90s, the discrete wavelet transform (DWT) quickly
became the international standard for image representation and compression, known as
JPEG2000, Taubman and Marcellin (2002). The DWT is also how the FBI can digitally
store and compress their fingerprint bank, consisting of more than 100 million fast search-
able fingerprints, (Bradley et al., 1993; Babb and Moore, 2007). The continuous wavelet
transform (CWT) is instrumental in medicine, for studying abnormalities in biosignals
(for example electrocardiograms/ECGs), Addison (2017), and even used to analyze rud-
der responses of test aircraft like NASA’s F18s, Brenner (2003). The ability of wavelets to
represent signals is universal, in the sense of decomposition, compression, reconstruction,
or feature extraction.

Importantly, wavelets have also found a wide application in wear and degradation mod-
elling, in particular for the analysis of the vibration signature from gearboxes and engines
(Lin and Zuo, 2003; Wu and Liu, 2008), wind-turbines (Jiang et al. (2011)), and roller
bearings (Ocak et al. (2007)). Many researchers have applied wavelet analysis to accel-
eration box data from trains (measuring the train vibrations as it travels the track), iden-
tifying rail surface imperfections like rail cracks, wheel flats, and other high-frequency
rail irregularities. Caprioli et al. (2007) did a comparative analysis of wavelet and Fourier
transform-based techniques, while Jia and Dhanasekar (2007) used wavelets to identify
wheel flats. Hopkins and Taheri (2010), Molodova et al. (2013), Molodova et al. (2014),
and Cantero and Basu (2015) all considered classification of surface defects in ordinary
tracks, from acceleration box data. A more recent study also considered acceleration data
for turnouts, Sysyn et al. (2019), and there are a handful of studies that consider other
types of data searching for rail defects, for example, magnetic field data of Hall sensors,
Toliyat et al. (2003).

Interestingly, there are few or no examples of analysis of track geometry data using wavelets,
neither for turnouts nor straight tracks. The combination of the track geometry monitor-
ing as such a major data source for condition monitoring, and that railway infrastructure
managers like Banedanmark are still just partially able to utilize this information for their
switches and crossings, motivates a study of wavelets as an analysis tool for track geom-
etry data in turnouts. The goal of this work is, therefore, to investigate the usefulness of
wavelets for monitoring of track geometry data. The analysis is unsupervised in nature
as there are no labels available, although the repair and maintenance records are used to
control for major maintenance interventions.

The thesis is written with the following structure: Chapter 2 gives an overview of rail-
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way turnouts, track structure, and life cycle, and tamping as a track adjustment technique.
The data is presented in Chapter 3, describing the track geometry data and the mainte-
nance records, as well as the practice of the Danish railway infrastructure manager for
assessing geometry data. The theory of time-frequency analysis, the continuous wavelet
transform, and the discrete wavelet transform is given in Chapter 4. The method used to
select turnouts and combine the track geometry data and wavelets to produce the results
is described in Chapter 5. The results themselves are given and discussed in Chapter 6,
comparing the CWT and the DWT to the current practice of analyzing the wear and geo-
metric deterioration, and track adjustment effects. In Chapter 7, the method in general is
discussed and some thoughts for future work are given.
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Chapter 2
Turnouts & the Railway
Universe

This chapter presents the topic of railway turnouts, track structure, and maintenance. Of-
tentimes, tracks, turnouts, rails, and S&Cs can be a confusing language for the uninitiated
reader. By remembering that it takes two rails and some sleepers to make a track, and
a couple of adjoining tracks to make a turnout (S&C), you will be fine. The first part
introduces turnouts and some appurtenant terminology in brief. Then the general track
structure is presented in depth (quite literally), finally bringing us to the track life cycle
and maintenance techniques.

2.1 Turnouts
The turnout type treated in this thesis is illustrated in Figure 2.1. It consists of three main
regions and two transition zones.

• The switch panel. The first part of the turnout. It consists of two mechanically
movable switch blades, directing the train to the correct set of rails. The position of
the blades decides whether the passing train continues on the main track or change
to the diverging track.

• The closure panel. This region lies between the switch blades and the crossing
panel. It contains a set of rails for the tracks in the main direction and a set of rails
for tracks in the divergent direction.

• The crossing panel. This is where the rail in the main direction and the rail in the
divergent direction cross each other, meeting at the V-shaped crossing nose.

• The transition zones. Before the switch blade (the beginning of the turnout itself)
and after the crossing panel. The transition zones are not technically part of the
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Chapter 2. Turnouts & the Railway Universe

Figure 2.1: Sketch of a turnout with the regions and important parts indicated.

turnout, but they are considered here since the measurements begin and end in these
zones to avoid the loss of potentially important information.

2.2 Track Structure
One distinguishes the parts of a track into two main categories: track superstructure and
track substructure. The track superstructure consists of the rails, fasteners, rail pads,
sleepers, and the ballast, see Figure 2.2 (some authors regard the ballast layer as substruc-
ture, Tzanakakis (2013) and Jensen (2016)). Starting from the top, the rails are resting on
the sleepers, fixed by the fasteners. To dampen some of the high-frequency forces occur-
ring when a train passes, thin rail pads (1-2 cm) are commonly fitted between the rail and
the sleeper. The ballast is a layer consisting of crushed stones, on which the sleepers rest.
The ballast is central to the following discussion, and serves several purposes:

• Transfer the loads from the train through the rails and sleepers to the substructure,
such that the forces acting are as evenly distributed as possible.

• Fixing the track. By ensuring as little movement as possible under each train pass-
ing, the strain on rails and sleepers is kept to a minimum, and the gradual deteriora-
tion of the track geometry is reduced.

• Drain away water from the track.

• Serve as a reshapable layer between the track and the substructure, such that the
track geometry can be adjusted and maintained, even with varying ground conditions
and after many years in service.

The track substructure consists of the subballast and the subgrade/formation. The subbal-
last is a layer of finer material gravel, resting on top of the subgrade, which is typically
leveled earth or rock formation. The substructure is designed to be a steady platform for

6



2.3 Track Life Cycle

Figure 2.2: The track superstructure: Rails, sleepers (in wood), fasteners securing the rails to the
sleepers, and the ballast stones. The railpads are not used in this configuration, but are more often
used with concrete sleepers.

the superstructure to rest. As it is only maintained or changed in major track mainte-
nance campaigns and may stay untouched for more than 40 years (Tzanakakis (2013)),
the substructure is included for completeness, but not relevant for the following discus-
sion.

2.3 Track Life Cycle
When a turnout is new, it rests on the ballast consisting of clean, new skeletal grains. To
make sure the turnout has the perfect, projected geometry, it undergoes a series of track ad-
justments, Jensen (2016). Track adjustments are usually performed by tamping, although
it sometimes refers to minor manual adjustments (in this context, track adjustment refers
to tamping unless otherwise specified). Tamping the tracks reshapes and compacts the
ballast, making the tracks rest evenly on the substructure. A tamping machine, Figure 2.3,
lifts the tracks slightly, while hydraulically controlled arms are pushed into the ballast,
compacting the ballast stones. The machine smooths out track imperfections and ensures
that the ballast is evenly distributed without voids.

The reason for tamping new tracks multiple times is two-fold. Firstly, tamping smooths
out imperfect geometry, but larger deviations may need several tampings to be within
specifications, Jøndrup (2019). Secondly, the new and clean gravel in the ballast layer has
a lot of small, sharp edges that quickly wear down when the track is exposed to heavy
train loads. As a consequence, the track geometry tends to deteriorate quickly in the initial
period, before it settles as the ballast stabilizes. This is called the break-in period, and
full stability of the track is typically anticipated after a trainload of approximately 100
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Chapter 2. Turnouts & the Railway Universe

Figure 2.3: Tamping machine. ©Plasser and Theurer.

000 tons, Jensen (2016). Tracks are therefore frequently tamped in the break-in period, to
ensure that the tracks settle (close) to optimal geometry.

In addition to setting new tracks, tamping is generally the response when the measured
track geometry exceeds some pre-defined limits at a later stage. Tracks are typically re-
adjusted every 1-5 years depending on the accumulated tonnage and the geometric con-
ditions. Furthermore, as the ballast slowly degrade, the forces between wheels and rails
increase (interaction forces due to irregularities in tracks or wheels are known as dynamic
forces, whereas the weight of the train itself is called a static force). The increased dy-
namical forces accelerate structural fatigue in the rails (cracks) and surface wear (abrasive
wear, plastic flow, corrugation, and creep, to mention a few, Jensen (2016). These, in turn,
increase the contact forces further driving the geometric deterioration. It is, therefore,
crucial to limit the dynamic forces to a minimum, and the presence of this vicious circle
is well known to all companies responsible for maintaining railway infrastructure. That
brings the decision problem of when to schedule track maintenance because the actions,
on the one hand, are themselves costly and cause delays, but on the other, keep the track
geometric nice and crisp and reduce the dynamical forces and thus the track wear and
maintenance needed in the future.

8



Chapter 3
Data

The data sets considered are provided by Banedanmark, the Danish railway infrastructure
manager, and they are made anonymous to comply with their data policy. Three data sets
are used: The track geometry recordings, the tamping records, and the manual service
history, including routine inspections, smaller repairs like track welding, and complete
turnout renewals.

3.1 Track Geometry Data
Track geometry data is recorded by a track inspection car (TIC), Figure 3.1. The TIC reg-
ularly inspects the Danish railways, travelling the network at up to a speed of 120 km/h. A
railway segment (straight tracks or turnouts) is recorded 1-6 times a year, depending on the
admissible track speed (the quality class) and the traffic volume. The TIC is equipped with
a range of sensors, including inertial measurement systems, lasers, and cameras, monitor-
ing various aspects of the rail surface, track geometry, and the surrounding vegetation.
In particular, the TIC collects the track geometry measurements, which are a range of
measures of the vertical and lateral rail movement, sampled every 25 cm. The resulting
data series resembles the various aspects of track evenness. For every sample taken, the
following geometric features are measured:

• Level. Sometimes also called vertical profile. The vertical deviations, from a refer-
ence line (see below). Left and right rail are measured independently. Figure 3.2.

• Alignment. The horizontal deviations (lateral/sideways movement) from a reference
line. Left and right rail are measured independently. Figure 3.2.

• Gauge. The perpendicular distance between the left and right rail, given as the
deviation from the optimal rail spacing. Figure 3.3.

• Cant. The height difference between the left and right rail. Figure 3.3.
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Chapter 3. Data

Figure 3.1: Track inspection car (TIC), the Eurailscout UFM 120. ©Fisher (2014).

The reference line is computed as the moving average of the surrounding 65 meters for
each rail, see Jensen (2016). Some variables, like gauge, are easily defined as the distance
between the rails. The level and alignment, however, are measured independently
on each rail, relative to this moving average reference line.

By European standard EN 13848-1, the measurements of level and alignment are fil-
tered and divided into three signals with different frequency content: ”short wavelength”
λ ∈ (3, 25), ”long wavelength” λ ∈ (25, 70), and finally λ ∈ (70, 150) (typically only
used to monitor dams and other geo-technical structures, Jensen (2016)). Wavelengths
shorter than 3 m are filtered out and not available from the TIC. The data set has a large
proportion of missing values for alignment D2 (long wavelength), and this part of
the signal is therefore discarded for the analysis. The variables are summarized in Ta-
ble 3.1.

Variable Description

Level R D1 Vertical deviation, right rail, short wave period
Level L D1 Vertical deviation, left rail, short wave period
Level R D2 Vertical deviation, right rail, long wave period
Level L D2 Vertical deviation, left rail, long wave period
Alignment R D1 Horizontal deviation, right rail, short wave period
Alignment L D1 Horizontal deviation, left rail, short wave period
Gauge Track gauge - the spacing between the rails
Cant Track banking - height difference between the rails

Table 3.1: Summary of the track geometry measurements used in the analysis.
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3.1 Track Geometry Data

Figure 3.2: Illustration of alignment (a) and level (b), measured separately for each rail. The
dashed lines illustrate the horizontal and vertical reference lines.

Figure 3.3: Illustration of cant (a) and gauge (b).

Transforming the Driving Direction: A Small Warning

The driving direction of the measurement car has been standardized in a data prepara-
tion procedure by Hovad et al. (2019). The data is initially not well aligned spatially, nor
recorded with the same driving direction every time. Hence some turnouts are measured
while in a right turn, in a left turn, facing direction or opposite direction. The combina-
tion of all these configurations means the data is initially not comparable. Hovad et al.
(2019) applied a series of variable transformations to make the data uniform, ensuring that
the measurement is the same standard movement (travelling direction and cornering direc-
tion). The data preparation comes with a small precaution, as the authors found that the
driving direction had some influence on the measurements of alignment L D1, gauge,
and cant (i.e. driving direction of the TIC matters for the measured geometry, which in-
troduces problems when the measurement series are ”flipped” for standardization). This
is the price to pay for using the track geometry data for turnouts as the measurements
need to be of uniform direction, and that introduces a bit more noisy results than if all
were collected the same way. That means that one should be cautious with results that
alternate between two clear patterns, as this might indicate that the TIC sometimes travels
the turnout in the opposite direction than usual. One such possible event is noted in the
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Chapter 3. Data

results.

3.2 Repair & Maintenance Records
Two data sets of maintenance records are considered. The first is the tamping history of
each turnout. The other data set contains both inspection and maintenance orders, except
for the tamping interventions. The maintenance records do not play a large role in this
work but are used to make sure the chosen cases are not ”contaminated” with geometry
altering repairs (such as the complete renewal of the turnout, for example). The mainte-
nance action for track adjustment, tamping, is included in the analysis to investigate the
effect it has on the track geometry. The motivation for including tamping and neglecting
minor repairs, like tightening bolts and surface grinding, is the following:

Track geometry data is commonly used to assess the need for tamping the ballast (Tzanakakis
(2013) and Jensen (2016)). The data is not, however, well suited to detect minor faults like
loose bolts or perhaps even surface cracks. This is partly due to the sampling rate of track
geometry measurements (every 25 cm, while surface defects are typically 1-2 cm long,
Molodova et al. (2013)), the movement range measured (the vertical deviations of a typi-
cal surface defect are around 0.02 mm, while geometry variables can easily vary between
± 10 mm over a turnout, Molodova et al. (2014)), and the international standards of stor-
age, discarding the signal content of wavelength less than 3 m, Jensen (2016). Simply put,
track geometry measurements capture smoother and larger deviations better than small
abrupt faults leading to minor high-frequency fluctuations (such fault are still important
to capture, but typically found using acceleration box data, see Chapter 1). Track adjust-
ment campaigns are therefore the primary maintenance type to take into account for track
geometry data.

3.3 Cases
Three turnouts in the data material are analyzed, presented in Table 3.2. Periods of obser-
vations are chosen so that each turnout is recorded nine times, during which periods two
of the turnouts underwent track adjustments, while one did not. Furthermore, there are
not reported any (other) major geometry-altering repairs or renewals of the case turnouts.
However, it must be emphasized that there may be maintenance events missing from the
records, according to Banedanmark officials.

Turnout A Turnout B Turnout C

First Observation 2014-02-22 2013-03-09 2012-06-23
Last Observation 2016-11-05 2016-11-05 2016-11-05
No. of observations in Period 9 9 9
Days Since Renewal (1st obs.) 3614 6642 5652
Track Adjustments in Period 0 1 1

Table 3.2: Observation period and count, age, and track adjustments of the case turnouts.
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3.4 Techniques for Track Geometry Monitoring

Each turnout is measured as follows: The measurements of the turnouts start 10 meters
in front of the switch blades and extend 10 meters behind the crossing nose, to ensure
that no important information is missed. The specific switch treated in this analysis is
approximately 43 meters long and measurements are taken every 25 cm, for every variable.
One full observation of the whole segment consists of eight variables à 250 samples, Table
3.3. Figures 3.4 and 3.5 illustrate a track record, plotting the geometric measurements of
turnout B, recorded 2016-11-05.
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Figure 3.4: Track geometry measurements of turnout B, recorded 2016-11-05.

Sampling frequency 4 (every 0.25 m)
Total no. of samples 250
Turnout length 42.5 m
Measurement length 62.5 m

Table 3.3: Sampling of the turnout track geometry.

3.4 Techniques for Track Geometry Monitoring
The practice of most railway infrastructure managers in the world, including Norway,
Sweden, and Denmark, is to assess track quality by setting thresholds for point failures
(deviations in a single track geometry measurement) and unevenness (standard deviation
used for longer track segments), Soleimanmeigouni et al. (2018), Jøndrup (2019) and EN
13848-1. Although a well-proven method for monitoring the condition of straight tracks, it
is not so easily applied to turnouts, because S&Cs generally cause much larger variations
in the recordings than seen on straight tracks and even a great variability in geometry
between different turnout types. This entails limited usage of track geometry data for
S&Cs, necessitating frequent and extensive manual inspections as a consequence.

The Danish national standards for track geometry intervention limits (concerning data
gather from the TIC, not manual measurements) are ”Banenormerne BN1-38: Sporbe-
liggenhedskontrol og sporkvalitetsnormer”, Jøndrup (2019). The geometry is assessed in
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Figure 3.5: Track geometry measurements of turnout B, recorded 2016-11-05.

two ways:

• Point faults. If the deviations of the measurements exceed a defined threshold, the
track will have to be adjusted within a short period of time, and the allowed speed
limit will be lowered temporarily. A point fault found in a turnout will initiate a
manual inspection to localize the potential fault.

• Unevenness. The track unevenness is assessed by the mean of the standard devia-
tions of level(r) and level(l), and alignment(r) and alignment(l)
over segments of specified length, typically 200 m, Jensen (2016). These statis-
tics are used to plan to tamp in long stretches, but not used to schedule tamping in
turnouts.

To keep the discussion of geometric degradation informed when testing the continuous and
the discrete wavelet transform, the standard deviations of the vertical and horizontal are
added to the results for comparison. Point faults are not considered, as the work is focused
on measures of the gradually worsening geometry, rather than the function or malfunction
of specific parts. Besides, the point failures are defined by subjectively set thresholds, and
even though the standard deviations are also used with this kind of heuristics, the develop-
ment of the standard deviations themselves are interesting for the results and discussion to
compare track unevenness.
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Chapter 4
Wavelets

The first section of this chapter introduces the essential concepts of time-frequency analy-
sis and the general idea of wavelet transformations. The second section treats the contin-
uous wavelet transform (CWT), and demonstrates a handful of different wavelets applied
to the geometry measurements. The third section walks through the foundation for the
discrete wavelet transform (DWT) and briefly discusses the discrete wavelet analyzing
properties.

4.1 Time-Frequency Analysis
The goal of time-frequency analysis is to obtain information on a signal in terms of both
it’s time and frequency content. A continuous signal f(t) gives the perfect resolution in
time, meaning that, for any given time t0, the signal value f(t0) is determined exactly. In
many cases, however, one is more interested in the frequencies found in the signal around
that time t0. Playing the piano, for instance, requires not only to know the intensity (like
a crescendo), but also what key to play - the frequency. The problem of playing the piano
by just reading the pressure wave amplitude f(t) of a song is that it has no frequency
resolution (not listening, however, as it turns out that up to a normalizing constant, the
inner ear actually performs a wavelet transformation itself, see Daubechies (1992)).

The Fourier transform, on the other hand, maps the signal in it’s entirety to the frequency
domain. Effectively, this is a change of basis of the signal to sines and cosines, and the sig-
nal may now be assessed as a function of frequency, f̂(ξ). The transform and it’s inverse is
defined in Appendix A. This very general ability of mapping functions between time and
frequency domains constitute the foundation for everything from radar detection technol-
ogy, representing images and music, and fast computations and algorithms in computers.
The Fast Fourier Transform (FFT) is considered the backbone of modern electronics, and
Gilbert Strang named it ”the most important numerical algorithm of our lifetime” Strang
(1994). The Fourier transform of a signal has perfect frequency resolution and no time
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resolution. Figure 4.1 displays (generically) the time and frequency resolution of a signal
in a time series and a Fourier representation, and illustrates how signals can be chopped
up in either arbitrary fine pieces in time, or in arbitrary fine pieces of frequency.

Since one can represent a signal perfect in either time or frequency, it is tempting to ask if
it can be represented in both time and frequency simultaneously. To see why that is a bit
of a problem, consider the following.

A natural way to think of frequencies is by their inverse, the wavelengths. Think of sea
waves that pass your stationary boat, floating in the open ocean. You might have an idea
about when the wave arrives and when it has passed, but what is it’s location, exactly?
Simply because the wave spans several meters (or taking a small portion of time to pass
the boat), knowing the exact position is impossible. A shorter wave takes up less space and
passes the boat faster, and may be more precisely localized than the large ones. However,
pinpointing the wave exactly is yet not possible, as it still has a certain extent. Thus, some-
thing observed in the frequency domain (the waves in the water) may be localized in time
or space only to a certain degree of precision (even if we are staring really, really hard at it).
This result is what is formalized in the famous uncertainty principle of Werner Heisenberg
(often associated with quantum mechanics, as the wave properties of very small particles
lead to a trade-off between determining the position and momentum).

While the idea of the Fourier transform is to apply an integral convolution to the signal and
a basis of harmonics with infinite support (or equivalently, infinite energy), the basic idea
of the wavelet transform is to use a basis of small waves, the so-called wavelets. Wavelets
have finite energy, and thus good localization properties in both time and frequency. By
scaling and shifting the wavelet, one can control it’s frequency content and position rel-
ative to the signal, in turn affecting what it will pull out from the signal convolution (the
transform). Figure 4.2 shows the generic picture of varying the resolution of time and fre-
quency, the trade-off imposed by the uncertainty principle. The plot to the right of Figure
4.2 shows the wavelet transform, performed by iterative re-scaling of the wavelet to match
various parts of the signal frequency content, while shifting it along the signal for each
”level” (scale).

The left plot shows the Short-time Fourier transform (STFT), noted for comparison and
defined in Appendix A. The STFT divides the signal into pieces of constant length, and
then Fourier transforms the content within each piece, obtaining some time localization
to the cost of losing the wavelengths that exceed the window length. We can understand
even more of the basic drawings that explain the idea of scaling and translation of wavelets
with the Heisenberg uncertainty in mind. A single box in these plots is often referred to
as an ”atom” or ”Heisenberg box” in the literature since their minimal area is bounded by
the product of the uncertainty in time and frequency, see for example Mallat (2009). The
important point is to note that the area of the boxes in Figure 4.2 is constant (although
the artistic skills of the author may not do the Heisenberg uncertainty principle proper
justice).
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4.2 The Continuous Wavelet Transform

Figure 4.1: Generic picture of a time series analysis (left) and a Fourier analysis (right).

4.2 The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is an integral transformation of type

(Tf)(ω) =

∫
dxK(x, ω) f(x), (4.1)

transforming some function f(x) to a new function (Tf)(ω) of different parameters. The
kernel K (also called analyzing function), a wavelet, is stretched and dilated in order to
pick up different frequency content as tightly localized as possible. The transform results
in a coefficient for every particular choice of scale and translation, and repeating the trans-
form for different scales and translations of the wavelet results in a map of coefficients,
describing the time and frequency content of the signal.

Figure 4.2: Time-frequency resolution of the Short-time Fourier transform (left), and the wavelet
transform (right).

One could restrict the analyzing function to obtain a better time localization. Figure 4.4
shows a short impulse, very compact in time. As a result, bandwidth in the Fourier do-
main is extremely wide, showing the trade-off between the ability to localize of time and
frequency content tightly.
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Figure 4.3: A sine wave, frequency 5, in time domain (left) and Fourier domain (right).

4.2.1 Wavelets

The criterion for an analyzing function to be a wavelet is called the admissibility condition,
defined as follows.
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Figure 4.4: A short and abrupt chirp signal and it’s corresponding Fourier transform. The impulse
is tightly localized in the time domain, but the frequency content of the signal is wide spread .

Definition 4.2.1. The admissibility condition. A wavelet ψ(t) is admissible if ψ ∈ L2(R),
and it satisfies

Cψ = 2π

∫
dξ |ξ|−1 |ψ̂(ξ)|2 <∞, (4.2)

where ψ̂(ξ) denotes the Fourier transform of ψ(x).

The admissibility condition must be satisfied by the wavelet for the CWT to be well de-
fined, as it will be clear that a wavelet that results in an unbounded Cψ will just blow up
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4.2 The Continuous Wavelet Transform

the transform. For practical purposes, the admissibility condition is equivalent to∫
dxψ(x) = 0, (4.3)

Daubechies (1992), since wavelets used in analysis are usually imposed a more ”strict”
decay than needed to satisfy the admissibility condition.

Furthermore, let different wavelets ψ(x) be generated from a mother wavelet, indexed by
a scale parameter a, setting the dilation of the wavelet, and by a translation parameter b,
deciding the position of ψa,b(x) relative to the signal f(x).

Definition 4.2.2. The mother wavelet. Wavelets can be generated from a mother wavelet,

ψa,b(x) = |a|−1/2 ψ

(
x− b
a

)
, (4.4)

where a, b ∈ R, a 6= 0 determines the scaling and translation.

4.2.2 Transform
The CWT is parameterized with the scale a and translation b of the mother wavelet and
defined as follows.

Definition 4.2.3. The continuous wavelet transform.

(Tf)(a, b) =

∫
dx f(x) |a|−1/2 ψ

(
t− b
a

)
(4.5)

= 〈f, ψa,b〉, (4.6)

where (Tf)(a, b) is a new function of the two parameters scale and translation, ψ(·)
denotes the complex conjugate, and 〈 , 〉 the L2-inner product.

The transform is linear,

α(Tf)(a, b) + β(Tg)(a, b) = (T (αf + βg))(a, b), (4.7)

which means the sum of the transform of each variable is the same as the transform of
the sum of all variables, which will allow us to compute the scalogram directly from the
aggregated signal.

Furthermore, the original signal can be recovered analytically by the so-called resolution
of the identity, yielding

f = C−1ψ

∫ ∞
−∞

∫ ∞
−∞

da db

a2
〈f, ψa,b〉ψa,b, (4.8)

where 〈f, ψa,b〉 is the coefficients for the particular scaled and dilated wavelet ψa,b, and
Cψ the wavelet admissibility constant. This is the reason why the mother wavelet must be
bounded, as the inverse transform would not exist otherwise.
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Proposition 4.2.1. The inverse wavelet transform. For all f, g ∈ L2(R),∫ ∞
−∞

∫ ∞
−∞

da db

a2
(Tf)(a, b)(Tg)(a, b) = Cψ〈f, g〉. (4.9)

The proof as given by Daubechies (1992) is written in appendix.

When choosing wavelets for a given problem, it is sometimes required to have a fine
localization, sometimes required to have a fine frequency resolution, depending on the
practical application. Formal measures of wavelets’ spread in time and frequency are for
example the wavelet variance in space (or time) and frequency:

σ2
x =

∫
(x− 〈x〉)2 |ψ(x)|2 dx, (4.10)

and

σ2
ξ =

1

2π

∫
(ξ − 〈ξ〉)2 |ψ̂(ξ)|2 dξ, (4.11)

where 〈x〉 and 〈ξ〉 denotes the expectation in space and frequency, respectively. This leads
to the formal result that limits the trade-off between resolution and localization:

Theorem 4.2.1. The Heisenberg Uncertainty principle. The product of uncertainty (the
variance) in time

σ2
x =

∫
(x− 〈x〉)2 |ψ(x)|2 dx, (4.12)

and in frequency

σ2
ξ =

1

2π

∫
(ξ − 〈ξ〉)2 |ψ̂(ξ)|2 dξ, (4.13)

is always constrained by the inequality

σ2
x σ

2
ξ ≥

1

2
, (4.14)

see for example Kutz (2013), relating directly to the resolution trade-off in Figures 4.1 and
4.2.

4.2.3 Scale and Characteristic Frequency
To implement the continuous wavelet transform, a range of scales must be set to match
the frequency content one would like to analyze. The signals in question are filtered (a
least in the case of horizontal level and vertical alignment), with resulting period
λ ∈ (3, 75) m. To match this with the frequencies of the various mother wavelets, we must
utilize their ”representative” frequencies. Several representative frequencies are used to
describe wavelets. However, since a wavelet actually contains a multitude of frequencies,
not just one as for the Fourier analyzing functions, there are a couple of ways to choose
this representative frequency:
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4.2 The Continuous Wavelet Transform

• Peak frequency fp. The frequency with the highest energy (the peak) in the wavelet
energy spectrum.

• Band-pass frequency fc. The second-order moment of the wavelet energy spectrum.

• Central frequency f0. The frequency peak of the wavelet in the Fourier domain.

The wavelet energy spectrum is defined as

Definition 4.2.4. The Wavelet Energy Spectrum. The energy spectrum of a wavelet is
given as the squared modulus of the wavelet in Fourier domain,

E(ξ) = |ψ̂(ξ)|2, (4.15)

where ξ denotes frequency.

From the mother wavelet, we see that the choice of scale has an inverse relationship with
the frequencies of the wavelet (controlled by the parameter a in the argument).

ψa,b(x) = |a|−1/2 ψ

(
x− b
a

)
, (4.16)

Both the peak, band-pass, and central frequency will serve as a representative frequency f
and satisfy the inverse relationship with the scale a:

f ∝ 1

a
, (4.17)

Addison (2017). The central frequency f0 is chosen here, so the representative frequency
for a given scale is

f =
f0
a
, (4.18)

often known as the pseudo-frequency.

Setting the correct scales is illustrated with the complex Morlet wavelet (on of three
wavelet candidates considered below). The choice of continuous wavelet is not chang-
ing the nature of the CWT results, but there are some that fit the specific demands of
resolution better than others, as we will see. The complex Morlet wavelet, Figure 4.5, is
a typical wavelet to use for analysis, and especially for signal from material responses,
Addison (2017). It consists of a Gaussian envelope and a complex exponential, and being
complex it captures information about both amplitude and phase. It is given as

ψ(x) = π−1/4 exp

(
−x2

2

)(
exp(2πif0x)− exp

(
2πf0)

2

2

))
, (4.19)

where f0 denotes the central frequency. The term exp((2πf0)
2/2) is a correction for a

nonzero mean of the complex exponential, but is usually dropped as the deviation from
zero becomes negligible for frequencies f0 � 0, Addison (2017). It then takes the nicer
form of

ψ(x) = π−1/4 exp

(
−x2

2

)
exp(2πif0x), (4.20)

21



Chapter 4. Wavelets

where the first term is the normalization to ensure unit energy, the second is the Gaus-
sian envelope, and the third the complex exponential with the real cosines and imaginary
sines.
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Figure 4.5: The Complex morlet wavelet and it’s Fourier transform. The solid and the dotted line
in (a) represents the real and imaginary part, respectively. It consist of an complex exponential as
signal carrier and a Gaussian envelope ensuring decay. Since the wavelet is complex it has only
nonzero frequencies.

The Fourier transform of this wavelet is

ψ̂(ξ) = π1/4
√
2 exp

(
1

2

(
2πξ − 2πf0

))
. (4.21)

The central frequency is set to f0 = 0.8 (a value around
√
1/2 ln(2) ≈ 0.849 is commonly

used for the complex Morlet, see for example Addison (2017). With an central frequency
of f0 = 0.8 we get

fupper =
1

3
=

0.8

a
aupper = 2.4 (4.22)

flower =
1

75
=

0.8

a
alower = 60. (4.23)

Table 4.1 displays the corresponding scales, periods and frequencies. Setting the scales
for the other wavelets can be done in similar fashion.

The Mexican hat wavelet, Figure 4.6, and the real Morlet wavelet, Figure 4.7, are classical
wavelets and therefore also natural candidates, Mallat (2009). The Mexican hat has it’s
name from the characteristic shape, and is constructed by taking the second derivative of
a Gaussian:

ψ(x) =
2

π1/4
√
3σ

(
x2

σ2
− 1

)
exp

(
−x2

2σ2

)
. (4.24)
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4.2 The Continuous Wavelet Transform

Scale a Period (m) Freq. (m−1)

2.4 3 0.33
3.9 4 0.25
6.4 8 0.13
12.7 16 0.06
25.5 32 0.03
50.9 64 0.02

Table 4.1: The corresponding period, frequency and scales for a complex Morlet with central fre-
quency f0 = 5/2π ≈ 0.8.
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Figure 4.6: The Mexican hat wavelet and it’s Fourier transform

The Fourier transform also share the Gaussian shape,

ψ̂(ξ) =
−π1/4

√
8σ5/2

√
3

ξ2 exp

(
−σ2 ξ2

2

)
. (4.25)

The real Morlet wavelet is often advocated as a suitable wavelet for engineering purposes,
see for example Lin and Qu (2000). The real Morlet wavelet, often just called the Morlet,
is only the real part of the complex version:

ψ(x) = exp

(
−t2

2

)
cos(5t). (4.26)

In the Fourier domain, it is given by

ψ̂(sξ) = π−1/4 exp

(
−(sξ − ξ0)2

2

)
U(sξ), (4.27)

whereU(·) is the Heaviside function. Figure 4.7 displays the Morlet and it’s corresponding
Fourier transform, showing only the real part of the signal.
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Figure 4.7: The real Morlet wavelet and it’s Fourier transform

4.2.4 Scalograms

The continuous wavelet transform is typically plotted in a heat map as function of scale a
and translation b (so-called scalograms), giving either the transform coefficients directly,
T (a, b), or the two-dimensional wavelet energy distribution E(a, b) = |T (a, b)|2. Prac-
tice differs in the literature of whether one focuses on the coefficients themselves or the
energy spectrum. There are several advantages to the energy representation, as the sum
of the coefficients can be interpreted as the total energy in the signal. For computational
purposed one have to bear in mind that the CWT utilizes a redundant basis, so it does
not preserve energy. However, transformations with the same wavelet and the same set of
scales/translations will still compare relative to each other.

Finally, one may, of course, normalize the plots to have either unit energy (coefficients
sum to one) or peak energy 1 (divide by peak energy), for example, since the visualization
is dependent on setting the colour map levels to some minimum and maximum values.
Torrence and Compo (1998) took a more statistical point of view and normalized the co-
efficients by their variance. By plotting T (a, b)/σ2, σ2 = Var[T (a, b)], they obtained a
better understanding of whether the coefficients were statistically significant. However,
normalizing the transform result in this way has the adverse effect that the scalograms be-
come difficult to compare to each other, destroying the trends when observing long term
behaviour. Unit variance would not make sense as the development of the geometry will
also give development in variance. The same argument goes with unit energy, as the en-
ergy level in the signal is changing over time, perhaps even being the primary statistic of
interest. The approach when comparing scalograms developing over time, therefore, is
to set the extreme colour level to the maximum peak energy found in the period one is
considering, as this allows the development to be easily followed, visually. To illustrate
the properties of the different wavelets, a signal sample from the left rail alignment,
turnout A, is chosen for the CWT, Figure 4.8.

Figure 4.9 shows the complex Morlet applied to the illustration signal, with one scalogram
for the real coefficients representing the amplitude and one scalogram for the imaginary
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Figure 4.8: Track geometry measurement for wavelet comparison: Alignment(l), turnout A,
recorded 2016-05-08.

part representing the phase. The complex wavelet is practical in the settings where the
signal phase changes are important, as this is captured by the complex exponential lying
in the core of the complex Morlet. This work first and foremost explores the power of
the various frequency components at different locations along the turnout; Thus it is inter-
esting to assess the amplitude and the squared amplitude (energy) of the signal. For the
complex Morlet, this is shown in Figure 4.10. The energy content is smeared due to the
combination of the two components. Figure 4.11 shows the CWT using the Mexican hat
wavelet, applied to the example signal. The Mexican hat has a characteristic frequency
of fc =

√
5/2/2π ≈ 0.251, Addison (2017). The left plot shows the absolute value

(the magnitude) of the transform. The observed features/nodes seem to be well separated
in the spatial direction but at the cost of somewhat blurry frequency content. The right
plot of Figure 4.11 displays the squared absolute value of the coefficients, |Tf |2, the ”en-
ergy spectrum”. Plotting the energy spectrum, it is still easy to determine the high energy
concentrations in the picture and, at the same time, there is possible to see some other de-
tails and get an idea of their relative strength and significance. Finally, Figure 4.12 shows
the resulting CWT using the real Morlet. This wavelet information about the magnitude
only, similar to Figure 4.11. Again, the reasonable visualization seems to be the energy
spectrum, which both enable the identification of the major modes and locality, and still
provide a reasonable amount of detail.

4.3 The Discrete Wavelet Transform and Multiresolution
Analysis

Resembling the information stored in images, voice signals, or other types of data by
wavelet transform coefficients, we may not want just to visualize the information in nice
scalograms. More importantly, we often want the signal to be represented uniquely (so
that different information remains different), but also as compactly as possible (using few
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Chapter 4. Wavelets

Figure 4.9: The real coefficients (left) and the imaginary coefficients (right) of the CWT with the
complex Morlet wavelet (bandwidth 4, centre frequency 0.82), applied to the example measurement.

Figure 4.10: The coefficient amplitude (left) and the amplitude squared (right) of the CWT with the
complex Morlet wavelet (bandwidth 4, centre frequency 0.82), applied to the example measurement.

coefficients).

Mathematically speaking, this depends on the choice of basis functions used for decom-
posing the signal. If they share properties (i.e. their inner product is nonzero), the contribu-
tions from the signal may be picked up by several basis functions, leading to redundancy in
the coefficients, meaning more than one coefficient carries the same piece of information.
On the other hand, if the signal spans a space that the basis functions do not fully reach,
we will fail to represent all information in the signal, leading, ultimately, to a disappointed
Netflix-user when half of the image was lost in the decomposition. And so, the next step
of the chapter to build a framework where bases of mutually orthogonal wavelets can exist
and have a good time. This framework is called Multiresolution Analysis (MRA), one of
the 1990s greatest mathematical inventions.

One can extend the idea of the wavelet transform to Multiresolution analysis and com-
plete/orthogonal wavelet bases as follows. By only allowing the scaling and translation to
be done in discrete steps m and n, it is possible to find a wavelet family ψm,n that is com-
plete, or in other words constitutes an orthogonal basis, as this allows the exact expansion
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4.3 The Discrete Wavelet Transform and Multiresolution Analysis

Figure 4.11: The coefficient amplitude (left) and the amplitude squared (right) of the CWT with the
Mexican hat wavelet (centre frequency 0.25), applied to the example measurement.

Figure 4.12: The coefficient amplitude (left) and the amplitude squared (right) of the CWT with the
real Morlet wavelet (centre frequency 0.80), applied to the example measurement.

of the signal f(x):

f(x) =
∑
m,n

〈f, ψm,n〉ψm,n. (4.28)

This allows the expansion of a signal into orthogonal wavelet bases, just as one would
expand a signal into its Fourier modes/basis functions.

4.3.1 Discrete Wavelets
Consider again the generic construction of the discretized mother wavelet, using integers
j, k ∈ Z to scale and translate the wavelet. By discretizing the parameters,

a = am0 , b = nb0a
m
0 , (4.29)

one obtains discretized version of the mother wavelet:

Definition 4.3.1. The discrete mother wavelet. Discrete wavelets, indexed by m and n
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are generated by

ψm,n(x) = a
−m/2
0 ψ

(
x− nb0am0

am0

)
, (4.30)

where a0, b0 ∈ R, a0 6= 0 as before, and m,n ∈ Z scale and translate the wavelet.

Analyses in MRA are done in log2-scale and the translation in steps of one. Set a0 = 2
and b0 = 1 to obtain

ψm,n(x) = 2−m/2 ψ(2−mx− n). (4.31)

Intuitively, this results in halving the scale of the wavelet for every increment ofm (dyadic
scaling), whereas n slides the wavelet around. Next, define the orthogonality of wavelets,
as this will be needed to have an informed discussion of basis functions.

Definition 4.3.2. Orthogonality. Two wavelets ψm,n and ψj,k are said to be orthogonal
if their inner product satisfies

〈ψm,n, ψj,k〉 =
∫

ψm,n(x)ψj,k(x) dx (4.32)

= δmj δnk, (4.33)

where δij is the Kronecker-delta

δij =

{
0, for i 6= j,

1, for i = j.
(4.34)

Thus, the inner product of orthogonal wavelets are nonzero if and only if they have equal
level of dilatation (m = j) and position (n = k), i.e. ψm,n = ψj,k, in which case the inner
product is exactly 1.

4.3.2 Multiresolution Analysis
The following presentation is based on Daubechies (1992), and Kutz (2013). The notation
of authors on the topic differs in the convention of using 2m or 2−m as the scaling factor.
The notation here is adapted to using 2−m, making it align with the (somewhat untypical)
view fronted by Ingrid Daubechies.

Consider a sequence of subspaces Vj , embedded/nested within each other

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · · , (4.35)

with five specific properties determining how the subspaces are related, scales, and spans
L2(R):

(i)
⋂
j∈Z Vj = {0},

(ii)
⋃
j∈Z Vj = L2(R),

(iii) f ∈ Vj ⇐⇒ f(2j ·) ∈ V0,
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4.3 The Discrete Wavelet Transform and Multiresolution Analysis

(iv) f ∈ V0 =⇒ f(· − n) ∈ V0, for alln ∈ Z, and finally,

(v) A scaling function φ ∈ V0, such that the sequence of functions {φ0,n = φ(x− n)}
consitute an orthogonal basis for V0, and, for all j, n ∈ Z, φj,n = 2−j/2 φ(2−j/2x−
n).

Property (i) states that the intersection of all subspaces Vj is the empty set, while (ii) states
that the span of the union of all subspaces is equal to the space of square-integrable func-
tions, L2(R). This ensures that the limit of orthogonal projections Pj onto the subspace at
level j converge to the actual function

lim
j→−∞

Pjf = f ∀f ∈ L2(R), (4.36)

as one move up the ladder of ”resolution”.

The concept of multiresoultion stems from (iii), which determines how the subspaces
scale. The subspaces Vj can be seen as just scaled versions of the reference space, V0.
If a function f is contained in Vj , then it is also contained in V0 if one multiply it’s ar-
gument by 2j (effectively scaling the signal by j octaves, for the do-re-mi enthusiast).
Property (iv) ensures invariance under integer translation, meaning that if a function f is
in Vj , so does the n-translated version of it. Combining (iii) and (iv) yields

f ∈ V0 =⇒ f(· − n) −→ f(· − 2jn) ∈ Vj ∀n ∈ Z. (4.37)

Because the sequence of subspaces Vj are nested,

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · · , (4.38)

one can decompose subspace Vj into the subspace Vj+1 and compliment of Vj+1 in
Vj :

Vj = Vj+1 ⊕ Wj+1. (4.39)

The subsetWj+1 is the orthogonal complement of Vj+1 inside the subspace of Vj , in other
words what is ”missing” of Vj on the lower level of resolution Vj+1:

Vj+1 ⊥ Wj+1. (4.40)

Orthogonal compliments on different levels of resolution are therefore themselves orthog-
onal,

Wj ⊥ Wj′ for j 6= j′. (4.41)

Recursively decomposing the subspaces Vj , one obtains
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Vj = Vj+1 ⊕ Wj+1

= Vj+2 ⊕ Wj+2 ⊕Wj+1

= Vj+3 ⊕ Wj+3 ⊕Wj+2 ⊕Wj+1

...

Vj = VJ ⊕
J−j⊕
k=1

WJ−k, (4.42)

which showes the increasing level of signal detail captured by the orthogonal compliments
Wj . Finally, expanding all the way to j = ±∞, the sum of the contributions span the
space of L2(R) (properties of (i) and (ii)):

L2(R) =
⊕
j∈Z

Wj . (4.43)

Note that the subspacesWj also have the scaling property as Vj (iv), f ∈Wj =⇒ f(·2j) ∈
W0, for alln ∈ Z.

What makes the multiresolution approach work is the fact that, whenever we have a con-
struction satisfying properties (i-vi), there exists an orthonormal wavelet basis of L(R2),
{ψj,k, j, k ∈ Z}, generated by ψj,k = 2−j/2 ψ(2−j/2−k) such that for all f ∈ L(R2),

Pjf = Pj+1f +
∑
k∈Z
〈f, ψj+1,k〉ψj+1,k(x) (4.44)

where Pj denotes the orthogonal projection operator onto Vj . By including all levels of
resolution j we get

f =
∑
j∈Z

∑
k∈Z
〈f, ψj,k〉ψj,k(x). (4.45)

The result is summarized in this theorem, as given in Daubechies (1992):

Theorem 4.3.1. Existence of an orthogonal, discretized wavelet basis. Suppose the col-
lection {Vj} is a multiresolution of L2(R) satisfying properties (i)-(v), there exists a cor-
responding wavelet basis {ψj,k; j, k ∈ Z} such that

Pj = Pj+1 +
∑
k∈Z
〈·, ψj+1,k〉ψj+1,k(x). (4.46)

The wavelets ψ may be constructed by the relation

ψ(x) =
√
2
∑

(−1)n−1 c−n−1 φ(2x− n), (4.47)

where
cn = 〈φ, φ1,n〉 =

√
2

∫
dxφ(x)φ(2x− 1). (4.48)
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4.3 The Discrete Wavelet Transform and Multiresolution Analysis

There is certainly more to be said to make this a more complete introduction, however,
this will suffice to have an intuition and some formal knowledge about how a signal is
represented in a wavelet basis. Figure 4.13 illustrates how the MRA is implemented, re-
peatedly splitting the signal into approximation (Vj) and detail (Wj) levels. The detail
and approximation at each level may be interpreted as a high- and low-pass filters, respec-
tively, which leave coarser and coarser signal approximation left as the finer details are
pulled out.

Figure 4.13: The discrete wavelet transform implemented as a multiresolution analysis, recursively
decomposing the signal into finer and finer detail coefficients.

4.3.3 Vanishing Moments, Regularity, and Support
Discrete wavelets function as discrete filters, with some length and some coefficient value
for every entry. Discrete wavelets are often described by their number of vanishing mo-
ments, where a moment is defined as

mk =

∫ ∞
−∞

f(x)xk dx. (4.49)

The vanishing moment of a wavelet is the polynomial order k a signal f may take, and still
integrate to zero with the wavelet (zero correlation), thus the moment mk ”vanishes”. A
wavelet with a high number of vanishing moments will be able to correlate with signals of
high regularity, or smoothness, and is, therefore, suitable to use for analysis with complex
signals (complex as in smooth and heavily fluctuating, not imaginary). The downside to
a high number of vanishing moments is that the wavelet has to be very wide, in order to
incorporate the sought after complexity. This means they have wider support and can be
scaled and translated to fewer levels and positions than more basic wavelets of a lower
order, although these cannot replicate a high order signal. As a consequence, a large part
of (discrete) wavelet design is about achieving a high number of vanishing moments for
the most compact support possible, for which the Daubechies wavelets have proven to
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Low-pass coefficients High-pass coefficients

h0 = 0.0026818146 g0 = -0.0102681767
h1 = -0.0010473849 g1 = 0.0040102449
h2 = -0.0126363034 g2 = 0.1078082377
h3 = 0.0305155132 g3 = -0.1400472404
h4 = 0.0678926935 g4 = -0.2886296318
h5 = -0.0495528349 g5 = 0.7677643170
h6 = 0.0174412551 g6 = -0.5361019171
h7 = 0.5361019171 g7 = 0.0174412551
h8 = 0.7677643170 g8 = 0.0495528349
h9 = 0.2886296318 g9 = 0.0678926935
h10 = -0.1400472404 g10 = -0.0305155132
h11 = -0.1078082377 g11 = -0.0126363034
h12 = 0.0040102449 g12 = 0.0010473849
h13 = 0.0102681767 g13 = 0.0026818146

Table 4.2: High-pass/low-pass decomposition filter coefficients for the Daubechies Symlet-7.

be optimal, Daubechies (1992). For the analysis, the Daubechies symlet-7 (7 vanishing
moments) is chosen, a wavelet which is based on the original Daubechies db wavelets, but
optimized with respect to symmetry, Mallat (2009). Table 4.2 shows the decomposition
filter coefficients for the symlet-7, Lee et al. (2019) (the reconstruction coefficients are not
used in the analysis and therefore not included).
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Method

Three turnouts from the data material have been selected for analysis, summarized in Table
3.2. They have been selected based on the following criteria:

• They have all been observed by the track inspection vehicle at least nine times,
recording track geometry data. This makes them suitable cases for studying long-
term track development.

• Two out of the three turnouts have undergone track adjustment (tamping) in the
period.

• One out of the three turnouts has not undergone track adjustment in the period.

• Except for the major tamping campaigns, the turnouts are only subject to minor
repairs (according to the repairs history) not believed to have a major effect on track
geometry (welding, tightening bolts, etc.).

• The turnout is not completely renewed in the period.

As a preliminary treatment of the track geometry data, the level D1 and level D2 sig-
nals (wavelength periods 3-25 m and 25-75 m) are added together, to analyze the signals
as complete as possible, concerning frequency content. Due to a large proportion of miss-
ing observations in alignment D2 for both left and right rail, only alignment D1 is
kept (wavelength period 3-25 m), and simply referred to as alignment. Furthermore,
the data is not rescaled or centred by e.g unit variance or unit energy, as this would defy
the goal of monitoring wear development and track adjustment effect over time.

The CWT and the DWT transformations are applied using Pywavelets, Lee et al. (2019), a
package for wavelet analysis in Python. The real Morlet wavelet is chosen for the contin-
uous wavelet transform. The properties of the various wavelet candidates are displayed in
Chapter 4, for which the real Morlet has favourable properties (although the qualitative re-
sult does not depend on the wavelet choice). For the discrete wavelet transform, the symlet
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7 is applied. The choice of the discrete wavelet, similar to the choice of the continuous
wavelet, is not affecting the qualitative results and comparisons, although the coefficient
values would change if applied with different wavelets, Addison (2017).

5.1 General Turnout Signature

First, a single track-recording campaign is considered for each of the turnouts, and the
CWT is applied to each measurement variable, to compare their relative strength. For a
given turnout, one measurement campaign is arbitrarily chosen from the nine campaigns
possible. Then each variable is transformed with the CWT, and the squared magnitude of
the coefficients are displayed in a scalogram, similar to the example in Chapter 4, Figure
4.12, right plot. The six scalograms, one for each variable, are normalized by setting
the extreme colour levels to the highest energy peak of the six transforms so that the
relative signal strengths can be compared. The procedure is repeated for the two remaining
turnouts so that the three ”signatures” can be compared to each other.

5.2 Geometric Degradation

The second step is the analysis of geometry development over time. For this, the turnout
without any associated major maintenance is investigated, exploring the ”natural” degra-
dation rate. Since each turnout observation consists of multiple geometry variables, the
development is considered by following one variable at a time. The CWT is applied to
every observation of a variable from the nine track-recording campaigns, resulting in a
sequence of nine scalograms for each variable. The sequences of scalograms are plotted
as the squared magnitude of the CWT coefficients, and normalized by setting the extreme
colour levels to the highest energy peak of the sequence. This allows for easy compari-
son between the turnout observed at different times, similar to the normalization approach
described above.

The standard deviations for the vertical and horizontal deviations are computed for com-
parison, since rules and regulations typically determine track quality in terms of the per-
mitted standard variation in the vertical and horizontal directions, see Chapter 3. These are
computed by taking the standard deviation of the alignment and level measurements
over the turnout segment in full length, averaging the left and right rail. The summary
statistics are given in tables with one row per track-recording campaign, for comparison to
the CWT-sequences.

Also, the discrete wavelet transform (DWT) is applied to a single variable of the turnout,
which has the signs of a monotonous wear path, judging from the CWT-sequence and
the standard deviations. The summed, squared coefficients of each detail level and each
measurement campaign are computed, to assess which detail levels that correspond to
the visually determined wear found with the CWT. The intention is to explore how the
DWT picks up on changes in track geometry, as this is less easily visualized than with the
CWT.
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5.3 Track Adjustments
The third and final part is the analysis of track adjustment effects. Here, the two turnouts
subject to tamping are investigated with the CWT, and the plots are sequences of scalo-
grams made similarly as for the geometry degradation. The only difference is that the
events of track adjustment campaigns are indicated in the plots, so it is easier to look for
changes in the geometry. Also in this part, the standard deviations for each campaign are
listed in a table for each turnout, for comparison to the CWT-sequences.
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Chapter 6
Results

The results are organized into three sections, with an approach as described in Chapter 5.
The first illustrates the general turnout signature, comparing the behaviour of the geometric
variables to each other, recorded in the same campaign. The second part investigates how
the track geometry deteriorates over time, monitoring the track geometry recorded over
several campaigns. The last part concerns the effect of track adjustments, assessing the
changes in the turnout geometry that occurs after a track adjustment, also monitored over
several campaigns.

The analysis of wear and tamping is done with the CWT. The results are compared to
the mean, standard deviation of vertical and horizontal directions, the current practice of
Banedanmark to assess track quality (but mainly used to assess long straight track seg-
ments). The various detail levels of the DWT are computed on a single example to in-
vestigate what levels respond to track development. The DWT detail level coefficients
are compared to the development seen from visual inspections (CWT) and the standard
deviations.

The CWT scalograms are visualized by plotting the squared magnitude of the coefficients,
interpreted as signal energy. The y-axes (the scale, indicating frequency) are inverted and
plotted in log2-scale (octaves), with units given as the wave period (wavelength in meters)
instead of frequency. The x-axes range from -10 to 50 meters, where 0 meters marks the
entry of the turnout (tip of the switch blades) and 40 meters the turnout exit, just behind
the crossing nose. The reader is encouraged to revisit the turnout sketch in Figure 2.1
and the illustrations of geometry measurements in Figures 3.2 and 3.3 if some terms are
unfamiliar.
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6.1 General Turnout Signature
Figure 6.1 shows turnout A, recorded 2016-05-08. Starting with the horizontal deviations,
we see that level(l) and level(r) are dominating. The right and left side are equal
both in terms of frequency and node position along the x-axis (so the general signature in
terms of frequency content and localization is equal), but there is clearly more energy in the
left side movement. The oscillations are of relatively low frequency, however, with a pe-
riod around 40 m. There are weak oscillations in alignment(r) and alignment(l),
and there is a weak, but noteworthy high frequency occurring in alignment(r) and
level(l) just over the crossing nose (30-40 m). The gauge is quite pronounced, and
reflects the weak oscillations with period 20 m in alignment(l). It shows a concentra-
tion of energy around the turnout entrance which is not seen in alignment right or left,
however. A possible explanation for this is the missing alignment D2 measurements
with period 25-70 m. Finally, the cant mostly consists of very low frequencies, with two
peaks at 0 and 30 meters in addition to some low energy high frequencies over the crossing
nose.

Figure 6.1: Track geometry comparison (CWT), turnout A, recorded 2016-05-08. The scalograms
plot the squared magnitude of the CWT coefficients, for each measured geometric variable.

Next, consider the composition of turnout B, recorded 2016-05-08, Figure 6.2. Level
is again prominent, this time for the right rail. The energy is concentrated around low
frequencies, and there are similar node positions/peaks as for turnout A. Again, we observe
a subtle, high-frequency oscillation in alignment(r) and level(l) over the crossing
nose, similar to turnout A. Furthermore, there is a weak pattern seen in alignment(l),
appearing somewhat stronger in gauge. As for turnout A, the gauge deviations are
centred around the turnout entrance for B, too, and the longwave signature in this variable
indicates that some longwave information is indeed missing from alignment.

Figure 6.3 plots turnout C, recorded 2015-05-06. Here, the right and left rail levels are
similar, in both energy and time/frequency peak positions. Both oscillates at a frequency
quite a lot higher than seen in turnout A, Figure 6.1, and turnout B, Figure 6.2, have
a period around 10 m. Turnout C also have the delicate, high-frequency oscillation in
alignment(r) and level(l) over the crossing nose, seen in both A and B. It seems
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Figure 6.2: Track geometry comparison (CWT), turnout B, recorded 2016-05-08. The scalograms
plot the squared magnitude of the CWT coefficients, for each measured geometric variable.

that the deviations in alignment(r) and alignment(l) cancels in gauge, as the
same pattern cannot be observed there. Finally, the cant-signature is again deep down
the frequency spectrum, with peaks about 30 m apart (period 60 m).

Figure 6.3: Track geometry comparison (CWT), turnout C, recorded 2015-05-06. The scalograms
plot the squared magnitude of the CWT coefficients, for each measured geometric variable.

The composition of the three case turnouts in terms of the CWT proves to be relatively
equal. Track movement is generally dominated by level(r) and level(l). The
oscillations from alignment are generally modest in terms of energy, but typically with
twice the frequency one would normally observe in the vertical direction. For some reason,
all case turnouts have the property that the level(l) and alignment(r) share a high-
frequency signature over the crossing nose. The gauge typically has a more pronounced
oscillation than seen in alignment, left or right, which may indicate that the horizontal
deviations of the left and right rail tend to amplify each other, instead of cancelling (or
being in phase, rather).
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Figure 6.4: Alignment(r) of turnout A, recorded from 2014-02-22 to 2016-11-05. The scalo-
grams shows the squared magnitude of the CWT coefficients using the real Morlet wavelet.

6.2 Geometric Degradation

Next, we consider the wear and geometric degradation of the turnouts as time progresses.
The wear is evaluated with the CWT and compared to tables of the currently used qual-
ity indices for level and alignment. Case turnout A is followed from early spring
2014 to fall 2016, with each geometric measurement plotted separately, such that potential
developments in the turnout geometry can be monitored as detailed as possible.

The scalograms of alignment(l), Figure B.3, show a clear trend toward higher wear
in the lateral alignment of the rails resulting in more energetic sideways movement as time
passes. The oscillation grows most rapidly between 2014-11 to 2015-05, before it remains
at approximately the same level. Figure 6.4 shows the alignment(r), and again there
is a clear pattern developing toward worsening lateral geometry, but on this side, it is more
concentrated between 30 and 40 meters into the turnout. Two separate frequencies occur
over the crossing nose, one with period 10 m and the other with higher frequency, period
< 4 m.

Figure 6.5 shows the gauge develop from summer 2014 to winter 2016. It appears to have
some kind of seasonal changes to it, as the long-wavelength oscillations seem to increase
around November and February, and then decrease again in the summer mounts. This
might also be an effect of the driving direction transformations done outside this project,
Hovad et al. (2019). The vertical deviations have a more dominant and steady signature,
see Figure 6.6. However, the energy seems to build up a little during 2014, before being
constant throughout 2015, and then somehow dying off in 2016. Interestingly, there have
been no major track adjustments in this period. Meanwhile, level(r) is fairly constant,
and the combination results in a build-up of cant (but at a very low frequency), see
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Figure 6.5: Gauge of turnout A, recorded from 2014-02-22 to 2016-11-05. The scalograms shows
the squared magnitude of the CWT coefficients using the real Morlet wavelet.

Figures B.1 and B.2.

Table 6.1 shows the standard deviation for the vertical and horizontal direction, used by
the railway manager to evaluate the condition of the track. Comparing Figures B.3 and
6.4 to σalignment, it is not obvious that there is an oscillation building up in the horizontal
alignment, although a slight increase is seen in the standard deviation. Furthermore, the
vertical deviation σlevel is relatively stable, whereas the result of the CWT seems to be
that the oscillations are losing energy in 2016-05-08 and 2016-11-05, Figure 6.6.

σlevel σalignment

2014-02-22 1.67 1.10
2014-05-24 1.80 1.16
2014-11-07 1.84 1.12
2015-02-28 1.84 1.13
2015-05-06 1.82 1.17
2015-11-07 1.81 1.16
2016-02-27 1.81 1.26
2016-05-08 1.82 1.28
2016-11-05 1.83 1.35

Table 6.1: Mean standard deviations of level (left and right) and alignment (left and right),
turnout A.

To explore the DWT based features, the right-side horizontal alignment alignment(r)
of turnout A is chosen as a reference, Figure 6.4. The alignment(r) has a clear de-
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Figure 6.6: Level(l) of turnout A, recorded from 2014-02-22 to 2016-11-05. The scalograms
shows the squared magnitude of the CWT coefficients using the real Morlet wavelet.

velopment towards increased geometry deviations as time progresses, (although relatively
weak compared to the vertical directions) and serves as a good example signal to evaluate
the DWT. Table 6.2 displays the squared, summed DWT detail coefficient for each level
1 to 4. (Four detail levels is the maximum number of levels possible for the symlet-7, ap-
plied to a signal of length 250. This is due to the repeated signal downsampling with factor
2 and the required wavelet support.) The finest levels have small (squared) coefficients,
and level 1 is constant at 0.02 except for a jump to 0.28 (2015-02-28), unexplained by the
standard deviations, Table 6.1, or the CWT, Figure 6.4. The level 2 coefficients fluctuate
several times in the period and show no clear sign of monotonously increasing frequency
content. The coarser levels (3 and 4) store larger parts of the signal, and this is also where
the greatest development is seen. The summed squared details of level 3 increase from
60.16 to 93.93 and level 4 increase from 69.98 to 122.85 in the period. The mean stan-
dard deviation is also slightly increasing in the period, Table 6.1, confirming that there is
a greater variability developing, also indicated by the CWT in Figure 6.4.

6.3 Track Adjustments

Turnout B and C were subject to track adjustment (tamping) 2015-10-03 and 2014-08-
25, respectively. By following the development of the transformed geometry data with
the CWT, the effect of the tamping campaigns may be evaluated and compared to the
behaviour of the turnout before and after the campaigns.
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Level 1 Level 2 Level 3 Level 4

2014-02-22 0.02 0.21 60.16 69.98
2014-05-24 0.02 0.26 68.12 64.57
2014-11-07 0.02 0.26 57.33 78.13
2015-02-28 0.28 0.38 68.84 89.19
2015-05-06 0.02 0.30 58.78 98.11
2015-11-07 0.02 0.30 76.06 81.80
2016-02-27 0.02 0.31 71.37 110.37
2016-05-08 0.02 0.23 72.33 115.54
2016-11-05 0.02 0.31 93.93 122.85

Table 6.2: Squared and summed DWT detail coefficients of levels 1-4, alignment(r), turnout
A.

6.3.1 Turnout B

Figure 6.7 displays the level(l) before and after the track adjustment, done 2015-10.
The tamping has a clear effect at the next observation one month later, but it then falls back,
more or less, to the same geometry as before the tamping: the high-frequency oscillations
over the crossing nose (seen 2014-05-24) are no longer prominent, but the low frequencies
reoccur six months later to keep on the ”steady-state”.

Another event standing out is the peculiar recording taken 2014-05-24. This sudden devi-
ation has no explanation in the maintenance data, and manifests itself as weird measure-
ments in the other variables as well (Figures 6.8, B.4). It is possible that this is the result of
a measurement train (TIC) driving in the opposite direction of usual, and that we observe
a potential problem of the driving direction transformations.

Also the level(r), Figure 6.8, is an example that tamping does not always cure the
unwanted geometry deterioration. It is clear that the peaks of the vertical fluctuations ac-
tually amplified between 2015-05 and 2015-11, shifting a bit to the front of the turnout.
The tamping 2015-10 did not introduce any high-frequency faults, but it is clear that a
strong, low-frequency component emerged after the campaign. It stays relatively constant
for as long as the observations extend, one year after. But, on the other hand, the lateral
movement in the right rail (alignment(r) shows some positive effects of the tamping,
muting the ongoing oscillation (Figure B.4). However, the gauge, Figure B.5, indicates
that the change is merely temporary. One month after the track adjustments the energy
is considerably reduced, but it goes back to the regular pattern six months later and on-
ward.

Table 6.3 displays the mean standard deviations of level and alignment. Observe
the unusually high levels in both σlevel and σalignment 2014-05-24, agreeing with Figures
6.7 and B.4. Furthermore, there is a very modest drop in both variables after the tamping,
much like the scalograms indicate.
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Figure 6.7: Level(l) of turnout B, recorded from 2013-03-09 to 2016-11-05. The scalograms
shows the squared magnitude of the CWT coefficients using the real Morlet wavelet.

6.3.2 Turnout C

Moving on to turnout C, tamped 2014-08-25, there effects of track adjustment are more
positive in the vertical direction (level), Figures 6.9 and B.6. The campaign clearly
smooth out the deviations in both rails, and the effect seem quite permanent within the
window of observations. The lateral directions are split, as alignment(l), Figure B.7,
show nearly no change at all, whereas the alignment(r), Figure 6.10, shows a good
and lasting effect. The ”total” effect of the sideways movement seen in gauge, Figure
B.8, seems questionable, as there is little evidence for geometric improvement of this
variable.

σlevel σalignment

2013-03-09 2.06 1.24
2013-06-19 2.14 1.20
2013-11-27 2.08 1.27
2014-05-24 2.46 2.41
2014-11-07 2.03 1.26
2015-05-06 1.96 1.21
2015-11-07 1.90 1.10
2016-05-08 2.13 1.13
2016-11-05 2.07 1.10

Table 6.3: Mean standard deviations of level (left and right) and alignment (left and right),
turnout B.
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6.3 Track Adjustments

Figure 6.8: Level(r) of turnout B, recorded from 2013-03-09 to 2016-11-05. The scalograms
shows the squared magnitude of the CWT coefficients using the real Morlet wavelet.

Figure B.7 shows an example of how the CWT may be more insightful than the stan-
dard deviation of segments, presented in Table 6.4. The standard deviation of left side
alignment was more or less the same in 2012-06 as it was in 2016-11, but from Figure
B.7 we know that the deterioration in the ballast has actually moved from the front of the
rear of the turnout. In addition, there appear to be significant (loosely speaking) seasonal
changes in both vertical and horizontal direction for level and gauge in the CWT,
unexplained by the repair records. This is potentially interesting for exploring ground
conditions, causing different wear trends.

σlevel σalignment

2012-06-23 2.96 1.37
2013-06-19 2.84 1.55
2013-11-27 2.94 1.54
2014-05-24 2.93 1.63
2014-11-07 1.58 1.28
2015-05-06 1.80 1.37
2015-11-07 1.89 1.44
2016-05-08 1.43 1.30
2016-11-05 1.63 1.41

Table 6.4: Mean standard deviations of level (left and right) and alignment (left and right),
turnout C.

To summarize, most variables showed a clear improvement in the first months after tamp-
ing. For turnout B, the observations suggest that the improvements are merely temporary
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Figure 6.9: Level(l) of turnout C, recorded from 2012-06-23 to 2016-11-05. The scalograms
shows the squared magnitude of the CWT coefficients using the real Morlet wavelet.

changes (around six months) before the track settles to ”as good as old” geometry. The
vertical movements were just shifted, for example, but maintained the same state as before
tamping. On the other hand, turnout C serves as an example of more successful tamping.
The track adjustments had a very good effect on level for both rails, although the effect
on alignment and gauge were more questionable.
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6.3 Track Adjustments

Figure 6.10: Alignment(r) of turnout C, recorded from 2012-06-23 to 2016-11-05. The scalo-
grams shows the squared magnitude of the CWT coefficients using the real Morlet wavelet.
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Chapter 7
Discussion & Conclusion

Investigation of turnout A, which did not undergo a track adjustment in the observation
period, reveals that one can, indeed, observe the turnout geometry degrade using the ge-
ometry data and the CWT. The transformation of each separate variable allows the overall
geometric condition of the turnout can be followed, improving the understanding of the
need for maintenance and the out-of-spec severity. Hence, it is also a valuable tool to
assess the effect of major maintenance actions affecting geometry, such as tamping. If
combined with previous tamping history, it is an easy task to judge when the turnout has
reached the former levels of geometry degradation. In total, the application of the con-
tinuous wavelet transform gives several advantages over the traditional way of evaluating
track geometry data using the standard deviations.

The discrete wavelet transform may be used to generate an alternative track quality index,
however, the current use of vertical and horizontal standard deviation as a quality indica-
tion seems to capture the overall condition and trend. The DWT coefficients are difficult
to interpret (at least more difficult than using scalograms or standard deviations) and of-
fer little understanding in an unsupervised context. Due to the orthogonality and thereby
non-redundancy of discrete wavelets, they may be better suited as features in a supervised
analysis, given that some type of sensible labelling is available together with the track
geometry.

For future work, two paths should be considered. For the companies dealing with rail-
way infrastructure, it is quite clear from the literature that acceleration box data is the
way to go for more detailed supervised analyses of discrete faults. They are small devices
that may be mounted on the bogies of trains in regular service, practically providing real-
time information of the track condition. This type of vibration data is sensitive even to
small irregularities, and enough research exists to implement decision rules based wavelet
analysis. The track geometry data still serves an important purpose in deciding on track
adjustment actions, and the other approach for predictive maintenance should further in-
vestigate how long it takes for particular segments to degrade to the CWT profiles seen
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before maintenance, as this provides a helpful time estimate for planning track adjustment
campaigns.
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Appendix A
The Fourier transform, the
short-time Fourier transform, and
proof of the CWT

The Fourier transform. The Fourier transform is defined as

(Ff)(ω) = f̂(ω) =
1√
2π

∫ ∞
−∞

f(x) e−ixω dx. (A.1)

The inverse Fourier transform. The inverse Fourier transform is then given by

f(x) = f̂(ω) =
1√
2π

∫ ∞
−∞

(Ff)(ω) eixω dω. (A.2)

The short-time Fourier transform. The STFT is given by

(Fshortf)(ω, t) =
∫

ds f(s) g(s− t) e−iωs, (A.3)

where g(·) is the window function, restricting the support of the harmonics.

Proof of the inverse continuous wavelet transform. The proof of the inverse CWT, i.e.
the resolution by identity, as given in Daubechies (1992).
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Proof.∫ ∞
−∞

∫ ∞
−∞

da db

a2
(Tf)(a, b) (Tg)(a, b) =

∫∫
da db

a2

[∫
f̂(ξ) |a| 12 e−ibξ ψ̂(aξ) dξ

]
[∫

ĝ(ξ′) |a| 12 eibξ
′
ψ̂(aξ′) dξ′

]

= 2π

∫
da a−2

∫
dξ Fa(ξ)Ga(ξ)

= 2π

∫
da |a|−1

∫
dξ f̂(ξ) ĝ(ξ) |ψ̂(aξ)|2

= 2π

∫
dξ f̂(ξ) ĝ(ξ)

∫
da |a|−1|ψ̂(aξ)|2

= Cψ〈f, g〉,

last interchange is permitted by Fubini’s theorem.

Fubini’s theorem. If the double integral of the absolute value of a function f is finite,∫ ∫
|f(x, y)| dy dx <∞, (A.4)

then the order of integration can be changed,∫ ∫
|f(x, y)| dy dx =

∫ ∫
|f(x, y)| dx dy. (A.5)

The Plancherel theorem. Let f be any square integrable function on the real line R, and
f̂ it’s frequency spectrum in Fourier domain. Then the square of the modulus of f is equal
to the square of the modulus of the frequency spectrum of f ,∫ ∞

−∞
|f(x)|2 dx =

∫ ∞
−∞
|f̂(ξ)|2 dξ. (A.6)
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Appendix B
Scalograms

Figure B.1: Level(r) of turnout A, recorded from 2014-02-22 to 2016-11-05. The scalograms
shows the squared magnitude of the CWT coefficients using the real Morlet wavelet.
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Figure B.2: Cant of turnout A, recorded from 2014-02-22 to 2016-11-05. The scalograms shows
the squared magnitude of the CWT coefficients using the real Morlet wavelet.

Figure B.3: Alignment(l) of turnout A, recorded from 2014-02-22 to 2016-11-05. The scalo-
grams shows the squared magnitude of the CWT coefficients using the real Morlet wavelet.
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Figure B.4: Alignment(r) of turnout B, recorded from 2013-03-09 to 2016-11-05. The scalo-
grams shows the squared magnitude of the CWT coefficients using the real Morlet wavelet.

Figure B.5: Gauge of turnout B, recorded from 2013-03-09 to 2016-11-05. The scalograms shows
the squared magnitude of the CWT coefficients using the real Morlet wavelet.
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Figure B.6: Level(r) of turnout C, recorded from 2012-06-23 to 2016-11-05. The scalograms
shows the squared magnitude of the CWT coefficients using the real Morlet wavelet.

Figure B.7: Alignment(l) of turnout C, recorded from 2012-06-23 to 2016-11-05. The scalo-
grams shows the squared magnitude of the CWT coefficients using the real Morlet wavelet.
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Figure B.8: Gauge of turnout C, recorded from 2012-06-23 to 2016-11-05. The scalograms shows
the squared magnitude of the CWT coefficients using the real Morlet wavelet.
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Appendix C
Code

C.1 Geometry data pre-processing

1 import pandas as pd
2 import numpy as np
3 import pickle
4

5

6 def prepare_matrix_from_txt(filename_txt):
7

8 data = pd.read_csv("data/{}".format(filename_txt))
9

10 # Add d1 and d2
11 data["Level_L_D1"] += data["Level_L_D2"]
12 data["Level_R_D1"] += data["Level_R_D2"]
13

14 data = data.drop(columns=["Level_L_D2", "Level_R_D2"])
15

16 # Change km to meters
17 data["km"] *= 1e3 # convert to meters
18

19 # Rename and make lower case
20 data.rename(
21 columns={
22 "Level_L_D1": "Level_L",
23 "Level_R_D1": "Level_R",
24 "FinalCluster": "Class",
25 "km": "Position",
26 },
27 inplace=True,
28 )
29 data.rename(columns=lambda x: x.lower(), inplace=True)
30
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31 # Change order
32 turnout = data["turnout"]
33 date = data["date"]
34 pos = data["position"]
35 reg = data["region"]
36 days = data["days"]
37 clas = data["class"]
38 evt = data["eventid"]
39

40 data = data.drop(
41 columns=["turnout", "date", "position", "region", "days", "class",

"eventid"]↪→

42 )
43

44 data["position"] = pos
45 data["date"] = date
46 data["eventid"] = evt
47 data["region"] = reg
48 data["turnout"] = turnout
49 data["days"] = days
50 data["class"] = clas
51

52 colname_list = data.columns.values.tolist()
53 return data, colname_list
54

55

56 def matrix_to_cube(data): # input: pandas object
57

58 data = data.to_numpy()
59

60 # Shape to cube
61 distinct_switches = len(np.unique(data[:, 10]))
62 N, M = data.shape
63 i0 = 0
64 cube = np.zeros(shape=(250, M, distinct_switches))
65 j = 0 # frame number
66 for i in range(N-1): # iterate over all turnout-date obs.
67 if data[i, 10] != data[i + 1, 10]: # if event-id changes
68 if i - i0 >= 249:
69 signal = data[i0: i0 + 250, :8]
70 meta = data[i0: i0 + 250, 8:] # store frame
71 cube[:, :, j] = np.concatenate((signal, meta), axis=1)
72 j = j + 1 # increment frame number
73 i0 = i + 1 # increment current index
74

75 cube = cube[:, :, np.nonzero(cube[0, 0, :])[0]] # remove zero-frames
76

77 return cube
78

79

80 def fast_load(np_filename): # for loading processed npy-files
81 with open("data/column_names.txt", "rb") as fp:
82 column_names = pickle.load(fp)
83 data = np.load("data/{}.npy".format(np_filename))
84 return data, column_names
85

86
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87 # ----------- Prepare data from scratch -----------
88

89 X, colnames = prepare_matrix_from_txt('my_data.txt')
90

91 with open("data/column_names.txt", "wb") as fp: # need only to be done
once↪→

92 pickle.dump(colnames, fp)
93

94 cube = matrix_to_cube(X)
95 np.save("data/cube_spatial", cube)
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C.2 Figures for theory

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pywt
4

5 from numpy.fft import fft, fftfreq, fftshift
6

7 import preprosessing as pre
8

9 plt.style.use('seaborn-paper')
10

11

12 def illustration_plots():
13 n = 2 ** 10 # Make grid
14 L = 10
15 t0 = np.linspace(0, L, num=n + 1)
16 t = t0[0:n]
17 dt = t[1] - t[0]
18

19 a = np.arange(0, n / 2) # For plotting fft with the correct
frequencies↪→

20 b = np.arange(-n / 2, 0)
21 c = np.concatenate((a, b), axis=0)
22 k = (1 / L) * c
23 ks = np.fft.fftshift(k)
24

25 # --- Sine signal ---
26 f = 0.3 * np.sin(0.5 * (2 * np.pi) * t)
27 ft = np.fft.fft(f) * dt
28

29 fig, axes = plt.subplots(1, 2, figsize=(7.5, 3))
30

31 for i, ax in enumerate(axes):
32 if i == 0:
33 ax.plot(t, f)
34 ax.set_yticks([-1, 0, 1])
35 elif i == 1:
36 ax.stem(ks, fftshift(abs(ft)), basefmt='None',

use_line_collection=True)↪→

37 ax.set_xlim([-1, 1])
38 ax.tick_params(labelsize=12)
39 plt.tight_layout()
40 plt.show()
41 # plt.savefig('fig/illustrations/03sine_5pi.eps')
42

43 # --- Chrip signal ----
44 f = np.zeros((n))
45 f[549:556] = np.array([0.5, 1, 0.5, 0, -0.5, -1, -0.5])
46 ft = np.fft.fft(f)
47

48 fig, ax = plt.subplots(figsize=(4, 3))
49 ax.plot(t, f)
50 ax.set_xticks([0, 5, 10])
51 ax.set_yticks([-1, 1])
52 ax.tick_params(labelsize=12)
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53 plt.tight_layout()
54 plt.show()
55 # fig.savefig('fig/illustrations/chirp.eps')
56

57 fig, ax = plt.subplots(figsize=(4, 3))
58 ax.plot(ks, np.fft.fftshift(abs(ft)))
59 ax.tick_params(labelsize=12)
60 plt.tight_layout()
61 # fig.savefig('fig/illustrations/chirp_fft.eps')
62 plt.show()
63

64 # --- Mexican hat wavelet ---
65 mexican = (2 / np.sqrt(3)) * np.pi ** (-1 / 4) * np.exp(-(t - 5) ** 2

/ 2) * (1 - (t - 5) ** 2)↪→

66 t_mexican = np.fft.fft(mexican) * dt
67

68 fig, ax = plt.subplots(figsize=(4, 3))
69 ax.plot(t, mexican)
70 ax.set_yticks([-0.5, 0, 0.5, 1])
71 # ax.set_yticklabels([-0.5, 0, 0.5, 1])
72 ax.tick_params(labelsize=12)
73 fig.tight_layout()
74 plt.show()
75 # plt.savefig('fig/illustrations/mexican.eps')
76

77 fig, ax = plt.subplots(figsize=(4, 3))
78 ax.plot(ks, fftshift(np.abs(t_mexican)))
79 ax.set_xlim([-2, 2])
80 ax.set_yticks([0, 0.5, 1, 1.5])
81 ax.tick_params(labelsize=12)
82 fig.tight_layout()
83 plt.show()
84 # plt.savefig('fig/illustrations/mexican_fft.eps')
85

86 # --- Complex Morlet ---
87 ksi = np.linspace(-5, 5, n)
88

89 real = np.pi ** (-1 / 4) * np.exp(-ksi ** 2 / 2) * np.cos(2 * np.pi *
0.8 * ksi)↪→

90 imag = np.pi ** (-1 / 4) * np.exp(-ksi ** 2 / 2) * np.sin(2 * np.pi *
0.8 * ksi)↪→

91

92 complex_t = np.pi ** (1 / 4) * np.sqrt(2) * np.exp(-(1 / 2) * (2 *
np.pi * ksi - 2 * np.pi * 0.8) ** 2)↪→

93

94 fig, ax = plt.subplots(figsize=(4, 3))
95 ax.plot(t, real, linestyle='solid', label='Real')
96 ax.plot(t, imag, linestyle='dashed', label='Imaginary')
97 ax.set_yticks([-1, -0.5, 0, 0.5, 1])
98 ax.legend(fontsize=12)
99 ax.tick_params(labelsize=12)

100 fig.tight_layout()
101 plt.show()
102 # fig.savefig('fig/illustrations/complex-morlet.eps')
103

104 fig, ax = plt.subplots(figsize=(4, 3))
105 ax.plot(ksi, complex_t, label='Fourier transform')
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106 ax.set_yticks([0, 0.5, 1, 1.5, 2])
107 ax.set_xlim([-3, 3])
108 ax.tick_params(labelsize=12)
109 plt.show()
110 # fig.savefig('fig/illustrations/complex-morlet-fft.eps')
111

112 # --- Real valued Morlet ---
113 morlet = np.exp(-(t - 5) ** 2 / 2) * np.cos(5 * (t - 5))
114 t_morlet = np.fft.fft(morlet) * dt
115

116 fig, ax = plt.subplots(figsize=(4, 3))
117 ax.plot(t, morlet)
118 ax.tick_params(labelsize=12)
119 fig.tight_layout()
120 plt.show()
121 # plt.savefig('fig/illustrations/morlet.eps')
122

123 fig, ax = plt.subplots(figsize=(4, 3))
124 ax.plot(ks, abs(fftshift(t_morlet)))
125 ax.set_xlim([-2, 2])
126 ax.tick_params(labelsize=12)
127 fig.tight_layout()
128 plt.show()
129 # plt.savefig('fig/illustrations/morlet-fft.eps')
130

131

132 def scalogram_theory(data, attr, wavelet):
133 x = data[:, 8]
134 dx = x[1] - x[0]
135 contour = np.linspace(0, 1, num=5, endpoint=True)
136 # scales = np.arange(2 * 4, 62.5 * 4) # corresponds to wavelengths

2-62.5 m↪→

137 scales = np.arange(2 * 1.3, 62.5 * 1.3) # for mexican hat
138 fig, axes = plt.subplots(1, 2, figsize=(7, 2.5))
139 axes = axes.ravel()
140

141 coef, freq = pywt.cwt(data[:, attr], scales, wavelet, dx)
142 period = 1.0 / freq
143 period_p = np.log2(period) # period logged for plotting purposes
144

145 abs_coef = abs(coef)
146 real = np.real(coef)
147 imag = np.imag(coef)
148 power = abs_coef ** 2
149 unit_energy = power / np.max(power) # coefficients for plotting

purposes↪→

150

151 list_coef = [real, imag]
152 list_names = ['Real part', 'Imaginary part']
153

154 list_coef = [abs_coef, unit_energy]
155 list_names = ['Transform Modulus', 'Energy Distribution']
156

157 for i, (ax, coef_plot) in enumerate(zip(axes, list_coef)):
158 contour_fill = np.linspace(np.min(coef_plot), np.max(coef_plot),

num=50, endpoint=True)↪→

159 # axes[i, j].contour(x, period_p, coef_p, contour, cmap=cmap)
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160 im = ax.contourf(x, period_p, coef_plot, contour_fill,
extend="both", cmap='seismic')↪→

161 yticks = 2 ** np.arange(np.ceil(period_p.min()),
np.ceil(period_p.max()))↪→

162 ax.set_yticks(np.log2(yticks)) # "log-truncate" y-direction
163 ax.set_yticklabels(yticks.astype(int))
164 ax.invert_yaxis()
165 ax.set_xticks([-10, 0, 10, 20, 30, 40, 50])
166 ax.set_xticklabels([])
167 ax.tick_params(labelsize=12)
168 # ax.set_title(list_names[i], fontsize=12)
169 ax.set_ylabel("Wavelength (m)", fontsize=12) # fontsize=12
170 ax.set_xticklabels([-10, 0, 10, 20, 30, 40, 50])
171 ax.set_xlabel("Position (m)", fontsize=12)
172

173 fig.tight_layout()
174 fig.subplots_adjust(wspace=0.3)
175 # plt.savefig('fig/cmorl-demo.png')
176 # plt.savefig('fig/cmorl-squared-demo.png')
177 # plt.savefig('fig/mexican-demo.png')
178 # plt.savefig('fig/morlet-demo.png')
179 plt.show()
180

181

182 def plot_geometry_raw(data, column_names):
183 x = data[:, 8]
184 fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7.5, 3),

sharey=True, sharex=True)↪→

185 axes = axes.ravel()
186

187 for i, ax in enumerate(axes):
188 ax.plot(x, data[:, 2 * i], label=column_names[2 * i])
189 ax.plot(x, data[:, 2 * i + 1], label=column_names[2 * i + 1])
190 ax.tick_params(labelsize=12)
191 ax.legend(fontsize=12)
192 ax.set_xlabel("Position (m)", fontsize=12)
193 if i == 0:
194 ax.set_ylabel("Amplitude (mm)", fontsize=12)
195 plt.tight_layout()
196 plt.show()
197 # fig.savefig('fig/illustrations/level-align-B-105.eps')
198

199 fig, ax = plt.subplots(figsize=(4, 3))
200 ax.plot(x, data[:, 4], label=column_names[4])
201 ax.plot(x, data[:, 5], label=column_names[5])
202 ax.tick_params(labelsize=12)
203 ax.legend(fontsize=10)
204 ax.set_xlabel("Position (m)", fontsize=12)
205 ax.set_ylabel("Amplitude (mm)", fontsize=12)
206 plt.tight_layout()
207 plt.show()
208 # fig.savefig('fig/illustrations/gauge-cant-B-105.eps')
209

210

211 def line_plot(data, attr, list_names):
212 fig, ax = plt.subplots(figsize=(7, 3))
213 ax.plot(data[:, 8], data[:, attr], label=list_names[attr])
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214 ax.set_ylabel("Amplitude (mm)", fontsize=12)
215 ax.set_xlabel("Position (m)", fontsize=12)
216 ax.tick_params(labelsize=12)
217 print(np.datetime64('1970-01-01') + np.timedelta64(data[0,

-6].astype(int), 'D'))↪→

218 plt.tight_layout()
219 # plt.show()
220 plt.savefig('fig/illustrations/A-align-l-2016-05-08.eps')
221

222

223 ##############################################################
224 pretty_names = ['Level (r)', 'Level (l)', 'Alignment (r)', 'Alignment

(l)',↪→

225 'Gauge', 'Cant', 'Twist pc1', 'Twist pc2', 'Position',
'Date',↪→

226 'Event-id', 'Region', 'Turnout', 'Days', 'Class']
227 data, names = pre.fast_load('cube_spatial')
228

229 illustration_plots()
230 plot_geometry_raw(data[:, :, 105], pretty_names) # turnout 2840
231 line_plot(data[:, :, 367], 3, pretty_names)
232 scalogram_theory(data[:, :, 367], 3, 'mexh') # 'morl', 'cmor4.0-0.82'
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C.3 The continuous wavelet transform

1 import matplotlib.pyplot as plt
2

3 import numpy as np
4 import pywt
5

6 import preprosessing as pre
7

8

9 def plot_all_variables(turnout, list_names, power):
10 transforms = []
11 max_coef = 0
12 min_coef = 0
13

14 for i in range(6):
15 coefs, freqs = transform(turnout[:, i])
16 coefs = coefs ** power
17 if np.max(coefs) > max_coef:
18 max_coef = np.max(coefs)
19 if np.min(coefs) < min_coef:
20 min_coef = np.min(coefs)
21 transforms.append((coefs, freqs))
22

23 plot_multiple_transforms(transforms, min_coef, max_coef, list_names)
24 return
25

26

27 def transform(signal, wave='morl'):
28 coefficients, frequencies = pywt.cwt(signal,
29 scales=np.arange(3 * 4, 50 * 4),
30 wavelet=wave,
31 sampling_period=0.25)
32 return coefficients, frequencies
33

34

35 def plot_transform(coefficients, frequencies,
36 title=None,
37 colormap='seismic'):
38 contour_fill = np.linspace(np.min(coefficients),
39 np.max(coefficients),
40 num=45, endpoint=True)
41 period = 1.0 / frequencies
42 t = np.linspace(-10, 50, num=250, endpoint=True)
43

44 fig, axes = plt.subplots(figsize=(7, 5)) # 6,8 standard
45 im = axes.contourf(t, np.log2(period), coefficients,
46 contour_fill,
47 extend="both", cmap=colormap)
48 yticks = 2 ** np.arange(np.ceil(np.log2(period).min()),
49 np.ceil(np.log2(period).max()))
50 axes.set_yticks(np.log2(yticks)) # log y-direction
51 axes.set_yticklabels(yticks.astype(int))
52 axes.set_xticks([-10, 0, 10, 20, 30, 40, 50])
53 axes.invert_yaxis()
54 axes.tick_params(labelsize=11)
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55 axes.set_ylabel("Wavelength (m)", fontsize=11)
56 axes.set_xlabel("Position (m)", fontsize=11)
57 if title != None:
58 axes.set_title(title, fontsize=12)
59 fig.subplots_adjust(bottom=0.15, right=0.88, top=0.9)
60 cbar_ax = fig.add_axes([0.91, 0.45, 0.02, 0.3])
61 fig.colorbar(im, cax=cbar_ax, orientation="vertical", format='%.0f')
62 plt.show()
63

64

65 def plot_multiple_transforms(list_transforms, low_val, high_val, titles):
66 n = len(list_transforms)
67 fig, axes = plt.subplots(3, 3, figsize=(7.5, 4)) # 3,3 fs=(7,4) or

2, 3, figsize=(7, 3)↪→

68 axes = axes.ravel(order='F')
69

70 for i, (ax, title, (coefficients, freq)) in enumerate(zip(axes,
titles, list_transforms)):↪→

71 contour_fill = np.linspace(low_val, high_val, num=45,
endpoint=True)↪→

72 period = 1.0 / freq
73 t = np.linspace(-10, 50, num=250, endpoint=True)
74 im = ax.contourf(t, np.log2(period), coefficients,
75 contour_fill,
76 extend="both",
77 cmap='seismic')
78 yticks = 2 ** np.arange(np.ceil(np.log2(period).min()),
79 np.ceil(np.log2(period).max()))
80 ax.invert_yaxis()
81 ax.set_yticks([])
82 ax.set_xticks([])
83 ax.tick_params(labelsize=12)
84 ax.set_title(title, fontsize=12)
85 if (i == 0) or (i == 1) or (i==2):
86 ax.set_ylabel("Period (m)", fontsize=12) # fontsize=14
87 ax.set_yticks(np.log2(yticks)) # log y-direction
88 ax.set_yticklabels(yticks.astype(int))
89 if i == 2 or (i == 5) or (i == 8): #2-5-8 or 1-3-5
90 ax.set_xticks([0, 20, 40])
91 ax.set_xlabel("Position (m)", fontsize=12)
92 # if i == 6: # 9910:4:2014-08, 2840:6:2015-10
93 # ax.set_title('{} (tamping: 2015-10)'.format(title),

fontsize=12, color='r')↪→

94 fig.tight_layout()
95 # axes[-1].remove()
96 cbar_ax = fig.add_axes([0.925, 0.41, 0.015, 0.25])
97 fig.colorbar(im, cax=cbar_ax, orientation="vertical",
98 ticks=np.linspace(low_val,high_val, num=6),

format='%.0f')↪→

99 fig.subplots_adjust(right=0.92, hspace=0.40, wspace=0.07)
100

101

102

103 def cwt_multiple_turnouts(data, observation_range,
104 vars=[0, 1, 2, 3, 4, 5],
105 power=1):
106 transformations = []
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107 dates = []
108 max_coef = 0
109 min_coef = 0
110

111 for i in observation_range:
112 turnout = data[:, :, i]
113 dates.append(np.datetime64('1970-01-01') +

np.timedelta64(turnout[0, -6].astype(int), 'D'))↪→

114 signal = np.sum(turnout[:, vars], axis=1)
115 coefs, freqs = transform(signal)
116

117 coefs = coefs ** power
118

119 if np.max(coefs) > max_coef:
120 max_coef = np.max(coefs)
121 if np.min(coefs) < min_coef:
122 min_coef = np.min(coefs)
123 transformations.append((coefs, freqs))
124

125 return transformations, min_coef, max_coef, dates
126

127

128 # ----------------- Initialization ---------------------
129 plt.style.use('seaborn')
130 morlet = pywt.ContinuousWavelet('morl')
131 mexican = pywt.ContinuousWavelet('mexh')
132 complex_morlet = pywt.ContinuousWavelet('cmor4.0-0.82')
133

134 pretty_names = ['Level (r)', 'Level (l)', 'Alignment (r)', 'Alignment
(l)',↪→

135 'Gauge', 'Cant', 'Twist pc1', 'Twist pc2', 'Position',
'Date',↪→

136 'Event-id', 'Region', 'Turnout', 'Days', 'Class']
137 fast_names = ['level_r', 'level_l', 'align_r', 'align_l', 'gauge', 'cant']
138 data, names = pre.fast_load('cube_spatial') # load data cube
139 dict_turnouts = {1000:480, 2000:360, 3000:96} # dummy turnout numbers for

publication↪→

140

141

142 # ------------- CWT of variable collections and of variable sequences
--------------------↪→

143 for k, v in dict_turnouts.items():
144 coef, freq = transform(data[:, 4, v])
145 plot_transform(coef, freq) # Plot a single transform
146 for variable, attribute in enumerate(fast_names): # Plot a range of

turnouts for a specific variable↪→

147 cwts, minimum, maximum, list_dates = cwt_multiple_turnouts(data,
range(v, v + 9), vars=[variable], power=2)↪→

148 plot_multiple_transforms(cwts, minimum, maximum, list_dates)
149 # plt.savefig('fig/case-{}/{}.png'.format(k, attribute))
150

151 plot_all_variables(data[:, :, v+5], pretty_names, power=2) # Plot a
range of variables for a specific turnout↪→

152 # plt.savefig('fig/case-{}/contri.png'.format(k))
153

154 plt.show()
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C.4 The discrete wavelet transform

1 import numpy as np
2 import pandas as pd
3 import scipy.stats as stats
4 import pywt
5

6 import preprosessing as pre
7

8 pd.set_option('display.width', 150)
9 pd.set_option('precision', 2)

10

11 data, names = pre.fast_load('cube_spatial') # load cube spatial
12 dict_turnouts = {1000:430, 2000:360, 3000:96} # dummy turnout numbers,

for publication↪→

13 wave = 'sym7'
14

15 def get_features_dwt(coefs): # return SSE for each detail level of
alignment↪→

16 levels = len(coefs) - 1
17 sse = np.zeros(levels)
18 coefs.reverse() # get order cD1, cD2, etc.
19 for i in range(levels):
20 detail = coefs[i]
21 sse[i] = np.sum(detail[3:-3]**2)
22 return sse
23

24 def tqi_stddev_sse(data, turnouts):
25 date_list = []
26 var_list1 = ['Std. dev. Level' , 'Std. dev. Alignment']
27 var_list2 = ['Level 1', 'Level 2', 'Level 3', 'Level 4']
28 tqi_reference = np.zeros((len(turnouts), len(var_list1)))
29 tqi = np.zeros((len(turnouts), len(var_list2)))
30

31 for i, obs in enumerate(turnouts):
32 date = (np.datetime64('1970-01-01') + np.timedelta64(data[0, -6,

obs].astype(int), 'D'))↪→

33 date_list.append(date)
34 tqi_reference[i, 0] = np.mean((np.std(data[:, 0, obs]),

np.std(data[:, 1, obs]))) # level↪→

35 tqi_reference[i, 1] = np.mean((np.std(data[:, 2, obs]),
np.std(data[:, 3, obs]))) # alignment↪→

36

37 coefficients = pywt.wavedec(data=data[:, 2, obs], wavelet=wave) #
alignment-r for case A↪→

38 tqi[i, :] = get_features_dwt(coefficients)
39

40 df_reference = pd.DataFrame(tqi_reference, index=date_list,
columns=var_list1)↪→

41 df = pd.DataFrame(tqi, index=date_list, columns=var_list2)
42

43 return (df_reference, df)
44

45

46 for k, v in dict_turnouts.items():
47 tqi_ref, tqi = tqi_stddev_sse(data, range(v, v+9))
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48

49 print('Turnout {} \n Standard deviations'.format(k))
50 print(tqi_ref.to_latex(index=True))
51 print('Turnout {} \n SSE'.format(k))
52 print(tqi.to_latex(index=True))
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