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Abstract

The brain is a system of connected neurons that communicate by transmitting electrical
signals to each other. Research has revealed that the way in which neural connections develop
over time seem to follow some underlying patterns. These are known as learning rules, and
are essential for the brain to learn and form memories. Statistical methods for inferring the
learning rule from recordings of neural activity may thus give insights on basic computation-
ally principles in different brain areas. Furthermore it has been hypothesized that the learning
rule might be disturbed by memory related diseases, such as Alzheimer’s. Therefore, being
able to detect the underlying learning rule could shed light on the origin and workings of
Alzheimer’s disease and even have applications in medical research as well.

This thesis covers the implementation of particle Metropolis-Hastings for characteriz-
ing the learning rule in simulated neural spike data for one synapse, inspired by the method
proposed in (Linderman et al., 2014). For our purpose we used the additive spike-timing-
dependent plasticity (STDP) learning rule, and aimed at inferring its learning rule param-
eters. The neural spiking was modeled as a Bernoulli process in the Generalized Linear
Model (GLM) framework. By numerical experiments it was demonstrated that with enough
data and sufficiently low noise level, information of the learning rule parameters could be
reconstructed from the spike data by using this method. The results indicate that it could
be possible to distinguish between learning rules, by analysing spike train data with particle
Metropolis-Hastings.
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Chapter 1
Introduction

Networks come in many forms, such as transport networks, social networks or trading net-
works. These can be considered as systems of connected nodes that are allowed to interact
with each other. Sometimes such connections can develop over time, perhaps according to
some underlying rule. Knowledge of this rule would consequently give deep insight in the
nature of the network.

Among networks, the system of communicating nerve cells in the brain is perhaps one
of the more fascinating. Changes over time of such neural connections is known as synaptic
plasticity, which has been hypothesized to follow some underlying patterns, known as learn-
ing rules. The object of this thesis is to investigate a statistical method aimed at inferring the
underlying learning rule from neural activity data.

The background motivation for the study, is an ongoing collaboration on the Kavli insti-
tute at NTNU, where researchers are establishing a protocol for growing nerve cells cultures
from brains of rats and rats adapted to develop Alzheimer’s disease. Synaptic plasticity is
an essential mechanism for learning and memory, and it is believed that it might be affected
by memory related diseases, such as Alzheimer’s. Whether this is the case is an open ques-
tion for research, which we would start addressing by checking whether the presence of
Alzheimer’s disease could be detected by differences in the underlying learning rule. Testing
the accuracy and spotting the limitations of a novel statistical procedure on synthetic data
is a fundamental step to be able to analyse real data and interpret the results. The present
thesis thus includes a simulation study, which precedes the application of the methodology to
healthy and Alzheimer’s nerve cells recordings, unfortunately not yet available.

The data are modelled in the Generalized Linear Model framework, and Bayesian infer-
ence of the learning rule performed using a particle Markov Chain Monte Carlo procedure.
This approach for studying synaptic plasticity was originally suggested in (Linderman et al.,
2014). In that paper the authors consider the Spike Timing Dependent Plasticity (STDP)
learning rule, a form of Hebbian learning also adapted here. The essence of the method
implemented in this work will be similar to Linderman’s but differs on some small but po-
tentially important points. One difference is in the modelling part, where they use a Poisson
model, whereas we use a Bernoulli model. Another is in the Markov chain Monte Carlo sam-
pler, as they use Gibbs sampling and we use Metropolis-Hastings sampling. Ultimately the
present work expands on Linderman’s by probing the robustness of the inference procedure
against some experimentally relevant variables such as noise level, data length and the pres-
ence of stimulation. Our contribution adds to a relatively new field of statistical methods for
learning the learning rule from neural activity ((Stevenson and Koerding, 2011),(Linderman
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et al., 2014), (Robinson et al., 2014),(Costa et al., 2013) , (Ghanbari et al., 2017)).
The thesis is structured as follows. The relevant context from neuroscience, as well as

a description of the background for the data is provided in chapter 2, to give context for the
work and motivate a practical understanding. Chapter 3 and 4 respectively presents statisti-
cal theory of the Generalized Linear Model framework and the particle Metropolis-Hastings
method, that was used in the numerical experiments. In chapter 5, the model under consider-
ation is introduced, as well as some visualizations of the method and justification for choices
made. The results are presented in chapter 6, and the conclusion in chapter 7.
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Chapter 2
Neuroscience context

Before going into the statistics and modeling, it is useful to present some context for the work.
The aim of this chapter is to describe the relevant concepts from neuroscience, explain the
background for the data material and provide a practical understanding. Section 2.1.1 gives
a brief description of signaling and connectivity in neural networks; the source used for this
section is the book (Purves, 2011). The hallmarks for Alzheimer’s disease in the brain are
described in section 2.1.3, whose content is based on (Gomez-Isla, 1996) and (Witter, 2011).
Section 2.2 provides an outline of the lab experiments where the data that is background
for this project comes from. As mentioned in the introduction, only simulated data will be
studied in this work. However, since the aim is to develop a method suitable for analysing real
neural data, the concepts introduced in this chapter will be important for the mathematical
setup.

2.1 Concepts from neuroscience

2.1.1 Neuron and connections
The basic computational unit in the brain is the nerve cell. It consists of a cell body (soma),
an axon and dendrites, as illustrated in figure 2.1.

Figure 2.1: Illustration of a neuron. Source: https://medicalxpress.com/news/
2018-07-neuron-axons-spindly-theyre-optimizing.html
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The computational ability of a neuron relies on its electrochemical properties. When a
neuron is at rest, there is a constant potential difference across the inside and the outside
of its cell membrane. This is known as the resting potential. Ion channels embedded in the
membrane allow ions to flow in and out, which can disturb the potential difference away from
this equilibrium. If the voltage hits a certain threshold value, a rapid depolarization will be
initiated. This phenomenon is known as an action potential, also referred to as neuron firing
or spiking. Whenever the threshold potential is reached, the action potential will take place
no matter what. In other words there is an all-or-non property, in its typical wave form (see
figure 2.2). After being initiated in the soma the action potential will propagate along the
axon, as illustrated to the right of figure 2.2.

Figure 2.2: Graphical representation of an action potential (left) Source: http:
//www.animalresearch.info/en/medical-advances/nobel-prizes/
the-generation-of-action-potential-nerves/. Illustration of action potential
propagating along axon (right). Source: https://www.toppr.com/ask/question/
during-the-propagation-of-a-nerve-impulse-the-action-potential/

The voltage increase that eventually leads to an action potential typically happens in re-
sponse to stimuli from other neurons. Neurons in the brain are indeed connected to each
other in a complex network. These connections are between an axon of one neuron and a
dendrite of another, and are referred to as synapses. A synapse is in practice a short gap
where chemical units, called neurotransmitters, are allowed to flow from the axon of a presy-
naptic neuron to the dendrite of a postsynaptic neuron. This neurotransmitter flow, the signal,
happens when the presynaptic neuron undergoes an action potential and causes an alteration
in the probability with which post-synaptic ion channels open and close. This input from
the pre-synaptic neuron contributes to the membrane potential (together with on average 104

other neurons in the mammalian brain) which may develop into an action potential if the
threshold is reached. Sometimes the electrical signal from the presynaptic neuron increases
the likelihood of an action potential to also arise in the postsynaptic neuron. In this case we
say that the synapse is excitatory. This property gives rise to the possibility for a signal to
propagate through the neural network, and eventually end up for example in a muscle and
cause a contraction. There are also synapses that decrease the chance that the postsynaptic
neuron will fire when activated. These are called inhibitory synapses.

4

http://www.animalresearch.info/en/medical-advances/nobel-prizes/the-generation-of-action-potential-nerves/
http://www.animalresearch.info/en/medical-advances/nobel-prizes/the-generation-of-action-potential-nerves/
http://www.animalresearch.info/en/medical-advances/nobel-prizes/the-generation-of-action-potential-nerves/
https://www.toppr.com/ask/question/during-the-propagation-of-a-nerve-impulse-the-action-potential/
https://www.toppr.com/ask/question/during-the-propagation-of-a-nerve-impulse-the-action-potential/


2.1.2 Synaptic plasticity

The strength of the neural connections is not fixed, but can change over time. Strength in this
sense refers to the probability that the spiking in the postsynaptic neuron will be affected by an
action potential in the presynaptic neuron. A frequent activation of a synapse can strengthen
the synaptic connection over time. This phenomenon is called long-term potentiation (LTP)
of a synapse. Other times activation of a synapse can weaken the connection over time.
This is called long-term depression (LTD). These changes of connections are referred to as
synaptic plasticity, which is one of the basic mechanisms underlying learning and memory.

Decades of experimental research have revealed properties in how the synaptic plasticity
behaves. There are various suggested models, and common to all of them is that they rely on
the Hebbian theory. In simple manners the theory says that if firing of neuron A is frequently
followed by firing of neuron B, then the connection between neuron A and B will strengthen
(Hebb, 1949). The functional expressions that describe this synaptic plasticity are referred to
as learning rules.

Classical learning rules consider the instantaneous firing rates of the pre- and postsynaptic
neurons. In this work the learning rule to be considered is a spike-timing-dependent plasticity
(STDP) learning rule, for which the change in connectivity instead depends on single spikes
of pre- and postsynaptic neurons at short time lags. The mathematical expression for this
learning rule will be presented in section 5.1.3, were the relevant mathematical notation is
defined.

2.1.3 Alzheimer’s disease and the entorhinal cortex

If a patient suffers from Alzheimer’s disease (AD), the brain will eventually shrink signifi-
cantly. This is due to loss of synapses and neurons, which is one of the main characteristic
of the disease. Figure 2.3 (right) illustrates how a brain can look like after having AD for
many years. Exactly what causes these losses is still not known, but it is assumed that the
accumulation of some protein aggregates called amyloid plaques and neurofirbillary tangles
are involved. Another hallmark of AD is impaired neural activity, which may be related
to dysfunctional plasticity mechanisms (Benedikt Zott, 2019). Therefore, it is interesting
to investigate whether healthy brains and brains with AD can be distinguished due to their
synaptic plasticity properties.

One target area in the brain for Alzheimer’s research is the entorhinal cortex, which is
associated with the earliest indications of AD. The entorhinal cortex is a brain region that is
phylogenetically conserved across species, so research on how AD develops in rat’s entorhi-
nal cortex can give insights for humans as well. It is found in the medial temporal lobe and
functions as a gateway between the neocortex and the hippocampus, which is known to be in-
volved in declarative memory and learning. The position of the entorhinal cortex in the brain
is shown in figure 2.3 (left). The entorhinal cortex is commonly subdivided into six layers,
I-VI. Cells in layer II of the entorhinal cortex are shown to be affected in the initial stages of
AD. Therefore layer II neurons are the subject of the experiments we will eventually get the
data from to study how AD affects the synaptic plasticity.
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Figure 2.3: (Left) Illustration of brain showing location of the Entorhinal cortex. (Right) Vi-
sual comparison of healthy brain and brain with Alzheimer’s disease. Source: https://
neurosciencenews.com/age-dementia-bmi-sleep-8989/

2.2 Data material
The data material that is the background for this project is electric potential recordings from
in-vitro cultured neural networks from rat brains. Rats do not get Alzheimer’s naturally, so
AD rats are designed with a genetic mutation that gives rise to amyloid plaque accumulation
in their brains. It was shown that at an age of 8 months, mice with this mutation have learning
impairments and behavioural differences from healthy mice (Radde R, 2006).

In short, tissue from layer II of the entorhinal cortex is gathered by microdissection from
rat brains (Hanssen, 2019), and the embedded neurons are dissociated from their biological
substrate to be plated into a dish. Next the seeded neurons are cultured in a medium, which
allows them to survive and grow new connections. Once the network is mature, electrode
arrays are then used to record the electrical activity of the neurons. Preferably each electrode
should measure the activity of one neuron only. However, the recordings are extracellular,
which means that the electrodes might pick up signals from several neurons. Therefore, a
spike sorting procedure is performed to assign the recorded action potentials to single neu-
rons.

It is the time points for the action potentials that are of interest, and not the actual voltage
values. Hence, the relevant data material is a sequence of recorded time points for the action
potentials for each neuron, in the time interval [0,K]. This can be written as,

{{ai}}Ni=1 = {ai1, ai2, ...}Ni=1 aix ∈ [0,K] (2.1)

where aix is the recorded time for the x′th action potential of neuron i, aix−1 < aix, and
i = 1, 2, ..., N labels the neurons. Such a sequence of time stamps for a single firing neuron
is called a spike train.
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Chapter 3
Generalized linear models

In order to perform statistical analysis on the neural spike data (described in section 2.1.1),
it is necessary to define a proper stochastic model for the activity. In a short time interval,
referred to as a time step, the state of spiking or not spiking for one neuron can be consid-
ered as a Bernoulli random variable with probability parameter depending on spike history
of the connected neurons and the respective connection strengths. This suggests to model
the activity with help of the Generalized Linear Model (GLM) framework. In this chapter
we introduce the relevant statistical theory on GLMs. The main source for this section is
(Ludwig Fahrmeir, 2013).

3.1 General
Consider a system constituted by the variable Y, regarded as the response (dependent) variable
and a set of variables Xj , j = 1, ..., P , regarded as explanatory (independent). Let {y,x} be
a sample of the system. Then, in linear regression the relationship between the dependent and
independent variables is modeled by the linear function

y = βx + ε, (3.1)

where β is a vector of regression coefficients, and ε is some random noise distributed as
N(0, σ2), where σ2 is a variance parameter.

Even though this model is useful for many situations, it has limitations. For example, if
the range of the x-values is (−∞,∞), letting an x approach infinity while everything else is
kept constant makes also the corresponding y-value approach infinity (or minus infinity if β
is negative). Hence, if the range of y should be restricted, the linear model is inappropriate.

Generalized linear models extends the framework of the general linear models, by allow-
ing the response variable to come from several other distributions than the normal one. The
response variable can now be distributed according to some exponential family, which are
distributions on the form

f(y; θ) = exp
(yθ − b(θ)

φ
· w + c(y, φ, w)

)
, (3.2)

where b(θ) and c(y, φ, w) are known functions, θ is the canonical parameter, φ is a nui-
sance parameter and w is a weight function. The expected value of the distribution, E[y] = µ
is related to the canonical parameter by,
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µ = b′(θ). (3.3)

An essential property of the GLM framework is that there is a specified functional rela-
tionship, g, between the linear predictor η = xTβ and this mean value.

The GLM framework can be summarized by the following three components:

• Response variable distributed as some member of the exponential family

y ∼ f(y; θ) (3.4)

with expected value, E[y] = µ.

• Linear predictor

η = xTβ (3.5)

• Link function

η = g(µ) (3.6)

If the link function maps also the mean of the response variable to the canonical parame-
ter,

θ = g(µ), (3.7)

it is referred to as the canonical link function. It then follows that θ = η. The canonical
link function is often chosen, as it comes with some advantageous properties for inferring the
parameters of the GLM. So the pdf of a GLM with canonical link function can be written

f(y|β) = exp
(yxTβ − b(xTβ)

φ
· w + c(y, φ, w)

)
. (3.8)

The linear model, given by equation 3.1, is one special case of GLMs. It can be defined
in the GLM framework, by specifying y as a normal distributed variable with mean µ, and
having the identity link function, which is the canonical link function associated to the normal
distribution. That is

y ∼ N(µ, σ2)

µ = η = xTβ.
(3.9)

3.1.1 Bernoulli GLM
In a Bernoulli process the response variable, y, takes the value 1 with a probability µ, and 0
with the probability 1− µ. The corresponding probability density function is,

f(y|µ) = Ber(µ) = µy(1− µ)1−y

= exp(y · log
( µ

1− µ
)

+ log(1− µ)),
(3.10)

where the bottom line shows that it corresponds to an exponential family. Given stochastic
component set to be Bernoulli, a Bernoulli GLM is defined by the choice of a suitable link
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function. As explained above, the link function relates the linear predictor η with the mean
of the response variable y, which for the Bernoulli process in equation 3.10 is

E[y] =
∑
y=0,1

y · µy(1− µ)1−y = µ (3.11)

Since µ can only take values in [0,1], the inverse of the link function, the response func-
tion, have to be a mapping from the real line to [0, 1]. The most common is the logit link
function, which is the canonical link in this case,

η = g(µ) = log(
µ

1− µ
)⇔ µ =

exp(η)

1 + exp(η)
(3.12)

3.2 Maximum likelihood inference via gradient descent
Given n samples of the explanatory and response variables {(yi,xi)}i=1,...,n, the linear pre-
dictor coefficients β can be estimated by maximizing the likelihood of the data

L(β) =

n∏
i=1

f(yi|β). (3.13)

For a Bernoulli GLM this is,

L(β) =

n∏
i=1

µi(β)yi(1− µi(β))1−yi . (3.14)

It is often convenient to work with the logarithm of the likelihood, which is maximized
by the same β-values as the likelihood. The loglikelihood for a Bernoulli GLM is

l(β) = log

n∏
i=1

(µi(β)yi(1− µi(β))1−yi) =

n∑
i=1

log(µi(β)yi(1− µi(β))1−yi)

=

n∑
i=1

yi log(
µi(β)

1− µi(β)
) + log(1− µi(β))

(3.15)

Then, for the canonical link function, µi(β) = exp(ηi)
1+exp(ηi)

=
exp(xT

i β)

1+exp(xT
i β)

, one arrives at

l(β) =

n∑
i=1

yix
T
i β − log(1 + exp(xT

i β)). (3.16)

The goal is to find the parameters that maximizes the likelihood. For a convex prob-
lem, which is always the case for a GLM with a canonical link function, inference can be
done using gradient based iterative methods. The idea of such optimization algorithms is to
search in the parameter space in the direction of negative gradient to arrive at a mimima. Or
equivalently, for a concave function one searches in the positive direction for the maximum.
One famous such method is the Newton method. Generally, for a function f(x) to be maxi-
mized in the variable x, one starts by choosing some initial guess x(0), and hence update the
approximation in every iteration by

x(i+1) = x(i) − f ′(x(i))

f ′′(x(i))
(3.17)
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It’s easy to see that the value of x at which this algorithm converges satisfies f ′(x) = 0.
The Newton method for maximum likelihood inference then entails computing the first and
second derivatives of the loglikelihood called respectively score function and observed Fisher
Information.

The score function is the vector of partial derivatives of the loglikelihood. In the Bernoulli
case the score function can be derived as follows

score(β) =

n∑
i=1

si(β) =

n∑
i=1

∂li(β)

∂β
=

n∑
i=1

xi

(
yi −

exp(xT
i β)

1 + exp(xT
i β)

)
(3.18)

The observed Fisher information matrix is defined as

H(β) = − ∂
2l(β)

∂β∂βT
= −∂s(β)

∂βT
, (3.19)

which for the Bernoulli case corresponds to

H(β) =

n∑
i=1

xix
T
i πi(β)(1− πi(β)) (3.20)

Hence, the Newton method for estimating β, is the iteration scheme

β(i+1) = β(i) + (H(β(i)))−1s(β(i)) (3.21)

,
where H(β(i))−1 is the matrix inverse of the observed Fisher information matrix.
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Chapter 4
Particle Metropolis-Hastings

The system of interest consists of spiking neurons, with time varying connection strength de-
veloping according to a learning rule. In chapter 5 the details of this system will be explained,
and the mathematical model will be defined. For now, note that this can be expressed as a
state space model, where the time dependent connectivity works as a latent process essential
for the inference. The connectivity can be treated as a high dimensional variable, with strong
temporal correlations.

In the Bayesian paradigm, Markov chain Monte Carlo (MCMC) sampling is a class of
powerful techniques for inference in multi-dimensional distributions. However, for a long
sequence of highly correlated variables, a proposal distribution that mimics these correlations
is required for the methods to be efficient. Particle Markov chain Monte Carlo methods are
techniques able to deal with problems of this kind. The method was first introduced in 2010
by Christophe Andrieu and Arnaud Doucet in the paper Particle Markov chain Monte Carlo
methods. The idea is to construct proposal distributions for the MCMC routine by performing
a particle filtering method. Notice that sequential Monte Carlo essentially means the same
as particle filtering, and that the two descriptions will be used interchangeably.

This chapter is dedicated to describe one variant of particle MCMC, the Particle Metropolis-
Hastings method, including relevant statistical theory. In literature it is typical to use an
ordinary hidden Markov model as example state space model to explain the method ((An-
drieu et al., 2010), (Doucet et al., 2001), (Geof H. Givens, 2013), (Dahlin and Schön, 2015)).
Therefore, this will also be used as in this chapter. The state space model to be used in this
work will be introduced in chapter 5. This is slightly different, but the essence of the method
is still the same. The few model specific considerations will therefore be presented in chapter
5.

4.1 A state space model
State space model refers to a representation of a stochastic dynamical system for some time
dependent set of latent states, and a set of observations that have a probabilistic dependency
on the latent states (Chen and Brown (2013)).

Consider the set of latent states x1:T ⊂ χ and observations y1:T ⊂ Υ, and some static
parameters θ. The notation x1:T is a short form for {x1, x2, ..., xT }. Let the first latent state,
x1, come from an initial density p1(x1|θ), and let the following states follow a first order
Markov process,
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xt|xt−1 ∼ px(xt|xt−1, θ). (4.1)

The observations are dependent on the latent states through the density,

yt|xt ∼ py(yt|xt, θ). (4.2)

The latent states cannot be observed directly, but have to be inferred from the obser-
vations. This state space model, in discrete time, is what we call a hidden Markov model
(HMM).

4.2 Bayesian inference
The model parameters θ are unknown, and the aim is to characterize the distribution of the pa-
rameters given the observations, p(θ|y1:T ). From beforehand we however have some knowl-
edge on how the model parameters can be, given by the prior distribution p(θ).

The Bayesian framework serves this purpose. The goal of Bayesian parameter inference
is to estimate the distribution of the model parameters based on the observations at hand.
Via Bayes theorem one can obtain an expression for posterior distribution of the parameters
given the observations and the prior knowledge. For the state space model presented above,
this corresponds to the following expression

p(θ|y1:T ) =
p(θ)p(y1:T |θ)
p(y1:T )

=
p(θ)p(y1:T |θ)∫

Θ
p(θ′)p(y1:T θ′)dθ′

, (4.3)

where p(θ) is the prior distribution for the model parameters and p(y1:T |θ) is the like-
lihood of the observations given values for the model parameters. As typical in Bayesian
statistics, the marginal likelihood of the data, in the numerator of equation 4.3, is hard to
estimate. However, there are Monte Carlo techniques designed to overcome this problem by
exploiting the proportionality of the posterior p(θ|y1:T ) to the numerator of equation 4.3 at
fixed data. Thus,

∫
Θ
p(θ′)pθ′(y1:T )dθ′ can be regarded as a normalizing constant, and we

only have to consider

p(θ|y1:T ) ∝ p(θ)p(y1:T |θ) (4.4)

The relative amount that the likelihood and the prior contributes to the posterior depends
on how wide their distributions are. If the prior knowledge is that the parameter exists in some
narrow window, and this prior knowledge is very certain, the prior distribution will be very
peaked. This makes the prior more dominating than if its variance was higher. As the size of
the data set grows, the relative contribution of the likelihood function typically increases.

4.2.1 Metropolis-Hastings algorithm
Inference in the Bayesian framework is often performed using Markov Chain Monte Carlo
methods (MCMC). MCMC is a class of algorithms for sampling from a probability distribu-
tion, which in Bayesian inference is the posterior distribution over the parameters. Markov
chain Monte Carlo (MCMC) techniques utilize, as the name suggests, a combination of
Markov chains with Monte Carlo sampling. A Markov chain is a sequence of events, typically
time indexed, that satisfies the Markov property, which says that future events only depends
on the present and not on the past. Monte Carlo techniques leverage random sampling from
a distribution to make numerical estimates. However, this requires that we can sample from
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the distribution, which is not always straightforward. So the idea of MCMC is to construct a
Markov chain that has a limiting distribution equal to the one we want to sample from, and
use the Markov chain to explore the state space accordingly. Metropolis-Hastings is one of
several MCMCs. The following material is based on the source (Geof H. Givens).

The target distribution to be sampled from is the posterior, p(θ|y1:T ), which cannot be
sampled from directly. Also assume that Q(θ|θ′) is a conditional distribution of θ given θ′

that is possible to draw direct samples from and that satisfies the following property

Q(θ|θ′) > 0, ∀ (θ; p(θ|y1:T ) > 0), (θ′; (p(θ′|y1:T ) > 0) (4.5)

Then the Metropolis-Hastings procedure for sampling from p(θ|y1:T ) by using Q as pro-
posal distribution is summarized in algorithm 1.

Algorithm 1

Set starting value θ0

for i = 0, 1, 2, . . . do
Draw θ′ from Q(θ′|θi)
Compute α = p(θ′|y1:T )Q(θi|y1:T )

p(θi|y1:T )Q(θ′|y1:T )

θi+1 =

{
θ′ with probability min{1, α}
θi with probability 1−min{1, α}

end for

The resulting sequence {θ0, θ1, θ2, ...} is then a Markov chain with transition probability

T (θi+1 = θ|θi) =

min
{

1, p(θ
′|y1:T )Q(θi|y1:T )

p(θi|y1:T )Q(θ′|y1:T )

}
Q(θ|θi) if θ 6= θi

1−
∑
θ 6=θi min

{
1, p(θ

′|y1:T )Q(θi|y1:T )
p(θi|y1:T )Q(θ′|y1:T )

}
Q(θ|θi) if θ = θi,

(4.6)
which can be shown to satisfy the reversibility condition,

p(θ|y1:T )T (θ′|θ) = p(θ′|y1:T )T (θ|θ′), (4.7)

implying that p(θ|y1:T ) is a stationary distribution of the Markov chain. Hence, for some
burn in time n, we have that {θn, θn+1, θn+2, ...} is an approximate sample from p(θ|y1:T ).
The purpose of the burn in period is to avoid dependency on the starting value of the sampling.

4.2.2 Choice of proposal distribution
The choice of proposal distribution is essential for the efficiency of the Metropolis-Hastings
algorithm. In theory, every distribution that covers the range of the target distribution could
do the job for big enough number of iterations. However, it is advantageous if the proposal
distribution does not differ too much from the target distribution (Geof H. Givens). Typically
the proposal distribution is constructed as a random walk by conditioning on the current state
(Robert and Casella, 2005), such that (θi+1 − θi) ∼ N(0,Σ), where i labels the iterations
and Σ is a fixed covariance matrix.

The variance of these proposals affect the result of the sampling. If the variance in the
proposal distribution is too large, many proposed parameter values will be rejected. This
means that it will take many iterations to obtain the wanted sample. Also, in finite time one
may end up missing or oscillating around some maximum. On the other hand, if the variance
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is too low, the algorithm will struggle to cover the relevant parameter space, and can more
easily get stuck at local maximas in the likelihood. A way to avoid these scenarios is to adjust
the variance along the way, according to the variation in the already sampled values.

4.2.2.1 Adaptive proposal

In (Roberts et al., 1997) the authors suggest to rescale the proposal variance in order to keep
fixed the acceptance rate ∼ 25%. Fixing the acceptance rate corresponds to controlling the
trade-off between exploration and exploitation of the sampling algorithm and therefore its
efficiency. To this aim the authors in (Haario and Saksman, 1998) propose to exploit the
variance of the collected samples, such that a normal proposal distribution centered at the
current sample is given by:

Q(·|θ1:i) ∼ N(θi, c2dRi) (4.8)

where Rt denotes the empirical variance of the set of the H last sampled values,
{θi−H+1, θi−H+2, ..., θi}. We refer to H as a memory parameter. cd is a scaling factor,
dependent on the dimension of the target distribution. For the one-dimensional case, it takes
the value 2.4.

It is not needed to undergo this variance adjustment in every iteration. Define a fixed
number U , which is the update frequency. The variance can be recomputed as c2dRi every U
iteration.

4.3 Sequential Monte Carlo
Since in general for HHMs, the form of p(θ|y1:T ) is unknown, it is useful to reformulate it as
proportional to p(θ)p(y1:T |θ), for performing Metropolis-Hastings sampling. The prior, p(θ),
can typically be evaluated directly, but the likelihood, p(y1:T |θ), has to be approximated. It
can be expressed with the joint distribution of products of conditional distributions as follows,

p(y1:T |θ) = p(y1|θ)
T∏
t=2

p(yt|y1:t−1, θ). (4.9)

Each factor can be obtained by integrating

p(yt|y1:t−1, θ) =

∫
py(yt|xt, θ)px(xt|xt−1, θ)p(x1:t−1|y1:t−1, θ)dx

1:t, (4.10)

which can be approximated with a particle filtering routine. This section is dedicated to
explain how the particle filtering method works.

4.3.1 Importance Sampling
Consider the probability distribution, p(x), that we want to characterize, but are unable to
sample from. Importance sampling is a method that makes use of a sampling function, g(x),
that we can sample from, to generate an approximate sample from p(x).

Let’s first assume we are able to sample from p(x) and are looking for an estimate of∫
h(x)p(x)dx. A Monte Carlo estimate of the latter (Geof H. Givens, 2013) is

1

K

K∑
k=1

h(xk), (4.11)
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where each xk is sampled from p(x). When p(x) is impossible or inconvenient to sample
from, importance sampling can be used. This relies on sampling xk from another distribution
g(x), an importance sampling function, and then use the rewriting∫

h(x)p(x)dx =

∫
h(x)

p(x)

g(x)
g(x)dx. (4.12)

to get an approximation of the desired integral on the left-hand size of equation 4.12 as

1

K

K∑
k=1

h(xk)v(xk), (4.13)

where

v(xk) =
p(xk)

g(xk)
(4.14)

are unnormalized importance weights.
If p(x) is only known up to a normalizing constant, one can standardize the importance

weights, so that they add up to 1,

v∗(xk) =
v(xk)∑K

k′=1 v(xk′)
. (4.15)

Based on the sample, one effectively gets an empirical approximate of the distribution
p(x),

p(dx) =

K∑
k=1

v∗(xk)δxk
(dx). (4.16)

which can be used to generate an approximate sample from p(x). Essentially, this means
drawing a sample among the x’s, each with a probability mass corresponding to the weight.
It can be proven that as K ⇒ inf this distribution converges to p(x) (Geof H. Givens, 2013).

4.3.2 Sequential Importance Sampling
For the state space model, the target density to be characterized is p(x1:T |y1:T , θ). The
purpose is to obtain a sample of P sequences {x1:T

p }Pp=1 with corresponding importance
weights, that together give an approximation for p(x1:T |y1:T , θ) of the form,

p(dx1:T |θ) =

P∑
p=1

v∗(x1:T
p )δx1:T

p
(dx1:T ). (4.17)

The sample sequences {x1:T
p }Pp=1 will be referred to as particles.

The importance sampling procedure described above can be applied for multidimensional
densities, but as the number of dimensions increases it becomes less efficient. Sequential im-
portance sampling takes a different approach, aimed at overcoming this problem. In sequen-
tial importance sampling, also called particle filtering, the idea is that, instead of sampling
the whole trajectory x1:t, one sample is generated for one time step xt

′
at a time, building

on knowledge from the previously sampled time steps x1:t′−1. The following equations will
show why this is possible. For the rest of the section, conditioning on θ is assumed in all
densities, and is omitted for simplicity.
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Notice that for the HHM defined in section 4.1, p(x1:t|y1:t) follows a recursive relation
(Geof H. Givens, 2013),

pt(x1:t|y1:t) = pt−1(x1:t−1|y1:t−1) · px(xt|xt−1) · py(yt|xt). (4.18)

Let the importance sampling function be defined on the form{
g1(x1)

gt(xt|x1:t−1, y1:t−1).
(4.19)

This structure allows importance sampling at individual time steps.
The procedure begins by drawing P samples from g1(x1), and weighting the samples

according to

v1(x1
p) =

p1(x1
p|y1)

g1(x1
p)
∝
px(x1

p) · py(y1|x1
p)

g1(x1
p)

. (4.20)

Then, an approximation of p1(x1|y1) is obtained as

f̂1(x1|y1) =

P∑
p=1

v∗(x1
p)δx1

p
(dx) (4.21)

where v∗(x1
p) are the weights normalized as in equation 4.15.

The particle filtering proceeds by iteratively drawing P samples xtp ∼ gt(xt|xt−1
p , y1:t−1)

and combining that with the ancestor particle,{x1:t−1
p } ,to get {x1:t

p }. According to the re-
cursive relation in equation 4.18 the weight at time t, given the atomic approximation of
p(x1:t−1|y1:t−1) is

vt(x1:t
p ) =

px(xt|xt−1) · py(yt|xt)
gt(xtp|x1:t−1

p )
· vt−1(x1:t−1

p ). (4.22)

One common choice for the sampling distribution to equal px, namely

gt(xtp|x1:t−1
p ) = px(xt|xt−1). (4.23)

In this case, the particle weights are updated as

vt(x1:t
p ) = py(yt|xt) · vt−1(x1:t−1

p ). (4.24)

In the end this method produces a collection ofP particles and particle weights, {x1:T
(p) , v

T (x1:T
(p) )},

making up the distribution of equation 4.17.

4.3.3 Resampling
As the particles propagate in time, their respective likelihoods are updated. Since the particle
updates contain a random element, very unlikely values will occasionally be added, resulting
in a permanent decrease of the particles’ likelihood. For a long time sequences, this will often
lead to a situation where one particle dominates in terms of weights, while the rest will have
negligible weights in comparison. Such a sample of particles will be a poor representation of
the target distribution (Doucet et al., 2001), whereas a more effective representation would
be given by samples whose particles’ weights are comparable in magnitude.

This problem can be avoided by including a resampling mechanism in some of the iter-
ations. The idea is to draw a bootstrap sample from the set of particles, and then use this
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sample as particles further in the process. In practice this means that, on average, the likeliest
particles will be copied, replacing the unlikely ones.

The method proceeds as follows. At time step t of the particle filtering, one has a set
{x1:t

(p), v(x1:t
(p))}

P
p=1 of particles and particle weights. To perform resampling, it is necessary

to compute the normalized weights using equation 4.16. Since the normalized weights add
up to one, they can function as probabilities for the corresponding particle to become re-
sampled. Resampling involves drawing a set {i1, i2, ..., iP } of P indexes with replacement
from {1, 2, ..., P}, with probabilities {v∗(x1:t

(1)), v
∗(x1:t

(2)), ..., v
∗(x1:t

(P ))}, and obtain the new
set of particles {x1:t

(i1), x
1:t
(i2), ..., x

1:t
(iP )}. This way of resampling is called multinomial resam-

pling since the number of replicates of a particle is distributed multinomially (Naesseth et al.,
2019). After resampling, all particles are assigned identical particle weights, equal to 1

P .

4.3.3.1 When to resample

Resampling causes a decrease of diversity of particle samples, resulting in a increased vari-
ance of the Monte Carlo estimators (Martino et al., 2017). Therefore, it is advantageous to
only resample when it is necessary. To determine when this is the case, it is relevant to as-
sess the effective sample size (ESS) of the set of particles. The ESS is a measure of how big
sample from the actual target distribution that our particle sample is worth (Geof H. Givens
(2013)). In the best case scenario, the particle sample corresponds to a sample from the target
distribution, with all normalized particle weights equal to 1

P . In that case the ESS is P . Worst
case is that one of the normalized particle weights equalt 1, while the rest equals zero. This
corresponds to an ESS of 1.

There are various measures for ESS. In (Cappé et al., 2008) they present a measure,
perplexity, defined as

exp(H(v)/P ), (4.25)

where

H(v) = −
P∑
i=1

v∗(x1:t
(p))log(v∗(x1:t

(p))), (4.26)

is the Shannon entropy of the sample. Notice that this differs from the (approximate)
entropy of the posterior distribution, since the sum runs over the particles, which are not
necessarily distinct states of the system.

The idea is then to keep track of the perplexity of the particle sample, and resample
whenever the perplexity becomes lower than some threshold value.

In (Martino et al. (2017)) it is suggested a way to set this threshold. In section 6 of the
paper they study ESS-values for sets of uniformly distributed vectors in the unit simplex, and
compute the distribution of these for different ESS measures. Subsequently they suggest to
set a threshold for resampling equal to the mean of these distributions. For perplexity this
mean is 0.66.

4.3.4 Sequential Importance Sampling Resampling Algorithm

To wrap up this section we present a short summary of the particle filtering procedure, the
way it will be implemented in this work. Now the parameter θ is included in the notation to
remind the reader that this is an essential component of the model, even though kept constant
while running the algorithm..
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Given a specified parameter value θ, and a set of observations y1:T , the aim is to char-
acterize the posterior distribution p(x1:T |y1:T , θ) of the sequence of latent variables x1:T .
The procedure is initiated by drawing P values from π(x1), that makes up the set of par-
ticles for the first time step. Then, we move sequentially through the time line, each step
appending samples to the particles, drawn from gt(xtp|x1:t−1

p ). Before moving to the next
time step, the perplexity in the set of particles is evaluated. If that goes below some threshold
value, resamplig is performed. Finally a set of particles and particle weights {x1:T

1:P , v
T
1:P } are

obtained, making up a discrete approximate of the target distribution.
The pseudocode for this procedure is given in algorithm 2.

Algorithm 2 Sequential Monte Carlo

Sample x1
1:P ∼ π(x1)

Compute the particle weights as v1
(p) = p(y1|x1

(p), θ)
for t = 2, 3 . . . do

Sample xt1:P ∼ px(xt1:P |x
1:t−1
1:P , θ)

Compute particle weights vt(p) = p(yt|xt(p), θ) · v
t−1
(p)

if Perplexity of particles < 0.66 then
Normalize particle weights
Resample
Reset weights vt(p) = 1

P
end if

end for

4.4 Particle marginal Metropolis-Hastings procedure
Now, the material in this chapter can be combined into a particle Metropolis-Hastings proce-
dure for inferring p(θ|y1:T ).

For a given θ-value, the distribution p(x1:T |y1:T , θ) is approximated by equation 4.17
obtained from the particle filtering. In combination with equation 4.9 and 4.10 we see that
we can approximate p(y1:T |θ) as

p̂(y1:T |θ) =

T∏
t=1

1

N

P∑
p=1

vt(p) (4.27)

Thus, we can run a Metropolis-Hastings sampler, each iteration proposing a θ-value and
run a particle filter with this value. The complete procedure is summarized in algorithm 3.
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Algorithm 3 Particle marginal Metropolis-Hastings sampler

Set starting value θ0

Run particle filter targeting p̂(x1:T |y1:T , θ
0)

Calculate p̂(y1:T |θ0)
for i = 1, 2 . . . do

if (i mod U) = 0 then
Adjust variance of proposal density q

end if
Sample θ∗ ∼ q(·|θi−1)
Run particle filter targeting p̂(x1:T |y1:T , θ

∗)
Calculate p̂θ∗(y1:T )

r = p(y1:T |θ∗)p(θ∗)q(θi−1|θ∗)
p(y1:T |θi−1)p(θi−1)q(θ∗|θi−1)

θi =

{
θ∗ with probability min{1, r}
θi−1 with probability 1−min{1, r}

end for
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Chapter 5
Experimental setup

Now we have presented the context for the work as well as the relevant mathematical concepts
needed for the inference procedure. The approach is to construct a model for neural activity
and plasticity, simulate spike data accordingly and test the particle Metropolis-Hastings pro-
cedure for inference of the learning rule parameters. This chapter presents the components
of the model to be investigated, as well as the experimental procedure for inference. Material
from chapter 3 and 4 is assumed known, so the content here is in the context of the neural
model.

The chapter is divided into three sections. In section 5.1 the mathematical notation is
defined and the system under consideration is presented. To begin with, the model is pre-
sented in context of several connected neurons. Even though the experimental method in
this work only targets a single synapse, this is included to give the reader an indication that
the method can be expanded to a bigger network of neurons. Today we have equipment for
measuring activity of several connected neurons in the lab, so this scenario is relevant for
real data. Section 5.2 deals with some models specific considerations for applying the par-
ticle Metropolis-Hastings method. Finally, section 5.3 gives a thorough description of the
steps implemented, including justifications of choices made and figures visualizing the pro-
cess. This is included to increase the reproducibility of the work, and as a natural link to the
following chapters, which present numerical tests of the method introduced here.

5.1 Model

5.1.1 Framework
As described in section 2.2, neural activity measured in the lab comes in the format of time
points of action potentials in time interval [0,K] for the N neurons, as given by equation 2.1.
Let the time line be divided into T equally sized bins, and number these bins,

t ∈ {1, 2, ..., T}. (5.1)

Also, let sti ∈ {0, 1} be a binary variable taking value 1 if neuron i fires at least once in
the time bin t, and 0 otherwise. This is illustrated in figure 5.1, where the top array is a spike
train, and the bottom array is the corresponding binary values for the time bins.

We model the variable sti as a non-homogeneous Bernoulli process with expected value
µt, also referred to as spike rate, that can be understood as the probability that the neuron will
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Figure 5.1: Upper time line illustrates the time points, ax, for action potentials. Bottom time line
illustrates the corresponding binary value for the defined time bins.

fire in the time bin t. Within the Bernoulli GLM framework, introduced in section 3.1.1, the
spike rate is calculated from some linear predictor, ηti through a logit link function.

P (sti|µti) = Ber(µti) = µti
sti(1− µti)1−sti ,

µti = h(ηti) =
exp(ηti)

1 + exp(ηti)
.

(5.2)

In our neural network model the linear predictor is a linear combination of the states of
the neurons at the previous time step and a background noise, bi. This is expressed as,

ηti =
( N∑
j=0

wtjis
t−1
j

)
+ bi. (5.3)

Here wtji ∈ R is a weight between neuron j and neuron i at time step t, and represents
the strength of the connection between the two neurons. The contribution to the linear pre-
dictor for µti from neuron j is wtjis

t−1
j . A positive value for wtji corresponds to an excitatory

synaptic connection, whereas a negative weight represents an inhibitory one. A weight with
value zero, means that there is no connection.

Normally these weights are considered stationary when neural activity is modeled. This
makes things simpler and reduces computational power needed. In this work we aim to study
synaptic plasticity, so the weights are set to vary with time. The connectivity of the whole
network of neurons at each time step t can thus be summarized by a time dependent N ×N
weight matrix, W t, which for three neurons would look like,

W t =

wt11 wt12 wt13

wt21 wt22 wt23

wt31 wt32 wt33

 .

Considering the whole time line, for each neural connection there is a sequence of T
weights, w1:T

ji . This will be referred to as a weight trajectory. The way in which this trajec-
tory develops in time is assumed to follow a parametric learning rule, that we aim to infer.
Therefore, the weight trajectory serves as a latent process in this context.
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5.1.2 System for investigation
The system to be considered in this work consists of two neurons, neuron 1 and neuron 2,
with one directed synaptic weight, ωt

Neuron 1 has a constant probability for spiking, according to a background parameter b1.
Neuron 2 has spiking probability that depends on the spiking of neuron 1 in the previous time
step through the linear predictor b2 +ωt · st−1

1 . The actual spiking rate is related to the linear
predictor through a logit link. The distributions of the stochastic variables sti, representing
the spiking in this system, are given by equations

st1 ∼ Ber(µ1) µ1 = logit−1(b1) (5.4)

st2|st−1
1 , ωt ∼ Ber(µt2) µt2 = logit−1(ωt · st−1

1 + b2) (5.5)

equivalent to

p(st1) = µ
st1
1 (1− µ1)1−st1 (5.6)

p(st2|st−1
1 , ωt) = (µt2)s

t
2(1− µt2)1−st2 . (5.7)

5.1.3 Spike timing dependent plasticity
The way in which the weight trajectory develops over time is given by,

p(ωt+1|ωt, s1:t
1 , s1:t

2 , θ) = ωt + l(s1:t
1 , s1:t

2 , θ) + ε(σ), (5.8)

where l is a learning rule, and ε(σ) is a noise term. Here we apply the STDP learning
rule, which takes the following form

l(s1:t
i , s1:t

j , θ) = l+(s1:t
i , s1:t

j , A+, τ+)− l−(s1:t
i , s1:t

j , A−, τ−)

l+(s1:t
i , s1:t

j , A+, τ+) = stj

t∑
t′=1

st
′

i A+e
(t−t′)/τ+

l−(s1:t
i , s1:t

j , A−, τ−) = sti

t∑
t′=1

st
′

j A−e
(t−t′)/τ− ,

where, θ = {A+, A−, τ+, τ−} are learning rule parameters, and is the object for infer-
ence. The parameters τ+ and τ− control the scale of lags in which the firing contributes to
connection updates. Decreasing the τ value corresponds to shrinking the window for where
firing has significant impact on the plasticity. The parametersA+ andA− scale the size of the
updates, and correspond to the maximum value of connectivity updates when ∆t = |t− t′| is
small. Figure 5.2 illustrates the learning rule, for two different combinations of learning rule
parameters.
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Figure 5.2: Shape of the additive STDP learning rule for θ = {0.01, 0.01, 30ms, 30ms} (blue) and
θ = {0.005, 0.005, 20ms, 20ms} (red), as a function of the time lag ∆t between a spike of neuron 2
and a spike of neuron 1.

5.2 Particle Metropolis-Hastings for spike data
The objective is to characterize the posterior of the learning rule parameters given this spike
data,

p(θ|s1:T
2 ). (5.9)

The dependency on the spikes of neuron 1 is assumed in all conditional distributions in
this section, but omitted for simplicity. Both the spikes of neuron 2 and the weight trajectory
are strongly dependent on the spikes of neuron 1. However, neuron 1 is only dependent on
the static parameter, b1, and will therefore be considered as a fixed vector of parameters.

The distribution in question is characterized by implementing a particle Metropolis-Hastings
sampler. Since its form is not known explicitly, we rewrite with help of the Bayesian theorem
as in equation 4.4,

p(θ|s1:T
2 ) ∝ p(s1:T

2 |θ) · p(θ), (5.10)

where p(s1:T
2 |θ) is the likelihood of the spike data given the learning rule parameters,

and p(θ) denotes the prior distribution of the parameters. The posterior in equation 5.10 will
be characterized using Metropolis-Hastings sampling, including a particle filtering step to
approximate p(s1:T

2 |θ). As explained in section 4.4, the target distribution for the particle
filtering is that of the latent states, in this case

p(ω1:T |s1:T
2 , θ), (5.11)

leading to the approximated distribution

p̂(ω1:T
(p) |s

1:T
2 , θ) =

P∑
p=1

= δω1:T ω1:T
(p) v

∗(ω1:T
(p) ) (5.12)

The sampling procedure will be implemented as presented in chapter 4. However, notice
that the distribution for the time updates of the latent process, equation 5.8, differs from that
in the ordinary HMM, as it is conditioned also on the observations. Despite this modification,
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as it will be explained in section 5.2.1, our model is still suitable for inference with particle
Metropolis-Hastings. The rest of this section is dedicated to present some model specific
considerations for the procedure.

5.2.1 Choice of importance sampling function
For the particle filtering procedure it is necessary to specify which importance sampling func-
tion to use. Our intuition tells us that the closer the sampling distribution to the target, the
fewer samples are required to provide a good estimate.

By employing Bayes rule, our target distribution p(ω1:T |s1:T
2 , θ) can be rewritten as fol-

lows,

p(ω1:T |s1:T
2 , θ) = p(ωT |ω1:T−1, s1:T

2 , θ) · p(ω1:T−1|s1:T
2 , θ) (5.13)

= p(ωT |ωT−1, s1:T
2 , θ) · p(ω

1:T−1, sT2 |s1:T−1
2 , θ)

p(sT2 |s
1:T−1
2 , θ)

(5.14)

= p(ωT |ωT−1, s1:T
2 , θ) · p(s

T
2 |ωT−1, θ)

p(sT2 |s
1:T−1
2 , θ)

· p(ω1:T−1|s1:T−1
2 , θ), (5.15)

where in equation 5.14 and 5.15 the Markov property of the learning rule and of the
Bernoulli GLM was used respectively. The first factor corresponds to the weight updates
from the learning rule, equation 5.8, whereas the numerator of the second factor corresponds
to the GLM, equation 5.7. Equation 5.15 is a recursive relation in time for the posterior of
the weights trajectory, which mirrors equation 4.18. This suggests to use particle filtering to
sample from this target distribution and adopt the learning rule p(ωt+1|ωt, s1:t

1 , s1:t
2 , θ) from

equation 5.8 as the sampling distribution.

5.2.2 Importance weights
The importance weights are defined in equation 4.14 as the ratio between the target distribu-
tion to the sampling distribution (section 4.3.1). This gives the importance weights,

v(ω1:T
(p) ) =

p(ω1:T
(p) |s

1:T−1
2 , θ)

p(ωT |ωT−1, sT−1
2 )

(5.16)

=
p(sT2 |ωT−1

(p) , sT−1
2 , θ)p(ω1:T−1

(p) |s1:T−1
2 , θ)

p(sT2 |s
1:T−1
2 , θ)

. (5.17)

This would require having an estimate of p(ω1:T−1
(p) |s1:T−1

2 , θ), but also computing the

normalization p(sT2 |s1:T−1
2 , θ), which could be cumbersome.

Notice that when we normalize the weights, the latter simplifies:

v∗(ω1:T
(p) ) =

v(ω1:T
(p) )∑P

p′=1 v(ω1:T
(p′))

(5.18)

=
p(sT2 |ωT−1

(p) , sT−1
2 , θ)p(ω1:T−1

(p) |s1:T−1
2 , θ)∑P

p′=1 p(s
T
2 |ω

T−1
(p′) , s

T−1
2 , θ)p(ω1:T−1

(p′) |s1:T−1
2 , θ)

(5.19)
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So instead we define our unormalized weights as

v(ω1:T
(p) ) = p(sT2 |ωT−1

(p) , sT−1
2 , θ)p(ω1:T−1

(p) |s1:T−1
2 , θ), (5.20)

Since p(ω1:T−1
(p) |s1:T−1

2 , θ) is approximated according to equation 5.12, the system in sum
leads to the iterative procedure of sampling from 5.8 and weight as

p(sT2 |ωT−1
(p) , sT−1

1 , θ) · v∗(ω1:T
(p) ). (5.21)

5.2.3 Prior of learning rule parameters

As a prior distribution for the learning rule parameters, we use a gamma distribution as in
(Linderman et al. (2014)). Since the parameters cannot be negative, gamma is a natural
choice. The gamma distribution function is

f(x) =
βα

Γ(k)
xα−1e−βx, (5.22)

where α and β is the shape and rate parameter, respectively. Linderman suggests to use
shape parameter equal to 1, and rate parameters {50, 150, 100, 100} for A+, A−, τ+ and τ−
respectively. Figure 5.3 shows an illustration of the corresponding prior distribution for A+.

Figure 5.3: Prior distribution for A+

5.3 Method and analysis

In this work we assess the capability of Particle Metropolis-Hastings to infer the learning
rule parameters on synthetic data, which gives us control over the generative model and lets
us compare the results with the ground truth. While the setup introduced in the previous
sections allows for several focuses for inference, there is still a number of degrees of freedom
to be pinned when it comes to its implementation and testing on synthetic data. For instance
which parameters to use in the generative model and how to infer the background noise
parameters b1 and b2, are choices to be made. Now we present a description of how the
involved parts were carried out in this work. The aim of the section is to guide the reader
through the method implemented, including visualisations, considerations of choices made
on the way and some preliminary results, with the intention that the results in chapter 6 would
be possible to reproduce.
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5.3.1 Simulating the generative model

Spike data for two neurons with one directed synaptic connection and a trajectory of weights
updating according to the STDP rule was generated by numerical simulations, with a 5ms
time resolution (time bin size). Since the weight update in each time step is dependent on the
previous spiking activity, and the activity is in turn dependent on the weight, it was necessary
to generate the two in parallel. The spike data was simulated according to the Bernoulli
processes in equation 5.4 and 5.5, and the weight trajectory was evolved with the STDP
learning rule as in equation 5.8. The noise term in the learning rule was set to be a gaussian
distribution centered at 0, with a variance parameter σ2. Various sizes for the noise level were
used in the experiments to compare the outcomes.

The value of the learning rule parameters is a property of the involved synapses, which
in this case has to be specified in the simulations. In some of the experiments, comparisons
of different sets of parameters will be made. For the remaining experiments it is practical to
stick to one fixed set of parameters. These typical values for the learning rule parameters in
this generative model that was used in this work is presented in table 5.1. These values are
chosen as they are the same as those used in (Sen Song, 2000).

Parameter Value
A+ 0.005
A− 0.00525
τ+ 20
τ− 20

Table 5.1: Values for learning rule parameters used in simulations of the generative model, unless
specified differently

5.3.1.1 Some evaluations of the data simulation

Since the study is based on simulated data, it was necessary to make sure that the simulations
produced reasonable data. In addition to the learning rule parameters, there are a few other
parameters, {b1, b2, ω0} essential for the simulations. Different combinations of these gen-
erate data with different properties, which may not be representative of the neural system of
interest. For simplicity and time limitations it was preferable to chose some values for these,
which then could be held fixed. The values were inspired by those used in (Linderman et al.,
2014), but also based on a qualitative pre-analysis, ensuring that the chosen combinations
lead to realistic data in terms of firing rates of neurons. Since the spike data and weight tra-
jectory are generated together and closely related, the simulations were evaluated by visual
inspection of the weight trajectories produced.

In this work, a weight trajectory was considered to be appropriate if it demonstrated
learning over time, without getting too big or too small. For the system and learning rule
under consideration, the process behaves so that if the weight reaches a certain threshold
in absolute value, it will develop monotonically upwards or downwards from there. This
means that the weight learns over time, and is a shape we are looking for. However, since
the learning rule is unbounded, the weight will eventually reach a point where there is no
longer in practice a change in spike rate. This is a consequence of the nature of the logit
link function. Therefore, in addition to set appropriate values for {b1, b2, ω0}, it was also
necessary to specify an upper bound for the data length.

In Linderman’s simulations, a baseline firing rate with mean 20s−1 is used. Therefore,
it was chosen to test values for background parameters that gave a spike rate of comparable
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size to this for modeling a scenario of natural neural activity. In the lab, one can drive the
spike rate of a neuron by stimulation. So in addition, we wanted to make some data sets for
a situation where the activity of neuron 1 is highly driven by the external stimulus, by setting
higher values for the parameter b1 and therefore increasing its average firing rate.

Based on visual inspections of plots of weight trajectories and spike rates, some parame-
ters for the simulated data were chosen. These are summarized in table 5.2.

Parameter Value
b1 -2 or 1
b2 -2
W0 1

Time (s) 120 s

Table 5.2: Parameter values to be used in the experiments, unless specified differently

The value b1 = −2 gives a Bernoulli spike rate parameter of µ1 = 0.12. For the scenario
where neuron 1 is stimulated, b1 = 1 is used. This corresponds to µ1 = 0.73.

Figure 5.4 shows example trajectories of the chosen combinations of parameters, with
low and high spike rate of neuron 1 respectively.

Figure 5.4: Example weight trajectories for the chosen parameter values specified in table 5.2, with
b1 = −2 (left) and b2 = 1 (right).

Figure 5.5 shows two example cases with other parameter combinations, that produced
less interesting weight trajectories. The top row shows the weight trajectory for the parameter
values b1 = −1, b2 = −1 and ω0 = 1 (to the right), and the corresponding spike rate,
µt2|st−1

1 = 1, for neuron 2 in the case where neuron 1 fired in the previous time step (to the
left). Here the weight gets so high that the increase in spike rate flattens out. The second row
shows a case with b1 = −3, b2 = −3 and ω0 = 0. Now the weight change over time is too
little to be any interesting for the purpose of this work.
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Figure 5.5: Black trajectories : Example weight trajectories for some combinations of parameters
{b1, b2, ω0} that do not appear reasonable. Top: {−1,−1, 1}. Bottom: {−3,−3, 0}. Blue trajectory:
Spike rate, µt

2|st−1
1 = 1, for parameters {−1,−1, 1}.

5.3.2 Particle Metropolis-Hastings for inferring learning rule parame-
ters

Having the simulated data, the aim is to test if the particle Metropolis-Hastings method can
be used to infer the learning rule parameters in the generative model. For real spike measure-
ments the only information available is the time points for spiking of the neurons. This means
that in addition to learning rule parameters and the weight trajectories, also the background
rates are unknown and therefore have to be inferred from the data.

5.3.2.1 Inferring learning rule parameters

The learning rule parameters are the main target in the procedure, and are sampled with the
particle Metropolis-Hastings sampler. One approach could be to sample all the parameters
{A+, A−, τ+, τ−}, and characterize the four individual distributions. However, the A+ and
A− are typically closely correlated, and so are the values τ+ and τ−. Therefore, it was used
fixed relationships A+ = 1.05 · A− and τ+ = τ− in this work. These are the same relations
as used in (Sen Song, 2000). So, in the implemented sampling routine, only values for A+

and τ+ was sampled, and the values for A− and τ− was adjusted accordingly. For the rest of
the report, the notation A and τ without subscripts, refers to A+ and τ+ respectively.

In the experiments we run some cases where only one of the two learning rule parameters
is inferred while the other is fixed to its true value, and some experiments where both are
considered unknown and are inferred in the procedure. In the latter case, proposal values
A and τ are drawn independently from their respective proposal distribution (see paragraph
5.3.2.3), and then the pair of proposed values is either accepted or rejected via the usual M-H
procedure.
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5.3.2.2 Inferring b1, b2 and ω0

The likelihood of the spikes given the parameters, which is included in the posterior distribu-
tion, is dependent on the background rates b1 and b2. This is calculated in the particle filtering
step, and produces an approximate distribution of the weight trajectory, p(ω1:T |s1:T

2 , θ). The
particle trajectory is generated based on the learning rule and the spiking activity, with an
exception of the first step at t = 0, which is drawn from the initial distribution π(ω0). This is
chosen to be a gaussian distribution around some pre-estimate ω̂0. Even though the values b1,
b2 and ω0 are not so interesting in themselves, they are essential for the inference. Therefore,
they also have to be approximated from the spike data.

The spike rate of neuron 1 is only dependent on the value of the b1 parameter. This means
that the maximum likelihood estimate of b1 can be computed directly from the spike data of
neuron 1 as

b̂1 = log
( µ̂1

1− µ̂1

)
, (5.23)

with µ̂1 =
∑T

t=1 s
t
1

T .

The spike rate of neuron 2 is dependent on the linear predictor ωt · st−1
1 + b2 at time

t. In other words it depends on b2, but also on the whole unknown trajectory ω1:T . For ap-
proximating b2 this linear predictor was simplified with a stationary weight parameter, which
would reflect the average weight along the time line. For this system, a Newton iteration
routine can be performed, as described in section 3.2, targeting b2 and this stationary weight
parameter. Running this for 1000 replicates of data simulations, with parameters, gives the
distribution of estimated b2-values shown in figure 5.6. The empirical 95% credible interval
for a symmetrical sample is calculated as the 2.5 and 97.5 percentiles of the sample (Geof
H. Givens). For the sample of b2 values this gave the credible interval [−2.04,−1.96]

Figure 5.6: Distribution of b2 values calculated from 1000 data simulations

These simulations also give estimates for the stationary weight parameter. However, since
the weight changes across the data set, a better approximation of ω0 can be achieved by
running the procedure for only the first ten seconds of data. Figure 5.7 shows the distribution
of this estimate based on 1000 simulations.
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Figure 5.7: Distribution of ω0 values calculated from 1000 data simulations

5.3.2.3 Proposal distributions

Every iteration in the particle Metropolis-Hastings samples begins with proposing values
for the learning rule parameters. In analogy to the prior distribution over the learning rule
parameters (see section 5.2.3), a gamma distribution was chosen also for the proposal, to
ensure that negative values are not proposed. For a gamma distribution, the mean and variance
are given by

Mean =
α

β
Variance =

α

β2
, (5.24)

where α and β are the shape and rate parameters, respectively.
We opted for a local proposal distribution, in the form of a random walk, so the mean

value was set to the current parameter value in each iteration by adjusting the β-value at
a fixed α-value. The variance in the proposal was updated every 100 iterations, according
to the empirical variance in the 100 latest sampled values, as described in section 4.2.2.1.
The choice of 100 was inspired by suggested values for the memory parameter and update
frequency in (Haario and Saksman, 1998). At these updates, both α and β was adjusted to
satisfy the equations.

5.3.3 Performing particle filtering

At every iteration of the Metropolis Hastings procedure, the posterior distribution of the
weights given the current values of the learning rule parameters was characterized using
particle filtering. A set of 100 particles was initiated by drawing values according to the ini-
tial distribution π(ω0). The particles were evolved sequentially according to the importance
sampling distribution including gaussian noise of a specified size, producing weight trajecto-
ries growing in time. Like in the generative model, the size of each time step is set to 5 ms
also here. Figure 5.8 is a visualization of the sample of particles after propagating for 20, 60
and 120 seconds, along with the trajectory in the generative model in black. This is from a
particle filtering with hyperparameters set to the same as in the generative model, and without
any resampling.
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Figure 5.8: Visualization of particle propagation at times 20s, 60s and 120s, and weight trajectory in
generative model (black)

The particle weights are reflecting the relative probability of the particles given the ob-
served spike data. In figure 5.9 the same particle distribution as in figure 5.8 are shown with
transparency corresponding to their relative particle weights.

Figure 5.9: Particle distribution with transparency corresponding to the particle weights, and weight
trajectory in generative model (black)

As expected, the particle trajectories positioned furthest away from the generative trajec-
tory have lower particle weights than the ones close to the generative trajectory.

For every time step, the preplexity in the particle distribution is computed. If the preplex-
ity goes below 66, the resampling mechanism is performed, as explained in section 4.3.3.
Figure 5.10 shows an example of how the particle distribution can look before and after a
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resamplig.

Figure 5.10: Particle distribution before (left) and after (right) resampling

Figure 5.11 shows an example of how the generated particle distribution looks after set-
ting the true value A+ = 0.005 compared to setting the wrong value A+ = 0.002.

Figure 5.11: Particle distribution generated with parameters equal to those in the generative model
(left), and with A+ = 0.002 (right)
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Chapter 6
Results

In order to have full control over the inference algorithm, the method presented in the previ-
ous chapters was implemented in Python, with no use of any packages for particle MCMC or
particle filtering (see Python script in appendix) In this chapter we present the results from
this procedure. The main focuses are to assess whether the pMCMC method is appropriate
for inference on spike data, and to investigate properties of the learning rule for the system
under consideration. Section 6.1 shows the posterior values across the range of A and τ sep-
arately, as calculated by the particle filtering. This is to visualize the output from running
particle filtering, and give an indication of how the posterior behaves. The next two sections
include results from running the particle Metropolis-Hastings. In section 6.2, A and τ are
inferred individually, keeping the other fixed to its true value, with the aim of evaluating the
performance of the method itself, and to understand the effects of the two parameters sepa-
rately. Section 6.3 shows the results of treating both learning rule parameters as unknown,
which reflects the situation for real data, and will therefore give indications on the perfor-
mance of the algorithm on the data from future lab experiments, assuming that the models is
close enough to the reality.

Before presenting the results, we want to make a point clear for the reader. One of the
main targets for investigation will be to compare the accuracy of our inferences for different
noise levels. The noise level is given as the value of the standard deviation in the gaussian
noise (in equation 5.8), and will take the values σ = {0.0001, 0.0005, 0.001, 0.002, 0.005}.
To get an intuition on the size of these noise levels, notice that a characteristic size of the
learning rule steps is the value of the A-parameter. Since A = 0.005 is the typical value used
in these experiments, the noise level σ = 0.005 corresponds to a signal to noise ratio of 1.

6.1 Performance of particle filtering

How easily the particle Metropolis-Hastings method can characterize the learning rule pa-
rameters depend on the shape of the posterior distribution. For example it is interesting to
know if the posterior is convex, and how peaked it is. To get an idea of its nature, the poste-
rior over a range of values of the learning rule parameters was characterized. 250 simulated
data sets with equal parameter values, including the values A = 0.005 and τ = 20ms, were
generated. Then the particle filtering procedure was ran for each of these data sets, after set-
ting the parameters A and τ to values within the prescribed range. Particles and weights for
each combination of pair of parameters and data set, allowed to compute the likelihood of the
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pair given the data set. Figure 6.1 shows the computed log likelihood for A-values ranging
from 0.001 to 0.01 for each of the 250 simulated data sets. τ was fixed to its true value in the
particle filtering. The figure shows that there is a convex trend across the range of A-values,
with a maximum in the area around the true value for every data set.

Figure 6.1: The log likelihood computed with particle filtering, for a range of A-values for 250 indi-
vidual simulated data sets of 120 seconds spike data, with b1 = b2 = −2, ω0 = 1 and σ = 0.0005.
Grey line corresponds to the true A-value.

In the Metropolis-Hastings procedure, the sampledA- and τ -values are evaluated accord-
ing to the posterior, not only the likelihood. The following plots show the mean and standard
deviation of the log posterior over the 250 replicates. The prior distribution, p(θ) was set as
described in section (section 5.2.3) and the likelihoods, p(s1:T

2 |θ) are computed with particle
filtering. In order to get the posterior distribution p(θ|s1:T

2 ) for each data set, the normaliza-
tion constant, p(s1:T

2 ), was approximated by Laplace approximation of the integral over θ of
the joint distribution p(s1:T

2 , θ) = p(s1:T
2 |θ) ∗ p(θ) (MacKay (2002)). Figure 6.2 display the

average across data sets of the resulting estimate of the posterior for noise levels σ = 0.0001,
σ = 0.0005 and σ = 0.005. All curves attain a maximum at the true value A = 0.005. For
the two lower noise levels, the curves are clearly peaked, and the variance on the top is very
low. This indicates that most replicates had maximum values at A = 0.005. For σ = 0.005
the curve is clearly flatter. Notice that the scale on the y-axis varies among the plots.
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Figure 6.2: Log-posterior value for a range of A-values for the noise levels σ = 0.0001 (top left),
σ = 0.0005 (top right) and σ = 0.005 (bottom). Grey line corresponds to the true A-value.

Figure 6.3 shows the same curve for varying τ -values, with noise levels σ = 0.0001 and
σ = 0.001. In this case A was kept fixed to 0.005 in the particle filtering. Figure 6.4 shows
the same, but with parameter b1 = 1. A larger b1 correspond to an higher average firing rate
for neuron 1, which for real data can be achieved via stimulation. Noticeably, the presence
of stimulation strongly affects the accuracy of our inference algorithm: without stimulation,
all values from 10ms to 60ms are relatively similar in terms of posterior density, whereas
with stimulation there is a clear peak at τ = 20ms for the noise levels σ = 0.0001 and
σ = 0.0005.

Another observation is that the exact value of A seems more critical than that of τ . In all
plots with A, we observe that there is a definite maximum point at A = 0.005. For τ in the
stimulation case, the curve is flat on the top already for a noise level of σ = 0.0005.
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Figure 6.3: Log-posterior value over a range of τ -values for the noise levels σ = 0.0001 (left) and
σ = 0.001 (right), for simulations of 120 seconds spike data, with b1 = b2 = −2 and ω0 = 1. Grey
line corresponds to the true τ -value.

Figure 6.4: Log-posterior value for a range of τ -values for the noise levels σ = 0.0001 (top left),
σ = 0.0005 (top right) and σ = 0.005 (bottom), for simulations of 120 seconds spike data, with
b2 = −2, ω0 = 1, and stimulation b1 = 1. Grey line corresponds to the true τ -value.

6.2 Distributions of individual parameters PMCMC
Now we investigate the results of particle Metropolis-Hastings inference, targeting A and τ
individually. In this section we demonstrate that the method converges from wrong starting
value towards a distribution around the generative one, we show the effect of the noise param-
eter and length of the spike data set, and we present visualizations of the posterior distribution
of the two learning rule parameter.
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6.2.1 Inference of A paramter

By initializing the Metropolis Hastings algorithm with a value of A lying outside the typical
set of its distribution, the Markov chain should manage to navigate the parameter space to-
wards the typical set and, after a certain number of iterations, be independent of the starting
position. Figure 6.5 shows two examples of the accepted A-values in 1500 iterations of the
algorithm, starting at A = 0.002, for noise levels σ = 0.0001 and σ = 0.001 respectively.
Notice that in both cases the algorithm manages to move away from the wrong starting value
to approach a neighbourhood of the generative value A = 0.005. We observed that for all the
data sets we simulated, and the different initializations that we explored, after 300 iterations
the samples seemed to be independent of the starting value. Therefore, the burn-in period
was set to 300 iterations.

Figure 6.5: Accepted samples A-values over 1500 iterations, starting from A=0.002, for noise levels
σ = 0.0001 and σ = 0.001.
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How well the unknown parameters can be inferred from data will typically depend on
the size of the data set. A bigger data set indeed typically contains more information on
the parameters, and will intuitively give a more peaked posterior distribution. To compare
the width of the posterior distribution for different data lengths, pMCMC was performed
on five replicates of simulated data sets for each of the lengths {30s, 60s, ..., 180s}, and
synaptic plasticity noise levels of σ = 0.0005. Figure 6.6 shows the mean and the mean of
the sample standard deviation of the posterior distribution across the 5 instances. The latter
clearly decreases with data length, supporting the idea that the posterior gets more peaked
with more data.

Figure 6.6: Mean of the sample means of the posterior distribution of A in five replicates, with error
bars corresponding to mean of the sample standard deviations, for different data lengths. Black line
indicate the generative value.

Also, it is interesting to see how the shape of the posterior is affected by the noise level.
For this purpose we start by presenting some visualizations of the posterior distribution as
sampled with pMCMC. Figure 6.7 shows the histograms of the sampled A-values, after
the burn-in period, for noise levels σ = {0.0001, 0.0005, 0.001, 0.002, 0.005}. Each plot
corresponds to one individual data simulation, and a particle MCMC run with 6000 itera-
tions. Since the problem is stochastic, different runs with identical parameters would pro-
duce slightly different results. However, even though the plots are based on single runs, they
capture the essence in how the distributions appear, and how they change with noise level.
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Figure 6.7: Posterior density of A as sampled by particle Metropolis-Hastings, for various noise lev-
els; σ = 0.0001 (top left), σ = 0.0005 (top right), σ = 0.001 (middle left), σ = 0.002 (middle
right) and σ = 0.005 (bottom). Included in the plots are the sample mean (grey dashed), true value
(black dashed) boundaries of the 95% empirical credible intervals (purple dashed), and the prior density
function (black).

From these plots we observe that the generative value falls within the credible interval in
all cases, and that the prior seems to play a minor role in shaping the posterior. In accordance
with the results of section 6.1, the width of the distribution increases with increasing noise
level. For σ = 0.0001 the credible interval is [0.0047, 0.0053], meaning that the learning
rule can be characterized quite precisely, whereas for σ = 0.005 the credible interval is
[0.0031, 0.0070].

Figure 6.8 shows the trend of increasing posterior width for increasing noise more sys-
tematically, averaging over ten replicates of the procedure. As in figure 6.6, it displays the
mean of the sample means, along with errorbars corresponding to the mean of the sample
standard deviations.
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Figure 6.8: Mean of the sample means in ten replicates, with error bars corresponding to mean of the
sample standard deviations, for different noise levels. Black line indicate the generative value.

6.2.2 Inference of τ -parameter
As for the parameter A in section 6.2.1, we conducted an analysis of the performance of
pMCMC for, while A was kept fixed. As with A, we checked that the method converges
when staring from a wrong input value (results not reported here). As already noted, figure
6.3 and 6.4 indicate that the posterior for τ behaves differently when neuron 1 was stimulated
compared to when it was not. Therefore, it is interesting to consider the result from particle
MCMC for both settings.

Figure 6.9 plots show the posterior distribution for τ for noise level σ = 0.0005 and
σ = 0.005, for the case without stimulation.

Figure 6.9: Posterior density of τ as sampled by particle Metropolis-Hastings, for b1 = −2 and noise
levels σ = 0.0005 and σ = 0.005.

Notice that for both high and low noise level the 95% credible interval includes the gener-
ative value τ = 20ms. With σ = 0.0005 the empirical 95% credible interval is [11.6, 40.4],
which means that the generative value is hard to determine precisely, but that the sample
distribution is still affected by the data. For σ = 0.005 it seems like the inference starts to
collapse, and that the prior starts to dominate.

Analogously to figure 6.9, figure 6.10 shows the sample distribution of τ at different noise
levels, here in the case with stimulation (b1 = 1).
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Figure 6.10: Posterior density of τ as sampled by particle Metropolis-Hastings, for b1 = 1 and noise
levels σ = 0.0001, σ = 0.0005 and σ = 0.005.

Also in the presence of stimulation the method collapses for σ = 0.005, which corre-
sponds to an high signal to noise ratio. This agrees with the finding for the same noise level
in figure 6.4. However, for noise level σ = 0.0001 and σ = 0.0005 the sample distribution is
relatively narrow around the true parameter value.

A more systematic assessment of the role of noise in the pMCMC inference accuracy was
performed by running ten replicates with different noise level, for the case with (right) and
without (left) stimulation. The result is displayed in figure 6.11. As in figure 6.8 the figure
shows the mean of the sample means, with errorbars corresponding to the mean of the sample
standard deviations.

Figure 6.11: Mean of the sample means in ten replicates, with error bars corresponding to mean of the
sample standard deviations, for different noise levels, for b1 = −2 (left) and b1 = 1 (right). Black line
indicate the generative value.
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This clearly shows that with stimulation, the distribution in narrower for small noise lev-
els, whereas without stimulation, the distribution is relatively wide for all noise levels.

Analogously to figure 6.6, figure 6.12 and 6.12 display the mean and standard deviation of
the sample posterior for different lengths of simulated data sets, without and with stimulation
respectively. At each data length it is shown the average over five replicates, with noise level
equal to σ = 0.0005. Notice that the scale on the y-axis is different in the two, meaning
that the general sample standard deviation is smaller in the case with stimulation. In both
figures, the sample standard deviation is larger at the shortest data set, corresponding to 30s.
Despite this observation, there is little variations across the time line. So we only have a slight
evidence of time dependency of the standard deviation. This is different from what we would
expect, so one continuation of the project would be to investigate this more thoroughly.

Figure 6.12: Mean of the sample means of the posterior distribution of τ without stimulation in five
replicates, with error bars corresponding to mean of the sample standard deviations, for different data
lengths. Black line indicate the generative value.

Figure 6.13: Mean of the sample means of the posterior distribution of τ with stimulation in five
replicates, with error bars corresponding to mean of the sample standard deviations, for different data
lengths. Black line indicate the generative value.
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6.3 Simultaneous inference

In this section we present the results of inferring both A and τ from the data. Now both A and
τ are drawn according to their respective proposal distributions, and either both are accepted
or both are rejected in each iteration. It turns out that the marginal sample distributions
obtained do not give much information of the generative parameter values in this case. Figure
6.14 shows an example of how these marginal distributions can look.

Figure 6.14: Marginal sample densities of A (left) and τ (right), for joint sampling with particle
Metropolis-Hastings, for noise level σ = 0.0005.

Notice that the shape of the learning rule is determined by the combination ofA and τ . So
even though the marginal distributions do not provide so much information, it is interesting
to see the joint structure of the sample values. Figure 6.15 shows the same sampled values
as in figure 6.14, displayed in the A, τ -plane. Interestingly, the four modes of the marginals
in Figure 6.12 corresponded to two modes of the join distribution of the parameters A and τ .
The sampled parameters are not only correlated at the modes though.

Figure 6.15: {A, τ} sample points obtained from particle Metropolis-Hastings, for b1 = 1 and noise
level σ = 0.0005. The red dot correspond to the generative parameters.

This shows that the sample has a characteristic shape, allowing only specific combina-
tions of the two parameters. Figure 6.16 shows the same plot for a case where there is no
stimulation of neuron, with b1 = −2.
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Figure 6.16: {A, τ} sample points obtained from particle Metropolis-Hastings, for b1 = −2 and noise
level σ = 0.0005. The red dot correspond to the generative parameters.

In the absence of stimulation the curve delineated by the sample is much flatter in τ in a
neighbourhood of the generative value A = 0.005 with respect to the case with stimulation..
These characteristics agrees with what was observed for the τ -parameter in figure 6.3 and
6.4.

Figure 6.17 shows how the sample looks for varying values of the noise parameter. The
thickness of the typical set increases with the noise level, in line with the results of section
6.1 and 6.2, further hindering our inference capability in this setting.

Figure 6.17: {A, τ} sample points obtained from particle Metropolis-Hastings, for b1 = 1 and noise
levels σ = 0.0001 (top left), σ = 0.0005 (top right) and σ = 0.001 (bottom). The red dot correspond
to the generative parameters.
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It is also interesting to see whether there are differences in terms of posterior value across
the sample, that may help resolve the generative parameters. In figure 6.18 the sample points
are color coded according to their relative log posterior values. The normalization constant
would be the same for all sample points, and is not taken into account here.

Figure 6.18: {A, τ} sample points obtained from particle Metropolis-Hastings, for b1 = 1 and noise
level σ = 0.0001, color coded according to the relative (not normalized) log posterior values.

Unfortunately, it seems like there is no trend in where the posterior is higher or lower.
Thus, the posterior cannot be used for determining the generative values of the learning rule
parameters more precisely. However, there are clearly many combinations of parameters
that are not sampled. So it could still be possible to distinguish between different shapes of
learning rules from this method. To test this hypothesis, data sets with other combinations of
learning rule parameters was also generated. The combinations tried were {A = 0.004, τ =
10ms} and {A = 0.007, τ = 30ms}, along with the parameter values used earlier, {A =
0.005, τ = 20ms}. The left plot in figure 6.19 shows the resulting samples for these three
different parameter combinations look. The right plot in figure 6.19 shows the shape of the
learning rule for four different sample values from each of the clusters. These are chosen to
be one from each end of each cluster, and two in between.
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Figure 6.19: Left plot: {A, τ} sample points obtained from particle Metropolis-Hastings, for b1 = 1
and noise levels σ = 0.0001, for generative values {A = 0.004, τ = 10ms} (red), {A = 0.005, τ =
20ms} (yellow), and {A = 0.005, τ = 20ms}. The black dots indicate the generative parameter
for the nearest cluster of samples. Right plot: Shape of deterministic part of the learning rule for four
different combinations of parameters from the different clusters, colored according to the corresponding
cluster. The learning rules are downsampled at every ∆t = 5ms to match the time scale of the neural
activity.

This shows that combinations of learning rule parameters belonging to the same sample,
corresponds to learning rules of similar shapes. Ultimately this suggests that the nature of the
learning rule for the model in this work does not allow us to determine which specific learning
rule parameter was used, but could give an indication of what kind of underlying learning rule
that is present. Notice that despite the similarity of the learning rules within the clusters of
Figure 6.19, these are not identical, not even when binned at the time bin size of the neural
activity. It follows that the inability of the algorithm to infer the generative parameters can’t
be simply attributed to an identifiability issue of our learning rule model. It’s rather likely an
interplay between learning rule parametrization, neural activity and synaptic plasticity time
scales, and finite sampling which prevent our algorithm to resolve from specific combinations
of parameters.
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Chapter 7
Conclusion and further work

This thesis has covered an exploration of the particle Metropolis-Hastings method, for mak-
ing inference of the STDP learning rule influencing the activity of two connected neurons.
This is an approach for studying synaptic plasticity that was suggested in (Linderman et al.
(2014)). In contrast to the model used by Linderman, which was a Poisson spiking model, we
modeled the neural spiking as a Bernoulli process for a binned time line. Spike data was sim-
ulated according to this model, for various specifications of model parameters, data lengths
and noise levels, in order to test the abilities and limitations of the inference method.

The main target of the experimental tests was to characterize the posterior distribution
of the two learning rule parameters A and τ . In chapter 6 the results of these tests were
presented. The experiments show that the method manages to retrieve information on the
generative learning rule parameters from the spike data, given enough data and sufficiently
low noise level. Less noise and more data gave a sharper sample posterior distribution of
both learning rule parameters. For the τ -parameter (keeping A fixed) it was shown that the
spike rate of the presynaptic neuron affects the performance of inference. At the base spike
rate, the posterior value was approximately flat for a range of τ -values around the generative
one. However, by increasing the spike rate of the presynaptic neuron, to mimic a case where
the spiking is driven by high frequency external stimuli, the behavior was different. This
gave a posterior with bell-shaped structure around the generative value, for low enough noise
levels. Ultimately the presence of stimulation, particle Metropolis Hastings could accurately
infer each model parameter at signal to noise ratios below 0.4, on 120ms recordings of the
activity of pre- and post-synaptic neurons. Starting from this anecdotal report it would be
interesting to systematically investigate the role of stimulation on pMCMC inferences, which
could potentially instruct optimal stimulation protocols when it comes to real data recordings.

When sampling A and τ simultaneously, the sample marginal posterior densities gave
limited information of the underlying parameter values. However, it was demonstrated that
the sampled {A, τ}-values are highly correlated, tracing a characteristic curve in the {A, τ}-
space. It was shown that the location of this curve was different for sufficiently different
learning rules. This supports the idea that some information of the underlying learning rule
can be detected with the method, regardless of the specific identity of the learning rule pa-
rameters. As a continuation of the work in this thesis, it would be interesting to compare
how well various learning rules fit to a set of spike data, by implementing Bayesian model
selection (MacKay, 2002). This could for example be applied to the spike data from healthy
rats and rats with Alzheimer’s, to investigate whether a difference in plasticity effects can be
detected.

49



For continuation of this work there are several considerations and modifications that can
be made, in order to optimise the method and to make the model more biologically plausible.
In the following we discuss some of these. One important methodical consideration that
was not included here, was an evaluation of the number of particles in the particle filtering.
More particles would give a better approximate of target distribution, but on the other hand
make the problem more computationally demanding. This trade-off should be investigated.
In addition, it would be interesting to test the sensitivity of the results to the used prior and to
the bin size of the time line.

In order to improve inference, a bigger data set would be beneficial. As discussed in
section 5.3.1, the experimental setup used in this work only allowed for spike data of lengths
up to a couple of minutes, primarily due to the unboundedness of the learning rule. One
could imagine that the neurons can be stimulated in a way such that the weight trajectory
would change direction now and then avoiding a monotone increase or decrease. In that
way, longer data sets could be produced, perhaps giving a better inference. Also, the amount
of data could be increased by inclusion of spike data for more neurons, assuming that the
synapses share the same learning rule parameters. However, an optimisation of the code
could be needed, since the number of synapses scales as the square of the number of neurons,
meaning computationally cost of the problem increases quickly.

There are also some expansions to the model that would be interesting. The model consid-
ered in this work was a simplified system, that would potentially miss some crucial aspects of
synaptic transmission, plasticity and neural physiology in general of real neurons. For exam-
ple, just after firing an action potential, a neuron undergoes a refractory period, correspond-
ing to membrane hyperpolarization and therefore reduced likeliness of another spike. Also,
when a neuron is exposed to constant stimuli over time, the responsiveness of the neuron will
typically decrease, a phenomenon known as adaptation. These effects can by modeled by
including a self coupling of the neurons, such that their activity would also depend on their
own spike history.

Another model component that would be interesting to investigate further, is the learn-
ing rule itself. The additive STDP learning rule used in this work is simple and monotone,
and well suited for the approach in this thesis. However, there exist other, more flexible and
complex learning rules, that has other benefits. For example, in (Ghanbari et al., 2017) it is
considered the Tsodyks-Markram model, which includes parameters for neural facilitation
and depression. Finally an interesting avenue for investigation is the effect of common in-
put, which often arises when working with real data. By common input we mean that the
activity of the observed neurons is affected by activity of unobserved neurons and as such
our inferences on the underlying observed system. E.g in (Dunn and Battistin (2017)) is was
shows that if the weights in the system are too strong, it would be problematic to reconstruct
even stationary connectivity of observed neurons if the connectivity in unobserved neurons is
unknown.

Overall there are many possible expansions to the model, and several aspects yet to be
investigated in order to optimise the method for its purpose. Despite this fact, findings in this
work supports the idea of using particle Metropolis-Hastings when aiming for inference of
the underlying learning rule in neural spike data.
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Appendix

Python script for particle Metropolis-Hastings
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import sys, os
import numpy.random
import numpy as np
import random
import time
from scipy import *
import scipy.stats
from scipy.stats import gamma
from scipy.stats import norm
import csv

def learning_rule(t,S1_t, S2_t,S1,S2, A_p, A_m, tau_p,tau_m):
#STDP learning rule
    l_p = np.sum(A_p*np.exp(-((t-S1_t)*1000)/(tau_p*t_per_second)))
    l_m = np.sum(A_m*np.exp(-((t-S2_t)*1000)/(tau_m*t_per_second)))
    return(S2[t]*l_p-S1[t]*l_m)

def generate(T, b1, b2, A_p_true,A_m_true,tau_true, W_0_true, std):
#Generate spikes and weights
    W_T = np.zeros(T)

    S1 = np.zeros(T)
    S2 = np.zeros(T)
    S1_t_init = 1
    S2_t_init = 1

    S2_t = np.array([0])

    lambda1 = 1/(1+np.exp(-b1))
    S1[0] = np.random.binomial(1,lambda1,1)
    if S1[0] == 1:
        S1_t = np.array([0])
        S1_t_init = 0
    W_T[0] = W_0_true

    for t in range(1,T):
        lambda2 = 1/(1+np.exp(-(b2 + (W_T[t-1]*S1[t-1]))))
        
        S1[t] = np.random.binomial(1,lambda1,1)
        S2[t] = np.random.binomial(1,lambda2,1)
        
        if S1[t] == 1:
            if S1_t_init:
                S1_t = np.array([t])
                S1_t_init = 0
            else:
                S1_t = np.append(S1_t, t)
        if S2[t] == 1:
            if S2_t_init:
                S2_t = np.array([t])
                S2_t_init = 0
            else:
                S2_t = np.append(S2_t, t)
            
        if t<t_constant:
            W_T[t] = W_T[t-1]
            
        else:
            W_T[t] = W_T[t-1] + (learning_rule(t,S1_t, S2_t,S1,S2,A_p_true,A_m_true,tau_true,tau_true)) + 
np.random.normal(0,std)
     
    return(W_T, S1, S2, S1_t, S2_t)

def learning_rule_steps(S1, S2, S1_t, S2_t, t_per_second, A, tau, T):
#Compute deterministic learning rule steps given data and hyperparameters
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    t = t_constant
    step_list = [learning_rule(t,S1_t[0:int(sum(S1[0:t+1]))], S2_t[0:int(sum(S2[0:t+1]))],S1,S2,A,A*1.05,tau,tau)]
    while (t+1 < T):
        t = t+1
        step_list.append(learning_rule(t,S1_t[0:int(sum(S1[0:t+1]))], S2_t[0:int(sum(S2[0:t+1]))],S1,S2,A,A*1.05,tau,tau))
    return(step_list)

#Functions for particle filtering
def sample_weights(w_p, P, learning_step, std):
    w_p_t = np.zeros(P)
    for p in range(P):
        sample_point = np.random.normal(w_p[p][-1]+learning_step,std)
        w_p[p].append(sample_point)
        w_p_t[p] = sample_point
    return(w_p, w_p_t)

def particle_log_likelihoods(S1, S2, w_p_t, t, P, b1, b2):
    log_alpha_t = S2[t+1]*(b2+(w_p_t*S1[t])) - np.log(1+np.exp(b2+(w_p_t*S1[t])))
    return(log_alpha_t)

def update_particle_weights(v_p, P, log_alpha_t):
    alpha_t_scaled = exp(log_alpha_t-max(log_alpha_t)) 
    v_p = v_p*alpha_t_scaled
    return(v_p)

def resample_weights(w_p,v_p, P):
    xk = np.arange(P)
    v_sum = np.sum(v_p)
    pk = v_p/v_sum
    custm = scipy.stats.rv_discrete(name='custm', values=(xk, pk))
    p_r = list(custm.rvs(size=P))
    init = 1
    for it in p_r:
        if init==1:
            w_p_r = [w_p[it].copy()]
            init = 0
        w_p_r.append(w_p[it].copy())
    v_p = np.repeat(1/P, P)
    return(w_p_r, v_p)

def N_eff(v_p):
    v_sum = np.sum(v_p)
    v_norm = v_p/v_sum
    squared_sum = 0
    for v in v_norm:
        squared_sum = squared_sum + v**2
    return(1/squared_sum)

def perplexity(v_p):
    v_sum = np.sum(v_p)
    v_norm = v_p/v_sum
    v_norm_log = np.log(v_norm)
    perplexity = exp(- sum(v_norm*v_norm_log))
    return(perplexity)

def log_lik_total(w_p, S1, S2,P, b1, b2):
    log_lik = np.zeros(P)
    for p in range(P):
        log_lik[p] = np.sum(S2[1:]*(b2+(w_p[p][:]*S1[:-1])) - np.log(1+np.exp(b2+(w_p[p][:]*S1[:-1]))))
    return(log_lik)

    
def SMC(P, T, W_0, std_initial, S1, S2, learning_step, b1, b2):
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#Particle filtering
    resampling_list = [0]

    w_p = [[W_0]]
    for p in range(P):
        w_p.append([W_0])

    v_p = np.ones(P)

    it = 0

    for t in range(1,T-1):
        if t<t_constant:
            for p in range(P):
                w_p[p].append(w_p[p][-1])
        else:
            w_p, w_p_t = sample_weights(w_p, P, learning_step[it], std)
            alpha_t = particle_log_likelihoods(S1,S2,w_p_t,t,P, b1, b2)
            v_p = update_particle_weights(v_p, P, alpha_t)
            it = it+1
            if perplexity(v_p)<N_threshold:
                w_p, v_p = resample_weights(w_p,v_p,P)
                resampling_list.append(t)
    return(w_p, v_p)

def estimate_W_and_b2(S1, S2, w_guess, b2_guess, iterations):
#Newton iterations
    
    par = [b2_guess,w_guess]
    par_list = [par]
    for j in range(iterations):
        lin_pred = par[0] + (par[1]*S1)
        
        
        lambda_it = 1/(1+exp(-(lin_pred[:-1])))
        
        arr_score = [np.ones(len(S1)-1),S1[:-1]]*(S2[1:] - (exp(lin_pred[:-1])/(1 + exp(lin_pred[:-1]))))

        score = arr_score.sum(axis=1)
        score = np.matrix(score)
        
        for t in range(len(S1)-1):
            if t == 0:
                hessian = np.matrix([[1,S1[t]],[S1[t],S1[t]]])*lambda_it[t]*(1-lambda_it[t])
            else:
                hessian = hessian + np.matrix([[1,S1[t]],[S1[t],S1[t]]])*lambda_it[t]*(1-lambda_it[t])
    
        
        m = numpy.linalg.inv(hessian)*(numpy.matrix.transpose(score))
        m = np.array(m)
        m = np.ndarray.flatten(m)
        
        par = par + m

        par_list.append(par)
    return(par_list[-1])

def estimate_b1(S1):
    lambda1_estim = sum(S1)/(len(S1))
    b1_estim = np.log(lambda1_estim/(1-lambda1_estim))
    return(b1_estim)

def adaptive_alpha(H, A_p_list):
    A_slice = A_p_list[len(A_p_list)-H:]
    m = mean(A_slice)
    v = var(A_slice)*(2.4**2)
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    new_alpha = (m**2)/v
    return (new_alpha)

def adaptive_alpha_tau(H, tau_list):
    tau_slice = tau_list[len(tau_list)-H:]
    tau_slice_2 = [x/1000 for x in tau_slice]
    m = mean(tau_slice_2)
    v = var(tau_slice_2)*(2.4**2)
    new_alpha = (m**2)/v
    return (new_alpha)

def proposal_A_p(A_p, alpha):
    return(np.random.gamma(alpha, A_p/alpha))

def proposal_tau(tau, alpha):
    return(1000*np.random.gamma(alpha, (tau/1000)/alpha))

def A_p_prior(A_p, A_p_rate):
    return(gamma.pdf(A_p, a = 1, scale = 1/A_p_rate))

def tau_prior(tau, tau_rate):
    return(gamma.pdf(tau/1000, a = 1, scale = 1/tau_rate))

def p_spike_train_fraction(w_p, w_p_new, S1, S2, P, b1, b2):
    init = 1
    for p in range(P):
        log_lik_temp_new = np.sum(S2[1:]*(b2+(w_p_new[p][:]*S1[:-1])) - np.log(1+np.exp(b2+(w_p_new[p][:]*S1[:-1]))))
        log_lik_temp = np.sum(S2[1:]*(b2+(w_p[p][:]*S1[:-1])) - np.log(1+np.exp(b2+(w_p[p][:]*S1[:-1]))))
        if init:
            init = 0
            log_lik_list = [log_lik_temp]
            log_lik_list_new = [log_lik_temp_new]
        else:
            log_lik_list.append(log_lik_temp)
            log_lik_list_new.append(log_lik_temp_new)
        
    min1 = min(log_lik_list)
    min2 = min(log_lik_list_new)
    min_tot = min(min1,min2)
    
    log_lik_list_scaled = [x-min_tot for x in log_lik_list]
    log_lik_list_new_scaled = [y - min_tot for y in log_lik_list_new]
    
    p_old = sum([exp(a) for a in log_lik_list_scaled])
    p_new = sum([exp(b) for b in log_lik_list_new_scaled])
    
    return(p_new/p_old)

def particle_marginal_Metropolis_Hastings_both(A_p_start,tau_start, W_0, b1, b2, iterations,alpha, alpha_tau):
    
    alpha_new = alpha
    alpha_tau_new = alpha_tau
    tau = tau_start
    A_p = A_p_start
    learning_step = learning_rule_steps(S1, S2, S1_t, S2_t, t_per_second, A_p, tau, T)
    w_p, v_p = SMC(P, T, W_0, std_initial, S1, S2, learning_step, b1, b2)
    
    A_list = [A_p]
    tau_list = [tau]
    c = 0

    for i in range(iterations): 
        
        if (i%100)==0:
            if i>150:
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                alpha_new = adaptive_alpha(H, A_list)
                
        if (i%100)==0:
            if i>150:
                alpha_tau_new = adaptive_alpha_tau(H, tau_list)
        
        
        A_p_new = proposal_A_p(A_p, alpha_new)
        tau_new = proposal_tau(tau, alpha_tau_new)
        learning_step_new = learning_rule_steps(S1, S2, S1_t, S2_t, t_per_second, A_p_new, tau_new, T)
        w_p_new, v_p_new = SMC(P, T, W_0, std_initial, S1, S2, learning_step_new, b1, b2)
    
        w_p_new, v_p_new = resample_weights(w_p_new,v_p_new,P)
    
        p_s_ratio = p_spike_train_fraction(w_p, w_p_new, S1, S2, P, b1, b2)   
        prior_new_A = A_p_prior(A_p_new, A_p_rate)
        prior_old_A = A_p_prior(A_p, A_p_rate)
        prior_ratio_A = prior_new_A/prior_old_A
        
        prior_new_tau = tau_prior(tau_new, tau_rate)
        prior_old_tau = tau_prior(tau, tau_rate)
        prior_ratio_tau = prior_new_tau/prior_old_tau
    
        ratio = p_s_ratio*prior_ratio_A*prior_ratio_tau*(gamma.pdf(A_p, a = 1, scale = A_p_new)/gamma.pdf(A_p_new, a = 1, 
scale = A_p))*(gamma.pdf(tau/1000, a = 1, scale = tau_new/1000)/gamma.pdf(tau_new/1000, a = 1, scale = tau/1000))

        if (np.random.uniform(0,1)<ratio):
            c = c+1
            tau = tau_new
            A_p = A_p_new
            w_p = w_p_new
            v_p = v_p_new
            learning_step = learning_step_new
        
        print(A_p, tau)
        
        A_list.append(A_p)
        tau_list.append(tau)
        
    return(A_list,tau_list, c)

#Parameters
W_0_true = 1

b1_true = 2
b2_true = -2

A_p_true= 0.005
A_m_true = A_p_true*1.05
tau_true = 20

n_seconds = 120
t_per_second = 200 
T = n_seconds * t_per_second
t_constant = 100

std = 0.0001 #Noise level

#Start shape parameters for gamma proposal
alpha = 5 
alpha_tau = 4

#Rate parameters for gamma proposal
A_p_rate = 50 
tau_rate = 100
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H = 100

P = 100 #Number of particles

N_threshold = P*0.66 #perplexity threshold

iterations = 1500

A_p_start = A_p_true
tau_start = tau_true

std_initial = 0.001
w_guess = W_0_true
b2_guess = b2_true

#Main

#Generate spikes and weight trajectory
W_T, S1, S2, S1_t, S2_t = generate(T, b1_true, b2_true, A_p_true,A_m_true,tau_true, W_0_true, std)

#Estimate b2
b2 = estimate_W_and_b2(S1, S2, w_guess, b2_guess, 40)[0]

#Estimate b1
b1 = estimate_b1(S1)

#Estimate W0
W_0 = estimate_W_and_b2(S1[:2000], S2[:2000], w_guess, b2, 40)[1]

#Particle Metropolis-Hastings
(A_list,tau_list,c)  = particle_marginal_Metropolis_Hastings_both(A_p_start,tau_start, W_0, b1, b2, iterations,alpha, alpha_tau)
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