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Abstract

We give a detailed account of Behrens’ proof of real and complex Bott
periodicity theorem which is based on the ideas by McDuff. We include
thorough computations and some intuition behind constructions and con-
cepts. The proof is done by repeated constructions of certain quasifibra-
tions with contractible total spaces in order to determine the iterated loop
spaces of U and O.

Sammedrag

Vi gir en detaljert redegjørelse av Behrens’ bevis for reell og kompleks
Bott periodisitetsteorem som er basert p̊a ideene til McDuff. Vi inklud-
erer fullstendige bergegninger og litt intuisjon bak konstruksjoner og kon-
septer. Beviset utføres gjennom repeterende konstruksjoner av visse kvasi-
fibreringer med kontraktible totale rom for å bestemme de iterative
løkkerommene til U og O.

1 Introduction

Bott periodicity theorem is a classic result in algebraic topology. This theo-
rem played a key part in the development of K-theory, which is a generalized
cohomology theory, that had a great impact on various fields of mathematics.
There has been a lot of earlier proofs of this theorem, using a wide range of
methods. Bott [6] used Morse theory in his original proof. Atiyah [3] used the
index theorem and elliptic operators, and Atiyah, Bott and Shapiro [2] made
use of Clifford modules, to name a few. The proof presented in this thesis is
by Behrens [4], which is a simplification of the methods from the proof of com-
plex Bott periodicity by Aguilar and Prieto [1], as well as an extension of the
methods to prove real Bott periodicity. These proofs are based on the ideas of
McDuff [13]. Behrens used quasifibration theory and linear algebra, along with
some basic differential geometry, and constructed the iterated loopspace of O
and U in order to prove the theorem. Compared to earlier proofs, this one is
much simpler and more elementary, and therefore has the potential of being
appreciated by a wider audience. This thesis will provide a detailed version of
Behrens’ proof, along with some extra inuition and explanations in hope of mak-
ing it accessible to a broader audience. The thesis concludes with an analysis
of the proof of the real case and complex case. In the analysis, a connection is
drawn between the difference in complexity in the real and complex case and the
additional constraint to the eigenvalues and eigenspaces of orthogonal matrices
compared to unitary matrices.

The main goal of this thesis is to work towards making mathematics more
available. This involves writing while being aware of how a reader would per-
cieve the proof, and filling in additional explanations and intuition where a
reader might need it. Having this focus is relevant for a mathematics didacti-
cal viewpoint, where one of the main points is how to commmunicate difficult
mathematics in a comprehensive way.
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2 Preliminary definitions and theorems

This section will consist of definitions of terms and some theorems that we will be
using in the proof. These are divided into definitions from topology, definitions
from linear algebra and Lie theory, some well known theorems stated for the
readers convenience, and some theorems provided by Behrens’ paper.

2.1 Topology

A homotopy between two maps is a continuous transformation from one map
to the other. That is, two f, g : X → Y are homotopic if there is a continuous
function H : [0, 1] × X → Y where H(0, x) = f(x) and H(1, x) = g(x). We
denote f ' g if they are homotopic.

A function f : X → Y is called a homotopy equivalence if there exists
g : Y → X such that f ◦ g ' IdY and g ◦ f ' IdX . If this is the case, then we
say X and Y are homotopy equivalent.

Given a pointed topological space (X,x0), the loop space, denoted ΩX, is
the space of all continuous pointed maps from the pointed circle (S1, s0) to X.
That means all continuous maps f : S1 → X such that f(s0) = x0. Intuitively,
the loop space can be thought of as all closed loops in X that starts and ends
at the base point x0. The second iterated loop space is Ω(ΩX), which we write
as Ω2X. We denote the n-th iterated loop space by ΩnX.

By modding out the homotopy equivalences in ΩX, we get the fundamen-
tal group, also known as the first homotopy group, denoted π1(X,x0).

We denote by πn(X,x0) the higher order homotopy groups, which is
the collection of basepoint-preserving maps f : Sn → X modulo the homotopy
equivalences. Note that we can equivalently define this using the map from In

instead of Sn, with f(∂In) = x0. Where ∂In is the boundary of In

A weak homotopy equivalence between two spaces X and Y is a con-
tionuous map f : X → Y that induces an isomorphism between the homotopy
groups of all orders:

π0(X) ∼= π0(Y )

πn(X,x0) ∼= πn(Y, y0) ∀n.

The two spaces are in this case called weak homotopy equivalent.
The relative homotopy groups πn(X,A, x0) where x0 ∈ A ⊆ X, is the col-

lection of all maps f : (In, ∂In, Jn−1)→ (X,A, x0), where Jn−1 = ∂In − In−1,
where X denotes the closure of X. Since ∂In is all the faces of In, and In−1 is
one of those faces, Jn−1 is the union of all remaining faces.

We now define the notion of a vector bundle along with a chain of gener-
alizations, each successor being a generalization of the previous ones.

In a vector bundle, we have a total space E, a base space B, a surjective
continuous map called a projection map p : E → B, as well as the fiber space
F , where F = p−1(b) for a b ∈ B. This set (E, B, p, F ) is called a real vector
bundle if F = Rk for k ∈ N for every b ∈ B, and for any point b ∈ B, there
is a neigborhood U in B around b such that p−1(U) ∼= U × Rk. We call this
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last property the local trivialization property. A complex vector bundle and
quaternionic vector bundle is defined the same way, with R replaced with C and
H respectively. A basic, but important, example of a real vector bundle is called
the trivial n-dimensional bundle, where E = B × Rn.

A generalization of a vector bundle is a fiber bundle. A fiber bundle is
also the collection (E, B, p, F ), but F is instead a topological space. Such a
collection is called a fiber bundle if every b ∈ B has an open neighborhood U
such that p−1(U) ∼= U × F . In particular p−1(b) ∼= F for all b ∈ B.

Instead of denoting this setup (E, B, p, F ), we will instead denote this as
a fiber sequence:

F → E
p−→ B,

or simply
F → E → B.

A generalization of a fiber bundle is a fibration, also known as a Hurewicz
fibration. Instead of having the local trivialization property, it instead has
a property known as the homotopy lifting property with respect to any
topological space X. This property says that a map ω exists in the following
commutative diagram

X
α //

{0}×X
��

E

p

��

I ×X

ω

<<

β
// B

In order to grasp the difference between fibrations and fiber bundles, we have
that the fibers in a fibration need no longer be homeomorphic, but has to be
homotopy equivalent to each other.

The next generalization is called a Serre fibration, which instead of having
to satisfy the homotopy lifting property for all spaces X, only have to satisfy
the homotopy lifting property for CW-complexes. This is equivalent to having
to satisfy the homotopy lifting property for only all n-cubes In. That means
that ω exists for all n in the following commutative diagram:

In
α //

{0}×In
��

E

p

��

In+1

ω

==

β
// B

In a Serre fibration, the fibers don’t have to be homotopy equivalent anymore.
The last generalization we will cover is called a quasifibration, and is in the

heart of the proof. We will give two definitions, each of which will give different
insights to the properties of a quasifibration. First of all, quasifibrations will
not in general satisfy the homotopy lifting property for any space. Instead,
we define a quasifibration as the collection (E, B, p, p−1(b)) with one of the
following equivalent properties, giving respectively definition 1 and 2:
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1. Given p : E → B, Then this is a quasifibration if the induced map
p∗ : πi(E, p

−1(b), x0) → πi(B, b) is an isomorphism for all b ∈ B, x0 ∈ p−1(b)
and i ≥ 0.

2. Given p : E → B, and assume B path connected and that all fibers are
CW-complexes. Then this is a quasifibration if all fibers p−1(b) are homotopy
equivalent to the homotopy fiber of p over b.

Given p : E → B, the homotopy fiber of a fixed point b ∈ B is the
collection of pairs (e, f), where e ∈ E, and f : [0, 1] → B is a path in B such
that f(0) = p(e) and f(1) = b. Therefore, the homotopy fiber consists of all
fibers where the base of the fiber p(e) in B is homotopic to b, and each path
from p(e) to b defines a distinct element in the homotopy fiber.

A common property between all the mentioned fibrations and bundles is that
their fiber sequences induces a long exact homotopy sequence. If the fiber
sequence is given by

F → E → B,

then the induced long exact homotopy sequence is given by

...→ πn+1(B, b0)→ πn(F, x0)→ πn(E, x0)→ πn(B, b0)→ ...

We now present two important examples of fibrations. The first fibration
exists for any pointed space (X,x0), and is called the path space fibration of
X. This is a fibration of the form

ΩX ↪→ PX
p−→ X

Where ΩX is the loop space of X at x0,

PX = {f : I → X | f continuous, f(0) = x0}

is the path space of X, and p(f) = f(1).
The second fibration is in fact a fiber bundle, and exists when the space

is a topological group G. To get to the fiber bundle, we start by defining the
classifying space BG. This is a pointed topological space such that the loop
space of BG is homotopy equivalent to G, and the associated total space EGhas
only trivial homotopy groups and makes the map EG → BG into a universal
bundle over BG. The resulting fiber bundle is of this form:

G→ EG→ BG,

with ΩBG ' G.
Let X be a compact Hausdorff topological space. The (complex) K-theory

of X, denoted K(X), is the set of all complex vector bundles over X under a
certain equivalence relation. In fact, there are two different equivalence relations
that is natural to consider, which yields K-theory and reduced K-theory, denoted
K̃(X). First of all, in this definition, we use a broader definition of vector
bundles than the one given earlier, which allows for two fibers to have different
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dimension if the base points are disconnected in the base space X. That way, the
local trivialization property is still satisfied. Let εn be the trivial n-dimensional
complex vector bundle. Define the equivalence relation ≈ between two vector
bundles E1 and E2 as E1 ≈ E2 if and only if E1 ⊕ εn ∼= E2 ⊕ εn for some n.
Then

K(X) = {E | p : E → X is a complex vector bundle}/ ≈ .

Define another equivalence relation ∼ such that E1 ∼ E2 if and only if E1⊕εn ∼=
E1 ⊕ εm. Then

K̃(X) = {E | p : E → X is a complex vector bundle}/ ∼ .

It can be shown that both K(X) and K̃(X) form a ring with respect to the
additive operation ⊕ and the multiplicative operation ⊗, and that K(X) ∼=
K̃(X)⊕Z. One can similarly define real and quaternionic K-theory, also known
as KO-theory and KSp-theory respectively, by considering real and quaternionic
vector bundles rather than complex vector bundles.

2.2 Linear algebra and Lie theory

The basis of all constructions in the proof will be inner product spaces. An
inner product space is a vector space V over a field F equipped with an inner
product, that is, a map 〈·, ·〉 : V × V → F , that is conjugate symmetric, linear
in the first term, and positive definite on nonzero vectors. In this proof, we will
only consider the field to be R,C, or H.

A linear map φ : V → W between two inner procuct spaces V and W ,
is called a linear isometry if it preserves the inner product, i.e. 〈v, w〉 =
〈φ(v), φ(w)〉. If φ in addition is bijective, then φ is an isomorphism between the
two inner product spaces. When the inner product spaces are over R,C, and H,
then the set of all isomorphisms is denoted the orthogonal group, the unitary
group, and the symplectic group, respectively. All of these sets form a group
under matrix multiplication.

The orthogonal group of dimension n, denoted O(n) or On, is the group
consisting of all n×n orthogonal matrices, i.e. n-dimensional real matrices that
satisfies AAT = ATA = Id. When considering the orthogonal group of a space
W , we write O(W ). Some properties of orthogonal matrices that are going to
be of importance to us is that orthogonal matrices are normal, i.e. AA∗ = A∗A
where ∗ denotes conjugation transpose, and that the eigenvalues of orthogonal
matrices are complex numbers with absolute value 1.

The unitary group of dimension n, denoted U(n) or Un, is the group
of all n × n unitary matrices, i.e n-dimensional complex matrices that satisfy
AA∗ = A∗A = Id, where ∗ denotes complex conjugate transpose. When consid-
ering the unitary group of a space W , we write U(W ). Same as with orthogonal
matrices, unitary matrices are normal and the eigenvalues has absolute value 1.

The symplectic group of dimension n, denoted Sp(n) or Spn is the group
of all symplectic matrices, which is in this paper taken to mean the n×n quater-
nionic matrices that satisfy AA∗ = A∗A = Id, where ∗ denotes the quaternion
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conjugate transpose. When considering the symplectic group of a space W , we
write Sp(W ). Symplectic matrices are normal and the eigenvalues are complex
with absolute value 1.

When we have a normal matrix A that operates on an inner product space
V , the spectral teorem tells us that we can write A = UΛU∗, where U is a
unitary matrix, and Λ is a diagonal matrix with its eigenvalues as entries. In
particular, A has a decomposition called the spectral decomposition which is
of the form A =

∑
i

λiπWi
, where πWi

denotes the orthogonal projection onto the

eigenspace Wi corresponding to the eigenvalue λi. It follows that
⊕
i

Wi = V .

For the next series of constructions, we will use the concept of a direct
limit. Let A0, A1, A2, ..., be a family of spaces, and define maps fij : Ai → Aj
for i ≤ j that satisfy fik = fjk ◦ fij for all k ≥ j ≥ i, and fii = Id for all
i. The collection of all Ai and fij is called a direct system. Given a direct
system, define the direct limit as lim

→
Ai =

∐
i

Ai/ ∼, where
∐

is the disjoint

union. The equivalence relation ∼ is defined the following way. Let xi ∈ Ai and
xj ∈ Aj . Then xi ∼ xj if and only if there exists a k with i ≤ k and j ≤ k such
that fik(xi) = fjk(xj). Note that a more complete definition of a direct limit
uses indexing from an arbitrary index category, but we will not need this in the
proof.

We now have the necessary tool for defining the infinite orthogonal group
O(∞), or simply O. We define a direct system given by Ai = O(i) and define
the maps fij by sending X ∈ O(i) to X ⊕ Ij−i ∈ O(j). Define O = lim

→ iO(i).

Similarly, the infinite unitary group U and the infinite symplectic group Sp are
defined as U = lim

→ iU(i) and Sp = lim
→ iSp(i)

We have an explicit way of constructing the classifying space for the infi-
nite orthogonal, unitary and symplectic group. This is a construction using the
Grassmannian manifold, shortened to simply Grassmannian, of real, com-
plex and quaternionic vector spaces respectively. Given a vector space V of
dimension k, the Grassmannian Grn(k) is the space of n-dimensional linear
subspaces of V .

We define the classifying space of the infinite unitary group as the fol-
lowing construction. Let V be a complex vector space of dimension k. It is there-
fore isomorphic to Ck. Let BUn(V ) = {Y | Y ⊆ V, dimC Y = n} = Grn(k).
Let BUn =

∐
k

BUn(Ck). Now, we have a family of spaces BU0, BU1, BU2, ....

For i ≤ j, define maps fij : BUi → BUj given by Y 7→ Y ⊕ Cj−i. The classi-
fying space BU is defined as the direct limit lim

→ i(BUi) under these maps. The

classifying space of the infinite orthogonal and symplectic group are defined the
same way, but with respectively real and quaternionic vector spaces instead of
complex vector spaces.

Given a vector space V over any field F equipped with a symplectic bilinear
form, i.e a map ω : V ×V → F that is linear in both arguments, ω(v, v) = 0 for
all v ∈ V , and ω(u, v) = 0 for all v ∈ V implies u = 0. Let W be a subspace of
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V . Define
W⊥ = {v ∈ V | ω(v, w) = 0 ∀w ∈W}.

W is called a Lagrangian subspace if W = W⊥.
When the vector space V is over R and C, the set of all lagrangian subspaces

is a smooth manifold, and a subspace of the Grassmannian of V . Over R, this
is called the (real) Lagrangian Grassmannian. and over C, this is called
the complex Lagrangian Grassmannian.

The orthogonal, unitary and symplectic group are examples of Lie groups.
A Lie group is a group where the group operation and inversion are smooth
maps, which gives the group the additional structure of a differentiable mani-
fold.

Associated to the Lie group is the Lie algebra, which is an algebra gener-
ated by the commutator XY −Y X, for X,Y in the Lie group. The Lie algebra
represents the tangent space to the Lie group at identity. The Lie groups O(n),
U(n), and Sp(n) have the associated Lie algebras o(n), u(n), and sp(n), respec-
tively, where o(n) consists of all n×n skew-symmetric matrices, u(n) consists for
all n× n skew-hermitian matrices, and sp(n) consists of all skew-quaternionic-
hermitian matrices, i.e all matrices A such that A∗ = −A, where ∗ denotes
quaternion conjugate transpose.

In the construction of the quasifibrations in the proof, the projection maps
are going to be matrix exponentials. Given a matrix A, the matrix exponen-

tial, which we denote eA, is defined to be eA =
∞∑
k=0

Ak

k! . The matrix exponential

satisfies a number of properties which we will use in the proof, which is that the
matrix exponentials commute with the transpose and conjugate transpose, for
Y invertible, Y eAY −1 = eY AY

−1

, and eXeY = eX+Y when X and Y commutes.
Another important property of the matrix exponential is that it is a map from
the Lie algebra to the Lie group when the Lie group is a matrix group, which
includes the Lie groups mentioned above.

A geodesic in a Lie group is the shortest path between two elements p0 and
p1 of the group, and is given by walking from the first element in the direction
of the second element. We can choose a parametrization of this geodesic such
that the path is traversed for a unit time. The geodesic γ must therefore satisfy
γ(0) = p0, and γ′(0) = v for v in the tangent space, i.e the Lie algebra corre-
sponding to the Lie group. The geodesic is therefore on the form γ(t) = p0e

tv.

2.3 Some important theorems

We now state a three theorems that we are going to use in the proof.
The first one is known as the Whitehead theorem. This says that if we

have two spaces X and Y that are homotopy equivalent to CW-complexes, and
are weakly homotopy equivalent, then they are homotopy equivalent.

The second theorem is the orbit-stabilizer theorem, and says that given
a set A, and a fixed element a ∈ A, if a group G acts on a, and S is the
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stabilizer of that action, i.e, the subgroup of all elements s such that sa = a,
then G · a ∼= G/S. In particular, if G acts transitively on A, i.e. G · a = A, then
A ∼= G/S. If A is a Lie group, then A is called a homogeneous space.

The third theorem is called the Heine-Borel theorem. This theorem says
that every closed and bounded subspace of Rn is compact. With an appropriate
definition of boundedness, we will in the proof prove that O(n), U(n) and Sp(n)
are compact.

2.4 More on quasifibrations

The rest of section 2 will be following section 2 in Behrens’ paper.

In this section, we shall state some necessary results about quasifibrations.
First, given a quasifibration sequence:

F → E → B,

There exists a corresponding long exact sequence of homotopy groups:

...→ πn(F, x0)→ πn(E, x0)→ πn(B, b0)→ πn−1(F, x0)→ ...

for b0 ∈ B and x0 ∈ F . If we additionally assume E contractible, we have a
map from the quasifibration sequence to the path space fibration.

F //

��

E

��

// B

��

ΩB // PB // B

This induces a map between the long exact homotopy sequences.

...→ πn+1(E, x0)

��

// πn+1(B, b0)

��

// πn(F, x0) //

��

πn(E, x0)

��

// πn(B, b0)→ ...

��

...→ πn+1(PB) // πn+1(B, b0) // πn(ΩB) // πn(PB) // πn(B, b0)→ ...

Since both E and PY are contractible, they are homotopy equivalent, and
therefore have isomorphic homotopy groups. From the five-lemma, F and ΩB
are weak homotopy equivalent. From the Whitehead theorem, if F is a CW-
complex, then F ' ΩB. All fibers F used in the proof will be CW-complexes,
although we will not prove this. We summarize this in a lemma:

Lemma 2.1. If F → E → B is a quasifibration sequence with E contractible,
and F a CW-complex, then F ' ΩB, where ΩB is the loop space of B.

A big part of the proof of Bott periodicity theorem is verifying whether
a sequence is a quasifibration. The following theorem will provide us with a
recipe for doing just that. For a map p : E → B, and for a subset S ⊆ B, if
the map p−1(U) → U is a quasifibration for every open U ⊆ S, we say that S
is distinguished.
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Theorem 2.2. Suppose p : E → B is surjective, and that E is equipped with
an increasing filtration {FiB} such that the following conditions hold:
(1) FnB − Fn−1B is distinguished for every n.
(2) For every n there exists a neighborhood Nn of Fn−1B in FnB along with

a deformation h : Nn × I → Nn such that h0(Nn) = Id and h1(Nn) ⊆
Fn−1B.

(3) This deformation is covered by a deformation H : p−1(Nn)× I →
p−1(Nn) with H0 = Id, and for every y ∈ Nn, the induced map H1 :
p−1(y)→ p−1(h1(y)) is a weak homotopy equivalence.

Then p is a quasifibration.

2.5 Linear isometries and classical groups

This section is about a result that gives a correspondence between linear isome-
tries and maps between finite linear automorphisms.

Let Λ be R,C or H, and let W and V be (possibly countably infinite di-
mensional) inner product spaces over Λ. Define the topology of W and V to be
unions of their finite dimensional subspaces. Let I(W,V ) denote the space of
linear isometries from W to V . Let G(W ) be either O(W ), U(W ) or Sp(W ), i.e
G(W ) is the space of finite type linear automorphisms of W . Define a continuous
map:

ΓW,V : I(W,V )→ Map(G(W ), G(V )).

Where the elements in Map(G(W ), G(V )) are linear continuous maps. Write
ΓW,V (φ) = φ∗. Let X ∈ G(W ). Because of the finite type assumption of G,
there exists a finite dimensional subspace W0 ⊆W along with a transformation
X ′ ∈ G(W0) such that

X = X ′ ⊕ IW⊥0
under the ortogonal decomposition W = W0 ⊕W⊥0 . We can find an orthogonal
decomposition on V : V = φ(W0)⊕ φ(W0)⊥. Let φ∗(X) be determined compo-
nentwise on the orthogonal decomposition. For the φ(W0) component, we want
the definition of φ∗(X) to imply that the following diagram commutes

W0

φW0 //

X′

��

φ(W0)

φ∗(X)|φ(W0)

��

W0
φW0

// φ(W0)

Since φW0
is an isometry, it is injective, and since every map is surjective onto its

image, φW0
is bijective onto its image, and possesses therefore an inverse. There-

fore, define φ∗(X)|φ(W0) = φW0X
′φ−1
W0

. As for the φ(W0)⊥ component, we have
that φ∗(X)|φ(W0)⊥ is independent of φW0 . That means we may freely choose

what φ∗(X)|φ(W0)⊥ should be, as long as it is an automorphism on φ(W0)⊥.
The natural choice is Iφ(W0)⊥ . Therefore, define φ∗(X) : V → V to be

φ∗(X) = φW0
X ′φ−1

W0
⊕ Iφ(W0)⊥

9



This definition is seen to be independent of the choice of W0. Let U and V be
countably infinite dimensional inner product spaces over Λ. In [12, II.1] it is
proven that I(U ,V) is contractible. We therefore have the following lemmas:

Lemma 2.3. Let φ, φ′ ∈ I(U ,V). Then the induced maps φ∗, φ
′
∗ : G(U)→ G(V)

are homotopic

Proof. Since I(U ,V) is contractible, φ and φ′ are homotopic, since they both are
null-homotopic. Therefore, φW0

is homotopic to φ′W0
with homotopy induced

from the homotopy between φ and φ′.
Let H be a homotopy such that H(0) = φW0

and H(1) = φ′W0
. Then we define

a homotopy H ′(X, t) = H(t)XH(t)−1 ⊕ Iφ(W )⊥ where H(t)H(t)−1 = IW0 and
H(t)−1H(t) = Iφ(W0) for all t ∈ [0, 1]. Then we have H ′(X, 0) = φ∗(X) and
H ′(X, 1) = φ′∗(X), which makes φ∗ homotopic to φ′∗.

Lemma 2.4. Let φ ∈ I(U ,V). Then the induced map φ∗ is a homotopy equiv-
alence

Proof. Consider I(U ,U). This space is contractible, so any two maps in I(U ,U)
are homotopic. We know that IU ∈ I(U ,U) and that φφ−1 ∈ I(U ,U). Therefore
IU ' φφ−1. Likewise, by considering I(V,V), we get that IV ' φ−1φ. From
lemma 2.3, we get that there exists a (φ−1)∗ such that IG(U) ' φ∗(φ

−1)∗ and
IG(V) ' (φ−1)∗φ∗. φ∗ is therefore a homotopy equivalence.

3 Bott periodicity theorem

Bott periodicity theorem was proved first by Raoul Bott in 1959. It is a central
theorem in homotopy theory, and has contributed a lot to the development of
K-theory and stable homotopy theory of spheres.

It is a well-known fact that homotopy groups are in general quite difficult to
calculate. The usefulness of Bott periodicity theorem is evident in the fact that
it simplifies the calculation for some important homotopy groups, for example
the stable homotopy groups of spheres.

While the Bott periodicity theorem takes on a different form depending on
which setting it is applied to, the theorem always exhibits a periodic structure.
For example, a component of the stable homotopy groups of spheres varies
periodically with period 8 when varying k in the expression πn+k(Sn). As for
complex K-theory, if we define Kn(X) = K(ΣnX), where Σn denotes the n-
times iterated reduced suspension, then Bott periodicity says that Kn(X) ∼=
Kn+2(X). KO-theory and KSp-theory will exhibit the same pattern, but with
a period of 8 instead of 2.

We are going to use the following form of Bott periodicity in our proof.
This form considers the homotopy groups of the infinite orthogonal group and
unitary group. Bott periodicity says the following:

πn(U) ∼= πn+2(U)
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and
πn(O) ∼= πn+8(O).

Equivalently, since πn+k(X) ∼= πn(ΩkX), Bott periodicity states that Ω2U ' U
and Ω8O ' O.

4 Proof of complex Bott periodicity

To start with, the following fiber sequence exists:

U → EU → BU

From which, lemma 2.1 yields that ΩBU ' U . To prove the two-periodicity,
we want to show that πn(Ω2BU) ∼= πn(BU). In practice, we are going to show
that Ω2BU ' BU×Z. This gives us what we want since the homotopy group of
a product of spaces is isomorphic to the product of the homotopy group of each
space, and since all homotopy groups of Z is trivial because Z is discrete. This
means that proving the following theorem will be all we need to prove complex
Bott periodicity.

Theorem 4.1. Let U denote the infinite unitary group. The following quasifi-
bration sequence exists

BU × Z→ E → U

where E is contractible. Consequently, ΩU ' BU × Z

The strategy for proving this is to construct E and U from certain linear
isometries and hermitian linear transformations, along with a suitable map p :
E → U and prove that it is a quasifibration using theorem 2.2, with BU ×Z as
the fiber.

Let U ∼= C∞ be a fixed infinite dimensional complex inner product space,
and W ⊂ U a finite complex subspace. Define U(W ⊕W ) to be the complex
linear isometries of W ⊕W .

For V ⊆ W , we may find a basis β for W where β = (v1, ..., vn, w1, ...wm)
such that α = (v1, ..., vn) is a basis for V . Denote by W −V , or V ⊥ if it is clear
from the context what W is, the space determined by the basis (w1, ..., wm).
This is called the orthogonal complement of V in W . It is now easy to see that
W = V × (W − V ). Therefore we may write:

W ⊕W = (V × (W −V ))⊕ (V × (W −V )) = (V ⊕V )× ((W −V )⊕ (W −V )),

Where the last equality can be found by a rearrangement of the basis for W⊕W .
We now wish to construct

iV,W : U(V ⊕ V )→ U(W ⊕W )
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that is the identity map when V = W . In other words, we want to find a
unitary matrix A ∈ U(W ⊕W ) that is still a unitary matrix when restricted to
the subspace V ⊕ V . One can verify that a unitary matrix of the form

A =

[
X 0
0 C

]
where X ∈ U(V ⊕V ) and C ∈ U((W−V )⊕(W−V )) will fulfill the requirement.
A natural choice for C lets us define

iV,W (X) =

[
X 0
0 I(W−V )⊕(W−V )

]
= X ⊕ I(W−V )⊕(W−V )

Where I(W−V )⊕(W−V ) is the identity map on (W −V )⊕ (W −V ). These maps
gives us a direct system, which means that we can take the direct limit, which
is the set of equivalence classes of the disjoint union of U(W ⊕W ) over all W ,
where two elements X,Y belong to the same equivalence class if iv,w(X) = Y
or iv,w(Y ) = X. This gives us the infinite unitary group, i.e

U = lim
→ WU(W ⊕W ).

To see this, let us compare this direct limit with the canonical expression for
U , which is U = lim

→ W ′U(W ′), with the map i′V ′,W ′ : U(V ′) → U(W ′) given

by i′V ′,W ′(X) = X ⊕ IW ′−V ′ . We will show that these two direct limits are
isomorphic by showing mutual inclusion. We first show that lim

→ WU(W ⊕W ) ⊆
lim
→ W ′U(W ′). Since two vector spaces are isomorphic if they have the same

dimension, W ⊕ W ∼= W ′ when dimW ′ = 2 dimW . If W ′ ∼= W ⊕ W , then
certainly, U(W ′) ∼= U(W ⊕W ). So given U(W ⊕W ), we can find a W ′ such
that U(W ⊕W ) ∼= U(W ′). It follows that lim

→ WU(W ⊕W ) ⊆ lim
→ W ′U(W ′).

We now show that lim
→ W ′U(W ′) ⊆ lim

→ WU(W ⊕ W ). Let X ′ ∈ U(W ′).

Then X is either even-dimensional or odd-dimensional. If X ′ is even, then by
the previous argument, since we can find a W such that U(W ′) ∼= U(W ⊕W ),
we can find an X ∈ U(W ⊕W ) such that X ∼= X ′. If X ′ is odd, then X ′ ⊕ I
is even. In the direct limit, these respresent the same element, so we can take
X ′ ⊕ I to be the representative. But since X ′ ⊕ I is even, we can repeat the
same argument to find an X in U(W ⊕W ) for some W such that X ′ ⊕ I ∼= X.
Therefore lim

→ W ′U(W ′) ⊆ lim
→ WU(W ⊕W ). Since we have mutual inclusions,

they are equal.
Let H(W ⊕W ) denote the hermitian linear transformations of W ⊕W , that

is, all matrices A such that AH = A where AH denotes the complex conjugate
transpose of A, and let

E(W ) = {A ⊆ H(W ⊕W ) | µi ∈ [0, 1] ∀i},

where µ denotes the eigenvalues of the matrix. Define

pW : E(W )→ U(W ⊕W )
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with pW (A) = e2πiA. This map makes sense because since A is hermitian,
and therefore normal, it has a diagonalization A = UΛµiU

T , where U is uni-
tary, and Λµi is the diagonal matrix with the eigenvalues µi of A as entries.

Therefore e2πiA = eU ·(2πiΛµi )U
T

= U · e2πiΛµiUT = UΛλiU
T , where Λλi is the

diagonal matrix with λi = e2πiµi as entries. Since all hermitian matrices have
real eigenvalues, |λi| = 1. Then UΛλiU

T equals a complex normal matrix with
eigenvalues that all has length 1. This is precisely the unitary matrices.

Same as with U, we define a map E(V ) → E(W ), V ⊆ W by sending A to
A ⊕ π(W−V )⊕0, where πY is the orthogonal projection onto the subspace Y of
W . Let us take a look at what this means. First of all, we may decompose
W ⊕W into (V ⊕V )⊕((W −V )⊕0)⊕(0⊕(W −V )), where these subspaces are
orthogonal to each other. Due to the spectral theorem for hermitian matrices,
given an orthogonal decomposition of W ⊕ W and an eigenvalue assigned to
each component, there is a unique hermitian matrix with each component being
the eigenspace of the matrix corresponding to the assigned eigenvalue. Since
A have given us such a decomposition of V ⊕ V , all that remains is to choose
eigenvalues correponding to (W − V ) ⊕ 0 and 0 ⊕ (W − V ), in which we will
choose eigenvalue 1 and 0 respectively. The resulting hermitian matrix is then
A⊕ π(W−V )⊕0. It follows that the square

E(V ) //

pV

��

E(W )

pW

��

U(V ⊕ V ) // U(W ⊕W )

commutes. We define E = lim
→ WE(W ). Thus we get an induced map on the

direct limits:
p : E → U

We wish to show that this map is a quasifibration, and that the fibers are
BU × Z.

First we construct BU as the direct limit of complex Grassmannian n-planes.
Define

BUn(Y ) = {V | V ⊆ Y, dimC V = n}

for any Y ⊂ U ⊕ U .
Let Wn be a subspace of U with dimension n, and let Wn ⊆Wn+k for k ≥ 0.

We choose a map φkm,n : BUm(Wn ⊕Wn)→ BUm+k(Wn+k ⊕Wn+k), given by
sending V to V ⊕ (Wn+k −Wn) ⊕ 0 where 0 is taken to be the zero matrix of
dimension k. Notice that since Wn+k −Wn

∼= Ck, we may say that φkm,n sends

V to Ck ⊕ V ⊕ 0, where we have Ck on the left in order to apply a convenient
illustration of BUn(W ⊕W ) in the following proof.

Let BU(Y ) = qnBUn(Y ), where q denotes the disjoint union. Consider
the following expression: lim

→ WBU(W ⊕ W ) under the map φkm,n. We wish

to show that this is isomorphic to BU × Z. In fact, for future references, by
changing W from a complex space to a real space and a symplectic space,
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the following proof will also prove that lim
→ WBO(W ⊕ W ) ∼= BO × Z and

lim
→ WBSp(W ⊕W ) ∼= BSp×Z respectively. For convenience sake, we state the

statement as a lemma

Lemma 4.2. Let W ⊂ U be a complex space. Then lim
→ WBU(W⊕W ) ∼= BU×Z

Proof. First we note that since BU(Y ) = qnBUn(Y ), all cosets in BU(Y ) are
trivial, so each coset is therefore equal to the element it consists of. Therefore,
the cosets of lim

→ WBU(W ⊕W ) is only determined by the maps φkm,n, and two

elements are in the same coset if and only if n−m for both element are equal.
This means that we can sort φkm,n into families of maps: φkn−i,n for each i ∈ Z,
and each of these families produce a direct system. We show that the direct
limit for each of these direct systems is isomorphic to BU .

Recall the construction of BU . We have a map ψkn : BUn → BUn+k, V ′ 7→
V ′ ⊕ Ck. Under this map, we define BU = lim

→ nBUn.

Let lim
→ WBU(W ⊕W )i denote the direct limit of BU(W ⊕W ) under the

map φkn−i,n We are now going to give a labeled basis for W ⊕W . The idea is
for the first W to have negative indexed basis vectors, while the second W has
positive and zero indexed basis vectors. If W has dimension n, then a basis for
W ⊕W look like this: {b−n, b−(n−1), ..., b−2, b−1, b0, b1, b2, ..., bn−1}. A basis for
W when considering BU will be indexed with zero and positive integers.

Let us define a relabeling function.

Nt : W ⊕W →W ⊕W

{b−n, b−(n−1), ..., b0, ..., bn−1} 7→ {b−n+t, b−(n−1)+t, ..., b0+t, ..., b(n−1)+t}.

Note that we define the function to simply be a relabeling of indices, and is
therefore nothing but the identity map on the space itself. Nt is an isomor-
phism, as it has N−t as an inverse. From this map, we can find an orthogonal
decomposition of W ⊕W , given by W⊥t ⊕Wt, where {b−n+t, b−(n−1)+t, ..., b−1}
is a basis for W⊥t , and {b0, b1, ..., b(n−1)+t} is a basis for Wt. If −n+ t ≥ 0, then

W⊥t is empty, and if n− 1 + t < 0, then W⊥t is empty.
We are now going to define a map from lim

→ WBU(W ⊕W )i to BU where the

image of V ∈ lim
→ WBU(W ⊕W )i is determined by the following process. First,

we assume there is no V ′ such that φkn−i,n(V ′) = V . Let dimC(V ) = m. We
then know that W ⊕W ⊇ V has dimension 2m + 2i = 2n. Let V be the span
of {b−n, b−(n−1), ..., b0, ..., bn−1}, where each of the vectors are either the basis
vector in W⊕W of the same index or the zero-vector. Let −t be the index of the
first non-zero basis vector in V . Then, we get a map V → V ∩Wt which is a pro-
jection. V ∩Wt, being a subspace of Wt, is spanned by {b−t, b1−t, ..., b((m+i)−1)}
where each of the vectors are either the basis vector in Wt with the same index,
or the zero-vector. Note that in this construction we have removed n − t zero
vectors from W on the left. We look at the relabeled space Nt(V ∩Wt) which

14



has basis {b0, b1, ..., b(m+i+t)−1}. Therefore Wt is an (m + i + t) dimensional
complex space, which means Wt ⊂ U . We therefore have V ∩Wt ∈ BU .

We now construct an inverse to this map.
Let V ′ ∈ BU . Assume there is no V ′′ such that ψkn(V ′′) = V ′, and assume

the span of V ′ has a non-zero vector in the zeroeth spot. If it has not, we may
add a non-zero vector on the left, and apply N1, since the resulting subspace
is in the same coset as V ′. Let dimV ′ = m, and let W ′ ⊇ V ′ be the smallest
space that has V ′ as subspace. Let dimW ′ = n. The number of zero vectors in
the span of V ′ is therefore n−m.

Compute s = 2i− (n−m). Add s lots of zero-vectors on the left in the span
of V ′, and apply Ns. If s is negative, add |s| lots of non-zero basis vectors on
the right. Let the resulting space be called V , and let the smallest space that
contains V be called W⊕W . Now, the dimension of W⊕W is m+s, and the di-
mension of V is either n or n+s. Find t such that dim(W⊕W ) = dim(V )+i+t.
Apply N−t to V . We now have V ∈ lim

→ WBU(W ⊕W )i.

Running through the steps, one can verify that these maps are indeed mu-
tually inverse to each other, and that two representatives of the same coset gets
mapped to the same coset. This means that lim

→ WBU(W ⊕W )i ∼= BU∀i ∈ Z.

Taking the disjoint union, we get lim
→ WBU(W ⊕W ) ∼=

∐
i

lim
→ WBU(W ⊕W )i ∼=∐

i

BU ∼= BU × Z

We will now prove the following lemma, which tells us about the structure
of the fiber of the map pW .

Lemma 4.3. Let X ∈ U(W ⊕W ). Then p−1
W (X) ∼= BU(ker(X − I))

Proof. Define φ : p−1
W (X) → BU(ker(X − I)) by sending A to ker(A − I).

First we need to make sure the map makes sense. We need to make sure that
ker(A−I) ∈ BU(ker(X−I)). In other words, we have to check that ker(A−I) ⊆
ker(X − I).

Suppose v ∈ ker(A− I). That means Av = v. Remember that A and X are
related by X = e2πiA. Then

Xv = e2πiAv =
∑
n

(2πi)n

n!
Anv = e2πiv = v

so v ∈ ker(X − I).
Since X is unitary, it has a spectral decomposition, which we assume is

X = πV +
∑
i

λiπVi

Where Vi denote the eigenspaces corresponding to the eigenvalue λi, and V
corresponds to λ = 1, which means V = ker(A− I). We also have λi 6= λj when
i 6= j, and λi 6= 1.
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Since X is unitary, |λi| = 1, and W ⊕W = V ⊕
⊕

i Vi. Suppose A ∈ p−1
W (X).

Since A is hermitian, it also has a spectral decomposition:

A = πV ′ + 0 · πV ′′ +
∑
i

µiπWi
,

where V ′′ is the eigenspace corresponding to the eigenvalue µ = 0. We now have
W ⊕W = V ′ ⊕ V ′′ ⊕

⊕
iWi. But by the relation X = e2πiA, we get another

spectral decomposition for X, namely

X = e2πiA = πV ′⊕V ′′ +
∑
i

e2πiµiπWi
,

where we have used that πY ◦πY = πY and that πV ′+πV ′′ = πV ′⊕V ′′ . However,
the spectral decomposition is unique, so we get V ′ ⊕ V ′′ = V , Vi = Wi and
λi = e2πiµi . Since µi ∈ (0, 1), µi is completely determined by the non-unital
eigenvalues λi of X. In particular, since X and its spectral decomposition is
assumed known, and A is completely determined by X and V ′, we get that
φ(A) = V ′ has an inverse ψ : BU(V )→ p−1

W (X) given by

ψ(V ′) = πV ′ +
∑
i

µiπVi .

We verify this:

φ ◦ ψ(V ′) = φ(πV ′ +
∑
i

µiπVi) = ker((πV ′ +
∑
i

µiπVi)− I) = V ′

ψ ◦ φ(A) = ψ(ker(A− I)) = πker(A−I) +
∑
i

µiπVi = A

We will now proceed to prove that p : E → U is a quasifibration. We will
be using theorem 2.2 to prove it, so we need an expression for p−1(X).

Lemma 4.4. p−1(X) ∼= lim
→ W ′≥WBU(ker(X − I) ⊕ (W ′ −W ) ⊕ (W ′ −W )),

and lim
→ W ′≥WBU(V ⊕ (W ′ −W )⊕ (W ′ −W )) ∼= BU × Z ∀V ⊆W .

Proof. Define

BUV,W = lim
→ W ′≥WBU(V ⊕ (W ′ −W )⊕ (W ′ −W ))

for W finite dimensional and V ⊆W ⊕W . First of all, if W⊥ is the orthogonal
complement of W in U , then we have that V ⊕W⊥⊕W⊥ ∼= U⊕U , by a suitable
isometry. For example, assume we have the following basis {v1, v2, ..., vn} for
V , {v1, v2, ..., vn, wn+1, ...W2m} for W ⊕W , and {wk, wk+1, ...} for W⊥ ⊕W⊥.
Note that {wn+1, ..., w2m} is a basis for (W ⊕W ) − V . We can map the basis
vectors in V ⊕W⊥⊕W⊥ to the basis vectors in W ⊕W ⊕W⊥⊕W⊥ = U⊕U by
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vn 7→ vn, wk+i 7→ wn+i+1 for 0 ≤ i ≤ (2m − (n + 1)) and wk+2m−n+j 7→ wk+j

for all j ∈ N. This reveals a one-to-one correspondence between basis vectors,
so V ⊕W⊥ ⊕W⊥ ∼= U ⊕ U .

Let us compare lim
→ W ′≥WBU(V⊕(W ′−W )⊕(W ′−W )) and lim

→ W ′′BU(W ′′⊕
W ′′) ∼= BU × Z. Certainly, for any choice of W ′′, we can find W ′ such that
W ′′⊕W ′′ ⊆ V ⊕ (W ′−W )⊕ (W ′−W ), for example W ′ = W ′′⊕W . Therefore
lim
→ W ′≥WBU(V ⊕ (W ′ −W ) ⊕ (W ′ −W )) ⊆ lim

→ W ′′BU(W ′′ ⊕W ′′). Likwise,

for any choice of W ′, we can find W ′′ such that V ⊕ (W ′ −W )⊕ (W ′ −W ) ⊆
W ′′⊕W ′′, for example W ′′ = V ⊕(W ′−W ). Therefore lim

→ W ′′BU(W ′′⊕W ′′) ⊆
lim
→ W ′≥WBU(V ⊕ (W ′ −W )⊕ (W ′ −W )). Therefore, we have that BUV,W ∼=

lim
→ W ′′BU(W ′′⊕W ′′) ∼= BU×Z. Since we have map U(W⊕W )→ U(W ′⊕W ′)

for W ⊆W ′ ⊂ U , we may also consider p−1
W ′(X). From lemma 4.3, we may write

p−1
W ′(X) = BU(ker(X − I) ⊕ (W ′ −W ) ⊕ (W ′ −W )). Along with the induced

maps p−1
W (X)→ p−1

W ′(X), we may take the direct limit, which gives us p−1(X) =
lim
→ W ′≥WBU(ker(X−I)⊕(W ′−W )⊕(W ′−W )) = BUker(X−I),W ∼= BU×Z

We will now find a suitable filtration of U . From the spectral theorem of X,
we have that W ⊕W = ker(X − I)⊕

⊕
i Vi, and by orthogonal decomposition,⊕

i Vi = ker(X−I)⊥. Using this calculation as inspiration, define the filtration:

FnU = {X | dimC(ker(X − I)⊥) ≤ n} ⊆ U

Let Bn := FnU − Fn−1U . We start by proving that Bn is distinguished.
We have that every Serre fibration is a quasifibration. By using definition

2 of quasifibration, one can easily see that given an open subset U of B, if
p : E → B is a quasifibration, so is p : p−1(U) → U , since the homotopy fiber
on each element in U is a subspace of the homtopy fiber on the same element
in B. Therefore, the following lemma proves that Bn is distinguished.

Lemma 4.5. p−1(Bn)→ Bn is a Serre fibration.

Proof. We start with the following commutative square

{0} × Ik α //

��

p−1(Bn)

��

Ik+1

β
// Bn

We wish to find a lift of this diagram, i.e. a map γ : Ik+1 → p−1(Bn) making
the triangles in the diagram commute.

Since all the unit k-cubes are compact, their image must also be compact.
However, neither Bn nor p−1(Bn) are compact. This is because we can define
a cover of Bn as {Ck | k ∈ N} where Ck = {X ∈ Bn|dimCX = k}. This cover
does not have a finite subcover. p−1(Bn) is not compact because had it been,
its image under p would have been compact, which we showed is not. However,
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we have that E(W ) and U(W ⊕W ) is compact for W finite dimensional. They
are closed since they are the preimage of the closed spaces S1 and I respectively
under the determinant map. They are bounded because ||Aw|| ≤ ||w|| for all
A ∈ E(W ) and w ∈ W ⊕W , and ||Xw|| ≤ ||w|| for all X ∈ U(W ⊕W ) and
w ∈W ⊕W , which is in accordance with the defintion of boundedness given in
[10]. By the Heine-Borel theorem, they are therefore both compact.

This means there exist a finite dimensional W ⊂ U such that the diagram
factors as

{0} × Ik α′ //

��

E(W ) ∩ p−1(Bn)

��

// p−1(Bn)

��

Ik+1

β′
// U(W ⊕W ) ∩Bn // Bn

Let A(0, t1, ..., tk) = α′(t1, ..., tk) and X(t0, t1, ..., tk) = β′(t0, ..., tk). For t ∈
Ik, Ik+1 respectively, we may write the spectral decomposition of A and X as

A(t) = πV ′(t) +
∑
l

µl(t)πWl(t),

X(t) = πV (t) +
∑
l

λl(t)πVl(t),

where e2πiµl(t) = λl(t), V
′(t) ⊆ V (t), and Wl(t) = Vl(t) when t ∈ Ik. Consider

the following space for an n-dimensional complex subspace W of U :

Perpi,j(W ⊕W ) = { (V ′, V ′′) | V ′, V ′′ ⊆W ⊕W, V ′ ⊥ V ′′,

dimC V
′ = i, dimC V

′′ = j}

We may characterize this space by considering the unitary group over W ⊕W .
We get all possible V ′ and V ′′ by applying all unitary transformations on one
pair of (V ′, V ′′). In other words, U(W ⊕ W ) acts transitively on (V ′, V ′′).
We wish to identify all the unique pairs (V ′, V ′′), which we will do by finding
out which transformations in U(W ⊕ W ) induces automorphisms on V ′ and
V ′′, and therefore also on W ⊕W − (V ′ ⊕ V ′′), simultaneously. Note that the
automorphisms of V ′ are exactly the elements in U(V ′), which we will denote
Ui since we know the dimension of V ′ to be i. Let

W ⊕W = V ′ × V ′′ × ((W ⊕W )− (V ′ × V ′′)).

Let T ∈ U(W ⊕W ) be of the form T = A ⊕ B ⊕ C, where A ∈ Ui, B ∈
Uj , C ∈ U2n−(i+j). We then get

T (W ⊕W ) = A(V ′)×B(V ′′)× C((W ⊕W )− (V ′ × V ′′))

∼= V ′ × V ′′ × (W ⊕W − (V ′ × V ′′))
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Thus Ui ⊕ Uj ⊕ U2n−(i+j)
∼= Ui × Uj × U2n−(i+j) is the stabilizer of the

transitive action of U2n on Perpi,j by left multiplication, which by the orbit-
stabilizer theorem, gives

Perpi,j(W ⊕W ) ∼= U2n/(Ui × Uj × U2n−(i+j)).

We have a natural map

P : Perpi,j → BUi+j(W ⊕W )

by P (V ′, V ′′) = V ′ ⊕ V ′′. By the same procedure, since U2n acts transitively
on BUi+j(W ⊕W ) and the stabilizer consists of transformations that induces
automorphisms on V ′ ⊕ V ′′ and W ⊕W − (V ′ ⊕ V ′′) simultaneously, we get
that BUi+j ∼= U2n/(Ui+j × U2n−(i+j)). We observe that Perpi+j,0

∼= BUi+j ,
so BUi+j ⊆ Perpi,j , and that P|Perpi+j,0

∼= I, we therefore have that P is a

projection, which makes it a fibration. That means we can find a lift ω′′ to the
following commutative diagram.

{0} × Ik α′′ //

��

Perpi,j(W ⊕W )

P

��

Ik+1

ω′′
77

β′′
// BUi+j(W ⊕W )

Let i = dimV ′(0) and j = dim(V (0)−V ′(0)), i.e the dimension of the eigenspaces
of A(0) corresponding to µ = 1 and µ = 0 respectively. Let α′′ : Ik →
Perpi,j(W ⊕W ) be given by α′′(t) = (V ′(t), V (t) − V ′(t)) and let β : Ik+1 →
BUi+j(W ⊕ W ) be given by β′′(t) = V (t). Since V (t) ∈ BUi+j ∀t, we have
that V (t) has constant dimension for all t. Therefore, we may define ω′′(t) =
(W ′(t), V (t)−W ′(t)), where W ′(t) is obtained from V ′(t) by a homotopy. Let
µl(t) ∈ (0, 1) be the unique solution to e2πiµl(t) = λl(t). We can now define
ω′ : Ik+1 → E(W ) ∩ p−1(Bn) by

ω′(t) = πW ′(t) +
∑
l

µl(t)πVl(t)

and by inclusion, we obtain a lift ω to our original diagram.

We now aim to prove (2) and (3) of theorem 2.2.
Define a neighborhood Nn of Fn−1 in Fn as

Nn = {X ∈ FnU | dimC Eige2πi[1/3,2/3]X < n} ⊆ FnU

Where EigSX denote the direct sum of eigenspaces corresponding to eigenvalues
in S.

Certainly, any matrix in Fn−1U is also in Nn. This is because the eigenspace
corresponding to all eigenvalues of X ∈ Fn−1U of the form e2πia where a ∈
[1/3, 2/3] has dimension less than n, since the entire eigenspace corresponding

19



to all non-unital eigenvalues has dimension less than n. In addition to Nn
containing Fn−1U , it contains some matrices in which the sum of the eigenspaces
corresponding to the non-unit eigenvalues have dimension n. In some sense,
these matrices have ”too many” non-unit eigenvalues.

We are going to deform the matrices in Nn such that the eigenvalues inside
the range e2πi[1/3,2/3] will correspond to all non-unit eigenvalues of the deformed
matrix, while the remaining eigenvalues will correspond to eigenvalue 1. That
way, every deformed matrix will be in Fn−1 as theorem 2.2 require. Define
f : I → I by

f(x) =


1, x ≥ 2

3

3x− 1, 1
3 ≤ x ≤

2
3

0, x ≤ 1
3

We note that f ' Id rel ∂I. That is, there exists a homotopy between the two
functions that is constant on the endpoints. In our case, this ensures that the
eigenvalue 1 will not be deformed to a non-unit eigenvalue. Let H(x, t) be such
a homotopy, for example by H(x, t) = t(f(x)) + (1 − t)x. It follows that there
exists an h : S1 × I → S1 that makes the following diagram commute:

I
Ht //

e2πi(·)

��

I

e2πi(·)

��

S1

ht

// S1

For A ∈ E of the form A =
∑
i µiπWi

, we define a new hermitian matrix Ht(A)
where t ∈ I

Ht(A) =
∑
i

Ht(µi)πWi .

similarly, we define ht : U → U by

ht(X) =
∑
i

ht(λi)πWi =
∑

e2πiHt(µi)πWi .

Note that ht : Nn → Nn satisfy h0 = Id and h1(Nn) ⊆ Fn−1U . In addition, ht
is covered by Ht : p−1(Nn) → p−1(Nn), where H0 = Id. What remains, is to
show that the induced map on the fibers: H1 : p−1(X)→ p−1(h0(X)) is a weak
equivalence, and we have proven that p is a quasifibration.

By the construction of Ht, ker(X − I) ⊆ ker(H1(X)− I). This means that
proving that p is a quasifibration is reduced to proving the following lemma:

Lemma 4.6. Suppose V ⊆ V ′ ⊆ W ⊕W , and V ′′ ⊆ V ′ − V . Then the map
BUV,W → BUV ′,W given by sending Y to Y ⊕ V ′′ is a weak equivalence.

Proof. We have that both BUV,W and BUV ′,W are congruent to BU × Z. We

know that K̃C(C) ∼= [C,BU × Z] (See [8], 1.2), for any pointed compact space

20



C. Where [A,B] denotes the homotopy classes of maps from A to B.
We therefore get an induced map

K̃C(C) ∼= [C,BUV,W ]→ [C,BUV ′,W ] ∼= K̃C(C).

This means any coset representative is mapped to another representative of the
same coset in KC(C). Since V ⊆ V ′, the map has to be addition of a trivial
bundle, so the map is an isomorphism. In particular, for C = Si, we get an
isomorphism of homotopy groups.
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5 Proof of real Bott periodicity

Theorem 5.1. The iterated loop spaces of BO are as follows:

ΩBO ' O
ΩO ' O/U

Ω(O/U) ' U/Sp

Ω(U/Sp) ' BSP × Z

ΩBSp ' Sp

ΩSp ' Sp/U

Ω(Sp/U) ' U/O

Ω(U/O) ' BO × Z

We will be proving this one loop at a time by constructing quasifibrations
with contractible spaces using the same procedure as in the complex case. We
already know that ΩBO ' O and ΩBSp ' Sp.

5.1 ΩO ' O/U

Let U ∼= C∞ be an infinite dimensional complex inner product space. For
W ⊂ U finite complex subspace, let O(W) denote the real linear isometries of
W . When considering the real transformations of W , we will view W as a real
vector space with twice the dimension of its complex counterpart. Define

E(W ) = {A ⊆ o(W ) | µj ∈ [−i, i] ∀j}

where o denote the Lie algebra of O(W ) known to consist of all skew symmetric
linear transformations.

E(W) is contractible by the contracting homotopy. Define

pW : E(W )→ O(W )

by pW (A) = −eπA. For V ⊆W , we have maps O(V )→ O(W ) given by sending
X to X⊕ IW−V , and E(V )→ E(W ) by sending A to A⊕ i, where i, the imagi-
nary unit, is thought of as a skew-symmetric real transformation of W −V . We
get by taking direct limits over all finite subspaces of U a map p : E → O.

Since E is contractible, it is path connected. Its image under p is therefore
also path connected. However, O consists of matrices with determinant +1 and
−1. There is no path that connect these two sets of matrices, so O isn’t path-
connected. Since SO, the subspace of O consisting of matrices with determinant
+1, is the path-component of O that includes the identity matrix, the image of
p is SO. We will therefore show that this map is a quasifibration onto SO, with
fiber O/U .

First of all, we make sure the quotient O/U makes sense. Consider O/U(W ).
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O(W ) is the orthogonal group O2n dimensions when regarding W as a 2n di-
mensional real vector space. Meanwhile, U(W ) is the unitary group Un when
regarding W as a n dimensional complex vector space. While O(2n) preserve
the real structure on W , it does not need to preserve the complex structure,
that is, the relation between the real and imaginary part of the corresponding
complex vector space. So Un preserve more structure than O2n, which means
Un ⊆ O2n, so taking the quotient makes sense.

To construct O/U , we take the direct limit O/U = lim
→ WO/U(W ), with the

maps O/U(V )→ O/U(W ) for V ⊆W ⊂ U defined as [X] 7→ [X ⊕ IW−V ].
We are going to need a nice representation of O/U(W ). For W ⊂ U finite

dimensional, let CX(W ) denote the space of complex tructures on W , that is,
the space of linear isometries J : W → W that satisfy J2 = −I. Intuitively,
this is the matrix analogy of multiplying by i, and identifying multiplication by
J with multiplication by i is in fact a way to construct a complex vector space
from a real one.

Lemma 5.2. Let W ⊂ U be finite dimensional. Then O/U(W ) ∼= CX(W )

Proof. Let O(W ) act on CX(W ) by conjugation. This is indeed an action
because for A ∈ O(W ) and J ∈ CX(W )

AJA−1 = X => X2 = (AJA−1)(AJA−1) = A(−I)A−1 = −IAA−1 = −I.

Which means X ∈ CX(W )

We can define the complex space of W induced by J ∈ CX(W ) given by
defining Jw = iw for all w ∈ W , and with i being the imaginary unit. Denote
the induced complex space by (W,J). Consider two induced complex spaces
(W,J1) and (W,J2). We know the two spaces has equal dimension, and J1 and
J2, being orthogonal matrices, both preserve the dot product. We therefore
have (W,J1) ∼= (W,J2). Any isometry U : (W,J1)→ (W,J2) must satisfy

U(J1(w)) = U(iw) = i(U(w)) = J2(U(w)).

We may view U as an isometry on W as a real vector space, which makes it an
orthogonal matrix, and in particular, invertible. We therefore have UJ1U

−1 =
J2, U ∈ O(W ), which proves that the action on CX(W ) is transitive.

We will now find the stabilizer of this action. That is, we will find all
U ∈ O(W ) such that UJ = JU ∀J ∈ CX(W ).

Assume UJ(w) = JU(w) for all w ∈ W . Then, on the induced complex
space, we have U(iw) = i(U(W )). That means if U is in the stabilizer, then it
is a complex isometry. Now, assume UJ(w) 6= JU(w). Then, on the induced
complex space, we have U(iw) 6= i(U(w)). Contrapositively, that means that if
U is a complex isometry, then it is in the stabilizer. We can conclude that the
stabilizer is all complex isometries on W , which is U(W ). By the orbit-stabilizer
theorem, we have

O/U(W ) ∼= CX(W )
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We now proceed to identify the fiber of pW .

Lemma 5.3. For x ∈ SO(W ), p−1
W (X) ∼= CX(ker(X − I))

Proof. Let A ∈ p−1
W (X).

Let W ⊗R C denote the complexification of W that extends the underlying
field of scalars from R to C We have that o(W ) ⊆ u(W ⊗R C), since a skew-
symmetric matrix is merely a skew-hermitian matrix with only real entries.
That means we can find a spectral decomposition for A:

A = iπV ′ − iπV ′′ +
∑
j

µjπWj
,

Where µj ∈ (−i, i).
For a skew-symmetric matrix, we have that if µ is an eigenvalue, so is −µ,

and their corresponding eigenspaces have the same dimension. This is because
since AT = −A, and since AT has the exact same eigenvalues as A, µ ∈ A =⇒
µ ∈ AT =⇒ µ ∈ −A. However, we can see from the spectral decomposition
that multiplying A by −1 has the effect of multiplying every eigenvalue by −1.
Therefore µ ∈ −A =⇒ −µ ∈ A. It follows that if µ is an eigenvalue of A, so
is −µ. But since µ is a pure imaginary number, −µ is its complex conjugate.
Therefore, the eigenspaces have the same dimension.

We also have O(W ) ⊆ U(W ⊗R C) since an orthogonal matrix is a unitary
matrix with only real entries. Therefore we can find a spectral decomposition
for X

X = πV +
∑
j

λjπVj ,

where |λj | = 1 and λj 6= 1. Since X = −eπA and by uniqueness of spectral
decomposition, we get that V = V ′ ⊕ V ′′ = ker(X − I)⊗R C, Vj = Wj and µj
is completely determined by λj for all j. We wish to show that A2|ker(X−I) =
−Iker(X−I). First we have to show that A(ker(X − I)) ⊆ ker(X − I). To do
that, we check that for a vector v ∈ ker(X − I), A(v) ∈ ker(X − I). Note that
v = πV ′(v) + πV ′′(v) since v ∈ V ′ ⊕ V ′′

A(v) = iπV ′(v)− iπV ′′(v) +
∑
j

µjπWj
(v) = iπV ′(v)− iπV ′′(v) ∈ V ′ ⊕ V ′′ = V.

So A(v) ∈ ker(X − I). We used here that v is orthogonal onto every eigenspace
other than V ′ and V ′′, so the orthogonal projection of v onto Wj vanishes. We
use this fact in the following calculation as well. Now,

A2(v) = A(iπV ′(v)− iπV ′′(v))

= (i · iπ2
V ′(v) + i · (−i)πV ′πV ′′(v) + i · (−i)πV ′′πV ′(v) + (−i) · (−i)π2

V ′′(v)

= −πV ′(v)− πV ′′(v) = −v

Which means A2|ker(X−I) = −Iker(X−I). Therefore, A ∈ CX(ker(X − I)). We
used that projecting v orthogonally to two vector spaces orthogonal to each
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other successively yields 0, as well as the fact that π2
Y = πY .

Conversely, given J ∈ CX(ker(X−I)), let A = J+
∑
j µjπVj From the above

calculation, J0 = iπV ′−iπV ′′ satisfies J2
0 = −I, and since all J ∈ CX(ker(X−I))

are similar, they have the same eigenvectors and eigenspace. That means J =
iπV ′ − iπV ′′ for all J . Consequently, A = J +

∑
j

µjπVj ∈ p−1
W (X).

Define
O/UV,W = lim

W ′≥W
O/U(V ⊕ (W ′ −W ))

for V ⊆ W ⊂ U where W is a complex space and V is a real even dimensional
space. By a similar argument as in the previous section, for a choice of isometry,
we have V⊕W⊥ ∼= U , and we getO/UV,W

∼= O/U . In addition, forX ∈ SO(W ),

we have p−1(X) ∼= O/Uker(X−I),W
We will now show that p is a quasifibration. We start by defining a filtration

on SO analogously to the previous filtration:

FnSO = {X ∈ SO | dimR ker(X − I)⊥ ≤ 2n}.

Note that since W is a complex subspace, any complex subspace of W , in
particular ker(X − I) has an even real dimension. Therefore Bn = FnSO −
Fn−1SO is the set of all X ∈ SO such that dimR ker(X − I)⊥ = 2n. We will
now prove that p−1(Bn)→ Bn is distinguished.

Lemma 5.4. p−1(Bn)→ Bn is a Serre fibration

Proof. This proof will be completely analogous to lemma 4.5. We start with
the following commutative square

{0} × Ik α //

��

p−1(Bn)

��

Ik+1

β
// Bn

We wish to find a lift of this diagram, i.e. a map γ : Ik+1 → p−1(Bn) making
the triangles in the diagram commute.

By compactness, there exist a finite dimensional W ⊂ U such that the
diagram factors as

{0} × Ik α′ //

��

E(W ) ∩ p−1(Bn)

��

// p−1(Bn)

��

Ik+1

β′
// SO(W ) ∩Bn // Bn

Let A(0, t1, ..., tk) = α′(t1, ..., tk) and X(t0, t1, ..., tk) = β′(t0, ..., tk). For t ∈
Ik, Ik+1 respectively, we may write the spectral decomposition of A and X as

A(t) = iπV ′(t) − iπV ′′(t) +
∑
l

µl(t)πWl(t),
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X(t) = πV (t) +
∑
l

λl(t)πVl(t),

where −eπµl(t) = λl(t), W0(t)⊕W1(t) = V (t), and Wl(t) = Vl(t) when t ∈ Ik.
Consider the following subspace of an m-dimensional real subspace W of U :

Perpn(W ) = { (V ′, V ′′) | V ′, V ′′ ⊆W, V ′ ⊥ V ′′,

iπV ′ − iπV ′′ ∈ CX(V ′ ⊕ V ′′)}
Let J = iπV ′ − iπV ′′ . Since J has real entries, and complex conjugate eigenval-
ues, the eigenspace for each eigenvalue is complex conjugate of each other, which
means they have the same dimension. Therefore we may think of span{V ′, V ′′}
as a complex n-dimensional complex space. Note that a unitary transformation
of J is isomorphic to J .

We may characterize this space by considering the orthogonal group over W .
We get all possible V ′ and V ′′ by letting O(W ) act on one pair (V ′, V ′′) by con-
jugation. That means O(W ) acts transitively on Perpn(W ). The stabilizer is
given by the orthogonal matrices that can be decomposed into a unitary matrix
that acts on V ′ ⊕ V ′′, and an orthogonal matrix that acts on (W − (V ′ × V ′′)).
Thus the stabilizer is Un ⊕Om−2n

∼= Un ×Om−2n. We therefore have

Perpn(W ) ∼= Om/(Un ×Om−2n)

Define BOn(Y ) = {V | V ⊆ Y, dimR V = n}
We have a natural map P : Perpn(W ) → BO2n(W ) given by P (V ′, V ′′) =

V ′⊕V ′′. We characterizeBO2n(W ) in a similar way. We have thatOm acts tran-
sitively on BO2n(W ), with stabilizer the orthogonal matrices that can be decom-
posed into the direct sum of an orthogonal matrix that acts on V ∈ BO2n(W ),
and an orthogonal matrix that acts on W −V . That is, an orthogonal matrix of
the form O2n⊕Om−2n

∼= O2n×Om−2n. Thus BO2n(W ) ∼= Om/(O2n×Om−2n).
We have that Un ⊆ O2n, which means Om/(O2n×Om−2n) ⊆ Om/(Un×Om−2n).
It follows that P is a projection, so P : Perpn(W ) → BO2n(W ) is a fibration.
That means we can find a lift ω′′ to the following commutative diagram.

{0} × Ik α′′ //

��

Perpn(W )

P

��

Ik+1

ω′′
88

β′′
// BO2n(W )

Let n = dimW0(0), i.e the dimension of the eigenspaces of A(0) corresponding
to µ = i. Let α′′ : Ik → Perpn(W ) be given by α′′(t) = (W0(t),W1(t)) and
let β : Ik+1 → BUi+j(W ⊕ W ) be given by β′′(t) = V (t), where we have
W0(t) ⊕ W1(t) = V (t). Define ω′′(t) = (W ′(t), V − W ′(t)), where W ′(t) is
obtained from W0(t) by a homotopy. Let µl(t) ∈ (0, 1) be the unique solution
to −eπµl(t) = λl(t). We can now define ω′ : Ik+1 → E(W ) ∩ p−1(Bn) by

ω′(t) = iπW ′(t) − iπ(V (t)−W ′(t)) +
∑
l

µl(t)πVl(t)
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and by inclusion, we obtain a lift ω to our original diagram.

We define a neighborhood Nn of Fn−1SO in FnSO given by

Nn = {X | dimREige2πi[1/4,3/4]X < 2n} ⊆ FnSO.

To find a homotopy deforming Nn so that it lies inside Fn−1SO, we define a
function f : [−i, i]→ [−i, i]

f(x) =


−i, im(x) ≤ − 1

2

2x, − 1
2 ≤ im(x) ≤ 1

2

i, im(x) ≥ 1
2

Then f ' Id rel{−i, i}. H(x, t) = t · f + (1− t) · x is a homotopy that satisfies
this. Let h : S1 × I → S1 be defined so that the following square commutes for
all t ∈ I:

[−i, i] Ht //

−eπ(·)

��

[−i, i]

−eπ(·)

��

S1

ht

// S1

The induced homotopy h : N×I → N deforms Nn into Fn−1SO for all n, and is
covered by a homotopy H : p−1(N)× I → p−1(N), as was required by theorem
2.2. Both induced homotopies are defined similarly to the previous section.

It remains to check that H1 induces weak equivalences on fibers, that is,
that H1 : p−1(X) → p−1(h1(X)) is a weak equivalence. Following the same
argumentation leading up to lemma 4.6, this boils down to proving the following
lemma.

Lemma 5.5. Let V ⊆ V ′ be even dimensional suspaces of a finite dimensional
subspace W ⊂ U . Then the map f : O/UV,W → O/UV ′,W given by sending A
to A⊕ J for a fixed complex structure J on V ′ − V is a homotopy equivalence.

Proof. Since CX(W ) ∼= O/U(W ), there is a correspondence between an ele-
ment in CX and a coset in O/U which has a representative in O. Let S in O
correspond to A ∈ CX, and define J such that its corresponding element in O
is IV ′−V . Consider the following commutative square:

lim
→ W ′≥W (V ⊕ (W ′ −W ))

φ
//

S

��

lim
→ W ′≥W (V ′ ⊕ (W ′ −W ))

S⊕IV ′−V
��

lim
→ W ′≥W (V ⊕ (W ′ −W ))

φ
// lim
→ W ′≥W (V ′ ⊕ (W ′ −W ))

Connecting the notation to lemma 2.4, we have f = φ∗ and S ⊕ IV ′−V =
φSφ−1 ⊕ IV ′−V = f(A) = φ∗(A). From the second equality, we get that φ
is an orthogonal matrix matrix and therefore an isometry. Since both S and
IV ′−V ∈ O, we can use lemma 2.4 to conclude that f is a homotopy equivalence.
In particular, f is a weak homotopy equivalence.
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5.2 Ω(O/U) ' U/Sp

Let U ∼= H∞ be an infinite dimensional quaternionic inner product space. For
W ⊂ U finite quaternionic subspace, let O(W ) denote the space of real linear
isometries of W , where W is viewed as a real subspace of four times the dimen-
sion of its quaternionic counterpart. Let U(W ) denote the space of complex
isometries of W where W is viewed as a complex subspace of twice the dimen-
sion of its quaternionic counterpart. Note that U(W ) ⊆ O(W ). Let O/U =
lim
→ WO/U(W ), under the map iV,W : O/U(V ) → O/U(W ), iV,W ([X]) =

[X ⊕ IW−V ] for V ⊆W .
Define:

E(W ) = {A ⊆ o(W ) | A is conjugate linear and µm ∈ [−i, i] ∀m}

Where λm denotes the eigenvalues in A. Demanding that A is conjugate linear
(i.e. A(bw1 + cw2) = bA(w1) + cA(w2), w1, w2 ∈ W where the bar denotes
complex conjugation), corresponds intuitively to the fact that for quaternions
we have i · j = −j · i. We have a map E(V ) → E(W ) given by sending A to
A⊕ j where j, which is one of the imaginary units of the quaternions, is viewed
as a conjugate linear skew symmetric tranformation on W − V .

We have that a skew-symmetric matrix A ∈ o(W ) has to be either linear or
conjugate linear, depending on whether we consider W to be a complex vector
space or a quaternionic vector space. We then have that u(W ) is the subspace
of linear skew-symmetric transformations of W . We therefore have that the
orthogonal complement u(W )⊥ is the space of conjugate linear skew-symmetric
transformations of W . Consequently, u(W )⊥ is the Lie algebra corresponding
to the Lie group O/U(W ).

We also have that E(W ) is contractible by the contracting homotopy. That
can be verified by noting that a scalar multiple of a conjugate linear map is still
conjugate linear. Define

pW : E(W )→ O/U(W )

by pW (A) = [je( π
2A)]. By taking direct limits over finite dimensional quater-

nionic subspaces of U , we get a map p : E → O/U . We wish to show that this
map determines a quasifibration over SO/U with U/Sp as the fiber, where Sp
denotes the infinite group of quaternionic linear isometries. The reason we re-
strict the base space to SO/U is because O/U is disconnected. This is because
since O(2n) is disconnected, and U(n) is a connected subspace, U(n) must lie in
one of the connected components of O(2n), and since U(n) contains the identity
transformation, it must lie in SO(2n). O/U may therefore be decomposed into
SO/U ⊕ SO⊥. From the last section, we concluded that the base space must
be connected, so we have that p : E → O/U restricts to E → SO/U .

We start by finding a nice representation of U/Sp(W ). DefineQS(W ) denote
the space of quaternionic structures on W viewed as a complex space. These
are the conjugate linear isometries J of W that satisfies J2 = −I.

To get an intuition of how J operates, consider the complex number a+ ib.
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The following expression gives an orthogonal basis for C2: (a+bi, J(a+ib)). We
can make this into a quaternionic vector space by defining J(a+ ib) = ja+ ijb.
We have a corresponding basis given by a + bi + ja + ijb = a + ib + ja + kb
where k := ij.

Lemma 5.6. U/Sp(W ) ∼= QS(W )

Proof. Let U(W ) act on QS(W ) by conjugation. This is indeed an action
because for A ∈ U(W ) and J ∈ QS(W )

AJA−1 = X => X2 = (AJA−1)(AJA−1) = A(−I)A−1 = −IAA−1 = −I.

Which means X ∈ QS(W )
Given W as a complex vector space, with {a + ix, J(a + ix)} as the first

two components of the basis, the other pairs being defined a similar way, we
can define the quaternionic vector space of W induced by J ∈ QS(W ) given
by defining J(x + iy) = jx + ijy = jx + ky for all x + iy ∈ W , x and y being
real vectors, and with j being the second imaginary unit with ij = k. The
first basis vector in the induced basis for the quaternionic space is therefore
{(x+ iy) + J(x+ iy)} = {x+ iy + jx+ ky}. Denote the induced quaternionic
space by (W,J). Consider two induced quaternionic spaces (W,J1) and (W,J2).
We know the two spaces has equal dimension, and J1 and J2, being unitary
matrices, both preserve the dot product. We therefore have (W,J1) ∼= (W,J2).
Any isometry S : (W,J1)→ (W,J2) must satisfy

S(J1(w)) = S(jw) = j(S(w)) = J2(S(w)).

We may view S as an isometry on W as a complex vector space, which makes
it a unitary matrix, and in particular, invertible. We therefore have SJ1S

−1 =
J2, S ∈ U(W ), which proves that the action on QS(W ) is transitive.

We will now find the stabilizer of this action. That is, we will find all
S ∈ U(W ) such that SJ = JS ∀J ∈ CX(W ).

Assume SJ(w) = JS(w) for any w ∈W . Then, on the induced quaternionic
space, we have S(jw) = j(S(W )). That means if S is in the stabilizer, then it
is a quaternionic linear isometry. Now, assume SJ(w) 6= JS(w). Then, on the
induced quaternionic space, we have S(jw) 6= j(S(w)). Contrapositively, that
means that if S is a quaternionic linear isometry, then it is in the stabilizer. We
can conclude that the stabilizer is all quaternionic isometries on W , which is
Sp(W ). By the orbit-stabilizer theorem, we have

U/Sp(W ) ∼= QS(W )

For V ⊆ W ⊂ U , we define a map: U/Sp(V )→ U/Sp(W ) given by sending
[X] to [X + IW−V ]. We define U/Sp = limW (U/Sp(W ).

In order to do computations with elements of O/U , we need to understand
their coset representatives. The following lemmas provide us with some insight.
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Lemma 5.7. Suppose Y = eA, where A ∈ o(W ) is conjugate linear. Then
Y i = iY −1.

Proof.
−iY i = −ieAi = e−iAi = e(−i)·(−i)A = e−A = Y −1

Where we have applied the conjugate linear criterion in the third equality.

Lemma 5.8. Suppose that Y, Z ∈ O(W ) satisfy −iY i = Y −1 and −iZi = Z−1.
Then there is an X ∈ U(W ) such that jY = XZ if and only if −Y 2 = Z2.

Proof. Assume there is an X ∈ U(W ) such that jY = XZ. We then have

j(Y −1i) = Z−1X−1i

j(iY ) = −ijY = −iXZ = −XiZ = −XZ−1i

Where we have used that Xi = iX for X ∈ U(W ). Since iY = Y −1i, we
get that Z−1X−1i = −XZ−1i which yields XZX = −Z. This means that
Y 2 = (XZ)(XZ) = (XZX)Z = −Z2.

Conversely, assume −Y 2 = Z2. Then Y = −(Y −1Z)Z, which means
jY = (−jY −1Z)Z. We therefore need to show that −jY −1Z ∈ U(W ). jY =
(−jY −1Z)Z =⇒ jY Z−1 = −jY −1Z. So we get −jY −1Z · i = −jY −1iZ−1 =
−jiY Z−1 = ijY Z−1 = i(−jY −1Z), so −jY −1Z ∈ U(W ).

We will call X ∈ SO(W ) such that X = eA for a conjugate linear A ∈ o(W )
a special representative of the coset [X] ∈ SO/U(W ).

Assume Y,Z ∈ O(W ) have the property as in lemma 5.8. Then −i(jY )i =
−j(−iY i) = −j(Y −1) = (jY )−1, so jY also have that property. Therefore
j(jY ) = XZ if and only if −(jY )2 = Z2. Therefore −Y = XZ if and only if
Y 2 = Z2. But we therefore have Y = (−X)Z. Since −X ∈ U(W ), we get that
Y = XZ if and only if Y 2 = Z2.

Therefore lemma 5.7 and 5.8 says that two special representatives belong to
the same coset if and only if they have equal squares.We have, however, not yet
determined whether such an X exists for every coset. We will prove this in the
following lemma:

Lemma 5.9. Every [X] ∈ SO/U(W ) has a special representative

Proof. First, we have that SO/U(W ) is geodesically complete. We show this by
showing that the riemannian exponential map is defined on the entire tangent
space of each element in SO/U . Now, SO/U is a compact Lie group, since it is
a quotient of a compact Lie group SO by a normal Lie subgroup U . Therefore,
the riemannian exponential map coincides with matrix exponentiation, and the
tangent space at the identity is the corresponding Lie algebra. At any other
point, the tangent space is that point multiplied by the Lie algebra [11]. There-
fore the exponential map is defined everywhere, so SO/U(W ) is geodesically
complete. All geodesics in SO/U(W ) take on the form [Y etB ] for Y ∈ SO(W )
and B ∈ u(W )⊥.
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Now, we either have Y ∈ U(W ) or Y ∈ SO(W )−U(W ). But if Y ∈ U(W ),
then [Y etB ] = [etB ] since Y lies in the same coset as I. These cosets contain
the special representative etB ∈ SO(W ) for all t. We are therefore left with
Y ∈ SO(W )− U(W ). But etB ∈ SO(W )− U(W ), so Y etB ∈ SO(W )− U(W ).
Therefore there exists a C ∈ u(W )⊥ such that Y etB = etC , which makes
Y etB ∈ SO(W ) a special representative for the coset [Y etB ] for all t.

We proceed to find an expression for the fiber of pW .

Lemma 5.10. Suppose that W ⊂ U is a finite dimensional quaternionic space.
Let X be a special representative for the coset [X] ∈ SO/U(W ). Then

p−1
W ([X]) = U/Sp(ker(X2 − I)).

Proof. Suppose A ∈ p−1
W ([X]). We wish to show that A defines a quaternionic

structure on ker(X2 − I). That means that A(ker(X2 − I)) ⊆ ker(X2 − I) and
A2|ker(X2−I) = −Iker(X2−I). Just like the last section, we can view A ∈ E(W )
as an element of u(W ⊗R C). This gives us a spectral decomposition:

A = iπW ′ − iπW ′′ +
∑
l

µlπWl
,

where µl ∈ (−i, i) are the eigenvalues of A not equal to ±i. We may also
regard X ∈ SO(W ) as an element of U(W ⊗R C), so we can write its spectral
decomposition as

X = πV ′ − πV ′′ +
∑
l

(λlπV ′l − λlπV ′′l ),

Where |λl| = 1 and Im(λl) < 0. We will then get

X2 = πV ′⊕V ′′ +
∑
l

λ2
l πV ′l ⊕V ′′l

Since A ∈ p−1
w ([X]), pw(A) = [je

1
2πA] = [X], so X2 = (je

1
2πA)2 = −eπA. It

follows that V ′ ⊕ V ′′ = W ′ ⊕ W ′′ = ker(X2 − I) ⊗R C. By a computation
completely similar to that in lemma 5.3, we get that A ∈ QS(ker(X2 − I)).
Conversely, let J be a quaternionic structure on ker(X2 − I) ⊗R C. We will
show that A = J +

∑
l

µlπV ′⊕V ′′ ∈ p−1
W ([X]), where µl ∈ (−i, i) are the unique

solutions to −eπµl = λ2
l . Since J0 = iπW ′ − iπW ′′ satisfies this, and since

all J are similar to each other, they all have the same spectral decomposition.
Therefore A = J +

∑
l

µlπV ′⊕V ′′ ∈ p−1
W ([X]).

For V ⊆W ⊂ U , define

U/SpV,W = lim
→ W ′≥WU/Sp(V ⊕ (W ′ −W ))

Following the same line of reasoning as in lemma 4.4, with the isometry V ⊕
W⊥ ∼= U , we get that U/SpV,W

∼= U/Sp. In addition,

p−1([X]) ∼= U/Spker(X2−I),W , which gives us p−1(X) ∼= U/Sp.
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We will now prove that p : E → SO/U is a quasifibration. We start by
defining a filtration of SO/U as the following:

FnSO/U = { [X] | X is a special representative, dimC ker(X2 − I)⊥ ≤ 2n}.

Note that since any two special representatives of the same coset have equal
squares, the filtration is independent of the choice of special representative.

We define BnSO/U = FnSO/U − Fn−1SO/U . So

BnSO/U = { [X] | X is a special representative, dimC ker(X2 − I)⊥ = 2n}

. The proof that this is a quasifibration follow the same arguments as the
previous sections. First we prove the following:

Lemma 5.11. p−1(BnSO/U)→ BnSO/U is a Serre fibration.

Proof. This follow the same procedure as in the preceding sections. We start
with the following commutative square

{0} × Ik α //

��

p−1(BnSO/U)

��

Ik+1

β
// BnSO/U

We wish to find a lift of this diagram, i.e. a map γ : Ik+1 → p−1(BnSO/U)
making the triangles in the diagram commute.

By compactness, there exist a finite dimensional W ⊂ U such that the
diagram factors as

{0} × Ik α′ //

��

E(W ) ∩ p−1(Bn)

��

// p−1(Bn)

��

Ik+1

β′
// SO/U(W ) ∩Bn // Bn

Let A(0, t1, ..., tk) = α′(t1, ..., tk) and X(t0, t1, ..., tk) = β′(t0, ..., tk) for a special
representative X of SO/U(W ). For t ∈ Ik, Ik+1 respectively, we may write the
spectral decomposition of A and X as

A(t) = iπW0(t) − iπW1(t) +
∑
l

µl(t)πWl(t),

X(t) = πV (t) − πV ′(t) +
∑
l

(λl(t)πVl(t) − λl(t)πV ′l (t)),

where −eπµl(t) = λ2
l (t), W0(t)⊕W1(t) = V (t)⊕V ′(t), and Wl(t) = Vl(t)⊕V ′l (t)

when t ∈ Ik.
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Consider the following subspace of an m-dimensional complex subspace W
of U (note: m is even):

Perpn(W ) = { (V ′, V ′′) | V ′, V ′′ ⊆W, V ′ ⊥ V ′′,

iπV ′ − iπV ′′ = J ∈ QS(W )}
By [9], the eigenspace for each eigenvalue in J is complex conjugate of each
other, which means they have the same complex dimension n. Therefore we
may think of span{V ′, V ′′} as a quaternionic n-dimensional space. Note that a
transformation of J by a symplectic matrix is isomorphic to J .

We may characterize this space by considering the unitary group over W .
We get all possible V ′ and V ′′ by letting U(W ) act on one pair (V ′, V ′′) by
conjugation. That means U(W ) acts transitively on Perpn(W ). The stabilizer
is given by the unitary matrices that can be decomposed into a symplectic matrix
that acts on V ′⊕V ′′, and a unitary matrix that acts on (W − (V ′×V ′′)). Thus
the stabilizer is Spn ⊕ Um−2n

∼= Spn × Um−2n. We therefore have

Perpn(W ) ∼= Um/(Spn × Um−2n)

Define BUn(Y ) = {V | V ⊆ Y, dimC V = n}
We have a natural map P : Perpn(W ) → BU2n(W ) given by P (V ′, V ′′) =

V ′ ⊕ V ′′. We characterize BU2n(W ) in a similar way. We have that Um acts
transitively on BU2n(W ), with stabilizer the unitary matrices that can be de-
composed into the direct sum of a unitary matrix that acts on V ∈ BU2n(W ),
and a unitary matrix that acts on W − V . That is, a unitary matrix of the
form U2n⊕Um−2n

∼= U2n×Um−2n. Thus BU2n(W ) ∼= Um/(U2n×Um−2n). We
have that Spn ⊆ U2n, which means Um/(U2n × Um−2n) ⊆ Um/(Spn × Um−2n).
It follows that P is a projection, so P : Perpn(W ) → BU2n(W ) is a fibration.
That means we can find a lift ω′′ to the following commutative diagram.

{0} × Ik α′′ //

��

Perpn(W )

P

��

Ik+1

ω′′
88

β′′
// BU2n(W )

Let n = dimW0(0), i.e the dimension of the eigenspaces of A(0) corresponding to
µ = i. Let α′′ : Ik → Perpn(W ) be given by α′′(t) = (W0(t),W1(t)) and let β :
Ik+1 → BU2n(W⊕W ) be given by β′′(t) = V (t)⊕V ′(t), where we have W0(t)⊕
W1(t) = V (t)⊕V ′(t). Here we consider V (t)⊕V ′(t) as a single subspace of W ,
”forgetting” its decomposition. We can do this since the coset is only dependent
on the square of a special representative, which means any decomposition of
V (t) ⊕ V ′(t) will result in a special representative of the same coset. Define
ω′′(t) = (W ′(t), (V (t)⊕V ′(t))−W ′(t)), where W ′(t) is obtained from W0(t) by
a homotopy. Let µl(t) ∈ (0, 1) be the unique solution to −eπµl(t) = λ2

l (t). We
can now define ω′ : Ik+1 → E(W ) ∩ p−1(Bn) by

ω′(t) = iπW ′(t) − iπ(V (t)⊕V ′(t))−W ′(t) +
∑
l

µl(t)πVl(t)
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and by inclusion, we obtain a lift ω to our original diagram.

We define a neighborhood Nn of Fn−1SO/U in FnSO/U by:

Nn = { [X] | X is a special representative, dimC Eigeπi[1/2,3/2]X
2 < 2n}.

To find a homotopy deforming Nn so that it lies inside Fn−1SO/U , we define a
function f : [−i, i]→ [−i, i]

f(x) =


−i, im(x) ≤ − 1

2

2x, − 1
2 ≤ im(x) ≤ 1

2

i, im(x) ≥ 1
2

Then f ' Id rel{−i, i}. H(x, t) = t · f + (1− t) · x is a homotopy that satisfies
this. Let h : S1 × I → S1 be defined so that the following square commutes for
all t ∈ I:

[−i, i] Ht //

−eπ(·)

��

[−i, i]

−eπ(·)

��

S1

ht

// S1

The induced homotopy h : N × I → N deforms Nn into Fn−1SO/U for all n,
and is covered by a homotopy H : p−1(N) × I → p−1(N), as was required by
theorem 2.2.

It remains to check that H1 induces weak equivalences on fibers, that is, that
H1 : p−1(X) → p−1(h1(X)) is a weak equivalence. This boils down to proving
the following lemma.

Lemma 5.12. Let V ⊆ V ′ be even dimensional complex subspaces of a finite di-
mensional complex subspace W ⊂ U . Then the map f : U/SpV,W → U/SpV ′,W
given by sending A to A ⊕ J for a fixed quaternionic structure J on V ′ − V is
a homotopy equivalence.

Proof. Since QS(W ) ∼= U/Sp(W ), there is a correspondence between an element
in QS and a coset in U/Sp which has a representative in U . Let S in U
correspond to A ∈ QS, and define J such that its corresponding element in
U is IV ′−V . Consider the following commutative square:

lim
→ W ′≥W (V ⊕ (W ′ −W ))

φ
//

S

��

lim
→ W ′≥W (V ′ ⊕ (W ′ −W ))

S⊕IV ′−V
��

lim
→ W ′≥W (V ⊕ (W ′ −W ))

φ
// lim
→ W ′≥W (V ′ ⊕ (W ′ −W ))

Connecting the notation to lemma 2.4, we have f = φ∗ and S ⊕ IV ′−V =
φSφ−1 ⊕ IV ′−V = f(A) = φ∗(A). From the second equality, we get that φ is a
unitary matrix and therefore an isometry. Since both S and IV ′−V ∈ U , we can
use lemma 2.4 to conclude that f is a homotopy equivalence. In particular, f
is a weak homotopy equivalence.
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5.3 ΩU/Sp ' BSp× Z
Let U ∼= H∞ be a countably infinite quaternionic inner product space. For finite
dimensional W ⊂ U , U(W ⊕W ) is the group of complex linear isometries of
W ⊕W , and Sp(W ⊕W ) is the subgroup of quaternionic linear isometries of
W ⊕W . Then, along with the map from U/Sp(V ⊕V )→ U/Sp(W ⊕W ) given
by [X]→ [X+ IW−V,W−V ], we have U/Sp = lim

→ WU/Sp(W ⊕W ) following the

same argument as section 4. Define:

E(W ) = {A ∈ H(W ⊕W ) | jA = Aj, µm ∈ I ∀m}

Where H(W ⊕W ) is the set of all hermitian complex linear transformations of
W⊕W . Note that for A ∈ H(W⊕W ), iA ∈ u(W⊕W ), where u(W⊕W ) consists
of skew-hermitian complex linear transformations of W ⊕W . In addition, we
have that sp(W ⊕W )⊥ = {A ∈ u(W ⊕W ) | Aj = −jA}. Define a map pW :
E(W )→ U/Sp(W ⊕W ) by sending A to [eπiA]. We have a map E(V )→ E(W )
given by sending A to A ⊕ π(W−V )⊕0. By taking direct limits, we get a map
p : E → U/Sp.

Analogously to the previous section, we have the following two lemmas to
understand the coset representatives of U/Sp.

Lemma 5.13. Let W ⊂ U be finite dimensional. If A ∈ H(W ⊕W ) satisfies
jA = Aj, then X = eiA has the property Xj = jX−1

Proof.

−jXj = −jeiAj = e−jiAj = e−jijA = e−(−j2i)A = e−iA = X−1

Lemma 5.14. Suppose that Y,Z ∈ U(W ⊕W ) have the property −jY j = Y −1

and −jZj = Z−1. Then there exists an X ∈ Sp(W ⊕W ) such that Y = XZ if
and only if Y 2 = Z2.

Proof. Assume there is an X ∈ Sp(W ⊕W ) such that Y = XZ. We then have

jY −1 = jZ−1X−1

Y j = XZj = XjZ−1 = jXZ−1

Where we have used that Xj = jX for X ∈ Sp(W ⊕W ). Since Y j = jY −1,
we get that jZ−1X−1 = jXZ−1 which yields XZX = Z. This means that
Y 2 = (XZ)(XZ) = (XZX)Z = Z2.

Conversely, assume Y 2 = Z2. Then Y = (Y −1Z)Z. We therefore need to
show that Y −1Z ∈ Sp(W ). Y = (Y −1Z)Z =⇒ Y Z−1 = Y −1Z. So we get
Y −1Zj = Y −1jZ−1 = jY Z−1 = jY −1Z, so Y −1Z ∈ Sp(W ⊕W ).

We call X ∈ U(W ⊕W ) such that X = eπiA for an A ∈ E(W ) a special
representative for the coset [X] ∈ U/Sp(W ⊕W ). By the previous lemmas, we
have that any two special representatives belong to the same coset if and only
if they have equal squares. The following lemma ensures that every coset has a
special representative.
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Lemma 5.15. Every coset [X] ∈ U/Sp(W ⊕W ) has a special representative.

Proof. Notice that since iA ∈ u(W ⊕W ), a special representative also has the
property that X = eπB for B ∈ u(W ⊕W ). Using the exact same argument as
in lemma 5.9, but with U instead of SO, and Sp instead of U , we arrive at the
conclusion that U/Sp(W ⊕W ) is geodesically complete, with the geodesics on
the form γt = [Y etB ] for Y ∈ U(W ) and B ∈ sp(W ⊕W )⊥, which gives us the
special representatives of [X].

For a quaternionic space Y , define

BSp(Y ) =
∐
n

{V | V is a quaternionic subspace of Y, dimH V = n}.

For V ⊆W ⊂ U , we have a map BSp(V ⊕V )→ BSp(W ⊕W ) given by sending
Y to Y ⊕ (W − V ) ⊕ 0. By the quaternionic version of lemma 4.2, we get by
taking direct limits that BSp×Z = lim

→ WBSp(W ⊕W ). We proceed to identify

the fiber of pW .

Lemma 5.16. Let W ⊂ U be finite dimensional. If X is a special representative
for [X] ∈ U/Sp(W ⊕W ), then p−1

W ([X]) ∼= BSp(ker(X2 − I)).

Proof. Let A ∈ E(W ). Define a map p−1([X]) → BSp(ker(X2 − I)) given by
sending A to ker(A− I). Let us make sure that this map makes sense, that is,
check that ker(A− I) ⊆ ker(X2 − I). First, A has a spectral decomposition

A = πW0
+
∑
l

µlπWl
,

where µl ∈ (0, 1), and a priori, W0 and Wl are complex subspaces of W ⊕W .
However, since Aj = jA, we have that if Av = µv, then Ajv = jAv = jµv =
µjv since µ is real for a hermitian matrix. Therefore, W0 and Wl are in fact
quaternionic subspaces. We also have a spectral decomposition for X:

X = πV ′ − πV ′′ +
∑
l

(λlπV ′l − λlπV ′′l )

which gives us

X2 = πV ′⊕V ′′ +
∑
l

λ2
l πV ′l ⊕V ′′l

Since X2 = e2πiA, we get that pW (A) = [X] if and only if ker(A − I) = W0 ⊆
V ′ ⊕ V ′′ = ker(X2 − I), Wl = V ′l ⊕ V ′′l , and µl ∈ (0, 1) is the unique solution
to e2πiµl = λ2

l . Therefore the map makes sense. We now construct an inverse,
which is given by sending B ∈ BSp(ker(X2 − I)) to πB +

∑
l µlπV ′l ⊕V ′′l ∈

p−1
W ([X]).

Define

BSpV,W = lim
→ W ′≤WBSp(V ⊕ (W ′ −W )⊕ (W ′ −W ))

36



where V ⊆W ⊕W ⊂ U ⊕U . By the usual isometry, V ⊕W⊥⊕W⊥ ∼= U ⊕U , so
we get BSpV,W

∼= lim
→ WBSp(W ⊕W ) = BSp× Z. For a special representative

X ∈ U(W ⊕W ), by Lemma 5.16, we get p−1([X]) = BSpker(X2−I),W .

We will now prove that p : E → U/Sp is a quasifibration. We define the
following filtration of U/Sp:

Fn(U/Sp) = { [X] | X is a special representative, dimC ker(X2 − I)⊥ ≤ 2n}.

Defining Bn(U/Sp) = Fn(U/Sp) − Fn−1(U/Sp), we will prove that Bn(U/Sp)
is distinguished.

Lemma 5.17. p−1(Bn(U/Sp)→ Bn(U/Sp) is a Serre fibration

Proof. This follows the same procedure as in the preceding sections. We start
with the following commutative square

{0} × Ik α //

��

p−1(Bn(U/Sp))

��

Ik+1

β
// Bn(U/Sp)

We wish to find a lift of this diagram, i.e. a map γ : Ik+1 → p−1(Bn(U/Sp))
making the triangles in the diagram commute.

By compactness, there exist a finite dimensional W ⊂ U such that the
diagram factors as

{0} × Ik α′ //

��

E(W ) ∩ p−1(Bn)

��

// p−1(Bn)

��

Ik+1

β′
// U/Sp(W ) ∩Bn // Bn

Let A(0, t1, ..., tk) = α′(t1, ..., tk) and X(t0, t1, ..., tk) = β′(t0, ..., tk) for a special
representative X of U/Sp(W ). For t ∈ Ik, Ik+1 respectively, we may write the
spectral decomposition of A and X as

A(t) = πW0(t) +
∑
l

µl(t)πWl(t),

X(t) = πV (t) − πV ′(t) +
∑
l

(λl(t)πVl(t) − λl(t)πV ′l (t)),

And in addition

X2(t) = πV ′(t)⊕V ′′(t) +
∑
l

λ2
l πV ′l (t)⊕V ′′l (t)
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which means −e2πiµl(t) = λ2
l (t), W0(t) ⊆ V (t)⊕V ′(t), and Wl(t) = Vl(t)⊕V ′l (t)

when t ∈ Ik.
Consider the following subspace of W ⊕W for an m-dimensional symplectic

subspace W of U :

Perpi,j(W ⊕W ) = {(V ′, V ′′)|V ′, V ′′ ⊆W,V ′ ⊥ V ′′,

dimH V
′ = i,dimH V

′′ = j}

We may characterize this space by considering the symplectic group over
W ⊕W . We get all possible V ′ and V ′′ by letting Sp(W ⊕W ) act on one pair
(V ′, V ′′) by left multiplication. That means Sp(W ⊕W ) acts transitively on
Perpi,j(W ⊕W ). Since we know the dimension of W ⊕W to be 2m, we may
denote Sp(W ⊕W ) by Sp2m. The stabilizer is given by the symplectic matrices
that can be decomposed into a symplectic matrix that acts on V ′, a symplectic
matric that acts on V ′′, and a symplectic matrix that acts on (W ⊕W − (V ′ ⊕
V ′′)). Thus the stabilizer is Spi ⊕ Spj ⊕ Sp2m−i−j ∼= Spi × Spj × Sp2m−i−j .
We therefore have

Perpi,j(W ⊕W ) ∼= Sp2m/(Spi × Spj × Sp2m−i−j)

We have a natural map P : Perpi,j(W ⊕ W ) → BSpi+j(W ⊕ W ) given
by P (V ′, V ′′) = V ′ ⊕ V ′′. We characterize BSpi+j(W ⊕W ) in a similar way.
We have that Sp2m acts transitively on BSpi+j(W ⊕W ), with stabilizer the
symplectic matrices that can be decomposed into the direct sum of a symplectic
matrix that acts on V ∈ BUi+j(W ), and a symplectic matrix that acts on
(W ⊕W ) − V . That is, a symplectic matrix of the form Spi+j ⊕ Sp2m−i−j ∼=
Spi+j × Sp2m−i−j . Thus BU2n(W ) ∼= Um/(U2n × Um−2n). Since Perp(i+j),0

∼=
BSpi+j , P is a projection, so P : Perpi,j(W ⊕ W ) → BSpi+j(W ⊕ W ) is
a fibration. That means we can find a lift ω′′ to the following commutative
diagram.

{0} × Ik α′′ //

��

Perpi,j(W ⊕W )

P

��

Ik+1

ω′′
77

β′′
// BSpi+j(W ⊕W )

Let i = dimW0(0), and j = dimW1(0) i.e the dimension of the eigenspaces of
A(0) corresponding to µ = 1 and µ = 0 respectively. Let α′′ : Ik → Perpi,j(W ⊕
W ) be given by α′′(t) = (W0(t),W1(t)) and let β : Ik+1 → BSpi+j(W ⊕W )
be given by β′′(t) = V (t) ⊕ V ′(t), where we have W0(t) ⊕ W1(t) = V (t) ⊕
V ′(t). Here we consider V (t) ⊕ V ′(t) as a single subspace of W ⊕ W , ”for-
getting” its decomposition. We can do this since the coset is only dependent
on the square of a special representative, which means any decomposition of
V (t) ⊕ V ′(t) will result in a special representative of the same coset. Define
ω′′(t) = (W ′(t), (V (t)⊕V ′(t))−W ′(t)), where W ′(t) is obtained from W0(t) by
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a homotopy. Let µl(t) ∈ (0, 1) be the unique solution to e2πiµl(t) = λ2
l (t). We

can now define ω′ : Ik+1 → E(W ) ∩ p−1(Bn) by

ω′(t) = πW ′(t) − 0π(V (t)⊕V ′(t))−W ′(t) +
∑
l

µl(t)πVl(t)

and by inclusion, we obtain a lift ω to our original diagram.

We now check the last two requirements of theorem 2.2.
Define a neighborhood Nn of Fn−1 in Fn as

Nn = { [X] ∈ FnU | X is a special representative, dimC Eige2πi[1/3,2/3]X
2 < 2n},

where EigSX denote the direct sum of eigenspaces corresponding to eigenvalues
in S.

We are going to deform X2 such that the eigenvalues inside the range
e2πi[1/3,2/3] will correspond to all non-unit eigenvalues of the deformed matrix,
while the remaining eigenvalues will correspond to eigenvalue 1. That way, the
resulting matrix will be a special representative of [X] ∈ Fn−1 as theorem 2.2
requires. Define f : I → I by

f(x) =


1, x ≥ 2

3

3x− 1, 1
3 ≤ x ≤

2
3

0, x ≤ 1
3

We note that f ' Id rel ∂I. This ensures that the eigenvalue 1 will not be
deformed to a non-unit eigenvalue. Let H be such a homotopy, for example by
H(x, t) = t(f(x)) + (1− t)x. It follows that there exists an h : S1× I → S1 that
makes the following diagram commute:

I
Ht //

e2πi(·)

��

I

e2πi(·)

��

S1

ht

// S1

For A ∈ E of the form A =
∑
i µiπWi

, we define a new hermitian matrix Ht(A)
where t ∈ I

Ht(A) =
∑
i

Ht(µi)πWi .

similarly, we define ht : U → U by

ht(X) =
∑
i

ht(λi)πWi
=
∑

e2πiHt(µi)πWi
.

Note that ht : Nn → Nn satisfy h0 = Id and h1(Nn) ⊆ Fn−1U . In addition, ht
is covered by Ht : p−1(Nn) → p−1(Nn), where H0 = Id. What remains, is to
show that the induced map on the fibers: H1 : p−1(X)→ p−1(h1(X)) is a weak

39



equivalence, and we have proven that p is a quasifibration.

By the construction of Ht, ker(X2− I) ⊆ ker(H1(X2)− I). This means that
to prove p being a quasifibration is reduced to proving the following lemma:

Lemma 5.18. Suppose we have finite dimensional quaternionic spaces V ⊆
V ′ ⊆W ⊕W . Let V ′′ ⊆ V ′ − V . Then the map BSpV,W → BSpV ′,W given by
sending X to X ⊕ V ′′ is a homotopy equivalence.

Proof. We have that both BSpV,W and BSpV ′,W are congruent to BSp×Z. In
([8], 1.2), if we consider VectnH(C) instead of VectnC(C), we will get the quater-

nionic analogue of the formula given in lemma 4.6. We have that K̃H(C) ∼=
[C,BSp × Z], for any pointed compact space C. Where [A,B] denotes the ho-
motopy classes of maps from A to B.

We therefore get an induced map

K̃H(C) ∼= [C,BSpV,W ]→ [C,BSpV ′,W ] ∼= K̃H(C).

This means any coset representative is mapped to another representative of the
same coset in KH(C). Since V ⊆ V ′, the map has to be addition of a trivial
bundle, so the map is an isomorphism. In particular, for C = Si, we get an
isomorphism of homotopy groups.

5.4 ΩSp ' Sp/U

Let U ∼= H∞ be a countably infinite dimensional quaternionic inner product
space. For finite dimensional W ⊂ U , let Sp(W ) be the space of quaternionic
isometries of W . We have a map Sp(V )→ Sp(W ) given by sending X to X ⊕
IW−V for V ⊆W . We may therefore take the direct limit: Sp = lim

→ WSp(W ).

Define

E(W ) = {A ∈ H(W ) | µl ∈ [−1, 1] ∀l, Aj = −jA},

where H(W ) denotes the space of all complex linear hermitian transformations
of W , and µl denotes the eigenvalues of A. Note that E(W) is contractible
by the contracting homotopy, which holds since if Aj = −jA, and t is real,
(tA)j = −j(tA) Define a map pW : E(W )→ Sp(W ) as pW (A) = −eπiA.

We will now find a nice representation for Sp/U(W ).

Lemma 5.19. Let W ⊂ U be a finite dimensional quaternionic subspace. Then
there is an isomorphism

Sp/U(W ) ∼= {V | V is a complex subspace of W, W = V ⊕ jV }.

Proof. We can recognize V as a complex Lagrangian subspace of W . This is
because we have that U(2n) ∩ Sp(2n,C) = Sp(n). Therefore we may define
a symplectic form on W viewed as a 2n -dimensional complex space. On the
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complex space, j corresponds to a quaternionic structure. We choose the quater-
nionic structure J to represent j. We may therefore define the symplectic form
to be (v, Jw) where (·, ·) is the standard complex inner product. Since v ⊥ Jv
for all v, we have that (v1, Jv2) = 0 for all v1, v2 ∈ V . V is therefore a complex
Lagrangian subspace. We know that U(2n) acts transitively on W viewed as
a complex space, so the subspace of U(2n) that preserves the symplectic form
has to act transitively on the space in question. But such a space is precisely
Sp(n). To find the stabilizer, we look for the transformations og V ⊕ jV that
induces automorphisms on V and jV . Since V is complex, such tranformations
must be the group U(W ). The orbit-stabilizer theorem tells us that the space
is congruent to Sp/U(W ).

We now proceed to identify the fiber of pW .

Lemma 5.20. Let W ⊂ U be a finite dimensional quaternionic subspace. For
X ∈ Sp(W ), p−1

W (X) ∼= Sp/U(ker(X − I)).

Proof. For A ∈ E(W ), we find its spectral decomposition

A = πW ′ − πW ′′ +
∑
l

(µlπW ′l − µlπW ′′l ),

Where µl ∈ (0, 1). In addition, assume Av = µv. Then Ajv = −jAv = −jµv =
−µjv. This means that jW ′ = W ′′ and jW ′l = W ′′l .

Since Spn ⊆ U2n, X inherits a spectral decomposition:

X = πV − πV ′ +
∑
l

(λlπV ′l + λlπV ′′l ),

Where |λl| = 1, and Im(λl) < 0. Assume Xv = λv. Then Xjv = jXv = jλv =
λjv. This means that jV ′l = V ′′l , and in particular, since real numbers equal
their complex conjugate, you get jV = V and jV ′ = V ′. This means that V
and V ′ are quaternionic subspaces of W .

Therefore, pW (A) = X if and only if W ′⊕W ′′ = V = ker(X − I), W ′l = V ′l ,
W ′′l = V ′′l and µl ∈ (0, 1) are the unique solutions in that range to −eπiµl = λl.
We may therefore define a map φ : p−1

W (X) → Sp/U(ker(X − I)), given by
φ(A) = W ′, since we have that W ′ ⊕ jW ′′ = ker(X − I). We find an inverse
ψ : Sp/U(ker(X − I)) → p−1

W (X) given by ψ(V ) = πV − π(jV ) +
∑
l(µlπV ′l −

µlπV ′′l ).

We would like to have a map E(V )→ E(W ) given by sending A to A⊕πW−V
as we have done for hermitian matrices up until now. However, A′ = A⊕πW−V
will not satisfy A′j = −jA′. Therefore we modify the following way. For Y
quaternionic space, let Y C = {v ∈ Y | iv = vi}. One can verify that each
entry of v is of the form a + bi. We define a map E(V ) → E(W ) by sending
A to A ⊕ π(W−V )C . This means that the eigenspace corresponding to µ = 1 is

the space W ′ ⊕ (W − V )C. We then have that the eigenspace corresponding
to µ = −1 is the space W ′′ ⊕ j(W − V )C. One can verify that W − V =
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(W − V )C + j(W − V )C, which means X ⊕ πW−V ∈ Sp(W ). We now take the
direct limit over all W ⊂ U , which yields p : E → Sp.

For V ⊆W ⊂ U , define

Sp/UV,W = lim
→ W ′≥WSp/U(V ⊕ (W ′ −W ))

Completely analogous to previous sections, we get that Sp/UV,W
∼= Sp/U ,

p−1(X) = Sp/Uker(X−I),W , and therefore p−1(X) ∼= Sp/U .
We now prove that p : E → Sp is a quasifibration. We start by defining a

filtration on Sp. Note that since V ′l = jV ′′l , V ′l ⊕ V ′′l can be thought of as a
quaternionic subspace of W , with quaternionic dimension equal to the complex
dimension of W ′l . Therefore, we may define the filtration as:

FnSp = {X ∈ Sp | dimH ker(X − I)⊥ ≤ n}.

Define BnSp = FnSp−Fn−1Sp. We start by proving that BnSp is distinguished:

Lemma 5.21. p−1(BnSp)→ BnSp is a Serre fibration.

Proof. We start with the following commutative square

{0} × Ik α //

��

p−1(Bn)

��

Ik+1

β
// Bn

We wish to find a lift of this diagram, i.e. a map γ : Ik+1 → p−1(Bn) making
the triangles in the diagram commute.

By compactness, there exists a finite dimensional W ⊂ U such that the
diagram factors as

{0} × Ik α′ //

��

E(W ) ∩ p−1(Bn)

��

// p−1(Bn)

��

Ik+1

β′
// Sp(W ) ∩Bn // Bn

Let A(0, t1, ..., tk) = α′(t1, ..., tk) and X(t0, t1, ..., tk) = β′(t0, ..., tk). For t ∈
Ik, Ik+1 respectively, we may write the spectral decomposition of A and X as

A(t) = πW ′(t) − πW ′′(t) +
∑
l

(µl(t)πW ′l (t) − µl(t)πW ′′l (t)),

X(t) = πV (t) − πV ′(t) +
∑
l

(λl(t)πV ′l (t) + λl(t)πV ′′l (t)),
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where −eπiµl(t) = λl(t), W
′(t) ⊕W ′′(t) = V (t), W ′l (t) = V ′l (t) and W ′′l (t) =

V ′′l (t) when t ∈ Ik. Consider the following space given an m-dimensional quater-
nionic subspace W of U :

Perpn,n(W ) = { (V ′, V ′′) | V ′, V ′′ are complex subspaces of W, V ′ = jV ′′,

dimC V
′ = dimC V

′′ = n}
We may characterize this space by considering the symplectic group over W .
Sp(W ) acts transitively on itself, so we get all possible V ′ and V ′′ by applying all
symplectic transformations on one pair of (V ′, V ′′). The stabilizer is the space of
symplectic matrices that induces automorphisms on V ′ and V ′′ simultaneously.
Such a symplectic matrix is of the form Un ⊕ Un ⊕ Spm−n. That means that

Perpn,n(W ) ∼= Spm/(Un × Un × Spm−n)

We have a natural map

P : Perpn,n(W )→ BSpn(W )

by P (V ′, V ′′) = V ′⊕V ′′. Where we found earlier that BSpn(W ) ∼= Spm/(Spn×
Spm−n. We have that Un ⊕ Un ⊆ Spn. To see this, decompose the quaternion
a + bi + cj + dk into (a + bi) + (c + di)j (for the sake of illustration, we use
the dot product as our inner product, and the standard norm). We let U act
on a + bi which gives us a new complex number e + fi with the property that
e2 + f2 = a2 + b2. We then let U ′ act on c+ di, which gives us g+hi, such that
c2 + d2 = g2 +h2. Combining these sends a+ bi+ (c+ di)j to e+ fi+ (g+hi)j
such that a2 + b2 + c2 + d2 = e2 + f2 + g2 + h2. This is therefore a quaternionic
isometry. This means that BSpn(W ) ⊆ Perpn,n(W ). We therefore have that P
is a projection, which makes it a fibration. That means we can find a lift ω′′ to
the following commutative diagram.

{0} × Ik α′′ //

��

Perpn,n(W )

P

��

Ik+1

ω′′
88

β′′
// BSpn(W )

Let n = dimW ′(0). Let α′′ : Ik → Perpn,n(W ) be given by α′′(t) = (W ′(t), V ′(t)−
W ′(t)) and let β : Ik+1 → BSpn(W ⊕W ) be given by β′′(t) = V ′(t). Since
V ′(t) ∈ BUn ∀t, we have that V ′(t) has constant dimension. Therefore, we may
define ω′′(t) = (W ′(t), V ′(t) −W ′(t)), where W ′(t) is obtained from W ′(t) by
a homotopy. Let µl(t) ∈ (0, 1) be the unique solution to −eπiµl(t) = λl(t). We
can now define ω′ : Ik+1 → E(W ) ∩ p−1(Bn) by

ω′(t) = πW ′(t) − πV ′(t)−W ′(t) +
∑
l

(µl(t)πV ′l (t) − µl(t)πV ′′l (t))

and by inclusion, we obtain a lift ω to our original diagram.
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We define a neighborhood Nn of Fn−1Sp in FnSp given by

Nn = {X ∈ FnSp | dimHEig−eπi[−1/2,1/2]X < n}.

In oder to find a homotopy deforming Nn so that it lies inside Fn−1Sp, we define
a function f : [−1, 1]→ [−1, 1]

f(x) =


−1, x ≤ − 1

2

2x, − 1
2 ≤ x ≤

1
2

1, x ≥ 1
2

Then f ' Id rel{−1, 1}. H(x, t) = t · f + (1− t) · x is a homotopy that satisfies
this. Let h : S1 × I → S1 be defined so that the following square commutes for
all t ∈ I:

[−1, 1]
Ht //

−eπi(·)
��

[−1, 1]

−eπi(·)
��

S1

ht

// S1

The induced homotopy h : N × I → N , given by sending the eigenvalues λl =
−eπiµl to −eπiHt(µl) deforms Nn into a subspace of Fn−1Sp for all n, and is
covered by a homotopy H : p−1(N)× I → p−1(N), as was required by theorem
2.2.

It remains to check that H1 induces weak equivalences on fibers, that is,
that H1 : p−1(X) → p−1(h1(X)) is a weak equivalence. Following the same
argumentation leading up to lemma 4.6, this boils down to proving the following
lemma.

Lemma 5.22. Let V ⊆ V ′ be quaternionic subspaces of a finite dimensional
quaternionic subspace W ⊂ U . Then the map f : Sp/UV,W → Sp/UV ′,W given
by sending A to A⊕ L for a complex matrix L such that L⊕ jL ∼= V ′ − V is a
homotopy equivalence.

Proof. since Sp/UV,W
∼= Sp/U ⊆ Sp, we can represent an elementA in Sp/UV,W

by an element S in Sp, while we can choose L such that its representative in Sp
is IV ′−V . Consider the following commutative square:

lim
→ W ′≥W (V ⊕ (W ′ −W ))

φ
//

S

��

lim
→ W ′≥W (V ′ ⊕ (W ′ −W ))

S⊕IV ′−V
��

lim
→ W ′≥W (V ⊕ (W ′ −W ))

φ
// lim
→ W ′≥W (V ′ ⊕ (W ′ −W ))

Connecting the notation to lemma 2.4, we have f = φ∗ and S ⊕ IV ′−V =
φSφ−1 ⊕ IW−V = f(S) = φ∗(S). From the second equality, we get that φ is a
symplectic matrix and therefore an isometry. Since S and IV ′−V ∈ Sp, we can
use lemma 2.4 to conclude that f is a homotopy equivalence. In particular, f
is a weak homotopy equivalence.
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5.5 ΩSp/U ' U/O

Let U ∼= H∞ be a an infinite dimensional quaternionic space equipped with
a real inner product such that multiplication with i and j are real isometries.
Let W ⊂ U be a right quaternionic subspace, that is, a vector space where the
scalars are multiplied on the right. Then we may view Sp(W ) as the real linear
isometries X of W that for v ∈ W and α ∈ H satisfy X(vα) = (Xv)α. Since
complex numbers are commutative, we want the complex isometries of W to
be the real isometries that is right quaternion linear, as well as left complex
linear. So U(W ) is a subspace of Sp(W ) that satisfies X(iv) = i(Xv). Let WR

be the real subspace of W . More precisely: WR = {v | vi = iv and vj = jv}.
This lets us describe quarternions as multiplying elements in WR with 1, i, j
and k. We are going to use this to find an expression of sp(W ), the Lie algebra
of Sp(W ), that consists of quaternionic matrices that satisfies A = A∗, where
* denotes quaternion conjugate transpose. Such a matrix must be a skew-
symmetric tranformation on the real part of W , and a symmetric transformation
on each of the imaginary parts of W . Therefore:

sp(W ) = o(WR)⊕ iS(WR)⊕ jS(WR)⊕ kS(WR)

Where S(X) denotes symmetric limear transformations of a space X. u(W )
is the Lie subalgebra of sp(W ) of the form o(WR) ⊕ iS(WR). Since we are
working with Sp/U(W ), we are interested in the transformations of the form
jS(WR)⊕ kS(WR). Define

E(W ) = { jB + kC | µBl , µCl ∈ [−1, 1] ∀l} ⊆ jS(WR)⊕ kS(WR),

Where µBl and µCl are the eigenvalues of B and C respectively. We have a

map pW : E(W ) → Sp/U(W ) given by pW (A) = [je
1
2πA]. We now find a nice

representation for U/O(W ).

Lemma 5.23. Let W be a finite quaternionic space with a real inner product.
Then there is an isomorphism

U/O(W ) ∼= {V | V is a right complex subspace of W, W = V ⊕ iV = V ⊕ V j}.

Proof. We recognize this space as the (real) Lagrangian Grassmannian of W .
Since we view i and j as real isometries, we should view W as a 4n-dimensional
real vector space, which makes V a 2n-dimensional real subspace. We may now
choose two real symplectic forms on W corresponding to i and j respectively, the
first being (v, J1w) and the second being (v, wJ2), where J1, J2 are quaternionic
structures corresponding to i and j respectively, and (·, ·) denotes the standard
real inner product. Now, for any two v1, v2 ∈ V , (v1, J1v2) = 0 and (v1, v2J2) =
0. It follows that V is a real Lagrangian transformation, so the space is the
Lagrangian Grassmannian of W . It has been proven by for example [14] that
the real Lagrangian Grassmannian is isomorphic to U/O(W ). Therefore, so is
our space.
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For V ⊆W we have a map U/O(V )→ U/O(W ) given by [A] 7→ [A⊕IW−V ],
or equivalently, by the isomorphism in lemma 5.23: V 7→ V ⊕ L, where L is a
fixed complex space such that L ⊕ iL = L ⊕ Lj = W − V , and corresponds to
[IW−V ] under the isomorphism. We now have that U/O = lim

→ WU/O(W ).

We now aim to understand the coset representatives of Sp/U(W ). Analogous
to section 5.2 and 5.3, we have the following two lemmas:

Lemma 5.24. Let W ⊂ U be a finite right quaternionic subspace. Suppose A ∈
sp(W ) has the property Ai = −iA, then X = eA has the property Xi = iX−1

Proof.
−iXi = −ieAi = e−iAi = e−(A) = X−1

Where i is thought of as a linear transformation with −i as its inverse.

Lemma 5.25. Let W ⊂ U be a finite right quaternionic subspace. If Y, Z ∈
Sp(W ) has the property −iY i = Y −1 and −iZi = Z−1, then there exists an
X ∈ U(W ) such that jY = XZ if and only if −Y 2 = Z2.

Proof. Suppose there is an X ∈ U(W ) such that jY = XZ. We have that

iY −1 = i(Z−1X−1j) = ZiX−1j = ZX−1ij = −(ZX−1j)i

and
Y i = −(jXZ)i

Since iY −1 = Y i, we have that −ZX−1ji = −jXZi, which means ZX−1j =
jXZ. We have that (jX)−1 = −X−1j, so writing C = jX, where we note
that Y = −CZ we get −ZC−1 = CZ, which means Z = −CZC, so Z2 =
−CZCZ = −(−CZ)(−CZ) = −Y 2

Conversely, suppose−Y 2 = Z2. Then Y = −(Y −1Z)Z, so jY = −j(Y −1Z)Z.
We therefore show that −jY −1Z ∈ U(W ). But jY = −j(Y −1Z)Z implies
jY Z−1 = −j(Y −1Z), so −jY −1Zi = i(jY Z−1) = i(−jY −1Z). Therefore
−jY −1Z ∈ U(W ).

This means pW (A) = [X] if and only if X2 = −eπA, so we call such an X a
special representative. The following lemma shows that any coset has a special
representative.

Lemma 5.26. Every [X] ∈ Sp/U(W ) has a special representative.

Proof. Sp/U(W ) is geodesically complete by the same logic as in lemma 5.9,
and the geodesics γ of Sp/U(W ) is given by γ(t) = [Y etB ] for Y ∈ Sp(W ) and
B ∈ u(W )⊥, which yields the special representatives.

We now determine the fiber of pW .

Lemma 5.27. Let W ⊂ U be a finite dimensional right quaternionic sub-
space. For a special representative X of [X] ∈ Sp/U(W ), we have p−1

W ([X]) ∼=
U/O(ker(X2 − I)).
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Proof. Let A ∈ E(W ). We find its spectral decomposition, which is given by
eigenvalues in the range [−i, i]. As A is a right skew-hermitian matrix, we make
sure to write the eigenvalues on the right.

A = πW ′i− πW ′′i+
∑
l

(πW ′l iµl − πW ′′l iµl),

Where µl ∈ (0, 1) and W ′,W ′′,W ′l and W ′′l are right complex spaces. Notice
that if Av = viµ, then A(iv) = −iAv = −iviµ = iv(−iµ), and if A(vj) =
(Av)j = viµj = vj(−iµ). This means that iW ′ = W ′′, W ′j = W ′′, iW ′l = W ′′l ,
and W ′l j = W ′′l .

Similarly, write the spectral decomposition of the special representative X,
being a right quaternionic transformation, as

X = πV ′ − πV ′′ + πV ′0 i− πV ′′0 i+
∑
l

(πV ′l λl + πV ′′l λl − πṼ ′l λl − πṼ ′′l λl),

where |λl| = 1, and λl sitting in the second quadrant of the unit circle,

i.e. Im(λ2) < 0 and Im(λ) > 0, and a priori, V ′, V ′′, V ′l , V
′′
l , Ṽ

′
l and Ṽ ′′l are

right complex vector spaces. However, we have that if Xv = vλ, then Xiv =
−iX−1v = iX∗v = ivλ, and Xvj = vλj = vjλ. This means that iV ′ = V ′ =
V ′j, iV ′′ = V ′′ = V ′′j, iV ′0 = V ′′0 , V ′0j = V ′′0 , iV ′l = V ′′l , V ′l j = V ′′l , iṼ ′l = Ṽ ′′l
and Ṽ ′l j = Ṽ ′′l . In particular, V ′ and V ′′ are in fact quaternionic spaces.

We also compute the spectral decomposition for X2:

X2 = πV ′⊕V ′′ − πV ′0⊕V ′′0 +
∑
l

(πV ′l ⊕Ṽ ′l
λ2
l + πV ′′l ⊕Ṽ ′′l

λl
2
).

Now, if A ∈ p−1
W ([X]), then we must have −eπiA = X2, which means µl ∈

(0, 1) is the unique solution to −eπiµl = λ2
l , W

′⊕W ′′ = V ′⊕V ′′ = ker(X2− I),

W ′l = V ′l ⊕ Ṽ ′l , and W ′′l = V ′′l ⊕ Ṽ ′′l .
We therefore have a map φ : p−1

W ([X])→ U/O(ker(X2−I)), with φ(A) = W ′,
with an inverse ψ(V ) = πW ′i− πiW ′i+

∑
l(πV ′l ⊕Ṽ ′l

iµl − πV ′′l ⊕Ṽ ′′l iµl)

Similar to the previous instances, for V ⊆W , we want a map iV,W : E(V )→
E(W ) such that W − V will be part of the eigenspace of X2 corresponding to
eigenvalue λ2 = 1, i.e to the eigenspace of A corresponding to the eigenvalues
µ = i and µ = −i. But we also want that iW ′ = W ′′ = W ′j. W ′ = (k+1)(W −
V )R and W ′′ = (i−j)(W−V )R satisfies this, since for V ∈ (W−V )R i(k+1)v =
(−j + i)v ∈ W ′′ and (k + 1)vj = (k + 1)jv = (−i + j)v = (i − j)(−v) ∈ W ′′.
Therefore we define

iV,W (A) = A⊕ (π(k+1)(W−V )Ri− π(i−j)((W−V )Ri).

Taking direct limits over all W ⊂ U , we get a map p : E → Sp/U . We show
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this this is a quasifibration with fiber U/O.
First we define the following space for V ⊆W :

U/OV,W = lim
→ W ′≥WU/O(V ⊕ (W ′ −W ))

Completely analogous to previous sections, we get that U/OV,W
∼= U/O, as well

as U/Oker(X2−I),W
∼= p−1(W ) which establishes U/O as the fiber of p.

We define the following filtration on Sp/U :

Fn(Sp/U) = { [X] | X is a special representative, dimC ker(X2 − I)⊥ ≤ 2n},

and we let Bn(Sp/U) = Fn(Sp/U)− Fn−1(Sp/U).
We prove distinguishness the same way as the previous sections:

Lemma 5.28. p−1(Bn(Sp/U))→ Bn(Sp/U) is a Serre fibration.

Proof. This follow the same procedure as in the preceding sections. We start
with the following commutative square

{0} × Ik α //

��

p−1(Bn(Sp/U))

��

Ik+1

β
// Bn(Sp/U)

We wish to find a lift of this diagram, i.e. a map γ : Ik+1 → p−1(Bn(Sp/U))
making the triangles in the diagram commute.

By compactness, there exist a finite dimensional W ⊂ U such that the
diagram factors as

{0} × Ik α′ //

��

E(W ) ∩ p−1(Bn)

��

// p−1(Bn)

��

Ik+1

β′
// Sp/U(W ) ∩Bn // Bn

Let A(0, t1, ..., tk) = α′(t1, ..., tk) and X(t0, t1, ..., tk) = β′(t0, ..., tk) for a special
representative X of Sp/U(W ). For t ∈ Ik, Ik+1 respectively, we may write the
spectral decomposition of A(t) and X(t) as

A(t) = πW ′(t)i− πW ′′(t)i+
∑
l

πW ′l (t)iµl(t)− πW ′′l (t)iµl(t),

X(t) = πV ′(t) − πV ′′(t) + πV ′0 (t)i− πV ′′0 (t)i

+
∑
l

(πV ′l (t)λl(t) + πV ′′l (t)λl(t)− πṼ ′l (t)λl(t)− πṼ ′′l (t)λl(t)),
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where −eπiµl(t) = λl(t)
2, W ′(t)⊕W ′′(t) = V ′(t)⊕V ′′(t),W ′l (t) = V ′l (t)⊕ Ṽ ′l (t),

and W ′′l (t) = V ′′l (t)⊕ Ṽ ′′l (t)
Consider the following subspace of an 2m-dimensional complex subspace W

of U :

Perpd,d(W ) = { (V ′, V ′′) | V ′, V ′′ are complex subspaces of W,

iV ′ = V ′′ = V ′j, dimC V
′ = dimC V

′′ = d}.

We may characterize this space by considering the unitary group over W . We
get all possible V ′ and V ′′ by letting U(W ) act on W , and observing the induced
tranformations on a given V ′ and V ′′. That means U(W ) acts transitively
on Perpd,d(W ). The stabilizer is given by the unitary matrices that can be
decomposed into an orthogonal matrix that acts on V ′, an orthogonal matrix
that acts on V ′′, and a unitary matrix that acts on (W − (V ′ × V ′′)). Thus the
stabilizer is O2d ×O2d × U2m−2d. We therefore have

Perpn(W ) ∼= U2m/(O2d ×O2d × U2m−2d)

Define BUn(Y ) = {V | V ⊆ Y, dimC V = n}
We have a natural map P : Perpd,d(W )→ BU2d(W ) given by P (V ′, V ′′) =

V ′ ⊕ V ′′. We characterize BU2d(W ) in a similar way. We have that U2m

acts transitively on BU2d(W ), with stabilizer the unitary matrices that can be
decomposed into the direct sum of a unitary matrix that acts on V ∈ BU2d(W ),
and a unitary matrix that acts on W − V . That is, a unitary matrix of the
form U2d ⊕ U2m−2d

∼= U2d × U2m−2d. Thus BU2d(W ) ∼= U2m/(U2d × U2m−2d).
The argument used in the previous section for determining that Un × Un ⊆
Spn can be used for determining that O2n × O2n ⊆ U2n. This means that
U2m/(U2d × U2m−2d) ⊆ U2m/(U2d × U2m−2d). It follows that P is a projection,
so P : Perpn(W ) → BU2n(W ) is a fibration. That means we can find a lift ω′′

to the following commutative diagram.

{0} × Ik α′′ //

��

Perpn(W )

P

��

Ik+1

ω′′
88

β′′
// BU2n(W )

Let d = dimW ′(0), i.e the dimension of the eigenspaces of A(0) corresponding
to µ = i. Let α′′ : Ik → Perpd,d(W ) be given by α′′(t) = (W ′(t),W ′′(t)) and let

β : Ik+1 → BU2d(W ⊕W ) be given by β′′(t) = V ′(t) ⊕ V ′′(t), where we have
W ′(t)⊕W ′′(t) = V ′(t)⊕V ′′(t). Like in section 5.5, we consider V ′(t)⊕V ′′(t) as
a single subspace of W , ”forgetting” its decomposition. We can do this since the
coset is only dependent on the square of a special representative, which means
any decomposition of V0(t)⊕ V ′0(t) will result in a special representative of the

same coset. Define ω′′(t) = (W̃ ′(t), (V ′(t) ⊕ V ′′(t)) − W̃ ′(t)), where W̃ ′(t) is
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obtained from W ′(t) by a homotopy. Let µl(t) ∈ (0, 1) be the unique solution
to −eπµl(t) = λ2

l (t). We can now define ω′ : Ik+1 → E(W ) ∩ p−1(Bn) by

ω′(t) = π
W̃ ′(t)

i− π
(V ′(t)⊕V ′′(t))−W̃ ′(t)i+

∑
l

(πV ′l (t)µl(t)i− πV ′′l (t)µl(t)i)

and by inclusion, we obtain a lift ω to our original diagram.

We define a neighborhood Nn of Fn−1(Sp/U) in Fn(Sp/U) as

Nn = { [X] | X is a special representative, dimC Eig−eπi[1/3,2/3]X
2 < 2n}.

Let f : I → I be given by

f(x) =


1, x ≥ 2

3

3x− 1, 1
3 ≤ x ≤

2
3

0, x ≤ 1
3

Then f ' Id rel ∂I, and H(x, t) = tf(x) + (1− t)x is a homotopy that satisfies
this. There exists a unique homotopy h : S1 × I → S1 such that the following
square commutes

I
Ht //

−eπi(·)
��

I

−eπi(·)
��

S1

ht

// S1

The induced homotopy h : N × I → N , given by sending the eigenvalues
λl = −eπiµl to −eπiHt(µl) deforms Nn into a subspace of Fn−1Sp for all n, and is
covered by a homotopy H : p−1(N)× I → p−1(N), as was required by theorem
2.2.

It remains to check that H1 induces weak equivalences on fibers, that is,
that H1 : p−1(X) → p−1(h1(X)) is a weak equivalence. Following the same
argumentation leading up to lemma 4.6, this boils down to proving the following
lemma.

Lemma 5.29. Let V ⊆ V ′ be quaternionic subspaces of a finite dimensional
quaternionic subspace W ⊂ U . Then the map f : U/OV,W → U/OV ′,W given by
sending A to A⊕L for a complex matrix L such that L⊕ jL ∼= L⊕ iL ∼= V ′−V
is a homotopy equivalence.

Proof. since U/OV,W
∼= U/O ⊆ U , we can represent a representative of an

element A in U/OV,W by an element S in U , while we choose L such that its
representative in U is IV ′−V . Consider the following commutative square:

lim
→ W ′≥W (V ⊕ (W ′ −W ))

φ
//

S

��

lim
→ W ′≥W (V ′ ⊕ (W ′ −W ))

S⊕IV ′−V
��

lim
→ W ′≥W (V ⊕ (W ′ −W ))

φ
// lim
→ W ′≥W (V ′ ⊕ (W ′ −W ))
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Connecting the notation to lemma 2.4, we have f = φ∗ and S ⊕ IV ′−V =
φSφ−1 ⊕ IV ′−V = f(S) = φ∗(S). From the second equality, we get that φ is a
unitary matrix and therefore an isometry. Since S and IV ′−V ∈ U , we can use
lemma 2.4 to conclude that f is a homotopy equivalence. In particular, f is a
weak homotopy equivalence.

5.6 Ω(U/O) ' BO × Z
Let U ∼= C∞. Let c : U → U be a fixed complex conjugation. In this section,
we assume that all finite dimensional complex subspaces W ⊂ U are closed
under the conjugation map c. Define the real subspace of W to be WR = {v ∈
W | v = v}. Let U(W ⊕W ) be the set of all complex isometries of W ⊕W , and
let O(W ⊕W ) be the set of all X ∈ U(W ⊕W ) such that X = X.

Define

E(W ) = {A ∈ H(W ⊕W ) | A = A, µl ∈ [0, 1] ∀l},

Where µl denotes the eigenvalues of A. Define pW : E(W )→ U/O(W ⊕W ) by
pW (A) = [eπiA].

In order to tell us more about the representatives of U/O, we present two
lemmas similar to previous sections:

Lemma 5.30. Let W be a finite dimensional complex space. If A ∈ u(W ⊕W )
has the property A = −A, then X = eA has the property X = X−1.

Proof.

X = eA = eA = e−A = X−1.

Lemma 5.31. Let W be a finite dimensional complex space. If Y , Z ∈ U(W ⊕
W ) has the property that Y −1 = Y and Z−1 = Z, then there exists an X ∈
O(W ⊕W ) such that Y = XZ if and only if Y 2 = Z2.

Proof. Assume Y = XZ. Then

Y −1 = Z−1X−1

Y = XZ = XZ−1

Where we have used that X = X and Z−1 = Z. Since Y −1 = Y , we get that
Z−1X−1 = XZ−1 which gives Z = XZX. Therefore Y 2 = XZXZ = Z2

Assume Y 2 = Z2. We get that Y = (Y −1Z)Z as well as Y Z−1 = Y −1Z.
We need to show that Y −1Z ∈ O(W ⊕ W ), i.e that Y −1Z = Y −1Z. But
Y −1Z = Y −1 Z = Y Z−1 = Y −1Z, so Y −1Z ∈ O(W ⊕W )

If X ∈ U(W ⊕W ) and X = eA for A ∈ u(W ⊕W ) such that A = A, we
call X a special representative for [X] ∈ U/O(W ⊕W ). From the two lemmas,
two special representatives are in the same coset if and only if their squares
are equal. This means that a special representative X has the property that
X = eπiA for an A ∈ H(W ⊕W ). And from the following lemma, every coset
in U/O(W ⊕W ) has a special representative.
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Lemma 5.32. There exists a special representative X for every coset [X] ∈
U/O(W ⊕W )

Proof. U/O(W ⊕W ) is geodesically complete, The geodesics are given by γt =
[Y etB ] for Y ∈ U(W ⊕W ) and B ∈ o(W ⊕W )⊥, which determine the special
representatives.

We now proceed to determine the fiber of pW .

Lemma 5.33. Let W ⊂ U be a finite dimensional complex space. If X is a
special representative for [X] ∈ U/O(W ⊕W ), then p−1

W ([X]) ∼= BO(ker(X2 −
I)R).

Proof. If A ∈ E(W ), then A has a spectral decomposition

A = πW0
+
∑
l

µlπWl

where µl ∈ (0, 1). In order for these eigenspaces to be regarded as subspaces,
they need to be closed under conjugation. This is indeed the case since if
Av = µv, Av = Av = µv = µv.

The special representative X has a spectral decomposition

X = πV ′0 − πV ′′0 +
∑
l

(λlπV ′l − λlπV ′′l )

where Im(λl) > 0). These eigenspaces are also closed uder conjugation, since if

Xv = λv, Xv = X−1v = λv = λv. Now, if e2πiA = X2, then the eigenvalues
µl ∈ (0, 1) must be the unique solutions to e2πiµl = λ2

l . In addition, we must
have Wl = V ′l ⊕ V ′′l and W0 ⊆ V ′0 ⊕ V ′′0 . Since W0, V

′
0 and V ′′0 are closed under

conjugation, we can decompose them into their real and imaginary part and we
get the following: WR

0 ⊕ iWR
0 ⊆ V ′R0 ⊕ V ′′R0 + iV ′R0 ⊕ iV ′′R0 , and in particular,

ker(A − I)R = WR
0 ⊆ V ′R0 ⊕ V ′′R0 = ker(X2 − I)R. Therefore, ker(A − I)R ∈

BO(ker(X2 − I)R).
Define a map φ : p−1

w ([X])→ BO(ker(X2−I)R) given by φ(A) = ker(A−I)R.
This map has an inverse ψ, namely, for a real subspace V ⊆ ker(X2 − I)R, let
W0 = V ⊕ iV . Then define

ψ(V ) = πW0
+
∑
l

µlπV ′l ⊕V ′′l .

For V ⊆ W ⊂ U closed under conjugation, there is a map U/O(V ⊕ V ) →
U/O(W ⊕ W ) defined by sending [X] to [X ⊕ I(W−V )⊕(W−V )], and a map
E(V )→ E(W ) defined by sending A to A⊕π(W−V )⊕0. By taking direct limits,
we get a map p : E → U/O. We first show that this map has fiber BO × Z.
First, for V ⊆W ⊂ U closed under conjugation, define a map BO(V R⊕V R)→
BO(WR ⊕WR) given by sending V ′ to V ′ ⊕ (W − V )R ⊕ 0. In addition, define
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BO(Y ) =
∐
nBOn(Y ). We may therefore use the real analogue of lemma 4.2

to conclude that lim
→ WBO(WR ⊕WR) ∼= BO × Z.

For V ⊆W ⊕W closed under conjugation, define

BOV R,WR = lim
→ W ′R≥WRBO(V R ⊕ (W ′R −WR)⊕ (W ′R −WR))

for W ′ closed under conjugation. By a choice of isometry V R ⊕ (W⊥)R ⊕
(W⊥)R ∼= UR⊕UR, we get that BOV,W ∼= lim

→ WBO(WR⊕WR) ∼= BO×Z, and in

particular, setting V = ker(X2− I), we have that p−1([X]) ∼= BOker(X2−I),W ∼=
BO × Z.

We now show that p : E → U/O is a quasifibration. We start by defining a
filtration on U/O:

Fn(U/O) = { [X] ∈ U/O | X is a special representative, dimC ker(X2−I)⊥ ≤ n}.

Let Bn(U/O) = Fn(U/O)−Fn−1(U/O). We now prove that Bn is distinguished

Lemma 5.34. p−1(Bn(U/O))→ Bn(U/O) is a Serre fibration

Proof. We start with the following commutative square

{0} × Ik α //

��

p−1(Bn(U/O))

��

Ik+1

β
// Bn(U/O)

We wish to find a lift of this diagram, i.e. a map γ : Ik+1 → p−1(Bn(U/O))
making the triangles in the diagram commute.

By compactness, there exist a finite dimensional W ⊂ U such that the
diagram factors as

{0} × Ik α′ //

��

E(W ) ∩ p−1(Bn)

��

// p−1(Bn)

��

Ik+1

β′
// U/O(W ⊕W ) ∩Bn // Bn

Let A(0, t1, ..., tk) = α′(t1, ..., tk) and X(t0, t1, ..., tk) = β′(t0, ..., tk) for a special
representative X of U/O(W ⊕W ). For t ∈ Ik, Ik+1 respectively, we may write
the spectral decomposition of A and X as

A(t) = πW0(t) +
∑
l

µl(t)πWl(t),

X(t) = πV ′0 (t) − πV ′′0 (t) +
∑
l

(λl(t)πV ′l (t) − λl(t)πV ′′l (t)),
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And in addition

X2(t) = πV ′0 (t)⊕V ′′0 (t) +
∑
l

λ2
l πV ′l (t)⊕V ′′l (t)

which means −e2πiµl(t) = λ2
l (t), W0(t) ⊆ V0(t)⊕V ′0(t), and Wl(t) = Vl(t)⊕V ′l (t)

when t ∈ Ik.
Consider the following subspace of WR⊕WR for an m-dimensional complex

subspace W of U closed under conjugation:

Perpi,j(W
R ⊕WR) = { (V ′R, V ′′R) | V ′R, V ′′R ⊆WR ⊕WR, V ′R ⊥ V ′′R,

dimR V
′R = i,dimR V

′′R = j}.

We characterize this space by considering the orthogonal group over WR ⊕
WR. We get all possible V ′R and V ′′R by letting O(WR ⊕WR) act on one pair
(V ′R, V ′′R) by left multiplication. That means O(WR ⊕WR) acts transitively
on our space. Since we know the real dimension of WR ⊕WR to be 2m, we
may denote O(WR ⊕WR) by O2m. The stabilizer is given by the orthogonal
matrices that can be decomposed into an orthogonal matrix that acts on V ′R,
an orthogonal matrix that acts on V ′′R, and an orthogonal matrix that acts
on (WR ⊕WR − (V ′R ⊕ V ′′R)). Thus the stabilizer is Oi ⊕ Oj ⊕ O2m−i−j ∼=
Oi ×Oj ×O2m−i−j . So by the orbit-stabilizer theorem tells us that

Perpi,j(W
R ⊕WR) ∼= O2m/(Oi ×Oj ×O2m−i−j)

We have a natural map P : Perpi,j(W
R ⊕WR)→ BOi+j(W

R ⊕WR) given

by P (V ′R, V ′′R) = V ′R ⊕ V ′′R. We characterize BOi+j(W
R ⊕WR) in a similar

way. We have that O2m acts transitively on BOi+j(W
R ⊕WR), with stabilizer

the orthogonal matrices that can be decomposed into the direct sum of an
orthogonal matrix that acts on V R ∈ BOi+j(W

R ⊕ WR), and an orthogonal
matrix that acts on (WR⊕WR)−V R. That is, an orthogonal matrix of the form
Oi+j ⊕ O2m−i−j ∼= Oi+j × O2m−i−j . Thus BOi+j(W

R ⊕WR) ∼= O2m/(Oi+j ×
O2m−i−j). Since Perp(i+j),0

∼= BOi+j , P is a projection, so P : Perpi,j(W
R ⊕

WR) → BOi+j(W
R ⊕WR) is a fibration. That means we can find a lift ω′′ to

the following commutative diagram.

{0} × Ik α′′ //

��

Perpi,j(W ⊕W )

P

��

Ik+1

ω′′
77

β′′
// BOi+j(W ⊕W )

Let i = dimW0(0), and j = dimW1(0) i.e the dimension of the eigenspaces
of A(0) corresponding to µ = 1 and µ = 0 respectively. Let α′′ : Ik →
Perpi,j(W

R ⊕ WR) be given by α′′(t) = (WR
0 (t),WR

1 (t)) and let β : Ik+1 →
BOi+j(W ⊕W ) be given by β′′(t) = V R

0 (t) ⊕ V ′R0 (t), where we have WR
0 (t) ⊕
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WR
1 (t) = V R

0 (t) ⊕ V ′R0 (t). Here we consider V R
0 (t) ⊕ V ′R0 (t) as a single sub-

space of WR ⊕ WR, ”forgetting” its decomposition. We can do this since
the coset is only dependent on the square of a special representative, which
means any decomposition of V R

0 (t) ⊕ V ′R0 (t) will result in a special represen-
tative of the same coset. Define ω′′(t) = (W ′R0 (t), (V R

0 (t) ⊕ V ′R0 (t)) −W ′R0 (t)),
where W ′R0 (t) is obtained from WR

0 (t) by a homotopy. Let µl(t) ∈ (0, 1) be
the unique solution to e2πiµl(t) = λ2

l (t). Let W ′0(t) = W ′R0 (t) ⊕ iW ′R0 (t), and
let V0(t) ⊕ V ′0(t) = V R

0 (t) ⊕ V ′R0 (t) ⊕ i(V R
0 (t) ⊕ V ′R0 (t)) We can now define

ω′ : Ik+1 → E(W ) ∩ p−1(Bn) by

ω′(t) = πW ′0(t) − 0π(V0(t)⊕V ′0 (t))−W ′0(t) +
∑
l

µl(t)πVl(t)

and by inclusion, we obtain a lift ω to our original diagram.

Define a neighborhood Nn of Fn−1(U/O) in Fn(U/O) as

Nn = { [X] ∈ Fn(U/O) | X is a special representative, dimC Eige2πi[1/3,2/3]X
2 < n}.

Define f : I → I by
In the same way as before, we are going to deform Nn into a subspace of

Fn−1(U/O). To do that, we define the following function

f(x) =


1, x ≥ 2

3

3x− 1, 1
3 ≤ x ≤

2
3

0, x ≤ 1
3

We note that f ' Id rel ∂I. Let H(x, t) = t(f(x))+(1−t)x be such a homotopy.
It follows that there exists an h : S1×I → S1 that makes the following diagram
commute:

I
Ht //

e2πi(·)

��

I

e2πi(·)

��

S1

ht

// S1

For A ∈ E of the form A =
∑
i µiπWi , we define a new hermitian matrix Ht(A)

where t ∈ I
Ht(A) =

∑
i

Ht(µi)πWi
.

similarly, we define ht : U → U by

ht(X) =
∑
i

ht(λi)πWi
=
∑

e2πiHt(µi)πWi
.

Note that ht : Nn → Nn satisfy h0 = Id and h1(Nn) ⊆ Fn−1U . In addition, ht
is covered by Ht : p−1(Nn) → p−1(Nn), where H0 = Id. What remains, is to
show that the induced map on the fibers: H1 : p−1(X)→ p−1(h1(X)) is a weak
equivalence, and we have proven that p is a quasifibration. This boils down to
the following lemma:
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Lemma 5.35. Suppose V R ⊆ V ′R ⊆WR⊕WR, and V ′′R ⊆ V ′R−V R. Then the
map BOV R,WR → BOV ′R,WR given by sending Y toY ⊕V ′′R is a weak equivalence.

Proof. We have that both BOV R,WR and BOV ′R,WR are congruent to BO × Z.

We know that K̃C(C) ∼= [C,BU ×Z] (See [8], 1.2), for any pointed compact
space C. Where [A,B] denotes the homotopy classes of maps from A to B.
Adjusting the arguments in ([8], 1.2) by considering VectR instead of VectC, we

get that K̃R(C) ∼= [C,BO × Z]
We therefore get an induced map

K̃R(C) ∼= [C,BOV R,WR ]→ [C,BOV ′R,WR ] ∼= K̃C(C).

This means any coset representative is mapped to another representative of the
same coset in KC(C). Since V R ⊆ V ′R, the map has to be addition of a trivial
bundle, so the map is an isomorphism. In particular, for C = Si, we get an
isomorphism of homotopy groups.

Thus we have proved the real Bott periodicity theorem.

6 Analysis

As stated in the introduction, this proof can give us some insight into why
complex Bott periodicity is simpler than real Bott periodicity. In this section,
a short analysis of the proof is given, to shed some light on this phenomenon.
Let us recall the iterated loop space for BU and BO, where each arrow means
applying Ω.
BU :

BU → U → BU × Z
BO:

BO → O → O/U → U/Sp→ BSp× Z→ Sp→ Sp/U → U/O → BO × Z.

For the real case to exhibit a two-periodic pattern, we would have had to have
ΩO ' BO × Z. In order to see what stops us from arriving at that conclusion,
let us take a closer look at the proof of lemma 5.3, and compare it to lemma
4.3. Recall that in lemma 4.3

A = πV ′ +
∑
i

µiπWi
,

X = πV +
∑
i

λiπVi .

The reason we were able to find an isomorphism between BU(ker(X − I)) and
p−1
W (X), was because we found that V ′ ⊆ ker(X− I) = V could be any complex

subspace of ker(X − I). However, this was not the case in lemma 5.3. Recall
that in lemma 5.3

A = iπV ′ − iπV ′′ +
∑
j

µjπWj
,
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X = πV +
∑
j

λjπVj ,

In order to get an isomorphism between BO(ker(X−I)) and p−1
W (X), we would

need that V ′ ⊆ ker(X − I)) = V could be any real subspace of ker(X − I).
However, we had the added constraint that µ and −µ had eigenspaces of equal
dimension. In particular, dim(V ′) = dim(V ′′), and since V ′ ⊕ V ′′ = V , we
had to have that dim(V ′) = 1

2 dim(V ). This means that V ′ could not be an

arbitrary real subspace of ker(X−I). Therefore p−1
W (X) could not be isomorphic

to BO(ker(X − I)), so we could not have ΩO ' BO × Z.
The fact that −µ and µ form a pair of eigenvalues with eigenspaces of equal

dimension for A ∈ o(W ) implies that the eigenvalues λ = −eπµ and λ = −eπ(−µ)

of X ∈ SO(W ) also form a pair of eigenvalues that has eigenspace of equal
dimension. This puts a constraint on the elements of the orthogonal group that
is not present in the unitary group, and can be seen as the cause of the added
complexity in the real case of Bott periodicity theorem in this particular proof.
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