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Abstract

In this thesis, we consider and compare two approaches for non-stationary spatial
modeling with Gaussian random fields (GRFs). The first is based on a stochastic
partial differential equation (SPDE) with a GRF as its solution. Through dis-
cretization, a computationally efficient Gaussian Markov random field (GMRF)
approximation is obtained. The non-stationary covariance structure is controlled
through the spatially varying coefficients of the SPDE. The R package R-INLA,
which is an implementation of the Integrated Nested Laplace Approximation
(INLA) framework, is used for performing inference and prediction. In the sec-
ond approach, the GRF is expressed as a convolution between spatially varying
kernel functions and Gaussian white noise, so that the non-stationary covariance
function is specified indirectly through the kernel functions. For this approach
we use the R package BayesNSGP, which is dedicated to non-stationary modeling
with the kernel-based method.

The SPDE- and kernel-based approaches are presented, and we describe sta-
tionary and non-stationary parametrizations. The non-stationarity is modeled
through regression on spatial covariates, resulting in an inflexible specification
of the covariance structure. The non-stationary SPDE model is implemented
in R-INLA, along with the parametrizations. The parametrizations used for the
kernel-based approach are not available in BayesNSGP, and are implemented man-
ually. We compare the two approaches both qualitatively and quantitatively. The
inferential properties and predictive power of the models are first investigated
through a simulation study, where the observed data is generated from a known
process. Afterwards, a case study is carried out with precipitation data from the
contiguous United States (CONUS).

The results from the simulation study indicate that there are situations where
one approach is more appropriate than the other. In particular, we consider a
situation were the approaches lead to qualitatively different covariance structures,
and demonstrate that the approach with the correct one performs better. Further,
when the observed data is generated from a non-stationary process, the stationary
models perform considerably worse than the non-stationary models. In the case
study, however, the differences between the stationary and non-stationary models
are less dramatic. The SPDE-based models lead to marginally better results, and
have considerably faster run-times than the corresponding kernel-based models.
While these results indicate that the SPDE-based approach should be preferred,
we suggest that more investigation is necessary before any reliable conclusions
can be made.
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Sammendrag

I denne oppgaven tar vi for oss to tilnærminger til ikke-stasjonær romlig model-
lering med gaussiske stokastiske felt (GRF-er), og sammenligner disse. Den første
tilnærmingen tar i bruk en stokastisk partiell differensialligning (SPDE), som har
en GRF som løsning. Ved å diskretisere likningen, får vi en beregningsmessig ef-
fektiv Gaussian Markov random field-tilnærming (GMRF). Den ikke-stasjonære
kovariansstrukturen kontrolleres gjennom de romlig varierende koeffisientene til
SPDE-en. Inferens og prediksjon utføres med R-pakka R-INLA, som er en imple-
mentasjon av Integrated Nested Laplace Approximation-rammeverket (INLA).
I den andre tilnærmingen uttrykkes GRF-en som en konvolusjon mellom rom-
lig varierende kernelfunksjoner og gaussisk hvit støy, som fører til at den ikke-
stasjonære kovariansfunksjonen er indirekte spesifisert gjennom kernelfunksjonene.
Her bruker vi R-pakka BayesNSGP, som er dedikert til ikke-stasjonær modellering
med den kernel-baserte tilnærmingen.

De SPDE- og kernel-baserte tilnærmingene presenteres, og vi beskriver stasjonære
og ikke-stasjonære parametriseringer. Ikke-stasjonæriteten modelleres gjennom
regresjon på romlige kovariater, som fører til en lite fleksibel spesifisering av kovar-
iansstrukturen. Den ikke-stasjonære SPDE-modellen og tilhørende parametris-
eringer implementeres i R-INLA. Parametriseringene som beskrives for den kernel-
baserte tilnærmingen er ikke tilgjengelige i BayesNSGP, og implementeres manuelt.
De to tilnærmingene sammenlignes både kvalitativt og kvantitativt. Modellenes
inferensegenskaper og prediktive evner undersøkes først gjennom et simulasjon-
sstudie, hvor de observerte dataene genereres fra en kjent prosess. Deretter ut-
fører vi et casestudie, hvor vi tar for oss nedbørsdata fra det kontinentale USA
(CONUS).

Resultatene fra simulasjonsstudiet indikerer at det finnes situasjoner hvor den
ene tilnærmingen er mer egnet enn den andre. Vi tar for oss en situasjon hvor de
to tilnærmingene fører til kvalitativt forskjellige kovariansstrukturer, og demon-
strerer at tilnærmingen med den riktige strukturen fører til bedre resultater.
Videre har de stasjonære modellene betraktelig dårligere resultater enn de ikke-
stasjonære, når de observerte dataene genereres fra en ikke-stasjonær prosess. I
casestudiet er derimot forskjellene mellom de stasjonære og ikke-stasjonære mod-
ellene mindre. De SPDE-baserte modellene fører til marginalt bedre resultater,
og har vesentlig kortere kjøretid enn de tilsvarende kernel-baserte modellene.
Mens disse resultatene indikerer at den SPDE-baserte tilnærmingen bør fore-
trekkes, foreslår vi at det må utføres mer utforskning før pålitelige konklusjoner
kan trekkes.
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Notation
In Table 1, we list notation and abbreviations used throughout the thesis.

Table 1: Notation and abbreviations used in thesis.

Notation or ab-
breviation

Meaning

f(·) Function of single variable or random field, depending on
context

K(·, ·) Function of two variables, also referred to as a kernel
u n-dimensional vector
A Matrix of dimension m× n
In Identity matrix of dimension n× n
1n n-dimensional vector of ones
Σ Covariance matrix/kernel matrix
Q Precision matrix
Nn(µ,Σ) n-dimensional Gaussian distribution with expected value

µ and covariance matrix Σ
p(·) A probability density function
p(· | ·) A conditional probability density function
1(·) The indicator function, which is equal to 1 when the

argument is true and 0 otherwise
GRF Gaussian random field
GMRF Gaussian Markov random field
CRPS Continuous ranked probability scoring
RMSE Root mean square error
PDF Probability density function
CDF Cumulative distribution function

Let u = (u1, . . . , un) ∈ Rn be a vector and A a subset of {1, . . . , n}. Then, the
vector uA is consists of the elements {ui : i ∈ A} in the same order as the original
vector. Similarly, u−A is the vector with the elements given by A removed. We
define the shorthand ua:b = u{a,...,b} for b ≥ a.
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Chapter 1

Introduction

The field of spatial statistics is concerned with the modeling of processes defined
over a region, typically in two or three dimensions. Examples of interesting spatial
processes are precipitation, temperature, and pressure. Finding accurate models
for these processes is crucial for many applications, which include predicting
and assessing climate change, and estimating the future output of hydropower
plants. It is important to ensure that the model is able to account for the spatial
dependencies inherent to the process of interest. This is typically done specifying
a model that includes a Gaussian random field (GRF) component, where the
residual dependency between any two locations is controlled through a covariance
function.

The GRFs applied in practice have mostly been limited to stationary covari-
ance functions, which depends only on the relative position of any two locations.
As a result, the covariance structure does not vary over the region of interest.
This is a strong assumption, which does not necessarily hold when considering
real data (Fuglstad et al., 2015b). While there is no such thing as a "true model"
when dealing with real data, some models can be considered more correct than
others. By letting the covariance structure vary spatially, we can, for example,
model processes where the range is spatially varying throughout the region, and
obtain correlation structures with varying sizes and shapes. In this way, we ob-
tain a more flexible model that can potentially account for the non-stationary
present in many spatial processes. At the same time, non-stationary modeling
is not straight-forward. Specifying a non-stationary covariance function is chal-
lenging, and the resulting model is more computationally expensive to estimate.
With the advent of powerful computers, the latter has become less of an issue,
and multiple approaches to non-stationary modeling have been proposed.

In Sampson and Guttorp (1992), a deformation-based method is introduced.

1



2 CHAPTER 1. INTRODUCTION

By deforming the region of interest and describing a stationary, isotropic GRF
on the deformed region, the GRF becomes non-stationary on the original region.
In this way, the method avoids the difficulty of specifying a valid non-stationary
covariance function. However, it requires that the process of interest has been
observed repeatedly, i.e., that multiple realizations are available. The kernel
convolution-based method for Gaussian modeling was first described in Higdon
et al. (1999). Essentially, any GRF can be expressed as a convolution between
a Gaussian white-noise process and a kernel function. If the shape of the kernel
varies over the region, then the resulting GRF becomes non-stationary. This
approach is also considered in Paciorek and Schervish (2006), where a conve-
nient formulation of the closed form covariance function is derived. Instead of
specifying the covariance function directly, the covariance structure is indirectly
determined by the kernel function. Lindgren et al. (2011) consider a stochastic
partial differential equation (SPDE) known to have a certain stationary GRF as
its solution. By discretizing the SPDE, a Gaussian Markov random field (GMRF)
approximation is obtained. This approximation has nice computational proper-
ties, and leads to a direct construction of the inverse of the covariance matrix.
By letting the coefficients of the SPDE vary spatially, the solution becomes non-
stationary. Extensions are described in Fuglstad et al. (2015b,a), where the shape
of the covariance structure is allowed to vary according to a vector field. The ap-
proach can also be used for modeling processes defined on a sphere, by replacing
the Euclidean distance with a metric tensor. This is done in Fuglstad and Cas-
truccio (2020), where SPDEs are used for compressing large climate simulation
models.

This thesis builds upon the work done in Isaksen (2019), which focuses solely
on non-stationary modeling with the SPDE approach. In this thesis, we focus on
both the SPDE- and kernel-based approaches, which lead to a local and global
specification of the covariance structure, respectively. The purpose of this thesis
is first and foremost to compare the approaches, and to investigate whether there
are situations where they lead to significantly different results. In addition, we are
interested in comparing the stationary and non-stationary models. This is done
both by conducting a simulation study, where both the spatial process and the
parameters controlling it are known in advance. A case study is also presented,
where precipitation data from the contiguous United States is considered. For
both studies, we compare the predictive performance of the models, and the
estimated covariance structures. Model inference and prediction is performed in
a Bayesian framework. For the SPDE-based models, inference is done with the
R package R-INLA, which is an implementation of the Integrated Nested Laplace
Approximations (INLA) methodology (Rue et al., 2009). The package BayesNSGP
(Risser and Turek, 2019) is dedicated to non-stationary modeling in the kernel-
based approach, and will therefore be used for kernel-based models.
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Non-stationary covariance structures can be modeled in a number of ways.
Two of the most popular approaches are to specify the functions describing the
non-stationarity either through regression on spatial covariates, or by a basis
function representation. The latter leads to a very flexible model, and allows for
the estimation of general covariance structures. At the same time, such a rep-
resentation requires many parameters, and leads to models that tend to capture
non-existent patterns in the data. The covariate-based representation, however,
is far more rigid, and can be described using comparatively few parameters. We
have chosen to model the non-stationarity through regression on covariates. Note
that the covariate-based parametrizations used in this thesis are not directly avail-
able in the aforementioned tools, and had to be implemented manually. In order
to do this, we first had to familiarize ourselves with the more technical aspects
of both R-INLA and BayesNSGP.

The thesis is structured as follows: Chapter 2 gives a brief review of the pre-
requisite material needed for the rest of the thesis. Chapter 3 introduces the
SPDE- and kernel-based approaches to non-stationary modeling, and describes
the covariate-based parametrizations. In Chapter 4 we define the model used
for inference and prediction in the subsequent chapters, followed by a descrip-
tion of the computational tools utilized. Chapter 5 focuses on the simulation
study, while Chapter 6 considers the case study where the models are applied
to real precipitation data. The thesis concludes with a combined discussion and
conclusion in Chapter 7.
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Chapter 2

Background

In this chapter we cover the preliminary theory needed later in the thesis. We
start by introducing an important class of stochastic processes called Gaussian
random fields (GRFs). Next, two approaches for efficient computations with
GRFs are described, namely Gaussian Markov random fields (GMRFs) and Vec-
chia approximations. Finally, we present the scoring rules used for comparing
the predictive performance of different models.

2.1 Gaussian random fields (GRFs)
A key characteristic of spatial processes such as surface temperature and atmo-
spheric pressure is that the value of the process tends to be more similar in nearby
locations than locations that are far apart. In the modeling of such processes, it
is therefore crucial to capture the dependencies between nearby locations. When
working in a regression framework, this is often done by specifying a model that
contains a random field component. Random fields can be defined in several
ways. For our purposes, it is a stochastic process {u(s) : s ∈ D} where the index
set D is a region of Euclidean space, i.e., D ⊂ Rd with d ≥ 1.

Assume that we are given m observations y1, . . . , ym of a spatial process,
observed at corresponding locations s1, . . . , sm. A typical model is obtained by
assuming that the observed value can be decomposed as yi = η(si) + εi for
i = 1, . . . ,m, where ε1, . . . , εm

iid∼ N (0, σ2
ε) are the measurement errors with

variance σ2
ε ≥ 0 and η(si) is the linear predictor

η(s) = µ+ x(s)Tβ + u(s), s ∈ D,

evaluated in si. Here µ ∈ R is the intercept, x(·) is a p-dimensional vector-
valued function providing covariates, and β ∈ Rp quantifies the fixed effect of

5



6 CHAPTER 2. BACKGROUND

the covariates. The last component, u(·), is a random field intended to capture
the residual spatial dependencies not explained by the spatial covariates. Due
to their theoretical and computational properties, GRFs are the most common
choice for u(·) in such models. Many processes can be argued to be approximately
Gaussian through the central limit theorem, making GRFs a convenient choice
for modeling. Further, most essential computations involving GRFs, including
prediction, reduce to simple linear algebra. A review of GRFs is found in Abra-
hamsen (1997), which is used as a reference for most of this section. We define
GRFs by considering finite-dimensional joint distributions.

Definition 2.1 (Gaussian random field (GRF)). Let D ∈ Rd for d ≥ 1. A
random field u(·) = {u(x) : x ∈ D} is said to be a Gaussian random field if
(u(x1), . . . , u(xm)) follows a multivariate Gaussian distribution for any configu-
ration of points x1, . . . ,xm ∈ D for any m ≥ 1.

We only work with GRFs on regions in Euclidean space, and therefore limit our
definition accordingly. However, it is also possible to define GRFs on more general
topological spaces, such as manifolds (Adler, 2004).

Let u(·) be a GRF on some region D ⊂ Rd with d ≥ 1. u(·) is then fully
specified by two components. The first is the mean function µ(·) : D → R,
defined by µ(x) = E[u(x)] for x ∈ D. The second is the covariance function
C(·, ·) : D2 → R, which is defined by C(x,y) = Cov(u(x), u(y)) for x,y ∈ D.
From C(·, ·) we can define the marginal standard deviation function σ(·) : D →
R⊕ given by σ(x) =

√
C(x,x) for x ∈ D. Combining these, we obtain the

correlation function R(·, ·) : D2 → [−1, 1]:

R(x,y) =
C(x,y)

σ(x)σ(y)
, x,y ∈ D.

While both C(·, ·) and R(·, ·) quantify the amount of dependence between the
value of the GRF in any two locations, R(·, ·) always takes on a value between −1
and 1, and does not depend on the marginal variance at each location. In general,
a correlation close to 1 in absolute value leads to a strong dependency, while
correlations close to 0 indicate independence. Note that we can write C(x,y) =
σ(x)σ(y)R(x,y) for x,y ∈ D, which allows us to describe the GRF through µ(·),
σ(·), and R(·, ·). In this way, µ(·) and σ(·) determine the distribution of u(s) for
any s ∈ D, while R(·, ·) alone determines the strength of the dependency between
u(x) and u(y) for x,y ∈ D.

The GRF u(·) is said to be stationary if µ(·) is a constant function (µ(x) = µ0

for all x ∈ D) and the covariance C(x,y) between any two locations x,y ∈ D
depends only on y − x. A GRF with a mean function identically equal to 0 is
said to be centered. If u(·) has the mean function µ(·), then the GRF w(·) defined
by w(x) = u(x) − µ(x) for x ∈ D is centered. Therefore, we can write u(x) =
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w(x) + µ(x) for all x ∈ D. In other words, any GRF can be written as a sum
of a centered GRF and a deterministic function. Since the mean structure can
be decoupled in this fashion, our focus is on centered GRFs and their covariance
structures.

By sampling u(·) at a finite set of locations x1, . . . ,xm ∈ D with m ≥ 1, we
obtain the vector u = (u(x1), . . . , u(xm)). Since u is jointly Gaussian, any linear
combination αTu with α ∈ Rm is also Gaussian. This implies that Var(αTu) =
αTΣα ≥ 0, where Σ is the covariance matrix of u. The covariance function
C(·, ·) must, therefore, be what is called a positive definite function.

Definition 2.2. Let D ⊂ Rd. A kernel K(·, ·) : D2 → R or function f(·) : Rd →
R is said to be positive definite if

n∑
i=1

n∑
j=1

αiαjK(xi,xj) ≥ 0 or
n∑
i=1

n∑
j=1

αiαjf(xi − xj) ≥ 0,

for any configuration of points x1, . . . ,xm ∈ D and weights (α1, . . . , αm) ∈ Rn
for any m ≥ 1.

Note that this definition has an inclusive inequality. This differs from the
definition of a positive definite matrix A ∈ Rn×n, where we require that xTAx >
0 for all x ∈ Rn with ‖x‖ 6= 0.

For what follows, c(·) : [0,∞)→ R is a positive definite function. A stationary
covariance function C(·, ·) is said to be isotropic if it only depends on the distance
between x and y. We can then write C(x,y) = c(‖y−x‖) for any x,y ∈ D. Any
stationary C(·, ·) that can not be expressed on this form is said to be anisotropic.
Anisotropy is usually divided into two categories: zonal and geometric. We
consider only the latter.

In order to define geometric anisotropy, we introduce a modification of the
Euclidean norm. If x,y ∈ Rd and S is a d× d positive definite matrix, then the
Mahalanobis distance between x and y with respect to S is

h(x,y) =
√

(x− y)TS−1(x− y).

We define C(·, ·) to be a geometrically anisotropic covariance function if it can be
expressed as C(x,y) = c(h(x,y)) for all x,y ∈ D, where h(·, ·) is a Mahalanobis
distance function. For the special case where S is a multiple of the identity matrix,
h(·, ·) is proportional to the Euclidean norm and C(·, ·) is isotropic. Otherwise,
the covariance between u(x) and u(y) depends not only on the distance between
x and y, but also on the direction of y − x. A covariance function that cannot
be expressed as a function of y − x is said to be non-stationary.
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When D ⊂ R2, the isocovariance curve of C(·, ·) with respect to some point
x ∈ D and level α, is the set of points y ∈ D with C(x,y) = α. These isocovari-
ance curves correspond to the level curves of the map y 7→ C(x,y) for y ∈ D.
When C(·, ·) is geometrically anisotropic, these curves have a known shape.

Theorem 2.1. Let D ⊂ R2 and x ∈ D be fixed. If C(·, ·) : D2 → R is a
geometrically anisotropic covariance function, then the level curves of the map
γ(·) : y 7→ C(x,y) for y ∈ D are ellipses centered in x.

Proof. Define C(x,y) = c(h(x,y)) as above, and let τ = y − x for some y ∈ D.
We can then write h(x,y)2 = τTS−1τ . Let (λ1,v1) and (λ2,v2) be the eigenpairs
of S, with λ1 ≥ λ2 and ‖v1‖ = ‖v2‖ = 1. Since S is positive definite, the
eigenvectors form an orthonormal basis for R2. While S and S−1 have the same
eigenvectors, the eigenvalue of S−1 corresponding to vi is 1/λi. Using this, we
can decompose τ as τ = α1v1 + α2v2, which leads to

τTS−1τ = τT(α1v1/λ1 + α2v2/λ2) =
α2
1

λ1
+
α2
2

λ2
.

The equation h(x,y) = c for c > 0, which corresponds to a level curve of γ(·),
then defines an ellipse in the coordinate system with x as origin and axes given
by the unit vectors v1 and v2. In general, λ1 > λ2 produces an ellipse with major
axis of length c

√
λ1 along v1 and minor axis of length c

√
λ2 along v2, while the

case λ1 = λ2 = λ reduces to a circle with radius c
√
λ.

An isocorrelation curve is defined in an analogous way, using the correlation
function instead of the covariance function. Note that for a stationary covariance
function C(·, ·), we have C(x,y) = σ2R(x,y) for any x,y ∈ D, where σ2 > 0 is
the marginal variance and R(·, ·) is the correlation function. The isocovariance
curve at level α is the same as the isocorrelation curve at level α/σ2.

In the isotropic and geometrically anisotropic cases, there are many valid
choices for the positive definite function c(·). Among the most popular is the
Matérn covariance function, which is defined as

c(h) =Mν(h) =
σ2

Γ(ν)2ν−1

(
h

φ

)ν
Kν

(
h

φ

)
, h ≥ 0, (2.1)

where h is the distance, σ2 > 0 is the marginal variance, ν > 0 specifies the
smoothness, and φ > 0 controls the range. Kν(·) is the modified Bessel function
of second kind, order ν. Smoothness in this case refers to the differentiability
of realizations in the mean square sense. A smoothness ν results in a GRF
with realizations that are dνe − 1 times differentiable. The range parameter φ
determines the "range" of the GRF, i.e., the distance at which two locations
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become practically independent. A useful quantity is the effective range, which
is given by the empirically obtained relation ρ =

√
8νφ. For ν ≥ 1/2, ρ is the

distance at which the correlation is approximately 0.14 (Lindgren et al., 2011).
Two often used covariance functions are contained in the Matérn class. When

ν = 1/2, the function simplifies to c(h) = σ2 exp (−h/φ), which is the exponential
covariance function. The resulting GRF is continuous but not differentiable,
leading to realizations that are non-smooth in nature. As ν → ∞ we have
that c(h) → σ2 exp

(
−h2/(2φ2)

)
, which is the Gaussian covariance function. In

contrast to the exponential, the obtained GRF is infinitely differentiable, which
results in smooth realizations.

In Figure 2.1, we show three covariance functions, namely the exponential,
Gaussian, and Matérn with ν = 1. For each function the marginal variance σ2 is
1, and the range φ is chosen so that the correlation is 0.14 at a distance of 0.5.
We define a one-dimensional centered GRF u(·) = {u(s) : s ∈ [0, 1]} based on
each covariance function, and generate a single realization. The realization from
the Gaussian covariance function is very smooth, while the exponential leads to a
realization that is jagged and seemingly non-differentiable. The realization from
the Matérn with ν = 1 is somewhere in between, as it is less jagged than the
exponential, but not as smooth as the Gaussian.

While most operations involving GRFs reduce to linear algebra and are easy
to perform in theory, both the computation time and storage space complex-
ity of these computations quickly become intractable. For example, if u =
(u(x1), . . . , u(xm)) is the value of some GRF u(·) = {u(x) : x ∈ D} sampled
in m locations x1, . . . ,xm ∈ D, then the probability density function (PDF) of
u is given by

p(u) =
1

(2π)n/2 |Σ|1/2
exp

[
−1

2
(u− µ)TΣ−1(u− µ)

]
, u ∈ Rn, (2.2)

which is the density function of the n-dimensional multivariate Gaussian distri-
bution with expected value µ = E[u] and covariance matrix Σ = Cov(u). As
Σ is an n × n matrix, the computation time for constructing it and the space
needed to store it are both O(n2). Computing the inverse Σ−1 and determinant
|Σ| is even more expensive, as both operations have a computational complex-
ity of O(n3). If Σ−1 has been computed, then predicting the value of u(·) in k
unobserved locations has a computational complexity of O(kn2 + nk2).

As a result, computations with GRFs become prohibitively expensive for large
n, leading to the big n problem. In the following two sections, we discuss two
approximations that reduce both the computational costs and storage needs as-
sociated with GRFs.
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Figure 2.1: The left plot shows the Matérn covariance function for ν = 0.5 ( ),
ν = 1 ( ), and ν =∞ ( ). The marginal variance σ2 is 1, and the range φ is
chosen so that the correlation is 0.14 for a distance of 0.5. Based on each of the
covariance functions, we define a one-dimensional centered GRF on the interval
[0, 1]. In the right plot we show a realization from each of the GRFs, using a
regular grid of size 1000.
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2.2 Gaussian Markov random fields (GMRFs)
The PDF of the multivariate Gaussian distribution in Equation (2.2) depends
on the inverse of the covariance matrix, Σ−1. This matrix is referred to as the
precision matrix, and is usually denoted by Q. The precision matrix and its
properties motivate the definition of Gaussian Markov random fields (GMRFs),
which are described in this section. A comprehensive description of GMRFs and
their applications is found in Rue and Held (2005). Before defining GMRFs, we
introduce two necessary concepts.

Let X, Y and Z be random variables. X and Y are said to be conditionally
independent given Z if p(x, y|z) = p(x|z)p(y|z), where p(·|·) is the conditional
probability density function of its arguments. This is denoted by X ⊥ Y | Z.
The following theorem connects conditional independence to the precision matrix.

Theorem 2.2. Let v ∼ Nn(µ,Q−1) and v−ij be v with the elements at indices i
and j removed. Then, for i 6= j, vi is conditionally independent of vj given v−ij
if and only if Qij = 0,

Qij = 0⇐⇒ vi ⊥ vj | v−ij .

Proof. See Section 2.2 in Rue and Held (2005).

A labeled graph G consists of the pair (V, E), where V = {1, 2, . . . , n} is the set
of vertices and E is the set of edges. In an undirected graph, elements i, j ∈ V are
connected to each other if {i, j} ∈ E . Since we are only going to use undirected
graphs, the term "graph" means "undirected graph" for the rest of the thesis.
The defintion of GMRFs links the conditional independence structure of Q to a
labeled graph G.

Definition 2.3 (Gaussian Markov random field (GMRF)). Let v be an n-
dimensional Gaussian vector with mean vector µ and precision matrix Q, and let
G = (V, E) be a labeled graph with vertices V = {1, . . . , n} and edges E . Then v
is said to be a Gaussian Markov random field with respect to G if

Qij 6= 0⇐⇒ {i, j} ∈ E

for all i 6= j. The PDF of v is

p(v) =
|Q|1/2

(2π)n/2
exp

[
−1

2
(v − µ)TQ(v − µ)

]
, v ∈ Rn.

The graph G reflects the conditional independence structure of the GMRF.
The condition

vi ⊥ vj | v−ij ⇐⇒ {i, j} ∈ V
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is called the pairwise Markov property. This property is equivalent to two other
properties, which are listed in Theorem 2.3. Before stating the theorem, we need
to introduce the concept of separating sets. Let G = (V, E) be a graph, and let
A,B,C ⊂ V be disjoint sets of vertices. C is said to separate A and B if any
path from an element in A to an element in B has to visit an element of C.

Theorem 2.3. An n-dimensional GMRF v with graph G = (V, E) will, in ad-
dition to the pairwise Markov property, always satisfy the following properties,
which are all equivalent to each other:

• The local Markov property: For any i ∈ V,

vi ⊥ v−{i,ne(i)} | vne(i)

where ne(i) are the neighbors of vertex i, i.e., ne(i) = {j : {i, j} ∈ E}.

• The global Markov property: If A, B and C are disjoint subsets of V such
that C separates A and B, then

vA ⊥ vB | vC ,

as long as both A and B are non-empty.

Proof. See Section 2.2 in Rue and Held (2005).

The three properties are illustrated in Figure 2.2, where a GMRF v = (v1, . . . , v9)
is represented by its graph structure.

Since no limitations are put on the graph G, any Gaussian vector is a GMRF
with respect to the graph implied by its precision matrix. However, the bene-
fits of the GMRF formulation are attained when the precision matrix is sparse.
A matrix is said to be sparse when the number of non-zero elements is small
in comparison to the total number of elements. Sparse matrices can be stored
by specifying the positions and values of only the non-zero elements, which is
considerably cheaper than storing the entire matrix. They also allow for signifi-
cantly faster computation of many important numerical linear algebra operations,
such as solving linear systems and computing the Cholesky decomposition. See
Isaksen (2019) for a discussion of these. In general, computing the Cholesky de-
composition of an n×n precision matrix Q has a time complexity of O(n3). For
temporal, spatial, and spatio-temporal GMRFs, this is reduced to O(n), O(n1.5),
and O(n2), respectively (Rue and Held, 2005, Section 2.3). Note that the con-
nection between Q and G allows us to take advantage of theory and algorithms
regarding graphs, for computations involving Q.
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(a) Pairwise (b) Local (c) Global

Figure 2.2: Illustrations of Markov properties described in Theorem 2.3. Gray
nodes represent the elements that are being conditioned upon, while the elements
under consideration are black. The remaining elements are shown as white nodes.
(a) The pairwise Markov property guarantees that the black nodes are condition-
ally independent given the gray nodes. (b) By the local Markov property, the
black node is conditionally independent of the white nodes given its gray neighbor
nodes. (c) Due to the global Markov property, the two groups of black nodes are
conditionally independent given the gray nodes, since the gray nodes separate
the groups.

From a more practical aspect, the usefulness of GMRFs rests on the precision
matrix Q being sparse and possible to compute in reasonable time. Say, for
example, that Q can only be obtained by inverting the dense covariance matrix
Σ. Then the computational cost of the inversion becomes a bottleneck. Gaussian
models that lead to a closed form specification of a sparse precision matrix are
therefore particularly attractive. Examples are auto-regressive (AR) processes,
the BYM model (Besag et al., 1991), and the SPDE-based GRF approximation
outlined in Lindgren et al. (2011). The latter is described in Chapter 3.

2.3 Vecchia approximations

While GMRFs allow for efficient computation, there are many situations where
the precision matrix is not easily obtainable, and we must construct the covari-
ance matrix directly. One way to reduce the computational cost is through some-
thing called a Vecchia approximation, first described in Vecchia (1988). Before
introducing the Vecchia approximation, we give some motivation.

Let y = (y1, . . . , ym) be an n-dimensional Gaussian vector with PDF p(·).
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Then, p(·) can always be factored as

p(y) = p(y1)

m∏
i=2

p(yi | y1:(i−1)).

The vector subscript notation is described in Notation, and is used throughout
this section. This form does not offer any computational advantages. For each
i = 2, . . . ,m, obtaining the factor p(yi | y1:(i−1)) involves computing the inverse
of an (i − 1) × (i − 1) matrix, which becomes a bottleneck for large i. We can
make this more efficient by, instead of conditioning on all preceding variables,
conditioning only on a subset. By replacing the conditioning vector y1:(i−1) with
a subvector yq(i) such that q(i) ⊂ {1, . . . , i− 1}, the resulting approximation is

p(y) ≈ p̂(y) = p(y1)

m∏
i=2

p(yi | yq(i)). (2.3)

A Markov assumption is made, as we assume that yi is conditionally indepen-
dent of the preceding elements not in q(i), given those in q(i). The approximation
depends both on the ordering of y and how the conditioning sets q(i) are chosen.
If we ensure that |q(i)| ≤ k for each i, then the computation of this approximation
involves inverting matrices of size k × k or smaller.

A popular way to do this is the AR(k) model. For each i, q(i) is chosen to be
the, at most, k indices directly preceding i,

q(i) =

{
{1, . . . , i− 1}, if i < k,

{i− k, . . . , i− 1}, if i ≥ k.

Among the previous values, yq(i) consists of the min{i−1, k} that are the closest
to yi in index. This is a sensible approach when the elements of y are, for example,
indexed by time and ordered accordingly. However, when dealing with spatially
observed data, we can choose the conditioning vector in a more appropriate way.

Vecchia (1988) considers the case where the vector y = (y1, . . . , ym) contains
observations of the spatial process y(·) over a region D ⊂ R2, so that yi = y(si)
with si ∈ D. This is then modeled as

yi = µ+ xT
i β + ui + εi, i = 1, . . . ,m,

where µ ∈ R is the intercept, xi ∈ Rp contains spatial covariates at si, β ∈ Rp
quantifies the linear effect of the covariates, ui is the value of a GRF u(·) evaluated
at si, and ε1, . . . , εm

iid∼ N (0, σ2
ε) are the measurement errors. In this context,

conditioning on all preceding data seems excessive, as the observations made close
to yi are usually much more important for determining its value than those made
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Figure 2.3: (a) 50 locations in [0, 1]2. (b) Demonstration of conditioning loca-
tions with the Vecchia approximation, using k = 5 and ordering by increasing
x-coordinate.

far away. Therefore, the conditioning set q(i) is chosen by using the min{i−1, k}
earlier indexed observations closest to yi in location. In other words, the locations
sj for j ∈ q(i) are those among {sj : j ∈ {1, . . . , i−1}} that minimize the ordinary
Euclidean distance ‖si− sj‖. The approximation in Equation (2.3) also depends
on the ordering of y. Vecchia (1988) suggests ordering by increasing x- or y-
coordinate. This is discussed in Guinness (2018), where more technical ordering
schemes are shown to lead to better results.

Figure 2.3a shows an example of 50 observations locations with D = [0, 1]2.
We order the locations by increasing x-coordinate, let k = 5, and consider the
blue location s. In Figure 2.3b, the locations preceding s in index are those to
the left of the black line. Among these, the 5 closest to s are colored red. The
locations to the right of the line cannot be conditioned upon, and are colored
grey.

2.4 Scoring rules for predictions

In order to evaluate and compare the predictive performance of different models,
we need some way to quantify how good point predictions and predictive distribu-
tions are compared to observed values. We are interested in predicting the value
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of X | data, i.e., a random variable X conditioned on observed data. While a
point prediction x̂ of X | data consists of a single value, a predictive distribution
density function f̂(·) specifies a predictive probability distribution for X | data.
This allows for the uncertainty of the prediction to be accounted for.

Point predictions are evaluated using the root mean square error (RMSE).
Given a vector of predictions x̂ = (x̂1, . . . , x̂n) ∈ Rn and observed values x =
(x1, . . . , xn) ∈ Rn, the RMSE of the predicted values is defined as

RMSE(x̂,x) =

√√√√ 1

n

n∑
i=1

(x̂i − xi)2.

When comparing two models, the model with the lowest RMSE is preferred. Since
the RMSE depends on the square of the deviations, it is sensitive to outliers.

Predictive distributions are evaluated using the continuous ranked probability
score (CRPS), which is described in Gneiting and Raftery (2007). For a predictive
distribution f̂(·) with corresponding CDF F̂ (·) and observed value x, the CRPS
of the predictive distribution is defined to be

CRPS(F̂ (·), x) =

∫ ∞
−∞

(F̂ (z)− 1(x ≤ z))2dz,

where 1(·) is the indicator function: 1(x ≤ z) = 1 if x ≤ z and 0 otherwise. Like
the RMSE, a lower value of the CRPS is preferred. For prediction of multiple
random variables X = (X1 . . . , Xn), let F̂i(·) be the predictive CDF of Xi | data
and xi be the observed value. The mean CRPS of the predictive distributions is
then

CRPS =
1

n

n∑
i=1

CRPS(F̂i(·), xi).

In the context where a predictive distribution f̂(·) is available and a point pre-
diction is needed, the predictive mean x̂ =

∫
xf̂(x) dx is a common choice.

The CRPS is a proper scoring rule, while the RMSE is not. In this context,
this means that the CRPS will, on average, prefer the true model that the data
was generated from. The RMSE, on the other hand, will prefer the model that
gives predictive means closest to the true observed values. This is illustrated in
Figure 2.4. In each plot, a possible predictive distribution density function of
X | data is plotted in blue. The left density f̂1(·) is Gaussian with µ = 0.9 and
σ = 0.1, while the right density f̂2(·) is Gaussian with µ = 1 and σ = 1.2. The
predicted means x̂1 = 0.9 and x̂2 = 1 are shown as dashed red lines. Finally, the
observed value x = 0 is shown as a solid black line. The RMSEs are RMSE1 =√

(0.9− 0)2 = 0.9 and RMSE2 =
√

(1− 0)2 = 1, while the CRPS values are
CRPS1 = 0.844 and CRPS2 = 0.595.
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Figure 2.4: Prediction distributions of a random variable X | data. Both plots
show Gaussian densities ( ), with µ = 0.9 and σ = 0.1 in the left, and µ = 1
and σ = 1.2 in the right. The predictive means ( ) and the observed value
x = 0 ( ) are also shown.

Based on the RMSE, the first prediction is better. However, the predictive
distribution f̂1(·) is very sharp and fails to explain the observed value. This is
accounted for with the CRPS. While the predictive mean x̂2 misses by more than
x̂1, the higher uncertainty of f̂2(·) captures the observed value, which leads to a
lower CRPS.
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Chapter 3

Beyond stationarity

When modeling real-life processes, the assumption of stationarity in the covari-
ance function is unrealistic, as it requires that the dependence structure is the
same throughout the region of interest. With a non-stationary covariance struc-
ture, we can let properties such as range and marginal variance be spatially
varying, leading to a model that is more flexible. However, given only a single
realization of the observed data, it is, in general, not possible to identify and
separate the covariance structure from the mean structure (Gelfand et al., 2010,
page 30). As a result, patterns in the data that are best explained by the mean
structure, might instead be captured by the covariance structure. It is, neverthe-
less, possible that models with well-specified non-stationary covariance structures
lead to better predictions.

In this chapter, we introduce two approaches for specifying GRFs with non-
stationary covariance functions. First, we describe a method based on a stochas-
tic partial differential equation (SPDE), where the covariance structure is deter-
mined indirectly from spatially varying coefficients. Second, we present a kernel
convolution-based method, where the covariance structure is indirectly specified
on a closed form by spatially varying kernel functions.

3.1 Stochastic partial differential equations

3.1.1 Specifying covariance structure

SPDEs are partial differential equations characterized by the introduction of
stochastic terms and coefficients. Our focus is on the SPDE(

κ2 −∆
)

(τu(s)) =W(s), s ∈ R2, (3.1)

19
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which was first considered in Whittle (1954), and later connected to GMRFs in
Lindgren et al. (2011). Here ∆ = ∇ · ∇ is the Laplace operator and κ, τ > 0
are constants. On the right-hand side we have a spatial standard Gaussian white
noise processW(·). It is characterized by

∫
A
W(s) ds ∼ N (0, |A|) for measurable

a A ⊂ R2, and the fact that(∫
A1

W(s) ds, . . . ,

∫
An

W(s) ds

)
is multivariate Gaussian for measurable A1, . . . , An ⊂ R2 with n ≥ 1. The
stationary solution of SPDE (3.1) is a GRF with a Matérn covariance function,

C(s1, s2) = Cov(u(s1), u(s2)) =
1

4πκ2τ2
(κ‖s1−s2‖)K1(κ‖s1−s2‖), s1, s2 ∈ R2.

By comparison with Equation (2.1) we see that the smoothness is 1 and the range
is 1/κ, leading to an effective range of

√
8/κ. The marginal variance is equal to

1/(4πκ2τ2), and decreases with both κ and τ . Further, the covariance function
is isotropic, as it only depends on the distance between any two locations.

In Fuglstad et al. (2015a,b), a positive definite 2 × 2 matrix H is used to
modify the Laplacian, leading to the SPDE(

κ2 −∇ ·H∇
)

(τu(s)) =W(s), s ∈ R2. (3.2)

The stationary solution to this SPDE is a GRF where the covariance between
the locations s1, s2 ∈ R2 is given by (Fuglstad et al., 2015b)

C(s1, s2) =
1

4πκ2τ2 |H|1/2
(κ‖H−1/2 (s1 − s2)‖)K1(κ‖H−1/2 (s1 − s2)‖). (3.3)

Since ‖H−1/2(s1 − s2)‖ is the Mahalanobis distance between s1 and s2 with
respect to H, the solution exhibits geometric anisotropy.

Let (λ1, q1) and (λ2, q2) be eigenpairs of H satisfying λ1 ≥ λ2 and ‖q1‖ =
‖q2‖ = 1. Note that H being positive definite implies that q1 and q2 are or-
thogonal. We let q1 be in the upper half-plane and q2 be q1 rotated 90 degrees
counter-clockwise. The special case H = I2 corresponds to SPDE (3.1), where
the effective range is

√
8/κ in every direction. By combining this with Theorem

2.1, which tells us that the range along the direction of qi scales with
√
λi, we

get the longest and shortest effective ranges

ρ1 =

√
8

κ

√
λ1 and ρ2 =

√
8

κ

√
λ2 (3.4)

in the direction of q1 and q2, respectively. The strength of the anisotropy, which
is the ratio between the longest and shortest range, is equal to the ratio

√
λ1/λ2.
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From Equation (3.3), we see that the marginal variance of the solution is

σ2 =
1

4πκ2τ2 |H|1/2
=

1

4πκ2τ2
√
λ1λ2

, (3.5)

which depends on H in addition to κ and τ .
If we define τ̂ = τ/κ2 and Ĥ = H/κ2, then SPDE (3.2) can be expressed as(

1−∇ · Ĥ∇
)

(τ̂u(s)) =W(s), s ∈ R2.

Using all three parameters therefore leads to overparametrization, which is avoided
by fixing κ = 1 or τ = 1. In this thesis, we fix the value of κ, so that H alone
determines the correlation structure.

Both of the SPDEs described so far lead to stationary GRFs. In Lindgren
et al. (2011) and Fuglstad et al. (2015a) non-stationarity is introduced by letting
the coefficients vary spatially. This leads to the SPDE(

κ2(s)−∇ ·H(s)∇
)

(τ(s)u(s)) =W(s), s ∈ R2, (3.6)

where, for all s ∈ R2, H(s) is positive definite 2×2 matrix, κ(s) > 0, and τ(s) >
0. For s ∈ R2 we define (λ1(s), q1(s)) and (λ2(s), q2(s)) to be the eigenpairs of
H(s), with λ1(s) ≥ λ2(s), ‖q1(s)‖ = ‖q2(s)‖ = 1, q1(s) in the upper half-plane,
and q2(s) obtained by rotating q1(s) 90 degrees counter-clockwise.

The connection between the spatially varying coefficients and the resulting
GRF are investigated in Fuglstad et al. (2015a) and Isaksen (2019). Even though
Equations (3.4) and (3.5) only hold for constant coefficients, they comply well
with the qualitative results: the correlation structure tends to have longer ranges
in the direction of q1(·), and shorter in the direction of q2(·). In regions where κ(·)
is large, the range is short, while a smaller κ(·) leads to longer ranges. Further,
the marginal variance decreases for increasing values of κ(·) and |H(·)|.

Based on these observations, for each s ∈ R2 we suggest the approximations

ρ1(s) =

√
8

κ(s)

√
λ1(s) and ρ2(s) =

√
8

κ(s)

√
λ2(s) (3.7)

for the effective ranges in direction q1(s) and q2(s), and

σ̃2(s) =
1

4πκ2(s)τ2(s) |H(s)|1/2
=

1

4πκ2(s)τ2(s)
√
λ1(s)λ2(s)

(3.8)

for the marginal variance. The function ρ2(·) is referred to as the baseline effective
range function. These approximations are only appropriate when κ(·), τ(·) and
the elements of H(·) are slowly varying functions of s. Similar approximations
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are suggested in Section 6.5 of Blangiardo and Cameletti (2015) and in Marques
et al. (2019), where κ(·) and τ(·) are allowed to vary spatially. While we still use
the term "range" for non-stationary GRFs, it does not translate directly from the
stationary case. For stationary GRFs, the range is a global property that holds
over the entire region of interest. In a non-stationary GRF, the dependence
structures can vary throughout the region, leading to different ranges depending
on both location and direction (Fuglstad et al., 2015b). The functions ρ1(·) and
ρ2(·) should therefore not be interpreted as direct approximations of the longest
and shortest effective ranges in each location, which ρ1 and ρ2 represent in the
stationary case. However, they give a qualitative idea of how the shape of the
dependence structure varies throughout the region.

Analogous to the stationary case, describing SPDE (3.6) using all three of the
functions H(·), κ(·), and τ(·) leads to overparametrization. The overparametriza-
tion can be avoided by fixing κ(s) ≡ 1 or τ(s) ≡ 1 for all s ∈ R2. Later, in Section
3.1.5, we describe parametrizations for both alternatives.

3.1.2 Parametrization of H(·)
When specifying H(·), we need to ensure that both eigenvalues are positive for
all s ∈ R2. This can be achieved by decomposing H(·) into two components:

H(s) = γ(s)
(
I2 +w(s)w(s)T

)
, s ∈ R2, (3.9)

where γ(s) > 0 for all s ∈ R2 and w(·) = (wx(·), wy(·)) is a vector field. This
is similar to the decomposition used in Fuglstad and Castruccio (2020). The
eigenvalues of H(s) are λ1(s) = γ(s)(1 + ‖w(s)‖2) and λ2(s) = γ(s), with
corresponding eigenvectors chosen to be q1(s) = (wx(s), wy(s)) and q2(s) =
(−wy(s), wx(s)). The interpretation of each component is best understood by
first considering a special case.

When each coefficient is constant, i.e., τ(s) ≡ τ0, κ(s) ≡ κ0, γ(s) ≡ γ0 and
w(s) ≡ w0 for all s ∈ R2, SPDE (3.2) with a stationary solution is obtained.
The effective ranges and marginal variance are then

ρ1 =

√
8

κ0

√
γ0(1 + ‖w0‖2), ρ2 =

√
8

κ0

√
γ0, and σ2 =

1

4πκ20τ
2
0 γ
√

1 + ‖w0‖2
,

and the direction of maximum range is given by w0. We see that γ0 controls the
baseline effective range, i.e., the effective range without any anisotropy present.
The strength of the additional anisotropy is specified by ‖w0‖.

Based on this, we get a qualitative idea of how the spatially varying coeffi-
cients affect the solution. In each location, the scalar function γ(·) quantifies the
baseline isotropic effect, while w(·) = (wx(·), wy(·)) specifies the direction and
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magnitude of the local additional anisotropy. The resulting GRF can be thought
of as "different Matérn like fields locally each with its own anisotropy that are
combined into a full process" (Fuglstad et al., 2015a). Using this decomposition,
the approximate effective range functions are

ρ1(s) =

√
8

κ(s)

√
γ(s)(1 + ‖w(s)‖2) and ρ2(s) =

√
8

κ(s)

√
γ(s),

and the approximate marginal variance function is

σ̃2(s) =
1

4πκ2(s)τ2(s)γ(s)
√

1 + ‖w(s)‖2
.

In Fuglstad et al. (2015a,b), H(·) is decomposed as

H(s) = γ(s)I2 + v(s)v(s)T, s ∈ R2,

where v(·) = (vx(·), vy(·)). This is equivalent to Equation (3.9) with w(·) =

v(·)/
√
γ(·). While γ(·) controls the baseline isotropic effect as before, v(·) quan-

tifies the absolute size of the local additional anisotropy. This is opposed to
w(·), which specifies the relative size of the additional anisotropy. The eigen-
values of H(s) under this parametrization are λ1(s) = γ(s) + ‖v(s)‖2 and
λ2(s) = γ(s), with accompanying eigenvectors q1(s) = (vx(s), vy(s)) and q2(s) =
(−vy(s), vx(s)).

In the absolute parametrization, the strength of the anisostropy, i.e., the ratio
between the longest and shortest range, depends on both γ(·) and v(·). With the
relative parametrization, it depends only on w(·). Due to this separation, the
function w(·), and the effect it has on the SPDE, is easier to interpret than v(·).
Therefore, for the rest of this thesis, we use only the relative parametrization.

3.1.3 Role of τ(·)
We illustrate how the function τ(·) affects the solution. Consider the SPDE(

κ2(s)−∇ ·H(s)∇
)
û(s) =W(s), s ∈ R2,

which is investigated in Isaksen (2019). It is a special case of SPDE (3.6) with
τ(s) ≡ 1 for s ∈ R2. However, the solution u(·) to SPDE (3.6) can also be
obtained from û(·), by defining u(·) = û(·)/τ(·). From this we see that the
introduction of τ(·) rescales the solution in each location, and that the variance
is scaled by τ(·):

Var(u(s)) =
1

τ2(s)
Var(û(s)), s ∈ R2.
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Further, for any s1, s2 ∈ R2, we have that

Corr(û(s1), û(s2)) =
Cov(û(s1), û(s2))

SD(û(s1))SD(û(s2))

=
τ(s1)τ(s2)Cov(u(s1), u(s2))

τ(s1)SD(u(s1))τ(s2)SD(u(s2))

= Corr(u(s1), u(s2)),

where SD(·) is the standard deviation of its argument. This means that the
correlation structure is unaffected by the choice of τ(·).

3.1.4 Discretization
In order to use SPDE (3.6) in a computational framework, a discrete representa-
tion of the solution is derived. This can be done in multiple ways. In Lindgren
et al. (2011) a finite element representation is used, with Gaussian weights and
piecewise linear basis functions. The solution is constructed on a mesh obtained
by Delaunay triangulation, and is required to have a zero normal derivative along
the boundary. This is known as a Neumann boundary condition. The use of tri-
angulation makes it possible to represent arbitrarily shaped regions in R2 with
irregularly observed locations. The resolution can also vary throughout the re-
gion, which allows for a finer level of detail where this is needed.

Fuglstad et al. (2015a) propose a discretization based on finite volume meth-
ods. For practial reasons, the area of interest is required to be rectangular,
and the solution is approximated on a regular grid of rectangular cells. Along
the boundary, periodic conditions are used. We used this representation in the
project work described in Isaksen (2019), and we continue using it in this thesis.
While the representation was described in the project thesis, we provide a brief
summary. For a more technical derivation of the approximation, see Fuglstad
et al. (2015a).

The SPDE of interest is(
κ2(s)−∇ ·H(s)∇

)
(τ(s)u(s)) =W(s), s ∈ D,

where D = [A,B]×[C,D] is a rectangular subdomain of R2 for B > A andD > C,
and the solution u(·) is assumed to be periodic along the vertical and horizontal
boundaries. We divide D into a regular grid of rectangular cells with nx and ny
cells in the x- and y-direction, respectively, resulting in a grid size of n = nxny.
The width and height of each cell is hx = (B − A)/nx and hy = (D − C)/ny,
respectively.

Define E1,1 to be the lower left grid cell, so that Ei,j is the grid cell in row i
and column j. The center of Ei,j is called si,j . Figure 3.1a shows an example of



3.1. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 25

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

E1, 1
C

D

A B

x

y

(a) (b)

Figure 3.1: (a) A regular 10× 10 grid on the rectangle [A,B]× [C,D], with cen-
troids shown as blue points. (b) Demonstration of the conditional independence
properties of u. The value in the black grid cell is conditionally independent of
the white grid cells, given the grey grid cells.

a grid, where nx = ny = 10 and the centroids si,j are shown as blue points. We
denote by ui,j the approximation to u(si,j), which is equal to the average value of
u(·) over Ei,j . By starting at u1,1 and stacking the values of ui,j row-wise into the
a vector, i.e., u = (u1,1, . . . , u1,nx , u2,1, . . . , unx,ny ), the resulting approximation
satisfies Bu = z. Here, B ∈ Rn×n is the coefficient matrix of the system, and
z ∼ Nn(0, In). Solving for u, we obtain

u ∼ Nnxny (0,Q−1).

This makes u a multivariate Gaussian vector with expected value 0 and precision
matrix Q = BTB, which depends on τ(·), κ(·), H(·), and the area of the grid cells.

Due to the local nature of differential operators, Q has at most 25 non-zero
elements per row. Using a grid of size of nx = ny = 150, only 0.1% of its
elements are non-zero. This sparsity makes it useful to consider u a GMRF
with respect to the graph defined by Q. For each grid cell, the non-zero elements
correspond to 25 neighbors of the cell, which is demonstrated in Figure 3.1b. If we
condition the element of u in the black grid cell on the values of the neighboring
elements, which are colored grey, then it becomes conditionally independent of
the remaining elements in the white grid cells. This is an example of the local
Markov property from Theorem 2.3.
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At one point in the discretization, an estimate of the surface integral of
H(s)∇u(s) over the boundaries of the grid cells is needed. The discretization
scheme used needs to be consistent, in that the same estimate is obtained when
the same boundary is considered from any two neighboring cells. The resulting
estimate requires the value of H(·) not only in the grid cells si,j , but also in the
locations si,j + (ahx/2, bhy/2) for all combinations of a, b ∈ {−1, 0, 1}. In other
words, the computations involving H(·) are done on a half-spaced grid. If H(·)
depends on spatial covariates, these need to be available on a finer scale than the
original grid.

After discretizing, the effective ranges and marginal variance in Equations
(3.4) and (3.5) no longer hold exactly. However, they become increasingly better
approximations as nx and ny increase, which is demonstrated by numerical ex-
amples in Isaksen (2019). The periodic boundary condition introduces unwanted
effects, but these are limited to the vicinity of the boundary. By letting D be
larger than the area of interest we can ensure that these boundary effects have
negligible influence.

For the non-stationary SPDEs, a closed-form expression for the marginal
variance of the solution is not known, despite one being available for station-
ary SPDEs. As a result, the marginal variance can not be specified exactly for
non-stationary SPDEs. In the discretized approximation, however, the precision
matrix Q is obtained directly. Its inverse, the covariance matrix Σ, can be ex-
pressed as Σ = DσΣρDσ, where Dσ = Diag(Σ)1/2 has the marginal standard
deviations of u along its diagonal, and Σρ is the correlation matrix of u. In other
words, we can decompose the covariance structure into the marginal variance and
correlation structure. By inverting Σ, we obtain Q = D−1σ Σ−1ρ D−1σ . If Dβ is a
diagonal matrix containing the desired marginal deviations, and D = D−1β Dσ,
then Qβ = DQD has the wanted marginal variance:

Qβ = DQD = (D−1β Dσ)(D−1σ Σ−1ρ D−1σ )(D−1β Dσ) = D−1β Σ−1ρ D−1β .

In this way, we can control the marginal variance without computing Σ. The
original marginal deviations in Dσ can be extracted from Q by an algorithm
described in Section 12.1 of Gelfand et al. (2010). In the R-INLA library, this
algorithm is implemented in the function inla.qinv.

3.1.5 Parametrization
There are many ways to parametrize SPDE (3.6) and variations of it. Lindgren
et al. (2011) model log(κ2(·)) and log(τ(·)) as linear combinations of smooth
basis functions. In Fuglstad et al. (2015a), the focus in on the effect of H(·), with
constant κ(·) and τ(·) fixed to 1. Using the absolute anisotropy from Section 3.1.2,
they let γ(·) be constant and model each component of v(·) as a Fourier series.
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In this thesis, we aim to model the non-stationarity through linear regression on
spatial covariates, and, therefore, describe parametrizations that allow for this.

SPDE (3.6) depends on three functions: the scalar-valued functions κ(·) and
τ(·), and the matrix-valued function H(·). For H(·), we use the relative decom-
position described in Section 3.1.2,

H(s) = γ(s)
(
I2 +w(s)w(s)T

)
, s ∈ D

While we know, qualitatively, how κ(·), τ(·), and γ(·) affect the solution, the
functions in themselves do not represent intuitive quantities. For the sake of
comprehensibility, we let the regressions be on functions that have a clear in-
terpretation. For example, in Parametrization S-NS1 we let the approximate
baseline effective range function ρ(·) =

√
8γ(·) be modeled by regression, instead

of γ(·). This also makes it easier to specify sensible priors.
Below, five parametrizations are described. Note that, in order to obtain an

identifiable model, either κ(·) or τ(·) is fixed to 1 in each parametrization. S-ISO
and S-ANISO lead to stationary models, with the former isotropic and the latter
geometrically anisotropic. S-NS1, S-NS1E, and S-NS2 are non-stationary models,
and differ mainly in the way they control the marginal variance. In S-NS1 and S-
NS1E we fix κ(·). The correlation structure is first specified by H(·), and then τ(·)
is chosen so that it corrects for the spatially varying marginal variance introduced
by H(·). In S-NS2 we fix τ(·), and specify H(·) and κ(·) simultaneously, so that
both control the correlation structure and marginal variance. In the descriptions
of the parametrizations, we assume that both the region D and its rectangular
grid with centroids {si : i = 1, . . . , nxny} have been specified.

Parametrization S-ISO. We fix κ(s) ≡ 1, H(s) ≡ H and τ(s) ≡ τ for s ∈ D,
and let

H =
1

8
ρ2I2,

where ρ is the effective range. The marginal variance of the solution is then
σ2 = 2/(πτ2ρ2). We obtain this marginal variance by letting

τ =

√
2

π

1

σρ
.

Since the discretized GMRF is an approximation to the solution of the SPDE,
the parameter σ2 is not equal to the exact marginal variance of the GMRF.
We control the parametrization through two parameters, namely θ = (ρ, σ).
Since both of these are required to be positive, we use log(ρ) and log(σ) during
computations. 4
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Parametrization S-ANISO. We fix κ(s) ≡ 1, H(s) ≡ H and τ(s) ≡ τ for
s ∈ D, and let

H =
1

8
ρ2
(
I2 +wwT

)
,

where ρ is the baseline effective range and w = (wx, wy) controls the direction of
longest range, and the strength of the anisotropy. The marginal variance is then
σ2 = 2/

(
πτ2ρ2

√
1 + w2

x + w2
y

)
, which is obtained by letting

τ =

√
2

π

1

σρ

[
1 + w2

x + w2
y

]−1/4
.

Since the discretized GMRF is an approximation to the solution of the SPDE, the
parameter σ2 is not equal to the exact marginal variance of the GMRF.We control
the parametrization through four parameters, namely θ = (ρ, σ, wx, wy). Since ρ
and σ are required to be positive, we use log(ρ) and log(σ) during computations.

4

Parametrization S-NS1 & S-NS1E. We fix κ(s) ≡ 1 for s ∈ D, but let
H(·) and τ(·) be spatially varying functions. The matrix-valued function H(·) is
parametrized as

H(s) =
1

8
ρ2(s)

(
I2 +w(s)w(s)T

)
, s ∈ D,

where ρ(·) is the baseline effective range function and w(·) = (wx(·), wy(·)) con-
trols the direction and the magnitude of the anisotropy throughout the region.
In order to specify τ(·), we use the intuition from Section 3.1.3 and consider the
SPDE

(1−∇ ·H(s)∇) û(s) =W(s), s ∈ D. (3.10)

The solution û(·) has the desired correlation structure, but a varying marginal
variance that depends on H(·), given by σ2

H(s) = Var(û(s)) for s ∈ D. If
we let τ(s) = σH(s)/σ(s), where σ2(·) is the desired marginal variance, then
u(s) = û(s)/τ(s) satisfies Var(u(s)) = σ2(s) for s ∈ D.

The functions ρ(·), wx(·), wy(·), and σ(·) are modeled by linear regression on
spatial covariates, leading to

log(ρ(s)) = log(ρ0) + xρ(s)
Tβρ,

wx(s) = wx,0 + xwx(s)Tβwx ,

wy(s) = wy,0 + xwy (s)Tβwy ,

log(σ(s)) = log(σ0) + xσ(s)Tβσ,
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for s ∈ D, where ρ(·) and σ(·) are modeled on the log-level to ensure positivity.
For each function φ(·), xφ(s) ∈ Rpφ is a vector containing the spatial covariates at
location s ∈ D, and βφ ∈ Rpφ quantifies the effect of each covariate. The model
parameters are θ = (ρ0, wx0

, wy,0, σ0,β
T
ρ ,β

T
wx ,β

T
wy ,β

T
σ), leading to 4+pρ+pwx +

pwy +pσ parameters in total. Here pρ, pwx , pwy , and pσ are the number of spatial
covariates used in each corresponding function.

This parametrization relies on knowing σ2
H(·), the marginal variance func-

tion of the solution to SPDE (3.10). In general, we do not have a closed-form
expression for this. We propose two ways of controlling the marginal variance:

S-NS1E Construct the precision matrix QH of the GMRF approximation û to û(·),
and compute the partial inverse Σ∗. The diagonal elements of Σ∗ are the
marginal variances of û, which are then used as values of σ2

H(·) on the
grid for D. The computation of Σ∗ has a computational complexity of
O((nxny)1.5).

S-NS1 Let σ2
H(·) be the approximate marginal variance of û(·) from Equation (3.8),

i.e.,

σ2
H(s) =

1

4πκ2(s)τ2(s) |H(s)|1/2
=

2

πρ2(s)
√

1 + w2
x(s) + w2

y(s)
, s ∈ D.

The closed form for τ(·) is then

τ(s) =

√
2

π

1

σ(s)ρ(s)

[
1 + w2

x(s) + w2
y(s)

]−1/4
, s ∈ D.

S-NS1E leads to exact control of the marginal variance, while S-NS1 gives ap-
proximate control. However, S-NS1E requires the partial inverse Σ∗, which is
expensive to compute. The approximation used in S-NS1 can be computed in
O(nxny) time. 4

Parametrization S-NS2. We fix τ(s) ≡ 1 for s ∈ D, but let H(·) and κ(·) be
spatially varying functions. H(·) is parametrized as

H(s) = γ(s)
(
I2 +w(s)w(s)T

)
, s ∈ D.

Further, we define the functions ρ(·) and σ2(·) to be given by

ρ(s) =

√
8

κ(s)

√
γ(s) and σ2(s) =

1

4πκ2(s)γ(s)
√

1 + w2
x(s) + w2

y(s)
.
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ρ(·) is the approximate baseline effective range from Equation (3.7), and σ2(·)
is the approximate marginal variance from Equation (3.8). Based on these two
expressions, we can solve for κ2(·) and γ(·), leading to

κ2(s) =

√
2

π

1

ρ(s)σ(s)

[
1 + w2

x(s) + w2
y(s)

]−1/4
, s ∈ D,

γ(s) =
1√
32π

ρ(s)

σ(s)

[
1 + w2

x(s) + w2
y(s)

]−1/4
, s ∈ D.

The functions ρ(·), wx(·), wy(·), and σ(·) are modeled by linear regression on
spatial covariates, leading to

log(ρ(s)) = log(ρ0) + xρ(s)
Tβρ,

wx(s) = wx,0 + xwx(s)Tβwx ,

wy(s) = wy,0 + xwy (s)Tβwy ,

log(σ(s)) = log(σ0) + xσ(s)Tβσ,

for s ∈ D, where ρ(·) and σ(·) are modeled on the log-level to ensure positivity.
For each function φ(·), xφ(s) ∈ Rpφ is a vector containing the spatial covariates at
location s ∈ D, and βφ ∈ Rpφ quantifies the effect of each covariate. The parame-
ters needed for this parametrization are θ = (ρ0, wx0 , wy,0, σ0,β

T
ρ ,β

T
wx ,β

T
wy ,β

T
σ),

resulting in 4 + pρ + pwx + pwy + pσ parameters in total. Here pρ, pwx , pwy , and
pσ are the number of spatial covariates used in each corresponding function. 4

3.2 Kernel convolutions

3.2.1 Non-stationary covariance functions
The following approach is based on the work first described in Higdon et al.
(1999), where the focus is on GRFs that can be expressed as the convolution
between a kernel and a noise process:

u(s) =

∫
R2

Ks(x)W(x) dx, s ∈ R2.

The kernel Ks(·) is centered at s, and has a shape that can vary as a function
of s, and W(·) is a standard Gaussian white noise process. For s1, s2 ∈ R2, the
covariance is given by

C(s1, s2) = Cov(u(s1), u(s2)) =

∫
R2

Ks1(x)Ks2(x)dx,
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and consequently depends on the amount of overlap between the kernels at each
pair of locations. This covariance function is valid regardless of how the kernel
Ks(·) is chosen, as long as we ensure that the marginal variance is bounded, i.e.,
that sups∈R2

∫
R2 K

2
s(x) dx <∞ (Higdon et al., 1999).

Instead of specifying the covariance function directly, we control it indirectly
through the kernel function. This leads to flexible control of the covariance
structure, without having to worry about positive definiteness. While the choice
of kernel function is arbitrary, Gaussian kernels on the form

Ks(x) =
1

2π
σ(s) |Σ(s)|−1/2 exp

[
−1

2
(x− s)TΣ(s)

−1
(x− s)

]
, s ∈ R2

are a popular alternative. Here, σ(·) is the marginal standard deviation function
and Σ(·) is the kernel matrix function. For all s ∈ R2, Σ(s) is a 2 × 2 posi-
tive definite matrix. This leads to a kernel that decays monotonically along all
directions from the mode at s, and whose shape is determined by the matrix
Σ(s).

As shown in Paciorek and Schervish (2006), this kernel choice leads to a
covariance function with a closed form given by

C(s1, s2) = σ(s1)σ(s2)
|Σ(s1)|1/4 |Σ(s2)|1/4∣∣∣Σ(s1)+Σ(s2)

2

∣∣∣1/2 exp (−Q(s1, s2)) (3.11)

for s1, s2 ∈ R2, where

Q(s1, s2) = (s1 − s2)T
(

Σ(s1) + Σ(s2)

2

)−1
(s1 − s2)

is the Mahalanobis distance between s1 and s2 with respect to (Σ(s1)+Σ(s2))/2.
In other words, the covariance between any two locations is fully determined by
their relative positions, and the value of σ(·) and Σ(·) in each location.

As long as the kernel Ks(·) varies smoothly as a function of s, realizations
from GRFs with this covariance function are infinitely differentiable. The is-
sues associated with covariance functions leading to such smooth realizations are
discussed in Chapter 3 of Stein (1999). In order to bypass this limitation, a mod-
ified version of Equation (3.11) is considered. If ρ(·) is an isotropic correlation
function, i.e., a positive definite function with ρ(0) = 1, then

C(s1, s2) = σ(s1)σ(s2)
|Σ(s1)|1/4 |Σ(s2)|1/4∣∣∣Σ(s1)+Σ(s2)

2

∣∣∣1/2 ρ
(√

Q(s1, s2)
)
, s1, s2 ∈ R2,
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is a valid covariance function (Paciorek and Schervish, 2006). In Paciorek and
Schervish (2004), the Matérn correlation function is used for ρ(·), leading to the
covariance function

C(s1, s2) = σ(s1)σ(s2)
|Σ(s1)|1/4 |Σ(s2)|1/4∣∣∣Σ(s1)+Σ(s2)

2

∣∣∣1/2 Mν

(√
Q(s1, s2)

)
, (3.12)

for s1, s2 ∈ R2. The parametrization used for the Matérn correlation function is

Mν(h) =
1

Γ(ν)2ν−1
hνKν(h), h ≥ 0,

so that the range and marginal standard deviation are determined by Σ(·) and
σ(·), respectively. More flexibility can be attained by letting ν vary spatially as
well, but we restrict ourselves to the constant case. While the value of ν can
be estimated from observed data, we treat it as a known constant and fix its
value prior to inference. Since the SPDE-based approach in Section 3.1 leads to
a Matérn GRF with ν = 1, we will use this value for the kernel-based approach
as well.

When both σ(·) and Σ(·) are constant, with σ(s) ≡ σ and Σ(s) ≡ Σ for all
s ∈ R2, the covariance function is given by

C(s1, s2) = σ2M1

(
‖Σ−1/2(s1 − s2)‖

)
.

This is a stationary covariance function. By comparison with Equation (3.3),
we see that Σ then plays the same role as H in SPDE (3.2) - it determines the
direction and strength of the anisotropy. By letting Σ(·) vary spatially, we obtain
a GRF with spatially varying anisotropy properties. Analogous to the stationary
case, Σ(·) controls the properties of the correlation structure throughout R2, such
as the baseline range, the strength of the anisotropy, and the direction of longest
range.

3.2.2 Parametrization
The covariance function in Equation (3.12) is specified by two functions: σ(·) and
Σ(·). Several approaches for modeling these functions have been proposed. In
Higdon et al. (1999), σ(·) is a spatial constant and Σ(s) for s ∈ R2 is controlled
indirectly by considering the level curves of the resulting kernel Ks(·), which are
ellipses. For this purpose, they focus on the one standard deviation ellipse Es,
which satisfies ∫

As
Ks(x) dx∫

R2 Ks(x) dx
≈ 0.68,
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where As is the region enclosed by Es. The kernel is centered at s, so that the
foci of Es are s±ψ, where ψ = (ψx, ψy). The components of ψ are modeled as
independent stationary GRFs, and a unique ellipse is obtained by fixing |As| = A
for all s ∈ R2, where A is chosen prior to modeling. Paciorek and Schervish (2006)
let σ(·) be a spatially constant function and use the eigendecomposition of Σ(s),

Σ(s) = Γ(s)Λ(s)Γ(s)T,

where
Λ(s) =

(
λ1(s) 0

0 λ2(s)

)
, Γ(s) =

(
cos ξ(s) − sin ξ(s)
sin ξ(s) cos ξ(s)

)
,

and model λ1(·), λ2(·), and ξ(·) using an approximate stationary GRF represen-
tation.

Hoff and Niu (2012) propose a covariance regression model, which, in our
context, can be formulated as

Σ(s) = Ψ + ΓxΣ(s)xΣ(s)TΓT.

Here, Ψ ∈ R2×2 is a positive definite matrix specifying the "baseline" anisotropy,
xΣ(s) ∈ RpΣ is a vector of spatial covariates at s and Γ ∈ R2×pΣ is matrix of
regression coefficients, determining the effect of the covariates on Σ(·).

In order to get a fair basis of comparison between the SPDE- and kernel-based
approaches, we should ensure that the parametrizations used are as similar as
possible. Since Σ(·) plays a similar role as H(·) in SPDE (3.6), we propose a
decomposition analogous to the one described in Section 3.1.2:

Σ(s) = γ(s)
(
I2 +w(s)w(s)T

)
, s ∈ R2, (3.13)

where γ(·) is a strictly positive function and w(·) = (wx(·), wy(·)).
Below, three parametrizations are described: the stationary K-ISO and K-

ANISO, and the non-stationary K-NS. K-ISO and K-ANISO lead to isotropic and
geometrically anisotropic covariance structures, respectively. These parametriza-
tions lead to the same models as S-ISO and S-ANISO, ignoring the approximation
differences between the SPDE- and kernel-based approaches. K-NS models σ(·)
and the components of Σ(·) through regression on spatial covariates, and corre-
sponds to S-NS1, S-NS1E and S-NS2.

Parametrization K-ISO. We fix σ(s) ≡ σ and Σ(s) ≡ Σ for all s ∈ R. Σ is
parametrized as

Σ =
1

8
ρ2I2,

where ρ is the effective range. The parametrization contains two parameters,
namely θ = (ρ, σ). Computations are done with log(ρ) and log(σ) to ensure
positivity. 4
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Parametrization K-ANISO. We fix σ(s) ≡ σ and Σ(s) ≡ Σ for all s ∈ R. Σ
is parametrized as

Σ =
1

8
ρ2
(
I2 +wwT

)
,

where ρ is the baseline effective range and w = (wx, wy) specifies the direction
and magnitude of the anisotropy. The parametrization contains four parameters,
namely θ = (ρ, σ, wx, wy). Computations are done with log(ρ) and log(σ) to
ensure positivity. 4

Parametrization K-NS. Both σ(·) and Σ(·) are allowed to vary spatially. We
parametrize the matrix valued function Σ(·) as

Σ(s) =
1

8
ρ2(s)

(
I2 +w(s)w(s)T

)
, s ∈ R2,

where ρ(·) is the approximate baseline effective range function, and w(·) =
(wx(·), wy(·)) controls the direction and magnitude of the anisotropy through-
out R2. The functions ρ(·), wx(·), wy(·), and σ(·) are modeled by regression on
spatial covariates, leading to

log(ρ(s)) = log(ρ0) + xρ(s)
Tβρ,

wx(s) = wx,0 + xwx(s)Tβwx ,

wy(s) = wy,0 + xwy (s)Tβwy ,

log(σ(s)) = log(σ0) + xσ(s)Tβσ,

for s ∈ R2. We ensure that ρ(·) and σ(·) are positive by letting the regres-
sion be on the log-level. For each function φ(·), xφ(s) ∈ Rpφ is a vector con-
taining the spatial covariates at location s ∈ D, and βφ ∈ Rpφ quantifies the
effect of each covariate. The parameters needed for this parametrization are
θ = (ρ0, wx0 , wy,0, σ0,β

T
ρ ,β

T
wx ,β

T
wy ,β

T
σ), resulting in 4 + pρ + pwx + pwy + pσ pa-

rameters in total. Here pρ, pwx , pwy , and pσ are the number of spatial covariates
used in each corresponding function. 4

3.3 Prior distributions

Since we wish to use these spatial models in a Bayesian framework, it is neces-
sary to choose prior distributions for the model parameters. A useful principle
when specifying priors is Occam’s razor. It states that, when multiple competing
explanations for a phenomenon are available, the simplest one is more likely to
be correct than the rest. In more technical terms: if multiple models explain
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the observed data comparatively well, the most parsimonious1 model should be
chosen. We therefore specify priors that penalize complex models, and reward
those that are close to the baseline model2. In this way, the prior will have a reg-
ulative effect and ensure that the posterior estimates of superfluous parameters
are shrunk towards 0. This is particularly important when the model is flexible
and the size of the observed data is small.

In this context, the baseline model is isotropic. Every parametrization except
S-ISO and K-ISO leads to a model that, in general, is not isotropic. In these
parametrizations, any parameter that leads to deviation from isotropy is given a
centered Gaussian prior, which places the prior mode of the parameter at 0. This
means that, prior to observing the data, the most likely value of the parameter
is 0. We describe the priors used for each parametrization below.

S-ISO and K-ISO
The parameters ρ and σ are both required to be positive, and are therefore given
log-normal priors:

log(ρ) ∼ N (µρ, v
2
ρ), log(σ) ∼ N (µσ, v

2
σ).

As a result, eµρ and eµσ specify the median of the corresponding parameter, while
vρ and vσ control the spread.

S-ANISO and K-ANISO
In addition to having log-normal priors for ρ and σ as above, we let the both
components of w have centered Gaussian priors:

w ∼ N2(0, v2wI2).

S-NS1, S-NS1E, S-NS2, and K-NS
The parameters ρ0 and σ0 in the non-stationary parametrizations correspond to
ρ and σ in the stationary parametrizations. Therefore, they are equipped with
log-normal priors:

log(ρ0) ∼ N (µρ, v
2
ρ), log(σ0) ∼ N (µσ, v

2
σ).

Similarly, wx,0 and wy,0 play the same role as wx and wy in S-ANISO and K-
ANISO, and are therefore given the prior

(wx,0, wy,0) ∼ N2(0, v2wI2).

1A model is said to be more parsimonious than another if it contains fewer parameters.
2By baseline model, we mean the most parsimonious model available.
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The remaining parameters are the regression coefficients of ρ(·), wx(·), wy(·), and
σ(·). We collect these in the vector θNS = (βT

ρ ,β
T
wx ,β

T
wy ,β

T
σ), which is then

given the prior
θNS ∼ NpNS(0, v2NSIpNS),

where pNS = pρ + pwx + pwy + pρ are the total number of coefficients. In other
words, we let all of the regression coefficients have Gaussian priors with the same
standard deviation. Therefore, the different spatial covariates should be on a
similar scale, which can be achieved by standardizing them in advance.

Hyperparameters

The priors described above are choices of families of distributions that depend
on hyperparameters. Sometimes, the hyperparameters can be chosen in a sen-
sible way by using the interpretation of the parameter. Consider, for example,
the parametrizations S-ISO and K-ISO. Both the effective range ρ and marginal
standard deviation σ have log-normal priors. If X ∼ Lognormal(µX , v2X), then
we can ensure that

P(xlower < X < xupper) = 1− α

by choosing3

µX =
log(xupper) + log(xlower)

2
, vX =

log(xupper)− log(xlower)

2zα/2
.

In words, we can specify the distribution of X by first identifying a reasonable
prior credible interval. For the effective range, the bounds can be determined from
the region that the data was observed from. If this region is a 50 km × 50 km
square, a plausible interval of values for ρ could be [1 km, 30 km]. Similarly,
bounds for the marginal variance can be determined by considering the scale and
the amount of variation in the observed data.

In S-ANISO and K-ANISO, the priors for wx and wy can be controlled in a
similar manner. The quantity

√
1 + w2

x + w2
y is the strength of the anisotropy,

i.e., the ratio between the range in the longest and shortest direction. Note that√
1 + w2

x + w2
y ≥ 1, with equality only for the baseline case wx = wy = 0. Since

the priors for wx and wy are both Gaussian with mean 0 and the same standard
deviation,

√
w2
x + w2

y follows a Rayleigh distribution. We can then ensure that

P
(√

1 + w2
x + w2

y < wstrength

)
= 1− α

3We use the convention P(|Z| < zα/2) = 1− α, when Z ∼ N (0, 1).
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by letting vw =
√
w2

strength − 1/r1−α =
√
−(w2

strength − 1)/2 ln(α). Here rα is the
quantile function of the standard Rayleigh distribution, so that P(R < rα) = α
for standard Rayleigh distributed R. We consistently use α = 0.05 for the above
priors, unless explicitly stated otherwise.

The approaches described above can also be applied to the corresponding pa-
rameters ρ0, wx,0, wy,0 and σ0 in the non-stationary parametrizations. Choosing
the coefficient standard deviation vNS is more difficult, and cannot be done in
the systematic way described for the intercepts. We instead demonstrate the
effects of prior width on both estimated parameters and prediction performance
in Section 5.5, and use this as a guideline when choosing the standard deviation.

3.4 Discussion
Two approaches for specifying non-stationary covariance structures have been
described. In the kernel convolution-based approach, the covariance structure is
controlled indirectly by spatially varying kernels. The covariance between any
two locations depends only on their positions and the value of the functions
Σ(·) and σ(·) in the locations, leading to a global specification of anisotropy.
In addition, a closed-form expression for the covariance function is known. The
SPDE-based approach gives a non-stationary GRF where the spatially varying
coefficients affect the correlation structure in a local manner, but without a known
closed form for the correlation function. Additionally, the correlation between
two locations depends on the behavior of κ(·) and H(·) in the region between the
locations, meaning that the anisotropy is determined by local properties. As a
result, the correlation structures attained from each approach are qualitatively
different. This is best demonstrated with an example.

Example 3.1 (Comparison between SPDE- and kernel-based model for barrier
of short range). We consider the region D = [−10, 10]2 with a 300 × 300 grid.
Using the SPDE-based model S-NS1 and kernel-based model K-NS, we let their
matrix functions be on the form

H(s) = Σ(s) =
1

8
ρ2(s)I2, s ∈ D,

where the approximate effective range function ρ(·) is given by

log (ρ(x, y)) = log(5)− 6 exp
(
−20x2

)
.

A plot of ρ(·) is shown in Figure 3.2a. The function is constant and equal to 5
in most of D, except for a thin barrier around x = 0, where it rapidly decreases
to a minimum value of 0.012. As a result, the GRFs obtained from both models
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are isotropic at a certain distance from the barrier, but become increasingly non-
stationary near the barrier. Figure 3.3 shows the correlation between the location
(−1, 0) and the rest of D for both models. In the kernel-based approach, the
correlation structure is indistinguishable from an isotropic correlation structure,
except for a strip along the barrier where it vanishes to 0. The correlations on
the right side of the barrier are unaffected by the region with short range. The
correlation structure obtained with the SPDE approach is very close to isotropic
on the left-hand side of the barrier, with some deformation apparent. Along the
barrier and on the right-hand side, however, the correlation vanishes completely.
In this case, the barrier effectively divides the region into two independent sub-
regions.

The correlation structure obtained with the SPDE approach can be considered
more natural, as the correlation decreases monotonically with distance along any
direction from (−1, 0). This is consistent with the intuition that the degree
of dependence between locations should decrease with distance. The effect of
having regions with very short range is investigated in Bakka et al. (2019), where
"barriers" of short range are exploited to get complex correlation structures.

There are examples of situations where the kernel-based model can be more
appropriate. Teleconnections are a phenomenon where climate and weather
anomalies are connected over large distances across the globe. The El Niño-
Southern Oscillation, which is investigated in Diaz et al. (2001), is an example of
this. When modeling such processes, the ability to have non-monotonic correla-
tion structures might be advantageous. 4

We see that having the same effective range function ρ(·) in the SPDE- and
kernel-based models does not lead to the same GRF. The same holds for the
vector field w(·). To demonstrate, we consider another example.

Example 3.2 (Comparison between SPDE- and kernel-based model with varying
direction of longest range). We consider the models S-NS1 and K-NS on the
region D = [−10, 10]2 with a 300× 300 grid, and let

H(s) = Σ(s) =
1

8

(
I2 +w(s)w(s)T

)
, s ∈ D,

where w(·) is shown in Figure 3.2b. In Figure 3.4, we focus on the region [−5, 5]
and compare the correlation structure obtained from both approaches, by showing
level curves around three locations. The level curves centered in (−3.25, 3.25) and
(3.25,−3.25) are practically indistinguishable for the two approaches, as w(·) is
constant in the vicinity around both locations. Around (3.25, 3.25), however,
the correlation structures are clearly different. While S-NS1 leads to a smooth
correlation structure that follows along the changing direction of w(·), K-NS has
more irregular level curves. 4
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Figure 3.2: (a) Function ρ(·) used in Example 3.1. The minimum value is 0.012.
(b) The vector field w(·) from Example 3.2. The length of the arrows have been
scaled by a factor of 0.12, and w(·) is zero outside the passage.
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Figure 3.3: Resulting correlation structure for models S-NS1 and K-NS in Ex-
ample 3.1.
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Figure 3.4: Comparison of correlation structures from Example 3.2. The cor-
relation structures centered in locations (−3.25, 3.25) ( ), (3.25, 3.25) ( )
and (3.25,−3.25) ( ) are shown, represented by level curves on 8 levels evenly
spaced between 0.14 and 0.95.

Based on the above examples, it is important to note that, while we use the
same notation to describe the decompositions of H(·) and Σ(·), they do not affect
the accompanying models in the same way.

For the SPDE-based approach, the marginal variance and correlation struc-
ture are both coupled to the coefficients κ2(·) and H(·). Three non-stationary
parametrizations are proposed, each attempting to control the marginal variance
by using the proposed approximations. The model S-NS1E controls the marginal
variance exactly, but relies on the computation of the partial inverse of QH. This
is done by the function inla.qinv in the R-INLA package. In Figure 3.5, the time
needed to compute the partial inverse is shown for different grid sizes n = nxny.
As n increases, we see that the run-time of the function grows as O(n1.5). The
non-linear time complexity makes the execution of inla.qinv a computational
bottleneck when S-NS1E is used with a large grid. In Fuglstad and Castruccio
(2020), inla.qinv is utilized successfully to control the marginal variance of an
SPDE model with a grid size of n = 15392. For situations where n is larger than
this, and the model must be fitted repeatedly (e.g. cross-validation), S-NS1E be-
comes very time-consuming. In the kernel-based approach, the marginal variance
is separated from the correlation structure, and the non-stationary parametriza-
tion K-NS leads to exact control of the marginal variance.
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Figure 3.5: Average runtime of inla.qinv based on 10 runs. In addition to the
data, we show lines satisfying y ∝ x ( ), y ∝ x1.5 ( ), and y ∝ x2 ( ).

When a covariate-based parametrization such as S-NS1 or K-NS is used, there
is a practical difference between the two approaches. For K-NS, we only need the
value of the covariate in the observation and prediction locations. In the SPDE-
based approach, setting up the model requires the value of the covariate over the
entire grid. If the covariate is some physical property like elevation or land type,
and not simply a known function like x(s) = ‖s‖, this could be problematic.
For many situations, obtaining the value of such a covariate over a large grid
is infeasible. A possible solution is to interpolate/extrapolate the value of the
covariate based on its known values.
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Chapter 4

Models and inference

In this chapter we describe the model that is used for inference on spatial processes
in Chapters 5 and 6. We take the Bayesian approach to modeling, and describe
two tools for performing both inference and prediction. We also discuss a known
issue with one of the tools, which is demonstrated by performing inference on
simulated data.

4.1 Model and priors

Our focus is on modeling processes that occur in the plane. Let η(·) be such a
process, defined on some region D ⊂ R2. We model η(·) by decomposing it into
multiple terms, leading to

η(s) = µ+ x(s)Tβ + u(s), s ∈ D.

The components are the intercept µ ∈ R, the linear effect x(s)Tβ consisting of
the spatially varying covariates x(s) ∈ Rp and the coefficient of the effect β ∈ Rp,
and a GRF u(·) intended to capture the residual dependencies between nearby
locations. We model u(·) using one of the parametrizations from Chapter 3.
When observing the process in a location s ∈ D, we obtain the noisy measurement
y satisfying

y | η(s), σε ∼ N (η(s), σ2
ε).

Here, σε is the standard deviation of the measurement error. If we observe η(·)
in multiple locations s1, . . . , sn ∈ D, we then obtain the observed data y =
(y1, . . . , yn) with yi observed at si for i = 1, . . . , n. The vector y satisfies

y | η, σε ∼ Nn(η, σ2
εIn),

43
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where η = µ1n + Xβ + u. Here, 1n is an n-dimensional vector of ones, X is
a n × p matrix with i-th row x(si)

T, and u = (u1, . . . , un) with ui = u(si) for
i = 1, . . . , n.

We use a centered Gaussian prior for the intercept and the linear effect coef-
ficients:

µ ∼ N (0, v2µ), β ∼ Np(0, v2βIp).

The prior setup for the spatial effect u(·) is described in Section 3.3, and depends
on which parametrization is used. The measurement error standard deviation
σε is equipped with the penalized complexity (PC) prior, which is introduced
in Simpson et al. (2017). This leads to an exponential prior for the standard
deviation, which is specified by choosing a bound U and weight α so that P(σε >
U) = α.

Since the priors for µ and β are Gaussian, this is a latent Gaussian model.
We refer to µ,β, and u as the latent field of the model, and collect these in the
vector ξ. The parameters of the model are stored in the vector θ, which contains
σε and the parameters controlling the spatial effect u(·).

4.2 Bayesian inference
In this thesis, we work within the Bayesian framework for inference. Given the
observed data y, we are mainly interested in doing two things:

• Obtaining posterior distributions of the latent field ξ and the hyperparam-
eters θ, i.e., estimating the posterior marginals p(ξi|y) and p(θi|y).

• Predicting the process η(·) in unobserved locations, based on the observed
data y, i.e., estimating the posterior marginals p(η(s∗)|y) and p(y∗|y),
where y∗ is a new observation at s∗.

Two different computational approaches are utilized for performing inference,
depending on whether the model for u(·) is SPDE- or kernel-based. For the
SPDE-based models, inference is done using R-INLA, while BayesNSGP is used for
the kernel-based models.

R-INLA
R-INLA is an R package for performing Bayesian inference with latent Gaus-
sian models. While MCMC estimates posterior distributions by generating sam-
ples, R-INLA makes use of the Integrated Nested Laplace Approximations (INLA)
methodology (Rue et al., 2009), which uses numerical integration to directly ap-
proximate the posterior distributions. R-INLA offers a plethora of alternatives
to choose from when it comes to likelihoods, priors and latent effects. In the
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context of our model, INLA requires that u is a GMRF. Since this is ensured
with SPDE-based spatial effects, R-INLA is an appropriate tool for inference.

While the covariate-based SPDE models described in Section 3.1 have not
been implemented in R-INLA, custom models can be specified through the func-
tion inla.rgeneric.define. Using the recipe outlined in the rgeneric-vignette,
we implement model definitions for S-ISO, S-ANISO, S-NS1, S-NS1E, and S-
NS2. These definitions contain all necessary components for specifying a GMRF
in R-INLA, such as the construction of the precision matrix Q, the log-density
function of the priors and the logarithm of the normalizing constant.

The construction of Q, which is outlined in Fuglstad et al. (2015a), is partic-
ularly technical. Since Q is a sparse matrix, dedicated data structures must be
used for storing it. For this purpose, we use the function sparseMatrix from the
library Matrix. This function allows us to construct Q by specifying the value
and position of each non-zero element in the matrix. Constructing Q involves
performing calculations in each cell of the grid. The most straightforward way to
do this is to iterate through the grid using a nested for-loop. However, for-loops
are slow in R, especially when compared to compiled languages like C++. For
big grid sizes, this slows things down considerably, as the precision matrix must
be constructed many times during the inference. The construction has therefore
been implemented using only vectorized R operations.

In the non-stationary parametrizations, the construction of Q depends on
spatial covariates. This is done by specifying design matrices for the functions
that are modeled through linear regression, i.e., Xρ, Xwx , Xwy , and Xσ. This
approach allows for quick computation of the corresponding functions for dif-
ferent regression coefficients. For each parametrization, the prior setup had to
be implemented manually. In R-INLA, priors are specified through their density
function. Since all of the SPDE model parameters have Gaussian priors, the
priors can be implemented using only the dnorm function in R.

After creating the model definitions, we can use inla.rgeneric.define to
initiate a model:

custom.model = inla.rgeneric.define(model = model.definition,...).

Parameters necessary for setting up a model are specified in (. . . ). Such pa-
rameters can be prior.HP, which is a list specifying the prior hyperparameters,
or X.rho, X.wx, X.wy, and X.sigma, which are covariate design matrices in the
non-stationary parametrizations.

BayesNSGP

The BayesNSGP package, which is outlined in Risser and Turek (2019), is dedi-
cated specifically to performing non-stationary spatial modeling with the kernel-
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based approach discussed in Section 3.2. The package offers off-the-shelf func-
tionality for performing Bayesian inference using the MCMC methodology, and
includes the approximate Gaussian likelihood described in Section 2.3 for dealing
with large spatial datasets.

While the package offers plenty of choices for controlling both σ(·) and Σ(·),
none of the parametrizations K-ISO, K-ANISO, and K-NS are available. In ad-
dition, there is no functionality that allows the user to directly specify custom
models and parametrizations. As a result, performing inference with the desired
parametrizations proved difficult. After familiarizing ourselves with source code
of the package and understanding how the already existing parametrizations had
been implemented, we were able to add new parametrizations by directly modi-
fying the source code and rebuilding the package.

A number of the hardcoded prior choices in BayesNSGP are questionable. Most
notably, both the marginal variance of the GRF and the variance of the obser-
vational error are given uniform priors on the interval [0, a] for some specified
a. If we consider the marginal variance, the prior density function satisfies
π(σ2) ∝ 1(0 ≤ σ2 ≤ a). It can then be shown that the prior density for the
marginal standard deviation σ satisfies π(σ) ∝ 1(0 ≤ σ ≤

√
a)σ. This is un-

fortunate, as the density increases with the value of σ, and leads to a bias for
higher values of σ. As a result, the value of σ is consistently overestimated. The
exact same argument applies for the variance and standard deviation of the ob-
servational error. We therefore add the ability to have a log-normal prior for the
marginal standard deviation and a PC prior for the precision of the measurement
error, as desired.

4.3 Posterior multimodality

As discussed in Rue et al. (2009), one of the main issues with INLA is that only
unimodal posterior distributions can be represented accurately. When the true
posterior distribution of the parameters θ or the latent field ξ is multimodal, a
unimodal approximation is obtained. In essence, INLA relies on an approxima-
tion obtained by centering a Gaussian distribution at the mode of the posterior
distribution and matching the curvature at the mode. The mode of the posterior
distribution is determined by a Newton-Raphson iteration. For densities on the
form

p(x) ∝ exp

(
−1

2
xTQx+

n∑
i=1

gi(xi)

)
, (4.1)
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this entails choosing some initial guess µ(0) of the mode, and performing a second-
order expansion of each gi(·) around µ(0)

i ,

gi(xi) ≈ gi(µ(0)
i ) + bixi −

1

2
cix

2
i .

By replacing each gi(·) in Equation (4.1) with this expansion, we obtain a Gaus-
sian approximation with precision matrix Q + diag(c) and mode µ(1) satisfying
the equation (Q + diag(c))µ(1) = b. Here, b = (b1, . . . , bn) and c = (c1, . . . , cn).
Using µ(1) as our new guess we can repeat the procedure, and this is done until
convergence.

When there are multiple modes, only one is identified by the above iteration,
and the approximation to the posterior becomes unimodal. This issue does not
occur with MCMC, where samples are generated from the true posterior distribu-
tion. However, it can still be challenging to sample from a multimodal posterior
with MCMC. Slow mixing is the most common issue, where the chain struggles
to move between modes that are separated by a low probability region.

With this in mind, the decompositions for H(·) in Equations (3.9), and Σ(·) in
Equation (3.13), are problematic, as the vector components are non-identifiable.
For example, exchanging w(·) with −w(·) leads to an identical model. Let the
components wx(·) and wy(·) be modeled by the regressions

wx(s) = wx,0 + xwx(s)Tβwx ,

wy(s) = wy,0 + xwy (s)Tβwy ,

with a zero-mean Gaussian prior for θw = (wx,0, wy,0,βwx ,βwy ). Then, the
posterior distribution for the parameters is bimodal or worse: for any value of
θw and observed data y, the posterior satisfies p(θw|y) = p(−θw|y). Since
we perform inference with INLA for the SPDE-based models and MCMC for the
kernel-based models, this could potentially introduce unforeseen differences when
comparing the two approaches. To get an idea of the difference between the true
and approximate posterior density, we explore the issue in an example. In the
example, we generate data from both an isotropic and a geometrically anisotropic
process. Based on the observed data, we perform inference using the SPDE-based
S-ANISO with R-INLA, and the kernel-based K-ANISO with BayesNSGP. We then
compare obtained posterior distributions from each approach.

Example 4.1 (Comparison of estimated anisotropy from INLA and MCMC).
Let the region of interest be D = [−5, 5]2, and consider the processes

ψj(s) = 1 + ωj(s), s ∈ D,

for j = 1, 2. Here, ω1(·) is a centered, isotropic GRF with effective range 1.5
and marginal variance 1. ω2(·) is a centered, geometrically anisotropic GRF with
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marginal variance 1, shortest and longest effective ranges 1.5 and 6, and longest
range in the direction of (1, 1).

For j = 1, 2, we observe the value of ψj(·) with measurement error in 50 uni-
formly sampled locations s1, . . . , s50 ∈ D, leading to observations yi = ψj(si)+εi

for i = 1, . . . , 50, where εi
iid∼ N (0, 0.12). Based on the observed data, we perform

inference with the model described in Section 4.1. We let η(·) consist of an inter-
cept and a spatial effect, i.e., η(s) = µ + u(s) for s ∈ D. Inference is performed
with u(·) specified by both the SPDE-based S-ANISO and the kernel-based K-
ANISO.

We are interested in the joint posterior distribution of the parameters (wx, wy).
While INLA does not return an estimate of the joint posterior density of the model
parameters, the function inla.hyperpar.sample allows us to generate samples
from the approximate joint distribution of wx and wy.

In Figure 4.1 we show the estimates of the joint posterior densities of wx
and wy from both INLA and BayesNSGP. The samples from BayesNSGP are
represented as a hexagonal bin plot, where the fill color of each tile indicates the
proportion of samples contained inside the tile. We also show estimated density
level curves based on both the samples from BayesNSGP and INLA. In addition,
the marginal densities of wx and wy are added opposite to the corresponding
axis, with color indicating method.

When the data comes from the isotropic process ψ1(·), the true joint pos-
terior distribution is bimodal and clearly non-Gaussian, as the level curves are
distinctly non-elliptic. The level curves from INLA, however, are close to elliptic
and indicate that the approximated joint posterior is unimodal and more regular
in shape. The mode identified by INLA misses somewhat along the x-direction,
and the distribution as a whole underrepresents the uncertainty of the true joint
posterior.

With data from the geometrically anisotropic process ψ2(·), the true joint
distribution of wx and wy is smoother, and has two modes that are clearly sep-
arated. In this case, INLA does a better job at approximating the shape of the
distribution. It correctly identifies the mode in the third quadrant, but misses
its location somewhat. The approximate distribution is also more concentrated
around the mode than the true distribution, which leads to a lower uncertainty
in the estimates of both parameters.

Its hard to anticipate how these differences affect the predictions attained from
each approach, and whether they have an impact on the predictive performance.
In this particular example we have also predicted the value of the processes in 950
uniformly sampled locations. When predicting the anisotropic process, S-ANISO
leads to a mean CRPS of 0.315 and an RMSE of 0.579, while K-ANISO results
in 0.318 and 0.586. Corresponding values for the isotropic process are 0.508 and
0.895 for S-ANISO, and 0.516 and 0.912 for K-ANISO.



4.3. POSTERIOR MULTIMODALITY 49

In both cases INLA does a marginally better job despite the issues described.
While a single example is insufficient for drawing any reliable conclusions, this
indicates that, for the stationary models, the differences between the SPDE-based
approach in INLA and kernel-based approach in BayesNSGP are negligible. 4

For practical reasons, we are interested in extracting quantities such as the
posterior mean and median of wx and wy from the joint posterior distributions.
For the results obtained from INLA, both of these are computed internally and
are easily available. The MCMC samples of wx and wy from BayesNSGP will
often have bimodality present. This bimodality combined with the symmetry
around the origin leads to estimated posterior means and medians close to 0. We
therefore use the location of the modes as our posterior estimates of wx and wy.
In order to extract the location of these, we use the package ContaminatedMixt
to fit bivariate Gaussian mixture models to the samples. When the samples
are unimodal, we fit a mixture consisting of a single group. For samples with
bimodality present, we fit a mixture with two groups and use one of the estimated
modes as our estimate.
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Figure 4.1: Comparison of the joint posterior distribution of wx and wy from
Example 4.1, for both isotropic (top) and anisotropic (bottom) data. The MCMC
samples from BayesNSGP are shown as a hexagonal bin plot, where a darker
color indicates higher density. The black and white lines are estimated density
level curves based on the samples from BayesNSGP and INLA, respectively. In
addition, we show the marginal densities of wx and wy opposite the x- and y-axis
for BayesNSGP ( ) and INLA ( ).



Chapter 5

Simulation study

In this simulation study we generate data from known spatial processes and
perform inference on the data with several candidate models from Chapter 3. The
goal is to get an understanding of under which circumstances a model performs
well, with respect to both prediction scores, and in the estimation of central
features, such as the correlation structure and marginal variance.

We generate the data from four GRF models, in which two are stationary
and two are non-stationary. We refer to the resulting studies as Studies 1, 2, 3,
and 4. Both the GRFs and the results obtained with the candidate models are
presented, and the chapter ends with a discussion of the results. We start by
describing the general setup of the study.

5.1 Study setup
Our aim is to construct a set of simulation studies that consists of realistic sce-
narios. Given a spatial process over a region, this typically entails observing its
value only in certain irregular locations, usually corresponding to measurement
stations. Therefore, we generate realizations from a spatial process and observe
its value only in a fixed number of uniformly sampled locations. For each study,
the observed process is on the form

ψ(s) = 1 + ω(s), s ∈ D, (5.1)

where ω(·) is a centered GRF representing a spatial effect and D is the rectangle
[−5, 5]2. The covariance structure of ω(·) is specified in each study. While it
is common to let the mean depend on covariates, this leads to a non-stationary
mean structure. Furthermore, it is impossible to separate a non-stationary co-
variance structure from a non-stationary mean structure given only a single re-

51



52 CHAPTER 5. SIMULATION STUDY

alization (Gelfand et al., 2010, page 30). As our focus is on non-stationarity
in the covariance structure, we therefore let the mean be stationary throughout
this simulation study. For all studies, we use the GMRF approximation from
Section 3.1 to generate realizations from ω(·). This allows us to quickly obtain
entire realizations of ω(·) even for large grid sizes. We avoid boundary issues by
generating the realizations on a rectangle larger than D.

We observe the value of ψ(·) with measurement error in 1000 uniformly sam-
pled locations s1, . . . , s1000, leading to the pairs (yi, si)

1000
i=1 where yi = ψi + εi.

Here ψi = ψ(si) and ε1, . . . , ε1000
iid∼ N (0, 0.12) is unstructured noise representing

measurement error. The first minf pairs are used for the model inference. The
values of the process in the remaining mpred = m−minf locations are predicted,
and compared with the true, observed values using the prediction scoring rules
described in Section 2.4. The values of minf and mpred are specified in each
study, and we increase the value of minf as the process ω(·) becomes more com-
plex. Note that the value of the structured component ψi is predicted, not yi.
When evaluating the predictions, we therefore use ψi as the true values.

This procedure of simulating observations, estimating the models and pre-
dicting unobserved locations is replicated 20 times in each study, using different
data and observation locations each time. While 20 replications are insufficient
for making any definite conclusions, it is sufficient for getting an understanding
of how the different models perform.

The model used for the inference is the LGM described in Section 4.1. We let
η(·) consist of only an intercept µ and a spatial effect u(·), so that

η(s) = µ+ u(s), s ∈ D,

and the response at location si satisfies yi | η(si), σε ∼ N (η(si), σε) for i =
1, . . . , 1000, where σε is the standard deviation of the measurement error. For
each study, we perform inference using five candidate models for u(·): The SPDE-
based S-ISO, S-ANISO, S-NS1, and S-NS2, and the kernel-based K-NS. These
models are presented in Chapter 3. There is an imbalance, as we use four SPDE-
based models and only one from the kernel-based approach. While we could also
include the stationary K-ISO and K-ANISO, these lead to the same covariance
structures as S-ISO and S-ANISO, respectively. For this simulation study, we
therefore only include the stationary models from the SPDE-based approach.

In order to minimize the effects from the periodic boundary conditions, the
inference with the SPDE-based models is done on [−10, 10]2 with a 200 × 200
grid. This leads to a 100×100 grid on the region of interest, D. For K-NS we use
an exact Gaussian likelihood, and generate 50000 posterior samples of the model
parameters. While the MCMC chains usually converge well within the first 500
samples, we dismiss the first 5000 as burn-in to be certain. Out of the remaining
45000, we use 5000 thinned samples for generating the posterior predictions.
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Ideally, more samples should be generated for both the model estimation and the
prediction, but we limit ourselves due to time constraints.

In K-NS, we let the marginal standard deviation σ(·) be spatially constant.
The same holds for the approximation σ(·) in S-NS1 and S-NS2. In general, the
latter two models lead to a marginal standard deviation that is not constant.
When a single value of the marginal standard deviation is mentioned in the
context of these two models, we have computed the partial inverse of the precision
matrix Q and used the diagonal elements to compute a spatial average standard
deviation over D.

In S-NS1, S-NS2, and K-NS, the functions log(ρ(·)), wx(·), and wy(·) are mod-
eled using regression on spatial covariates. For φ(·) ∈ {log(ρ(·)), wx(·), wy(·)}, we
let φ(·) consist of an intercept and a single covariate effect:

φ(s) = φ0 + βφzφ(s), s ∈ D.

In the cases where a "true" covariate exists, i.e., a covariate is used when gen-
erating the observed data, this is used for zφ(·). Otherwise, we let zφ(·) be the
standardized x-coordinate of the location, where the standardization is done so
that zφ(·) has mean 0 and standard deviation 1 over D. The covariates used in
each study is specified closer in Section 5.2.

In addition to µ and σε, the models will have an additional number of pa-
rameters depending on which parametrization is used for u(·). The covariance
structures of the stationary models S-ISO and S-ANISO are specified by 2 and
4 parameters, respectively. The non-stationary models S-NS1, S-NS2, and K-NS
each contain 7 parameters in total.

5.2 Study designs

Here we present the choices that are particular to each Study, such as the values
of minf and mpred, and the GRF ω(·) from Equation (5.1). For consistency, we let
every ω(·) have a constant marginal variance equal to 1. While S-NS2 in Study 4
leads to a spatially varying marginal variance, we only sample data from regions
where it is constant and equal to 1. The correlation structure is demonstrated by
computing the correlation between the grid cell closest to (0, 0) and the rest of
the grid, except in Study 3, where we show level curves centered in 3 locations.

Study 1

We use minf = 50 data points for inference, and the remaining mpred = 950 for
evaluating predictions. The GRF ω(·) is stationary and isotropic, with an effective
range of 3. In Figure 5.1 we show a realization from ω(·) on a 100 × 100 grid,
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Figure 5.1: GRF ω(·) used in Study 1. (a) The correlation between location (0, 0)
and D, with the 0.14 level curve ( ). (b) Realization of ω(·) with an example
of 50 uniformly sampled locations (•). Both figures use a 100× 100 grid for D.

and a demonstration of the correlation structure. As expected, the correlation
structure has circular level curves, and the realization does not seem to exhibit
a stronger degree of dependency along any direction.

For S-NS1, S-NS2, and K-NS, the standardized x-coordinate is used as the
covariate in ρ(·), wx(·), and wy(·).

Study 2
We increase the number of observations used for inference to minf = 100, and use
mpred = 900 for evaluating predictions. We let ω(·) be a stationary GRF with
geometric anisotropy. The longest and shortest effective ranges are equal to 3 and
0.5, and the longest range is in the direction (1, 1). Figure 5.2 shows a realization
of ω(·) and its correlation structure. The level curves of the correlation structure
are elliptic, and the realization clearly has a higher degree of dependency along
(1, 1).

For S-NS1, S-NS2, and K-NS, the standardized x-coordinate is used as the
covariate in ρ(·), wx(·), and wy(·).

Study 3
The number of locations used for inference is increased again, leading to minf =
200 and mpred = 800. We generate ω(·) from the non-stationary model S-NS1E
from Section 3.1, which allows us to control the marginal variance exactly. For
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Figure 5.2: GRF ω(·) used in Study 2. (a) The correlation between location (0, 0)
and D, with the 0.14 level curve ( ). (b) Realization of ω(·) with an example
of 100 uniformly sampled locations (•). Both figures use a 100× 100 grid for D.

this study, we consider the same setup as in Example 3.2. We let

H(s) =
1

8
ρ2(s)

(
I2 +w(s)w(s)T

)
, s ∈ D

where the baseline effective range function ρ(·) is spatially constant and equal to
1, while the vector function w(·) is shown in Figure 5.3a. We show w(·) over
the entire SPDE model region [−10, 10]2, and the vector field is zero outside the
passage. Further, our region of interest is not D, but rather D \ [−5, 1.5]2, which
is outlined in red.

Figure 5.4a demonstrates the correlation structure around the grid cells closest
to (−3.25, 3.25), (3.25, 3.25) and (−3.25, 3.25). Since the vector field is constant
in the vicinity around (−3.25, 3.25) and (3.25,−3.25), the correlation structures
centered in these points look nearly geometrically anisotropic. This does not hold
around (3.25, 3.25), where the correlation structure follows along the changing di-
rection of the vector field. The realization shown in Figure 5.4b further underlines
this, as there clearly is a stronger degree of dependency along the direction of
w(·).

For S-NS1, S-NS2, and K-NS, the x- and the y-components of w(·) are
used as the covariates in wx(·) and wy(·), respectively, while the standardized
x-coordinate is used in ρ(·).
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Figure 5.3: (a) The vector field w(·) used in Study 3. The length of the arrows
have been scaled by a factor of 0.12, and w(·) is zero outside the passage. The
region of interest is outlined in red. (b) The effective range process ρ(·) from
Study 4, on a 100× 100 grid. The minimum value is 0.012.
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Figure 5.4: GRF ω(·) used in Study 3. (a) The correlation structure between the
grid cells closest to (−3.25, 3.25) ( ), (3.25, 3.25) ( ) and (3.25,−3.25) ( )
and the rest of the passage. Level curves are shown, for eight levels evenly spaced
between 0.14 and 0.95. (b) Realization of ω(·) with an example of 200 uniformly
sampled locations (•). Both figures use a 100× 100 grid for D.
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Study 4
We use minf = 200 and mpred = 800, as in Study 3. In this study we generate
ω(·) from S-NS2. Taking inspiration from Example 3.1, we let

H(s) =
1

8
ρ2(s)I2, s ∈ D,

where the effective range function ρ(·), which is shown in Figure 5.3b, is given
by log(ρ(s)) = log(5)− f(s), where

f(x, y) = 6 exp

[
−80

(
1 + cos

(
2πx

4

))]
, (x, y) ∈ D. (5.2)

We see that ρ(·) is constant and equal to 5, expect for two barriers where the
value rapidly decreases to a minimum of 0.012. Based on what we observed in
Example 3.1, this results in three GRFs that are almost independent. This is
further demonstrated in Figure 5.4. The correlation structure is "stopped" by
the barriers, and there is no dependency between locations on opposite sides.
The realization looks stationary and isotropic in each of the three sub-regions.

For the kernel-based K-NS, using locations too close to the barriers leads
to covariance matrices that are not positive definite, during both inference and
prediction. We avoid this by requiring that the observed locations have a distance
of at least 0.25 from the nearest barrier. In this way, we also avoid sampling data
from where the marginal variance is different from 1, which happens along the
barriers.

For S-NS1, S-NS2, and K-NS, the function f(·) from Equation (5.2) is used
as the covariate in the regression for ρ(·), while the standardized x-coordinate is
used for wx(·) and wy(·).

5.3 Prior distributions
In Sections 3.3 and 4.1, the chosen families of prior distributions used for µ, σε,
and the parameters specifying the covariance structure of u(·), are described. Be-
fore inference can be done, the hyperparameters of these priors must be chosen.
In a simulation study, selecting sensible values for these hyperparameters is easy,
as the true values of all parameters are known. We therefore choose hyperpa-
rameters leading to wide priors that cover the true values. In this way, the true
values can be recovered from the observed data, but we do not force the model
to obtain the correct values.

The intercept, with true value 1, is given the prior µ ∼ N (0, 1002). For the
standard deviation σε, with true value 0.1, we let U = 0.5 and α = 0.1 in the PC
prior, so that P(σε > 0.5) = 0.1. Next, we specify the priors for ρ, wx, wy, and σ
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Figure 5.5: GRF ω(·) used in Study 4. (a) The correlation between location (0, 0)
and D, with the 0.14 level curve ( ). (b) Realization of ω(·) with an example
of 200 uniformly sampled locations (•). Both figures use a 100× 100 grid for D.

Table 5.1: Hyperparameters for priors of covariance structure parameters. See
Section 3.3 for more details.

Study ρ, ρ0 wx, wy, wx,0, wy,0 σ, σ0 Regression coeff.

µρ vρ vw µσ vσ vNS

1 0.549 1.46 1.58 −0.347 0.998 0.5
2 0.5
3 1.5
4 1.5

in S-ISO and S-ANISO. The same priors are used for the corresponding baseline
parameters in the non-stationary models, i.e., ρ0, wx,0, wy,0, and σ0. We follow
the approach outlined in Section 3.3, with credibility level α = 0.05.

The true values of the effective range, or baseline effective range, are 3, 1, 1,
and 5 in the different studies. We let the lower and upper bound be ρlower =

0.1 and ρupper = 30. In Study 2, the anisotropy strength
√

1 + w2
x + w2

y is 3.
Otherwise, its value is 1. The upper bound wstrength is therefore set to 4, so that
P
(√

1 + w2
x + w2

y > 4
)

= 0.05. Finally, the marginal standard deviation is 1 in
every study. The bounds used are σlower = 0.1 and σupper = 5. Table 5.1 shows
the resulting hyperparameters.
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Figure 5.6: The process ω(·) from Study 3 with βρ = βwx = βwy = 1.5. See
Figure 5.4 for details.

Choosing a reasonable value for the standard deviation vNS of the non-stationary
regression coefficients is more difficult. For Studies 1 and 2, all of the coefficients
have a true value of 0. Since few observations are used for inference, a restrictive
prior should be chosen. We therefore let vNS = 0.5 in the first two studies. In
Studies 3 and 4, the spatial covariates have been scaled so that the values of the
non-zero regression coefficients are 1 or −1. For these studies, we use vNS = 1.5.
Figure 5.6a shows the correlation structure of the process from Study 3 with
βρ = βwx = βwy = 1.5 instead of the true values βρ = 0 and βwx = βwy = 1.
Compared to Figure 5.4a, the effect of the vector fieldw(·) is clearly stronger, and
the size of the correlation structre seems to be increasing with the x-coordinate.
This can also be seen in the realization shown in Figure 5.6b, where there seems
the be longer dependencies in the right-hand portion of the region.

5.4 Results
The results based on 20 replication runs are presented, where new data is gen-
erated for each replication. In each study, we qualitatively compare the true
correlation structure to the ones estimated during the inference. For each model,
we find a replication run where the posterior estimates of the parameters are close
to the average estimates, and the resulting estimated model is representative for
all 20 replications. Using the posterior median of the parameters, we can then
compute the correlation structure.
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Figure 5.7: CRPS and RMSE from Study 1, using 950 prediction locations and
20 replications. Each model has one point for each replication, with the score of
the candidate model along the y-axis and the score of S-ISO along the x-axis.

Table 5.2: Mean values of the prediction scores from Study 1 based on 20 repli-
cations.

Model CRPS RMSE

S-ISO 0.319 0.588
S-ANISO 0.329 0.605
S-NS1 0.328 0.603
S-NS2 0.328 0.602
K-NS1 0.328 0.603

Study 1 (Data from stationary, isotropic GRF). In Figure 5.7 we show the
CRPS and RMSE based on the 950 prediction locations for the 20 replications.
Since S-ISO is equivalent to the model which ω(·) was generated from, its score
is plotted along the x-axis. The y-coordinate of each point is the score of the
candidate model, indicated by shape and color. As a result, the points that are
vertically aligned come from the same replication. The diagonal line indicates
which model performed best; S-ISO is best for points above the line, while the
candidate model is best for points below it.

While S-ISO almost always performs better than the more complex models,
the difference is small on average. For a few select replications, some of the
candidate models have marginally lower scores. The mean values of the CRPS
and RMSE are listed in Table 5.2. For both scores, S-ISO leads to the lowest
average, while the remaining models are slightly higher.
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Figure 5.8: Boxplots of the posterior mean estimates of the marginal and nugget
standard deviation from Study 1, based on 20 replications. The mean of the
estimated values (×) and the true value ( ) are also shown.

Boxplots of the posterior mean estimates of the marginal standard deviation
and the measurement error standard deviation σε are shown in Figure 5.8, with
the true value marked by a red line. The parameters are estimated well by all
models, with some positive bias apparent. K-NS seems to overestimate both
somewhat more than the SPDE-based models.

Figure 5.9 shows a comparison between the true correlation structure and an
example of the estimated correlation structure from each model. The isotropic
model S-ISO gives the correct type of correlation structure, but overestimates
the effective range. In the remaining models, the baseline effective range is close
to 3, which is the true value of the effective range. However, there is also clear
anisotropy present, leading to a considerably longer range along one direction.
The correlation structures estimated by the non-stationary models look very sim-
ilar to the geometric anisotropy in S-ANISO, and there is no clear indication of
non-stationarity.

4

To summarize, the best choice for prediction of an isotropic process is to use
an isotropic model. However, due to a suitable choice of priors, both S-ANISO
and the non-stationary models lead to predictive performances close to S-ISO.
Next, we investigate if this also holds the other way around: Can an isotropic
model predict data from an anisotropic model well?

Study 2 (Data from stationary, anisotropic GRF). In Figure 5.10, the prediction
scores after 20 replications are shown. We let the score of the true model S-ANISO
be along the x-axis. One models stands out immediately, which is S-ISO. While
the four other models have indistinguishable performance, S-ISO is significantly
worse in every replication. This is summarized in Table 5.3, where the mean
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Figure 5.9: Comparison between the true and estimated correlation structures
from a single replication in Study 1, with the 0.14 level curve shown in black.
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Figure 5.10: CRPS and RMSE from Study 2, using 900 prediction locations and
20 replications. Each model has one point for each replication, with the score of
the candidate model along the y-axis and the score of S-ANISO along the x-axis.

Table 5.3: Mean values of the prediction scores from Study 2 based on 20 simu-
lation runs.

Model CRPS RMSE

S-ISO 0.382 0.702
S-ANISO 0.351 0.650
S-NS1 0.351 0.649
S-NS2 0.352 0.650
K-NS 0.351 0.649

CRPS and RMSE are notably higher for S-ISO, when compared to the other
models.

Boxplots of both the marginal standard deviation and the nugget standard
deviation are shown in Figure 5.11. These are both recovered comparably well
by all five models, and the estimated bias is low.

Figure 5.12 shows a comparison between the true and estimated correlation
structures. Since S-ISO is isotropic, it is not able to recover the true correlation
structure. Instead, it finds a compromise by estimating an effective range some-
where between 1 and 3, the true values of the shortest and longest effective ranges.
S-ANISO and the non-stationary models lead to correlation structures that are
very close to the truth. While the direction of longest range is identified correctly,
the strength of the anisotropy, i.e., the ratio between the longest and shortest
range, is underestimated somewhat. For the non-stationary models, there is no
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Figure 5.11: Boxplots of the posterior mean estimates of the marginal and nugget
standard deviation from Study 2, based on 20 replications. The mean of the
estimated values (×) and the true value ( ) are also shown.

indication that the estimated correlation structures are non-stationary. 4

As expected, the isotropic model S-ISO leads to noticeably worse predictions
when applied to anisotropic data. In addition, the non-stationary models recover
the stationarity of the data, and have prediction performances comparable to
the true model S-ANISO. In the next study, the direction of the longest range
changes throughout the region.

Study 3 (Anisotropy with changing direction, data generated from S-NS1E).
The CRPS and RMSE from each replication are shown in Figure 5.13. The
score of the model S-NS1 is along the x-axis. There is a clear divide between
the stationary and non-stationary models. The SPDE-based models S-NS1 and
S-NS2 are nearly indistinguishable, both in CPRS and RMSE. Despite having a
qualitatively different correlation structure, the kernel-based K-NS is very close
to S-NS1 and S-NS2 in performance. Since S-ISO and S-ANISO are unable
to explain the varying direction of longest range, they lead to scores that are
considerably higher. This can also be seen from Table 5.3.

The marginal standard deviation, shown in Figure 5.14a, is estimated with
significantly higher bias for S-NS2, when compared to the remaining models.
Figure 5.14b shows the estimated measurement error standard deviations. The
stationary models seem to estimate it with somewhat higher bias that the non-
stationary models.

Figure 5.15 demonstrates the true and estimated correlation structures. This
is done by showing levels curves of the correlation structures centered in the grid
cells closest to three points, namely (3.25, 3.25), (−3.25, 3.25), and (3.25,−3.25).
Since S-ISO and S-ANISO are stationary, the correlation structure is the same
around all three points. As in Study 2, S-ISO finds a compromise by estimating a
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Figure 5.12: Comparison between the true and estimated correlation structures
from a single replication in Study 2, with the 0.14 level curve shown in black.
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Figure 5.13: CRPS and RMSE from Study 3, using 800 prediction locations and
20 replications. Each model has one point for each replication, with the score of
the candidate model along the y-axis and the score of S-NS1 along the x-axis.
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Table 5.4: Mean values of the prediction scores from Study 3 based on 20 simu-
lation runs.

Model CRPS RMSE

S-ISO 0.261 0.484
S-ANISO 0.260 0.483
S-NS1 0.190 0.358
S-NS2 0.190 0.358
K-NS 0.195 0.366
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Figure 5.14: Boxplots of the posterior mean estimates of the marginal and mea-
surement error standard deviation from Study 3, based on 20 replications. The
mean of the estimated values (×) and the true value ( ) are also shown.
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Figure 5.15: Comparison between the true and estimated correlation structures
from a single replication in Study 3. The levels curves at eight levels evenly
spaced between 0.14 and 0.95 are shown, centered in the grid cells closest to
(3.25, 3.25) ( ), (−3.25, 3.25) ( ), and (3.25,−3.25) ( ).

range somewhere between the longest and shortest ranges of the true correlation
structure. The same holds for S-ANISO, which also estimates some anisotropy.
S-NS1 and S-NS2 both lead to correlation structures very close to the truth. The
anisotropy is correctly explained by the spatial covariates given by the function
w(·) in Figure 5.3a, while the baseline anisotropy (wx,0, wy,0) is estimated close
to 0.

K-NS leads to a qualitatively different correlation structure in the portion
of the passage where the direction of w(·) is changing. As a result, the corre-
lation structure around (3.25, 3.25) does not follow along the direction of w(·),
in contrast to S-NS1 and S-NS2. Note, however, that the correlation structure
close to the center (3.25, 3.25) is quite similar for all three non-stationary mod-
els. The same holds for the entire correlation structures around (−3.25, 3.25) and
(3.25,−3.25), where w(·) is constant. 4

There is a clear gain in performance from using a non-stationary model when
dealing with data from a non-stationary process. In addition, the kernel-based
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Figure 5.16: CRPS and RMSE from Study 4, using 800 prediction locations and
20 replications. Each model has one point for each replication, with the score of
the candidate model along the y-axis and the score of S-NS2 along the x-axis.

Table 5.5: Mean values of the prediction scores from Study 4 based on 20 simu-
lation runs.

Model CRPS RMSE

S-ISO 0.156 0.303
S-ANISO 0.156 0.301
S-NS1 0.145 0.274
S-NS2 0.145 0.274
K-NS 0.160 0.306

model is only marginally worse than the true SPDE-based model, despite leading
to qualitatively different correlation structures. The next study demonstrates a
situation where the SPDE-based approach leads to better predictive performance
than the kernel-based approach.

Study 4 (Barriers of short range, data generated from S-NS2). In Figure 5.16 we
see the CRPS and RMSE from the 20 replications. The score of the true model
S-NS2 is plotted along the x-axis. Other than S-NS1, which has performance
comparable to S-NS2, every model is worse. For many replications, the non-
stationary K-NS is actually worse than the stationary models, despite the fact
that the data comes from a non-stationary process. In addition, Table 5.5 tells
us that K-NS has the highest average CRPS and RMSE.

Figure 5.17a shows the estimates of the marginal standard deviation. S-NS2
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Figure 5.17: Boxplots of the posterior mean estimates of the marginal and nugget
standard deviation from Study 4, based on 20 replications. The mean of the
estimated values (×) and the true value ( ) are also shown.

and K-NS lead to a somewhat higher bias than the remaining models. From
Figure 5.17b we see that the stationary models struggle with the nugget standard
deviation, as both models lead to an average estimate around half of the true
value. The non-stationary models are, on average, much closer to the truth.

In Figure 5.18 the true and estimated correlation structures are shown. Both
S-ISO and S-ANISO give reasonable estimates for the effective range, with some
anisotropy apparent in S-ANISO. The correlation structure estimated with S-
NS2 is close to indistinguishable from the truth. For S-NS1 the main features
are recovered well, but the level curve has a different shape. K-NS seems to
underestimate the effective range somewhat. It also estimates a short range
along the barriers, which leads to multiple level curves.

As discussed in Example 3.1, the correlation structure obtained by K-NS
is different from the one given by S-NS1 and S-NS2. With the kernel-based
model, the barrier only affects the correlation close to its vicinity, which allows for
dependencies through the barrier. In Figure 5.19, we consider the 20·800 = 16000
predictions made by each model after 20 replications. Based on these predictions,
we estimate the average CRPS and RMSE as a function of distance from the
nearest barrier, which is shown as a smooth line.

For all five models, the average score increases as the distance decreases. This
make sense, as there are fewer observations close to the barriers. That being said,
S-ISO, S-ANISO, and K-NS do significantly worse than S-NS1 and S-NS2 for
small distances. The latter two are able to make the three regions independent
by estimating βρ small enough. The former three are unable to do this, and
will use observations from multiple regions when making predictions close to the
barrier. Since observations from different regions are approximately independent
on each other, this leads to worse predictions. 4
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Figure 5.18: Comparison between the true and estimated correlation structures
from a single replication in Study 4, with the 0.14 level curve shown in black.
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Figure 5.19: The estimated mean CRPS and RMSE from Study 4 as a function
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tances, K-NS overlaps with S-ISO and S-ANISO, while S-NS1 and S-NS2 overlap
at a smaller mean score.
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Table 5.6: True values for parameters in Studies 1 and 3.

Study True value

ρ0 ρ1 wx,0 wx,1 wy,0 wy,1 σ

1 3 0 0 0 0 0 1
3 1 0 0 1 0 1 1

In conclusion, using a model with the wrong type of non-stationary will lead to
worse performance. It is therefore important to choose a model that can represent
the type of non-stationary present in the phenomenon under consideration.

5.5 Prior sensitivity

In the parametrizations S-NS1, S-NS2, and K-NS, the functions ρ(·), wx(·), and
wy(·) are modeled by regression on spatial covariates. Choosing the standard
deviation vNS for the priors of the regression coefficients ρ1, wx,1, and wy,1 was
done in an arbitrary fashion, ensuring only that the prior covers the true value
of each coefficient. The choice of vNS can have significant influence on the model
estimated during inference. If vNS is too small, then the model might not be able
to estimate the true value of the parameter. At the same time, a big value for
vNS can lead to a model containing superfluous parameters. This is particularly
important when few observations are available, as spurious patterns in the data
can be captured and explained as non-stationarity, even when the data comes
from a stationary process.

In order to investigate the effect of vNS on the resulting estimated model
and predictions, we observe data from the stationary process in Study 1 and the
non-stationary process in Study 3, and perform inference using the SPDE-based
S-NS1 and the kernel-based K-NS. The covariates used for ρ(·), wx(·), and wy(·)
are the same as in Study 3. The models are fitted with different values for vNS,
using vNS = 2i for i = −4,−3, . . . , 3. We observe the processes in 1000 uniformly
sampled locations. First, we use use minf = 50 for inference and mpred = 950 for
prediction. Afterwards, we let minf = 200 and mpred = 800. This is replicated 5
times, and new data is simulated for each replication.

Figure 5.20 shows the average posterior mean parameter estimates when
minf = 50. For the parameters with multimodal posteriors (wx,0, wx,1, wy,0,
and wy,1), we take the absolute value before computing the average. The non-
stationary parameters are shown as dashed lines, while the remaining are shown
as full lines. As vNS decreases, the dashed lines all go to 0, as expected. For the
stationary data, the model estimated for small values of vNS is much closer to the
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truth than for large values. For the non-stationary data, the estimated values of
wx,0 and wy,0 increase as wx,1 and wy,1 decrease, as an attempt to explain the
changing direction of the anisotropy. In addition, wx,1 and wy,1 grow past their
true value of 1 as vNS increases.

In Figure 5.21, we show the CRPS based on the prediction of 950 locations.
When the process is stationary, we get better predictions as vNS decreases and
the model is forced to become stationary. The change in CRPS, however, is very
marginal. For the non-stationary process, the results are much more dramatic:
forcing the model to be stationary leads to significantly worse predictions. In
addition, letting vNS be too large also leads to an increase in CRPS. The lowest
CRPS is obtained with a vNS somewhere between 0.5 and 2.

After increasing minf to 200, we obtain Figure 5.22. When the data comes
from the stationary process, the effect of vNS is almost non-existent. The re-
gression coefficients are estimated close to 0 independently of the prior standard
deviation. For the non-stationary data, the results are similar to what we saw
with minf = 50, only smoother. As vNS decreases, both wx,1 and wy,1 vanish to 0,
while wx,0 and wy,0 increase. In addition, there is little change in the estimated
values for vNS > 0.5, and all of the curves flatten out.

The average CRPS forminf = 200 is shown in Figure 5.23. The effect of vNS on
predictions is practically non-existent when the data is stationary, which agrees
with what we observed in Figure 5.22. For the non-stationary data, the value
increases sharply as vNS decreases. As opposed to what we saw for minf = 50,
the curve flattens out for vNS > 0.5, which also agrees well with the average
parameter estimates.

5.6 Discussion
The results from the simulation studies indicate that, for stationary data, the
non-stationary models lead to prediction performance comparable to the true,
stationary model. When the observed data comes from a non-stationary process,
however, the non-stationary models generally lead to significantly better results.
The exception is K-NS in Study 4, as the kernel-based approach leads to the
wrong type of non-stationary covariance structure.

In all four studies, we generate the observed data from the SPDE-based
GMRF approximation. This is also done for Studies 1 and 2, where the ob-
served process is stationary. While it is easy to simulate from stationary GRFs,
a 200 × 200 grid is large enough to make the differences between the GRF and
GMRF negligible. A more crucial thing to note, is that the locations of the ob-
served data coincide with centroids in the SPDE grid. When the locations are
truly irregular, as is usually the case when dealing with real data, the SPDE
approach must match each observation to the closest grid cell. As a result, there
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Figure 5.20: Average parameter estimates for different vNS, based on 5 replica-
tions. minf = 50 observations are used for inference. For the parameters with
multimodal posteriors (wx,0, wx,1, wy,0, and wy,1), the absolute value is taken
before computing the average.
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Figure 5.21: Average CRPS for different vNS, based on 5 replications. minf = 50
and mpred = 950 observations are used for inference and evaluating predictions,
respectively.
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Figure 5.22: Average parameter estimates for different vNS, based on 5 repli-
cations. minf = 200 observations are used for inference. For the parameters
with multimodal posteriors, wx,0, wx,1, wy,0, and wy,1, the absolute value is taken
before computing the average.
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Figure 5.23: Average CRPS for different vNS, based on 5 replications. minf = 200
and mpred = 800 observations are used for inference and evaluating predictions,
respectively.
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will usually be some error due to this interpolation. The results obtained for the
SPDE might therefore not reflect the performance we would get for fully irregular
locations.

Separating the mean and covariance structure based on observed data is, in
general, difficult. Given only a single realization, it is impossible. We focused
on the role of the covariance structure by generating the observed data from
processes with constant mean structure, and specifying models with mean func-
tions consisting of only an intercept. This makes the ability to estimate the true
covariance structure crucial, which was seen in Study 3. S-ISO and S-ANISO
are unable to model a covariance structure with changing direction of longest
range, and therefore did significantly worse than the non-stationary models in
both CRPS and RMSE. In a more realistic setup, covariates would be included
in the mean function.

As seen in the prior sensitivity analysis, choosing a reasonable value for the
coefficient standard deviation vNS is critical, as it affects both the estimated
model and its predictive performance. This is particularly important when few
observations are available. If vNS is too small, any non-stationarity present in the
data can not be captured by the model. Letting vNS be too large, however, leads
to non-stationary models even when the data comes from a stationary process.
When more data is available, the situation changes somewhat. For stationary
data, the value of vNS now has more or less no effect on neither the model nor
its predictions. For non-stationary data, both the parameter estimates and the
predictions become worse as vNS decreases towards 0. This indicates that, when
the size of the observed data is large, a large value of vNS should be used.
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Chapter 6

Case study: Annual
precipitation in the CONUS

In this chapter, we apply the parametrizations described in Chapter 3 to real data,
and compare stationary and non-stationary models from the SPDE- and kernel-
based approaches. This is done both by five-fold cross-validation, and by dividing
the data into a grid of boxes and holding out a single box at a time. Finally, we
perform inference using the full dataset, and compare both the predictions and
covariance structures obtained with the best models from both approaches.

6.1 Data

We take inspiration from Risser and Turek (2019), and consider the daily average
precipitation rate over the contiguous United States (CONUS) in the 2018 water
year (October 1, 2017 to September 30, 2018). While the raw data is available
from the Global Historical Climate Network-Daily database (Menne et al., 2012),
the dataset used in Risser and Turek (2019) has not been made publicly available,
and therefore had to be recreated manually. We did this downloading the daily
precipitation data from 2017 and 2018, which are 1.2 GB for each year. In
total, these datasets contain daily measurements from around 27000 stations
in the CONUS. We extract the measurements from the CONUS and period of
interest, and discard data from any measurement station with missing data in the
period. That is, we only consider the stations where measurements for all 365 days
available. In the end, we are left with values from 5061 measurement stations.
Among these, we remove four stations that have the exact same coordinates as
another station, resulting in a final number of 5057. Risser and Turek (2019),
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however, end up with 2311 stations in total. Closer examination indicates that
none of their stations are missing from our data, and we do not investigate this
discrepancy any further.

In Figure 6.1, we show the resulting daily average precipitation in millimeters
per day, using a logarithmic scale on the colorbar. The elevation over the CONUS
is also shown. There seems to be a clear connection between the elevation and
the rate of precipitation. East of the 90◦W meridian, the elevation is low, and the
precipitation is very homogeneous. The values are similar in scale, and changes
occur smoothly over distance. In the western region, however, there is more
variation. Around the Rocky Mountains, where the elevation is high, there are
both yellow and blue points clustered together, and the spatial dependencies seem
to have much shorter range.

For the remainder of this chapter, we limit ourselves to the western portion
of the CONUS, and remove observations east of the 90◦W meridian. Our region
of interest D is then the portion of the CONUS that lies to the west of this
meridian. The resulting data consists of 3353 measurement stations, which are
shown in Figure 6.2. The grey, dashed rectangle indicates the extent of the data,
which contains the region of interest. In the SPDE-based models, boundary
effects are avoided by using a larger rectangle. The rectangle used is shown in
blue, and is obtained by extending the grey rectangle 25% in every direction.

6.2 Models

Let the data be (yi, si) for i = 1, . . . , 3353, where yi is the average annual precip-
itation and si is the location of the measurement station. We model this process
by using the LGM described in Section 4.1, so that

log(yi) = η(si) + εi, i = 1, . . . , 3353.

The logarithm of the precipitation is used to make the Gaussian assumption
more natural. The precipitation has a lower bound of 0, while its logarithm
can take on values from the entire real line. The measurement errors satisfy
ε1, . . . , ε3353

iid∼ N (0, σ2
ε), and we let

η(s) = µ+ x(s)Tβ + u(s), s ∈ D,

where µ is the intercept, x(·)Tβ is a linear effect, and u(·) is a spatial effect. The
spatial covariates used in the linear effect are the elevation, the longitude and an
interaction between these two, leading to

x(s) = (zelev(s), zlong(s), zelev(s)zlong(s)) , s ∈ D,
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Figure 6.1: Top: Daily average precipitation in the 2018 water year, from 5057
measurements stations over the contiguous US. Note that the colors use a loga-
rithmic scale. Bottom: Elevation over the contiguous US in meters.



80CHAPTER 6. CASE STUDY: ANNUAL PRECIPITATION IN THE CONUS

●
●

●

●

●

●
●●

●

●

●●●●●●
●

●
●

●●

●

●

●

●●●
● ●●
●
●●
●●
●
●●●

●
●●●
●

● ●
●

●●
●

●●●●
●

●
●●●
●
●●●
●●●●●●●●

●
●
●

●●

●

●
●●●●

●●

●

●●●

●●●●

●●● ●

●

●

●

●

●●
●

●

●
●

●
●
●

●

●

●

●

●

●
●

●●●

●

●● ●●●
●

●●

●

●●●●●●

●●
●●
●●●

●
●

●
●
●●
●
●

●●
●●●

●
●

●
●

●
●

●●●●
● ●

●●●
●

●

●

●●●

●

●●●
●

●●●
●

●

●
●
●●●●

●

●
●

●

●

●
●

●●

●●●
●
●

●

●●
●●●●●
●

●

●

●●

●●

●

●

●
●
●●●●●

●

●

●
●●●●
●●●●
●●

●

●

●●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●
●●
●
●
●●●●

● ●●

●●

●●●

●

●
●

●●●

●

●

●●

●

●

●

●
●
●

●
●

●
●

●

●
●

●●

●
●

●
●●

●

●●

●●●

●

●●

●●●● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●
●

●

●

●● ●●

●●●●

●●

●●

●

●
●

● ●

●●
●●

●●

● ●
●

●

●
●●●

●

●●●●●●●●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●
● ●

●
●●

●
●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●
●

●●●●●●●

●
●

●

●
●●●●
●

●

●

●

●

●●●● ●
●

●

●
●●

●
●

●
●

●

●●●

●
●

●
●

●●●●●
●

●
●

●
●

●

●
●●

●
●●●●

●

●

●

●

●

●●●●
●
●●

●

●

●

●●●

●

●● ●

●●

●

●

●

●●● ●

●

●●●●●

●

●

●●

●

●●

●

●●

●

●●

●
●

●

●

●

●

●
● ●

●●●●
●●

●●
●●
●●

●● ●
●●

●

● ●
●●

● ●
●●●

● ●●

●
●

●●

●

●

●●

●

●

●●

●●●●

●
●

●

●

●
●

●

●●●

●

●

●●●●●●●

●

●●●

●

●
●●●

●●
● ●●

●●

●●●●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●●
●●●●●

●●

●

●
●

●

●

●●●●
●●
●

●

●

●
●

●

●

●●

●●

●●●

●●
●

● ●

●

●
●

●●

●

●

●
●
●●●●

●

●

●●

●

●●●

●●

●

●●●●
●

●●●

●●●●

●

●

●

●
●●

●●

●

●

●●

●

●
●

●●●

●
●●

●●

●●●

●
●

●

●

●●

●

●●

●●

●

● ●●●

●
●● ●●

●●
●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●●

●
●

●●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●● ●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

● ●

●● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●●

●

●● ●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

● ●

●●

●

●
●

●

●●

●

●

●

●
●
●

●●●

●
●

●●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●● ●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ● ●

●

● ●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●● ●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●●

●

●

●●

●

●

●

●

● ●

●
●

●

●
●
●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

● ●

●
●

●
●●

●

●

●
●

● ●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●
●●●

● ●

●
●
●

●●

●
●

●

●

●

●

●

● ●

●

●●

● ●

●

●
●

●

●
●●

●

●●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

● ●
●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●
●

●●

●
●

●

●
●●
●●
●
●

●
●●

●●
●●

●●●●●●
●
●

●

●

●●●

●

●

●
●

●

●
●●
●

●
●
●

●
●●

●

●

●●

●●
●●●

●
●
●●●

●

●● ●
●

●●

●●

●

● ●
●●

●

●
●
● ●●

●●
●●

●

●
●

● ●

●●
●
●

●
●

●

●

●

●

●●●
●
●

●

●
●
●●

● ●●

●●

●●●
●

●
●●
●

●

●●

●●
●

●●●

●

●

● ●●

●
●

●

●●●
● ●●
●● ●

●
●●

●● ●
●

●
●

●

●●●

●

●

●●
●●
●
●

●

●

●

●
●

●

●

●

●● ●●

●

●●

●

●
●
●

●
● ●

●●

●

●
●

●

●
●●●

●

●

●

●●●
●●●●

●

●

●

●●
●●
●

●

●

●● ●
●

●

●
●●●●● ●
●

●

●●
●● ●

●

●
●
●

●
●
●
●

●

●

●

●
●

●●●●
●● ●

●

●

●

●

●●
●

●
●

●

● ●● ●●●
●●

●
●

●
●

●●
●

●
●●●

● ●●
●

●●

●

●
●

●
●

●●

●

●
●●●
●

●●●
●

●
●

●

●●
●●●

● ●

●●

●●

●●
●

●●
●

●
●

●
●

●

●

●

●

●
●
●

●●●●

●●

●

● ●

●

●●
●●

●

●●
●
●
●

●

● ●●

●

●

●

●
●

●
●

●

●

●
●●●

●
●

● ●

●●

●
●

●

●●

●●
●

●

●●
●
● ●●●

●●

●
●
●

●●
●

●

●●●

●●●
●

●

●●
● ●
● ●

●

●

●●●●
●

●

●●

●

●

●●
●

●
●● ●

●
●●

●

●●

●●
●●

●

●

●

●●

●● ●

●●● ●
●

●

●
●●

●

●

●

●●

●
●●●

●
●

●
●●●●

●●
●

●●

●

●

●●
●

●●

● ●
●

●●
●

●
●●

●●
●

●●
●

●
●●●

●
●●●

●
●●●
●
●

●

●●

●

●

●●

●

●
●
●

●

●●
●
●

●

●●●●●●●●●●●

●●●●
●●

●
●

●●●●●

●

● ●●●
●

●●

●
●

●

●

●●
●●● ●

●

●

●

●
●

●●●●●●
●●

●●●
●●

●

●

●

●

●

●
●

●

●●●●
●
●●

●●
●
●●

●●●●
●

●
●

●
●
●●●

●

●
●

●

●●●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

20

30

40

50

−120 −100 −80

Longitude

La
tit

ud
e

−3

−2

−1

0

1

2

log(mm/day)

Figure 6.2: The log-daily average precipitation data from the 3353 measurement
stations west of the 90◦W meridian. The grey, dashed rectangle indicates the
extent of the data, while the blue rectangle indicates the region used for the
SPDE-based models.
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where zelev(·) and zlong(·) are functions giving the standardized elevation and
standardized longitude in each location. Correspondingly, we have β = (βelev, βlong, βint).
A motivation for this choice can be found in Risser and Turek (2019). In essence,
they argue that there seems to be a connection between precipitation and eleva-
tion, but the effect is different in, for example, Colorado and the Sierra Nevada.
In the former, the areas of high elevation are dryer, while in the latter we see
an increase in precipitation along the mountains. This can be adjusted for by
including an interaction with the longitude. While this doesn’t hold equally well
for our dataset, it is nevertheless a reasonable choice.

The components discussed so far are described by 5 parameters. What re-
mains is the spatial effect u(·). For this component we consider multiple candidate
parametrizations, using both the SPDE- and kernel-based approaches. With the
SPDE-based approach, we use a grid size of 525×350 on the blue rectangle shown
in Figure 6.2. For the kernel-based approach, the Vecchia likelihood described
in Section 2.3 with k = 10 nearest neighbors is used. A total of five models are
considered for each approach. We consider the isotropic parametrizations S-ISO
and K-ISO, which are described by 2 parameters, namely ρ and σ. The geomet-
rically anisotropic S-ANISO and K-ANISO are also considered, which depend on
the 4 parameters ρ, wx, wy, and σ. The remaining three are non-stationary, and
are described in detail below.

S-VMV and K-VMV (varying marginal variance)
The non-stationary parametrizations S-NS1 and K-NS are used. In both ap-
proaches, we let the marginal standard deviation function σ(·) be modeled by
the regression

log(σ(s)) = σ0 + βσzelev(s), s ∈ D.

The effective range function ρ(·) and vector field w(·) = (wx(·), wy(·)) are both
modeled as spatial constants. The covariance structure is then described by 5
parameters, namely ρ0, wx,0, wy,0, σ0, and βσ.

S-VAN and K-VAN (varying anisotropy)
The non-stationary parametrizations S-NS1 and K-NS are used. In both ap-
proaches, we let the marginal standard deviation function σ(·) be spatially con-
stant, while the effective range function ρ(·) is modeled by the regression

log(ρ(s)) = ρ0 + βρzelev(s), s ∈ D.

The vector field w(·) is modeled as

w(s) = w0 + βwzw(s), s ∈ D,
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Figure 6.3: The smoothed elevation, and the vector field zw(·) scaled by a factor
of 0.4, over the model region. The arrows are colored black or white, depending
on the background color of the elevation.

where w0 = (wx,0, wy,0) and zw(·) is a vector field. For each s, it is obtained
by zw(s) = (−zy,grad(s), zx,grad(s)), where zgrad(·) = (zx,grad(·), zy,grad(·)) is the
gradient of a smoothed version of the elevation. In other words, zw(·) is obtained
by rotating the gradient of the smoothed elevation 90 degrees counter-clockwise.
The elevation is smoothed to ensure that the gradient is also reasonably smooth,
and we standardize zw(·) by rescaling it so that the standard deviation of ‖zw(s)‖
for s ∈ D is 1. Both the smoothed elevation and zw(·) are shown in Figure 6.3.
As we can see, the vector field tends to follow along the mountain ridges.

Note that the same coefficient βw is used for both components of zw, resulting
in a model depending on the 6 parameters ρ0, βρ, wx,0, wy,0, βw, and σ0.

S-FULL and K-FULL (varying anisotropy and marginal vari-
ance)

Here we use non-stationary parametrizations S-NS1 and K-NS, and combine the
non-stationary models described above. The marginal standard deviation func-
tion σ(·) is modeled as in S-VMV and K-VMV, while the effective range function
ρ(·) and vector field w(·) are modeled as in S-VAN and K-VAN. This results in
a model that is described by the 7 parameters ρ0, βρ, wx,0, wy,0, βw, σ0, and βσ.
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Table 6.1: Hyperparameters for priors of covariance structure parameters. See
Section 3.3 for more details.

ρ, ρ0 wx, wy, wx,0, wy,0 σ, σ0 Regression coefficients

µρ vρ vw µσ vσ vNS

1.96 0.998 1.58 −0.805 0.764 3

Prior distributions
Choosing reasonable hyperparameters for the priors is more difficult here than
in the simulation study in Chapter 5, as we do not know the true values of the
model parameters. At the same time, the simulation study used 200 observations
or less for inference, while the precipitation data consists of 3353 observations.
We therefore use approach outlined in Section 3.3 and specify priors with sensible,
but wide, 95% prior credible intervals for the parameters. For the effective range
ρ, we use a lower bound of 1 and an upper bound of 50, so that the prior has
95% of its density between these values. The upper bound is then larger than the
diagonal of the grey rectangle in Figure 6.2, which has a length of 41.6. Bounds
for the marginal variance σ can be obtained by considering Figure 6.2. Based on
this, we use a lower bound of 0.1 and an upper bound of 2. For the parameters wx
and wy, we let wstrength = 4, so that P

(√
1 + w2

x + w2
y > 4

)
= 0.05. The same

bounds are used for the corresponding parameters ρ0, wx,0, wy,0, and σ0 in the
non-stationary models. We let the prior standard deviation of the non-stationary
regression coefficients, vNS, have a value of 3. Table 6.1 shows the resulting prior
hyperparameters.

For the intercept µ and the coefficients β of the linear effect, we let vµ =
vβ = 2. The measurement standard deviation σε uses the PC prior, and we let
U = 0.5 and α = 0.1 so that P(σε > 0.5) = 0.1.

Prediction details
There are two important details to note regarding both the posterior predictions
and how these are evaluated. In the simulation study in Chapter 5, the true
values of η(si) were available, and could, therefore, be used for evaluating the
predictions. Now, we are forced to evaluate the predictions using the noisy ob-
servations log(yi). Hence, instead of predicting η(si), we ensure to predict the
variable log(yi), which incorporates the uncertainty due to the measurement error
εi. The posterior mean of the prediction is used for computing the RMSE.

When evaluating the predictions, we have two choices: we can do everything
on the log-scale, i.e., compare the prediction of log(yi) with its true value, or we
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can transform the prediction back to the original scale, so that we compare the
prediction of yi with its true value. The CPRS and RMSE are both in the same
scale as the values used to compute the scores. We choose to evaluate the scores
on the log-scale, because we want to assess the relative error in the predictions.
In this way, we avoid the issues associated with the widely varying order of size
that the observations have in their original scale.

6.3 Cross-validation
Cross-validation is a popular way to evaluate and compare the performance of
multiple competing models. The dataset is randomly partitioned into K folds
{Ai}Ki=1 of roughly the same size. For each i = 1, . . . ,K, we leave out fold Ai and
use the remaining K − 1 folds for model inference. Then, we use the obtained
model to predict the data in fold Ai, and evaluate the predictions using the true,
observed values. Based on each fold we get a score Si, and the cross-validation
score S is then defined as the weighted mean

S =

K∑
i=1

ni
n
Si,

where ni = |Ai| is the size of fold number i and n =
∑K
i=1 ni is the total number

of observations. It is useful to think of S as an indicator of how well the model
generalizes to new and unobserved data.

In order to compare the 10 models described in Section 6.2, we perform 5-
fold cross-validation. With K = 5, each run uses roughly 80% of the data for
inference and 20% for evaluating predictions. The weighted averages of the CRPS
and RMSE from the 5 runs are computed, and we obtain the cross-validation
scores for each model. This is replicated 10 times in total, using a different
randomly selected partition of the data each time. Based on the 10 values for
each cross-validation score, we can compute an average, which estimates the
mean score across all possible splits into 5 approximately equally sized folds. We
also report the associated estimated standard errors of the averages. Table 6.2
shows the resulting averages and standard errors. On average, both scores see a
slight improvement when using a non-stationary model. The improvement is the
biggest for the models with varying anisotropy, i.e., S-VAN, S-FULL, K-VAN,
and K-FULL, while S-VMV and K-VMV are only marginally better.

This is further demonstrated in Figures 6.4 and 6.4, where we show the cross-
validation scores from each replication. Figure 6.4 shows only the stationary
models, with the SPDE- and kernel-based models indicated using full and dashed
lines, respectively. While S-ISO and S-ANISO seem to be consistently better
than K-ISO and K-ANISO, the difference is very small. This indicates that,



6.3. CROSS-VALIDATION 85

Table 6.2: Average cross-validation scores based on 10 replications, and the stan-
dard errors of the averages. Bold indicates the lowest value for each approach,
while underlined indicates the highest.

Approach Model CRPS (10−3) RMSE (10−3)

Mean Standard error Mean Standard error

SPDE

S-ISO 114.3 2.1 215.6 3.5
S-ANISO 114.5 2.1 216.2 3.6
S-VMV 112.5 0.9 211.9 2.0
S-VAN 110.3 1.0 209.6 2.2
S-FULL 109.9 1.0 209.2 2.3

Kernel

K-ISO 114.7 1.9 216.7 3.5
K-ANISO 114.7 2.0 216.9 3.7
K-VMV 113.5 1.0 214.4 2.7
K-VAN 110.2 1.1 211.7 3.6
K-FULL 111.6 1.4 216.0 4.2

CRPS RMSE
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Figure 6.4: Cross-validation scores of the stationary models for each replication.
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CRPS RMSE
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Figure 6.5: Cross-validation scores of the non-stationary models. The scores from
the stationary models are shown as grey lines.

when we use models that approximate equivalent covariance structures, both
approaches give comparatively good predictions. In Figure 6.5, the scores of the
non-stationary models are shown, and the stationary models are included as gray
lines. For the CRPS, every non-stationary model except K-VMV is consistently
better than the stationary models. With the RMSE, the SPDE-based models
are consistently better, while the kernel-based ones perform worse for selected
replications.

Table 6.3 shows the average run-times for the different models, based on the
50 total runs. In the SPDE-based models, the run-time clearly increases with the
number of parameters, and both inference and prediction takes roughly 5 times
longer for S-FULL than for S-ISO. The kernel-based models take considerably
longer to run, and even K-ISO is slower than S-FULL. In addition, the run-
time is similar for all five models, with K-ISO being slightly faster than the rest.
Naturally, this depends on a number of factors. Using a bigger grid size for
the SPDEs results in longer run-times. In BayesNSGP, inference and prediction
is done through MCMC, and the run-time grows linearly with the number of
samples generated. In addition, using a larger value for the number of neighbors
k also increases the run-time.

6.4 Hold-out regions

When predicting a spatial process in some new, unobserved location s∗, the
quality of the prediction is closely linked to the position of the new location
relative to the set of observed locations. If the location is close to observed
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Table 6.3: Average run times based on the 50 cross-validation runs. For the
kernel-based models, we generate 50000 MCMC samples during inference, and
use 5000 for prediction. All times are in seconds.

Approach Model #parameters Total Inference Prediction

SPDE

S-ISO 7 4602 − −
S-ANISO 9 9071 − −
S-VMV 10 17144 − −
S-VAN 11 19488 − −
S-FULL 12 23575 − −

Kernel

K-ISO 7 23578 21392 2186
K-ANISO 9 29280 27069 2210
K-VMV 10 30946 28726 2220
K-VAN 11 30610 28440 2170
K-FULL 12 31022 28834 2188

locations, the prediction will likely be good, while a more isolated location is
harder to predict. When s∗ is surrounded by observed data, the exact shape of
the correlation structure is likely not crucial, as long as it leads to a prediction
that uses the nearby observations in an effective way. The precipitation dataset
contains many observations, and most are located close to other observations.
It is, therefore, no surprise that all 10 models had similar performance in the
cross-validation test.

In order to test how well the models predict isolated locations, i.e., locations
that are not surrounded by observed data, we divide the rectangular extent of
D into a regular 9 × 6 grid, as shown in Figure 6.6. We chose the 15 rectangles
that contain the most observations, which are indicated in the figure. For each
rectangle, we exclude the data inside the rectangle during inference, and use the
rest as training data. Then, we predict the data in the rectangle and compare
using the true, held out values.

For each of the 15 regions we obtain a CRPS and an RMSE. Based on these, we
can compute the averages of the scores and their standard errors, which measures
the amount of variation in the scores across the hold-out regions. This is shown in
Table 6.4. As expected, the average values of the scores are higher than in Section
6.3. The variation in the scores is also considerably bigger. While every non-
stationary model performs better than the stationary models on average, S-FULL
and K-FULL have noticeably better scores than the best stationary models, S-
ANISO and K-ANISO. Figures 6.7 and 6.8 show the scores from each run. In runs
2 and 11 the kernel-based models all have significantly higher scores, while for
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Figure 6.6: The 9×6 grid is shown in black, and the 15 rectangles containing the
most observations are outlined in red. The number inside each rectangle indicates
its rank by number of observations.

Table 6.4: Average hold-out scores based on 15 regions, and the standard errors of
the averages. Bold indicates the lowest value for each approach, while underlined
indicates the highest.

Approach Model CRPS (10−3) RMSE (10−3)

Mean Standard error Mean Standard error

SPDE

S-ISO 212.4 123.3 356.0 218.1
S-ANISO 211.0 120.8 353.7 214.0
S-VMV 202.0 99.79 336.6 184.3
S-VAN 193.7 100.3 330.0 181.0
S-FULL 190.0 98.07 325.3 177.5

Kernel

K-ISO 234.8 135.5 394.8 231.5
K-ANISO 233.5 136.6 392.4 230.0
K-VMV 233.2 141.7 388.6 235.5
K-VAN 228.8 148.7 382.9 246.0
K-FULL 213.8 106.0 366.5 187.7
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Figure 6.7: Hold-out scores of the stationary models, for the 15 regions.

runs 7 and 8 the opposite holds. This is likely due to the different approximations
being used for each approach, since it holds for both the stationary and non-
stationary models. The scores from the rectangles located in the eastern part of
the region, such as 4, 5, 9, 10, and 13, are much lower when compared to other
rectangles. This is expected, since the observations from this region are very
similar in value.

6.5 Model comparison

In Sections 6.3 and 6.4 we only considered how well the different models predicted
unobserved data. However, we are also interested in how the estimated models
differ, especially the differences between the stationary and non-stationary mod-
els. For this purpose, we focus on a stationary (S-ANISO and K-ANISO) and
a non-stationary (S-FULL and K-FULL) model from each approach. Using the
entire precipitation dataset consisting of 3353 observations, we perform inference
with all four models and predict the value of the log-precipitation over D. Fig-
ure 6.9 shows the posterior mean of the predicted log-precipitation. We use the
525× 350 grid over the model region in Figure 6.2 as earlier, but we only predict
the value in the grid cells that are inside D. The resulting means are indistin-
guishable for all four models, and they reflect the behavior of the observed data:
The eastern part is relatively homogeneous and similar in value, while the middle
portion has more variation. Unsurprisingly, the mean structure closely resembles
the elevation from Figure 6.1, which is included as a covariate in the linear effect.

In Figure 6.10 the standard deviation of the predictions are shown. In general,
the standard deviation is small near the observed locations, and large in regions



90CHAPTER 6. CASE STUDY: ANNUAL PRECIPITATION IN THE CONUS

CRPS RMSE

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

0.25

0.50

0.75

1.00

0.2

0.4

0.6

Hold−out region

S
co

re

S−VAN

S−VMV

S−FULL

K−VAN

K−VMV

K−FULL

Figure 6.8: Hold-out scores of the non-stationary models, for the 15 regions. The
scores from the stationary models are shown as grey lines.

Figure 6.9: The means of the posterior predictions of the log-precipitation over
D, based on 3353 observations.
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Figure 6.10: The standard deviations of the posterior predictions of the log-
precipitation over D, based on 3353 observations.
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Figure 6.11: The posterior estimates of the parameters for the four models un-
der consideration. The points indicate the median, while the lines show the
[2.5%, 97.5%] credible interval.

with no nearby observations. There is more or less no difference between S-
ANISO and K-ANISO, nor between S-FULL and K-FULL. However, in some
areas the non-stationary models lead to a higher standard deviation than the
stationary models.

The posterior estimates of the model parameters are shown in Figure 6.11.
For the most part, the models lead to similar parameter values. The marginal
variance is estimated somewhere between 0.8 and 1.1, while the measurement
error standard deviation is close to 0.15 for all four models. S-ANISO and K-
ANISO, which approximate equivalent covariance structures, lead to more or less
the same model. For S-FULL and K-FULL, the estimated βρ is negative, which
results in a range that decreases with increasing elevation.

For this next part, we focus on the covariance structure of the component u(·).
The correlation structures of the estimated models are demonstrated in Figure
6.12. Using the medians of the posterior parameter estimates, we compute the
0.7 isocorrelation curves centered in 18 locations throughout D. The correlation
curves of the stationary models S-ANISO and K-ANISO are very similar, with
K-ANISO having a slightly longer range and more anisotropy. S-FULL has cor-
relation curves that are close to elliptical, and the range clearly decreases with
elevation. The latter also holds for K-FULL, but the shapes of the curves are far
more irregular. This is investigated further in Figure 6.13, where we show the
correlation structure of S-FULL and K-FULL centered in (−110.2, 40.3). Despite
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Figure 6.12: The correlation structure of u(·) for the four models, demonstrated
by showing the 0.7 isocorrelation curves ( ) centered in several locations (•).
The posterior median parameter estimates are used for computing the correla-
tions.
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Figure 6.13: The correlation structures of u(·) for S-FULL and K-FULL, centered
in (−110.2, 40.3).

the non-smoooth elevation covariate, S-FULL leads to a smooth correlation struc-
ture that is close to isotropic. The correlation structure of K-FULL, however,
clearly depends on the elevation.

While S-ANISO and K-ANISO lead to models with constant marginal vari-
ance, the same does not hold for S-FULL and K-FULL. For K-FULL, the marginal
variance is given directly by the linear regression on σ(·). S-NS1, the parametriza-
tion used for S-FULL, does not control the marginal variance exactly, and the
function σ(·) can only be considered an approximation. Figure 6.14 shows the
exact marginal standard deviation over D, for both S-FULL and K-FULL. The
posterior median values of σ0 and βσ are used for the computation. In both mod-
els, the elevation is used as a covariate in σ(·). However, its effect is different:
in S-FULL, the marginal variance increases with elevation, while the opposite
holds for K-FULL. Also, S-FULL estimates βσ to be smaller in absolute value,
resulting in a marginal variance that varies less over D.

6.6 Discussion
The results from the case study indicate that the non-stationary models lead
to better predictions than the stationary models, both in CRPS and RMSE.
In the cross-validation study in Section 6.3, the improvements were marginal.
Comparing the best stationary and non-stationary model, the latter had a 4.0%
(SPDE-based) and 2.7% (kernel-based) lower CRPS on average. In Section 6.4,
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Figure 6.14: Marginal standard deviation of u(·) for S-FULL and K-FULL over
D, based on the the posterior medians of σ0 and βσ.

where entire regions of data are held out, the difference between the station-
ary and non-stationary models are more considerable. Here, the corresponding
numbers are 8.5% and 7.2%.

In the SPDE-based models, the grid size used for the model region has a big
effect on the resulting predictive performance of the model. Initially, a 300× 200
grid was used. This led to the SPDE-based models performing far worse than the
kernel-based models. We therefore increased the grid size until there was no more
improvement, resulting in a grid size of 525× 350. A similar procedure was also
performed for the parameter k in the kernel-based approach, which determines
the number of neighbors used in the Vecchia approximation. The value k = 10
was found to give a good trade-off between predictive performance and run-time.

Despite leading to comparable results, the SPDE- and kernel-based approaches
have significantly different run-times. In the cross-validation study, we saw that
the fastest kernel-based model was slower than the slowest SPDE-based model.
The difference could, in reality, be even bigger. As mentioned, more than 50000
and 5000 samples should be used for inference and prediction with the kernel-
based models. In addition, a native implementation in R-INLA would result in
even faster run-times for the SPDE-based models.

In Section 6.5 we saw that the means of the posterior predictions were indis-
tinguishable between both stationary and non-stationary models, and between
the SPDE- and kernel-based approaches. For the prediction standard deviations,
however, there are regions where the non-stationary models lead to visibly higher
value. While both S-FULL and K-FULL have marginal variances for u(·) that
clearly depend on the elevation, its effect is different. In S-FULL the marginal
variance increases with the elevation, while the opposite holds for K-FULL. The
effect of the spatial covariates is also different for the correlation structures. For
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K-FULL, the rough nature of the elevation is clearly reflected in the irregular
correlation structure. This is not the case for S-FULL, where it seems that only
the size of the correlation structure is affected by the elevation.



Chapter 7

Discussion and conclusion

This thesis focuses on two approaches for specifying GRFs with spatially vary-
ing anisotropy, namely the SPDE- and kernel-based approaches. Non-stationary
parametrizations based on spatial covariate regression are described for both ap-
proaches, and the resulting models are implemented in the R packages R-INLA
and BayesNSGP. The qualitative differences between the approaches are demon-
strated, and it is seen that the SPDE- and kernel-based approaches result in a
local and global specification of the covariance structure, respectively. Inference
and prediction is performed both on simulated data, and on precipitation data
from the CONUS. The inferred models are compared, both in predictive perfor-
mance and in estimated correlation structure, and the importance of choosing
good priors is demonstrated.

Chapter 5 focuses on the simulation study, where we consider data generated
from both stationary and non-stationary processes. The results from Studies 1
and 2 indicate that, given data from a stationary process, the non-stationary
models from both approaches have comparable performance to true stationary
model, as long as the priors are chosen carefully. In Study 3 the data is generated
from a non-stationary process, and the stationary models lead to significantly
worse results than the non-stationary models. While the SPDE-based S-NS1 is
used for generating the data, the kernel-based K-NS is only marginally worse than
S-NS1 and S-NS2 in terms of prediction performance. This is likely due to the
fact that K-NS is able to recover the most crucial features of the true covariance
structure, especially having a changing direction of longest range. The same does
not hold for Study 4, where the true covariance structure cannot be estimated by
K-NS. As a result, it has the worst predictive performance out of the 5 models
that are considered. Based on this, we conclude that it is important to choose a
model that is able to represent the type of non-stationarity present in the process

97
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of interest.
There are multiple aspects that have not been investigated, due to time and

length constraints. In the kernel-based approach, inference and prediction is
performed using MCMC. Throughout the thesis, we consistently generate 50000
samples for the inference and discard the first 5000 as burn-in. Out of the re-
maining 45000, we use 5000 thinned samples for prediction. Ideally, more samples
should be generated. While a burn-in period of 5000 seemed sufficient for the se-
lected MCMC chains we controlled, convergence diagnostics should be computed
for all chains. Additionally, the MCMC samplers were chosen without much in-
vestigation, using Risser and Turek (2019) as a guideline. While the effect of
prior width is investigated in Section 5.5, a similar analysis should also be done
for Chapter 6. However, the precipitation dataset is considerably larger than the
datasets used in the simulation study, and the inferred models are likely far less
sensitive to prior choices.

The SPDE-based model is naturally parametrized by a sparse precision ma-
trix, resulting in a GMRF with appealing conditional independence properties.
The GMRF formulation makes the INLA framework a natural choice for per-
forming computationally efficient inference. This is done using the R-INLA pack-
age, which allows for flexible specification of hierarchical Bayesian models. The
kernel-based approach results in a direct construction of the covariance matrix,
and computations can be made more tractable by using a nearest-neighbor Vec-
chia approximation. The package BayesNSGP is dedicated to performing inference
with these kernel-based models. Here, the non-stationarity can be modeled both
through regression on spatial covariates, and by representing the components
of H(·) as GRFs. While BayesNSGP is limited to Gaussian likelihoods, R-INLA
has nearly 70 likelihoods available, and the SPDE model can easily by combined
with other types of latent effects. In addition, R-INLA includes functionality for
defining new latent effects and priors, which, at the moment, is not possible in
BayesNSGP.

In this thesis, we only model non-stationarity by linear regression on spatial
covariates. This assumes that there is a certain relationship between the covari-
ance structure and the covariates, and results in an inflexible specification of both
the range and the additional anisotropy. A more flexible approach is used in, for
example, Fuglstad and Castruccio (2020), Fuglstad et al. (2015a), and Paciorek
and Schervish (2004). In the former two, a basis function representation is uti-
lized, while the latter models the components of the kernel function as stationary
GRFs. In this way, more general covariance structures can be estimated from the
observed data. However, representing the covariance structure through covari-
ates leads to an interpretable model, and requires significantly fewer parameters
than the more flexible alternatives. For example, the connection between range
and elevation in Chapter 6 is intuitive, and modeling it requires only a single
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additional parameter.
The results from the case study in Chapter 6 indicate that non-stationary

models can lead to better prediction when applied to real data. In the cross-
validation study in Section 6.3, the improvements are very marginal, and the
reduction in both CRPS and RMSE are at most 4.3%. In addition, there is no
difference between the corresponding models from each approach, for example
S-ISO and K-ISO. For the hold-out region study in Section 6.4, however, the
difference between the stationary models and the best non-stationary model are
considerable. There is also some difference between the predictive performance of
corresponding models from the SPDE- and kernel-based approaches, as the worst
SPDE-model has a lower average CRPS and RMSE than the best kernel-based
model. Since S-ISO approximates the same covariance structure as K-ISO, and
similarly for S-ANISO and K-ANISO, this difference is most likely due to the
Vecchia approximation.

While the SPDE- and kernel-based models lead to qualitatively different co-
variance structures, we have no solid evidence that one approach is better than the
other at prediction of real-life processes. In addition, the differences between the
results obtained with the stationary and non-stationary models are small. Since
the complex non-stationary models are also more time-consuming, the potential
increase in predictive power might be outweighed by this increase in computa-
tion time. The SPDE-based models implemented in R-INLA are, nevertheless,
significantly faster than the kernel-based models. The differences between the
run-times become even more dramatic if a native R-INLA implementation is used
for the SPDE models, and more MCMC samples are generated in BayesNSGP.
Due to this, and the fact that R-INLA offers a wider range of functionalities than
BayesNSGP, the SPDE approach is preferred. All in all, more investigation is
necessary before any reliable conclusions can be made, and the models should
be compared using other datasets than the precipitation data considered in this
thesis. A particularly interesting application is non-stationary modeling of pro-
cesses on the sphere, as discussed in Schmidt and Guttorp (2020). While this is
described for the SPDE- and kernel-based approaches in Fuglstad and Castruc-
cio (2020) and Heaton et al. (2014), respectively, no comparison has been made
between the two resulting methods.
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