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Abstract

This work presents an overview of how to analyze numerical methods
approximating stiff, nonlinear stochastic differential equations (SDEs).
They appear in several problems of practical interest, which makes the
convergence theory relevant too.

The use of the one-sided Lipschitz condition for SDEs is presented.
The main result is a mean-square stability inequality that does not de-
pend on the stiffness of the problem, proved for drift-implicit methods
up to order 1. For non-positive one-sided Lipschitz constants it indi-
cates no step size restriction. Consistency of drift-implicit methods up
to order 1 is proved, also independent of the stiffness of the problem.
Order of convergence is deduced from this stability property and the
order of consistency. A similar stability inequality is proved for gen-
eral Lipschitz continuous drift-implicit methods, as an alteration of the
proof from the work of Winkler (2003) [28]. The result is a slightly
improved step size condition.

Discussion and definition of suitable stability and consistency princi-
ples are presented. There are many different concepts, serving different
purposes. This work argues why certain principles are more fitting and
defines B-consistency and B-convergence for SDEs.

A significant part of the work is devoted to presenting the theory needed
to analyze stiff, nonlinear SDEs and general SDEs, both numerically
and analytically. The properties of the new convergence theorem are
tested numerically by examples.



Sammendrag

Dette arbeidet gir en oversikt over hvordan man kan analysere nu-
meriske metoder for å approksimere stive, ikke-lineære stokastiske
differensialligninger (SDEer). Slike systemer inntrer i flere prob-
lemer i praksis, hvilket gjør konvergens-teorien relevant også.

Nytten av den énsidige Lipschitz-betingelsen for SDEer presen-
teres. Hovedresultatet er en stabilitetsulikhet i L2 normen for stokastiske
variabler, som ikke avhenger av stivheten til problemet, hvilket
gjelder for drift-implisitte metoder opp til orden 1. For ikke-positive
énsidige Lipschitz-konstanter er det ingen begrensning på stegleng-
den. Konsistenthet av drift-implisitte metoder opp til orden 1 be-
vises, også uavhengig av stivheten til problemet. Kovergens-raten
kan deduseres fra stabilitet-egenskapen og konsistenthet. En lig-
nende stabilitetsulikhet bevises for generelle Lipschitz-kontinuerlige,
drift-implisitte metoder, ved en modifisering av beviset i arbeidet
til Winkler (2003) [28]. Resultatet gir en forbedret betingelse på
steglengden.

Hensiktsmessige definisjoner av konsepter som stabilitet og kon-
sistenthet diskuteres. De eksisterende konseptene er flerfoldige,
med ulike hensikter Oppgaven argumenterer for hvordan noen kan
være mer passende, og definerer B-konvergens og B-konsistenthet
for SDEer.

En stor del av arbeidet presenterer teori nødvendig for å analysere
stive, ikke-lineære SDEer og SDEer generelt, både numerisk og
analytisk. Egenskapene til det nye konvergensteoremet testes nu-
merisk med eksempler
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Notation

hy, xi Euclidean inner product, yT · x

|x| Euclidean norm of x, hx, xi1/2

kxk The L2 norm for random variables,
�
E(|x|2)

�1/2

kxkp The Lp norm for random variables,
�
E(|x|p)

�1/p

kAkop The operator norm for A : Rd ! Rd, kAkop = sup{ |Ax| : x 2 Rd, |x| = 1}

Yti The exact solution of the SDE at time point ti

Xn The numerical approximation of the SDE at time point tn

Ŷn The numerical approximation going one step from Ytn�1

l̂n Local error of numerical method, l̂n = Ytn � Ŷn

ln Residual error

Ft Filtration at time point t

Fn Filtration at time point tn

Jf Jacobian matrix of a vector-valued function f

Lg Lipschitz constant of the function g
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1 Introduction

Stiffness of a dynamical system y0(t) = f(y(t)) is a property which has no clear definition
[7]. The solution of such a system might vary slowly, but the system damps perturba-
tions aggressively or contain certain parts that oscillate quickly but with small amplitude.
The rapid damping makes it much better to use a backward difference when approximating
derivatives, thus implying implicit methods to be essential [27].

Explicit numerical methods (the standard numerical solvers) for stiff problems are only
stable for very fine grids. This is computationally heavy. By stable meaning here that the
numerical approximation is close to the exact solution. An implicit method can relax the
grid criterion, and in addition, provide a more accurate error estimate. Stiff systems appear
often in electric circuits and chemical reactions modeled as differential equations [11, 23].
In such systems, it can be natural to model with noise, due to thermal noise or diffusion,
which makes this work of interest to modelling stiff noisy systems in such fields.

This work aims at investigating the convergence theory of stiff differential equations when
noise is introduced. We aim to describe how error bounds are affected by noise, and inves-
tigate what can specifically be said about the stability for a noisy system.

The one-sided Lipschitz condition is well-known for its ability to describe systems with
such aggressive damping. The Lipschitz and one-sided Lipschitz condition are, for a vector-
valued function f , and x, y 2 Rd, respectively

|f(x) � f(y)|  L|x � y| (1.1a)
hf(x) � f(y), x � yi  ⌫|x � y|2 (1.1b)

for some inner product h., .i and corresponding norm |.| . The Lipschitz constant is always
larger than zero, while ⌫ can take any value.

1.1 Example: Linear ODE

The following simple example show some aspects of how a one-sided Lipschitz condition
is better at describing the damping behaviour of a system. The grid criterion and improved
error bound is also exemplified. The linear ordinary differential equation (ODE)

y0(t) = Ay(t) =

✓
�µ 1
1 �µ

◆
y(t) , y(0) = (a, b) (1.2)

µ > 1, has an exact solution, found via the eigenvalues of A, which are (�µ+1, �µ�1) =
(�1,�2). The system has solution [7]

y(t) = (1/2(e�1t + e�2t), 1/2(e�1t � e�2t))

Large µ makes this system stiff. The linear system has f(y(t)) = Ay(t), so from (1.1) it is
clear that the two conditions result in L = | � µ � 1| = µ+1, the steepest possible line, but

1



1.1 Example: Linear ODE

⌫ = �µ + 1, the largest eigenvalue. This holds for symmetric A using the Euclidean norm
[7].

Let us assume for a moment that we only know that the system y0(t) = f(y(t)) was Lips-
chitz continuous. We denote y⇤(t) the solution with initial value y⇤(0), and ỹ(t) the solution
with initial value ỹ(0). Now estimating the global error assuming that f is Lipschitz contin-
uous. The difference between the two solutions can then be bounded by

|y⇤(t) � ỹ(t)|  |y⇤(0) � ỹ0| +
Z t

0

|f(y⇤(s)) � f(ỹ(s))|ds

 |y⇤(0) � ỹ0| +
Z t

0

L|y⇤(s) � ỹ(s)|ds  |y⇤(0) � ỹ0|etL

by the Gronwall inequality (2.4). However, if the one-sided Lipschitz condition was as-
sumed

|y⇤(t) � ỹ(t)|2  |y⇤(0) � ỹ0|2 +
Z t

0

2hy⇤(s) � ỹ(s), f(y(s)) � f(ỹ(s))ids

 |y⇤(0) � ỹ0|2 +
Z t

0

2|y⇤(s) � ỹ(s)|2ds  |y⇤(0) � ỹ0|2e2⌫t (1.3)

which can be compared to the Lipschitz case by taking the square root. In the linear example,
we have positive L and negative ⌫, so the error bound on the exact solutions are vastly
different. The Lipschitz case will generally result in large error bounds. The one-sided
Lipschitz case will, however, for �µ + 1 = ⌫ < 0, estimate an error that is exponentially
damped.

Now solving the above using the backward Euler method, being

xn+1 = xn + f(xn+1)h

and denote the solutions x⇤
n+1, x̃n+1 for the initial values x⇤

0, x̃0. When f is Lipschitz con-
tinuous the following bound can be shown [7]

|x⇤
n+1 � x̃n+1| =

1

1 � hL
|x⇤

0 � x̃0| exp(TL)

which is very comparable to the exact solution. It is required that hL < 1. If f is one-sided
Lipschitz continuous, the following bound can be shown [7]

|x⇤
n+1 � x̃n+1|2  |x⇤

0 � x̃0| exp(TC)

where C only depends on ⌫, having the same sign. The requirement here is that h < 1/⌫.
Again the comparability to the exact solution is evident. For negative ⌫ there is no step size
restriction and the error bound is much sharper.

This example tells us that the Lipschitz condition fails to describe contractions, i.e. that
the different solution paths are squeezed together, it only describes the maximal growth in
some direction. This is a property of dissipative systems, having ⌫ < 0. The stiffness

2



1.1 Example: Linear ODE

observed here was more specifically a contraction of the system, not an explosion. The
implicit method we chose did conserve the contractive behaviour.

In general, even though a system might have a large Lipschitz constant, one-sided Lipschitz
constants might turn out to be drastically smaller, independent of the stiffness, and highly
useful. Assuming Lipschitz continuity is necessary to prove convergence. When a param-
eter is independent of stiffness we mean, in this work, that the Lipschitz constant can be
arbitrarily large, while (1.1a) still holds. ⌫ can become arbitrarily negative without ruining
convergence. For highly positive ⌫ the classic step size condition applies. Using (1.1a), we
will show that convergence still holds for arbitrarily negative ⌫, for arbitrary step size.

Approaching stiff, nonlinear differential equations this way turned out to be just what Dahlquist
needed for his foundational work on stability theory for such systems [6]. Since then, the
field of B-convergence and the like has become a well-studied subject [7, 10]. The result
is a rich and more general stability theory for numerical methods. The application of these
ideas to SDEs form a new and important field of study, though at the time small.

Chemical reaction systems is a group of problems that can often be represented as stiff
ODEs, and including randomness due to diffusion makes it a stiff SDE. In general, singu-
lar perturbation problems are another source to stiff systems, and electric circuits provide
notoriously stiff problems due to elements like capacitors and resistors with parameters on
vastly different scales. The Van der Pol oscillator is such a stiff system from a circuit, which
is analyzed numerically in the final section.

This work will prove an alteration of the mean-square stability inequality of general drift-
implicit methods with Lipschitz condition, from [28]. From this, convergence follows easily
by consistency, with the same rate of convergence as the consistency order. A similar sta-
bility inequality is proved for drift with a one-sided Lipschitz condition. By combining
the same approach with some ideas of Hu [15], the stability inequality is independent of
stiffness. The method applies to numerical schemes up to order 1. If the one-sided Lips-
chitz condition is non-positive, there is no step size restriction. Such a stiffness-independent
stability inequality is the first of its kind, to our knowledge. This is our main result. B-
consistency and B-convergence is defined and proven for the drift-implicit Euler and Mil-
stein methods. This gives the usual convergence rate 1/2 and 1 respectively, independent of
stiffness.

The second section is devoted to presenting background theory and discusses some impor-
tant concepts from numerics. A swift summary of the most important aspects of stochastic
calculus is presented, being used throughout the work.

The third section contains the main results described, starting with a discussion on existing
proofs and concepts. The fourth and final section shows two examples of stiff systems, one
linear and one nonlinear. The order of convergence for the nonlinear system is computed
based on the comparison with a higher-order Runge-Kutta method.

3



1.2 Literature overview

1.2 Literature overview

Hu’s paper [15] is to our knowledge the first to apply ideas on one-sided Lipschitz continuity
for SDEs, and applies this to the drift-implicit Euler. Their work is a big inspiration to the
main result here.

The work by Higham and Kloeden represents a thorough theoretical foundation for systems
with one-sided Lipschitz continuous drift [14]. It is based more on probability theory, prov-
ing convergence of the split-step backward Euler method (SSBE), which they show implies
convergence of the backward (drift-implicit) Euler method. The error measure is more gen-
eral, by use of a continuous extension, i.e. measuring error along the entire time interval.
They prove convergence of all moments with optimal rate, though under stricter assump-
tions. This result is claimed to be improved in [25], where terms like B-convergence is used,
known from deterministic equations. They extend the results for the SSBE method from
[14] to split-step one-leg theta methods.

The work most comparable to what is done here is [2], though results are obtained differently
and independently. They define stochastic C-stability, and deduce convergence from C-
stability and B-consistency. The notion of B-consistency agrees with this work.

General drift-implicit methods with Lipschitz continuous drift and diffusion is essential
when solving stochastic differential-algebraic equations [23, 28, 29]. Implicit multi-step
methods are also available for SDEs, see [18]. Explicit methods work poorly, though can
detect stiffness [27].

Assuming that the stiffness is located in the drift f of the SDE, not the diffusion g, im-
plies that drift-implicit methods are essential. This is the most studied case, and what is
considered here. There exists some work on fully implicit methods [24].

It is more common to seek contractive stability properties [14, 25], while our stability in-
equality is more connected to convergence and specific boundedness of perturbations. The
work in [22] uses a contraction theoretic approach to describe the behaviour of the exact
solution.

It has been shown that the explicit Euler fails to satisfy moment bounds for any moment
when the drift only satisfies a one-sided Lipschitz condition [17], but other explicit methods
show mean-square convergence, such as a projected Euler method [2], tamed Euler [16]
and tamed Milstein schemes [26], and balanced methods [24]. The inclusion of Poisson
driven jumps has also been considered in [13]. Most of the existing work, this included, is
restricted to strong convergence.

An adapted version of the Van der Pol equation has also been applied in stochastic modeling
of neuro signals, by the FitzNagumo-system with noise, which is also stiff [9]. This equation
is essential in mathematical neuroscience.

4



2 Background theory

2.1 Stability principles

Stability is another term that lacks a clear definition [7]. All its concepts try to explain how
initial errors and perturbations are propagated, in some way, but remain bounded. Stability
is especially important for describing methods that work well for stiff problems. The dif-
ferent principles can roughly be divided into two categories, boundedness properties, and
contraction properties [7]. A boundedness stability property simply states that the numerical
solution does not blow up, at least for step size h ! 0 [27]. A contractive stability property
could e.g. be what we saw in section 1.1, where for one-sided Lipschitz continuous f with
⌫ < 0, the error x⇤

n+1 � x̃n+1 is smaller than the initial error |x⇤
0 � x̃0|. This section considers

deterministic systems only.

A-stability is probably the simplest definition of a stability property. The test equation
y0(t) = µy(t) , µ 2 C�, is contractive, and if the numerical solution by a method also
satisfies |xn+1|  |xn| when approximating the test equation, for any h > 0, then it is A-
stable [27]. From the example in the introduction, we see that the implicit Euler is A-stable.

Dahlquist wanted to generalize A-stability, and did so for multistep methods [6]. The men-
tioned application of one-sided Lipschitz conditions was initiated there. Soon the concepts
of B-stability, B-convergence, and B-consistency were established too [4, 10]. These con-
cepts originally applied to Runge-Kutta methods, but the definitions also work in more
general settings.

B-stability has become an ambiguous term, where Butcher defined it as the property of a
Runge-Kutta method when a problem satisfies the one-sided Lipschitz condition (1.1a) with
⌫  0, the methods solutions |x⇤

n+1�x̃n+1|  |x⇤
n�x̃n| [4]. This is a contractivity condition,

like A-stability. Others have defined it differently, as a boundedness property [7].

B-consistency and B-convergence apply for f satisfying (1.1a) with any ⌫. Their definitions
are [7]

Definition 2.1. A method is B-consistent of order � if the ODE satisfies a one-sided Lipschitz
condition (1.1a), and the local error l̂n+1 satisfies

|l̂n+1|  C h�+1 , 8 h 2 (0, h0]

where C and h0 are independent of stiffness.

Definition 2.2. A method is B-convergent of order � if the ODE satisfies a one-sided Lips-
chitz condition (1.1a), and the global error en+1 satisfies

|en+1| = |y(tn+1) � xn+1| = C h� , 8 h 2 (0, h0]

where C and h0 are independent of stiffness.

5



2.2 General tools

C-stability is a stability definition that does not assume ⌫  0, but it only considers |x⇤
n+1 �

x̃n+1|  C|x⇤
n � x̃n|, for small enough step sizes, and C independent of stiffness. It is a

boundedness principle, not a contraction principle, used for stiff systems.

A boundedness property that resembles what will be used later is BS-stability. It is related to
D-stability which is often called zero-stability for multistep methods. It considers a numer-
ical scheme, where every discrete step i is perturbed by a perturbation di. It can be defined
as [7]

Definition 2.3. For problems satisfying a one-sided Lipschitz condition, a method is
BS-stable if

|x⇤
n+1 � x̃n+1|  C max(|d1|, |d2|, ..., |dn+1|) , 8h 2 (0, h0]

for some C and h0 independent of stiffness.

Contractivity principles always provide a boundedness property, by its nature. The bound-
edness principles thus form a broader class. Such principles are more often used to decide
convergence and rate of convergence. An example of this is the stability inequality for stiff
SDEs, resembling BS-stability, which is established in section 3.4.

2.2 General tools

This section presents some mathematical tools that are extensively used in analysis of dif-
ferential equations, both for analytical and approximate solutions. They will also be of use
when considering stochastic differential equations, and proving different properties of solu-
tions. The discrete versions of Gronwall’s inequality will most often be used when the next
error can be bounded by a series of the previous errors, to get a general error bound. The
Gronwall inequalities are used when proving the error bounds of the linear ODE (1.2).

The first tool is the integral version of Gronwall’s inequality.

Lemma 2.1. When ↵ constant w.r.t. t, the following holds

x(t)  ↵ +

Z t

0

b(s)x(s)ds ) x(t)  ↵ exp(

Z t

0

b(s)ds) (2.1)

The following version of the discrete Gronwall inequality is given in [5], and is practical
when the elements ai have individual coefficients bi. We strive to keep as much detail from
the original inequality, which is useful when developing sharp estimates. The analogy to
(2.1) is evident.

Lemma 2.2. For sequences {an}, {bn} of real numbers, where bn � 0, and constant C,
satisfying

an  C +
n�1X

j=n0

bjaj (2.2)

6



2.2 General tools

Then

an  C
n�1Y

j=n0

(1 + bj)  C exp(
n�1X

j=n0

bj) (2.3)

Note. The above implies that for

an  C1 + C2
1

N

n�1X

i=1

ai, n = 1, ..., N, ) max
n=1,...,N

an  C1 exp (C2) (2.4)

which is also used later on. The inequality will still be referred to as Gronwall’s inequality.

More detailed versions of the above lemma, using properties of C, are available in the
literature, and can perhaps improve the estimates we present later on. The inequality will
be of use when proving stability of contractive systems, and an explicit error bound is of
interest.

The following lemma will be called Young’s inequality, since it is deduced from the fact
that 2hai, aji  |ai|2 + |aj|2 for any ai, aj 2 Rd.

Lemma 2.3.

|a1 + a2 + ... + an|2  n(|a1|2 + |a2|2 + ... + |an|2)

The mean value theorem comes in many forms, but one that will prove itself useful is the
following, given in [21].

Lemma 2.4. For a differentiable vector-valued functions f ,

f(y) � f(x) =

Z 1

0

Jf (sy + (1 � s)x)ds · (y � x) = M(y � x) (2.5)

where Jf is the Jacobian of f .

The final two lemmas in this section consider functions f satisfying a one-sided Lipschitz
condition, and is taken from [7, 15], where the former is a reference for a thorough analysis
of this subject for deterministic equations.

Lemma 2.5. The function f satisfies the one-sided Lipschitz condition iff the Jacobian of f ,
Jf satisfies

hx, Jf (y)xi  ⌫|x|2 8x, y 2 Rd. (2.6)

Lemma 2.6. If the matrix J satisfies the one-sided Lipschitz condition, t⌫ < 1 and t > 0
we have

k(I � tJ)�1kop  (1 � ⌫t)�1 (2.7)

where k.kop is the operator norm, kAkop = sup{|Ax| : x 2 Rd, |x| = 1}.

7



2.3 Stochastic differential equations

2.3 Stochastic differential equations

Stochastic differential equations (SDEs) are differential equations affected by noise, which
is a generalization of ODEs. Since the differential equation is affected by random variables,
the solution will be a stochastic process.

Definition 2.4. A stochastic process is a family of random variables, {Yt}t2T taking values
in Rn defined on a probability space (⌦, F , P ), where ⌦ is the sample space, F the
�-algebra containing the set of events, also known as a filtration, and P is the probability
measure.

The notation for such processes is chosen Yt. The stochastic process is thus a function
Y : I ⇥ ⌦ ! Rn, where again I is some interval of time. Y (t,!) is said to be adapted
if Yt 2 Ft, meaning that at time t the value of Yt can be determined from the information
available from events up to time t. We often omit writing the !, being reminded that it
is stochastic by the new notation. The numerical approximations we later discuss are also
stochastic processes.

The solution of the differential equation shall be found by integration, but this demands the
establishment of stochastic integrals, i.e. stochastic calculus. We will follow some of the
necessary theory presented in [1, 8, 20], to solve such equations. The underlying theory
is heavy with measure theoretic arguments, to define the tools rigorously, but will not be
treated here.

The stochastic process at the core of SDEs is the Wiener process, also known as Brownian
motion. The n-dimensional Wiener process is a vector of n independent scalar Wiener
processes, where a scalar Wiener process also satisfies the following definition, given in
[20]:

Definition 2.5. The n-dimensional Wiener process is a stochastic process Wt satisfying the
following criteria:

i) Wt is a Gaussian process with variance t in all directions, which implies that the
random variable
Z = (Wt1 , ..., Wtk) 2 Rnk has a multinormal distribution.

ii) Wt has independent increments, i.e. for any p < r  s < t, (Wr�Wp) is independent
of (Wt � Ws). The expectation of each increment is zero.

iii) Wt is almost surely (a.s.) continuous in t.

Remark. To be precise in iii), there exists an a.s. continuous version of Wt, by
Kolmogorov’s continuity theorem, and we assume that Wt is such a version.

The standard Brownian motion starts in zero and has expectation zero, which carries over
to Z too. Thus, in the above E(Ws(Wt � Ws)) = E(Ws)E(Wt � Ws) = 0. E(Ws) can be
treated as the increment from the starting value, zero.

8



2.3 Stochastic differential equations

The auto-covariance of Z, assuming s  t, will then for each entry in its covariance matrix
C look like

C(s, t) = Cov(Ws, Wt) = E(WsWt) � E(Ws)E(Wt)

= E(W 2
s + Ws(Wt � Ws)) = E(W 2

s ) = ns

For general s, t this equals n min(s, t) = n (t ^ s), where we have used the independent
incremet property.

To get two different, correlated Wiener processes, one would generate two independent
Brownian motions, and mix them with a Cholesky transformation (which is linear) to obtain
the desired correlation. This we will not consider any further here.

The integration problem we consider, for Xt n-dimensional, can be formulated as

Yt = Y0 +

Z t

0

f(s, Ys)ds +

Z t

0

g(s, Ys)dWs, (2.8)

or, in short
dYt = f(t, Yt)dt + g(t, Yt)dWt (2.9)

where f : I ⇥ Rn ! Rn, g : I ⇥ Rn ! Rn⇥m, and Wt is an m-dimensional Wiener
process. It is common to call f the drift and g the diffusion. They are together referred to
as coefficient functions. The product g(t, Yt)dWt is thus like a matrix-vector product. The
latter integral is a stochastic integral with respect to a Brownian motion. One should note
that it is the integral equation we solve.

The gateway into the world stochastic differential equations is to be able to integrate func-
tions with respect to the Brownian motion. Based on measure theory one can show how this
is done, but there is also a matter of definition playing a part. The stochastic integral is the
limit in probability of the Riemann sum

lim
n!1

X

⇡n

g(t̃i, Yt̃i)(Wti+1 � Wti) =

Z t

0

g(s, Ys)dWs

where ⇡n is some partition of our time interval into n points, with mesh size going to zero
with increasing n. Where to evaluate the integrands is up to us to define. Two natural
choices of definitions lead to the Itô and Stratonovich integrals. The Itô case chooses t̃i = ti,
while Stratonovich t̃i = ti +

1
2�ti, �ti = ti+1 � ti. They will give different solutions

and numerical schemes, but are anyhow connected. The numerical schemes have different
properties, which is partly why different fields of application prefer the different definitions.
The Stratonovich integral is for instance not a martingale, but it does obey the product rule
of regular calculus. The Itô integral is a martingale. We will only consider the Itô case in
the remaining.

The Itô integral is possible to define for functions g in (2.9) satisfying that each
! ! g(s,!) only depends on the history of Wt(!) up to time s. In other words, g(t,!) is
adapted to the filtration generated by Wt. Together with these two remaining conditions, it
will characterize all functions possible to integrate in the Itô sense [20]:

9



2.3 Stochastic differential equations

i) (t,!) ! g(t,!) is B ⇥ F-measurable. B denotes the Borel �-algebra on [0, 1).

ii) E(
R t

s g(t,!)2dt) < 1.

For such a g, and f with properties

i) P (
R t

0 |f(s,!)|ds < 1 for all t � 0) = 1

ii) f is adapted to the filtration generated by Wt

we call Xt from (2.9) an Itô process.

The Itô integral is linear and has expectation zero. The integral
R t

s g(r,!)dWr is Ft-
measurable, which is important for iterated integrals. A consequence when defining the
integral is the famous Itô isometry, which is used extensively in any field analyzing SDEs.
For a function g(t,!) in an Itô process

E
⇣ mX

i=0

(

Z t

s

gi(r,!)dW i
r)

2
⌘
= E

⇣ mX

i=1

Z t

s

gi(r,!)
2dt

⌘
(2.10)

which is finite by assumption. Above gi are vector-valued functions, columns of g, and dW i
t

the scalar noises of dWt. The notation g(t, Yt)dWt is practical, but in cases like this, it seems
more comprehensible to consider the individual noises.

When an integrand f(Ys) is jointly measurable and integrable on I ⇥ ⌦, Fubini’s theorem
gives interchangeability of expectation and integral [18], i.e.

E(
Z t

r

f(Ys)ds) =

Z t

r

E(f(Ys))ds (2.11)

This applies e.g. for gi(t, Yt) continuous in t, Yt, which will always be the case in this work.

Since the solution of an SDE is a stochastic process, the definition of uniqueness has to have
this in mind too. Pathwise uniqueness is the property when Xt and X 0

t are two solutions of
the SDE with the same starting values and driven by the same Brownian motion, Xt = X 0

t

with probability 1. If (2.8) holds for some filtration, it will hold for the filtration generated by
Xt and Wt. A strong solution is a process Xt satisfying the SDE, where Xt is adapted to the
filtration generated by the Brownian motion only, and we are fine using only this filtration.
A very useful result by Itô is the following theorem regarding existence and uniqueness of
solutions, given in [20] (theorem 5.2.1):

Theorem 2.1. Let fi and gi,j be globally Lipschitz continuous with respect to Yt, for all i, j.
In addition assume, f(t, x) + g(t, x)  C(1 + |x|), for x 2 Rd. Let Y0 have finite second
moment, and is independent of the filtration generated by the Wiener process Wt. Then the
SDE (2.8) has a strong solution and pathwise uniqueness holds.

Remark. Relaxing the globally Lipschitz condition to locally is also possible [8]. The class
of solvable equations is now fairly large.
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2.3 Stochastic differential equations

From now on we will without loss of generality assume autonomous systems, as any dy-
namical system can be made time-invariant by augmenting it with an unknown variable z,
representing time, and dz = 1dt, z0 = 0. This gives slightly simpler notation.

A transformation u(Yt) of the Itô process Yt satisfying (2.9) is also possible, using what is
called the Itô formula. We assume the system to be autonomous for simplicity, and only
give the general formula for multiple dimensions. The following theorem is given in [20].

Theorem 2.2. Let u : Rn ! Rp be twice continuously differentiable, and Xt an
n-dimensional Itô process. The p-dimensional process Yt = u(Xt) with initial value Yt0 =
u(Xt0), written component wise in differential form as

dY k
t =

X

i

@uk

@xi
(Xt)dXi +

X

i,j

@2uk

@xi@xj
(Xt)dXidXj (2.12)

is again an Itô process, where dWidWj = �i,jdt, dWidt = dtdWi = 0 and i, j = 1, ..., n.
Here �i,j represents the Kronecker-delta.

It is nothing but a composition of p transformations of Xt from Rn ! R element-wise. The
notation in integral form gets quite extensive, and since we want to separate the deterministic
and stochastic integrals, defining the following two operators is useful.

L0 =
nX

i=1

�
fi

@

@xi
+

1

2
g2
i,i

@2

@x2
i

�
(2.13)

Lj
1 =

nX

i=1

gi,j
@

@xi
(2.14)

L1u(x)dWt =
mX

j=1

Lj
1u(x)dW j

t (2.15)

We stick to the compact notation (2.15) in the following. Then the Itô formula can be
written, for component k

duk(Xt) = L0uk(Xt)dt + L1uk(Xt)dWt

In this work we will abuse this notation slightly, by using it for functions u : Rn ! Rp too,
though understanding it as using the operators Li element-wise on u. We thus simply omit
the subscript k above for the vector-valued function u.

We now turn to stochastic Taylor expansions, which are important when designing numer-
ical methods for solving SDEs. Such an expansion come about by repeatedly using the Itô

11



2.3 Stochastic differential equations

formula in the integrals of (2.8), assuming sufficient differentiability of the relevant func-
tions. The series are also known as Wagner-Platen series, described in detail in [18]. For
simplicity we write t0 = 0. Using the Li operators defined in (2.13)-(2.14), we get that (2.8)
can be written

Yt = Y0 +

Z t

0

⇣
(f(Y0) +

Z s1

0

(L0f)(Ys2)ds2 +

Z s1

0

(L1f)(Ys2)dWs2

⌘
ds1

+

Z t

0

⇣
(g(Y0) +

Z s1

0

(L0g)(Ys2)ds2 +

Z s1

0

(L1g)(Ys2)dWs2

⌘
dWs1 (2.16)

Repeated use of the operators would give a series evaluated at Y0, when differentiability is
sufficient. Remember that the operator L1 is really a composition of m operators for each
noise term. Such an expansion is also applicable for a transformation F (Yt), by the Itô
formula, yielding the transformations stochastic Taylor expansion. This is also known as
the Wagner-Platen series. A sufficiently differentiable function f(Ys) can thus be expanded
further, giving

f(Ys) = f(Y0)

+

Z s

0

h
(L0f)(Y0) +

Z s1

0

L0(L0f)(Ys2)ds2 +

Z s1

0

L1(L0f)(Ys2)dWs2

i
ds1

+

Z s

0

h
(L1f)(Y0) +

Z s1

0

L0(L1f)(Ys2)ds2 +

Z s1

0

L1(L1f)(Ys2)dWs2

i
dWs1

= f(Y0) + h(L0f)(Y0) + (L1f)(Y0)Ws

+

Z s

0

hZ s1

0

L0(L0f)(Ys2)ds2 +

Z s1

0

L1(L0f)(Ys2)dWs2

i
ds1

+

Z s

0

hZ s1

0

L0(L1f)(Ys2)ds2 +

Z s1

0

L1(L1f)(Ys2)dWs2

i
dWs1 (2.17)

In general, the truncated series can be expressed as [18]

f(Yt) = f(Y0) +
X

↵

L↵f↵(Y0)I↵ (2.18)

where ↵ is called a multi-index, of the form (a1, ..., ak), ai 2 [0, 1, 2, ..., m] generally for
m-dimensional noise. The multi-index tells what operators are used in what order, and
what iterated integral is involved in that term. Each ai denotes one integrator in a multiple
integral.

An example is ↵ = (1, 0, 1), which corresponds to the term

(L1L0L1f)(Y0)

Z t

0

Z s1

0

Z s2

0

dWs3ds2dWs1 (2.19)

The notation is very useful when creating higher-order methods, which we give an example
of in the next section. Integrating from tn to tn +h, the order of a term L↵f(X0)I↵ in h, for

12



2.4 Numerical methods

m = 1, is simply [18]

O(hn) : n =
X

ai=0

1 +
X

ai=1

1

2
(2.20)

In other words, each integrand representing time ds in the iterated integral, contributes with
order 1, while each stochastic integrand dWs contributes with order 1/2. In this, numerical
methods for SDEs can be of order k

2 , k 2 N.

If the diffusion is independent of the solution, i.e. g = g(t) generally, not a function of Xt,
we say that the noise is additive. If the diffusion is dependent on the solution, g = g(t, Xt)
and the noise is multiplicative. The Wagner-Platen series for additive noise simplifies a lot
for the diffusion, as L1g(s) ⌘ 0. The same simplifications will happen to the numerical
methods.

2.4 Numerical methods

One way to construct numerical approximations of an SDE is to take a small step h in the
integrals of (2.8), select constant integrands, and approximate the integral as

X1 = X0 + f(X̃0,1)h + g(X̃0,2)�W (2.21)

where X̃0,i 2 [Y0, Yh] and �W = Wh � W0 ⇠ N (0, h), normally distributed. Yt is the
exact solution of the SDE. We get an explicit method if X̃0,1 = X̃0,2 = X0, known as the
Euler-Maruyama method.

A more systematic approach is to use the stochastic Taylor expansion (2.16), from which we
see that the explicit Euler corresponds to the approximation of f(Xs), g(Xs) of the lowest
order, and exclude all higher-order terms. The explicit Euler-Maruyama method, also called
the forward Euler method, is thus

Xn+1 = Xn + hf(Xn) + g(Xn)�Wn , �Wn = Wn+1 � Wn ⇠ N (0, h)

The above example is so far just a creative attempt to approximate the integrals. The two
integrals can be approximated differently, meaning that we can have a method that is drift-
implicit, i.e. explicitly calculated for the diffusion. Diffusion-implicit methods would re-
quire truncating the random variables used, otherwise, generally, finite absolute moments
will not exist [18]. Methods with implicitness in both drift and diffusion are called fully im-
plicit. The stochastic Taylor expansion is a more systematic approach to creating schemes
and can provide approximation order.

The explicit Euler-Maruyama method is the simplest method there is, and for more com-
plex methods one can perform the same integral approximation and include more terms
from the Wagner-Platen series. The Milstein method will include the next term ↵ = (1, 1),
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2.4 Numerical methods

L1L1g(X0)I(1,1), which in the scalar case is (gxg)(X0)
R t

0

R s1
0 dWs2dWs1 = (gxg)(X0)

1
2(�W 2�

h), where gx denotes the derivative of g wrt. X .

A drift-implicit (one-legged) ✓-method for the SDE can be written as

Xn+1 = Xn + f
�
(1 � ✓)Xn + ✓Xn+1

�
h + g(Xn)�Wn (2.22)

where ✓ 2 [0, 1]. The drift-implicit Euler-Maruyama method, also called backward Euler,
implicit Euler-Maruyama, is the implicit one-step method obtained when ✓ = 1 above, i.e.

Xn+1 = Xn + f(Xn+1)h + g(Xn)�Wn (2.23)

The method is fully drift-implicit, and is the simplest implicit scheme.

A general one-step scheme, either drift-implicit or explicit, can be denoted

Xn+1 = Xn + �(Xn, Xn+1;h, tn) +  (Xn, In;h, tn) (2.24)

where the functions  ,� are increment functions, In is the (approximation of) the iterated
integrals from the method, consisting of sampled random variables.

The concepts of convergence, stability, and consistency have to have randomness in mind,
and we are applying the Lp norms for random variables.

kXkp = (E |X|p))1/p , kXk2 := kXk = (E(|X|2)1/2

This usual definition of strong convergence is given in [12], [18].

Definition 2.6. A numerical approximation XN to the continuous solution YT converges
strongly of order � if

E(|YT � XN |)  Ch�

where the constant C depends on the model problem only, and the step size h = T/N is
sufficiently small.

The Euler-Maruyama method converges of order 1/2, which is well-known from the liter-
ature, but will also become clear throughout this paper. For additive noise gx = 0, so the
strong order of convergence turns out to be 1. This also holds for the drift-implicit versions
of the scheme.

The above definition does not guarantee that the higher moments of the solution converge.
The concept of mean-square convergence deals with the second moment, which relates to
approximating the variance of the solution accurately. The usual definition is [12]

Definition 2.7. A numerical approximation XN converges strongly in the mean-square
sense to the continuous solution YT of order � if

kYT � XNk = E(|YT � XN |2)1/2  Ch�

where the constant C depends on the model problem only, and the step size h = T/N is
sufficiently small.
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2.4 Numerical methods

Since there is a clear definition of both the mean-square convergence above and the defi-
nition for B-convergence for deterministic equations, a B-convergence definition for SDE
methods is also appropriate. For SDE methods it will be simply referred to as B-convergence.

Definition 2.8. A numerical method is mean-square B-convergent of order � when

E(|YT � XN |2)1/2  Ch�

for sufficiently small h, and some constant C independent of the grid and the stiffness of the
problem.

Mean-square convergence implies convergence in probability by the Markov inequality, i.e.
for � > 0, we have

P (|Xn � X|2 > �2)  E(|Xn � X|2)
�2

) P (|Xn � X| > �)  E(|Xn � X|2)
�2

) lim
n!1

P (|Xn � X| > �)  lim
n!1

E(|Xn � X|2)
�2

= 0

) lim
n!1

P (|Xn � X| > �) = 0

which in turn implies convergence in distribution, e.g. by the Portmanteau theorem). The if
the scheme is strongly convergent of order � in the Lp norm, then it is strongly convergent
of order � too when the system is locally Lipschitz ([18], chapter 10).

Another definition of convergence might not consider the paths of the process, but how
e.g. the moments of the numerical solution relate to the moments of the continuous one.
This property is called weak order of convergence. It is given here for completeness. The
numerical scheme has weak order of convergence � if there is a bound

|E( (XN)) � E( (YT ))|  Ch�

that holds for fixed ⌧ = nh 2 I, and all  : Rn ! R 2 C, some class of test functions
C [18]. Often this class of test functions contains polynomials up to some order k. The
Euler-Maruyama method converges of order 1 in the weak sense.

The local error l̂n is defined as

l̂n = Ytn � Ŷn, (2.25)

Ŷn = Ytn�1 + �(Ytn�1 , Ŷn;h, tn�1) +  (Ytn�1 , In�1;h, tn�1)

i.e. the error between the exact solution Ytn and a solution Ŷn produced by the numerical
method, in one step from the exact solution.

Consistency is the property that the local error converges to zero as the step size reduces. In
section 3 two stability inequalities are proven, which both indicate how the local error will
lead to convergence. Each inequality demands a slightly different consistency and is defined
in each of the subsections.
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2.4.1 Stability and one-sided Lipschitz condition for SDEs

This section shows some of the implications for SDEs when assuming a one-sided Lipschitz
condition for the drift. The term dissipative is also used for SDEs whose drift satisfies a one-
sided Lipschitz condition with non-positive ⌫.

First, we include some different stability concepts of numerical approximation of SDEs, for
comparison. Linear stability analysis is based on the approximation of the following scalar
test equation, known as geometric Brownian motion.

dXt = µXtdt + �XtdWt (2.26)

µ 2 C�, with exact solution [1]

Xt = X0 exp ((µ � 1

2
�2)t + �Wt) (2.27)

This SDE has a drift with negative one-sided Lipschitz constant. The following three prin-
ciples are contraction principles.

Definition 2.9. [13] If two different paths of the exact solution of an SDE (2.9) satisfies

kYt � Ỹtk  exp(�t)kY0 � Ỹ0k , �  0

then it is exponentially stable in the mean-square sense.

Definition 2.10. [12] A numerical scheme is mean-square stable if E(|Xn+1|2)  E(|Xn|2)
when approximating (2.26) with (1 + hµ)2 + h�2  1.

Note. The condition on h, �, µ is equivalent to that the continuous solution is exponentially
mean-square stable, that is, being contractive in the L2 norm. The analogue equivalence
goes for the condition in the below definition. Mean-square stability is a much more used
property than the following, which is quite demanding.

Definition 2.11. [12] A numerical scheme is asymptotically stable if limj!1 E(|Xj|) ! 0
when approximating (2.26) with E(log |1 + hµ +

p
h�N (0, 1)|) < 0.

Consider an SDE of the form (2.9), with a drift f satisfying a one-sided Lipschitz condition
(1.1a) with parameter ⌫, and a diffusion g being Lipschitz continuous with parameter Lg.
Comparing two exact solutions of the SDE (2.9) Yt, Ỹt starting at Y0, Ỹ0 respectively, then
(from [19], lemma 1.1)

kYt � Ỹtk2 = E(|Yt � Ỹt)|2)

= |Y0 � Ỹ0|2 + 2E
Z t

0

(f(Ys) � f(Ỹs))(Ys � Ỹs)ds

+ E(
Z

(g(Ys)) � g(Ỹs)dWs)
2

by the Itô formula. Next, we use the Itô isometry on the last term, the stochastic integral,
giving

kYt � Ỹtk2  |Y0 � Ỹ0|2 + 2E
Z t

0

(f(Ys) � f(Ỹs))(Ys � Ỹs)ds + E
Z
(g(Ys) � g(Ỹs))

2ds
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Then using the Lipschitz and the one-sided Lipschitz condition of g and f respectively, we
get

kYt � Ỹtk2  |Y0 � Ỹ0|2 + (2⌫ + L2
g)

Z t

0

E |Ys � Ỹs|2ds  e(2⌫+L2
g)t|Y0 � Ỹ0|2 (2.28)

where Gronwall’s integral inequality, lemma 2.1, was used in the final step. By this, we
see that the described SDE will be exponentially stable in the mean-square sense when
⌫ + 1

2L
2
g < 0. Large noise can thus ruin the contractivity property, but the term dissipa-

tive still applies. If the SDE has additive noise, the continuous solution is contractive like
deterministic ones.

Theorem 2.1 ensures existence and uniqueness of an exact solution, though it requires that f
is Lipschitz continuous, in addition to linear growth and bounded moments. For the numer-
ical analysis to make sense, this must hold, so Lipschitz continuous f and g are required.
Initial values with bounded second moments will always be assumed. Assuming that f is
Lipschitz continuous does not destroy any numerical result later on, through assuming one-
sided Lipschitz continuity with independence of stiffness. Whenever the one-sided Lipschitz
constant gets large and positive, the classic theory of restricted step sizes apply.

2.4.2 Creation of implicit methods

This section shows the construction of the backward Euler method. In the following way,
one can create other implicit methods too, of higher order, stochastic ✓-methods, also ones
that are implicit in the diffusion. Using the stochastic Taylor expansion (2.17) for the SDE,
which is the essential tool for higher-order methods, gives

Yt+h = Yt +

Z t+h

t

f(Ys)ds +

Z t+h

t

g(Ys)dWs

= Yt + hf(Yt) + g(Yt)�Wt + R1

R1 =

Z t+h

t

⇣Z s

t

L0f(Ys1)ds1 +

Z s

t

L1f(Ys1)dWs1

⌘
ds

+

Z t+h

t

⇣Z s

t

L0g(Ys1)ds1 +

Z s

t

L1g(Ys1)dWs1

⌘
dWs

Now replacing f(Yt) by the following, to obtain the drift-implicit Euler
formulation when neglecting R1, R2.

f(Yt) = f(Yt+h) �
Z t+h

t

L0f(Ys)ds �
Z t+h

t

L1f(Ys)dWs

Yt+h = Yt + hf(Yt+h) + g(Yt)�Wt + R1 + R2

R2 = �h
⇣Z t+h

t

L0f(Ys)ds +

Z t+h

t

L1f(Ys)dWs

⌘
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The numerical scheme is thus just as previously presented in (2.23). The next section
presents two drift-implicit methods of higher order.

A piece-wise linear continuous extension of the numerical solution can be made for methods
of order 1/2, and it converges to the exact solution of the same rate as the discrete does, i.e.
the two continuous processes have mean-square distance of order O(h1/2) along the entire
time interval [19] (p. 20, (1.46)).

2.4.3 Drift-implicit methods of order 1 and 1.5

The following higher-order methods can be derived the same way as above, though includ-
ing the higher-order terms in their order. As we saw above, the term R2 came about by
swapping f(Yt) with f(Yt+1), and was already O(h3). If we now want to create an implicit
method of higher order, it is the approximation of

R t+h

t g(Ys)dWs that shall be refined, which
gives higher order for the term E(|R1|2). Skipping to the result, the scalar drift-implicit Mil-
stein method, consistent of order 1, can be shown to be

Xn+1 = Xn + hf(Xn+1) + g(Xn)�Wn +
1

2
g0(Xn)g(Xn)((�Wn)

2 � h)

Regarding the general drift-implicit method (2.24), clearly, Milstein and Euler have the same
increment function �.

The derivative term g0(Xn)g(Xn) can also be calculated by difference methods, instead of
the analytical derivative. This is the idea behind Runge-Kutta (RK) methods, which also
is well-studied for SDEs [18]. The difference methods can either be explicitly defined or
implicitly. If we want a method by even higher order than Milstein’s method, the derivatives
of f will appear in some way.

The following is a drift-implicit stochastic RK method of order 1.5 from [18]. Since we will
only use it in a multidimensional example with scalar noise, we restrict the method to this
setting, while the general form is given in the reference.
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H1 = Xn + f(Xn)h + g(Xn)
p

h

H2 = Xn + f(Xn)h � g(Xn)
p

h

H3 = H1 + g(H1)
p

h

H4 = H1 � g(H1)
p

h

Xn+1 = Xn +
h

2

�
f(Xn+1) + f(Xn)

�

+ g(Xn)�Wn

+
1

2
p

h

�
f(H1) � f(H2)

�
(I(1,0) � 1

2
h�W )

+
1

2
p

h

�
g(H1) � g(H2)

�
I(1,1)

+
1

2

�
g(H1) � 2g(Yn) + g(H2)

�
I(0,1)

+
1

2

�
g(H3) � g(H4) � g(H1) + g(H2)

�
I(1,1,1) (2.29)

The Hi are called internal stages, which in this case are explicitly given for all i. The only
implicit part of the above is the term h

2f(Xn+1). Therefore, solving the nonlinear equation
is not particularly more difficult than for the implicit Euler method, but the method is very
expensive in terms of function evaluations. The latter is a disadvantage of RK methods [27].

The multi-index I↵ is very useful above. The iterated integrals are exact when the multi-
index only consist of the same number. In this case, there exist fairly simple recursive
relations giving the higher-order integrals, i.e. I(j,j). The mixed integrals, I(0,1), I(1,0), will
have to be approximated by sampling one additional normally distributed variable. For
multiple Wiener processes, the difficulty increases drastically [19], which makes higher-
order schemes for SDEs with multiplicative, multidimensional noise a challenge.

I0 = h I1 = �Wn I(1,1) =
1

2
�W 2

n � 1

2
h

I(1,1,1) =
1

3!
(I3

1 + 3hI1)

I(0,1) =
h

2
(I1 � 1p

3
⇣n)

I(1,0) =
h

2
(I1 +

1p
3
⇣n) , ⇣n ⇠ N (0, h) ⇠ �Wn

The RK method will be used as a reference solution in a later example when the analytical
solution is not known.
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3 Proving convergence by stability and consistency

This section contains the main results, starting with a discussion on existing theory, both
for one-sided Lipschitz continuous drift, and Lipschitz continuous drift. Understanding
the latter, which is the classic case, is important in order to develop results for one-sided
Lipschitz continuity.

3.1 Convergence principles assuming regular Lipschitz condition

The classic way of proving numerical convergence is to assume Lipschitz continuity of
our functions f and g, which hold in what is discussed here. Implicit methods are under
consideration.

Two proofs will be discussed here, one by Milstein [19], and one by Winkler [28]. The proof
by Milstein is a classic reference, which states that a scheme is mean-square convergent of
order p2 � 1/2 if the local error of a scheme satisfies

|E(l̂n |Fn�1)|  K(1 + |Ytn�1 |2)1/2hp1 (3.1)

kl̂nk  K(1 + |Ytn�1 |2)1/2hp2 (3.2)

p2 � 1

2
, p1 � p2 +

1

2

for some constant K, grid-independent. Thus, the scheme is convergent of order p2 �
1/2, by the implications previously discussed. The local error condition can be interpreted
as a consistency condition of the scheme. The definition above points out that there is a
possibility that p1 is even larger than � + 1, though it will not help to have an even larger
p1, p2 decides the convergence rate. The proof of Milstein is based more on results from
probability theory and SDEs, compared to Winkler’s proof.

Winkler structures the proof quite differently. By posing some reasonable Lipschitz con-
ditions on the increment functions � and  from the general one-step method (2.24), they
establish a stability inequality, showing how perturbations propagate with the solution. The
stability inequality resembles BS-stability, definition 2.3. The difference from BS-stability
is however that the perturbations in this stability inequality have a specific order of h. In
the end, convergence follows from stability and a suitable consistency condition. The con-
sistency condition is almost indistinguishable from the one implied in Milstein, where p2

corresponds to � + 1/2, p1 to � + 1.

Winkler is able to separate the problem into several pieces. They also end up with specific
error bounds, partly because it is divided into distinct parts. Since convergence is split up
into stability and consistency, the effect real perturbations have on the convergence is also
estimated.
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3.2 Convergence principles with one-sided Lipschitz condition

3.2 Convergence principles with one-sided Lipschitz condition

The two seemingly first publications proving results for SDEs using the one-sided Lipschitz
condition were first Hu [15], then Higham et al.[14]. To relate the works to the previously
mentioned works, Higham has several similarities with Milstein, relying more on results
from probability theory. Hu proves convergence based to a large degree on calculus results,
seemingly more like Winkler. The main result of this work is inspired by the two latter, due
to their compatibility.

The stiffness is by assumption in the drift f , which also is assumed to satisfy a one-sided
Lipschitz condition, in both cases, denoting its parameter ⌫. The diffusion g a global Lip-
schitz condition with parameter Lg. To prove optimal rate of convergence some kind of
monotonicity condition is assumed for both f and g.

Higham shows mean-square convergence for any t 2 I for a continuous-time extension of
the discrete solution of the kind

X̄(t) = X0 +

Z t

0

f(X(s))ds +

Z t

0

g(X(s))dWs , X(t) = Xn , t 2 [tn, tn+1)

X(t) is thus a stepping process, continuous on the right, limit on the left, and coincides with
the discrete solution in the points ti. This measure of convergence is stronger than the one
from definition 2.6.

The continuous-time extension Hu uses is the linear piece-wise continuous one described in
section 2.4.2, and its convergence is simply provided by regular mean-square convergence,
definition 2.6. Hu proves mean-square convergence for the drift-implicit Euler method of
order 1/2. The convergence is proved for step sizes h⌫ < 1, thus for negative one-sided
Lipschitz constants, this has no step size restriction. For positive ⌫, the error constant is
very large, though grid-independent. This also occurs in the stability proof of section 3.4,
which is greatly inspired by the work of Hu.

Higham proves convergence of the SSBE method very elegantly by showing its relation to an
explicit method, then showing convergence for the resulting explicit method. Subsequently,
they prove convergence of the backward Euler method, by showing its relation to the SSBE,
then employing the aforementioned results. However, all results rely on a condition that
appears when showing the first equivalence, where the step size is restricted to h < 1

2� , for
� = max(⌫ + 1/2, 2L2

g). The work in [25] extends the result to split-step one-leg theta
methods and still has a step size restriction as strict.

Hu and Higham do not use any terms like C-stability or B-consistency. It makes sense
since their works do not attempt splitting up the convergence results into such parts. More
recent works have started using such terminology [2, 25]. B-convergence from definition
2.8 is clear. The works [2, 3] compare to our work, where they establish B-consistency
and C-stability, and thereby deduce B-convergence. They consider drift-implicit Euler and
Milstein projection-type schemes, and the SSBE method. The stability condition established
here is different, but the notion of B-consistency is similar. This will be pointed out in
section 3.4. They use a general, positive L = max(⌫, Lg) for the sum of (1.1a) and (1.1b),
which results in the step size restriction h < 1/L.
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3.3 Stability and convergence of the general implicit method

3.3 Stability and convergence of the general implicit method

This section proves that the general drift-implicit one-step scheme satisfies a stability in-
equality, which allows deducing convergence from consistency. The order of convergence
is the same as the order of consistency. The consistency definition required is raised by the
stability inequality, which will become clear. The convergence proof becomes quite simple
and is stated at the end. The proof is an alteration of the one in [28], and we obtain a more
sensible step size criterion. Most of the proof remains the same, and it reveals how a similar
stability inequality can be established for stiff systems, which will be treated in the next
section.

For the general drift-implicit method (2.24), we assume that the step size is constant for
simplicity. We have n 2 {1, ..., N}, h = T/N . The parameter In represent potential
multiple stochastic integrals when higher-order methods are considered. The implicit incre-
ment function � corresponds to the estimation of the drift, while  can correspond to both
the diffusion integral but also higher-order elementary differentials of f due to the Itô for-
mula and the stochastic Taylor expansion. The term is approximated explicitly. Including
perturbations d⇤

n, the general scheme we consider is

X⇤
n+1 = X⇤

n + �(X⇤
n, X

⇤
n+1;h, tn) +  (X⇤

n, In;h, tn) + d⇤
n (3.3)

The following set of assumptions will be used later on:

Assumption A. For t, t+h 2 I, positive constants L�,1, L�,2, L , and Ft-measurable random
variables yt, ỹt 2 Rd:

E( (yt; t, h, It,h) �  (ỹt; t, h, It,h)|Ft) = 0 (A1)

E(| (yt; t, h, It,h) �  (ỹt; t, h, It,h)|2|Ft)  hL2
 |yt � ỹt|2 (A2)

E(| (0; t, h, It,h)|2)  1 (A3)

Assumption B. For all z, z̃, x, x̃ 2 Rd,

|�(x, z;h, tn) � �(x̃, z̃;h, tn)|  hL�,1|x � x̃| + hL�,2|z � z̃| (B1)

The SDE (2.9) has a unique strong solution for Lipschitz continuous f, g, with maximal
growth C(1 + |x|) and initial variable with finite second moment, by theorem 2.1. For the
drift-implicit Euler-Maruyama method, these conditions imply that assumptions A and B
hold.

The theorem on numerical stability now follows.

Theorem 3.1. Assuming that the general drift-implicit scheme (3.3), used to approximate
the SDE (2.9),  satisfies assumption A and � satisfies assumption B. Then there exists
positive h0 < 1p

10L�,2
s.t. for any h 2 (0, h0] the following holds:
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3.3 Stability and convergence of the general implicit method

Given Ft0-measurable, square-integrable initial values X⇤
0 , X̃0 and all Ftn-measurable per-

turbations d̃n, d⇤
n with finite second moments, there exists unique solutions of the perturbed

drift-implicit scheme (3.3), and the global error en = X⇤
n � X̃n satisfies

max
n=1,...,N

kenk  S
n

ke0k + max
n=1,...,N

(kdnkh�1/2 + kd̄nkh�1)
o

where dn = d⇤
n � d̃n, d̄n = E(dn|Ftn�1) and

S =
p
2Ŝ max(1, T ) (3.4a)

Ŝ =
5

(1 � 10h2L2
�,2)

exp(
5

(1 � 10h2L2
�,2)

(L2
 T + 2T 2(L2

�,1 + L2
�,2))) (3.4b)

Proof. The proof can be divided into three natural parts, being firstly proving existence and
uniqueness of a solution of the nonlinear algebraic equation (3.3), then proving that this
solution has finite second moments, through (A3), and lastly showing the stability inequality
above. Only the last part of the following proof will differ from the reference, thus we refer
to [28] for details.

First we introduce some notations.

��n+1 = �(X⇤
n, X

⇤
n+1;h, tn) � �(X̃n, X̃n+1;h, tn)

� n =  (X⇤
n;h, tn, In) �  (X̃n;h, tn, In)

The global error en+1 can thus be expressed as

en+1 = en +��n+1 +� n + dn (3.5)

= e0 +��n+1 +
nX

i=1

��i +
n�1X

i=0

� i +
nX

i=0

di (3.6)

Young’s inequality, lemma 2.3, gives

|en+1|2  5
n

|e0|2 + |��n+1|2 + |
nX

i=1

��i|2 + |
nX

i=0

� i|2 + |
nX

i=0

di|2
o

 5
n

|e0|2 + |��n+1|2 + (n + 1)
nX

i=1

|��i|2 + |
nX

i=0

� i|2 + |
nX

i=0

di|2
o

 5
n

|e0|2 + |��n+1|2 + N
nX

i=1

|��i|2 + |
nX

i=0

� i|2 + |
nX

i=0

di|2
o

(3.7)

Looking at the global error in the L2 norm, some immediate simplifications can be made
using assumption (A1). Using the tower rule and Fti-measurability of� i, assuming i > j,
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3.3 Stability and convergence of the general implicit method

we see that E(� T
i � j) = E(E(� T

i |Fti)� j) = 0, which will be the case for any i 6= j,
by (A1). Then

E(|
nX

i=0

� i|2) = E(|
nX

i,j=0

� T
i � j|2) 

nX

i,j=0

E(|� T
i � j|2) =

nX

i=0

E(|� i|2)

=
nX

i=0

EE(|� i|2 |Fi�1) |{z}
(A2)

nX

i=0

hL2
 keik2 (3.8)

The Lipschitz condition (B1) gives

|��n+1|2 + N
nX

i=0

|��i|2  2h2L2
�,2|en+1|2 + 2h2L2

�,1|en|2

+ 2h2N
nX

i=1

L2
�,2|ei|2 + L2

�,1|ei�1|2

 2h2L2
�,2|en+1|2 + 2N2h2 1

N
(L2

�,1 + L2
�,2)

nX

i=0

|ei|2 (3.9)

For later use we define L̂ = 2(L2
�,1 + L2

�,2). Equation (3.7) is thus

ken+1k2  10h2L2
�,2ken+1k2

+ 5
n
E(|e0|2) + L2

 

T

N

nX

i=0

E(|ei|2) + L̂
T 2

N

nX

i=0

E(|ei|2) + E(|
nX

i=0

di|2)
o

The resulting implicit term on the right-hand side is 10h2L2
�,2ken+1k2, which can shortly be

moved to the left-hand side. For the next inequality to hold, we will require that
1 � 10h2L2

�,2 > 0. Still, this expression can not approach zero, and the following ensures
that this issue is avoided.

9h0 <
1p

10L�,2

s.t. 8h 2 (0, h0] : 1 � 10h2L2
�,2 > 0 (3.10)

Under the step size condition (3.10), the error can be estimated by

ken+1k2(1 � 10h2L2
�,2)  5

n
E(|e0|2) + L2

 

T

N

nX

i=0

E(|ei|2) + L̂
T 2

N

nX

i=0

E(|ei|2) + E(|
nX

i=0

di|2)
o

(3.11)

= 5
n

ke0k2 + L
1

N

nX

i=0

E(|ei|2) + E(|
nX

0=1

di|2)
o

ken+1k2  5

(1 � 10h2L2
�,2)

n
ke0k2 + L

1

N

nX

i=0

E(|ei|2) + E(|
nX

i=0

di|2)
o

L := (L2
 T + L̂T 2)
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3.3 Stability and convergence of the general implicit method

Next applying Gronwall’s discrete inequality (2.4) on the equation above, giving

ken+1k2  Ŝ
n

ke0k2 + E |
nX

i=0

di|2
o

, Ŝ =
5

(1 � 10h2L2
�,2)

exp(
5

(1 � 10h2L2
�,2)

L))

(3.12)

Lastly we treat the mean-square norm of perturbations by considering the splitting of each
perturbation into

di = ri + si , si = di � E(di|Fn�1), E(si|Fn�1) = 0 , ri = E(di|Fn�1) (3.13)

Then E(sTi sj) = 0, i 6= j by the same tower property argument as above. The sum regarding
si’s will then be

E(|
nX

i=0

si|2) =
nX

i=0

E(|si|2)

E(|
nX

i=0

di|2)  2E(|
nX

i=0

ri|2) + 2
nX

i=0

E(|si|2)  2(n + 1)
nX

i=0

E(|ri|2) + 2
nX

i=0

E(|si|2)

 2
nX

i=0

(E(|si|2) + E |ri|2
Nh

h
 2 max

i=0,...,N
(E |si|2 + E |ri|2

Nh

h
)N

Inserting the above into (3.12), and taking the maximum,

max
n=1,...,N

kenk2  Ŝ
n

ke0k2 + 2 max
i=1,...,N

(E |si|2T/h + E |ri|2
T 2

h2
)
o

max
n=1,...,N

kenk  S̃
n

ke0k + 2 max
i=1,...,N

(ksik
p

T/h + krikT/h)
o

max
n=1,...,N

kenk  S
n

ke0k + max
i=1,...,N

(ksikh�1/2 + krikh�1)
o

S =
p

2Ŝ max(1, T )

The final transition back to the original perturbations is made by replacing ri = d̄i, and the
fact that

ksik2 = kdi � d̄ik = E |di � d̄i|2  E |di � d̄i|2 + E |d̄i|2 = E |di|2 � 2E(did̄i) + 2E |d̄i|2

= E |di|2 � 2E(E(did̄i|Fti�1)) + 2E |d̄i|2 = E |di|2 = kdik2 (3.14)

Remark. Again note that most of the ideas applied above are identical to the ones by Winkler
[28]. The small difference from the reference, of writing (3.6) in five terms as opposed to
four, results in a different step size requirement. The main point is that the implicit term
��n+1 is excluded from the sum, since it must be treated differently. Once we use Young’s
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3.3 Stability and convergence of the general implicit method

inequality on the sum, the implicit term avoid having a coefficient N . This differs from the
reference, which instead of (3.10) ends up conditioning that

8TL2
�,2h0 <

1

2
) h0 <

1

16TL2
�,2

since in (3.9), their coefficient of |en|2 is 8Nh2L2
�,2 = 8ThL2

�,2, and the criterion 8Th0L2
�,2 <

1 must hold.

The factor 16 above comes from repeated use of Young’s inequality and is not necessarily
observable in a numerical experiment. The same goes for the factor

p
10 the relation h0 <

1/(
p
10L�,2). This step size criterion is essentially identical to the one for deterministic

equations.

The stability constant Ŝ in (3.4b) is huge in several problems, comparable to what we saw
in the introduction for Lipschitz continuous functions f , though even larger now. This is
partly due to noise, which contributes exponentially like for the backward Euler method in
the introduction. Ŝ is dependent on h in (3.4b). This formulation thus preserves the details of
the proof. The dependency on h can be avoided by e.g. assuming that h2

0 < (2(10L2
�,2))

�1,
then

5

1 � 10h2L2
�,2

< 10

If L�,2 becomes large, the theorem only admits very small step sizes.

For a system with additive noise, any term with L will vanish, meaning that e.g. L = L̂T 2.
If the implicit increment function � only depends on the implicit part, as for the drift-implicit
Euler-Maruyama method, the Lipschitz constant L�,1 also vanishes in the same way. This
results in

Ŝ = 8 exp(4T 2L2
�,2) when

4h2L2
�,2  1/2

with this approach. Some coefficients are reduced, due to fewer terms when applying
Young’s inequality. The result is a much smaller stability constant.

It also coincides with local error assumptions made by Milstein [19].

Definition 3.1. A numerical method is consistent of order � when

kl̂nk  C h�+1/2

kE(l̂n|Fn�1)k  C̄ h�+1

for sufficiently small h, and some grid-independent constants C, C̄.

The theorem on convergence now follows easily, like in [28].

Theorem 3.2. A general drift-implicit one-step method (2.24) is convergent of order � if it
is stable in the above sense, Y0 = X0, and consistent of order �.
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3.3 Stability and convergence of the general implicit method

Proof. Using the definition of the local error (2.25), and Ŷn+1,

Ytn+1 = l̂n+1 + Ŷn+1

= l̂n+1 + Ytn + �(Ytn , Ŷn+1;h, tn) +  (Ytn ;h, tn, In)

Yt1 = l̂1 + Ŷt1

= l̂1 + Yt0 + �(Yt0 , Ŷ1;h, tn) +  (Yt0 ;h, t0, I0)

The above formulation shows that the exact solution Ytn+1 can be formulated as the solution
using the numerical method (3.3) from Yt0 with perturbation d⇤

i = l̂i in each step. The
approximate solution Xn, starting from X0 = Yt0 , is the solution obtained by using the
same method with no perturbations.

The next step is inserting the exact and approximate solution in the stability inequality
above, theorem 3.1, which holds by assumption. As pointed out, the two solutions are
both solved with method (3.3), where the perturbations of Yti are l̂i, and perturbations of Xi

are zero. Then, the difference of perturbations is di = d⇤
i � d̃i = l̂i � 0. Since the method is

assumed stable, we have from theorem 3.1

max
n=1,...,N

kYtn � Xnk  max
n=1,...,N

S{kl̂nkh�1/2 + kE(l̂n |Fn�1)kh�1}  O(h�) + O(h�)

By assumption and definition 3.1, kl̂nk = O(h�+1/2) and kE(l̂n |Fn�1)k = O(h�+1).

Inserted into the above, this yields maxn=1,...,N kYtn � Xnk = O(h�). Then also
kYtN � XNk = O(h�), which is the definition of convergence of order �.

For later reference, it would also be possible to create a recursion from (3.5) in the proof,
but it would cause a far worse error constant in the end. This will be illustrated at the end of
the next section when considering drifts satisfying a one-sided Lipschitz condition. In this
case, we have not found a way to complete the proof by using (3.6), one has to use (3.5).
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3.4 Stability of drift-implicit methods with one-sided Lipschitz condition

3.4 Convergence and stability of drift-implicit methods with

one-sided Lipschitz condition

This section proves that certain implicit methods converge with order �, provided consis-
tency of order � independent of stiffness, and stability independent of stiffness. The stability
inequality here is similar to the previous one, though independent of stiffness under certain
conditions. The general ideas are very similar to the previous section, inspired by Winkler
[28], combined with the ideas of Hu [15]. First, a description of the admissible methods is
given, as it is much more restricted than in the previous section.

The next theorem regards one-step approximations of SDE systems (2.9) for which the in-
crement function � satisfies a one-sided Lipschitz condition (1.1a). We now have to restrict
the methods under consideration. The increment functions �will here only be fully implicit,
i.e. we are considering

X⇤
n+1 = X⇤

n + �(X⇤
n+1;h, tn) +  (X⇤

n;h, tn, In) + d⇤
n (3.15)

To avoid any differential terms of f , which is assumed stiff, Taylor based methods only up
to order 1 are applicable. For any higher-order method, e.g. the Runge-Kutta method of
order 1.5 (2.29), the term I(1,0)(L1f) has to be included. In the following, assumption B is
replaced by assumption C, ensuring that we do not rely on the Lipschitz constant of f .

Assumption C. For all x, x̃ 2 Rd, t, t + h 2 I, some constant ⌫, � satisfies

h�(x;h, t) � �(x̃, h, t), x � x̃)i  h⌫|x � x̃|2 (C1)

There exists a unique solution of the SDE (2.9), with Lipschitz continuous f, g, with growth
maximally C(1 + |x|), and bounded second moment of the initial variable, by theorem 2.1.
When assuming that f is one-sided Lipschitz continuous, assumption C follows for the
fully implicit Milstein method and the drift-implicit Euler, since then f = �. Assumption A
follows for both methods.

The theorem on numerical stability independent of stiffness now follows.

Theorem 3.3. Assuming that assumption A and C hold for  ,� respectively, from (3.15).
Given Ft0-measurable, square-integrable initial values X⇤

0 , X̃0 and all Ftn-measurable per-
turbations d̃n, d⇤

n with finite second moments, there exists unique solutions to (3.15), being
{X̃i}N

i=0 and {X⇤
i }N

i=0 respectively.

In addition, there exists positive h0 < 1/⌫ s.t. for any h 2 (0, h0], en := X⇤
n � X̃n, en

satisfies

max
n=1,...,N

kenk  S
n

ke0k + max
i=1,...,N

(kdikh�1/2 + kd̄ikh�1)
o

S =
p
2Ŝ max(1, T )

where dn = d⇤
n � d̃n, d̄n = E(dn|Ftn�1) and Ŝ is independent of stiffness.
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3.4 Stability of drift-implicit methods with one-sided Lipschitz condition

If ⌫ < 0, then for any h > 0

Ŝ = 3 exp(3L2
 (�

1

2⌫
))

If ⌫ = 0, then for any h > 0

Ŝ = 3 exp(3L2
 T )

Proof. We assume that the solution of (3.15) has an existing and unique solution for each
step, and that it is bounded in the L2 norm by (A3).

We start off considering general ⌫, though eventually encounter a point where the sign
matters, and the cases are treated differently.

Similarly to the previous section, we denote

en+1 = X⇤
n+1 � X̃n+1

��n+1 = �(X⇤
n+1;h, tn) � �(X̃n+1;h, tn)

� n =  (X⇤
n;h, tn, In) �  (X̃n;h, tn, In)

Then, with Jacobian of � denoted J�

en+1 = en +��n+1 +� n + dn

en+1 ���n+1 = en +� n + dn

en+1 � h{
Z 1

0

J�(X̃n+1✓ + (1 � ✓)X⇤
n+1)d✓}en+1 = en +� n + dn

Where the last transition is made using the mean-value theorem, lemma 2.4.

Now defining An =
�
I � h

R 1

0 J�(X̃n✓ + (1 � ✓)X⇤
n)d✓

��1. Since h > 0, by assuming that
h⌫ < 1, lemma 2.6 is applicable. It is worth pointing out that h⌫ can not approach 1 either.

There exists h0 > 0 dependent on ⌫ s.t. for all h 2 (0, h0], h⌫ < 1 is satisfied. When ⌫  0
no restrictions on h occur here. From this we see that kAikop  (1 � h⌫)�1 := ⌘, some
bounded ⌘, dependent on h.

en+1 = An+1(en +� n + dn)

= {
n+1Y

i=1

Ai}e0 +
nX

i=0

{
n+1Y

j=i+1

Aj}(� i + di) (3.16)

Using Young’s inequality (lemma 2.3) and (A1) the mean-square global error can now be
bounded by

E |en+1|2  3E |{
n+1Y

i=1

Ai}e0|2 + 3E |
nX

i=0

{
n+1Y

j=i+1

Aj}di|2 + 3
nX

i=0

E |{
n+1Y

j=i+1

Aj}� i|2
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3.4 Stability of drift-implicit methods with one-sided Lipschitz condition

Above the tower property and assumption (A1) allows for writing the sum of � i this way,
just like in (3.8). Inserting the operator norm of Aj , with bound 1

1�h⌫ = ⌘, and apply
assumption (A2), results in

E |en+1|2  3⌘2(n+1)ke0k2 + 3E |
nX

i=0

⌘n�i+1di|2 + 3
nX

i=0

⌘2(n�i+1) E |� i|2 (3.17)

Applying the Lipschitz condition for the diffusion (A2) gives the following result, to which
we subsequently apply the discrete Gronwall inequality (lemma 2.2), with bi = 3hL2

 ⌘
2(n�i+1).

E |en+1|2  3⌘2(n+1)ke0k2 + 3E |
nX

i=0

⌘n�i+1di|2 + 3
nX

i=0

⌘2(n�i+1) E |ei|2hL2
 

 3
n
⌘2(n+1)ke0k2 + E |

nX

i=0

⌘n�i+1di|2
o
exp(

nX

i=0

bi) (3.18)

First looking at the case of positive ⌫, which implies ⌘ > 1, implying that bi+1 > bi, but it
can nonetheless be shown to be bounded by some grid-independent constant. Conditioning
that h⌫ < 1 gives ⌘ convex in this region, thus ⌘  (1 + Ch), where C depends on ⌫ only.

nX

i=0

3hL ⌘
2(n�i+1)  nh3L2

 ⌘
2(n+1)

 T3L2
 (1 + Ch)2(n+1)

(1 + Ch)2n  exp(2CT ) (3.19)

An estimate like (3.19) can be used to bound ⌘2(n+1), ⌘n�i+1 and exp(
P

bi). The estimate
is clearly very large, but still grid- and stiffness-independent.

Firstly, if ⌫ = 0 then ⌘ = 1, and from (3.18) we see that

exp(
nX

i=0

3hL2
 )  exp(3TL2

 )

When ⌫ < 0, ⌘ < 1, so

exp(
nX

i=0

bi) = exp(3hL2
 

nX

i=0

⌘2(n�i+1))

nX

i=0

⌘2(n�i+1)  ⌘2(n+1)1 � ⌘�2(n+1)

1 � ⌘�2
=

1 � ⌘2(n+1)

⌘�2 � 1
 1

⌘�2 � 1

h

⌘�2 � 1
=

h

h2⌫2 � 2h⌫
=

1

h⌫2 � 2⌫
 �1

2⌫

exp(
nX

i=0

bi)  exp(
�3L2

 

2⌫
)
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3.4 Stability of drift-implicit methods with one-sided Lipschitz condition

There is big damping on ke0k and the perturbations when ⌘ 2 (0, 1), but we simply estimate
⌘k as 1. For ⌘ 2 (0, 1), i.e. ⌫ < 0 the entire bound will look like

E |en+1|2  3
n

ke0k2 + E |
nX

i=0

di|2
o
exp(

�3L2
 

2⌫
)

It is stiffness independent since it only decreases when ⌫ large in magnitude.

The rest of the proof concerns the sum of perturbations. This goes exactly like in the previ-
ous section, and is skipped. The desired stability inequality for ⌫  0 is obtained, as before,
with

Ŝ = 3 exp(3L2
 (�

1

2⌫
)) , ⌫ < 0

Ŝ = 3 exp(3L2
 T ) , ⌫ = 0

S =
p

2Ŝ max(1, T )

Remark. The inequalities used for positive ⌫ are particularly rough since ⌘ > 1, C poten-
tially large. The proof also uses that 1 + bi  exp(bi), which is also very rough for large bi.
We expect something that is growing much faster than in the case of non-positive ⌫, which
is true. With ⌫ > 0 the SDE is no longer dissipative, so one can expect initial errors and
perturbations to grow large.

Now picking up the thread mentioned at the end of the previous section. A partial explana-
tion of this very large error bound can be found in the fact that the proof was only able to
express the recursion on en as in (3.16), as opposed to (3.11). For the one-sided Lipschitz
condition we have only been able to express this as (3.16), and it works fine for non-positive
⌫. This approach would give poor results for a Lipschitz continuous drift function too, since
we could estimate from (3.5)

|en+1| = |en + h�fn+1 +�gn�Wn + dn|
|en+1|(1 � 4hLf )  4(|en|�gn�Wn + dn)

|en+1|  4

1 � 4hLf
(|en|�gn�Wn + d) = Bn(|en| +�gn�Wn + dn)

which corresponds to (3.16). After this, one could apply (3.19). This approach will give a
similar result as the one above for ⌫ > 0, and will again give a very large error bound. The
stability constant Ŝ is nonetheless stiffness-independent for one-sided Lipschitz continuous
⌫.

The resulting dependency of Ŝ on ⌫ for ⌫ < 0 resembles the bound of the exact solution
– smaller error bound for ⌫ more negative. For ⌫ = 0, the error bound is highly similar to
(2.28), the bound for the exact solution. Here it will not be exp((⌫ + 1/2L2

g)t) that decides
the bound of the error, but max(1, T ) exp(�3L2

g/4⌫), for negative ⌫. For ⌫ = 0 the discrete
error bound is proportional to max(1, T ) exp (3L2

gT/2), which is in a sense close. The final
error bound is however also dependent on the local order, as will be shown shortly.

31



3.4 Stability of drift-implicit methods with one-sided Lipschitz condition

Again the stability inequality implies a certain consistency definition. The following defines
B-consistency.

Definition 3.2. A numerical method is B-consistent of order � when

kl̂nk  C h�+1/2

kE(l̂n|Fn�1)k  C̄ h�+1

for sufficiently small h independent of stiffness, and some grid-independent constants C, C̄,
independent of stiffness.

The stiffness-independent counterparts of the definitions in section 3.3 are now established.
The stability inequality of theorem 3.3 also allows for deducing the rate of B-convergence,
when assuming B-consistency. This constitutes the following theorem.

Theorem 3.4. A drift-implicit one-step method up to order 1 with one-sided Lipschitz con-
tinuous drift f is B-convergent of order � if it is stable in the sense of theorem 3.3, Y0 = X0,
and B-consistent of order �.

Proof. This is proven exactly like theorem 3.2, though with stiffness-independent stability
and consistency principles.

The exact solution can be viewed as the solution with the method (3.15) from Y0, with
perturbations l̂i in each step. The numerical solution is the unperturbed solution from X0 =
Y0 using the method (3.15). By assuming stiffness-independent stability and B-consistency,
convergence rate � follows, independent of stiffness.

Note that definition 3.2 of B-consistency is highly similar to the definition 3.1 of consistency,
only adding a stiffness criterion. In addition, the definition coincides with B-consistency
defined in [2]. They define B-consistency of order � to be when the local error satisfies

kl̂n � E(l̂n|Fn�1)k  C h�+1/2

kE(l̂n|Fn�1)k  C̄ h�+1

C, C̄ independent of grid and stiffness. The equivalence to definition 3.2 can be seen by
studying the splitting of the perturbation in (3.13) and (3.14). From the convergence proof,
it was shown that the exact solution is the method solution from Y0, perturbed by the local
errors. The numerical solution is just the solution from Y0 with no perturbations, thus

di = l̂i � 0 = l̂i , and, using (3.13), this is

si = di � E(di|Fn�1) = l̂i � E(l̂i|Fn�1) , then applying (3.14), giving

kl̂i � E(l̂i|Fn�1)k  kdik = kl̂ik

The results above are highly comparable to [2, 3], though obtained differently and indepen-
dently. The methods they consider are related to ours, but different. They do not however
consider non-positive ⌫, which for the results here gives no step size restriction. Their re-
sults require step size restrictions for all one-sided Lipschitz constants.
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3.5 B-consistency of methods up to order 1

3.5 B-consistency of methods up to order 1

The consistency defined above requires that the local error l̂n+1 has order � + 1/2 in the
L2-norm, and � + 1 for kE(l̂n+1|Fn)k. Using the assumptions from theorem 3.3 and a
monotonicity assumption on f, g we are able to prove stiffness-independent consistency
for drift-implicit Euler and Milstein type methods. This proof is inspired by ideas from
[2, 7, 19]. Again, the methods of higher order will have to include derivatives of f , which
for stiff systems will be large. They also and up in the increment function  , thus changes
its properties.

Xn+1 = Xn + �(Xn+1;h, tn) +  (Xn;h, tn, In) (3.20)
The choices are not many when we only consider these two methods. In both methods
�(Xn;h, tn) = hf(tn, Xn), while  is not equal in the two cases. For the drift-implicit
Euler method  (Xn;h, tn, In) = g(tn, Xn)I(1) The Milstein method simply adds the term
L1g(tn, Xn)I(1,1), which in the case of scalar noise is 1

2Jg(tn, Xn)g(tn, Xn)((�Wn)2 � h),
Jg being the Jacobian of g. When g 2 C1(R) the increment function  is Lipschitz contin-
uous for the drift-implicit Milstein and Euler method.

This is a smoothness and a monotonicity assumption.
Assumption D. Assuming that both {f, g} 3 ✓ 2 C1 and :

|✓(t, x)|  K(1 + |x|q) (D1)
|✓(t, x2) � ✓(t, x1)|  K(1 + |x1|q�1 + |x2|q�1)|x2 � x1| (D2)

|✓(t1, x) � ✓(t2, x)|  K(1 + |x|q)|t1 � t2|1/2 (D3)

for some constant K possibly different in each estimate, q 2 (1, 1), t 2 I, x, x1, x2 2 Rd.
Lemma 3.1. The drift-implicit Euler method is B-consistent of order 1/2, independent of
stiffness, and the drift-implicit Milstein method is B-consistent of order 1, also independent
of stiffness, under the assumption A for  from (3.20), assumption C for f and assumption
D for f, g.

Proof. We assume scalar noise, m = 1, for simplicity. Then g(Xi) 2 Rd⇥1, �Wn 2 R.
If there were multidimensional noise, one would use the Itô isometry (2.10) and Fubini’s
theorem (2.11), to bound

E
�
|

mX

i=1

Z tn+1

tn

gi(s, Ys)dW i
s |2

�
=

mX

i=1

Z tn+1

tn

E(|gi(s, Ys)|2)ds

then using the condition (D1), e.g. for g, bounding the above by [2]

E
�
|

mX

i=1

Z tn+1

tn

gi(s, Ys)dW i
s |2

�


mX

i=1

Z tn+1

tn

sup
t2I

K(1 + |Yt|q)ds

= m

Z tn+1

tn

sup
t2I

K(1 + E(|Yt|q))ds

k
mX

i=1

Z tn+1

tn

gi(s, Ys)dW i
sk  C(Km)1/2 sup

t2I
(1 + E(|Yt|q))|tn+1 � tn|1/2
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3.5 B-consistency of methods up to order 1

This would be applied below when appropriate, simply scaling by a factor m1/2 in relevant
terms.

The next step shows the relation between the local error l̂i and the residual error li, which is
very useful. The residual error is the difference between the analytical solution at tn+1, and
the solution using the method one step from tn, though inserted the analytical solution, i.e.

ln+1 = Ytn+1 � (Ytn + hf(tn+1, Ytn+1) +  (Ytn ;h, tn, In)) (3.21)

l̂n+1 = Ytn+1 � Ŷn+1 = Ytn+1 � (Ytn + hf(tn+1, Ŷn+1) +  (Ytn ;h, tn, In))

l̂n+1 = ln+1 + h(f(tn+1, Ytn+1) � f(tn+1, Ŷn+1))

ln+1 = l̂n+1 � h(f(tn+1, Ytn+1) (3.22)

In (3.22) it is very efficient to make use of the mean-value theorem (lemma 2.4), and the
implications for the Jacobian of f with a one-sided Lipschitz condition, assumption C [7].
Then for h⌫ < 1 we get

(I � h

Z 1

0

Jf (uYtn+1 + (1 � u)Ŷn+1)du)
| {z }

A�1
n

l̂n+1 = A�1
n l̂n+1 = ln+1

kl̂n+1k  (1 � h⌫)�1kln+1k
From (3.21) in integral form

ln+1 = Ytn +

Z tn+1

tn

f(s, Ys)ds +

Z tn+1

tn

g(s, Ys)dWs

� (Ytn + hf(tn+1, Ytn+1) +  (Ytn ;h, tn, In))

ln+1 =

Z tn+1

tn

(f(s, Ys) � f(tn+1, Ytn+1))ds +

Z tn+1

tn

g(s, Ys)dWs �  (Ytn ;h, tn, In)

(3.23)

First showing the order of the implicit Euler method, where  (Ytn) = g(Ytn)�Wn. This
reveals how it can be done for the Milstein case. For (3.23) we apply the triangle inequality,
Itô isometry, Fubini’s theorem and Jensen’s inequality to get

kln+1k  k
Z tn+1

tn

(f(s, Ys) � f(tn+1, Ytn+1))dsk + k
Z tn+1

tn

(g(s, Ys) � g(tn, Ytn))dWsk

 k
Z tn+1

tn

(f(s, Ys) � f(tn+1, Ytn+1))dsk +
⇣
E
Z tn+1

tn

|g(s, Ys) � g(tn, Ytn)|2ds
⌘1/2

 k
Z tn+1

tn

(f(s, Ys) � f(tn+1, Ytn+1))dsk +
⇣Z tn+1

tn

E(|g(s, Ys) � g(tn, Ytn)|2)ds
⌘1/2


Z tn+1

tn

k(f(s, Ys) � f(tn+1, Ytn+1))kds +
⇣Z tn+1

tn

k(g(s, Ys) � g(tn, Ytn))k2ds
⌘1/2

(3.24)
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3.5 B-consistency of methods up to order 1

Assumption D implies for x1, x2 2 Rd, and t1, t2 2 I, that

|✓(t1, x1) � ✓(t2, x2)|  |✓(t1, x1) � ✓(t1, x2)| + |✓(t1, x2) � ✓(t2, x2)|
 K(1 + |x1|q�1 + |x2|q�1)|x2 � x1| + K(1 + |x2|q)|t1 � t2|1/2

(3.25)

By these implications, the first term of (3.24) can be estimated by

k(f(s, Ys) � f(tn+1, Ytn+1))k  Kk(1 + |Ys|q�1 + |Ytn+1 |q�1)|Ys � Ytn+1 | k

+ Kk(1 + |Ytn+1 |q)|s � tn+1|1/2k

 K(1 + 2 sup
t2I

E(|Yt|q�1))kYs � Ytn+1k

+ K(1 + sup
t2I

E(|Yt|q))|h|1/2 (3.26)

The benefit from expressing the local error by the residual error is evident now, since we
are using the exact solution at every point, and can estimate kYs � Ytn+1k using assumption
(D3). Knowing that tn+1 > s, we write this as

Ytn+1 � Ys =

Z tn+1

s

f(s1, Ys1)ds1 +

Z tn+1

s

g(s1, Ys1)dWs1

By the same arguments as in (3.24), the above can be bounded by

kYtn+1 � Ysk 
Z tn+1

s

kf(s1, Ys1)kds1 +
⇣Z tn+1

s

kg(s1, Ys1)k2ds1

⌘1/2

|{z}
(D3)

K(1 + sup
t2I

E(|Yt|q))
Z tn+1

s

ds1

+ K(1 + sup
t2I

E(|Yt|q))
⇣Z tn+1

s

ds1

⌘1/2

= O(h1/2)

This is the order of (3.26). This gives for the first term of (3.24), by integration
Z tn+1

tn

k(f(s, Ys) � f(tn+1, Ytn+1))kds  K 0h3/2

By an identical approximation, we also get that kg(s, Ys) � g(tn, Ytn))k = O(h1/2), since
they satisfy the same conditions. The integral and final order is then

⇣Z tn+1

tn

k(g(s, Ys) � g(tn, Ytn))k2ds
⌘1/2


⇣
K2(1 + sup

t2I
kYtkq)h

Z tn+1

tn

ds
⌘1/2

(3.27)

= hK(1 + sup
t2I

kYtkq) = O(h) (3.28)

This term is thus the lowest in order of h, and determines the order of the residual er-
ror. It is also the term that differs from the Milstein method, which we treat next. We
only have to prove that  approximates the stochastic integral of g of order O(h3/2). The
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3.5 B-consistency of methods up to order 1

first term of (3.24) occurs there too, whose order is already proven. Milstein’s method has
 (Ytn ;h, tn, In) = g(tn, Ytn)�Wn + L1g(tn, Yn)I(1,1). This is inserted into (3.23), and also
substitute g(s, Ys) by

g(s, Ys) = g(tn, Ytn) +

Z s

tn

L0g(s1, Ys1)ds1 +

Z s

tn

L1g(s1, Ys1)dWs1

When inserted, the term g(tn, Ytn) cancels with the one-step method. The residual error is
thus

ln+1 =

Z tn+1

tn

(f(s, Ys) � f(tn+1, Ytn+1))ds

+

Z tn+1

tn

⇣Z s

tn

L0g(s1, Ys1)ds1 +

Z s

tn

L1g(s1, Ys1)dWs1

⌘
dWs � L1g(tn, Yn)I(1,1)

By order of the iterated integrals, and the fact that we already showed that the first term is
O(h3/2), we only need to consider the I(1,1) integral part.

Since g is differentiable and Lipschitz continuous, its Jacobian Jg satisfies kJg(x)kop 
Lg , 8x 2 Rd. The term of interest can be written

L1g(s1, Ys1) = Jg(s1, Ys1)g(s1, Ys1)Z tn+1

tn

Z s

tn

�
L1g(s1, Ys1) � L1g(tn, Yn)

�
dWs1dWs


Z tn+1

tn

Z s

tn

Lg

�
g(s1, Ys1) � g(tn, Yn)

�
dWs1dWs (3.29)

Next we consider the norm of the term, and use the Itô isometry twice. The final relation
we insert is the fact proven above, that kg(s, Ys) � g(tn, Ytn))k2 = O(h1).

E(
���
Z tn+1

tn

Z s

tn

Lg

�
g(s1, Ys1) � g(tn, Yn)

�
dWs1dWs

���
2

)


Z tn+1

tn

E(
���
Z s

tn

Lg

�
g(s1, Ys1) � g(tn, Yn)

�
dWs1

���
2

)ds


Z tn+1

tn

Z s

tn

L2
g E(

��g(s1, Ys1) � g(tn, Yn)
��2)ds1ds 

Z tn+1

tn

Z s

tn

O(h) ds1ds = O(h3)

By taking the square root, the desired order is evident.

Finally, the definition asks that kE(l̂n+1 |Fn)k = O(h�+1). This will be O(h2) for both
methods. The proof is much simpler than the above, since expectation is linear, and the Itô
integral is a martingale. By the same reasons as above, we rather consider the residual error
ln. The martingale property gives that the stochastic integral and  cancels, for both the
Euler and Milstein method. Then we are left with

kE(
Z tn+1

tn

(f(s, Ys) � f(tn+1, Ytn+1))ds |Fn)k = O(h2)

(Details in [19], proof of theorem 1.1)
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4 Examples

4.1 Linear constant coefficient SDE

We now revisit the linear example from the introduction, though with scalar, multiplicative
noise. In the scalar case, the solution is known as geometric Brownian motion.

Yt =

✓
�µ 1
1 �µ

◆
Ytdt +

✓
� 0
0 �

◆
YtdWt = AYtdt + BYtdWt , Y0 = (a, b)

for some constants µ > 1, �. This has an exact solution, which can be written for commuting
matrices A, B [18]

Yt = Y0 exp((A � 1

2
B2)t + BWt)

The drift has Lipschitz constant LA = µ+ 1 and one-sided Lipschitz constant ⌫ = �µ+ 1.
The diffusion is Lipschitz continuous with constant LB = �. Since the drift satisfies a
one-sided Lipschitz condition, with negative ⌫ for µ > 1, the stability theorem

A drift-implicit scheme up to order 1 will look like

Xn+1 = Xn + AXn+1h +  (Xn;h, tn, In) , solving for Xn+1 gives

Xn+1 = (I � hA)�1(Xn +  (Xn;h, tn, In))

where for constant step size and matrix A, the inverse of the matrix (I � hA) only has to be
computed once, and is clearly equal for any path. The simplicity of the system opens up for
fast simulations.

For the Milstein method,  (Xn;h, tn, In) = BXn�Wn +
1
2(B

2Xn)((�Wn)2 � h). For the
backward Euler method  (Xn;h, tn, In) = BXn�Wn

For different µ, T , and � the order of convergence is found by calculating paths with in-
creasing step size. The same Wiener process is used across the different step sizes, The
global error is calculated from step size T/2048 up to T/4 in each figure, thus 10 different
step sizes. We use the same initial value for all paths, X0 = (2, 0).
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4.1 Linear constant coefficient SDE

10�4 10�3 10�2

Step size h
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Global error, drift-implcit methods
Milstein: � = 0.990

Euler: � = 0.591

Figure 1: 10000 paths, µ = 7, � = 1, T = 0.1. Measuring the expected order of convergence.

Figure 1 shows that the order of convergence of the two drift-implicit methods is observable,
and coincides with the theory. The lines cross for the larger step sizes. It also seems that
the implicit Euler method has faster convergence in this region. This is natural, as the error
of the method consists of two terms, that is, the drift is approximated of order 1, while
diffusion is approximated of order 1/2. There might however be regions where the error
constant for the diffusion in practice is very small. Then something closer to rate 1 can be
observed. This is even more clear in the next section.

10�2 10�1 100
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Figure 2: Violating the Lipschitz step size criterion. 10000 paths, µ = 20, � = 2, T = 10.

Figure 2 shows that we have convergence for all step sizes. The convergence is extremely
rapid, since the system is very contractive, with ⌫ = �19. The five points of the largest step
size are not mean-square stable in the sense of definition 2.10. The six points of the largest
step size violate the classic condition of h < 1/L. The eight points of the largest step size
violate the step-size restriction of h < 1/

p
10L, from the stability inequality in theorem
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4.2 Van der Pol oscillator

3.1. The stability constant from theorem 3.1 is extremely large. However, we know that the
system satisfies a one-sided Lipschitz condition with ⌫ = �µ + 1, thus allowing the use of
theorem 3.3. This tells us that there should be no step size restriction, which seems to hold
experimentally.

The system for ⌫ = �19, L = 2, T = 10 has stability constant S =
p

2ŜT = 28.7.
Assuming that the global error is largest in the last point, which is plotted in figure 2, and
that the local error is constant for all steps, we can calculate what the convergence bound
from theorem 3.4. The local error in the first step can thus be applied. For the linear system,
using the implicit Euler, N = 4, h = T/N = 2.5, we have kl̂1k = kYh � X1k = 0.13,
calculated from 10000 paths. We also compute kE(l̂1|F0)k = 0.04. This results in an error
bound 28.7(0.04 + 0.13) = 4.88. It is obviously larger than the error seen from figure 2,
though such error constants will always be very much larger than the actual errors.

4.2 Van der Pol oscillator

This section looks at a classic example, namely the noisy Van der Pol oscillator. This exam-
ple is frequently used when it comes to stiff nonlinear ODEs. The deterministic version of
the following problem is analyzed in [27]. In [18] they look briefly at the noisy Duffing-Van
der Pol oscillator, which is related to this problem. The previous example was linear and
stiff, and not entirely

Denote Yt = (Y1, Y2). In this example, we only consider µ > 0.

dYt =

✓
Y2

µ((1 � Y 2
1 )Y2 � Y1)

◆
dt +

✓
0 �
� 0

◆
YtdWt , Y0 = (2, 0)T (4.1)

With no noise, the path from t0 = 0 to T = 2.75 is plotted in figure 3, for one period. For
each period there are two sharp transients, making the problem stiff. On the interval before
the first transient and between the transients, the solution changes slowly, and larger step
sizes should be admissible. The Jacobian of f is

Jf =

✓
0 1

µ(�2Y1Y2 � 1) µ(1 � Y 2
1 )

◆

We now want to analyze the properties of the drift function, which is stiff for large µ.

hYt, f(Yt)i = Y1Y2(1 � µ) + µY 2
2 (1 � Y 2

1 )

The second term is negative for |Y1| > 1, which is expected to hold in the early evolution of
the equation. In this part Y2 is negative, but in magnitude, we expect the second term to be
bigger than the first on this initial interval, for µ � 2. These two conditions are reasonable,
we can assume contractivity of the system in this region, but all we can say is that the system
satisfies the one-sided Lipschitz condition with ⌫  0. Our system is random. The noise
can at any time point bring us into the transient since it is a random variable in R.
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4.2 Van der Pol oscillator
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Figure 3: The deterministic Van der Pol equation for µ = 10, T = 2.75, N = 1024. BE is the
backward Euler method.

In figure 4b the mean of 1000 noisy paths until T = 0.75 is plotted. 256 uniform steps have
been used. Accordingly, we assume that for such levels of noise, �  2, Y1 2 (1, 2] on this
interval. Then we have a contraction with ⌫ = 0.
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(a) Means of simulations on the non-transient phase.
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(b) Zooming in on the mean of paths.

Figure 4: The mean of 1000 simulations of the Van der Pol oscillator, using µ = 10, � = 2,
256 steps. BE is the backward Euler method, and RK the Runge-Kutta method. The 95 percent
confidence intervals (CI) are for the estimator of the mean in each point.

4.2.1 Implementation

A short description of how to solve the nonlinear equation using the drift-implicit Euler
method is given here, which also reveals how this is done for the 1.5 order stochastic Runge-
Kutta scheme (2.29). The analytical solution is not known for this problem, so the compar-
ison is made with the solution with the RK method on a very fine grid.

Moving everything in our numerical scheme to one side, and denoting the resulting function
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4.2 Van der Pol oscillator

as

F (Yn) = Yn � hf(Yn) � C (4.2)
C = Yn�1 + g(Yn�1)�Wn (4.3)

for which we must solve F (Yn) = 0. The parameter C is in each time step constant since
it comprises everything that is either explicitly given or sampled in our scheme. For the RK
scheme, the only change that matters for solving F is that the implicit part f has coefficient
h/2, and a different C.

The Newton iteration can now be formulated, with Jacobian of F denoted dF , as

dF�Y (m+1)
n = �F (Y (m)

n ), Y (m+1)
n = �Y (m+1)

n + Y (m)
n , (4.4)

Y (m)
n is the approximation of Yn at iteration m of the algorithm. The algorithm needs a

starting point, and one can choose from many, here the previous point Yn�1 = Y (0)
n . This

calculation uses the Jacobian at the previous point, e.g. dF = dF (Yn�1) = I �h rf(Yn�1),
though other approximations are also possible. In practice the Jacobian can be evaluated
even less frequently, to save function evaluations and speed up computations. We will here
use the exact Jacobian of the function F , though it can also be approximated numerically,
by difference methods. The latter point would be useful in automatic analysis of systems,
e.g. auto-generated dynamical systems from circuits.

All solvers have been implemented by the author, in Python. The newton iterations run up
to 15 iterations but breaks off if the updating increment |�Y (j)

i | < 10�12.

Simulating 1000 paths results in a relatively slow program. Since we are solving a non-
linear equation at each discrete time point, one has to treat each path individually. Using
parallelization, we can use all cores of the computer/server simultaneously, through pythons
multiprocessing library.

Each convergence plot is made with step sizes from h = T/2048 up to h = T/32. The RK
solution is calculated with h = T/4096.

It is useful to set the seed of the random number generator to a known value so that the
simulations can be reproduced exactly. Finally, it should be pointed out that the same Wiener
process should be used across all solutions when measuring convergence. One can simply
adjust the step in a slicing procedure of the original sampled Wiener process, according to
the step size change.

4.2.2 Results

In figure 4 and 5 the confidence interval in grey shows the 95 % quantiles for the mean. This
indicates that we are able to estimate the mean with large accuracy, even for relatively large
step sizes and few simulations.

The mean µ̂ is estimated from all observations of the path at that time point. For 1000
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4.2 Van der Pol oscillator

paths this interval is rather narrow, as seen from figure 4b. For a coarser estimation, we also
present figure 5. The approximation of the mean consists of 100 paths of 64 points each.
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Figure 5: Paths with 95 percent confidence intervals for each point estimated. This interval is for
the estimator of the mean.

In figure 6 the mean-square global error of the system is plotted. The backward Euler is
compared to the RK method to tell the error. Using a linear regression on the resulting errors,
the slope of the line is estimated to 1.031, i.e. measuring order � ⇡ 1 of convergence. This
is better than what one can prove since we do have multiplicative noise. Nonetheless, the
noise might be so small in this case that it practically does not affect the system behaviour
– the drift rules the equation effectively entirely. This is the same phenomenon as described
for the linear example. The error constant for estimating the diffusion becomes so small that
we only observe the order 1 component.

The error is measured with the same reference solution, of 4096 steps, only the backward
Euler solution varies, so this is not the cause of a better convergence rate. The number of
paths seems sufficiently large, as the line occurring is quite straight for each of the conver-
gence plots here. For fewer paths, the line would appear less straight but still contain the
same trend.
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4.2 Van der Pol oscillator

10�3 10�2

Step size h

10�3

10�2

L
2

no
rm

er
ro

r

Global error, backwards Euler
� = 1.031

Figure 6: Global error for different step sizes of the Van der Pol system, measured in the mean-
square sense. Parameters used are µ = 2, � = 0.01, 1000 paths. reference solution with N = 4096,
and the smallest step size of backward Euler at T/N = 0.75/2048.

For a larger diffusion constant �, same µ, the order of convergence seems more like we
would expect, from figure 7. It is still a systematically faster convergence rate than expected,
which implies that the observed order is now a mix of the order 1 and order 1/2 component.
This phenomenon is known from deterministic equations too [27]. Notice on the y-axis that
the global error is now larger, which is as expected since we allow larger volatility in our
solutions.
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Figure 7: Global error for different step sizes of the Van der Pol system. Parameters used are µ = 2,
� = 0.1, 1000 paths. Reference solution with N = 4096, and smallest step size of backward Euler
at T/N = 0.75/2048.

The difference between figure 7 and figure 8 is that the latter has a larger drift constant, thus
it is more stiff and contractive. Even though we estimated ⌫ to be maximally zero, and could
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4.2 Van der Pol oscillator

10�3 10�2

Step size h

10�2
L

2
no

rm
er

ro
r

Global error, backwards Euler
� = 0.617

Figure 8: Global error for different step sizes of the Van der Pol system. Parameters used are µ = 10,
� = 0.1, 1000 paths. Reference solution with N = 4096, and smallest step size of backward Euler
at T/N = 0.75/2048.

not be more specific, the unobservable one-sided Lipschitz constant of the system might be
more negative. The stiffer case has a slightly lower convergence rate, though the order is
still as expected. The error constants are however very similar, slightly smaller for the stiffer
case. This coincides with the error bound of theorem 3.4 on convergence for stiff systems.
The stability constant S is proportional to exp(�1/⌫), which in both cases is close to zero,
giving very similar error bounds.

Theoretically, it was seen that ⌫  0 in a certain region that we assume the solution to be in.
This is vague, but the reality for many nonlinear systems. For a more contractive problem,
S should decrease slightly, which is what we observe numerically.

The final plot, figure 9, measures convergence for even larger diffusion. For certain paths,
the numerical method diverges for N = 32 steps. The error is therefore not measured
for this step size. This tells us that paths exit the contractive region, and the large step size
causes divergence. This was something we anticipated initially since the one-sided Lipschitz
continuity of the drift depends on the solution. This represents a more general behaviour of
nonlinear systems. The noise can take on any numerical value, thus there is a possibility of
exiting the slowly changing phase at any time. This is a big difference from deterministic
equations. The convergence is as we know measured in the mean-square sense. For the
transient phase that the solution shortly would enter, several of the step sizes used in all
these plots would cause divergence. On a transient a step size in line with the classic theory
is appropriate.
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Figure 9: Convergence for µ = 10, � = 1. The approximation for N = 32 diverges, and is not
plotted. Rate of convergence p is measured from the points plotted.
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5 Remarks and summary

Sections 3.4 and 3.5 have presented three fundamental principles when proving convergence
for stiff stochastic differential equations, obtaining rate of convergence from stability and
consistency order. Our work is the first to our knowledge that proves this type of stability
property independent of stiffness. The proof was possible due to the ideas in [28]. It has the
property that non-positive one-sided Lipschitz constants do not cause step size restrictions.
Other literature mostly treats other methods and stability properties, for which step size re-
strictions may be realistic. However, the existence and uniqueness of the algebraic equation
we have to solve in each step simply has to be assumed for now. One might encounter step
size restrictions proving this. This issue would be appropriate to resolve.

The assumptions needed to prove stability and consistency coincide with other literature on
the subject. We have discussed how the stochastic theory relates to the deterministic and
defined the concepts B-consistency and B-convergence. These concepts are supported by
the current literature available both on SDEs and ODEs. Our focus is on convergence in the
mean-square sense, though in the literature bounds of all moments have been proved under
stronger assumptions. Also, stronger continuous extensions are obtained in other works.

We have seen some use of the one-sided Lipschitz condition for SDEs, both using regular
calculus and techniques from probability theory. The theory for both SDEs and ODEs is
much larger than what was presented here. The background theory for deterministic systems
displays some powerful properties of the one-sided Lipschitz condition, such as expressing
the local error as a scaled residual error. Hopefully one could include more of this well-
studied field into the field of stiff SDEs.

Methods of higher order are so far not possible to include in the stability inequality of the-
orem 3.3 since it involves stochastic integrals and the estimation of elementary differentials
of f , which are large due to stiffness. The same issue would disturb proving B-consistency.
Other conditions might advance the theory. Clarifying this would be a natural next step.
Work on methods of higher order for stiff SDEs is not known to us but is abundant for
deterministic equations [27].

The improved step size condition obtained for the stability in the general Lipschitz setting
[28] is more of a correction, but nonetheless useful. The theorem applies to implicit methods
for non-stiff systems, which has many applications. It now coincides with step size criteria
for ODEs.

Finding explicit error bounds is not common in the literature, though it was possible here.
This allows for comparison between the Lipschitz and one-sided Lipschitz case, and with
the deterministic bounds. There is a slight difference in how we are able to approach the
stability inequality in the two settings, where the Lipschitz case allowed for a seemingly
more greedy recursion. If one can find a way to treat the one-sided Lipschitz proof more
like the global Lipschitz proof, the error constant might become sharper.

Experimentally, the order is as expected, the error constant is on a much smaller scale, and
convergence is obtained for large step sizes when the one-sided Lipschitz constant is non-
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positive. The Van der Pol example shows a typical behaviour of nonlinear equation, where
the one-sided Lipschitz continuity depends on the solution. We are not able to say much
about how negative the one-sided Lipschitz constant is at a given point, but typically one
can anticipate that the system should behave contractively. Since stiff, nonlinear equations
is a very broad and diverse class of problems, further work should carry out more numerical
tests.

The numerical examples in section 4 confirm that the order of convergence is as expected,
and that large step sizes are admitted for non-positive one-sided Lipschitz constants. The
nonlinear system reacts quite as anticipated to changes in stiffness and noise, by the conver-
gence and stability theorems.

The stability principle sought in this work is not of the contractive kind, so this theory
will not reveal contractions of the numerical solution. Introducing non-stiff noise in a stiff
system will lead to larger error bounds than for no noise, both for the exact and numerical
solution. We have proven relations that bound this increase, and the exact and numerical
bounds are similar to a certain degree. The error bounds are explicitly given, and non-
positive one-sided Lipschitz constants indicate no step size restrictions. Negative one-sided
Lipschitz constants yield particularly improved error bounds.

47



REFERENCES

References

[1] L. Arnold. Stochastic differential equations. Wiley-Interscience, 1974.

[2] W.-J. Beyn, E. Isaak, and R. Kruse. Stochastic c-stability and b-consistency of explicit
and implicit euler-type schemes. Journal of Scientific Computing, 67(3):955–987,
2016.

[3] W.-J. Beyn, E. Isaak, and R. Kruse. Stochastic c-stability and b-consistency of explicit
and implicit milstein-type schemes. Journal of Scientific Computing, 70(3):1042–
1077, 2017.

[4] J. C. Butcher. A stability property of implicit runge-kutta methods. BIT Numerical
Mathematics, 15(4):358–361, 1975.

[5] D. S. Clark. Short proof of a discrete gronwall inequality. Discrete applied mathemat-
ics, 16(3):279–281, 1987.

[6] G. Dahlquist. Error analysis for a class of methods for stiff non-linear initial value
problems. In Numerical analysis, pages 60–72. Springer, 1976.

[7] K. Dekker and J. G. Verwer. Stability of Runge-Kutta Methods for Stiff Nonlinear
Differential Equations. Elsevier Science Ltd., 1984.

[8] R. Durrett. Stochastic Calculus: A Practical Introduction. CRC Press, 1996.

[9] G. B. Ermentrout and D. H. Terman. Mathematical foundations of neuroscience.
Springer Science & Business Media, 2010.

[10] R. Frank, J. Schneid, and C. W. Ueberhuber. The concept of b-convergence. SIAM
Journal on Numerical Analysis, 18(5):753–780, 1981.

[11] D. T. Gillespie. The chemical langevin equation. The Journal of Chemical Physics,
113(1):297–306, 2000.

[12] D. J. Higham. An algorithmic introduction to numerical simulation of stochastic dif-
ferential equations. SIAM review, 43(3):525–546, 2001.

[13] D. J. Higham and P. E. Kloeden. Numerical methods for nonlinear stochastic differen-
tial equations with jumps. Numerische Mathematik, 101(1):101–119, 2005.

[14] D. J. Higham, X. Mao, and A. M. Stuart. Strong convergence of euler-type methods
for nonlinear stochastic differential equations. SIAM Journal on Numerical Analysis,
40(3):1041–1063, 2002.

[15] Y. Hu. Semi-implicit euler-maruyama scheme for stiff stochastic equations. In
Stochastic Analysis and Related Topics V, pages 183–202. Springer, 1996.

[16] M. Hutzenthaler and A. Jentzen. Numerical approximations of stochastic differential
equations with non-globally lipschitz continuous coefficients. Memoirs Of The Amer-
ican Mathematical Society, 236, 2015.

48



REFERENCES

[17] M. Hutzenthaler, A. Jentzen, and P. E. Kloeden. Strong and weak divergence in finite
time of euler’s method for stochastic differential equations with non-globally lipschitz
continuous coefficients. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 467(2130):1563–1576, 2011.

[18] P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations.
Springer Science & Business Media, 2013.

[19] G. N. Milstein. Numerical integration of stochastic differential equations. Springer
Science & Business Media, 1994.

[20] B. Øksendal. Stochastic differential equations. Springer, 2003.

[21] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several
variables. Siam, 1970.

[22] Q.-C. Pham, N. Tabareau, and J.-J. Slotine. A contraction theory approach to stochastic
incremental stability. IEEE Transactions on Automatic Control, 54(4):816–820, 2009.

[23] O. Schein and G. Denk. Numerical solution of stochastic differential-algebraic equa-
tions with applications to transient noise simulation of microelectronic circuits. Jour-
nal of Computational and Applied Mathematics, 100(1):77–92, 1998.

[24] M. V. Tretyakov and Z. Zhang. A fundamental mean-square convergence theorem for
sdes with locally lipschitz coefficients and its applications. SIAM Journal on Numeri-
cal Analysis, 51(6):3135–3162, 2013.

[25] X. Wang and S. Gan. B-convergence of split-step one-leg theta methods for stochastic
differential equations. Journal of Applied Mathematics and Computing, 38(1-2):489–
503, 2012.

[26] X. Wang and S. Gan. The tamed milstein method for commutative stochastic differ-
ential equations with non-globally lipschitz continuous coefficients. Journal of Differ-
ence Equations and Applications, 19(3):466–490, 2013.

[27] G. Wanner and E. Hairer. Solving ordinary differential equations II. Springer Berlin
Heidelberg, 1996.

[28] R. Winkler. Stochastic differential algebraic equations of index 1 and applications in
circuit simulation. Journal of computational and applied mathematics, 157(2):477–
505, 2003.

[29] R. Winkler. Stochastic differential algebraic equations in transient noise analysis. In
Scientific computing in electrical engineering, pages 151–156. Springer, 2006.

49



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Håvard Bjørgan Bjørkøy

Convergence of stiff, nonlinear
stochastic differential equations

Stability and consistency analysis of drift-implicit
methods using a one-sided Lipschitz condition

Master’s thesis in Industrial Mathematics

Supervisor: Anne Kværnø

June 2020


	Introduction
	Example: Linear ODE
	Literature overview

	Background theory
	Stability principles
	General tools
	Stochastic differential equations
	Numerical methods
	Stability and one-sided Lipschitz condition for SDEs
	Creation of implicit methods
	Drift-implicit methods of order 1 and 1.5


	Proving convergence by stability and consistency
	Convergence principles assuming regular Lipschitz condition
	Convergence principles with one-sided Lipschitz condition
	Stability and convergence of the general implicit method
	Stability of drift-implicit methods with one-sided Lipschitz condition
	B-consistency of methods up to order 1

	Examples
	Linear constant coefficient SDE
	Van der Pol oscillator
	Implementation
	Results


	Remarks and summary
	References

