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Abstract

We model fixed-income markets with Lévy term structure models generated
by normal–inverse Gaussian (NIG) distributions and generalised hyperbolic skew
Student’s (GSS) t-distributions. We compare the models against a classical Gaussian
Heath–Jarrow–Morton model in out-of-sample backtests of one-day value-at-risk
and expected shortfall on interest rate derivatives. The NIG and GSS models
provide the best approximations of the studied risk measures, and we conclude that
we cannot accurately assess the market risks of interest rate derivatives without
taking into account jump dynamics, semi-heavy tails, and possible skewness in the
return distributions. The GSS models admit the best overall description of one-day
expected shortfall. During the financial crises from 2008 to 2009 and spring 2020, the
Gaussian models consistently underestimate the tail risks. During the recent crisis
from February to April 2020, the highly skewed and heavy-tailed market behaviour
is incompatible with a Gaussian generating distribution, while the NIG and GSS
models, though too conservative in the lower tail of the return distributions, provide
reasonable approximations of the risks corresponding to falling interest rates.





Sammendrag

Vi modellerer rentemarkeder med Lévy-terminstrukturmodeller generert av
normal–inverse gaussiske (NIG) fordelinger og generaliserte hyperboliske skjeve
Students (GSS) t-fordelinger. Vi sammenlikner modellene med en klassisk gaussisk
Heath–Jarrow–Morton-modell i backtester av endags value-at-risk og expected
shortfall på rentederivater. NIG- og GSS-modellene gir de beste tilnærmingene
av de undersøkte risikomålene, og vi konkluderer med at vi ikke kan vurdere
markedsrisikoen til rentederivater nøyaktig uten å ta hensyn til diskontinuerlige hopp,
halvtunge haler og potensiell skjevhet i avkastningsfordelingene. GSS-modellene gir
den beste beskrivelsen av endags expected shortfall. Under finanskrisene fra 2008 til
2009 og våren 2020 undervurderer de gaussiske modellene konsekvent halerisikoen.
Under den nylige krisen fra februar til april 2020 er den ekstremt skjeve og haletunge
markedsatferden uforenlig med en gaussisk genererende fordeling, mens NIG- og GSS-
modellene, selv om de er for konservative i den nedre halen av avkastningsfordelingen,
gir en rimelig tilnærming av risikoen tilsvarende fallende renter.
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Chapter 1

Introduction

A curious situation arises when we examine a model: Things that are assumed to
happen, do. The significant losses banks incurred during, for example, the dot-com
bubble, the 2007–2009 global financial crisis, and the recent market movements during
the spring of 2020, highlights the need for stricter regulatory capital requirements
and better estimates of financial risks. To be fair, some model breakdowns are due to
the onset of extreme and unprecedented events, structural changes, or black swans.
However, innumerable breakdowns are due to ill-conceived model assumptions and
negligence of well-known market features. An infamous example is the issue of
negative interest rates, which historically was undesired in interest rate models. The
frequent observation of negative interest rates during the last decade, however, puts
this supposition to rest.

At the end of 2019, the outstanding notional amount in the over-the-counter
derivatives market totalled 558 trillion USD, where interest rate derivatives encom-
pass nearly 80 % of the market (Bank for International Settlements, 2020). In
comparison, the total capitalisation of listed equities totalled a mere 43 trillion USD
(The World Bank, 2020). Interest rate derivatives additionally represent unique
modelling challenges. In equity markets, there is a single security to be modelled.
In interest rate markets, the problem is theoretically infinite-dimensional, and we
need to model a whole family of securities indexed by the time of maturity. In order
to prudently assess the risks inherent in interest rate derivatives both during normal
and highly stressed market conditions, a realistic description of the future dynamics
and mechanics of interest rates are needed.

The classical approach to model fixed-income markets are short-rates models,
which exogenously specify the dynamics of the short-rate. The idea was pioneered
by Vasicek (1977), who model the instantaneous short-rate dynamics under the
real-world measure as an Ornstein–Uhlenbeck process, and later models include
Dothan (1978) and Cox, Ingersoll Jr, and Ross (1985).

While short-rate models are analytically tractable, their main drawbacks are that
one explanatory variable describes the evolution of the entire market and that no
time-independent short-rate model can reproduce the observed market yield curve
(see, e.g., Björk, 2004). Hull and White (1990) and subsequent papers later addressed
the poor fitting of initial yield curves by including time-varying parameters in the
Vasicek model, where the functional dependence is carefully chosen to make model
prices exactly replicate market prices. There is, however, no reason to expect that
these models will provide reasonable market prices and volatilities as they evolve
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since “yield curve fitting” is famously inconsistent (Wilmott, 2006).
An alternative to short-rate models was proposed by Ho and Lee (1986), who

model the evolution of the entire term structure of interest rates in a binomial-tree
setting. This intuition is translated into continuous-time by Heath, Jarrow, and
Morton (1992), who model the stochastic evolution of the entire term structure
of interest rates through instantaneous forward rates. In a Heath–Jarrow–Morton
(henceforth HJM) model, the arbitrage-free framework is fully specified through
the forward rates’ instantaneous volatility structure, and virtually any (exogenous
term-structure) interest rate model, including the aforementioned short-rate models,
can be derived within such a framework. Similar models of forward LIBOR and swap
rates were developed in a series of papers by Miltersen, Sandmann, and Sondermann
(1997), Brace, Gÿatarek, and Musiela (1997), Jamshidian (1997), and Musiela and
Rutkowski (1997). These models are especially well-liked by practitioners, since they
allow for perfect calibration to cap, floor, and swaption quotes, thus reproducing
well-established market formulae.

HJM models are well-studied in financial literature, but they build on the classical
assumption that interest rates follow a diffusion process generated by a Gaussian
distribution. Indeed, Brownian motions have emerged as a crucial constituent of
financial mathematics following the pioneering introduction of geometric Brownian
motions as driving processes in stock price models by Samuelson (1965) and later by
Black and Scholes (1973). It is, however, well-established that normal distributions
provide inadequate descriptions of empirically observed financial return distributions.

Two essential properties of Brownian motions are continuity of sample paths and
scale invariance. Equity and bond prices, however, admit discontinuities in their
price trajectories (so-called jumps), and these discontinuities become more evident at
shorter time scales. While a normal distribution reasonably represents the monthly
log-returns of stock prices, the distributional deviation becomes significant for prices
on a daily or intra-daily time scale (Eberlein, Keller, et al., 1995; Eberlein & Özkan,
2003; Feinstone, 1987; Jarrow & Rosenfeld, 1984). Similarly, the empirical distribu-
tions of interest rates and interest rate derivatives exhibit kurtosis, skewness, higher
moments, and volatility smiles which are inconsistent with a Gaussian distributional
assumption (Eberlein, 2001; Eberlein & Raible, 1999; Raible, 2000; Das, 2002).

Price jumps are abrupt price movements over very short time intervals that are
very large compared to the current market situation, and they cannot be connected
to a noisy Gaussian distribution. Price jumps have been recognised as a significant
part of volatility since Merton (1975), and some early contributions on option pricing
theory with jump risk includes Naik and Lee (1990), Bates (1991), Ahn (1992), and
Amin (1993). The proposed primary reasons of the sources of jumps are, firstly, that
price jumps can reflect the markets’ reactions to unexpected information (Lahaye,
Laurent, & Neely, 2011; Lee, 2012; Piazzesi, 2005; Johannes, 2004), and, secondly,
that jumps can be caused by a local lack of liquidity in the market (Joulin, Lefevre,
Grunberg, & Bouchaud, 2008).

The principal motivation for studying jump processes is that the presence of
jumps significantly affects instrument pricing and financial risk management. Broadie
and Jain (2008) find that the effect of jumps is significant in swap pricing and that
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the corresponding risk cannot be accurately priced without taking into account the
presence of jumps. Glasserman and Kou (2003) note the presence of a positive jump
risk premium, and Arshanapalli, Fabozzi, and Nelson (2013) document a need for
jump components in risk measures to estimate the proper risk–return relationship
accurately. Johannes (2004) finds that jumps may not necessarily have a massive
impact on the cross-section of bond prices, but that they have a significant impact on
derivative contracts such as bond options, caps, or floors, whose prices depend heavily
on the tails of the conditional distribution of interest rate increments. Johannes
further notes that the presence of jumps generates more than half the conditional
variance of interest rate movements.

Consequently, to accurately capture the risk inherent in fixed-income markets,
interest rate models need to incorporate the observed stylised features. Early
jump–diffusion short-rate models include Ahn and Thompson (1988), Babbs and
Webber (1994), and El-Jahel, Lindberg, Perraudin, et al. (1996). Shirakawa (1991)
extends the HJM model by incorporating pure jump components with a constant
jump intensity in the forward rate dynamics, while Björk (1995) and Jarrow and
Madan (1995) consider interest rate models generated by Wiener processes and a
finite number of counting processes with stochastic jump intensities generated by
exogenous processes. At the high end of generality is the jump–diffusion interest rate
models generated by general semimartingales presented in Björk, Di Masi, Kabanov,
and Runggaldier (1997).

The general model presented by Björk et al. (1997) is not very tractable. A special
case of the model is introduced in Eberlein and Raible (1999), who develop a general
HJM-type term structure model generated by Lévy processes. Lévy processes admit
discontinuous paths with independent and identically distributed increments that
can incorporate jumps, dense tails, skewness, and kurtosis, and the term structure
models are fairly tractable. A generalisation to term structure models generated by
time-inhomogeneous Lévy processes, which are processes with weaker assumptions
about the stationarity of increments, is given by Eberlein, Jacod, and Raible (2005)
and Kluge (2005). No-arbitrage conditions in these models exist under certain
conditions and are provided by Eberlein et al. (2005) and Filipovi and Tappe (2008).

In this thesis, we consider the Lévy term structure model developed by Eberlein
et al. (2005) and Kluge (2005). More specifically, we will consider Lévy processes
generated by the normal–inverse Gaussian (NIG) distribution and the generalised
hyperbolic skew Student’s (GSS) t-distribution. The NIG distribution is frequently
used for modelling financial data, as the conditional distribution of a GARCH model
(e.g. Jensen and Lunde, 2001; Forsberg and Bollerslev, 2002; Chen, Härdle, and
Jeong, 2008) or as an unconditional returns distribution (e.g. Prause, 1997; Raible,
2000; Kassberger, 2009). The GSS distribution is briefly mentioned in Prause et al.
(1999); Barndorff-Nielsen and Shephard (2002); Mencía and Sentana (2005) and
applied in a univariate setting in Aas and Haff (2006), but it has not obtained much
attention in the financial literature compared to the NIG distribution. We present a
theoretical justification for the choice of model and explore the key properties of
the generating distributions. Methods for calibrating the term structure models
are based on the calibration framework by Eberlein and Kluge (2007) and the EM
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algorithm (Dempster, Laird, & Rubin, 1977).
Using NIBOR and swap rates from 2009 to 2019, we calibrate term structure

models generated by univariate Gaussian, NIG, and GSS distributions. To assess
if the increased flexibility of driving Lévy processes is justified, the term structure
models are compared in an out-of-sample historical backtest of one-day value-at-risk
and one-day expected shortfall on portfolios consisting of zero-coupon bonds and
interest rate derivatives such as swaps and caps. For one-day expected shortfall,
the NIG and GSS models are significantly better than the Gaussian models both
in-sample and out-of-sample for all securities but shorter-maturity bonds, where
all (time-homogeneous, univariate) term structure models provide a poor fit. Time-
inhomogeneous models appear to provide a superior in-sample fit on shorter-maturity
bonds compared to their time-homogeneous counterparts, but their out-of-sample
predictions of one-day expected shortfall are only sporadically significantly better at
the 2.5 and 97.5 % quantiles. For the more complex derivative portfolios, the NIG
and GSS models are additionally better than the Gaussian models at predicting
one-day value-at-risk. The GSS models are found to be significantly better than the
NIG models at predicting one-day expected shortfall.

Lastly, we study if the different term structure models are suited to describe
the highly stressed market data observed during the global financial crisis and the
coronavirus crisis. Whereas the traditional HJM model cannot capture skewed and
heavy-tailed return distributions, the NIG and GSS term structure models can. For
the global financial crisis, the NIG and GSS models fit the observed bond return data
reasonably well, while the Gaussian models consistently underestimate the observed
market risks due to the models’ inability to encompass skewness and semi-heavy tails.
Compared to the global financial crisis, the market crash during March to April 2020
is much less well-behaved: The crisis admits remarkably skewed return distributions
with one heavy and one lighter tail. The NIG and GSS models are generally too
conservative in the lighter tail, as they do not adequately manage to capture the
skewed market situation, but the models do fit the heavier tail reasonably well. The
Gaussian models are entirely inept at describing the observed market behaviour.

The remainder of the thesis is organised as follows: In Chapter 2, we present
the basic theory of derivative pricing for continuous-time models. Following the
introduction of the market structure, the HJM model is presented as a model for the
evolution of the term structure of interest rates in Chapter 3. The term structure
model is extended to driving Lévy processes in Chapter 4. First, we present the
qualitative argument for jump–diffusion processes and the theoretical properties
of the driving motion. Secondly, we present the term structure model and derive
arbitrage-free conditions. Lastly, we present the NIG and GSS distributions as
tractable generating distributions, and we present a calibration scheme to zero-
coupon bond quotes. In Chapter 5, we present the notion of market risks and some
standard market risk measures.

In Chapter 6, we present two data sets of Norwegian rates to motivate the
application of more general term structure models. In Chapter 7, we give a calibration
example to market data, and we perform an out-of-sample backtest of one-day value-
at-risk and expected shortfall on a series of interest rate derivatives. At last, in
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Chapter 8, we qualitatively study the flexibility of the different term structure models
during highly stressed market scenarios. The results of this thesis are discussed in
Chapter 9 and concluded in Chapter 10.





Chapter 2

Derivative Pricing Theory

Fixed-income markets are financial markets wherein market participants trade
securities which pay fixed interest and dividends payments at prescribed dates.
The fundamental problem is how to value these contracts and how to measure the
associated risks. In this chapter, we present the theory of derivative pricing for
continuous-time models applied in subsequent chapters. We first present the model
market structure and the concept of equivalent martingale measures and arbitrage
pricing. We lastly present some common financial instruments and interest rate
derivatives. For a more thorough introduction to interest rate theory, we refer to
Brigo and Mercurio (2007) and Björk (2004).

2.1 The Market Structure
We consider a frictionless and competitive continuous-time financial market with a
finite trading window [0, T ∗], for a fixed maximum finite time horizon T ∗ > 0. All
trading occurs at times t ∈ [0, T ∗), and the outcomes of all trades are realised at
time T ∗. By frictionless, we mean that there are no transaction costs or taxes, that
shares are infinitely divisible, and that there are no trading constraints, e.g. short
sales restrictions, borrowing limits, or margin requirements. By competitive, we
mean that traders act as price-takers.

The uncertainty in the market is represented by filtered complete probability
space (Ω, F , (Ft)0≤t≤T ∗ ,P), for a state space Ω, a σ-algebra of measurable events
F , a filtration (Ft)0≤t≤T ∗ , and a probability measure P. The filtration satisfies
F = FT ∗ , and we always assume that the usual hypothesis holds.

Definition 2.1. A filtered complete probability space (Ω, F , (Ft)0≤t≤T ∗ ,P) satisfies
the usual hypothesis if

(i) F0 contains {F ∈ F |P(F ) = 0} and

(ii) Ft = ∩u>tFu for all 0 ≤ t < ∞.

The first requirement in Definition 2.1 assures that the filtration is complete, and
the second requirement assures that the filtration is right-continuous, which implies
that the information at time t+ is known at time t (Medvegyev, 2007).

Traded in the market are the money-market account, with an associated spot
interest rate with time-t value r(t), and n risky assets. Let
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B(t) = exp
(∫ t

0
r(s)ds

)
(2.1)

denote the money-market account at time t, such that B(0) ≡ 1, where the spot rate,
which is adapted to Ft, satisfies

∫ t

0 |r(s)|ds < ∞. Let S(t) = (S1(t), . . . , Sn(t))′

denote the n risky asset prices at time t, which are strictly positive semimartingales
with respect to Ft. We assume that there are no dividends over [0, T ∗).

2.2 Arbitrage Pricing Theory
The efficient-market hypothesis states that all previous history is fully reflected in
the present instrument price, which does not hold any further information, and that
markets respond immediately to any new information about an instrument. A direct
implication of the efficient-market hypothesis is that it is impossible to consistently
beat the market and that the only way to earn returns greater than the market, is
by assuming greater risks (Wilmott, Howson, Howison, Dewynne, et al., 1995).

Related to the efficient-market hypothesis is the concept of arbitrage and arbitrage
opportunities. Bluntly stated, an arbitrage opportunity is a possibility of undertaking
a financial operation without any net investment, which almost surely admits a
profit without any risk of loss. In the real world, arbitrage opportunities do exist,
though their life spans are short-lived. Financial markets are assumed to be efficient,
such that as soon as arbitrage opportunities arise, market prices immediately move
to eliminate them as a result of the actions of investors who succeed in exploiting
such opportunities. This dynamic of efficient markets is often informally stated as
“there is no such thing as free lunch.”

From a theoretical perspective, it is apparent that any reasonable market model
must avoid lasting arbitrage opportunities. Indeed, the no-arbitrage principle has
become one of the leading criteria in financial derivative pricing. To develop arbitrage-
free markets, however, we first need to introduce the concept of equivalent martingale
measures.

Definition 2.2. An equivalent martingale measure Q with numéraire Y is a prob-
ability measure on (Ω, F ,P) if Q is equivalent to P and the Y -discounted price
processes are Q-martingales; that is,

S(t)
Y (t) = EQ

(
S(T )
Y (T )

∣∣∣Ft

)
, (2.2)

for every 0 ≤ t ≤ T , where EQ denotes the expectation with respect to Q.

If we choose numéraire Y = B in Definition 2.2, Q defines the risk-neutral
measure, which assigns to each risky asset the price a risk-neutral investor assigns
to the said asset. That is, the current risk-neutral price is equal to the discounted
expected future profit.

The risk-neutral measure is heavily used in the pricing of financial derivatives
due to the fundamental theorems of asset pricing, which provide sufficient conditions
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for the investigated market to be arbitrage-free and complete. For proofs of the
following theorems, and a precise definition of arbitrage, see, e.g., Jarrow (2018) or
Pascucci (2011).

Theorem 2.3 (First Fundamental Theorem). A financial market is arbitrage-free
if and only if there exists at least one equivalent martingale measure.

In an incomplete market which is arbitrage-free, there exist infinitely many
risk-neutral probabilities. While there exist infinitely many risk-neutral prices, it is
not, generally, possible to define the arbitrage price (Pascucci, 2011).

Theorem 2.4 (Second Fundamental Theorem). An arbitrage-free market (B, S)
is complete if and only if there exists a unique equivalent martingale measure with
numéraire B.

Hence, in a complete arbitrage-free market, the arbitrage prices and the risk-neutral
prices coincide. The risk-neutral pricing formula (2.2) yields the arbitrage price.

2.3 Zero-Coupon Bonds and Interest Rates
Zero-coupon bonds are fundamental auxiliary quantities from which all interest rates
can be recovered. Financial markets, however, usually quote interest rates, whereas
zero-coupon bonds are theoretical instruments that are not directly observable.

Definition 2.5. Fix a maturity T ≤ T ∗. A zero-coupon bond is a financial security
which pays one unit of currency to its holder at maturity. Its value at time t ≤ T is
denoted by p(t, T ), with p(T, T ) = 1 for all T .

We assume that there exists a zero-coupon bond traded in the market for each
maturity T ∈ [0, T ∗]. We further assume that all bonds are risk-free, meaning that
the issuer will not default on his obligation. This is the case for government bonds
of financially stable countries.

A natural question regards the relationship between the zero-coupon bond price
and the money-market account. The two quantities are, respectively, the “value of
a contract” and an “equivalent amount of currency.” The money-market account
is the future value of one unit of currency invested today, whereas the discount
factor 1/B(T ) is today’s value of one unit of currency at time T . If the spot-
rate is deterministic, the money-market account is deterministic and necessarily
p(t, T )/B(t) = 1/B(T ) for all t ≤ T . Spot-rates are, however, stochastic, such that
the money-market account is a random quantity which depends on the future path
of interest rates. Contrarily, the zero-coupon bond price is “traded” and known
at time t. From an arbitrage perspective, it is apparent that p(t, T )/B(t) is the
expectation of 1/B(T ) under the risk-neutral measure.

Interest rates are the cost of borrowing capital, reflecting the risk-free cost of
capital, expected inflation, risk premiums, and transaction costs. That is, the interest
rate is the amount charged by the lender to the borrower to cover the opportunity
cost incurred to the lender by not investing the capital in another alternative.
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The interest rate seen from time t for borrowing or lending cash over a future
time interval [T, U ] is known as the forward rate, and it is denoted by F (t, T, U).
From a simple arbitrage argument, a deposit of one unit of currency made at time T
which earns the interest F during the period [T, U ] must equal p(t, T )/p(t, U), the
income accumulated by investing one unit of currency at time T in a zero-coupon
bond which matures at time U . Hence,

F (t, T, U) = − log p(t, U) − log p(t, T )
U − T

. (2.3)

A more theoretically convenient concept is instantaneous forward rates, which
emerge as the limit of forward rates for infinitesimal-length accrual periods. They
are purely mathematical concepts and are not directly observed in the market.

Definition 2.6. The instantaneous (continuously compounded) forward rate, de-
noted by f(t, T ) for t ≤ T , is the interest rate one can commit at time t, which is
applicable on an infinitesimal-length risk-less loan that initiates at time T . Formally,

f(t, T ) = − ∂

∂T
log p(t, T ), (2.4)

where f(t, t) =: r(t) is the spot-rate or the short-rate.

Equivalently, the price of a zero-coupon bond given the present forward rate curve is

p(t, T ) = e
−
∫ T

t
f(t,u)du for all 0 ≤ t ≤ T ≤ T ∗. (2.5)

We herein assume that forward rates are continuously compounded. The simple
compounded versions of forward rates, which are directly observed in the market,
are called LIBOR (London Interbank Offered Rate) and are denoted by L(t, T, U).
For any t ≤ T ≤ U , the forward LIBOR is defined by

L(t, T, U) = 1
U − T

(
p(t, T )
p(t, U) − 1

)
. (2.6)

2.4 Interest Rate Derivatives
We conclude this chapter by introducing two important derivative products of the
fixed-income market, namely swaps and caps.

Definition 2.7. A vanilla interest rate swap is a financial agreement between two
parties to exchange n interest payments between two differently indexed legs. At every
instant Ti in a prespecified set of dates 0 < T1 < . . . < Tn ≤ T ∗, with τi = Ti − Ti−1
for 1 ≤ i ≤ n, the fixed leg pays an accrual amount corresponding to a fixed interest
rate rs over τi, whereas the floating leg pays an accrual amount corresponding to the
observed interest rate over τi.
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When the fixed leg is paid, and the floating leg is received, the interest rate swap is
termed a payer interest rate swap, whereas the opposite case is named a receiver
interest rate swap.

Usually, the floating leg is based on the LIBOR, but we will, for simplicity, express
it through the continuously compounded spot-rate. Let the swap be initialised at
T0 = 0. The time-t value of a payer interest rate swap is

Vswap(t) = EQ

(
n∑

i=1

(
B(Ti)

B(Ti−1) − ersτi

)
1

B(Ti)

∣∣∣∣Ft

)

= 1
B(t)

n∑
i=1

(p(t, Ti−1) − ersτip(t, Ti)) ,

(2.7)

where the second equality holds in a market where the discounted bond price
processes are Q-martingales.

Definition 2.8. A caplet is a call option on a floating rate with strike rate κ,
which is initialised at T and matures at U . An interest rate cap is a series of n
subsequent caplets for a set of start and end dates 0 = T0 < T1 < . . . < Tn ≤ T ∗,
with τi = Ti − Ti−1 for 1 ≤ i ≤ n. Its time-t value is

Vcap(t) = EQ

(
n∑

i=1

1
B(ti)

(
B(ti)

B(ti−1) − eκτi

)+ ∣∣∣∣Ft

)
. (2.8)

A cap can be viewed as a payer interest rate swap where each exchange is only
executed if the exchange has a positive value. Analogously, a floorlet is a put option
on a floating rate, and an interest rate floor is a series of n subsequent floorlets with
time-t value

Vfloor(t) = EQ

(
n∑

i=1

1
B(ti)

(
eκτi − B(ti)

B(ti−1)

)+ ∣∣∣∣Ft

)
. (2.9)

Caps and floors are predominantly used to hedge against adverse interest rate
fluctuations. For instance, an investor who is paying the LIBOR may protect his
position against rising interest rates by buying a cap at, e.g., 3 %. The investor’s
effective maximum interest payment is then 3 %.





Chapter 3

The Heath–Jarrow–Morton
Model

The classical approach to model fixed-income markets are short-rates models,
which exogenously specify the dynamics of the short-rate. While the models are
analytically tractable, their main drawbacks are that the short-rate alone cannot
describe the evolution of the entire fixed-income market, and short-rate models
cannot consistently replicate market prices of interest rate derivatives. An alternative
to short-rate models was introduced in Heath et al. (1992), who model the stochastic
evolution of the entire term structure of interest rates through instantaneous forward
rates in an arbitrage-free framework fully specified through the forward rates’
instantaneous volatility structure.

In this chapter, we present the Heath–Jarrow–Morton (HJM) model introduced
in Heath et al. (1992), and we suggest a feasible simulation scheme therefrom. The
chapter is outlined as follows: Sections 3.1 and 3.2 outline the market structure and
the postulated forward-rate dynamics, and Section 3.3 presents sufficient conditions
for the market to be arbitrage-free and complete. Lastly, Section 3.4 presents a
feasible simulation scheme from the HJM model. We do not dive deep into the
underlying mathematics of measure theory, but excellent references thereof include
Jacod and Protter (2012), Pascucci (2011), and Protter (2005).

3.1 The Market Structure

We consider a non-normalised, frictionless, and competitive continuous-time fi-
nancial market (B, S) equipped with a complete filtered probability space (Ω, F ,
(Ft)0≤t≤T ∗ ,P) and an instantaneous risk-free spot interest rate with time-t value
r(t). The market has a finite trading window [0, T ∗], for T ∗ > 0, where all trading
occurs at times t ∈ [0, T ∗), and the outcomes of all trades are realised at time T ∗.
The filtration satisfies F = FT ∗ and the usual hypothesis.

We let the risky assets S(t) = (S1(t), . . . , Sn(t))′ correspond to the term structure
of default-free zero-coupon bonds of all available maturities. Denote the bond prices
at time t with maturity T by p(t, T ), and scale all principal payments to one,
p(T, T ) = 1. To exclude trivial arbitrage opportunities from the market, we assume
that all bond prices are strictly positive, p(t, T ) > 0 (Jarrow, 2018).
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3.2 Term Structure Evolution
We assume the market structure presented in Section 3.1. Following the analysis in
Heath et al. (1992), we postulate the following forward rate process:

Definition 3.1 (Heath et al., 1992). For a fixed, non-random initial forward rate
curve {f(0, T ) : 0 ≤ T ≤ T ∗}, the dynamics of the instantaneous forward rates
f(t, T ) are given by an Itô process of the form

f(t, T ) = f(0, T ) +
∫ t

0
µ(s, T )ds +

D∑
i=1

∫ t

0
σi(s, T )dWi(s), (3.1)

for any 0 ≤ t ≤ T ≤ T ∗, where Wi(t) for i = 1, . . . , D are independent P-standard
Brownian motions that generate the filtration Ft, and µ(t, T ) and σi(t, T ) are
Ft-measurable and satisfy the regularity conditions

(i)
∫ T

0 |µ(t, T )|dt < ∞ P-a.s. and

(ii)
∫ T

0 σ2
i (t, T )dt < ∞ P-a.s. for i = 1, . . . , D.

The only substantial economic restrictions we impose on the forward rate process
is that it has continuous sample paths and is generated by a finite number of random
shocks (Heath et al., 1992). The assumption of continuous sample paths may be
relaxed, see Chapter 4. Forward rates may too turn negative and are unbounded
below; this may be avoided by imposing additional restrictions on the forward rate
dynamics (see, e.g., the LIBOR and swap market models introduced in Miltersen
et al., 1997; Brace et al., 1997; Jamshidian, 1997; Musiela and Rutkowski, 1997).

Under the postulated forward rate process, the evolution of the spot rate is found
by inserting maturity T = t into (3.1),

r(t) = f(0, t) +
∫ t

0
µ(v, t)dv +

D∑
i=1

∫ t

0
σi(v, t)dWi(v). (3.2)

To derive the corresponding evolution of zero-coupon bond prices, we insert the
postulated forward rate curve evolution (3.1) into the bond-pricing equation (2.5),

p(t, T ) = e

∫ T

t
f(0,u)du−

∫ T

t

(∫ t

0
µ(s,u)ds

)
du−
∑D

i=1

∫ T

t

(∫ t

0
σ(s,u)dWi(s)

)
du

. (3.3)

To fully determine the dynamics of the bond price processes, and later derive
conditions for the absence of arbitrage, we need to impose additional regularity
conditions on the drift term, the volatility terms, and the initial forward rate curve:

Condition 3.2 (Heath et al., 1992). To ensure that the money-market account is
well-behaved, 0 < B(t) < ∞ P-a.s. for all 0 ≤ t ≤ T ∗, we require that

(i)
∫ T ∗

0 |f(0, v)|dv < ∞ P-a.s. and
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(ii)
∫ T ∗

0

(∫ t

0 |µ(v, t)|dv
)

dt < ∞ P-a.s.

Condition 3.3 (Heath et al., 1992). To ensure that the bond price process is
well-behaved, we require that, for all 0 ≤ t ≤ T ≤ T ∗ and i = 1, . . . , n,

(i)
∫ t

0

(∫ t

v
σi(v, y)dy

)2
dv < ∞ P-a.s.;

(ii)
∫ t

0

(∫ T

t
σi(v, y)dy

)2
dv < ∞ P-a.s.; and

(iii) t →
∫ T

t

(∫ t

0 σi(v, y)dWi(v)
)

dy is continuous P-a.s..

Under the regularity conditions posted in Conditions 3.2 and 3.3, we may apply a
general Fubini’s theorem for stochastic variables (see Heath et al., 1992, pp. 98–100)
and switch the order of integration in (3.3). If we further insert the evolution of the
spot interest rate (3.2), we find that

p(t, T ) = p(0, T )e
∫ t

0
(r(s)+b(s,T ))ds− 1

2

∑D

i=1

∫ t

0
ai(s,T )2ds+

∑D

i=1

∫ t

0
ai(s,T )dWi(s)

P-a.s. for

ai(t, T ) = −
∫ T

t

σi(t, u)du and b(t, T ) = −
∫ T

t

µ(t, u)du + 1
2

D∑
i=1

ai(t, T )2.

Employing Itô’s lemma (e.g. Protter, 2005, Theorem II.32), the evolution of zero-
coupon bond prices is given as an Itô process on the form

dp(t, T )
p(t, T ) = (r(t) + b(t, T ))dt +

D∑
i=1

ai(t, T )dWi(t). (3.4)

That is, the bond price processes advance according to a drift term and D random
shocks generated by a Gaussian distribution. The function b(t, T ) may be interpreted
as the risk premium on T -maturity zero-coupon bonds in excess of the default-free
spot rate, and (a1(t, T ), . . . , aD(t, T )) are the bonds’ volatilities.

3.3 Arbitrage-Free Conditions
The dynamics in (3.1) and (3.4) do not guarantee the absence of arbitrage. Heath
et al. (1992) proved that there exists an equivalent martingale measure and thus no
arbitrage opportunities in the market if we choose the drift function in a particular
form. Our proof closely follows that of Jarrow (2018).
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Theorem 3.4. A martingale measure Q ∼ P such that p(t, T )/B(t) are Q-martin-
gales for all 0 ≤ t ≤ T ≤ T ∗, exists if and only if there exist risk premium processes
φi(t) for i = 1, . . . , D which are Ft-measurable with

∫ T ∗

0 φi(t)2dt < ∞ a.s. for all i,
where

(i) E
(

e
∑D

i=1

∫ T

0
(ai(s,T )+φi(s))dWi(s)− 1

2

∑D

i=1

∫ T

0
(ai(s,T )+φi(s))2ds

)
= 1 and

(ii) µ(t, T ) = −
∑D

i=1 σi(t, T )
(

φi(t) −
∫ T

t
σi(t, v)dv

)
for all 0 ≤ t ≤ T ≤ T ∗.

Proof. Since Q ∼ P, there exists a unique strictly positive Radon–Nikodym derivative
YT = dQ/dP which defines Q, where (Protter, 2005, Corollary IV.43.4)

Yt = exp
(

D∑
i=1

∫ t

0
φi(s)dWi(s) − 1

2

D∑
i=1

∫ t

0
φi(s)2ds

)
for 0 ≤ t ≤ T.

From Girsanov’s Theorem (e.g. Pascucci, 2011, Theorem 10.5), dWQ
i (t) = dWi(t) −

φi(t)dt are independent Q-standard Brownian motions. Using integration-by-parts
(e.g. Protter, 2005, Corollary II.22.2),

dp(t, T )
p(t, T ) − rtdt =

d
(

p(t,T )
B(t)

)
p(t,T )
B(t)

,

and combined with the Q-Brownian motions,

d (p(t, T )/B(t))
p(t, T )/B(t) =

D∑
i=1

ai(t, T )dWQ
i (t) +

(
b(t, T ) +

D∑
i=1

φi(t)ai(t, T )
)

dt.

As a necessary condition for p(t, T )/B(t) to be a Q-martingale, we choose the risk
premiums in such a way that the drift terms of the discounted bond price processes
vanish. That is,

b(t, T ) +
D∑

i=1
φi(t)ai(t, T ) = 0. (3.5)

If we differentiate (3.5) with respect to T , we arrive at the drift condition (ii). We
now need to prove that p(t, T )/B(t) is a Q-martingale. From (3.2), we observe that

p(T, T )/B(T )
p(0, T )/B(0) = e

∫ T

0
(b(s,T )+

∑D

i=1
φ(s)ai(s,T ))ds− 1

2

∑D

i=1

∫ T

0
ai(s,T )2ds

×e
∑D

i=1

∫ T

0
ai(s,T )dWQ

i
(s)

,
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where the drift condition states that b(s, T ) +
∑D

i=1 φ(s)ai(s, T ) = 0 for all s ≤ T .
A process (Mt)0≤t≤T is a Q-martingale if and only if (MtYt)0≤t≤T is a P-martingale
(e.g. Pascucci, 2011, Lemma 10.3). That is, we require

E
(

p(T, T )
B(T ) YT

)
1

p(0, T )/B(0) = 1.

Replacing the Q-Brownian motions and algebra gives condition (i).

We have proven that an equivalent martingale measure exists, but we have not
proven that it is unique. To obtain uniqueness, we impose the following condition:

Condition 3.5 (Heath et al., 1992). To ensure that the equivalent martingale
measure is unique, we require that, for fixed T1, . . . , TD ∈ [0, T ∗] such that 0 < T1 <
T2 < . . . < TD ≤ T ∗, the volatility matrix

a1(t, T1) . . . aD(t, T1)
...

...
a1(t, TD) . . . aD(t, TD)


is nonsingular Q × λ-a.s, where λ is the Lebesgue measure.

The following proposition states that Condition 3.5 is a necessary and sufficient
condition for the uniqueness of the equivalent martingale measure, and equivalently
by Theorem 2.4 for market completeness.

Proposition 3.6 (Heath et al., 1992). Fix T1, . . . , TD ∈ [0, T ∗] such that 0 < T1 <
T2 < . . . < TD ≤ T ∗. Given a vector of forward rate drifts {µ(·, T1), . . . , α(·, TD)}
and volatilities {σi(·, T1), . . . , σi(·, TD)} for i = 1, . . . , D satisfying the regularity
conditions posted in Definition 3.1 and Conditions 3.2 and 3.3, then Condition 3.5
holds if and only if the equivalent martingale measure is unique.

Modelling under a risk-neutral measure Q implies a particular choice of risk
premiums, namely φi(t) ≡ 0. The evolution of the forward rates under the risk-
neutral measure is

df(t, T ) =
D∑

i=1

∫ t

0

(
σi(s, T )

∫ T

s

σi(s, u)du

)
ds +

D∑
i=1

∫ t

0
σi(s, T )dWQ

i (s). (3.6)

The HJM model is, therefore, fully specified by the volatility structure {σ(t, T ) : 0 ≤
t ≤ T ≤ T ∗} and the initial forward curve {f(0, T ) : 0 ≤ T ≤ T ∗} observed in the
market.
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3.4 Discretisation of the HJM Model
An exact simulation from (3.6) is infeasible for general volatility factors. Following
the analysis in Glasserman (2013), we thus introduce discrete approximations to
attain simulations from the HJM framework.

Let f̂(ti, tj) denote the discrete estimation of the forward rate at time ti with
maturity tj . Both ti and tj need to be discretised, and for simplicity, they are fixed
to the same time grid 0 = t0 < t1 < . . . < tM = T ∗. The discrete approximation of
the price of a zero-coupon bond is

p̂(ti, tj) = exp
(

−
j−1∑
l=1

f̂(ti, tl)(tl+1 − tl)
)

, (3.7)

and we initialise the discretised bond prices to those observed in the market, p̂(0, tj) =
p(0, tj), for j = 0, . . . , M . Imposing this restriction and comparing the approximated
bond prices with the bond pricing equation (2.5), the estimated instantaneous
forward rates are given by

f̂(0, tl) = 1
tl+1 − tl

log p(0, tl)
p(0, tl+1) , (3.8)

for l = 0, . . . , M − 1. For these initial conditions, a generic approximative simulation
of (3.6) takes the form

f̂(ti, tj) = f̂(ti−1, tj) + µ̂(ti−1, tj)(ti − ti−1) +
√

ti − ti−1σ̂(ti−1, tj)′Zi, (3.9)

for j = i, . . . , M , where σ̂(ti−1, tj) = (σ̂1(ti−1, tj), . . . , σ̂D(ti−1, tj))′ and Zi are
independent standard normally distributed random vectors of length D. Requiring
that the discretised discounted bond prices are martingales, the combined drift is
given by

µ̂(ti−1, tj) =
D∑

k=1
µ̂k(ti−1, tj), (3.10)

where

µ̂k(ti−1, tj)(tj+1 − tj) =1
2

(
j∑

l=i

σ̂k(ti−1, tl)(tl+1 − tl)
)2

− 1
2

(
j−1∑
l=i

σ̂k(ti−1, tl)(tl+1 − tl)
)2

,

(3.11)

for k = 1, . . . , D. In order to select a volatility structure which mirrors that observed
in the market, the discrete volatility factors σ̂k(ti, tj) are usually found by performing
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a principal component analysis on the historical instantaneous forward rates (see,
e.g., Litterman and Scheinkman, 1991; Lekkos, 2000).

A principal component analysis is used to summarise a possibly highly correlated
data set by transforming the data into a new set of uncorrelated variables referred to
as principal components (James, Witten, Hastie, & Tibshirani, 2013). A principal
component analysis by Litterman and Scheinkman (1991) shows that the first three
components capture approximately 95 % of the variability in the yield curve for
US treasury bonds: The first component explains the average level and the parallel
movement of the curve. The second component explains the development of the
slope. The third component explains the development of the curvature.

This behaviour is, however, seldom equally pronounced for the forward rate
curve. While the movement of forward rates reflects that of simple rates, the decay
of eigenvalues is considerably slower, and Kletskin et al. (2004) find that three
factors only explain 73.8 % of the variability in US forward rates during the period
1982–2003. Exactly how many volatility factors to use in a model is inevitably a
question of model simplicity versus goodness of fit.





Chapter 4

The Lévy Term Structure Model

The HJM model presented in Chapter 3 is well-studied in financial literature,
but the model builds on the classical assumption that interest rates follow a diffusion
process generated by a Gaussian distribution. It is well-established that normal
distributions provide inadequate descriptions of empirically observed financial re-
turn distributions. The price trajectories of interest rate derivatives admit jump
discontinuities, and empirical distributions of interest rates and interest rate deriva-
tives exhibit kurtosis, skewness, higher moments, and volatility smiles which are
inconsistent with a Gaussian distributional assumption.

Inspired by the HJM model, a more general jump–diffusion model was introduced
in Björk et al. (1997), where the forward rate curve is modelled by a finite number
of Wiener processes and a random jump measure. A more restrictive model where
the driving force is a Lévy process was introduced in Eberlein and Raible (1999) and
extended to time-inhomogeneous Lévy processes in Eberlein et al. (2005). In this
chapter, we present the time-inhomogeneous Lévy term structure model introduced
in Eberlein et al. (2005) and Kluge (2005) and derive HJM-like conditions which
ensure the existence of an equivalent martingale measure. Lastly, we present a
calibration scheme to zero-coupon quotes when a generalised hyperbolic distribution
generates the Lévy process.

4.1 Probabilistic Structure of Lévy Processes
A Lévy process X = (Xt)t≥0 is a process with stationary and independent increments
adapted to a filtered probability space (Ω, F , (Ft)t≥0,P). For any Lévy process,
there exists a unique modification which is both càdlàg (i.e., P-almost surely right-
continuous with left limits) and a Lévy process (see Protter, 2005, Theorem 30). In
the remainder, we always assume that we study the càdlàg modification of X. For
convenience, we assume X0 = 0 P-almost surely.

Lévy processes are semimartingales, but some semimartingale components, like
the continuous martingale part, the compensator of the random measure of jumps,
and the drift part, are considerably simplified. Lévy processes still, however, consti-
tute a broad class of stochastic processes generated by infinitely divisible distributions
in the same way Brownian motions are generated by Gaussian distributions. We
should emphasise that Brownian motions are Lévy processes. However, whereas
Brownian motions admit continuous sample paths, all other proper Lévy motions
admit discontinuous paths. Two Lévy processes (with equal variances) are illustrated
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Figure 4.1: Sample path of (left)
√

0.02 times a standard Brownian motion
initialised at zero and (right) a NIG(α = 0.2, β = 0, δ = 0.04, µ = 0) Lévy process
initialised at zero. Hence, the two processes have equal variances.

in Figure 4.1: a Brownian motion and a Lévy process generated by a normal–inverse
Gaussian distribution.

A one-dimensional Lévy process X can be represented by (see Protter, 2005,
Theorem 42)

Xt = bt +
√

cWt + Zt +
∑

0<s≤t

∆Xs1{|∆Xs|>1}, (4.1)

where b ∈ R, c ∈ R≥0, (Wt)t≥0 is a one-dimensional P-standard Brownian motion,
and (Zt)t≥0 is a purely discontinuous martingale which is independent of W . ∆Xs =
Xs − Xs− denotes the jump of X at time s, and the sum in (4.1) is the sum over
the jumps of X with absolute jump size larger than 1.

Since a Lévy process has càdlàg paths, any path only admits a finite number of
jumps with absolute size larger than ε, for ε>0, over a finite interval. Consequently,
the sum of all jumps with absolute size larger than 1 during [0, t] in (4.1) is finite
for all paths. In contrast, the sum of small jumps,

∑
s≤t ∆Xs1{|∆Xs|≤1}, does not

in general converge.
We may, however, force the sum of small jumps to converge by subtracting

its average increase during [0, t]. The average may be expressed by the intensity
F (dx) := E(

∑
0<s≤t 1dx(∆Xs)) with which the jumps arrive. Then the following

limit exists in the sense of convergence in probability:

lim
ε→0

∑
s≤t

∆Xs1{ε≤|∆Xs|≤1} − t

∫
x1{ε≤|x|≤1}F (dx)

 . (4.2)

To simplify notation, we introduce the random measure of jumps of X, which
we denote by µX . The measure is defined by
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µX(ω; dt, dx) :=
∑
s>0

1{∆Xs 6=0}ε(s,∆Xs(ω))(dt, dx). (4.3)

That is, if a path ω admits a jump of size ∆Xs(ω) = x at time s, the random
measure µX(ω; ·, ·) places a unit mass ε(s,x) at (s, x) ∈ R+ × R. Hence, for a time
interval [0, t] and a set A ⊂ R, the measure µX(ω; [0, t] × A) counts how many jumps
of sizes within A occur in the given path and time interval,

µX(ω; [0, t] × A) = |{(s, x) ∈ [0, t] × A|∆Xs(ω) = x}|.

The expected number of jumps may be expressed by the intensity measure F (A),

E
(
µX(·; [0, t] × A)

)
= tF (A). (4.4)

Then, the sum of jumps with absolute size larger than 1 may be articulated as∫ t

0

∫
R

x1{|x|>1}µX(ds, dx), (4.5)

and the martingale of compensated jumps with absolute size smaller than 1, (Zt)t≥0
in (4.1), is ∫ t

0

∫
R

x1{|x|≤1}
(
µX(ds, dx) − dsF (dx)

)
, (4.6)

where we for notational simplicity suppress the dependence on ω.
We note that µX(ω, ds, dx) is a random measure which depends on ω, while

dsF (dx) is a product measure on R+ × R which does not depend on ω. Moreover,
we can, in general, not separate µX and F unless the sum of small jumps converges
for almost every path; i.e., if

∫
{|x|≤1} |x|F (dx) < ∞. For a complete discussion of

Lévy processes, we refer to Protter (2005).
Intuitively, a model generated by a Lévy process consists of two parts. The first

part is a classical drift–diffusion term generated by a Gaussian distribution. The
second part is a jump process, which we can interpret as a model for the arrival
of unexpected news and how market prices move discontinuously in reaction. The
jump process admits a finite amount of jumps larger than some threshold and an
infinite amount of jumps smaller than some threshold.

In comparison, Piazzesi (2005) specified a term structure model that embed
jump processes triggered by macroeconomic news announcements from the Federal
Reserve. The problem with this approach is that there are a large number of different
announcements (or sources) that generate jumps, and it is intractable to model more
than a few announcements. In a Lévy term structure model, we do not specify what
types of announcements that trigger jumps; we calibrate the generating process
to observed market data, such that any simulated path admits jumps from some
calibrated jump size density and intensity caused by a series of unspecified jump
sources.
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4.2 The Driving Process
It is convenient to consider a driving process which is not necessarily a Lévy process,
but a process with independent increments and absolutely continuous characteristics
(PIAAC), which is commonly called a time-inhomogeneous Lévy process. Precisely,
we relax the assumption of stationarity of increments in order to adequately capture
the term structure of implied volatilities (see Eberlein and Kluge, 2006, Figure 1).

We assume a complete stochastic basis (Ω, F , (Ft)0≤t≤T ∗ ,P) for a finite time
horizon T ∗ > 0, where F = FT ∗ and the filtration satisfies the usual hypothesis.
For convenience, we work with the following definition of a time-inhomogeneous
Lévy process:

Definition 4.1. An adapted, càdlàg stochastic process L = (Lt)0≤t≤T ∗ taking values
in Rd with L0 = 0 P-a.s., is a d-dimensional time-inhomogeneous Lévy process if

(i) Lt − Ls is independent of Fs for 0 ≤ s ≤ t ≤ T ∗ and

(ii) for every 0 ≤ t ≤ T ∗, the law of Lt is described by the characteristic function

E(ei〈u,Lt〉) = e

∫ t

0

(
i〈u,bs〉− 1

2 〈u,csu〉+
∫
Rd

(ei〈u,x〉−1−i〈u,x〉1{|x|≤1})Fs(dx)
)

ds
, (4.7)

where u ∈ Rd, bs ∈ Rd, cs is a symmetric nonnegative-definite d × d matrix,
and the Lévy measure Fs is a measure on Rd with Fs({0}) = 0 and

∫
Rd(|x|2 ∧

1)Fs(dx) < ∞. Lastly, Condition 4.2 holds.

We call (b, c, F ) := (bs, cs, Fs)0≤s≤T ∗ the local characteristics of L.

Condition 4.2. The Lévy triplets (bs, cs, Fs)0≤s≤T ∗ satisfy∫ T ∗

0

(
|bs| + ‖cs‖ +

∫
Rd

(|x|2 ∧ 1)Fs(dx)
)

ds < ∞.

Under Condition 4.2, the characteristic function of a time-inhomogeneous Lévy
process L has a finite variation over finite intervals. By Jacod and Shiryaev (2003,
Theorem II.4.14), L is then a semimartingale with respect to (Ω, F , (Ft)0≤t≤T ∗ ,P).

In the term structure models which we will consider, the underlying processes
are exponentials of stochastic integrals with respect to the driving processes. To
allow for derivative pricing, we require that the underlying processes are martingales
under the risk-neutral measure, and they must then admit finite expectations. We
will, therefore, impose the following condition:

Condition 4.3. There exist constants M, ε > 0 such that∫ T ∗

0

∫
{|x|>1}

exp〈u, x〉Fs(dx)ds < ∞ for all u ∈ [−(1 + ε)M, (1 + ε)M ]d.

Without loss of generality,
∫

{|x|>1} exp〈u, x〉Fs(dx) is assumed to be finite for all s.
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Condition 4.3 holds if and only if E(exp〈u, Lt〉) < ∞ for all 0 ≤ t ≤ T ∗ and u as
given above (Kluge, 2005, Lemma 1.6). Consequently, Lt has a finite expectation on
the studied time horizon. We may then remove the truncation function from the
law of L, and (4.7) simplifies to

E(ei〈u,Lt〉) = e

∫ t

0

(
i〈u,b̃s〉− 1

2 〈u,csu〉+
∫
Rd

(ei〈u,x〉−1−i〈u,x〉)Fs(dx)
)

ds
, (4.8)

where
∫ t

0 (b̃s − bs)ds = (x − x1{|x|≤1}) ∗ ν. In the remaining, we will always consider
the local characteristics (b̃s, cs, Fs), and we write bs in lieu of b̃s.

Proposition 4.4. Under Condition 4.3, L is a special semimartingale (Kluge, 2005,
Lemma 1.7), and it admits the canonical representation (Jacod and Shiryaev, 2003,
II.2.38)

Lt =
∫ t

0
bsds +

∫ t

0

√
csdWs +

∫ t

0

∫
Rd

x(µ − ν)(ds, dx), (4.9)

where
√

c is a measurable version of the square root of c, (Wt)0≤t≤T ∗ is a d-
dimensional P-standard Brownian motion, and µ is the random measure of jumps
with P-compensator ν(ds, dx) = Fs(dx)ds.

We let θs denote the cumulant associated with the L as given in (4.9) with local
characteristics (bs, cs, Fs); that is,

θs(z) := 〈z, bs〉 + 1
2 〈z, csz〉 +

∫
Rd

(e〈z,x〉 − 1 − 〈z, x〉)Fs(dx),

for M, ε > 0, a fixed t ∈ [0, T ∗], and z ∈ Cd with R(z) ∈ [−(1 + ε)M, (1 + ε)M ]d.
We will need the next proposition to derive an equivalent martingale measure in

subsequent sections. See, e.g., Kluge (2005, Proposition 1.9) for proof.

Proposition 4.5. Suppose that f : R+ → Cd is a continuous function such that
|R(f i(x))| ≤ M for all i ∈ {1, . . . , d} and x ∈ R+, then

E

(
exp

(∫ T

t

f(s)dLs

))
= exp

(∫ T

t

θs(f(s))ds

)
.

4.3 The Lévy Term Structure Model
Assume a fixed time horizon T ∗ > 0 and that there exists a zero-coupon bond
for every maturity T ∈ [0, T ∗] traded in the market. The model is driven by a
d-dimensional time-inhomogeneous Lévy process L = (Lt)0≤t≤T ∗ with local char-
acteristics (bs, cs, Fs)0≤s≤T ∗ on the probability space (Ω, F ,P) equipped with the
canonical filtration (Ft)0≤t≤T ∗ . As in Eberlein et al. (2005), we assume the following
forward rate process:
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Definition 4.6. We assume that the dynamics of the instantaneous forward rate
curve are given by a stochastic process of the form

f(t, T ) = f(0, T ) +
∫ t

0
α(s, T )ds −

∫ t

0
σ(s, T )dLs, (4.10)

for all 0 ≤ t ≤ T ≤ T ∗, where {f(0, T ) : 0 ≤ T ≤ T ∗} is deterministic and bounded
and measurable in T , and α and σ are respectively R- and Rd-valued stochastic
processes on Ω × [0, T ∗] × [0, T ∗] that satisfy (where P denotes the predictable σ-field
on Ω × [0, T ∗])

(i) (ω, s, T ) 7→ α(ω, s, T ) and (ω, s, T ) 7→ σ(ω, s, T ) are P ⊗B([0, T ∗])-measurable;

(ii) for s > T , α(ω, s, T ) = 0 and σ(ω, s, T ) = 0; and

(iii) sups,T ≤T ∗(|α(ω, s, T )| + |σ(ω, s, T )|) < ∞.

From the postulated forward rate process, we may derive an equivalent expression
for the zero-coupon bond price process using the same approach as in Björk et al.
(1997, Proposition 5.2):

Proposition 4.7. The dynamics of the zero-coupon bond price process p(t, T ) for
0 ≤ t ≤ T ≤ T ∗ is given by

p(t, T ) = p(0, T ) exp
(∫ t

0
(r(s) − A(s, T ))ds +

∫ t

0
Σ(s, T )dLs

)
, (4.11)

where

A(s, T ) :=
∫ T

s∧T

α(s, u)du and Σ(s, T ) :=
∫ T

s∧T

σ(s, u)du. (4.12)

Proof. We insert the forward rate process (4.10) into the bond-pricing equation (2.5)
and use the stochastic version of Fubini’s theorem (see, e.g., Björk et al., 1997) to
change the order of integration:

p(t, T ) = exp
(

−
∫ T

t

f(0, u)du −
∫ T

t

∫ t

0
α(s, u)dsdu +

∫ T

t

∫ t

0
σ(s, u)dLsdu

)

= exp
(

−
∫ T

t

f(0, u)du −
∫ t

0

∫ T

t

α(s, u)duds +
∫ t

0

∫ T

t

σ(s, u)dudLs

)

= exp
(

−
∫ T

0
f(0, u)du −

∫ t

0

∫ T

s

α(s, u)duds +
∫ t

0

∫ T

s

σ(s, u)dudLs

+
∫ t

0
f(0, u)du +

∫ t

0

∫ t

s

α(s, u)duds −
∫ t

0

∫ t

s

σ(s, u)dudLs

)
.
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We want to insert an expression for the spot rate. We recognise that, using (4.10)
with maturity T = t,

∫ t

0
f(0, u)du =

∫ t

0
r(u)du −

∫ t

0

∫ u

0
α(s, u)dsdu +

∫ t

0

∫ u

0
σ(s, u)dLsdu

=
∫ t

0
r(u)du −

∫ t

0

∫ t

s

α(s, u)duds +
∫ t

0

∫ t

s

σ(s, u)dudLs,

again using Fubini’s theorem. If we insert this expression into the expanded bond-
pricing equation,

log p(t, T ) = −
∫ T

0
f(0, u)du −

∫ t

0

∫ T

s

α(s, u)duds +
∫ t

0

∫ T

s

σ(s, u)dudLs

+
∫ t

0
r(u)du +

∫ t

0

∫ t

s

α(s, u)duds −
∫ t

0

∫ t

s

σ(s, u)dudLs

−
∫ t

0

∫ t

s

α(s, u)duds +
∫ t

0

∫ t

s

σ(s, u)dudLs.

Algebra completes the proof.

Using A(s, t, T ) := A(s, T )−A(s, t) and Σ(s, t, T ) := Σ(s, T )−Σ(s, t), we obtain
a useful representation of the zero-coupon bond price process,

p(t, T ) = p(0, T )
p(0, t) exp

(
−
∫ t

0
A(s, t, T )ds +

∫ t

0
Σ(s, t, T )dLs

)
. (4.13)

Combining the alternative representation (4.13) with the zero-coupon bond price
process (4.11), we obtain an expression for the money-market account,

B(t) = 1
p(0, t) exp

(∫ t

0
A(s, t)ds −

∫ t

0
Σ(s, t)dLs

)
. (4.14)

We consider only deterministic volatility structures. In addition to assuming
Condition 4.3, we require that the driving process satisfies:

Condition 4.8. The volatility structure σ is deterministic and bounded. For 0 ≤
s ≤ T ≤ T ∗ we have

0 ≤ Σi(s, T ) ≤ M for all i = 0, . . . , d,

where Σ is given by (4.12) and M is the constant from Condition 4.3. Note that
Σ(s, s) = 0.
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We now wish to find a necessary condition for which the discounted bond price
processes are martingales. For simplicity, we assume that d = 1. Define the process
Y (t, T ) := −

∫ t

0 A(s, T )ds +
∫ t

0 Σ(s, T )dLs. Using the canonical representation of a
Lévy process with triplet (bs, cs, Fs), the canonical representation of Y is

Y (t, T ) = −
∫ t

0
A(s, T )ds +

∫ t

0
Σ(s, T )bsds +

∫ t

0
Σ(s, T )

√
csdWs

+
∫ t

0

∫
R

Σ(s, T )x(µ − ν)(ds, dx).

We define a function f(Yt) := p(0, T ) exp Y (t, T ) which is twice continuously differ-
entiable. Itô’s lemma for general Lévy processes (see, e.g., Kyprianou, 2006, Chapter
4) then states

f(Yt) =f(Y0) +
∫ t

0
f ′(Ys−)dYs + 1

2

∫ t

0
csΣ(s, T )2f ′′(Ys−)ds

+
∫ t

0

∫
R
(f(Ys− + Σ(s, T )x) − f(Ys−) − Σ(s, T )xf ′(Ys−))Fs(dx)ds

=f(Y0) +
∫ t

0
f(Ys−)(−A(s, T )ds + Σ(s, T )bsds + Σ(s, T )

√
csdWs)

+ 1
2

∫ t

0
csΣ(s, T )2f(Ys−)ds +

∫ t

0

∫
R

f(Ys−)Σ(s, T )x(µ − ν)(ds, dx)

+
∫ t

0

∫
R
(f(Ys− + Σ(s, T )x) − f(Ys−) − Σ(s, T )xf ′(Ys−))Fs(dx)ds.

As a necessary condition for the function f to be a martingale, we require that the
deterministic drift term is zero. That is, for all 0 ≤ s ≤ T ,

A(s, T ) = Σ(s, T )bs + 1
2csΣ(s, T )2 +

∫
R
(eΣ(s,T )x − 1 − Σ(s, T )x)Fs(dx)

= θs(Σ(s, T )).

4.4 Arbitrage-Free Conditions
Equivalent to Theorem 3.4, we wish to give sufficient conditions for the existence of
an equivalent martingale measure under which the discounted bond price processes
are martingales. The ensuing theorem proposes a HJM-like drift condition which
ensures that the discounted bond price processes are martingales and, consequently,
that the market is arbitrage-free.

Theorem 4.9. Let A(s, T ) = θs(Σ(s, T )). Then, for all 0 ≤ s ≤ T ≤ T ∗, the
discounted bond price process p̃(t, T ) = p(t, T )/B(t) is a martingale.



Chapter 4. The Lévy Term Structure Model 29

Proof. By construction, the studied Lévy process is càdlàg, adapted, and admits a
finite expectation on the studied time horizon. To prove that the discounted bond
price process is a martingale, we only need to prove that its conditional expectation
with respect to previous observations equals the most recent observation.

We use Proposition 4.5 with f(s) := Σ(s, T ) for a fixed 0 ≤ T ≤ T ∗, such that

E
(

exp
(∫ t

0
Σ(s, T )dLs

))
= exp

(∫ t

0
θs(Σ(s, T ))ds

)
.

Let A(s, T ) = θs(Σ(s, T )) and Xt :=
∫ t

0 Σ(s, T )dLs. Using the previous equation,

E(exp Xt) = exp
(∫ t

0
A(s, T )ds

)
.

The discounted bond price process may then be expressed as

p̃(t, T ) = 1
B(t)p(t, T ) = p(0, T ) exp Xt

E(exp Xt)
.

Lastly, since X is a Lévy process, it has independent increments. Thus,

E(exp(Xt)|Fs) = E (exp(Xt − Xs) exp(Xs)|Fs) = E(exp(Xt))
E(exp(Xs)) exp(Xs).

Consequently, E(p̃(t, T )|Fs) = p̃(s, T ), and the discounted bond price process is a
martingale.

We have only proved the existence of an equivalent martingale measure. Eberlein
et al. (2005) showed that the equivalent martingale measure is unique for d = 1, but
that this property does not hold in general for d ≥ 2.

4.5 Generalised Hyperbolic Distributions
Before we can calibrate the term structure model to market data, we need to specify
the generating distribution of the driving Lévy process in (4.10). If we let Ls equal
a Brownian motion, such that θ(u) = u2/2, we arrive at the Gaussian HJM forward
rate model (3.1). In this thesis, we will, however, consider Lévy processes generated
by generalised hyperbolic (GH) distributions.

Barndorff-Nielsen and Halgreen (1977) showed that generalised hyperbolic distri-
butions are infinitely divisible, and hence (e.g., Protter, 2005, Chapter I.4) every
member of this family of distributions generates a Lévy process (Xt)t≥0. That is, it
generates a process with stationary and independent increments such that X0 = 0
and L(X1), the law of X1, equals GH(λ, α, β, δ, µ). We might then choose a càdlàg
version of this process, and we call this the generalised hyperbolic Lévy motion. The
(univariate) distribution is characterised by its characteristic function
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ΨGH(u) = eiµu

(
α2 − β2

α2 − (β + iu)2

)λ/2
Kλ(δ

√
α2 − (β + iu)2)

Kλ(δ
√

α2 − β2)
, (4.15)

and it admits the density function

fGH(x) =
(α2 − β2)λ/2Kλ−1/2

(
α
√

δ2 + (x − µ)2
)

exp(β(x − µ))
√

2παλ−1/2δλKλ

(
δ
√

α2 − β2
)(√

δ2 + (x − µ)2
)1/2−λ

, (4.16)

where Kλ is the modified Bessel function of the third kind and x ∈ R. The domain
of variation of the parameters is µ ∈ R and

δ ≥ 0, |β| < α if λ > 0,

δ > 0, |β| < α if λ = 0,

δ > 0, |β| ≤ α if λ < 0.

Generally, α determines the shape of the distribution, β determines the skewness,
µ determines the location, and δ is a scaling parameter. The index parameter λ
characterises specific subclasses and changing λ roughly affects the heaviness of the
tails.

While several subclasses of the GH distribution are frequently used in financial
applications, the GH distribution itself is rarely directly used. The distribution is
not particularly analytical tractable, and even for large sample sizes, it is difficult to
distinguish between different values of λ due to the flatness of the GH likelihood
function in this parameter (Prause et al., 1999).

4.5.1 Normal–Inverse Gaussian Distributions
One frequently used distribution for modelling financial data is the normal–inverse
Gaussian (NIG) distribution (Barndorff-Nielsen, 1997). It is repeatably used as the
conditional distribution of a GARCH model (Andersson, 2001; Jensen & Lunde,
2001; Forsberg & Bollerslev, 2002; Chen et al., 2008) or as an unconditional returns
distribution (Rydberg, 1997; Prause, 1997; Bølviken & Benth, 2000; Raible, 2000;
Kassberger, 2009; Kassberger & Kiesel, 2006; Fergusson & Platen, 2006). The NIG
distribution possesses several attractive analytical properties, including skewness,
semi-heavy tails, and analytical tractability.

The NIG distribution is a special case of the generalised hyperbolic distribution
when λ = −1/2, such the characteristic function simplifies to

ΨNIG(u) = eiuµ exp(δ
√

α2 − β2)
exp(δ

√
α2 − (β + iu)2)

, (4.17)

and the density function simplifies to
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fNIG(x) =
δα exp(δ

√
α2 − β2)K1

(
α
√

δ2 + (x − µ)2
)

exp(β(x − µ))

π
√

δ2 + (x − µ)2
, (4.18)

where δ > 0 and 0 < |β| < α. In general, for GH distributions, none of the increments
of length different from 1 admits a density from the same class. However, the NIG
distributions admit the densities L(Xt) = NIG(α, β, tδ, tµ). Moreover, NIG is the
only subclass with the convolution property

NIG(α, β, δ1, µ1) ∗ NIG(α, β, δ2, µ2) = NIG(α, β, δ1 + δ2, µ1 + µ2).

The NIG distribution has two semi-heavy tails. Using the properties of the
modified Bessel function (Abramowitz, Stegun, & Romer, 1988)

Kν(x) ∼
√

π

2x
exp(−x) for x → ±∞, (4.19)

it can be shown that the tails of the NIG distribution are

fNIG(x) ∼ const|x|−3/2 exp(−α|x| + βx) as x → ±∞.

Thus, the heaviest tail decays as

fNIG(x) ∼ const|x|−3/2 exp(−α|x| + β|x|) when
{

β < 0 and x → −∞,

β > 0 and x → +∞,

and the lightest tail decays as

fNIG(x) ∼ const|x|−3/2 exp(−α|x| − β|x|) when
{

β < 0 and x → +∞,

β > 0 and x → −∞.

4.5.2 Generalised Hyperbolic Skew Student’s t-Distributions
An alternative set of distributions for modelling skewed and heavy-tailed financial
data is the generalised hyperbolic skew Student’s (GSS) t-distribution, briefly
mentioned in Prause et al. (1999); Barndorff-Nielsen and Shephard (2002); Mencía
and Sentana (2005) and applied in a univariate setting in Aas and Haff (2006). It is
too a subclass of the generalised hyperbolic distribution, and it is the only subclass
of this family of distributions with one tail determined by a polynomial behaviour
and the other by an exponential behaviour.

The GSS distribution follows from the limit of the generalised hyperbolic distri-
bution when α → |β| and λ = −ν/2 for ν > 0. Using the following properties of the
modified Bessel function (Abramowitz et al., 1988),
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Kν(x) = K−ν(x) and Kν(x) ∼ Γ(ν)2ν−1x−ν for x → 0, ν > 0, (4.20)

the density of the GSS distribution is given by (Aas & Haff, 2006)

fGSS(x) =
2 1−ν

2 δν |β| ν+1
2 K ν+1

2

(√
β2(δ2 + (x − µ)2)

)
exp(β(x − µ))

Γ( ν
2 )

√
π
(√

δ2 + (x − µ)2
) ν+1

2
, (4.21)

for β 6= 0, and its characteristic function is given by

ΨGSS(u) = eiµu (u2 − 2iβu)ν/4δν/2

Γ
(

ν
2
)

2ν/2−1 Kν/2

(
δ
√

u2 − 2iβu
)

. (4.22)

Again using the properties of the modified Bessel function (4.19), the tails of the
GSS distribution are given by

fGSS(x) ∼ const|x|−ν/2−1 exp(−|β||x| + βx) as x → ±∞.

Hence, the heaviest tail decays as a polynomial,

fGSS(x) ∼ const|x|−ν/2−1 when
{

β < 0 and x → −∞,

β > 0 and x → +∞,

and the lightest tail decays exponentially,

fGSS(x) ∼ const|x|−ν/2−1 exp(−2|β||x|) when
{

β < 0 and x → +∞,

β > 0 and x → −∞.

4.6 Calibration of Lévy Term Structure Models
In this section, we present a calibration scheme for the (one-dimensional, time-
homogeneous) Lévy term structure models using zero-coupon bond quotes of M
maturities observed over D consecutive trading days.

Two possible calibration strategies involve estimating the parameters of the
driving process under the real-world measure or the risk-neutral measure. Under
the risk-neutral measure, we attempt to calibrate the model by minimising the
differences between market prices and risk-neutral model prices simultaneously
across all available maturities (e.g. Kluge, 2005). Under the real-world measure,
we attempt to estimate the empirical increments of the driving process and then
maximise the likelihood of the driving process conditional on these increments (e.g.
Eberlein and Kluge, 2007).
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The market quotes contain a maximum of information, and a direct fit to market
prices may provide more reliable calibration results – at least if we want to use the
model to price complex instruments. In this thesis, we are, however, more interested
in the movements of interest rates and their generating distributions. A real-world
calibration provides a more smoothed-out fit to market data, possibly avoiding
overfitting, with a more explicit focus on the generating return distribution. In this
thesis, we thus concentrate on real-world calibration.

Assume a discretisation of tenor dates 0 = t0 < t1 < . . . < tM . We consider a
Lévy process with a one-dimensional time-homogeneous driving process L. That
is, L has stationary increments. Precisely, we model the increments of length 1 to
follow a normal–inverse Gaussian distribution, L1 ∼ NIG(α, β, δ, µ), or equivalently
a generalised hyperbolic skew Student’s t-distribution, L1 ∼ GSS(ν, β, δ, µ).

We consider the (stationary) Ho–Lee volatility structure Σ(s, T ) = σ̂(T − s).
Without loss of generality, one can set σ̂ ≡ 1 as this parameter may be included
in the specification of the Lévy process. To see this, define L̃ = σ̂L and Σ̃(s, T ) =
Σ(s, T )/σ̂. Then (e.g. Eberlein, 2001) L(L̃1) = NIG(α/|σ̂|, β|σ̂|, δ|σ̂|, µσ̂), and∫ t

0 Σ̃(s, T )dL̃s =
∫ t

0 Σ(s, T )dLs.
Following the framework in Eberlein and Kluge (2007), we consider the daily

log-returns, which are given by the ratio of bond prices and their forward price on
the previous day,

LR(t, T ) := log p(t + 1, t + T )
p(t, t + 1, t + T ) ,

where the forward price of p(t + 1, t + T ) at time t is defined by

p(t, t + 1, t + T ) := p(t, t + T )
p(t, t + 1) .

Using the bond-price process (4.13), we express the daily log-returns by

LR(t, T ) = −
∫ t+1

t

A(s, t + 1, t + T )ds +
∫ t+1

t

Σ(s, t + 1, t + T )dLs. (4.23)

In the risk-neutral measure defined by Theorem 4.9, stationarity of the drift term
follows from the stationarity of the volatility structure. That is, A(s, T ) = A(0, T −s)
for s ≤ T , and

d(T ) := −
∫ t+1

t

A(s, t + 1, t + T )ds =
∫ 1

0
(A(s, 1) − A(s, T ))ds

=
∫ 1

0
(θ(Σ(s, 1)) − θ(Σ(s, T )))ds,

(4.24)

which is deterministic and independent of t. (Since L is stationary, we may omit the
time index of the cumulant, and θ(z) = log Ψ(−iu).) Moreover, the expectation of
the stochastic integral in (4.23) is
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E
(∫ t+1

t

Σ(s, t + 1, t + T )dLs

)
= (T − 1)E(Lt+1 − Lt) = 0,

since Yt+1 := (Lt+1 − Lt) admits the law L(Yt+1) = L(L1) and E(L1) = 0. Thus
E(LR(t, T )) = d(T ) with the estimator

x̄T := 1
D − 1

D−2∑
t=0

LR(t, T ),

and LR(t, T ) − E(LR(t, T )) = (T − 1)Yt+1.
We now need to determine the observed daily log-returns. That is, for k =

0, . . . , D − 2 and T = t1, . . . , tM , we find

LR(k, T ) = log p(k + 1, k + T ) + log p(k, k + 1)
p(k, k + T ) .

Here we can only retrieve p(k, k + T ) (and possibly p(k, k + 1)) directly from the
data. To estimate p(k + 1, k + T ) and p(k, k + 1), we apply the method of Raible
(2000, Section 5.3) and interpolate the negative of the log-bond prices with a cubic
spline separately for each day in the data set.

We find an estimate for yk+1 by

arg min
yk+1

tM∑
T =t1

(LR(k, T ) − x̄T − (T − 1)yk+1)2. (4.25)

If we repeat this process for each k, we retrieve estimates y1, . . . , yD−1. The parame-
ters of L(L1) may then be estimated by maximising the likelihood of the generating
distribution. This may be performed using the EM-algorithm, see Appendix A.

The in-sample distribution fit to log-bond returns of one or more maturities
may be improved by considering fewer maturities in the estimation of the empirical
increments in (4.25). That is, we assume that the dynamics of the driving process is
dependent on the time to maturity. In the following, we will refer to these models
as (piecewise) time-inhomogeneous Lévy processes.

We may similarly extend the calibration scheme to multivariate distributions.
While it is not obvious how we can include correlations between risk factors generated
by different piecewise time-inhomogeneous Lévy processes, multivariate GH distri-
butions naturally exhibit non-linear dependence. The tail behaviour of multivariate
models mirrors the fact that extreme market movements usually co-occur for several
risk factors. An EM algorithm for multivariate GH distributions is presented in,
e.g., Protassov (2004); McNeil, Frey, and Embrechts (2005); Hu (2005).
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Market Risk

Market risk is the risk of losses on financial investments arising from adverse
movements in market prices, including equity and commodity prices, currencies,
credit spreads, and interest rates. In order to ensure the safety of financial institutions
and their liability holders, banks are required to maintain a minimum amount of
capital to safeguard against market risks. The significant losses banks incurred during
the 2007–2009 global financial crisis as a result of failures to prudently measure
market and credit risks, however, highlighted the need for stricter regulatory capital
requirements and better estimates of market risks. As a result, the Basel Committee’s
revised frameworks include improvements of capital charges of market risks and
market risks under stressed market conditions. In this chapter, we present the notion
of coherent risk measures and two standard measures of market risk. We lastly
present backtesting frameworks for the considered risk measures.

5.1 Coherent Risk Measures
There are several ways in which risk can be defined and measured. To clarify
the notion of risks, Artzner, Delbaen, Eber, and Heath (1999) articulate a unified
framework for the analysis, construction, and implementation of measures of risk to
provide a sound basis for developing capital adequacy tests. Artzner et al. describe
four properties that risk measures should possess. A risk measure which satisfies all
four properties is called coherent.

Definition 5.1. Let G be the set of all risky positions. A measure of risk ρ is a
mapping from G to R, and it is called a coherent risk measure if it satisfies the
following properties:

(i) (Translation invariance) For all X ∈ G and a deterministic portfolio Y with
a certain real return α, then ρ(X + Y ) = ρ(X) − α. That is, the addition of a
sure amount of capital to a position will decrease the risk by that amount.

(ii) (Subadditivity) For all X1, X2 ∈ G , then ρ(X1 +X2) ≤ ρ(X1)+ρ(X2). That is,
a merger between two portfolios does not add additional risk, cf. diversification.

(iii) (Positive homogeneity) For all λ ≥ 0 and all X ∈ G , then ρ(λX) = λρ(X).
That is, increasing the position by a factor increases the risk proportionally.
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(iv) (Monotonicity) For all X1, X2 ∈ G with X1 ≤ X2, then ρ(X2) ≤ ρ(X1). That
is, if the returns in position X1 are consistently lower than in X2, the risk is
greater in X1.

5.2 Market Risk Measures

5.2.1 Value-at-Risk
The most prominent capital adequacy tests used by the banking sector are based on
the value-at-risk (VaR) measure.

Definition 5.2. Given a portfolio return distribution X, a probability measure P,
and a level α ∈ (0, 1), the value-at-risk at confidence level 1 − α is the negative of
the α-quantile of X; that is,

VaRX(α) := − inf{x ∈ R : P(X ≤ x) ≥ α}.

The market risk capital charge defined in the Basel Accords is based on the value-at-
risk at a future ten-day time horizon and a one-tailed, 99 percentile confidence level
(Basel Committee on Banking Supervision, 2013). It is usually required that the
model is calibrated using at least one previous year of trading data. The measure
represents the maximum portfolio loss at a 99 per cent probability, and it is often
interpreted as the degree of risk inherent in a position.

From a theoretical perspective, VaR performs poorly in meeting regulatory
objectives due to two prominent deficiencies: VaR is not a coherent risk measure as
it can be shown that it is non-subadditive for non-elliptical portfolios (see Artzner
et al., 1999), and VaR possesses a structural blindness of the “far tail” of a position
(e.g. Acerbi, Nordio, and Sirtori, 2001; Longin, 2001). Herein, the far tail refers to
the tail beyond the quantile implied by the VaR level.

The lack of subadditivity implies that VaR measures may, contrary to classical
economic theory, discourage diversification. The structural blindness implies that
capital requirements based on VaR may incentivise excessive and uncontrolled risk-
taking in the far tail since VaR does not consider what occurs beyond the specified
threshold. The tail blindness is particularly problematic if the loss distribution is
heavy-tailed.

We consider the following simplified example: Consider an investment in a coin-
flip. For a $100 bet on tails, the 99 % VaR is $100, as the investor will lose the bet
50 per cent of the time. Instead, consider a bet where the investor offers 128 to 1
odds on $100 that heads will not come up seven times in a row. The investor wins
99.2 per cent of the time, and consequently, the 99 % VaR is zero. For a capital
charge solely based on 99 % VaR, the investor would not have to put up any capital
to cover the bet, even though he is exposed to a possible $12,800 loss (Einhorn &
Brown, 2008).

Despite its deficiencies, VaR remains the most widely used risk measure due to its
conceptual simplicity, historical precedence, broad applicability, and computational
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simplicity, which may be perceived to outweigh its theoretical shortcomings (Danels-
son, Jorgensen, Samorodnitsky, Sarma, & de Vries, 2013). Nevertheless, following
the criticisms of VaR, the revised standards for minimum capital requirements for
market risk (Basel Committee on Banking Supervision, 2013, 2016) include a shift
from VaR to expected shortfall (ES) as the preferred risk measure for market risks
and risks under periods of significant financial market stress.

5.2.2 Expected Shortfall
Expected shortfall (Acerbi and Tasche, 2002b, 2002a) is a coherent risk measure which
assesses the riskiness of a position in a more comprehensive manner, by considering
both the magnitude and the likelihood of losses above a specified confidence level.

Definition 5.3. For a portfolio return distribution X and a level α ∈ (0, 1), the
expected shortfall at confidence level 1 − α is the measure of risk defined by

ESX(α) := 1
α

∫ α

0
VaRX(γ)dγ.

That is, the expected shortfall is the average weight of all portfolio losses beyond
the value-at-risk threshold.

The market risk capital charge based on expected shortfall is calculated for a
future ten-day time horizon at a one-tailed, 97.5 percentile confidence level (Basel
Committee on Banking Supervision, 2013). The 97.5 % ES will approximately equal
the 99 % VaR for Gaussian distributions and penalise heavier tails.

A critique of ES is the way it accounts for extreme tail losses: Averages are
generally poor indicators of risk. While the primary objective of financial regulation is
traditionally to ensure the safety of financial institutions and protect the institutions’
liability holders, the aforementioned averaging process does not offer fundamentally
better control of what liability holders stand to lose in case of extreme market
movements. Secondly, a VaR test may be perceived as less “deceiving” than an ES
test as it does not purport to carry any information about the risks in the far tail.
An ES test which inadequately captures tail risk may, however, lull regulators into
a false sense of security (Koch-Medina & Munari, 2016). While this critique does
not diminish the merits of ES as a risk measure, it provides an argument against an
indiscriminate use.

5.3 Backtesting Frameworks

5.3.1 Backtesting Value-at-Risk
The standard approach to assess the accuracy of VaR forecast is to backtest using
VaR coverage tests, which inherently amounts to counting the number of VaR
threshold exceedances during the backtesting interval. This approach leads to the
Traffic Light approach to backtesting VaR first proposed in Basel Committee on
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Banking Supervision (1996). A more general approach is the test of Kupiec (1995),
which we describe below.

For every day t = 1, . . . , T , let Xt denote a realised return generated by the real
return distribution Ft, which is forecasted by a model distribution Pt conditional
on previous information. The random variables X = (Xt)1≤t≤T are assumed to
be independent but not identically distributed. We define an indicator function of
α-level exceedances

It =
{

1 if Xt < −VaRt(α),
0 otherwise,

(5.1)

where VaRt(α) is the VaR forecast for time t at probability level α issued at time
t−1. VaRt is Ft−1-measurable, and according to Christoffersen (1998), the indicator
sequence should then satify

E(It|Ft−1) = α for all t. (5.2)

Christoffersen (2012) states that a proper VaR model should satisfy two conditions:
The number of exceedances should be as close as possible to the number implied by
the VaR quantile and randomly distributed across the sample. The unconditional
coverage test by Kupiec (1995) may test the first condition, and both conditions
may be tested by the conditional coverage tests by, e.g., Christoffersen (1998) or
Engle and Manganelli (2004). In this thesis, we assume that the independence of
tail event arrivals is tested separately, typically by visual inspection, as this provides
better insight than the aforementioned tests.

Testing the unconditional coverage E(It) = α amounts to testing if the sequence
(It)1≤t≤T is independent and identically Bernoulli-distributed with parameter α.
Kupiec (1995) proposes a likelihood ratio test to reveal whether a VaR model
provides desirable unconditional coverage. Hence, an indicator sequence of length n
with n1 exceedances admits the likelihood function

L(α; It, It−1, . . .) = αn1(1 − α)n−n1 ,

with the maximum likelihood estimate α̂ = n1/n. Under the null hypothesis
E(It) = α for all t, the test statistic is

K = −2 log L(α; It, It−1, . . .)
L(α̂; It, It−1, . . .) , (5.3)

which is asymptotically χ2-distributed with one degree of freedom. Unlike the Basel
VaR test, which is only interested in testing risk underestimation, the Kupiec test
simultaneously tests both risk under- and overestimation.

5.3.2 Backtesting Expected Shortfall
Unlike the case of VaR, there is no well-established ES backtesting framework; the
current Basel proposal to backtest ES at the 97.5 quantile is to backtest VaR at the
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97.5 and 99 quantiles. However, some proposed backtesting frameworks include, but
is not limited to, McNeil and Frey (2000); Embrechts, Kaufmann, and Patie (2005);
Wong (2008); Acerbi and Szekely (2014); Costanzino and Curran (2015, 2018); Du
and Escanciano (2017). A study of the empirical performance of several expected
shortfall backtests is presented in Clift, Costanzino, and Curran (2016).

Acerbi and Szekely (2014) propose three non-parametric methods to backtest the
unconditional coverage of the expected shortfall measure analogous to the standard
VaR setting proposed by the Basel Committee. We again assume that we test the
independence of tail event arrivals separately. Their second test, which tests ES
directly by jointly evaluating the frequency and magnitude of α-tail events, follows
from the unconditional expectation ESt(α) = −E(XtIt/α), which suggests the test
statistic

Z(X) =
T∑

t=1

XtIt

TαESt(α) + 1. (5.4)

We let ESF
t (α) denote the expected shortfall measure when Xt ∼ Ft, and P

[α]
t (x) :=

min(1, Pt(x)/α) is the distribution tail for x < −VaRt(α). Appropriate hypotheses
for the unconditional coverage test are

H0 : P
[α]
t = F

[α]
t , for all t,

H1 : ESF
t (α) ≥ ESt(α), for all t and > for some t,

VaRF
t (α) ≥ VaRt(α), for all t.

(5.5)

Here, EH0(Z) = 0 and EH1(Z) < 0 (Acerbi and Szekely, 2014, Proposition A.3). We
choose the alternative hypothesis in the direction of risk underestimation in line
with the Basel VaR test, which is only meant to detect an excess of VaR violations.
This test does not require the independence of (Xt)1≤t≤T .

To estimate the p-value from hypothesis test (5.5), we simulate Xi
t ∼ Pt for all

t = 1, . . . , T and i = 1, . . . , M , for a suitably large M . The p-value is estimated by

p = 1
M

M∑
i=1

I(Z(Xi) < Z(x)), (5.6)

for true observations x (Acerbi & Szekely, 2014).
An alternative backtest proposed by Embrechts et al. (2005) considers the test

score V = (|V1| + |V2|)/2, where

V1 =
∑T

t=1(Xt − (−ESt(α)))1{Xt<−VaRt(α)}∑T
t=1 1{Xt<−VaRt(α)}

is a standard backtesting measure of ES that reports the average excess below the
expected shortfall for times when a VaR violation occurs. Its weakness is, similar
to the backtests proposed by Acerbi and Szekely (2014), its dependence of VaR
estimates without adequately reflecting the quality of these estimates. Only values
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which fall beyond the VaR threshold are considered. To correct for this, Embrechts
et al. introduce a penalty that measures the excess below the predicted expected
shortfall for the α-quantile of observed returns. Let rt := Xt − (−ESt(α)) for all t,
and let r(α) be the α-quantile of (rt)1≤t≤T . Then, we let

V2 =
∑T

t=1 rt1{rt<r(α)}∑T
t=1 1{rt<r(α)}

.

A good estimate of ES leads to a low value of V .
To test the significance of score differences between two competing methods in the

Embrechts et al. framework, we can apply a permutation test based on resampling
(Good, 2013; Möller, Lenkoski, & Thorarinsdottir, 2013). Two competing predictive
distributions F̂1 and F̂2 are compared under the scoring rule V (F, ·) using the
statistic

s := S(F̂1, y) − S(F̂2, y), (5.7)

for a set of observations y = (y1, . . . , yT ). The permutation test is then based on
resampling copies of s with the predictions of F̂1 and F̂2 swapped for a random
number of observations.
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Preliminary Data Analysis

In this thesis, we calibrate term structure models generated by generalised
hyperbolic distributions. The motivation behind this generalisation arises from
the need for more flexible return distributions for interest rates derivatives. The
daily log-returns of interest rate derivatives are heavy-tailed, possibly skewed, and
dominated by discontinuous jumps, which makes it challenging to accurately describe
the returns by a Gaussian distribution. We herein present two data sets, one which
captures a “normal” market situation and one which captures two highly stressed
market situations, to motivate the application of more general term structure models.

6.1 Primary Interest Rate Data
The primary data set used in this thesis is provided by DNB and consists of daily
Norwegian Inter-Bank Offered Rates (NIBOR) and Norwegian swap rates of differing
maturities. The first recorded date is 6 July 2009, and the last recorded date is 11
March 2019. The relevant rates are the one-day and one-year NIBOR rates, as well
as two- to ten-year daily swap rates. Descriptive statistics of the entire data set are
given in Table 6.1, and a selection of the simple rates is visualised in Figure 6.1.

Table 6.1: Descriptive statistics of the daily NIBOR and swap rates from 6 July 2009 to
11 March 2019.

Maturity Mean (%) SD (%) Mean log-
changes (%)

SD log-
changes (%)

NIBOR 1d 1.2876 0.6301 −0.0003 0.0825
NIBOR 1Y 1.7114 0.7154 −0.0001 0.0127
Swap 2Y 1.9434 0.9085 −0.0002 0.0148
Swap 3Y 2.0838 0.9735 −0.0003 0.0155
Swap 4Y 2.2277 1.0080 −0.0003 0.0156
Swap 5Y 2.3670 1.0266 −0.0003 0.0156
Swap 6Y 2.4939 1.0370 −0.0003 0.0152
Swap 7Y 2.6068 1.0423 −0.0003 0.0147
Swap 8Y 2.7053 1.0450 −0.0004 0.0142
Swap 9Y 2.7903 1.0472 −0.0004 0.0138
Swap 10Y 2.8626 1.0504 −0.0004 0.0136
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Figure 6.1: A selection of simple historical rates for different maturities from 6
July 2009 to 11 March 2019. The one-day and one-year rates are simple NIBOR
rates, while the remaining rates are simple swap rates.

As one would expect, the average yields increase with maturity; since binding up
capital for a longer period increases exposure and sensitivity to inflation and interest
rate risk, investors demand compensation for doing so. The average yield curve is,
therefore, upward sloping, which typically indicates that the market expects interest
rates to remain stable or potentially grow. As expected, the spot rate is the most
volatile. However, seemingly contrary to classical economic intuition, the volatility
of one- and two-year rates are slightly smaller or equal to that of intermediate- and
long-term rates.

Since the global financial crisis of 2007–2009, fixed-income markets have mostly
witnessed an upward sloping yield curve. The Norwegian rates, however, fell to
an all-time low in 2016, succeeding reductions in Norges Bank’s policy rate first
initiated in December 2011 due to turbulence in financial markets and weakened
expected growth (Norges Bank, 2011). Weakened growth prospects and a sharp fall
in oil prices broadly caused a gradual decrease in the term spread during 2011–2016
(Norges Bank, 2015), and during 2015–2017 the yield curve was withal inverted at
the short end. (This decline of yields at relatively short horizons usually captures
the market expectation of a near-term monetary policy easing (Gürkaynak, Sack, &
Wright, 2007).) In 2017, however, the rates and the term spread started to slowly
grow in reaction to better economic prospects and an anticipated increase in the
policy rate, which occurred in September 2018.

While Norges Bank’s commitment to a low-interest rate policy for any foreseeable
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Figure 6.2: Gaussian QQ-plots for centred daily log-returns on 1-year, 3-year,
5-year, and 10-year zero-coupon bonds from 6 July 2009 to 11 March 2019.

future might have rendered the short-term rate less responsive to macroeconomic
events (see, e.g., Xia, 2014), intermediate- and long-term rates are still responsive –
and have historically moved significantly in response to unexpected components in
macroeconomic data releases and monetary policy announcements (Gürkaynak, Sack,
& Swanson, 2005). This behaviour is consistent with a market wherein investors’
views of long-run inflation are not firmly anchored. One explanation for the relatively
larger-than-expected volatility on long-term interest rates is that the long-term rates
are less constrained in the prevailing monetary setting, letting the rates and their
embedded risk premiums react aggressively and elusively to the aforementioned
period of financial uncertainty.

Figure 6.2 presents Gaussian QQ-plots for the daily log-returns on 1-year, 3-year,
5-year, and 10-year zero-coupon bonds derived from the yields presented in Ta-
ble 6.1. All bonds admit denser tails than consistent with a Gaussian distributional
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assumption, and the tails grow heavier for shorter maturities. None of the distribu-
tions appears to be distinctly skewed with profoundly asymmetrical or different tail
behaviours.

6.2 Stressed Interest Rate Data
A second (uncleaned) data set used in this thesis is downloaded directly from
Bloomberg and consists of NIBOR and swap rates of differing maturities. The
relevant rates are the daily three-month and one-year NIBOR rates as well as two-
to ten-year daily swap rates. We are interested in market movements during two
stressed periods: 2008–2009 and 2019–2020. Descriptive statistics of the two periods
are given in Table 6.2, and a selection of the simple rates is visualised in Figures 6.3
and 6.4. The daily log-returns on 1-year, 5-year, and 10-year zero-coupon bonds
during the two stressed periods, as well as during “normal” reference period from 19
April 2018 to 19 November 2019, are visualised in Figure 6.5.

Table 6.2: Descriptive statistics of the daily simple NIBOR and swap rates from (a) 16
May 2008 to 12 August 2009 and (b) 15 November 2019 to 16 April 2020.

Maturity Mean (%) SD (%) Mean log-
changes (%)

SD log-
changes (%)

NIBOR 3m 4.4998 1.9202 −0.0041 0.0257
NIBOR 1Y 4.0876 1.9674 −0.0033 0.0223
Swap 2Y 4.0647 1.6877 −0.0021 0.0211
Swap 3Y 4.2452 1.3604 −0.0014 0.0175
Swap 5Y 4.5292 0.9270 −0.0008 0.0135
Swap 7Y 4.7448 0.6794 −0.0006 0.0124
Swap 10Y 4.9496 0.4916 −0.0004 0.0131

(a) 16 May 2008 to 12 August 2009

Maturity Mean (%) SD (%) Mean log-
changes (%)

SD log-
changes (%)

NIBOR 3m 1.6082 0.3452 −0.0085 0.0383
NIBOR 1Y 1.5961 0.4626 −0.0103 0.0374
Swap 2Y 1.5214 0.4921 −0.0114 0.0387
Swap 3Y 1.5608 0.4865 −0.0104 0.0365
Swap 5Y 1.5641 0.4447 −0.0094 0.0351
Swap 7Y 1.6007 0.4034 −0.0083 0.0341
Swap 10Y 1.6665 0.3583 −0.0067 0.0298

(b) 15 November 2019 to 16 April 2020
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Figure 6.3: A selection of simple historical rates for different maturities from 16
May 2008 to 12 August 2009.

The first period lasts from 16 May 2008 to 12 August 2009 and includes the
main stretch of the global financial crisis. The crisis began with a depreciation in
the American subprime mortgage market before developing into an international
banking crisis following the collapse of the investment bank Lehman Brothers on 15
September 2008. The nadir of the crisis occurred around March 2009, and Norges
Bank’s policy rate was further lower by 0.25 % to 1.25 % at 17 June 2009 to combat
falling economic activity and a rising unemployment rate (Norges Bank, 2009).

The second period lasts from 15 November 2019 to 16 April 2020. The period
ends during the financial crash that occurred as a result of, firstly, a massive fall
in oil prices after the Opec collaboration collapsed as Russia refused to agree to
further production cuts and announced an increased production, while Saudi Arabia
announced that they would sell oil for a discount. Secondly and more predominantly,
the crash occurred as a result of the coronavirus pandemic with ensuing world-
wide government and business shutdowns. To halt the falling economic activity
Norges Bank’s policy rate was lowered from 1.5 % to 1.0 % at 13 March 2020, to
0.25 % at 20 March 2020, and later to 0 % at 7 May 2020. Norges Bank cites
an abnormally large uncertainty about future developments, a fall in oil prices,
and an ensuing weak Norwegian krone, and Norges Bank states that they hope
the expansionary monetary policy will cushion the economic setback and avoid an
increase in equilibrium unemployment (Norges Bank, 2020).

Figures 6.6 and 6.7 present Gaussian QQ-plots for the daily log-returns on 1-year,
3-year, 5-year, and 10-year zero-coupon bonds during the global financial crisis and
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Figure 6.4: A selection of simple historical rates for different maturities from 19
April 2019 to 16 April 2020.

the coronavirus crisis, respectively. The log-returns during the coronavirus crisis are
highly skewed for all maturities. The upper tails are exceptionally dense, while the
lower-tails – though heavier than consistent with a Gaussian distribution – are more
well-behaved.

Compared to the coronavirus crisis, the log-returns during the financial crisis
are greater but less skewed and more “conventional”: The one-year and three-year
bonds admit fat-tailed and somewhat skewed return distributions, while the five-
year and ten-year bonds, though possessing heavy tails, appear to be reasonably
well-represented by a Gaussian distribution except in the distant tails.

The previous remarks are too evident in Figure 6.5. We must be careful as to not
be too assertive in a comparison between the two periods; we observe the 2008–2009
data over an extended period which includes the main stretch of the crisis, while
the 2019–2020 data consists of fewer data points and only includes the start of the
crisis. That said, we again note that the 2008–2009 return distribution is symmetric,
but it is far wider and fatter-tailed than the reference period. In comparison, the
return distribution during the coronavirus crisis is much more peaked and with a far
lighter lower tail. The upper tail, however, is equally dense to that of the 2008–2009
situation.

That is, during 2008–2009, we observed relatively equal market movements in
both directions. A fall one day was usually followed by a positive correction of equal
magnitude. During March–April 2020, the markets have, to an even greater extent,
plummeted. As a result of market pessimism and the quick response of Norges
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Figure 6.5: Density of daily log-returns on (top) 10-year, (middle) 5-year, and
(bottom) 1-year zero-coupon bonds from 16 May 2008 to 12 August 2009, 19 April
2018 to 19 November 2019, and 15 November 2019 to 16 April 2020.

Bank, interest rates have quickly dropped, and the market has priced in fewer and
smaller positive corrections. Per observation, this self-reinforcing market behaviour
generates a profoundly skewed and heavy-tailed return distribution.
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Figure 6.6: Gaussian QQ-plots for centred daily log-returns on 1-year, 3-year,
5-year, and 10-year zero-coupon bonds from 16 May 2008 to 12 August 2009.
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Figure 6.7: Gaussian QQ-plots for centred daily log-returns on 1-year, 3-year,
5-year, and 10-year zero-coupon bonds from 15 November 2019 to 16 April 2020.





Chapter 7

Results

Having established methods for parameter estimation in the Lévy term structure
models, we apply these to the NIBOR data described in Chapter 6. We first give
a preliminary calibration example in Section 7.1, and we qualitatively study the
in-sample fit of time-homogeneous and time-inhomogeneous term structure models
generated by Gaussian, normal–inverse Gaussian, and generalised hyperbolic skew
Student’s t-distributions. In Section 7.2, we perform an out-of-sample backtest
of one-day value-at-risk and expected shortfall on zero-coupon bonds using the
backtesting frameworks described in Chapter 5. The out-of-sample backtests are
extended to portfolios consisting of swaps and caps in Section 7.3.

7.1 Calibration to Zero-Coupon Bond Quotes
We first give a preliminary calibration example of the considered term structure
models to financial data. Using the calibration scheme outlined in Section 4.6, we
calibrate time-homogeneous (hereafter TH) and time-inhomogeneous (hereafter TIH)
term structure models generated by univariate Gaussian, NIG and GSS distributions
to one- to ten-year zero-coupon bond quotes from 24 June 2011 to 19 June 2013 (500
trading days). The parameter estimates for the TH driving Gaussian process are

σ̂ = 1.54 · 10−6 and µ̂ = −7.68 · 10−24,

the parameter estimates for the TH driving NIG process are

α̂ = 972968.4, β̂ = −80936.62, δ̂ = 2.30 · 10−6, and µ̂ = 1.91 · 10−7,

and the parameter estimates for the TH driving GSS process are

ν̂ = 7.64, β̂ = −80177.95, δ̂ = 3.66 · 10−6, and µ̂ = 1.90 · 10−7.

The parameter estimates for the TIH driving Gaussian, NIG, and GSS processes are
given in Tables B.1 to B.3 in Appendix B, respectively. For the TIH processes, we
have fitted one process to each M -maturity bond, for M = 1, . . . , 10 years.

The empirical density of estimated increments of the TH driving process and
the density of the fitted TH generating Gaussian, NIG, and GSS distributions
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Figure 7.1: Density (top) and log-density (bottom) of observed and fitted
increments of the TH driving process, for term structure models generated by TH
Gaussian, NIG, and GSS distributions.

are presented in Figure 7.1. The NIG and GSS distributions are more flexible
than the Gaussian distribution, and they better approximate the leptokurtic shape
of the empirical increment distribution. The Gaussian distribution appears to
underestimate the risk in both tails.

The empirical density of log-returns on one-year, five-year, and ten-year zero-
coupon bonds and the corresponding densities of the fitted TH and TIH models are
given in Figure 7.2. Equivalent to Figure 7.1, the models generated by NIG and
GSS distributions approximate the empirical return distribution quite well in both
the tails and the mass centre, while the models generated by Gaussian distributions
generally underestimate the tail risk.

For high-maturity bonds, the TH and TIH models admit approximately the same
return distributions. For one- to three-year bonds, however, the assumption of equal
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Figure 7.2: Density and log-density of observed and fitted (centred) daily log-
returns on zero-coupon ten-year bonds (top row), five-year bonds (middle row),
and one-year bonds (bottom row). NIG*, GSS*, and Gaussian* denote term
structure models generated by TIH distributions.
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return distributions for all bonds breaks down. The time-homogeneous NIG and GSS
processes predict a far too wide return distribution for low-maturity bonds, while the
time-inhomogeneous NIG and GSS processes fit the empirical return distributions
quite well. On the contrary, the poor fit of the TIH Gaussian process causes its TH
counterpart to better approximate the tail risk for one-year bonds.

We lastly study the behaviour of the different term structure models in the
long run. Figure B.1 in Appendix B presents the 95 % confidence bounds for the
discounted price of one-year, three-year, and five-year bonds during the next year. In
the long run, the sums of increments from the GSS and NIG distribution converge to
a normal distribution, and all TH models admit equal price distributions. Moreover,
for maturities greater than three years, all term structure models admit the same
price distributions. For one-year bonds, the TIH Gaussian and NIG models admit
thinner bounds than the TH models. The time-inhomogeneous GSS model predicts
a comparable lower bound, but the model too prices in considerably greater risks in
the upper bound.

To better assess the in-sample tail fit, we calibrate the univariate TH and TIH
term structure models using zero-coupon bond quotes from 6 July 2011 to 14
January 2019. The empirical and fitted one-day value-at-risk and expected shortfall
on one-year, five-year, and ten-year zero-coupon bond log-returns are presented in
Figures 7.3 and 7.4.

Similar to the observations in Figure 7.2, the TH and TIH models admit equal
tail risk predictions for high-maturity bonds. The models generated by NIG and GSS
distributions fit the empirical risk measures quite well, while the models generated
by Gaussian distributions consistently underestimate the tail risks. The quality of
the Gaussian models declines as we consider more distant tail quantiles.

For one-year bonds, the time-homogeneous NIG and GSS models overestimate
the tail risks, but the models improve as we consider more extreme quantiles of the
return distribution. The time-inhomogeneous NIG and GSS models approximate
the empirical return distribution of low-maturity bonds better than their TH coun-
terparts, but their in-sample fit decline in the distant tails. The poor fit is possibly
a result of convergences issues in the EM calibration algorithm.

7.2 Backtests of Zero-Coupon Bonds
Having studied the flexibility of the different term structure models in approximating
the empirical return distributions for zero-coupon bonds, we now wish to investigate
whether the more precise in-sample fit of models generated by NIG and GSS
distributions translates to a better out-of-sample prediction of tail risk measures.
Following the discussion of the deficiencies of value-at-risk in Section 5.2.1, our
primary attention resides with the expected shortfall statistic. For completeness,
we include backtests of value-at-risk, but our focus therein is mostly related to the
statistic’s relation to backtests of expected shortfall.

We perform an out-of-sample backtest of the one-day value-at-risk and one-day
expected shortfall of log-returns for all bonds using trading data from 6 July 2011
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Figure 7.3: One-day value-at-risk of observed and fitted daily log-returns on
zero-coupon ten-year bonds (top row), five-year bonds (middle row), and one-year
bonds (bottom row) in both tails. NIG*, GSS*, and Gaussian* denote term
structure models generated by TIH distributions.
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Figure 7.4: One-day expected shortfall of observed and fitted daily log-returns
on zero-coupon ten-year bonds (top row), five-year bonds (middle row), and
one-year bonds (bottom row) in both tails. NIG*, GSS*, and Gaussian* denote
term structure models generated by TIH distributions.
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Table 7.1: Results from a one-day value-at-risk backtest of one-year bonds using the
previous 250 trading days in the calibration of the term structure models. Reported is
the violation percentage and in parenthesis the p-value from the unconditional coverage
Kupiec test. NIG*, GSS*, and Gaussian* denote term structure models generated by TIH
distributions.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.37 0.41 0.73 1.05 0.64 0.46

(0.35) (0 ) (0 ) (0 ) (0.07) (0.77)
NIG 0.14 0.32 0.68 0.91 0.5 0.32

(0 ) (0 ) (0 ) (0 ) (0.01 ) (0.2)
GSS 0.18 0.32 0.73 0.96 0.59 0.27

(0.02 ) (0 ) (0 ) (0 ) (0.04 ) (0.1)
Gaussian* 1.51 1.96 2.74 2.79 2.05 1.69

(0 ) (0 ) (0.48) (0.4) (0 ) (0 )
NIG* 0.87 1.55 2.97 2.83 1.64 0.82

(0.03 ) (0.02 ) (0.17) (0.33) (0.01 ) (0.05)
GSS* 0.96 1.87 3.47 3.15 1.96 1

(0.01 ) (0 ) (0.01 ) (0.06) (0 ) (0 )

to 11 March 2019. The TH and TIH term structure models generated by univariate
Gaussian, NIG, and GSS distributions are at each date calibrated to the previous
250 trading days.

The backtests of value-at-risk for one-year, five-year, and ten-year zero-coupon
bonds, using the unconditional coverage Kupiec test, are presented in Tables 7.1
to 7.3. For the one-year bonds, all models perform poorly, and the unconditional
coverage is rejected at most quantiles for all models. The TH models generally
overestimate the risk, while the TIH models generally underestimate the risk. While
the time-inhomogeneous NIG and GSS models appear to well-approximate the
VaR in-sample in Figure 7.3, the closer in-sample fit does not translate to a better
out-of-sample fit.

For the five- and ten-year bonds, all models perform better. The unconditional
coverage of time-homogeneous and time-inhomogeneous NIG models is not rejected
at any quantile. The unconditional coverage of time-homogeneous GSS models is
only rejected at the 97.5 % quantile for five-year bonds. The Gaussian models,
however, perform rather poorly, and their unconditional coverage is rejected at
several quantiles.

Due to the somewhat unstable predictions of value-at-risk, it is apparent that
we should utilise a backtest of expected shortfall which penalises unsatisfactory
value-at-risk predictions. The backtests of one-day expected shortfall for one-year,
five-year, and ten-year bonds, using the backtest proposed by Embrechts et al. (2005),
are presented in Table 7.4. The p-values of significance tests of score differences
between the different term structure models at all maturities and quantiles are
presented in Table 7.5.
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Table 7.2: Results from a one-day value-at-risk backtest of five-year bonds using the
previous 250 trading days in the calibration of the term structure models. Reported is
the violation percentage and in parenthesis the p-value from the unconditional coverage
Kupiec test. NIG*, GSS*, and Gaussian* denote term structure models generated by TIH
distributions.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.73 1.14 2.6 2.37 1.46 0.96

(0.15) (0.52) (0.76) (0.7) (0.04 ) (0.01 )
NIG 0.64 0.73 1.96 2.28 1.32 0.87

(0.38) (0.18) (0.09) (0.51) (0.15) (0.03 )
GSS 0.59 0.73 1.96 2.37 1.28 0.87

(0.55) (0.18) (0.09) (0.7) (0.21) (0.03 )
Gaussian* 0.87 1.37 3.01 2.47 1.51 1.14

(0.03 ) (0.1) (0.14) (0.92) (0.03 ) (0 )
NIG* 0.59 0.87 2.42 2.37 1.37 0.78

(0.55) (0.52) (0.81) (0.7) (0.1) (0.09)
GSS* 0.59 0.96 2.56 2.47 1.28 0.78

(0.55) (0.85) (0.86) (0.92) (0.21) (0.09)

Table 7.3: Results from a one-day value-at-risk backtest of ten-year bonds using the
previous 250 trading days in the calibration of the term structure models. Reported is
the violation percentage and in parenthesis the p-value from the unconditional coverage
Kupiec test. NIG*, GSS*, and Gaussian* denote term structure models generated by TIH
distributions.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 1.19 2.01 3.56 2.69 1.55 1.1

(0 ) (0 ) (0 ) (0.57) (0.02 ) (0 )
NIG 0.64 1.28 2.83 3.06 1.23 0.78

(0.38) (0.21) (0.33) (0.11) (0.29) (0.09)
GSS 0.64 1.23 3.06 3.24 1.42 0.78

(0.38) (0.29) (0.11) (0.03 ) (0.07) (0.09)
Gaussian* 0.96 1.6 2.97 2.28 1.28 0.82

(0.01 ) (0.01 ) (0.17) (0.51) (0.21) (0.05)
NIG* 0.55 0.96 2.51 2.79 1.23 0.68

(0.75) (0.85) (0.97) (0.4) (0.29) (0.25)
GSS* 0.59 1 2.51 3.01 1.23 0.68

(0.55) (0.98) (0.97) (0.14) (0.29) (0.25)
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Table 7.4: Results from a one-day expected shortfall backtest of (a) one-year bonds,
(b) five-year bonds, and (c) ten-year bonds, using the previous 250 trading days in the
calibration of the term structure models. Reported is the test score from the Embrechts’ test.
NIG*, GSS*, and Gaussian* denote term structure models generated by TIH distributions.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.00013 0.00012 0.00014 0.00010 0.00006 0.00009

NIG 0.00024 0.00017 0.00015 0.00010 0.00007 0.00003
GSS 0.00018 0.00016 0.00013 0.00010 0.00005 0.00004

Gaussian* 0.00028 0.00020 0.00013 0.00017 0.00023 0.00029
NIG* 0.00017 0.00012 0.00008 0.00007 0.00009 0.00006
GSS* 0.00018 0.00011 0.00008 0.00008 0.00012 0.00007

(a) One-year bonds

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.00167 0.00107 0.00047 0.00052 0.00081 0.00106

NIG 0.00082 0.00075 0.00014 0.00036 0.00044 0.00045
GSS 0.00063 0.00060 0.00010 0.00032 0.00041 0.00038

Gaussian* 0.00162 0.00108 0.00052 0.00063 0.00096 0.00114
NIG* 0.00095 0.00072 0.00016 0.00038 0.00040 0.00052
GSS* 0.00065 0.00046 0.00013 0.00032 0.00037 0.00038

(b) Five-year bonds

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.00347 0.00232 0.00142 0.00102 0.00147 0.00204

NIG 0.00227 0.00121 0.00070 0.00048 0.00092 0.00124
GSS 0.00154 0.00096 0.00051 0.00039 0.00059 0.00103

Gaussian* 0.00343 0.00223 0.00131 0.00089 0.00133 0.00192
NIG* 0.00208 0.00115 0.00048 0.00036 0.00077 0.00124
GSS* 0.00138 0.00085 0.00044 0.00030 0.00067 0.00109

(c) Ten-year bonds
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Table 7.5: p-values for permutation tests of differences between Embrechts’ scores reported
in Table 7.4. The null and alternative hypotheses are H0 : X = Y versus H1 : X < Y for
term structure models generated by univariate Gaussian (herein abbreviated as N), NIG,
and GSS distributions. NIG* and GSS* denote term structure models generated by TIH
distributions.

H1 Mat. 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %

NIG*<NIG
1Y 0.18 0.20 0 0.09 0.29 0.72
5Y 0.87 0.22 0.82 0.88 0.34 0.85
10Y 0.42 0.08 0.03 0 0.28 0.61

GSS*<GSS
1Y 0.53 0.17 0.02 0 0.89 0.69
5Y 0.37 0.08 0.53 0.40 0.42 0.18
10Y 0.34 0.32 0.12 0.27 0.88 0.31

GSS<NIG
1Y 0.32 0.51 0.39 0.27 0.09 0.87
5Y 0.01 0.02 0 0.51 0.03 0.32
10Y 0.01 0 0 0.03 0 0.18

NIG<N
1Y 0.95 0.87 0.63 0.57 0.79 0.18
5Y 0 0.11 0 0 0.01 0
10Y 0.01 0 0 0 0 0.01

GSS<N
1Y 0.78 0.86 0.36 0.43 0.32 0.30
5Y 0 0.01 0 0 0 0
10Y 0 0 0 0 0 0.01

For one-year bonds, all models but the TIH Gaussian perform rather equally.
The TH Gaussian is slightly better than the time-homogeneous NIG and GSS models
in the left tail, while the time-homogeneous NIG and GSS are slightly better than
the TH Gaussian in the right tail. These differences are, however, not significant.
The time-inhomogeneous NIG and GSS models are not significantly better than
their TH counterparts except at the 2.5 % and 97.5 % quantiles.

For five-year and ten-year bonds, the Gaussian models are consistently and
significantly outperformed by the NIG and GSS models, and the GSS models
consistently admit a significantly lower Embrechts’ scores than the NIG models. The
time-inhomogeneous GSS model is not significantly better than its TH counterpart
at any quantile, while the time-inhomogeneous NIG is only significantly better than
its TH counterpart at the 2.5 % and 97.5 % quantiles for ten-year bonds.

7.3 Backtests of More Complex Portfolios
In Section 7.2, we observed that term structure models generated by NIG and GSS
distributions consistently predicted the one-day expected shortfall on zero-coupon
bonds better than term structure models generated by Gaussian distributions. We
now wish to investigate if this improved out-of-sample predictive power persists for
more complex portfolios consisting of interest rate derivatives such as swaps and
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caps. Since TIH models did not perform significantly different from their respective
TH counterparts – and since it is not directly apparent how to include correlations
across different risk factors in TIH models – we henceforth restrict our analysis to
TH models.

Using the same backtesting period as in Section 7.2, we backtest one-day value-
at-risk and expected shortfall on a selection of portfolios consisting of interest rates
derivatives: a portfolio consisting of a single ten-year receiver swap with annual
settlements, a portfolio consisting of one- to ten-year receiver swaps with annual
settlements, and a portfolio consisting of one- to ten-year caps and receiver swaps
with annual settlements. For simplicity, we initialise all swaps to a zero initial value,
and we assign to each cap a strike rate identical to the swap rate of the swap with
the same maturity.

We will not backtest directly against trading data of swaps and caps, but swap
and cap prices derived from our modelled risk factors. The risk-neutral prices of
swaps and caps are given by (2.7) and (2.8). The risk-neutral prices of swaps are
easily computed from the initial yield curve.

Although the joint density necessary in computing the expectation in (2.8) can
be found analytically (see Eberlein and Raible, 1999), the numerical evaluation
is extremely time-consuming. Cap prices may instead be estimated by a Monte
Carlo simulation (e.g. Glasserman, 2013) or through a bilateral Laplace transform
and a fast Fourier algorithm (see Raible, 2000; Eberlein and Kluge, 2006). This
approach implies a model-dependent pricing of instruments. However, since our
three time-homogeneous models behave approximately similar in the long-run, cf.
Figure B.1, the term structure models will asymptotically admit identical cap prices
for any initial discount factor and yield curve.

The backtests of value-at-risk and expected shortfall for the three portfolios are
given in Tables 7.6 and 7.7, respectively.

For the single ten-year swap, the unconditional VaR coverage of the Gaussian
model is rejected at all but one quantile. The unconditional coverage of NIG and
GSS models is not rejected at any quantile, though the models appear to consistently
underestimate the risk. As reported for zero-coupon bonds, the Gaussian term
structure models are consistently outperformed by the NIG and GSS term structure
models in predicting one-day expected shortfall, and the NIG models are consistently
outperformed by the GSS models.

For the portfolio of one- to ten-year swaps, the unconditional VaR coverage
of the Gaussian model is only rejected at one quantile, and we do not reject the
unconditional coverage of the NIG and GSS models at any quantile. The Gaussian
model is again outperformed by NIG and GSS models in predicting one-day expected
shortfall.

For the swap and cap combination, we reject the unconditional VaR coverage
of the Gaussian model at all but the 2.5 and 97.5 % quantiles. The unconditional
coverage of the NIG model is not rejected at any quantile, and the unconditional
coverage of the GSS model is only rejected at the 99.0 % quantile. Lastly, the
Gaussian model admits the greatest Embrechts’ score at each quantile, while the
GSS model consistently scores slightly lower than the NIG model.
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Table 7.6: Results from backtests of one-day value-at-risk in portfolios consisting of
(a) a ten-year receiver swap with annual settlements, (b) one- to ten-year receiver swaps
with annual settlements, and (c) one- to ten-year caps and receiver swaps with annual
settlements, using the previous 250 trading days in the calibration of the term structure
models. Reported is the violation percentage and in parenthesis the p-value from the
unconditional coverage Kupiec test.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 1.19 1.74 3.38 2.6 1.51 0.96

(0 ) (0 ) (0.01 ) (0.76) (0.03 ) (0.01 )
NIG 0.64 1.23 2.79 2.92 1.23 0.78

(0.38) (0.29) (0.40) (0.22) (0.29) (0.09)
GSS 0.64 1.23 2.92 3.2 1.32 0.78

(0.38) (0.29) (0.22) (0.05) (0.15) (0.09)

(a) Ten-year swap

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.78 1.23 2.37 2.24 1.46 0.82

(0.09) (0.29) (0.7) (0.42) (0.04 ) (0.05)
NIG 0.5 0.82 1.87 2.28 1.23 0.64

(0.99) (0.39) (0.05) (0.51) (0.29) (0.38)
GSS 0.55 0.87 1.87 2.33 1.23 0.68

(0.75) (0.52) (0.05) (0.6) (0.29) (0.25)

(b) One- to ten-year swaps

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.91 1.55 3.01 2.42 1.55 0.91

(0.01 ) (0.01 ) (0.14) (0.81) (0.02 ) (0.01 )
NIG 0.59 0.96 2.51 2.47 1.34 0.68

(0.55) (0.85) (0.97) (0.92) (0.10) (0.25)
GSS 0.55 0.91 2.37 2.65 1.46 0.78

(0.75) (0.68) (0.70) (0.66) (0.04 ) (0.09)

(c) One- to ten-year swaps and caps
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Table 7.7: Results from backtests of one-day expected shortfall in portfolios consisting of
(a) a ten-year receiver swap with annual settlements, (b) one- to ten-year receiver swaps
with annual settlements, and (c) one- to ten-year caps and receiver swaps with annual
settlements, using the previous 250 trading days in the calibration of the term structure
models. Reported is the test score from the Embrechts’ test.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.00287 0.00204 0.00119 0.00087 0.00126 0.00180

NIG 0.00178 0.00095 0.00048 0.00037 0.00070 0.00091
GSS 0.00116 0.00065 0.00037 0.00029 0.00053 0.00077

(a) Ten-year swap

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.01463 0.00941 0.00482 0.00412 0.00575 0.00851

NIG 0.00794 0.00461 0.00140 0.00196 0.00230 0.00371
GSS 0.00497 0.00283 0.00133 0.00151 0.00174 0.00240

(b) One- to ten-year swaps

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.02373 0.01515 0.00809 0.00690 0.00942 0.01356

NIG 0.01341 0.00880 0.00265 0.00388 0.00442 0.00672
GSS 0.01070 0.00651 0.00233 0.00307 0.00391 0.00600

(c) One- to ten-year swaps and caps





Chapter 8

Case Study: Norwegian Rates
From February to April 2020

In Chapter 7, we observed that term structure models generated by generalised
hyperbolic distributions performed better than traditional Gaussian HJM models in
predicting one-day expected shortfall on a series of interest rate derivatives. This
was, however, performed during normal market situations. To assess the resilience
of financial institutions the Basel’s stress testing principles (Basel Committee on
Banking Supervision, 2018) specify how financial institutions should perform stress
tests of unfavourable economic scenarios to determine whether the institutions have
enough capital to withstand the impact of adverse economic developments.

Using the two stressed periods described in Section 6.2, we, therefore, wish to
examine whether the Lévy term structure models are better equipped than Gaussian
HJM models to describe periods of deep financial stress. We are herein not interested
in the models’ out-of-sample predictive power, and we concentrate on whether the
different models manage to mimic the observed market movements. For simplicity,
we restrict our analysis to time-homogeneous term structure models generated by
univariate return distributions. Lastly, in light of the discussed term structure
models, we highlight some differences between the two financial crises of 2008–2009
and February–April 2020.

8.1 Expected Shortfall Bounds During a Develop-
ing Crisis

The Minimum capital requirements for market risk (Basel Committee on Banking
Supervision, 2016) states how banks should use expected shortfall as a measure of
risks under stress, to ensure a sensible capture of tail risks and capital adequacy
during periods of significant financial market stress. The risk measure is usually
calculated to the most severe 12-month period of stress available over the observation
horizon, which usually implies a subset of the global financial crisis.

We first observe a time series of log-returns of zero-coupon bonds during 2019–
2020, to examine how the expected shortfall predictions of our term structure models
react to stressed market movements. Using a standard calibration window of the
previous 250 trading days, Figure 8.1 presents the observed daily log-returns on
one-year, five-year, and ten-year zero-coupon bonds from January 2019 to April
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Figure 8.1: Observed daily log-returns on (top) ten-year, (middle) five-year, and
(bottom) one-year zero-coupon bonds together with predicted one-day 97.5 %
expected shortfall bounds for time-homogeneous term structure models generated
by univariate Gaussian, NIG, and GSS distributions.
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2020, alongside the predicted lower and upper one-day expected shortfall bounds at
the 97.5 % quantiles.

As the crisis begins to unfold during March 2020, the expected shortfall bounds
for all models begin to adjust. The adjustment is, however, slow, as our models do
not differentiate between distant and close observations. This property underlines the
limitations of the studied term structure models in predicting future risk measures
when regime changes occur, compared to, e.g., a GARCH model (see Sharma, 2012).
That is, when regime changes occur, tail event arrivals are not independent, and our
models do not satisfy the conditions of a proper VaR model outlined in Christoffersen
(2012).

Moreover, the Gaussian models do not manage to capture the skewness in the
observed log-returns. As a result, the discrepancy of expected shortfall bounds
between the Gaussian and NIG/GSS models decline in the lower tail but increases in
the upper tail during March–April 2020. Since the NIG and GSS models manage to
model skewness, they appear to better react to the stressed market movements. The
model coverage (i.e., the extent to which the risk bounds contain the observed move-
ments) during March–April 2020 is, nevertheless, abysmal due to the aforementioned
uniform treatment of distant and close observations.

8.2 The Global Financial Crisis
Figures 8.2 and 8.3 present the observed and fitted one-day value-at-risk and expected
shortfall for one-year, five-year, and ten-year zero-coupon bonds from January 2008
to December 2009. Except for low-maturity bonds, the term structure models
provide decent approximations of the observed value-at-risk. For five- and ten-year
bonds, the inability of model skewness causes the Gaussian model to underestimate
the risk in the lower tail consistently, while the NIG and GSS models fit the tail
well. All models admit approximately similar fits in the upper tail, and all models
fail to capture the risk beyond the 99 % quantile.

The return distribution for one-year bonds is skewed, and the assumption of
equal return distributions for all maturities severely breaks down for one-year bonds.
Neither term structure model provides a good risk coverage, and especially in the
upper tail, none of the term structure models provide reasonable representations of
the observed return distribution.

The in-sample expected shortfall fit is more difficult to assess since the risk
measure is sensitive to observations in the distant tail. Moreover, since the return
distributions are somewhat irregular and unobserved, cf. the humped shape for
five-year bonds in Figure 8.2, the visual expected shortfall fit is irregular for five-
and ten-year bonds. That said, in the lower tail, the NIG and GSS models provide
reasonable coverages, while the Gaussian models consistently underestimate the
expected shortfall. All models underestimate the expected shortfall in the upper
tail due to their inability to capture the weight in the distant tail. Nevetheless, the
NIG and GSS models admit slightly better predictions than the Gaussian models
herein. The fit to one-year bonds is, unsurprisingly, terrible.
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Figure 8.2: Observed and fitted one-day value-at-risk on (top) ten-year, (middle)
five-year, and (bottom) one-year zero-coupon bonds during January 2008 to
December 2009.
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Figure 8.3: Observed and fitted one-day expected shortfall on (top) ten-year,
(middle) five-year, and (bottom) one-year zero-coupon bonds during January 2008
to December 2009.
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8.3 The Coronavirus Financial Crisis
Figures 8.4 and 8.5 present the observed and fitted one-day value-at-risk and one-day
expected shortfall for one-year, five-year, and ten-year zero-coupon bonds from
November 2019 to April 2020. Herein, we have also included the risk measures
derived from the 2008–2009 data in Figures 8.2 and 8.3.

For the ten-year bonds, the NIG and GSS models provide adequate in-sample
approximations of both tails. That is, the models do not accurately approximate
the irregular shape in the upper tail, but they fit the distant tail well. The Gaussian
model approximates the lower tail well, but the model’s inability to model skewness
causes it to severely underestimate the risk in the upper tail.

For the five-year bonds, none of the considered models manage to approximate
the observed return distribution adequately. Due to its inability to capture skewness,
the Gaussian model overestimates the risk in the lower tail and underestimates the
risk in the upper tail. The NIG and GSS models are also too conservative in the
lower tail, but the two models manage to capture the weight and decay of the upper
tail reasonably well.

For the one-year bonds, all models overestimate the risk in the lower tail. The
considered models provide, however, a surprisingly admissable approximation of
the upper tail. That is, while none of the models manages to capture the weight
and decay in the distant upper tail, all models provide a closer approximation of
the value-at-risk and expected shortfall measures than in Figures 8.2 and 8.3. For
the 2008–2009 data, the time-homogeneous term structure models generated by
univariate distributions severely underestimate the risk in one-year bonds in both
tails. For the 2019–2020 data, the assumption of equal return distributions is more
justified. (The assumption appears, however, to be weaker than during a normal
market situation.) That is, during the crash of spring 2020, the risk factors unique
to low-maturity bonds are rather correlated and equi-sized with the risk factors
generating the movements of intermediate- and high-maturity bonds.

We lastly note that the 2008–2009 data generally admit larger log-returns, and,
consequently, the derived risk measure bounds provide good coverages of the observed
risks during the spring of 2020. Necessarily, the bounds are way too conservative in
the lower tail, and the coverage of one-year bonds is somewhat lacking in the upper
tail.
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Figure 8.4: Observed and fitted one-day value-at-risk on (top) ten-year, (middle)
five-year, and (bottom) one-year zero-coupon bonds during November 2019 to
April 2020. Gaussian*, GSS*, and NIG* denote risk measures derived from the
2008–2009 data in Figure 8.2.
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Figure 8.5: Observed and fitted one-day expected shortfall on (top) ten-year,
(middle) five-year, and (bottom) one-year zero-coupon bonds during November
2019 to April 2020. Gaussian*, GSS*, and NIG* denote risk measures derived
from the 2008–2009 data in Figure 8.3.
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Discussion

As discussed in the introduction of this thesis, empirical analysis (e.g. Eberlein,
2001; Raible, 2000; Das, 2002) demonstrates that term structure models driven by
Brownian motions fail to reproduce the empirical return distributions of financial
instruments adequately. The Gaussian QQ-plots for daily log-returns on Norwegian
zero-coupon bonds from 2009 to 2019 in Figure 6.2 reveal that the empirical return
distribution is leptokurtic, heavy-tailed, and possibly skewed. The deviation from
a Gaussian distribution appears to increase for shorter maturities. Consequently,
we observe in Figures 7.1 and 7.2 that a traditional HJM term structure model
generated by a Gaussian distribution provides a poor in-sample fit to daily bond
log-return data. The Gaussian model consistently underestimates the tail risks, and
as a result, the Gaussian model underestimates the (in-sample) one-day value-at-risk
and expected shortfall; see Figures 7.3 and 7.4. The approximation of risk measures
further deteriorates as we consider more remote levels of the tails.

To reduce model risk and provide a more accurate description of observed
market features, we introduce term structure models generated by generalised
hyperbolic distributions. The models incorporate jump dynamics and semi-heavy
tails. Specifically, we study models generated by the normal–inverse Gaussian (NIG)
distribution and the generalised hyperbolic skew Student’s (GSS) t-distribution.
As previously demonstrated in, e.g., Raible (2000), the flexibility of generalised
hyperbolic distributions constitutes more sophisticated term structure models which
closer approximate observed market features. Whereas the Gaussian HJM models
failed to capture the heavy-tailed nature of daily zero-coupon bond log-returns, the
NIG and GSS term structure models provide accurate in-sample approximations. As
a result, the NIG and GSS models closely model the observed one-day value-at-risk
and expected shortfall in Figures 7.3 and 7.4.

Using an out-of-sample backtest of zero-coupon bonds from 2009 to 2019, we
observe that the improved in-sample fit of NIG and GSS models translate to better
out-of-sample predictions. Except for low-maturity bonds, the NIG and GSS models
are significantly better than the Gaussian models at predicting one-day expected
shortfall. The performance difference in value-at-risk predictions is not equally clear-
cut, though the NIG and GSS models appear to provide the better approximation
of value-at-risk beyond the 99 % quantiles. From a regulatory standpoint, we too
observe that the NIG and GSS models to a lesser extent underestimate tail risks;
the Gaussian models have a dubious tendency to underestimate the value-at-risk in
the entire tail.
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This performance difference furthermore holds for more complex portfolios
consisting of swaps and caps, where the NIG and GSS models appear to be better
than the Gaussian models at predicting both one-day value-at-risk and expected
shortfall in the entire tail. We further note that the GSS models consistently admit
better expected shortfall backtesting results than the NIG models. The NIG model
has two semi-heavy tails which decay exponentially, while the GSS model has one
tail which decays exponentially and one tail which decays as a polynomial. While
both models can model skewness, we expect the GSS model to be better at modelling
distributions with sufficiently asymmetric tail behaviours.

In the aforementioned analysis, we have focused on time-homogeneous (TH)
term structure models generated by univariate return distributions. It is somewhat
misleading to classify a model generated by a one-dimensional Lévy process as
one-dimensional since the generating Lévy process itself is a high-dimensional object
(Eberlein & Kluge, 2006). Nevertheless, each model is generated by one risk factor
which determines the return distribution for the entire fixed-income market. For
the NIG and GSS models, this simple market structure approximates the return
distribution for intermediate- and high-maturity bonds well.

That is, the distant future is highly uncertain, and market forces which affect the
term structure will not differentiate much between, e.g., five-year and ten-year bonds.
We do, however, observe that TH term structure models generated by univariate
return distributions fail to capture the return distributions of low-maturity bonds
sufficiently, cf. Figure 7.2. For the studied period, this simple market structure
leads to a too conservative prediction of risk measures for low-maturity bonds. The
observed behaviour likens a weaker form of the market segmentation theory, which
states that investors hold preferences for specific yields and maturities when they
invest in fixed-income securities. These preferences lead to individual smaller markets
subject to supply and demand forces unique to each market. The theory suggests
that the behaviour of short-term rates is unrelated to the behaviour of long-term
rates and that a movement in one is not indicative of an immediate movement in
the other. The conclusion herein is that bonds with different maturities are not
interchangeable and must be analysed independently.

In order to remedy the unsatisfactory in-sample approximation of low-maturity
bonds, we a calibrate time-inhomogeneous (TIH) term structure models generated
by univariate return distributions to each bond maturity. (This approach is, in
fact, an applied version of the market segmentation theory, where we assume that
each bond maturity constitutes a single market generated by unique risk factors.)
While the implied assumption of zero correlation between the different maturities is
terrible, and while it will lead to an inadequate assessment of risks on term structure-
dependent securities, this approach might shed light on where our univariate TH
term structure models might be improved.

In Figure 7.2, we observe that the calibrated return distributions of TH and TIH
term structure models are approximately equal for intermediate- and high-maturity
bonds. For the GSS models, the TIH models are not significantly better than their
TH counterparts in an out-of-sample backtest of one-day expected shortfall at any
level. For the NIG models, the TIH models are only significantly better than their
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TH counterparts at the 2.5 and 97.5 % quantiles for ten-year bonds; see Table 7.5.
For one-year bonds, however, we observe in Figure 7.2 that the TIH models

provide a superior in-sample fit to the observed return distribution. While the
simple univariate TH market structure cannot reproduce the movement of one-
year bonds accurately, the segmented TIH market structure can. This improved
in-sample fit does, however, not translate to a significantly better out-of-sample risk
measure prediction. While the TH models generally overestimate the tail risks on
low-maturity bonds, they provide a rather good fit to the distant tails of the empirical
return distribution. The TIH models, however, admit unstable approximations of
the distant tails, cf. Figures 7.3 and 7.4, where the in-sample fit of TIH models
deteriorates beyond the 97.5 % quantiles. As a result, the time-inhomogeneous NIG
and GSS models are only sporadically significantly better than their TH counterparts
at the 2.5 and 97.5 % quantiles.

The unstable approximations of the distant tail for TIH models are a result
of convergence issues in the EM algorithm when calibrating TIH term structure
models on one-year bonds. The reason for these convergence problems have not been
thoroughly investigated, though we note the following: In the calibration, we, at time
t, attempt to estimate the future return distribution Ft+1 using observed returns
xt, xt−1, . . . , xt−n. We assume that the returns are independent and identically
distributed. Firstly, the assumption of independence is weak for financial data.
Secondly, if a regime change has occurred during the observational period, the
observed returns are not identically distributed.

If these assumption failures are sufficiently severe, the model contains more
parameters than can be estimated from the data, and the likelihood surface may
take the shape of a flat ridge with no maximum. An approximative E-step in the
EM algorithm may contribute to the problem, and this may affect the stability of
the parameter estimates. Moreover, the GSS models, which previously admitted
the best predictions of expected shortfall, need to estimate the index parameter λ.
This parameter admits a very flat likelihood function difficult to optimise even for
sufficiently large data sets (see Prause et al., 1999).

Central banks typically implement monetary policy to guide the market-
determined short-rates. Large movements in monetary policy induce temporary or
permanent movements in the short-rates, while the impact on long-term rates is less
apparent (e.g. Gerlach, 1996). A market where short-term rates are more affected
by regime changes than long-term rates could explain the problems recognised in the
calibration of the TIH models. Moreover, in the case of regime changes during the
calibration window, a closer fit to the observations is not necessarily an advantage,
and we would fancy a model which assigns more weight to recent observations (see
Sharma, 2012).

An alternative modelling approach, which we have not pursued in this thesis, is
time-homogeneous term structure models generated by multivariate distributions.
These models combine the time-homogeneous property and the more flexible fit
of the TIH models. The modelled market will then naturally exhibit non-linear
dependence, which mirrors the fact that extreme market movements usually co-occur
for several risk factors.
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In this approach, we must calibrate several multidimensional parameters. The
calibration requires the optimisation of more complex likelihood functions, where it
is possible that the EM algorithm is arbitrarily poor in high dimensions and there
can exist an exponential number of local maxima. If we are not careful, this may
lead to an inferior description of the tail behaviours of the return distributions. The
multivariate approach further leads to a second problem: Multivariate term structure
models generated by Lévy processes are, in general, not complete. Theoretically, it
is then not possible to define an arbitrage price, as there might exist infinitely many
risk-neutral prices (see Pascucci, 2011).

Nevertheless, while the univariate TH models provide adequate descriptions of
the distant tails, they frequently fail to provide satisfactory descriptions at the 2.5
and 97.5 % quantiles. As the capital charge for market risks based on expected
shortfall in the Basel Accords is derived from the 2.5 and 97.5 % quantiles, we should
pursue a more intricate term structure model. Time-homogeneous term structure
models generated by multivariate Lévy processes provide reasonable extensions. A
feasible complexity is two- or three-dimensional models, which separates the market
into short-, intermediate-, and high-maturity bonds.

Having observed that the more general term structure models which exhibit jump
dynamics, better approximate the observed market features, we turn our attention
to periods of high financial stress. Specifically, we ask whether the different term
structure models are suited to describe the observed market behaviour during the
financial crisis of 2007–2009 and the coronavirus crisis of spring 2020.

As previously observed for normal market situations, the Gaussian models consis-
tently underestimate the tail risks during the global financial crisis; see Figures 8.2
and 8.3. The Gaussian QQ-plots of observed daily log-returns in Figure 6.6 reveal
that the return distributions are heavy-tailed, but compared to the behaviour during
2009–2019, the return distributions on intermediate- and high-maturity bonds are
much more “conventional” and well-represented by a Gaussian distribution. The
NIG and GSS models, nevertheless, better fit the observed risk measure behaviour on
intermediate- and high-maturity bonds, and they manage to capture the moderate
skewness in observed returns. The models, however, struggle in capturing the weight
in the distant tails, which leads to somewhat inconsistent approximations of the
observed expected shortfall. While the added flexibility of semi-heavy tails, jump
dynamics, and skewness lead to a better in-sample approximation, the improvement
is smaller than it was for the period 2009–2019.

Secondly, we observe that none of the considered term structure models are
equipped to describe the behaviour of short-term bonds. The models do not capture
the observed skewness, and all models severely underestimate the risk levels. While
the assumption of equal return distributions for all maturities was weak during the
previously discussed normal market situations, it is much weaker during the global
financial crisis. That is, the inadequate fit to low-maturity bonds highlights the need
for a more flexible term structure model, e.g. a multivariate model, to capture the
dynamics of the entire fixed-income market during this stressed market situation.

The market crash during spring 2020 admits a different market behaviour with
extremely skewed return distributions. From the Gaussian QQ-plots in Figure 6.7, we
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observe that the upper tail, which is related to movements due to falling interest rates,
is substantially heavy, while the lower tail is more well-behaved. The phenomenon
is illustrated in Figure 6.5: The financial crisis data admit far greater returns in
the lower tail, but the coronavirus crisis data admit an equally heavy upper tail.
Furthermore, on 7 May 2020 Norges Bank’s policy rate was lowered to 0 %, and the
possibility of negative Norwegian interest rates became a highly probable prospect.
Unlike, e.g., the popular LIBOR market models, the term structure models studied
in this thesis allow for negative interest rates. In fact, the modelled forward rates
are unbounded below.

The model property of negative interest rates has historically been considered a
drawback (Wilmott, 2006), where the rationale from macroeconomic theory is that
interest rates cannot turn negative as this causes a liquidity trap (Bodie, Kane, &
Marcus, 2013). Black (1995), moreover, argues that nominal short-rates cannot turn
negative as people still can hold currency at this rate. This rationale is, however,
contradicted by observed negative interest rates on short-dated Japanese government
debt, negative rates on US Treasuries were observed in November 2009, June 2011,
and August 2011, and as of May 2020, several European countries, as well as Japan,
still maintain benchmark interest rates below zero. Jarrow (2013), moreover, argues
that Black’s argument is a fallacy, and shows that a negative risk-free spot rate
is consistent with an arbitrage-free term structure evolution in a competitive and
nearly frictionless economy which can hold cash if cash has a convenience yield for
its use in transactions.

Nevertheless, interest rates unbounded below is unreasonable: While one would
accept a modest negative rate on a spot account, the cost would outweigh the
benefits for an arbitrarily large negative rate. It is, therefore, possible that the
term structure model is exaggerating both the probability and the magnitude of the
negative rates. A simple, possible solution to deal with unbounded interest rates is
to implement a floor, possibly somewhere around −1 to −3 %. It is, nonetheless,
difficult to accurately pinpoint the exact effective lower bound.

If we return to the discussion of generating distributions, we again note that the
Gaussian term structure models are not able to model skewness, and as a result, they
overestimate the risk in the lower tail and underestimate the risk in the upper tail; see
Figures 8.4 and 8.5. The NIG and GSS models are generally too conservative in the
lower tail, as they do not adequately manage to capture the skewed market situation,
but the models do fit the upper tail reasonably well. We also note that compared to
the 2008–2009 situation, all models provide surprisingly passable descriptions of the
movement of one-year bonds. That is, neither model manages to accurately capture
the decay of the upper tail nor the frequent occurrences of extreme returns, but all
models to some degree grasp the overall level of the risk measures.

During the global financial crisis, the market movements were dramatic, but
they affected the different market structures differently; the behaviour on short-term
bonds is quite different from the behaviour on intermediate- and long-maturity bonds.
During the coronavirus crisis, the assumption of a univariate return distribution is
more justified: The market pessimism almost equally affected the entire market, and
short-term and long-term interest rates appear to tumble down together with rather
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linear dependencies. To capture the observed market movement herein, it is not
that important to consider multivariate models. Nonetheless, we cannot accurately
assess the market risks on interest rate securities without considering term structure
models which encompass heavy tails, skewness, and jump dynamics.

The incorporation of jump dynamics is especially critical for interest rate deriva-
tives which depend heavily on the tails of the return distribution, cf. (out-of-the-
money) caps and floors. We recall that the NIG and GSS models were far better
than the Gaussian models at predicting one-day value-at-risk and one-day expected
shortfalls on portfolios which included caps during the backtesting period 2009–2019.
The observed log-returns on one-year bonds during March–April 2020, see Figure 8.1,
are too wild for our simple univariate term structure models, but it is apparent that
the risk in caps and floors during a stressed period similar to Match–April 2020,
cannot be soundly measured by a Gaussian term structure model.

Despite quite different market behaviours, we note that a term structure model
calibrated to the 2008–2009 data provide a good coverage of the 2020 data since the
2008–2009 data generally admit larger log-returns. The coverage on low-maturity
bonds is not equally sound, but this can be remedied by considering multivariate
return distributions. The model is, obviously, way too conservative in the lower tail
of the return distribution. However, when performing a stress test of unfavourable
economic scenarios, we are generally more interested in adverse economic develop-
ments which occur as a result of falling interest rates. A model too conservative in
the tail related to rising interest rates is not all too alarming.



Chapter 10

Conclusion

In this thesis, we follow the papers by Eberlein et al. (2005) and Kluge (2005)
to develop term structure models driven by general Lévy processes. Specifically, we
consider Lévy processes generated by NIG and GSS distributions, which exhibit
jump dynamics, semi-heavy tails, and skewness. Using NIBOR and swap rates
from 2009 to 2019, we document that NIG and GSS models are better equipped
than classical Gaussian HJM models to describe the observed one-day market risks
on interest rate derivatives. The Gaussian models fail to describe the observed
heavy-tailed return distribution of interest rate derivatives, while the NIG and GSS
models approximate the observed market behaviour well. The GSS model is less
tractable than the NIG model, but in the implemented out-of-sample backtests, the
GSS model provides significantly better predictions of one-day expected shortfall for
the considered instruments.

During the global financial crisis from 2008 to 2009, the inability to capture
skewness and semi-heavy tails cause the Gaussian models to underestimate the tail
risks consistently. During the recent financial crisis from February to April 2020,
the Gaussian assumption aggravates. The highly skewed and heavy-tailed market
behaviour is incompatible with a Gaussian generating distribution, while the NIG
and GSS models, though too conservative in the lower tail of the return distribution,
approximate the risk of falling interest rates well. Consequently, it does not appear
that term structure models can accurately assess the market risks of fixed-income
markets during times of normal or high financial stress without taking into account
jump dynamics, semi-heavy tails, and possible skewness.

We lastly note that the studied time-homogeneous term structure models gener-
ated by univariate return distributions are insufficient in fully describing the entire
fixed-income market. Further research on the model includes the employment of
multivariate return distributions. We have, furthermore, only performed backtests
over one-day horizons on stylised portfolios. Capital charges of market risks are
usually based on longer time horizons, and it would be interesting to examine how
the incorporation of jump features affect the risk pricing of actual market positions
during relevant horizons.
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Appendix A

Parameter Estimation Using the
EM Algorithm

The generalised hyperbolic distribution can be represented as a normal variance–
mean mixture with the generalised inverse Gaussian (GIG) distribution as a mixing
distribution (Barndorff-Nielsen & Blaesild, 1981). Hence, a generalised hyperbolic
variable X ∼ GH(λ, α, β, δ, µ) can be represented as

X
d= µ + βZ +

√
ZY, (A.1)

where Y ∼ N(0, 1) and Z ∼ GIG(λ, δ, γ), with Y and Z independent and γ :=√
α2 − β2. The GIG distribution admits the density (Barndorff-Nielsen & Halgreen,

1977)

fGIG(x; λ, δ, γ) =
(γ

δ

)λ xλ−1

2Kλ(γδ) exp
(

−1
2(δ2x−1 + γ2x)

)
, (A.2)

where λ ∈ R and γ, δ ∈ R+.
The problem of Section 4.6 is to maximise the log-likelihood

log L(λ, α, β, δ, µ; X1, . . . , Xn) =
n∑

i=1
log fGH(xi; λ, α, β, δ, µ). (A.3)

The optimisation is simplified if we exploit the normal variance–mean mixture of the
GH distribution. We may then apply the expectation–maximization (EM) algorithm
(Dempster et al., 1977), which performs a maximum likelihood estimation on data
containing missing or latent values. This approach is convenient in our problem
since a mixing distribution produces unobserved variables, in (A.1) the quantities Z.

At each step in the EM algorithm, we compute the expectation of the sufficient
statistic for the mixing distribution, conditional on the current maximum likelihood
estimators. Next, updated maximum likelihood estimators are derived using the
recently computed expectation of the sufficient statistic for the mixing distribution.
The iterative cycle is continued until some convergence criterion is satisfied. The
algorithm needs good initial values for the maximum likelihood estimators to avoid
local maxima; we will use the moment estimators.
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A.1 The NIG Distribution

A.1.1 Maximisation Step
We assume that we have independent and identically distributed observations
X = (x1, . . . , xn) and unobserved latent mixing variables Z = (z1, . . . , zn). The
joint density of X and Z from (A.1) is fx,z(x, z) = fx|z(x|z)fz(z). We restrict our
analysis to the univariate NIG distribution (λ = −1/2), which admits the augmented
log-likelihood function

log L(α, β, δ, µ; X, Z) =
n∑

i=1
log fx|z(xi|zi; µ, β) +

n∑
i=1

log fz(zi; δ, γ)

= log L1(µ, β) + log L2(δ, γ).

From (A.1), it follows that (X|Z = z) ∼ N(µ + βz, z), such that

log L1(µ, β) = −n

2 log(2π) − 1
2

n∑
i=1

log zi − 1
2

n∑
i=1

(xi − µ − βzi)2

zi
.

Maximising the log-likelihood with respect to β and µ, the maximum likelihood
estimators at the kth iteration of the EM algorithm are

β(k+1) =
∑n

i=1
xi

zi
− x̄

∑n
i=1

1
zi

n − z̄
∑n

i=1
1
zi

and µ(k+1) = x̄ − β(k+1)z̄, (A.4)

where x̄ =
∑n

i=1 xi/n and z̄ =
∑n

i=1 zi/n. Likewise, Z ∼ GIG(− 1
2 , δ, γ) = IG(δ, γ)

for the NIG distribution, where IG(·) denotes the inverse Gaussian distribution with
density (Karlis, 2002)

fIG(z; δ, γ) = δ√
2π

exp(δγ)z−3/2 exp
(

−1
2

(
δ2

z
+ γ2z

))
.

This gives the log-likelihood

log L2(δ, γ) = n log δ√
2π

+ nδγ − 3
2

n∑
i=1

log zi − δ2

2

n∑
i=1

1
zi

− γ2

2

n∑
i=1

zi.

Maximising the log-likelihood with respect to δ and γ, the maximum likelihood
estimators at the kth iteration of the EM algorithm are

δ(k+1) =
√

n∑n
i=1

1
zi

− n
z̄

and α(k+1) =
√

(δ(k+1)/z̄)2 + (β(k+1))2. (A.5)
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A.1.2 Expectation Step
We observe in (A.4) and (A.5) that we need to estimate the pseudovalues E(Zi|Xi =
xi) and E(Z−1

i |Xi = xi). For the NIG distribution, (Z|X = x) ∼ GIG(−1, q(x), α)
for q(x) =

√
δ2 + (x − µ)2, such that (Karlis, 2002)

E(Zi|Xi = xi) = q(xi)
α

K0(αq(xi))
K1(αq(xi))

and E(Z−1
i |Xi = xi) = α

q(xi)
K2(αq(xi))
K1(αq(xi))

.

A.1.3 Initialisation
The algorithm is initialised by the parameters’ moment estimators, given that these
exist. That is, let m̃1, m̃2, m̃3, and m̃4 denote the sample mean, standard deviation,
skewness, and kurtosis, respectively. Then, equating the theoretical moments with
their sample counterparts, the moment estimators are given by

β̂ = (m̃3m̃2γ̃2)/3,

δ̂ = m̃2
2γ̃3/(β̃2 + γ̃2),

α̂ = (γ̃2 + β̃2)1/2,

µ̂ = m̃1 − β̃δ̃/γ̃,

where

γ̂ := 3
m̃2
√

3m̃4 − 5m̃2
3

.

We note that the moment estimators do not exist if m̃3 >
√

3
5 m̃4.

A.2 The Generalised Hyperbolic Skew Student’s
t-Distribution

We now restrict our analysis to the univariate generalised hyperbolic skew Student’s
t-distribution (α → |β| and λ = −ν/2 for ν > 0) and present the EM algorithm
presented in Aas and Haff (2006).

In the numerical analysis of this thesis we, however, fit the distribution using
the calibration algorithm implemented in the R package ghyp (Breymann & Lüthi,
2013), which uses a different parametrisation that makes the fitting procedure faster.
The package too uses a modified EM scheme, called the multi-cycle, expectation,
conditional estimation (MCECM) algorithm (Meng & Rubin, 1993; McNeil et al.,
2005), which replaces several complicated maximisation steps with computationally
simpler conditional maximisation steps.
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A.2.1 Maximisation Step
We again assume that we have independent and identically distributed observations
X = (x1, . . . , xn) and unobserved latent mixing variables Z = (z1, . . . , zn). The joint
density fx,z(x, z) = fx|z(x|z)fz(z) admits the augmented log-likelihood function

log L(ν, β, δ, µ; X, Z) =
n∑

i=1
log fx|z(xi|zi; µ, β) +

n∑
i=1

log fz(zi; ν, δ)

= log L1(µ, β) + log L2(ν, δ),

where log L1(µ, β) is the same as in Section A.1, such that the maximum likelihood
estimators for β and µ are given by (A.4). The mixing distribution for the GSS
distribution is Z ∼ GIG(−ν/2, δ, 0). If we use the properties of the modified Bessel
function (4.20), the density of Z can be written as

fz(z; ν, δ) = δνz−ν/2−1

Γ
(

ν
2
)

2ν/2 exp
(

−δ2

2 z−1
)

,

which can be recognised as the density of the inverse gamma distribution with
parameters ν/2 and δ2/2. Hence,

log L2(ν, δ, γ) = −n log Γ
(ν

2

)
− n log 2

2 ν +nν log δ − ν + 2
2

n∑
i=1

n∑
i=1

log zi − δ2

2

n∑
i=1

1
zi

.

Differentiating log L2(ν, δ, γ) with respect to δ gives

δ(k+1) =

√
nν(k+1)∑n

i=1 z−1
i

. (A.6)

Differentiating log L2(ν, δ, γ) with respect to ν gives an equation that needs to be
solved numerically for ν,

log n

2 − log
n∑

i=1

1
zi

− 1
n

n∑
i=1

log zi = Ψ
(

ν(k+1)

2

)
− log ν(k+1), (A.7)

where Ψ(·) is the Digamma function.

A.2.2 Expectation Step
We observe in (A.6) and (A.7) that we need to estimate the pseudovalues E(Zi|Xi =
xi), E(Z−1

i |Xi = xi), and E(log Zi|Xi = xi). For the GSS distribution, (Z|X = x) ∼
GIG(−(ν + 1)/2, q(x), |β|), for q(x) =

√
δ2 + (x − µ)2. Thus (Aas & Haff, 2006),

E(Zi|Xi = xi) = q(xi)
|β|

K 1−ν
2

(|β|q(xi))
K 1+ν

2
(|β|q(xi))

,
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E(Z−1
i |Xi = xi) = |β|

q(xi)
K ν+3

2
(|β|q(xi))

K ν+1
2

(|β|q(xi))
,

E(log Zi|Xi = xi) = log
(

q(xi)
|β|

)
+ 1

K ν+1
2

(|β|q(xi))
∂K ν+1

2
(|β|q(xi))

∂
(

ν+1
2
) .

A.2.3 Initialisation
The algorithm is initialised by the parameters’ moment estimators. That is, let
m̃1, m̃2, m̃3, and m̃4 denote the sample mean, standard deviation, skewness, and
kurtosis, respectively. Then, equating the theoretical moments with their sample
counterparts, the moment estimators are given by (Aas & Haff, 2006)

µ̂ = m̃1 − β̂δ̂2

ν̂ − 2 ,

β̂ = sign(m̃3)

√
(ν̂ − 2)(ν̂ − 4)(m̃2(ν̂ − 2) − δ̂2)

√
2δ̂2

,

δ̂2 = 6(ν̂ − 2)2(ν̂ − 4)m̃2κ,

where κ is given by

κ =
(

1 −

√
1 − (3ν̂2 − 2ν̂ − 32)(12(5ν̂ − 22) − (ν̂ − 6)(ν̂ − 8)m̃4)

216(ν̂ − 2)2(ν̂ − 4)

)
,

and the moment estimator for ν is the solution of the equation

(4 − 6(ν̂ + 2)(ν̂ − 2)κ)
√

2
√

ν̂ − 4
√

1 − 6(ν̂ − 2)(ν̂ − 4)κ − m̃3(ν̂ − 6) = 0.

The search for ν is conducted within a limited area, see Aas and Haff (2006).





Appendix B

Additional Results

B.1 Calibration to Zero-Coupon Bond Quotes

Table B.1: Parameter estimates for the fitted time-inhomogeneous Gaussian processes
using one- to ten-year zero-coupon bond quotes from 24 June 2011 to 19 June 2013.

Time-to-maturity δ̂ µ̂

1 year 1.10 · 10−6 8.32 · 10−24

2 years 1.36 · 10−6 −7.00 · 10−24

3 years 1.46 · 10−6 −1.73 · 10−23

4 years 1.51 · 10−6 −4.10 · 10−24

5 years 1.53 · 10−6 −1.74 · 10−23

6 years 1.55 · 10−6 −2.80 · 10−23

7 years 1.56 · 10−6 −1.09 · 10−24

8 years 1.57 · 10−6 1.02 · 10−23

9 years 1.57 · 10−6 −1.54 · 10−23

10 years 1.58 · 10−6 −1.02 · 10−23

Table B.2: Parameter estimates for the fitted time-inhomogeneous NIG processes using
one- to ten-year zero-coupon bond quotes from 24 June 2011 to 19 June 2013.

Time-to-maturity α̂ β̂ δ̂ µ̂

1 year 733594 49435.6 6.80 · 10−7 −4.90 · 10−8

2 years 535202 12519.4 9.80 · 10−7 −2.29 · 10−8

3 years 708379 −12208.4 1.40 · 10−6 2.38 · 10−8

4 years 664582 −34206.8 1.49 · 10−6 7.80 · 10−8

5 years 762927 −51295.7 1.79 · 10−6 1.21 · 10−7

6 years 867777 −69162.9 2.08 · 10−6 1.66 · 10−7

7 years 942164 −81975.8 2.30 · 10−6 2.02 · 10−7

8 years 995568 −73420.3 2.45 · 10−6 1.82 · 10−7

9 years 1040271 −84167.9 2.57 · 10−6 2.08 · 10−7

10 years 1093163 −87307.3 2.71 · 10−6 2.17 · 10−7
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Table B.3: Parameter estimates for the fitted time-inhomogeneous GSS processes using
one- to ten-year zero-coupon bond quotes from 24 June 2011 to 19 June 2013.

Time-to-maturity ν̂ β̂ δ̂ µ̂

1 year 2.23 26492.52 7.90 · 10−7 −3.89 · 10−8

2 years 2.89 11166.68 1.44 · 10−6 −2.14 · 10−8

3 years 3.43 − 7510.35 1.83 · 10−6 1.68 · 10−8

4 years 4.97 −33930.58 2.56 · 10−6 7.58 · 10−8

5 years 5.23 −48235.10 2.78 · 10−6 1.15 · 10−7

6 years 6.34 −66766.83 3.24 · 10−6 1.62 · 10−7

7 years 7.43 −83273.58 3.65 · 10−6 2.04 · 10−7

8 years 8.19 −77028.06 3.91 · 10−6 1.90 · 10−7

9 years 8.89 −85466.94 4.13 · 10−6 2.12 · 10−7

10 years 9.56 −88549.44 4.34 · 10−6 2.21 · 10−7
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Figure B.1: Estimated 95 % confidence bounds for the discounted value of a (top)
five-year, (middle) three-year, and (bottom) one-year zero-coupon bond, initialised
at 19 June 2013, during the next 250 trading days. NIG*, GSS*, and Gaussian*
denote term structure models generated by time-inhomogeneous distributions.
The density curves of discounted bond prices at the final date are scaled and not
comparable between the three panels.
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B.2 Backtests of Zero-Coupon Bonds

Table B.4: Results from (a) one-day value-at-risk and (b) one-day expected shortfall
backtests of two-year bonds, using the previous 250 trading days in the calibration of the
term structure models. Reported in the value-at-risk backtest is the violation percentage
and in parenthesis the p-value from the unconditional coverage Kupiec test. Reported in
the expected shortfall backtest is the test score from the Embrechts’ test. NIG*, GSS*, and
Gaussian* denote term structure models generated by time-inhomogeneous distributions.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.41 0.73 1.10 1.32 1.14 0.96

(0.54) (0.18) (0 ) (0 ) (0.52) (0.01 )
NIG 0.23 0.55 1.05 1.46 0.91 0.55

(0.04 ) (0.02 ) (0 ) (0 ) (0.68) (0.75)
GSS 0.23 0.5 1.10 1.55 0.91 0.59

(0.04 ) (0.01 ) (0 ) (0 ) (0.68) (0.55)
Gaussian* 1.28 1.60 2.56 2.83 2.10 1.55

(0 ) (0.01 ) (0.86) (0.33) (0 ) (0 )
NIG* 0.78 1.14 2.47 2.69 1.37 0.91

(0.09) (0.52) (0.92) (0.57) (0.10) (0.01 )
GSS* 0.82 1.23 2.74 2.74 1.64 0.91

(0.05) (0.29) (0.48) (0.48) (0.01 ) (0.01 )

(a) Value-at-risk

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.00032 0.00016 0.00018 0.00021 0.00028 0.00031

NIG 0.00025 0.00013 0.00020 0.00011 0.00004 0.00003
GSS 0.00023 0.00016 0.00019 0.00009 0.00001 0.00009

Gaussian* 0.00045 0.00036 0.00023 0.00035 0.00051 0.00062
NIG* 0.00024 0.00020 0.00012 0.00018 0.00025 0.00025
GSS* 0.00019 0.00018 0.00009 0.00017 0.00012 0.00017

(b) Expected shortfall
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Table B.5: Results from (a) one-day value-at-risk and (b) one-day expected shortfall
backtests of three-year bonds, using the previous 250 trading days in the calibration of the
term structure models. Reported in the value-at-risk backtest is the violation percentage
and in parenthesis the p-value from the unconditional coverage Kupiec test. Reported in
the expected shortfall backtest is the test score from the Embrechts’ test. NIG*, GSS*, and
Gaussian* denote term structure models generated by time-inhomogeneous distributions.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.59 0.78 1.64 1.69 1.37 1.00

(0.55) (0.27) (0.01 ) (0.01 ) (0.10) (0 )
NIG 0.41 0.59 1.28 1.92 1.23 0.78

(0.54) (0.04 ) (0 ) (0.07) (0.29) (0.09)
GSS 0.41 0.59 1.42 1.96 1.19 0.78

(0.54) (0.04 ) (0 ) (0.09) (0.39) (0.09)
Gaussian* 1.23 1.55 2.79 2.83 1.92 1.46

(0 ) (0.02 ) (0.40) (0.33) (0 ) (0 )
NIG* 0.64 1.05 2.47 2.60 1.32 1.05

(0.38) (0.81) (0.92) (0.76) (0.15) (0 )
GSS* 0.73 1.14 2.51 2.83 1.28 0.96

(0.15) (0.52) (0.97) (0.33) (0.21) (0.01 )

(a) Value-at-risk

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.00063 0.00043 0.00016 0.00039 0.00052 0.00057

NIG 0.00017 0.00021 0.00023 0.00019 0.00018 0.00015
GSS 0.00008 0.00018 0.00019 0.00017 0.00014 0.00011

Gaussian* 0.00071 0.00053 0.00031 0.00051 0.00073 0.00086
NIG* 0.00041 0.00026 0.00012 0.00026 0.00031 0.00024
GSS* 0.00038 0.00028 0.00015 0.00020 0.00025 0.00023

(b) Expected shortfall
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Table B.6: Results from (a) one-day value-at-risk and (b) one-day expected shortfall
backtests of four-year bonds, using the previous 250 trading days in the calibration of the
term structure models. Reported in the value-at-risk backtest is the violation percentage
and in parenthesis the p-value from the unconditional coverage Kupiec test. Reported in
the expected shortfall backtest is the test score from the Embrechts’ test. NIG*, GSS*, and
Gaussian* denote term structure models generated by time-inhomogeneous distributions.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.64 1.00 1.96 2.10 1.37 1.10

(0.38) (0.98) (0.09) (0.22) (0.10) (0 )
NIG 0.55 0.68 1.74 2.24 1.14 0.91

(0.75) (0.12) (0.02 ) (0.42) (0.52) (0.01 )
GSS 0.50 0.68 1.69 2.37 1.19 0.96

(0.99) (0.12) (0.01 ) (0.70) (0.39) (0.01 )
Gaussian* 1.00 1.46 2.83 2.97 1.83 1.42

(0 ) (0.04 ) (0.33) (0.17) (0 ) (0 )
NIG* 0.55 0.87 2.47 2.79 1.32 0.82

(0.75) (0.52) (0.92) (0.40) (0.15) (0.05)
GSS* 0.59 0.96 2.60 2.92 1.32 0.87

(0.55) (0.85) (0.76) (0.22) (0.15) (0.03 )

(a) Value-at-risk

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.00115 0.00070 0.00035 0.00046 0.00068 0.00071

NIG 0.00043 0.00038 0.00016 0.00025 0.00033 0.00020
GSS 0.00020 0.00028 0.00017 0.00021 0.00027 0.00024

Gaussian* 0.00113 0.00078 0.00042 0.00055 0.00083 0.00092
NIG* 0.00067 0.00048 0.00014 0.00026 0.00032 0.00039
GSS* 0.00043 0.00037 0.00013 0.00020 0.00023 0.00029

(b) Expected shortfall
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Table B.7: Results from (a) one-day value-at-risk and (b) one-day expected shortfall
backtests of six-year bonds, using the previous 250 trading days in the calibration of the
term structure models. Reported in the value-at-risk backtest is the violation percentage
and in parenthesis the p-value from the unconditional coverage Kupiec test. Reported in
the expected shortfall backtest is the test score from the Embrechts’ test. NIG*, GSS*, and
Gaussian* denote term structure models generated by time-inhomogeneous distributions.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.82 1.32 3.01 2.47 1.46 1.00

(0.05) (0.15) (0.14) (0.92) (0.04 ) (0 )
NIG 0.59 0.87 2.42 2.56 1.28 0.96

(0.55) (0.52) (0.81) (0.86) (0.21) (0.01 )
GSS 0.59 0.87 2.6 2.69 1.37 0.82

(0.55) (0.52) (0.76) (0.57) (0.1) (0.05)
Gaussian* 0.82 1.42 3.15 2.42 1.51 1.00

(0.05) (0.07) (0.06) (0.81) (0.03 ) (0 )
NIG* 0.59 0.87 2.42 2.42 1.28 0.78

(0.55) (0.52) (0.81) (0.81) (0.21) (0.09)
GSS* 0.59 0.91 2.69 2.51 1.28 0.68

(0.55) (0.68) (0.57) (0.97) (0.21) (0.25)

(a) Value-at-risk

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.00203 0.00134 0.00067 0.00065 0.00099 0.00123

NIG 0.00116 0.00077 0.00021 0.00038 0.00057 0.00053
GSS 0.00080 0.00058 0.00011 0.00034 0.00046 0.00057

Gaussian* 0.00202 0.00130 0.00065 0.00067 0.00100 0.00129
NIG* 0.00100 0.00073 0.00019 0.00036 0.00048 0.00053
GSS* 0.00072 0.00057 0.00010 0.00033 0.00044 0.00063

(b) Expected shortfall



102 B.2. Backtests of Zero-Coupon Bonds

Table B.8: Results from (a) one-day value-at-risk and (b) one-day expected shortfall
backtests of seven-year bonds, using the previous 250 trading days in the calibration of the
term structure models. Reported in the value-at-risk backtest is the violation percentage
and in parenthesis the p-value from the unconditional coverage Kupiec test. Reported in
the expected shortfall backtest is the test score from the Embrechts’ test. NIG*, GSS*, and
Gaussian* denote term structure models generated by time-inhomogeneous distributions.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.87 1.64 3.52 2.60 1.55 1.10

(0.03 ) (0.01 ) (0 ) (0.76) (0.02 ) (0 )
NIG 0.59 0.91 2.65 2.69 1.28 0.82

(0.55) (0.68) (0.66) (0.57) (0.21) (0.05)
GSS 0.59 0.87 2.88 2.88 1.37 0.82

(0.55) (0.52) (0.27) (0.27) (0.10) (0.05)
Gaussian* 0.82 1.60 3.20 2.51 1.37 1.10

(0.05) (0.01 ) (0.05) (0.97) (0.10) (0 )
NIG* 0.55 0.87 2.56 2.56 1.23 0.68

(0.75) (0.52) (0.86) (0.86) (0.29) (0.25)
GSS* 0.64 0.87 2.74 2.60 1.28 0.73

(0.38) (0.52) (0.48) (0.76) (0.21) (0.15)

(a) Value-at-risk

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.00236 0.00146 0.00079 0.00073 0.00108 0.00138

NIG 0.00136 0.00091 0.00030 0.00040 0.00064 0.00081
GSS 0.00089 0.00074 0.00019 0.00035 0.00051 0.00074

Gaussian* 0.00232 0.00139 0.00077 0.00066 0.00105 0.00127
NIG* 0.00113 0.00078 0.00021 0.00033 0.00051 0.00071
GSS* 0.00063 0.00065 0.00012 0.00028 0.00041 0.00060

(b) Expected shortfall
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Table B.9: Results from (a) one-day value-at-risk and (b) one-day expected shortfall
backtests of eight-year bonds, using the previous 250 trading days in the calibration of the
term structure models. Reported in the value-at-risk backtest is the violation percentage
and in parenthesis the p-value from the unconditional coverage Kupiec test. Reported in
the expected shortfall backtest is the test score from the Embrechts’ test. NIG*, GSS*, and
Gaussian* denote term structure models generated by time-inhomogeneous distributions.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 1.10 1.92 3.47 2.74 1.60 1.05

(0 ) (0 ) (0.01 ) (0.48) (0.01 ) (0 )
NIG 0.59 1.05 2.79 2.83 1.32 0.82

(0.55) (0.81) (0.40) (0.33) (0.15) (0.05)
GSS 0.59 1.05 2.92 3.06 1.37 0.68

(0.55) (0.81) (0.22) (0.11) (0.10) (0.25)
Gaussian* 0.91 1.60 3.20 2.42 1.55 1.00

(0.01 ) (0.01 ) (0.05) (0.81) (0.02 ) (0 )
NIG* 0.59 0.96 2.56 2.69 1.28 0.55

(0.55) (0.85) (0.86) (0.57) (0.21) (0.75)
GSS* 0.59 0.96 2.69 2.83 1.23 0.59

(0.55) (0.85) (0.57) (0.33) (0.29) (0.55)

(a) Value-at-risk

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.00249 0.00162 0.00100 0.00075 0.00111 0.00150

NIG 0.00161 0.00092 0.00036 0.00038 0.00056 0.00080
GSS 0.00098 0.00065 0.00027 0.00032 0.00043 0.00093

Gaussian* 0.00258 0.00164 0.00093 0.00072 0.00097 0.00134
NIG* 0.00156 0.00097 0.00033 0.00028 0.00041 0.00087
GSS* 0.00130 0.00084 0.00026 0.00018 0.00042 0.00068

(b) Expected shortfall
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Table B.10: Results from (a) one-day value-at-risk and (b) one-day expected shortfall
backtests of nine-year bonds, using the previous 250 trading days in the calibration of the
term structure models. Reported in the value-at-risk backtest is the violation percentage
and in parenthesis the p-value from the unconditional coverage Kupiec test. Reported in
the expected shortfall backtest is the test score from the Embrechts’ test. NIG*, GSS*, and
Gaussian* denote term structure models generated by time-inhomogeneous distributions.

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 1.19 1.92 3.38 2.74 1.60 1.00

(0 ) (0 ) (0.01 ) (0.48) (0.01 ) (0 )
NIG 0.64 1.05 2.83 2.97 1.19 0.73

(0.38) (0.81) (0.33) (0.17) (0.39) (0.15)
GSS 0.59 1.14 3.06 3.15 1.37 0.73

(0.55) (0.52) (0.11) (0.06) (0.10) (0.15)
Gaussian* 0.91 1.55 3.06 2.51 1.37 0.82

(0.01 ) (0.02 ) (0.11) (0.97) (0.10) (0.05)
NIG* 0.64 0.87 2.60 2.74 1.14 0.59

(0.38) (0.52) (0.76) (0.48) (0.52) (0.55)
GSS* 0.59 0.91 2.74 2.79 1.19 0.55

(0.55) (0.68) (0.48) (0.40) (0.39) (0.75)

(a) Value-at-risk

Distribution 0.5 % 1.0 % 2.5 % 97.5 % 99.0 % 99.5 %
Gaussian 0.00289 0.00197 0.00124 0.00084 0.00122 0.00175

NIG 0.00183 0.00118 0.00051 0.00037 0.00066 0.00098
GSS 0.00124 0.00073 0.00036 0.00032 0.00044 0.00085

Gaussian* 0.00304 0.00196 0.00112 0.00071 0.00109 0.00163
NIG* 0.00149 0.00116 0.00037 0.00029 0.00056 0.00103
GSS* 0.00090 0.00066 0.00026 0.00025 0.00046 0.00128

(b) Expected shortfall


