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Abstract

The salmon louse (Lepeophtheirus salmonis), is a parasite that represents direct threats to
wild salmonids and indirectly threats to salmon farmers and farmed salmon. This thesis is
written in cooperation with ”Taskforce Salmon lice”, a R & D project, where the objective
is to ”establish fundamental knowledge on how sea lice infest farmed salmon and the
mechanisms of how the parasites spread within and between farmed and wild populations
of salmonids”.

Salmon lice count data were downloaded from the sources Barentswatch, the Nor-
wegian Directorate of Fisheries and eKlima. Barentswatch gives information on activity
in sea and coastal areas, and is based on cooperation between different Norwegian state
agencies and research institutes. The Norwegian Directorate of Fisheries is responsible
for fisheries and aquaculture management. Eklima is a web site which gives access to the
database of climate data of the Norwegian Meteorological Institute.

To analyse the data, generalized linear models (GLMs) such as a Poisson regression
model, a quasi-Poisson regression model, a negative binomial regression model and a zero
inflated negative binomial regression model were fitted. A regression tree and a random
forest analysis were applied. Finally, a generalized additive model (GAM) was fitted. The
study suggested that the fitted GLMs did not give a good fit to the data.

Samandrag

Lakselus (Lepeophtheirus salmonis), er ein parasitt som er ei stor utfordring for vill
laksefisk og for oppdrettsnæringa. Denne oppgåva er skriven i samarbeid med ”Taskforce
Lakselus”, som er eit FoU-prosjekt, der målet er å ”etablere grunnleggjande kunnskapar
om korleis lakselus angrip oppdrettslaks og mekanismane om korleis parasitten spreier seg
innad og mellom oppdrettslaks og ville bestandar av laks”.

Teljedata om lakselus vart lasta ned frå Barentswatch, Fiskeridirektoratet og eKlima.
Barentswatch har informasjon om aktivitet i kyst- og sjøområde, og baserer seg på samarbeid
mellom norske, statlege etatar og forskningsinstitusjonar. Fiskeridirektoratet er ansvarlege
for fiskeri- og havbruksforvaltninga i Noreg. eKlima er ei nettside som gir tilgang til
databasen for klimadata frå Meterologisk Institutt.

For å analysere dataane har generaliserte lineære modellar (GLMar) som ein Poisson
regresjonsmodell, ein quasi-Poisson regresjonsmodell, ein negativ-binomisk
regresjonsmodell og ein null-inflatert negativ binomisk regresjonsmodell blitt tilpassa. Eit
regresjonstre og ein random forest-analyse vart deretter laga. Til slutt vart det tilpassa ein
generalisert additiv modell (GAM). Studien antyda at GLM-ane som vart brukt, ikkje gav
ei god tilpasning til dataane.
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Chapter 1
Introduction

1.1 The challenges with salmon lice
The salmon louse (Lepeopheheirus salmonis Krøyer, 1837) represents one of the biggest
challenges in The Norwegian aquaculture industry. The parasites cause physical damage
to the fish by their attachment and feeding activities (Woo and Buchmann, 2012). When
salmon lice are not feeding, they cling to the host by digging into their skin with claw-
like antennae (Lester and Hayward, 2006). The presence of salmon lice on the skin is
enough to cause stress to the fish (Ho, 2000). The skin damage caused by salmon lice
also makes the fish more exposed to secondary bacterial infections (Thorstad and Finstad,
2018). Salmon lice increase risk of mortality of wild salmon smolt when migrating from
the river into the sea (Thorstad and Finstad, 2018).

At the salmon farms, there are more hosts available which increases the abundance
and thus the risk of spreading salmon lice in marine habitats (Thorstad and Finstad, 2018).
Regulations in Norway state that there, on average, have to be fewer than 0.5 adult female
salmon lice per salmon in a salmon farm. Fish farmers must count the number of lice per
salmon, along with eventual treatment used and sea temperature. When the sea tempera-
ture is below 4◦C, the number of lice per salmon must be counted once every fourteenth
days, and when the sea temperature exceeds 4◦C, the number of lice per salmon must be
counted once a week. The limit of 0.5 adult female salmon lice per salmon is reduced
to 0.2 in Trøndelag and southern regions in week 16 to Sunday in week 21. In Nordland
and Troms og Finnmark the limit is reduced to 0.2 adult female salmon lice per salmon in
week 21 to Sunday in week 26 (Regulations on salmon lice control, 2012).
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1.2 Lifecycle and counting regulations of the salmon louse
The salmon louse has eight stages of development. After hatching from a string of eggs in
the water, the salmon louse develops through two naupliar stages. In the naupliar stages,
it is a free-living ocean drifter and unable to feed. It then develops into a copepodid. If
the copepodid attaches to a host, it will progress through two sessile chalimus stages and
thereafter through two mobile pre-adult stages. Finally, it develops into a mobile adult
female or an adult male. In the two pre-adult stages and in the adult stage, the louse is
mobile, and is therefore able to move across the surface of the fish and swim in the water
column (Hayward et al., 2011; Maran et al., 2013; Hamre et al., 2013).

Fish farmers count and report the number of salmon lice, per salmon, for all stages
on the fish. They count the number of sessile lice, which corresponds to the copepodid
stage and the two sessile chalimus stages, and the number of mobile salmon lice which
corresponds to the two mobile pre-adult stages and adult male. They count the number of
adult female lice as a separate category, and these are not included in counts of mobile lice
(Regulations on salmon lice control, 2012). The salmon lice count data can thus be stored
in three different categories.

1.3 Salmon lice treatments
In this thesis, the salmon lice treatment methods were divided into three: Medicinal treat-
ments, deployment of cleaner fish and mechanical delousing.

Medicinal treatments are administered either as a feed supplement or in a bath. Medic-
inal treatments have traditionally been used in order to control salmon lice in the fish farms
(Helgesen et al., 2019). There are several challenges to the use of medicinal treatments.
Salmon lice can become resistant (Poley et al., 2018). The treatments may harm the farms’
surrounding environments, because uneaten medicinal feed can accumulate under cages
that can damage non-target organisms (Olsvik et al., 2015).

Cleaner fish eat the salmon lice on the salmon without stressing the salmon. The
majority of cleaner fish used in Norway until 2016 were species of wrasse, but between
2015 and 2018 the production of farmed lumpfish increased strongly, and surpassed the
number of wrasses combined in 2017 (Rueness et al., 2019). There are different challenges
in order to succeed with the use of cleaner fish. Cleaner fish efficiency is affected by sea
temperature. Lumpfish are more effective than wrasse at low sea temperatures (Hjeltnes
et al., 2019). Cleaner fish themselves can also be affected by diseases and can therefore
have high mortality rates (Hjeltnes et al., 2019).

Salmon lice can be removed by mechanical delousing. These treatment methods in-
clude the use of lasers, flushing, brushing and fresh water baths. The salmon farming
industry in Norway has largely retreated from medicinal treatments, and the use of me-
chanical delousing has become more common in recent years (Overton et al., 2018). Me-
chanical treatments are reportedly most effective against mobile lice stages, and less so
against sessile stages (Torrissen et al., 2013).

2



1.4 Outline and objective of the thesis

1.4 Outline and objective of the thesis
The main goal of this thesis was to investigate possible factors determining the number of
mobile salmon lice, reported from salmon farms in production zones 6 and 7, in Norway
from 2017 to 2019.

In Chapter 2 the necessary statistical theory is presented. Chapter 3 contains informa-
tion about datasets and variables. Chapter 4 gives a visualization of the data, and Chapter
5 is about analysis and validation of the fitted models. Finally, Chapter 6 contains a dis-
cussion and a conclusion with challenges and recommendations for further work.
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Chapter 2
Theory

2.1 Poisson regression
Counts are non-negative integers that represent count of events per unit. A normal ap-
proximation can be useful, especially when the number of occurrences happen with high
frequencies. On the other hand, discrete distributions are often more suitable for count
data. One of the most common discrete distributions for count data is the Poisson distri-
bution (Casella and Berger, 2002).

For a random Poisson distributed variable, Yi, the probability mass function is

P (Y = y) = f(y|λ) =
λyexp(−λ)

y!
, y = 0, 1, 2, ... (2.1)

For example, Y can correspond to the salmon lice counts at a salmon farm.
In a Poisson regression model each observation Yi, i = 1, 2, ..., n are assumed to

be independent Poisson distributed variables. For each Yi, we have the covariates xTi =
(x0i, x1i, ..., xni) and the linear predictor ηi = xTi β = β0 + β1xi1 + ... + βpxip, where
p is the number of parameters (intercept not included). A natural choice of link function
is to choose the log because it allows the linear predictor to span the entire real line,
and it ensures that the expected value is a positive number. Hence, we will have that
µi = E[Yi] = λi = exp(ηi) (Fahrmeir et al., 2013).

2.1.1 Asymptotic estimation of the parameters
To derive the asymptotic estimation of the parameters in the Poisson distribution we have
to derive the log-likelihood, the score function and the expected Fisher information. We re-
call the probability mass function from 2.1. Then, we take the logarithm of the distribution
of a random variable Yi.

li(β) = log f(yi|β) = log
(λyii exp(−λi)

yi!

)
= yi log λi − λi − log(yi!) (2.2)

5



Chapter 2. Theory

Looking at n equally distributed variables, we can find an expression for the log-likelihood
by utilizing that λi = exp(ηi) along with equation (2.2).

n∑
i=1

li(β) =

n∑
i=1

(
yiηi − exp(ηi)− log(yi!)

)
(2.3)

By differentiating li with respect to β and use the chain rule, we get

∂li
∂β

= xi(yi − exp(ηi)) (2.4)

When we sum this expression from i to n we get the score function as

s(β) =

n∑
i=1

xi(yi − exp(ηi)) (2.5)

The Fisher information is found by the expression

F (β) = E(s(β)s(β)T ) =

n∑
i=1

xix
T
i E(yi − λi)2 =

n∑
i=1

xix
T
i λi (2.6)

In order to solve s(β) = 0, we use the Fisher scoring algorithm

β̂
(t+1)

= β̂
(t)

+ F−1
(
β̂

(t))
s
(
β̂

(t))
(2.7)

When n → ∞ we get the asymptotic result that β̂ ∼ N
(
β, F (−1)(β̂

))
. Then, the esti-

mated variances for each parameter are on the diagonal in the inverse Fisher information
matrix.

The parameters in the model are estimated from the Fisher scoring algorithm. In order
to construct confidence intervals, we use that β̂ ∼ N

(
β, F (−1)(β̂

))
. We denote the

square root of each diagonal element as
√
F−1(β̂)jj , for j = 1, 2, ..., p+ 1. We have, for

each element of the parameter vector, that

Zj =
β̂j − βj√
F−1(β̂)jj

, ≈ N(0, 1) (2.8)

A 95% confidence interval for a parameter βj is then given by

β̂j ± 1.96 ·
√
F−1(β̂)jj (2.9)

(Fahrmeir et al., 2013).

2.1.2 Pearson and deviance residuals and goodness of fit
In the Poisson regression model the deviance statistic is defined as

D = 2

n∑
i=1

[
yi log

( yi
µ̂i

)
− (yi − µ̂i)

]
, (2.10)

6



2.1 Poisson regression

where µ̂i = exp (xTi β̂). Then, the deviance residuals are given as

di = sign(yi − µ̂i) · 2
√(

yi log
( yi
µ̂i

)
− (yi − µ̂i)

)
, (2.11)

where sign(yi − µ̂i) = −1 if yi − µ̂i < 0 and sign(yi − µ̂i) = 1 if yi − µ̂i ≥ 0.
The Pearson statistic is given by

P =

n∑
i=1

(yi − µ̂i)2

µ̂i
(2.12)

The Pearson residuals are given by

ri =
yi − µ̂i√

µ̂i
(2.13)

The deviance and Pearson statistics are approximately χ2- distributed with n− p degrees
of freedom, and can be used to evaluate the goodness of fit. If D < χ2

0.05,n−p, there is
no evidence to believe that the model is a bad fit to the data. The Pearson statistic is often
used as a test for overdispersion.

2.1.3 Poisson random intercept model
In these models we add a random effect to the linear predictor from section 2.1. The ran-
dom effects are assumed to be independent and identically normally distributed variables,
i.e. γ0i ∼ N

(
0, τ2

0

)
. Then we have the expression ηi = xTi β + γ0i. If we condition on

the random effects γ01, ..., γ0n, where i = 1, 2, ..., n, it is assumed that yi|γ0i ∼ Po(λi)
are independent, where λi = exp

(
ηi
)
, with ηi = xTi β + γ0i (Fahrmeir et al., 2013).

2.1.4 Dispersion parameter
For a Poisson distributed random variable Yi,E(Yi) = Var(Yi). Overdispersion is the case
where the variance in a dataset is higher than what is expected by the Poisson regression
model. For the Poisson distribution, this means that Var(Yi) > E(Yi). The dispersion
parameter can be estimated by

φ̂ =
D

n− p
, or φ̂ =

P

n− p
, (2.14)

where D is the deviance statistic given from equation (2.10) and P is the Pearson statistic
given from equation (2.12), n is the number of observations and p is the number of param-
eters. We can take this into account by multiplying the covariance matrix, F−1(β̂), by the
dispersion parameter. This leads us to the quasi-Poisson model (Fahrmeir et al., 2013).

2.1.5 quasi-Poisson model
In the quasi-Poisson model, µi = E[Yi] = λi = exp(ηi) and Var(Yi) = φµi, where φ is
the dispersion parameter estimated in equation (2.14). Thus, this changes the estimated

7



Chapter 2. Theory

variance in the Fisher information matrix. Hence, the standard errors of the maximum
likelihood estimate are the square root of the diagonal of F−1 multiplied with φ̂. Then,
for an element j in the parameter vector, the distribution is

Tj =
β̂j − βj√
φ̂F−1(β)jj

, ≈ tn−p (2.15)

(Fahrmeir et al., 2013).

2.2 Negative binomial regression

2.2.1 Assumptions in the Negative binomial regression model
In cases where we have overdispersion, i.e. the dispersion parameter φ > 1, it can be
useful to use a negative binomial response function because, since a negative binomial
distributed random variable Y , allows that Var(Y ) > E(Y ).
One way to write the probability mass function of the negative binomial distribution is

P (Y = y) =

(
r + y − 1

y

)
pr(1− p)y, y = 0, 1, ... (2.16)

where Y = ”number of failures before the r-th success”, where r is a fixed number. We
can alternatively look at X = Y + r, where it follows that X = ”trial at which the r-th
success occurs”. The negative binomial distribution can, like the Poisson, be used to model
phenomena in which we are waiting for an occurrence. In the negative binomial case we
are waiting for a specified number of successes (Casella and Berger, 2002).

We can derive the expected value, E(Y ). By use of equation (2.16) and by the defini-
tion of the expected value, this can be written as

E(Y ) =

∞∑
y=0

y

(
r + y − 1

y

)
pr(1− p)y

=

∞∑
y=1

(r + y − 1)!

(y − 1)!(r − 1)!
pr(1− p)y

=

∞∑
y=1

r

(
r + y − 1

y − 1

)
pr(1− p)y

(2.17)

If we set z = y − 1, we can write the expression for E(Y ) as

E(Y ) = r
(1− p)
p

∞∑
z=0

(
(r + 1) + z − 1

z

)
pr+1(1− p)z (2.18)

(Casella and Berger, 2002). The last term is the sum over all point probabilities in a
negative binomial distributed variable, Z ∼ NB(r + 1, p), which means that this term
is equal to 1. Hence, the expected value is equal to E(Y ) = r (1−p)

p . In order to find the

8



2.2 Negative binomial regression

variance, the same idea can be used, or it can be found via the moment generating function.
We find that Var(Y ) = r(1−p)

p2 . If we write µ = E(Y ) = r 1−p
p , we get that µ = r

p − r.
Then, Var(Y ) = µ + 1

rµ
2. If we solve this for p, we get that p = r

µ+r . Further, if we
replace p in equation (2.16) by the previous expression, the probability mass function of
Y can be written in another form as

P (Y = y) =

(
r + y − 1

y

)( r

µ+ r

)r(
1− r

µ+ r

)y
, y = 0, 1, ...

=
(r + y − 1)!

y!(r − 1)!

( r

µ+ r

)r(
1− r

µ+ r

)y
, y = 0, 1, ...

=
Γ(r + y)

Γ(y + 1)Γ(r)

( r

µ+ r

)r(
1− r

µ+ r

)y
, y = 0, 1, ...

(2.19)

Another way to derive the distribution from (2.19) is to consider a gamma distributed
random variable T . The probability density function of this variable can be written

P (T = t) =
1

Γ(α)βα
tα−1 exp(−t/β), t > 0, α, β > 0, (2.20)

where α is the shape parameter and β is the scale parameter (Casella and Berger, 2002).
Let us consider a gamma distributed random variable, T , with shape parameter α = r and
rate parameter β = 1/r. If the distribution of Y given T is Po(µT ), hence if

f(y|t) =
exp(−µt)(µt)y

y!
, (2.21)

we can derive the marginal distribution of f(y) as

f(y) =

∫ ∞
0

f(y|t)g(t)dt, (2.22)

where g(t) = rr

Γ(r) t
r−1 exp(−rt) . Multiplying out, we get that

f(y) =

∫ ∞
0

f(y|t)g(t)dt

=

∫ ∞
0

exp(−µt)(µt)y

y!

rr

Γ(r)
tr−1 exp(−rt)dt

=
rrµy

Γ(r)Γ(y + 1)

∫ ∞
0

tr−1+y exp(t(−µ− r))dt

=
Γ(r + y)

Γ(y + 1)Γ(r)

( r

µ+ r

)r( µ

µ+ r

)y
(2.23)

which is equal to the probability mass function in equation (2.19) (Casella and Berger,
2002).

9



Chapter 2. Theory

We derive the asymptotic estimation of the parameters in the negative binomial distri-
bution. We take the logarithm of the distribution of Y :

log f(y) = log
( Γ(r + y)

Γ(y + 1)Γ(r)

( r

µ+ r

)r( µ

µ+ r

)y)
= log Γ(r + y)− log Γ(y + 1)− log Γ(r) + r log(r)− r log(µ+ r)

+ y log(µ)− y log(µ+ r)

(2.24)

(Dominique and Park, 2010). Let now Yi = NB(µi, r), i = 1, 2, ..., n be indepen-
dent distributed variables. An expression for the log-likelihood function using that µi =
E(Y ) = exp(ηi) = exp(xTi β) is

n∑
i=1

li(β, r) =

n∑
i=1

(
log
(Γ(r + yi)

Γ(r)

)
− log Γ(yi + 1)+

r log(r)− r log(exp(xTi β + r) + yix
T
i β − yi log(exp(xTi β) + r)

) (2.25)

By utilizing the relationship that log
(

Γ(yi+r)
Γ(r)

)
=
∑yi−1

k=0 log(k + r), we can write that

n∑
i=1

li(β, r) =

n∑
i=1

( yi−1∑
k=0

log(k + r)− log Γ(yi + 1) + r log(r)

− r log(exp(xTi β) + r) + yix
T
i β − yi log(exp(xTi β) + r)

) (2.26)

By looking at the derivative of li with respect to β, the first three terms from (2.26) disap-
pears and we end up with

∂li
∂β

= yixi −
rxi exp(xTi β) + yixi exp(xTi β)

exp(xTi β) + r
=
xir(yi − exp(xTi β))

exp(xTi β) + r
(2.27)

Here, we have used that ∂
∂β (xTi β) = xi and then ∂

∂β (exp(xTi β)) = exp(xTi β)xi. Simi-
larly, we find the derivative of li with respect to r

∂li
∂r

=

yi−1∑
k=0

( 1

k + r

)
+ log

( r

exp(xTi β) + r

)
+

exp(xTi β) + yi
exp(xTi β) + r

(2.28)

When we sum this expression from 1 to n we get the score function as

s(β) =

n∑
i=1

(
yixi −

rxi exp(xTi β) + yixi exp(xTi β)

exp(xTi β) + r

)
=

n∑
i=1

xir(yi − exp(xTi β))

exp(xTi β) + r

(2.29)
and

s(r) =

n∑
i=1

(
yi−1∑
k=0

( 1

k + r

)
+ log

( r

exp(xTi β) + r

)
+

exp(xTi β) + yi
exp(xTi β) + r

)
(2.30)
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2.2 Negative binomial regression

Then, we find the matrix, F 11(β), by the expression

F 11(β) = E(s(β)(s(β)T ) =

n∑
i=1

xix
T
i (r2µi + rµ2

i )

(µi + r)2
, (2.31)

where µi = exp(xTi β) and the matrix, F 22(r), as

F 22(r) = E(s(r)s(r)T ) =

n∑
i=1

(( yi−1∑
k=0

( 1

k + r

)
+ log

( r

µi + r

))2

+
µi

(µi + r)2

)
(2.32)

In order to solve s(β) = 0, we can use the Fisher scoring algorithm

β̂
(t+1)

= β̂
(t)

+ F−1
11

(
β̂

(t))
s
(
β̂

(t))
(2.33)

and we can solve s(r) = 0 similarly by

r̂(t+1) = r̂(t) + F−1
22

(
r̂(t)
)
s
(
r̂(t)
)

(2.34)

When n→∞ we get the asymptotic result that[
β̂
r̂

]
∼ N

([
β
r

]
,

[
F11(β̂)−1 0

0 F 22(r̂)−1

])
(2.35)

We have that Cov(r̂, β̂) = Cov(β̂, r̂) = F 12 = F 21 = 0, because that E
(
−∂s(β)
∂r

)
=

E
(
−∂s(r)
∂β

)
= E

(
xi(yi−µi)(µ+r)−xir(y−µ)

(µ+r)2

)
= 0 , (Nakashima, 1997).

Then we have that, for each element of the parameter vector,

Zj =
β̂j − βj√
F−1

11 (β̂)jj

. (2.36)

We can find a 95% confidence interval for a parameter βj by

β̂j ± 1.96 ·
√
F−1

11 (β̂)jj (2.37)

Further, we have that,

Z =
r̂ − r√
F−1

22 (r̂)
. (2.38)

We can find a 95% confidence interval for a parameter r by

r̂ ± 1.96 ·
√
F−1

22 (r̂) (2.39)

In order to construct the confidence intervals, we have used the asymptotic result from
equation (2.35).
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2.2.2 Pearson and deviance residuals and goodness of fit
In the negative binomial regression model, the deviance statistic is defined as

D = 2

n∑
i=1

[
yi log

( yi
µ̂i

)
− (yi + r) log

( r + yi
r + µ̂i

)]
, (2.40)

where µ̂i = exp (xTi β̂). The deviance residuals are given as

di = sign(yi − µ̂i) ·
√

2
(
yi log

( yi
µ̂i

)
− (yi + r) log

( r + yi
r + µ̂i

))
(2.41)

The Pearson statistic in the negative binomial regression model is given as

P =

n∑
i=1

(yi − µ̂i)2

µ̂i + r−1µ̂2
i

(2.42)

The formula for the Pearson residuals is

ri =
yi − µ̂i√
µ̂i + r−1µ̂2

i

(2.43)

2.3 Zero-inflated Poisson and negative binomial regres-
sion model

In data where there are more zeros than expected by a Poisson regression model or negative
binomial regression model, a ZIP or ZINB model can be fitted to adjust for this. Such
models mix two generating processes. The first have a probability of being zero given
by π and follows a binomial distribution. The other may follow a Poisson or negative
binomial distribution, which also include zero. Hence, the probability mass function can
be partitioned into two parts, the probability of a zero count, and a probability of a count
bigger than zero

P (Y = y) =

{
π + (1− π)g(y = 0), if y = 0.

(1− π)g(y), if y > 0.
, (2.44)

where g(y) can, for example, be either the Poisson probability mass function or the nega-
tive binomial probability mass function given from equation (2.1) and (2.19), respectively.
If we choose the probability mass function from equation (2.1), we have that Y is zero-
inflated Poisson distributed or if we choose the probability mass function from equation
(2.19) we have that Y is zero-inflated negative binomial distributed. It can be shown that,
if g(y) is the probability mass function of a Poisson distributed variable from equation
(2.1), the mean and the variance of the ZIP distributed variable is equal to

E(Y ) = µ(1− π)

Var(Y ) = (1− π)(µ+ πµ2)
(2.45)
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2.3 Zero-inflated Poisson and negative binomial regression model

Otherwise, if g(y) is is the probability mass function of a negative binomial distributed
variable from equation (2.19) it can be shown that the mean and the variance of the ZINB
distributed variable is equal to

E(Y ) = µ(1− π)

Var(Y ) = (1− π)(µ+
µ2

r
) + µ2(π2 + π)

(2.46)

Let us consider a regression model, with each observation Yi, i = 1, 2, ..., n being in-
dependent variables with probability mass function given by equation (2.44). To model
the positive count, we can use the log link function. We then have, µi = exp ηi, where
ηi = β0 + β1xi1 + ...+ βpxip. In order to model the probability of being zero given by π,
we can use the logit function, which gives

πi =
exp γ0 + γ1zi1 + ...+ γqziq

1 + exp γ0 + γ1zi1 + ...+ γpziq
, (2.47)

where we use zi because these points might be different from xi (Zuur et al., 2009).

2.3.1 Asymptotic distribution of parameters

We derive the asymptotic distribution of the parameters. We assume that Yi is a zero
inflated negative binomial distributed random variable. We start by finding the likelihood
function as

L[β, r,α] =

n∏
i=1

[
πi + (1− πi)

( r

µi + r

)r]t(yi)
·
[
(1− πi)

Γ(r + yi)

Γ(yi + 1)Γ(r)

( r

µi + r

)r(
1− r

µi + r

)yi]1−t(yi) (2.48)

where t(yi) =

{
1, if yi = 0

0, else

Then, we can find the log-likelihood function as

n∑
i=1

li(β, r,γ) =

n∑
i=1,yi=0

log
(
πi + (1− πi)

( r

µi + r

)r)

+

n∑
i=1,yi>0

(
log(1− πi) +

yi−1∑
k=0

log(k + r)− log Γ(yi + 1) + r log(r)

− r log(µi + r) + yix
T
i β − yi log(µi + r)

)
The log-likelihood function can be divided into L1 and L2, where L1 corresponds to the
case if t(yi) = 1, that is, for yi = 0. L2 corresponds to when t(yi) = 0 which means
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yi > 0. Hence, the log-likelihood function can be written as

L = L1 + L2

where

L1 =

n∑
i=1,yi=0

(
log
(

exp(zTi γ) +
( r

µi + r

)r)
− log(1 + exp(zTi γ))

)

L2 =

n∑
i=1,yi>0

(( yi−1∑
k=0

log(k + r)
)
− log Γ(yi + 1) + r log(r)

− r log(µi + r) + yix
T
i β − yi log(µi + r)− log(1 + exp(zTi γ)

)
(2.49)

We have to study the derivatives of first and second order

∂l

∂β
=

n∑
yi=0,i=1

− rr+1xiµi
(µi + r)((exp(zTi γ))(µi + r)r + rr)

+

n∑
yi>0,i=1

xir(yi − µi)
µi + r

(2.50)

∂l

∂γ
=

n∑
yi=0,i=1

(
− zi exp(zTi γ)

(exp(zTi γ) + ( r
µ+r )r)

− zi exp(zTi γ)

1 + exp(zTi γ)

)
−

n∑
yi>0,i=1

zi exp(zTi γ)

1 + exp(zTi γ)

(2.51)

∂l

∂r
=

n∑
yi=0,i=1

(
− rr ((r + µi) log (r + µi)− (r + µi) log (r)− µi)

(r + µi)
(
exp(zTi γ) (r + µi)

r
+ rr

) )

+

n∑
yi>0,i=1

( yi−1∑
k=0

( 1

k + r

)
+ log

( r

µi + r

)µi + yi
µi + r

) (2.52)

∂2l

∂β2 =

n∑
yi=0,i=1

rr+2x2
iµi((µi + r)r(exp(zTi γ)µi − exp(zTi γ)− rr))

(µi + r)2(exp(zTi γ)(exp(zTi γ) + r)r + rr)2

+

n∑
yi>0,i=1

−x2
i rµi(µi + r)− (xiryi − xirµi)(xiµi + r)

(µi + r)2

(2.53)

∂2l

∂γ2
=

n∑
yi=0,i=1

(
z2
i exp(2zTi γ)(

exp(zTi γ) + rr

(r+µ)r

)2 +
z2
i exp(2zTi γ)(

exp(zTi γ) + 1
)2 − z2

i exp(zTi γ)

exp(zTi γ) + rr

(r+µ)r

− z2
i exp(ziγ)

exp(zTi γ + 1)

)
−

n∑
yi>0,i=1

z2
i exp(zTi γ)

(1 + exp(zTi γ))2

(2.54)
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∂2l

∂r2
=

n∑
yi=0,i=1

(
rr ((r + µi) log (r + µi)− (r + µi) log (r)− µi)

(
exp(zTi γ) (r + µi)

r

(r + µi) (exp(zTi γ) (r + µi)
r + rr)

2

·
(
log(r + µi) +

r

r + µi

)
rr (log (r) + 1)

)
− rr (ln (r) + 1) ((r + µi) log (r + µi)− (r + µi) log (r)− µi)

(r + µi) (exp(zTi γ) (r + µi)
r + rr)

+
rr ((r + µi) log (r + µi)− (r + µi) log (r)− µi)

(r + µi)
2 (exp(zTi γ) (r + µi)

r + rr)
−
rr
(
log (r + µi)− log (r)− r+µi

r
+ 1
)

(r + µi) (exp(zTi γ) (r + µi)
r + rr)

)

+
n∑

yi>0,i=1

(( yi−1∑
k=0

− 1

(r + k)2
)
− yr − µ2

r(r + µ)2

)
(2.55)

∂2l

∂γ∂r
=

n∑
yi=0,i=1

zi exp(zTi γ)rr(r + µi)
r−1((r + µi) log(r + µi) + (−r − µi) log(r)− µi)
(exp(zTi γ)(r + µi)r + rr)2

(2.56)

∂2l

∂β∂γ
=

n∑
yi=0,i=1

rr+1xi(µi + r)r−1zi exp(zTi γ)µi
((µi + r)r exp(zTi γ) + rr)2 (2.57)

∂2l

∂β∂r
=

n∑
yi=0,i=1

−

(
2xizi exp(zTi γ)µir

r+1 (r + µi)
r−1

(
exp(zTi γ) (r + µi)

r
)

(
exp(zTi γ) (r + µi)

r
+ rr

)3
·
(

log (r + µi) +
r

r + µi

)
− 2xizi exp(zTi γ)µir

r+1 (r + µi)
r−1

(rr log(r) + 1)(
exp(zTi γ) (r + µi)

r
+ rr

)3
+
xizi exp(zTi γ)µir

r+1 (r + µi)
r−1

(
log (r + µi) + r−1

r+µi

)
(
exp(zTi γ) (r + µi)

r
+ rr

)2
+
xizi exp(zTi γ)µir

r+1 (r + µi)
r−1 (

log (r) + r+1
r

)(
exp(zTi γ) (r + µi)

r
+ rr

)2
)

+

n∑
yi>0,i=1

xiµi (yi − µi)
(r + µi)

2

(2.58)

When n→∞ we get the asymptotic result that

β̂γ̂
r̂

 ∼ N(
βγ
r

 ,
−

∂2l
∂β∂β − ∂2l

∂β∂γ − ∂2l
∂β∂r

− ∂2l
∂β∂γ − ∂2l

∂γ∂γ − ∂2l
∂γ∂r

− ∂2l
∂β∂r − ∂2l

∂γ∂r − ∂2l
∂r∂r


−1)

(2.59)

15



Chapter 2. Theory

2.3.2 Pearson residuals and goodness of fit
The Pearson statistic is given as

P =

n∑
i=1

(yi − µ̂i(1− π̂i))2

(1− π̂i)(µ̂i +
µ̂2
i

r̂ ) + µ̂2
i (π̂

2
i + π̂i)

(2.60)

The formula for the Pearson residuals for the zero inflated negative binomial regression is
given as

ri =
yi − µ̂i(1− π̂i)√

(1− π̂i)(µ̂i +
µ̂2
i

r̂ ) + µ̂2
i (π̂

2
i + π̂i)

(2.61)

2.4 AIC and BIC
For the models that we have discussed above, the Akaike information criterion (AIC) is
given as

AIC = −2l + 2p− 2 (2.62)

where l is the maximum log-likelihood and p is the number of regression parameters where
the intercept is not included. The Bayesian information criterion (BIC) which also takes
the number of data points, n, into account, is defined as

BIC = −2l + log(n)(p+ 1) = −2l + p log(n) + log(n) (2.63)

Goodness of fit is rewarded by both AIC and BIC, but these criteria also include a penalty
term for the number of parameters. BIC also include a penalty for the number of data-
points, n. The penalty terms discourage overfitting, because adding parameters that does
not improve the goodness of fit, results in higher AIC and BIC. Hence, both AIC and BIC
are used to assess the quality of statistical models. The model with the lowest AIC or BIC
is preferred (Fahrmeir et al., 2013).

When fitting models, backward elimination and forward selection can be applied. In
backward elimination we start with a full model and look at the AIC and BIC value and
then remove one term in turn and study the change in AIC and BIC. On the other hand,
in forward selection we start with an empty model and add terms and then extract the
corresponding AIC and BIC value from each model, and finally compare these. In both
approaches, the model that gives the lowest AIC or BIC values is considered the best.
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2.5 Hypothesis testing

2.5.1 Likelihood ratio test
We consider a parameter vector θ = (θ0, θ1, ..., θp)

T ∈ Θ, where Θ is the parameter
space. θ can, for example, correspond to β of regression coefficients in a Poisson regres-
sion model. We want to test the nullhypothesis, H0 : Cθ = d against the alternative
hypothesis, H1 that Cθ 6= d. Here, C is a r × (p + 1) matrix and d is a column vec-
tor of dimension r, where r corresponds to the number of hypothesis that is being tested
(Fahrmeir et al., 2013). Then, we can consider the likelihood ratio statistic

λ(x) =
L(θ̂)

L(θ̃)
(2.64)

Here, L(θ̂) corresponds to the maximum of the likelihood under H0, and L(θ̃) under H1.
λ(x) will have values ≥ 1 and we reject H0 for large values of λ(x). If we take the
logarithm of equation (2.64) and multiply with -2, we obtain the log-likelihood ratio test
statistic as

− 2 log(λ(x)) = −2 log

(
L(θ̂)

L(θ̃)

)
= −2(log(l(θ̂))− log(l(θ̃))) (2.65)

−2 log(λ(x)) is asymptotically χ2 distributed under the null hypothesis where the degrees
of freedom is equal to r, that is the difference in dimensionality from θ̂ and θ̃ (Fahrmeir
et al., 2013), (Casella and Berger, 2002). The likelihood ratio test can be used to test
nested models. Two models are nested when one model contains all the other terms of
the other, and at least one additional term. We can for example think about the regression
coefficients in a Poisson regression with the parameter vector β = (β0, β1, ..., βp)

T . We
want to test the null hypothesis that βp = 0, versus the alternative hypothesis that βp 6= 0.
Let model A correspond to the model where βp = 0 and model B correspond to the model
where βp 6= 0. Model A is then nested within model B because model B contains all the
terms of model A and also βp. The log-likelihood ratio test statistic can be calculated as

− 2 log(λ(x)) = −2(log(l(βA)− log(l(βB)) (2.66)

This statistic is asymptotically χ2-distributed with degrees of freedom equal to p+1−p =
1.

2.5.2 Wald test
For the Wald test we can calculate the Wald test statistic defined as

w = (Cθ̂ − d)T (CV̂ CT )−1(Cθ̂ − d) (2.67)

We have that Cov(Cθ̂ − d) = Cov(Cθ̂) = CV̂ CT , and V̂ is the estimated covariance
matrix of θ̂. The Wald test statistic measures the distance from the estimate of Cθ that
is Cθ̂ and the value of d under H0. A large value of w indicates that the distance from
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the estimate and d is large, and then H0 should be rejected. If we consider a test for one
single element of the parameter vector in a Poisson regression model, where H0 is that
βj = 0 versus the alternative hypothesis, H1 that βj 6= 0 the Wald test statistic is equal to

w = t2j =
β̂2
j

F−1(β̂)jj
. When n → ∞ we get the asymptotic result that tj ≈ N(0, 1), and

we reject the null hypothesis if the test statistic |zj | > z1−α/2 (Fahrmeir et al., 2013).

2.6 Methods from statistical learning
In the rest of this chapter, important concepts that will be introduced, will use the re-
sampling methods cross validation and bootstrapping. Therefore, the ideas behind these
two methods will be explained.

2.6.1 Cross-validation
In the validation set approach, the observations n are randomly divided into two groups,
that is, a training set and a validation set. A model is fitted to the training set, and the
validation set is used to evaluate the fit of the model. The mean squared error (MSE) is
used to provide an estimate for the test error rate (James et al., 2013).

In the previous method, the MSE can be highly variable, depending on which obser-
vations that are in the training set and which that are in the validation. set. One way to try
to handle this is to use leave-one-out cross-validation. The idea here is to include every
observation point but one in the training set, and use these points to fit a model. If point
i is excluded from the training set, we can use this point to evaluate the model fit by cal-
culating the mean squared error as MSEi = (yi − ŷi)2. This is repeated for all n points
such that each point in the dataset has been excluded once from the training set. The total
estimate for the MSE can then be calculated as

CV(n) =
1

n

n∑
i=1

MSEi =
1

n

n∑
i=1

(yi − ŷi)2.

In polynomial regression, the leave-one-out cross-validation (LOOCV) estimate for the
test MSE is calculated as

CV =

n∑
i=1

(yi − ŷi
1− hi

)
,

where hi is the i-th diagonal element of the hat matrix H = X(XTX)−1XT and ŷi is
the i-th fitted value from the least squares fit.

K-fold cross validation can also be used. The idea here is to divide the data into k
folds, and include all k folds but one in the training set in order to fit a model. The left-out
fold is used as validation set, and this is done in turn, such that every fold is left out of
the training set once. For every fold that is left out, the associated MSE is calculated. The
average of the MSE is calculated as

CV(k) =
1

k

k∑
i=1

MSEi
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2.7 Tree models

(James et al., 2013).

2.6.2 Bootstrapping
A resampling method that can be applied in order to make inference about an estimate
for a parameter, θ, based on sample data, is bootstrapping. The idea behind bootstrapping
is to sample, with replacement, from a dataset with n observations. With replacement
means that we have the possibility to extract the same value the next time we sample.
We sample B times, with replacement, and hence create B bootstrap datasets containing n
observations. We evaluate the statistics of θ for each sample. These B bootstrap statistics
can be used to create a sampling distribution, which can be used to do inference (James
et al., 2013).

2.7 Tree models

2.7.1 Regression tree
The idea behind building regression trees, is to divide the possible values for the predictors
X1, X2, ..., Xp into J regions, that have rectangular shapes, R1, R2, ..., RJ . When the
dataset is partitioned into a training set and test set, we find the mean of the response values
for the training observations that fall into the regionRJ . In order to construct these regions
we minimize the residual sum of squares (RSS), where RSS =

∑J
j=1

∑
i∈Rj

(yi − ŷRj
)2,

ŷRj is the mean response within the J-th box from the training dataset. To do this, we begin
at the top of the tree and split the predictor space into two branches further down the tree.
The way this is done, is that we find values for j and s such that R1(j, s) = X|Xj < s and
R2(j, s) = X|Xj ≥ s will minimize the RSS from above. This process is continued by
splitting each of the two previous branches, in a way that minimizes the RSS. This process
is known as recursive binary splitting. This process continues until we reach a stopping
criterion, which we can define as the minimum number of observations within one region.
For the test observations, we can predict the response by using the mean of the region
estimated from the training set, to which the given test observation belong (James et al.,
2013).

2.7.2 Pruning
A typical problem with regression trees is overfitting, where a big and complex tree is
chosen, that does not perform well for the test data and might lead to high variance. A
smaller tree, with fewer splits, is easier to interpret and might lead to lower variance. The
way we choose the size of the tree is to start with a large tree T0, and then find a subtree
T ⊂ T0 in order to minimize the equation

J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2 + α|T |, (2.68)

where |T | is the number of terminal nodes and α is a penalty term for having a large tree
with many terminal nodes. The way we can choose this subtree is to use recursive binary
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splitting as explained above and apply pruning that create subtrees, as a function of α. In
order to choose α we can use K-fold cross-validation. The idea is then to split the data
randomly into K parts of equal size. We leave out part k, and recursive binary splitting
and pruning is used to create subtrees as a function of α to theK−1 parts , and predict for
part k. This is done for each part k = 1, 2, ...,K. Then the results are averaged and the α
that minimizes the average error is picked, and the corresponding tree to this α is chosen
(James et al., 2013).

2.7.3 Bagging and out-of-bag error
Bagging is a way to reduce the variance produced by a statistical learning method. Bagging
is used for regression trees by considering B bootstrapped training sets. From these B
bootstrapped training datasets, we create B regression trees, from which we average the
predictions in order to reduce the variance.

It can be difficult to interpret results from a regression tree where bagging has been
performed. A way to measure the prediction error is to use what is called out-of-bag error
(OOB). In fact, two thirds of the observations are used to create each of the bagged trees.
Consider one observation i, that is not used to create the bagged tree. For this observation,
we can predict a response value based on all the 1/3 bagged trees where this observation
was excluded from. Finally, we can average over these. We can repeat this process for
the n observations we have, and then calculate the overall out-of-bag MSE. (James et al.,
2013).

2.7.4 Random forests
Assume we havem number of predictors. Random forests build regression trees similar to
the bagging method, but for each split in the tree, a random sample is chosen from the m
predictors as split candidates. In classification problems, m ≈ √p is chosen, which means
that the square root of the number of predictors are considered at each split in the tree. In
regression problems, m = p

3 is chosen. If m = p this method is similar to bagging (James
et al., 2013).

2.8 Non-linear estimation

2.8.1 Polynomial regression with least square estimation
It is possible to model the relationship between the response variable and the predictors as
an n-th degree polynomial in order to fit a nonlinear model to the data. The polynomial
regression model is given by

yi = β0 + β1xi + β2x
2
i + ...+ βdx

d
i + εi, (2.69)

where d is the degree of the polynomial and ε is the random error term. Polynomial
regression is a special case of multiple linear regression, because y is linear in the unknown
parameters β1, β2, ..., βd that are estimated from the data with predictors xi, x2

i , ..., x
d
i .
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Thus, we can estimate the unknown parameters in equation (2.69) by the least squares
method. We can translate the model from equation (2.69) to matrix notation, by writing

y1

y2

...
yn

 =


1 x1 x2

1 · · · xd1
1 x2 x2

2 · · · xd2
...

...
...

. . .
...

1 xn x2
n · · · xdn



β0

β1

...
βd

+


ε1
ε2
...
εn

 , (2.70)

which can be written in the form
y = Xβ + ε (2.71)

In order to derive the least square estimator, we want to minimize the residual sum of
squares, εT ε = (y−Xβ)T (y−Xβ). We set ŷ = Xβ̂. Then ε = y− ŷ are orthogonal
to the columns ofX , and hence

XT (y −Xβ) = 0

⇒XTy −XTXβ = 0

⇒XTXβ̂ = XTy

(2.72)

If we solve the previous equation (2.72) for β̂, we find the least square estimator to be

β̂ = (XTX)−1XTy (2.73)

We can arrive at the same expression for β̂ by taking the first derivatives of the sum of
squares, εT ε, with respect to β and setting this equal to zero. This gives

∂((y −Xβ)T (y −Xβ))

∂β
= 2XTXβ − 2XTy (2.74)

Setting equation (2.74) equal to zero gives β̂ = (XTX)−1XTy, as in equation (2.73)
(James et al., 2013).

2.8.2 Piecewise, continuous polynomials
In the previous section, we explained polynomial regression and how this is used to fit the
data when the relationship between the predictors and the responses is non-linear. It is
also possible to fit different polynomials for different regions for the predictor. The points
where the polynomials change shape are called knots. For example, we can consider a
piecewise cubic polynomial with two knots, one at the point c1 and one at the point c2.
Then, the polynomial take the following form,

yi =


β01 + β11xi + β21x

2
i + β31x

3
i + εi if xi < c1

β02 + β12xi + β22x
2
i + β32x

3
i + εi if c1 < xi < c2

β03 + β13xi + β23x
2
i + β33x

3
i + εi if xi > c2

For C number of knots, we get C + 1 different polynomials. We can use least square
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estimation for each of the polynomials to estimate the coefficients. In order to make the
piece-wise cubic polynomial above smoother, it is possible to add constraints that both the
first and second derivatives are continuous at the knots. In general we define a degree-d
spline as a piece-wise degree-d polynomial where, for every knot, there are continuity in
derivatives up to degree d− 1. In order to choose the number of knots, it is possible to use
leave-one-out cross-validation and use the value of C resulting in the smallest RSS (James
et al., 2013).

2.8.3 Smoothing splines
Smoothing splines is another approach to find a smooth function that fits the data well,
hence reduce RSS=

∑n
i=1(yi − g(xi))

2, while not overfitting the data. Overfitting means
that the function fits too well to the data, and if we were given a new set of data, the same
function would possibly give a bad fit. To manage to create a smooth function g that is
not overfitted, one approach is to find the function g in order to minimize the penalized
residual sum of squares

n∑
i=1

(yi − g(xi))
2 + λ

∫
g′′(x)2dx, (2.75)

where integration is over the range of x and λ ≥ 0 is a smoothing parameter. The larger λ
is, the smoother g will be. The first term in equation (2.75) is the residual sum of squares,
and we want this term to be as small as possible in order to give a good fit to the data, but
we must also have this second term in (2.75) that ensures that we are not overfitting the
data, and this can be interpreted as a penalty term. We have that

∫
g′′(x)2dx gets big if the

variation in g is big. If g is smooth,
∫
g′′(x)2dx is smaller. Thus, the term λ

∫
g′′(x)2dx

wants g to be smooth and not to overfit. In order to choose λ it is possible to use cross
validation (James et al., 2013).

2.8.4 Generalized additive models
A generalized additive model (GAM) can include non-linear functions for multiple pre-
dictors. We can write the model as

yi = β0 +

p∑
j=1

fj(xij) + εi, εi ∼ N(0, σ2)

= β0 + f1(xi1) + f2(xi2) + · · ·+ fp(xip) + εi

(2.76)

(James et al., 2013). To fit the functions f1(xi1), f2(xi2), · · · , fp(xip) we can use smooth-
ing splines. We then use an extension of the method explained in the previous section,
where we want to minimize the expression for penalized residual sum of squares (PRSS)
given by

PRSS(β0, f1, f2, · · · , fp) =

n∑
i=1

(
yi − β0 −

p∑
j=1

fj(xij)
)2

+

p∑
i=1

λj

∫
f ′′j (xj)

2dxj ,

(2.77)
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where integration is over the region of xj and λj are smoothing parameters. It can be
shown that if each of the functions fj , j = 1, ..., p are cubic splines, then this additive
cubic spline will minimize equation (2.77) (Hastie et al., 2017).
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Chapter 3
Datasets and variables

3.1 Data from Barentswatch
From Barentswatch, the dataset ”lice per salmon” was downloaded from the period 2017-
2019, which is denoted as Dataset 1. Dataset 1 includes the number of sessile lice, mobile
lice and adult female lice, all given per salmon, at all the salmon farms across the 13
production zones in Norway. At each farm, a number of salmon per cage are counted,
averaged for all cages per week. Corresponding week number and year are included in
Dataset 1. The measured sea temperatures, as well as the latitude and longitude coor-
dinates from all the farms could also be found in Dataset 1. In addition, all the salmon
farms are registered with an individual farm number in the dataset. In this study, data from
production zones six and seven, which include parts of Møre og Romsdal, Trøndelag and
parts of Nordland, were studied. Thus, Dataset 1 only includes observations from these
two production zones from the period 2017–2019.

The dataset ”lice treatments” was downloaded from Barentswatch. It contains infor-
mation about deployment of cleaner fish, as well as the use of mechanical delousing and
medicinal treatment at every farm, with corresponding week number and year, and is de-
noted as Dataset 2. The use of cleaner fish, medicinal treatment and mechanical delousing
were coded as factor variables in the analysis, in the following way and merged with
Dataset 1:

Cleaner fish =

{
0, if cleaner fish were not deployed in the given quarter
1, if cleaner fish were deployed in the given quarter

Medicinal =

{
0, if medicinal treatments were not used in the given quarter
1, if medicinal treatments were used in the given quarter

Mechanical =

{
0, if mechanical delousing was not used in the given quarter
1, if mechanical delousing was used in the given quarter

It is the deployment of new cleaner fish which is used in the model, and a 0 value can
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therefore mean that cleaner fish were deployed at an earlier time. These variables were
coded in the same way for the 12 quarters during the three years 2017, 2018 and 2019.

3.2 Data from Norwegian Directorate of Fisheries
Each salmon farm has their own maximum biomass capacity, which is a limit of the al-
lowed biomass of living salmon at any given time at the farm, and cleaner fish are excluded
from this. The biomass capacity is measured in kilograms. The maximum biomass capac-
ity per farm was downloaded from The Norwegian Directorate of Fisheries, denoted as
Dataset 3. To estimate the number of lice, the assumption that 90% of the maximum
biomass capacity is utilized at any given time was used. In addition, the mean weight per
salmon was assumed to be 5 kg. The number of salmon was estimated by multiplying the
maximum biomass capacity by 0.9 and divide by 5. To get an estimate of the number of
lice for the three different categories, the number of salmon was multiplied by the number
of lice per salmon from Dataset 1. Dataset 1 and Dataset 3 were merged in order to include
the estimation of the number of lice for each farm in Dataset 1, per category.

3.3 Distance from the salmon farms to the coastline
The smallest distance from each of the localities to the coastline was parameterized by us-
ing the function getbb() in the R package osmdata as the search engine for OpenStreetMap
coastline data for Møre og Romsdal, Trøndelag and Nordland (Padgham et al., 2017) that
includes fjords and islands. OpenStreetMap is a collaborative project in order to create
free wiki world map. From the Geosphere R package, the function dist2Line() was used
to measure the distance from each salmon farm to the coastline (Hijmans, 2019), and the
distances were stored in a dataset, which is denoted as Dataset 4. Dataset 4 was merged
with Dataset 1.

3.4 Shortest distance from one salmon farm to another
All the unique rows in terms of location number, latitude and longitude coordinates were
extracted and stored in a dataset, denoted as Dataset 5. With use of the functions distm()
and distHaversine() from the Geosphere package, the shortest distance between each farm
and all the others was estimated (Hijmans, 2019). When calculating the distances, all
ellipsoidal effects were ignored, and a spherical earth was assumed. These values were
stored in a matrix and the shortest distance from one farm to another was extracted and
stored in the variable ”Shortest distance” in Dataset 5. Finally, Dataset 5 was merged with
Dataset 1.
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3.5 Wind data from eKlima
Wind data from eKlima were downloaded. A daily measurement of FFM, FFN and FFX,
was included in the dataset, denoted as Dataset 6. FFM is the mean of the wind speed
given in m/s, FFN is the lowest measured wind speed given in m/s and FFX is the highest
measured wind speed given in m/s (see Table 3.1).
The weather stations that had incomplete data within the period from 2017–2019 in terms
of measurements from the variables above, were filtered out. The latitude and longitude
coordinates from the different weather stations were given Dataset 6. It was possible to
find out which weather station was closest to each of the localities by using the distHaver-
sine() function for each farm coordinate in Dataset 1. The daily data was averaged to give
weekly measurements by using the timeAverage() function from the R package openair
(Carslaw and Ropkins, 2012). Finally, Dataset 6 was merged with Dataset 1 giving wind
measurements at each farm equal to the measurements at the closest weather station.

3.6 Full dataset
The dataset used for analysis in this thesis were the now combined, Dataset 1, which
consists of salmon lice count data from production zones 6 and 7, during 2017–2019. The
variables in the dataset, are shown in Table 3.1. Each data point is the total estimated
salmon louse numbers at a given salmon farm each week each year. The dataset ”lice per
salmon” contained rows where localities had not reported salmon lice numbers, sample
points from Dataset 1 corresponding to these missing data were removed from Dataset 1.
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Table 3.1: Variables used in the analysis with explanation of the variables.

Variables used in the analysis
Variable Name Explanation of variable
Adult female lice Estimation of average weekly number of adult female lice at

the farm
Sessile lice Estimation of average weekly number of sessile lice at the

farm
Mobile lice Estimation of average weekly number of mobile lice at the

farm
Year Year of the observation, 2017,2018 or 2019
Week number Week number from 1 to 52 during the three years
Sea temperature The weekly sea temperature reported in the different

localities, measured in ◦C
FFM Weekly mean of the wind speed, measured in m/s.
FFN The lowest measured weekly wind speed, measured in m/s
FFX The highest measured weekly wind speed, measured in m/s
Cleaner fish Use of cleaner fish, coded 0 or 1
Medicinal Use of medicinal treatments, coded 0 or 1
Mechanical Use of mechanical treatments, coded 0 or 1
Distance from coast-
line

Estimated smallest distance from coastline to each farm mea-
sured in m

Shortest distance Shortest distance from one salmon farm to another salmon
farm measured in m
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This chapter gives a visualization of the data, where Mobile lice, Adult female lice and
Sessile lice are plotted against the explanatory variables.

Figure 4.1 shows Mobile lice, Adult female lice and Sessile lice plotted against Sea
temperature, respectively. In the interval from 10◦C to 15◦C, the number of lice seems to
increase with increasing sea temperatures.

Figure 4.2 shows Mobile lice, Adult female lice and Sessile lice plotted against FFM,
FFN and FFX, respectively. The number of mobile lice seems to increase with increasing
wind speed measurements, up to FFM values of about 5 m/s, FFN values around 2 m/s and
FFX around 8 m/s, respectively. For wind measurements above these values, the number
of mobile lice seems to decrease with increasing wind values.

Figure 4.3 shows Mobile lice, Adult female lice and Sessile lice plotted against the
Shortest distance form one farm to another. It seems to be more lice when the farms are
closer together.

Figure 4.4 shows Mobile lice, Adult female lice and Sessile lice plotted against Week
number. From the plots it seems that louse numbers increase for week number 25–40.

Figure 4.5 shows Mobile lice, Adult female lice and Sessile lice plotted against Dis-
tance from coastline. It seems to be more lice on localities closer to the coastline.

Figure 4.6 shows Mobile lice, Adult female lice and Sessile lice plotted against Cleaner
fish, Medicinal and Mechanical. It seems to be more lice when cleaner fish and medicinal
treatments were not used.

The correlation plot in 4.7 shows that there is high correlation between some vari-
ables. Between Mobile lice and Adult female lice the Pearson correlation coefficient was
0.671. The wind variables were highly correlated with Corr(FFM,FFX) = 0.968 and
Corr(FFN,FFM) = 0.936 and Corr(FFX,FFN) = 0.85. The Pearson correlation coeffi-
cient was calculated to be 0.524 between Week number and Sea temperature. All correla-
tions had p-values < 2.2 · 10−16.

Figure 4.8 shows histograms for Mobile lice and a log-transformation of Mobile lice.
The natural logarithm was utilized in the transformation.
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Figure 4.1: Lice versus Sea temperature. a) Mobile lice versus Sea temperature, b) Adult female
lice versus Sea temperature and c) Sessile lice versus Sea temperature
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Figure 4.2: Lice versus wind. a) (first column) Mobile lice, Adult female lice and Sessile lice plotted
against FFM, respectively, b) (second column) Mobile lice, Adult female lice and Sessile lice plotted
against FFN, respectively, c) (third column), Mobile lice, Adult female lice and Sessile lice plotted
against FFX, respectively.
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Figure 4.3: Lice versus Shortest distance. a) Mobile lice versus Shortest distance, b) Adult female
lice versus Shortest distance, c) Sessile lice versus Shortest distance.
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Figure 4.4: Lice versus Week number, that is, week number from 1 to 52. a) Mobile lice versus
Week number, b) Adult female lice versus Week number, c) Sessile lice versus Week number.
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Figure 4.5: Lice versus the estimated distance form each salmon farm to the coastline. a) Mobile lice
versus Distance from coastline, b) Adult female lice versus Distance from coastline and c) Sessile
lice versus Distance from coastline.
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Figure 4.6: Lice versus the use of cleaner fish, medicinal treatment and mechanical delousing. a)
(first column) Mobile lice, Adult female lice and Sessile lice plotted against Cleaner fish, respec-
tively, b) (second column) Mobile lice, Adult female lice and Sessile lice plotted against Medicinal,
respectively, c) (third column) Mobile lice, Adult female lice and Sessile lice versus Mechanical,
respectively.
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Figure 4.7: Pearson correlation coefficient between variables and distribution plot of variables.
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Figure 4.8: a) Histogram of Mobile lice, with a corresponding skewness of 6.60 b) Histogram of
the log-transform of Mobile lice+1 with a skewness of -1.97
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Chapter 5
Analysis and validation

5.1 Specifying the full model
Mobile lice was used as the response variable, in the fitting of the different regression
models. The full model had the explanatory variables Sea temperature, FFX, Distance
from coastline, Shortest distance, Mechanical, Medicinal and Cleaner fish, with pairwise
interaction terms among the last three variables (three in total). The full model was used
to compare different regression models. Nested models were checked if they performed
better by backward elimination and forward selection. In the selection, we focused on AIC
and BIC-values, and used the stepAIC-function from the MASS package in R (Venables
and Ripley, 2002). Hypothesis testing for nested models using likelihood ratio test were
conducted by the anova-function from the stats package (R Core Team, 2019). The sum-
mary-function in R was used to perform a Wald test. In the Wald test, one term at a time
is dropped from the model, and tested against the full model. The lrtest-function from the
lmtest package was used to conduct the likelihood ratio test. Likelihood ratio test was used
to test the Poisson regression model versus the negative binomial regression model, and
the ZIP regression model versus the ZINB regression model (Zeileis and Hothorn, 2002).
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5.2 Poisson regression
A Poisson regression model was fitted in R, and the output is given in Table 5.1. In this
model, it was assumed that the number of mobile lice at each salmon farm followed a
Poisson distribution and independent observations, yi ∼ Po(λi), where

log λi = β̂0 + β̂1 · Sea temperature + β̂2 · FFX + β̂3 · Distance from coastline

+ β̂4 · Shortest distance + β̂5 ·Mechanical1

+ β̂6 ·Medicinal1 + β̂7 · Cleaner fish1

+ β̂8 ·Mechanical1:Medicinal1 + β̂9 ·Mechanical1:Cleaner fish1

+ β̂10 ·Medicinal1:Cleaner fish1

(5.1)

From Table 5.1, the estimates for both Medicinal1 and Mechanical1 are positive,
whereas the estimate for Cleaner fish1 is negative. The estimate for the interaction term
Mechanical1:Medicinal1 is negative. For example, if only mechanical delousing was used
during the quarter, the expected number of lice increased by a factor of exp(1.232) =
3.428, whereas if both mechanical delousing and medicinal treatments were used, the
expected number of lice increased by a smaller factor, namely exp(1.232 + 0.5874 −
0.5950) = exp(1.2244) = 3.4021 (when other terms were kept constant). From the Wald
test, all the terms in Table 5.1 were significant. Backward elimination and forward se-
lection were performed to compare AIC and BIC values for nested models, and the full
model, specified in Section 5.1 gave the lowest AIC and BIC values. R2 was calculated as
R2 = 1− Deviance

Null deviance = 1− 7241289472
9992057431 = 0.275, which is a quite low number and indicates

that a rather low portion of the variation was explained by the model.
In Figures 5.1 and 5.2, the residuals are plotted against the fitted values from the Pois-

son regression model. Neither the deviance residuals nor the Pearson residuals show a
random spread. High variance is observed for low fitted values. The variance then de-
creases before it increases, which forms a U-shape. This indicates heteroscedasticity in
the model. Hence, the Poisson regression model was not a good fit to the data.

A goodness-of-fit test for the model was done by using the residual deviance. The
critical value in the χ2

17114-distribution is z0.05,17114 = 17419. Since 7241289472 >
17419, the conclusion was that this model was not a good fit.

A hypothesis test for overdispersion was done by the Pearson statistic. The null hy-
pothesis, H0, of no overdispersion, is written H0 : φ ≤ 1. H0 was tested against the
alternative hypothesis, H1 : φ > 1, that there is overdispersion. Under the null hypoth-
esis the Pearson statistic, P , is χ2-distributed with n − p = 17114 degrees of freedom.
Since P > χ2

0.05,17114 = 17419, the null hypothesis was rejected, and a conclusion of
overdispersion was drawn.
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5.2 Poisson regression

Table 5.1: Regression coefficients with associated estimate, std. error, z-value and p-value in Pois-
son regression.

Coefficients Estimate Standard error z-value p-value
Intercept 1.173 · 101 7.020 · 10−5 167031.6 < 2 · 10−16

Sea temperature 5.278 · 10−2 4.481 · 10−6 11780.3 < 2 · 10−16

FFX −2.976·10−3 3.934 · 10−6 −756.4 < 2 · 10−16

Distance from coastline 5.128 · 10−4 7.580 · 10−6 6765.9 < 2 · 10−16

Shortest distance −4.832·10−5 6.189 · 10−9 −7807.0 < 2 · 10−16

Mechanical1 1.232 4.385 · 10−5 28092.7 < 2 · 10−16

Medicinal1 5.874 · 10−1 7.686 · 10−5 7642.9 < 2 · 10−16

Cleaner fish1 −3.279·10−1 5.033 · 10−5 −6515.2 < 2 · 10−16

Mechanical1:Medicinal1 −5.950·10−1 7.812 · 10−5 −7617.2 < 2 · 10−16

Mechanical1:Cleaner fish1 1.887 · 10−1 5.774 · 10−5 3268.0 < 2 · 10−16

Medicinal1:Cleaner fish1 −1.321·10−1 7.572 · 10−5 −1744.5 < 2 · 10−16

The null deviance was 9992057431 on 17124 degrees of freedom. Residual deviance was 7241289472 on
17114 degrees of freedom. Pearson residuals was 12335072703 on 17114 degrees of freedom. The AIC value

was 7241499526 and BIC was 7241499611.

Figure 5.1: Plot of deviance residuals against fitted values for the Poisson regression model.
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Figure 5.2: Plot of Pearson residuals against fitted values for the Poisson regression model.
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5.3 Quasi-Poisson model

5.3 Quasi-Poisson model
The dispersion parameter for the Poisson regression model in Section 5.2 was estimated
to be φ̂ = P

n−p = 12335072703
17114 = 720759. The standard error for the estimates in Table

5.2 was obtained by multiplying the standard error in Table 5.1 by a factor of
√
φ̂ =√

720759. FFX was not significant in the quasi-Poisson model, while significant in the
Poisson regression model. The residual plots for the quasi-Poisson regression model, seen
in Figures 5.3 and 5.4, have a similar shape as the residuals in the Poisson regression model
(see Figures 5.1 and 5.2).

Table 5.2: Regression coefficients with associated estimate, std. error, t-value and p-value in quasi-
Poisson regression.

Coefficients Estimate Standard error t-value p-value
Intercept 1.173 · 101 5.960 · 10−2 196.745 < 2 · 10−16

Sea temperature 5.278 · 10−2 3.804 · 10−3 13.876 < 2 · 10−16

FFX −2.976·10−3 3.340 · 10−3 −0.891 0.372934
Distance from coastline 5.128 · 10−4 6.435 · 10−5 7.969 1.69 ·10−15

Shortest distance −4.832·10−5 5.254 · 10−6 −9.196 < 2 · 10−16

Mechanical1 1.232 3.723 · 10−2 33.090 < 2 · 10−16

Medicinal1 5.874 · 10−1 6.525 · 10−2 9.002 < 2 · 10−16

Cleaner fish1 −3.279·10−1 4.272 · 10−2 −7.674 1.75 ·10−14

Mechanical1:Medicinal1 −5.950·10−1 6.632 · 10−2 −8.972 < 2 · 10−16

Mechanical1:Cleaner fish1 1.887 · 10−1 4.902 · 10−2 3.841 0.000119
Medicinal1:Cleaner fish1 −1.321·10−1 6.428 · 10−2 −2.055 0.039907
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Figure 5.3: Plot of deviance residuals against fitted values for the quasi-Poisson regression model.
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Figure 5.4: Plot of Pearson residuals against fitted values for the quasi-Poisson regression model.
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5.4 Negative binomial regression
A negative binomial regression model was fitted to the data, and results are shown in
Table 5.3. From the Wald test, the estimated coefficient for FFX and the interaction term
Medicinal1:Cleaner fish1 were not significant. After performing backward elimination,
excluding FFX and Medicinal1:Cleaner fish1 yielded a slight improvement in terms of
AIC and BIC with values 438821 and 438800, respectively. The residual plots with these
two terms were excluded, looks similar to the plots in Figures 5.5 and 5.6. From the
summary in R, an estimate for r from equation (2.19) was r̂ = 0.31242 with a standard
deviation equal to SD(r̂) = 0.00291. The regression equation was

log λi = 1.183 · 101 + 4.118 · 10−2 · Sea temperature− 2.133 · 10−3 · FFX+

9.080 · 10−4 · Distance from coastline

− 7.082 · 10−5 · Shortest distance + 1.253 ·Mechanical1

+ 5.996 · 10−1 ·Medicinal1− 3.659 · 10−1 · Cleaner fish1

− 6.589 · 10−1 ·Mechanical1:Medicinal1

+ 2.286 · 10−1 ·Mechanical1:Cleaner fish1

− 2.653 · 10−2 ·Medicinal1:Cleaner fish1

(5.2)

Even though a lot of the points seem to be randomly spread out in Figure 5.5, there are
outliers for deviance residuals below -2. Figure 5.6 shows a similar shape for the Pearson
residuals against fitted values, as for the Poisson regression model (see Figure 5.2). Both
residual plots indicate that the model was not a good fit to the data. R2 was calculated to
be R2 = 1 − Deviance

Null deviance = 1 − 22052
24840 = 0.112, which is a low number and very little of

the variation in the data was explained by the model.
For the Poisson regression model, the parameter vector is θ0 = β = (β0, β1, ..., β10)T

and the parameter vector for the negative binomial regression model is
θ = (β0, β1, ..., β10, r)

T . Then θ0 ∈ θ, and the Poisson regression model is nested within
the negative binomial regression model. A likelihood ratio test was used to compare the
two models. The null hypothesis H0: r = 0 was tested against the alternative hypothesis,
H1, that r > 0. As the parameter space for r is r ∈ (0,∞) the null hypothesis is on
the boundary of the parameter space. It can be shown that the likelihood ratio statistic
can be written as a mixture of half a probability mass at zero and half of χ2

1 (Lawless,
1987). The test results are given in Table 5.4. Although the negative binomial regression
model explained less of the variation in the data than the Poisson regression model, the
p-value < 2.2 · 10−16 from the likelihood ratio test strongly suggested that the negative
binomial regression model, estimating the dispersion parameter, was more appropriate
than the Poisson regression model.
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5.4 Negative binomial regression

Table 5.3: Regression coefficients with associated estimate, std. error, z-value and p-value in nega-
tive binomial regression.

Coefficients Estimate Standard error z-value p-value
Intercept 1.183 · 101 6.633 · 10−2 178.342 < 2 · 10−16

Sea temperature 4.118 · 10−2 4.651 · 10−3 8.855 < 2 · 10−16

FFX −2.133·10−3 3.950 · 10−3 −0.540 0.589
Distance from coastline 9.080 · 10−4 9.416 · 10−5 9.644 < 2 · 10−16

Shortest distance −7.082·10−5 6.175 · 10−6 −11.468 < 2 · 10−16

Mechanical1 1.253 4.324 · 10−2 28.981 < 2 · 10−16

Medicinal1 5.996 · 10−1 8.226 · 10−2 7.289 3.12 ·10−13

Cleaner fish1 −3.659·10−1 3.729 · 10−2 −9.813 < 2 · 10−16

Mechanical1:Medicinal1 −6.589·10−1 8.632 · 10−2 −7.634 2.28 ·10−14

Mechanical1:Cleaner fish1 2.286 · 10−1 5.755 · 10−2 3.972 7.12 · 10−5

Medicinal1:Cleaner fish1 −2.653·10−2 8.737 · 10−2 −0.304 0.761
The null deviance was 24840 on 17124 degrees of freedom. Residual deviance was 22052 on 17114 degrees
of freedom. Pearson residuals was 14386 on 17114 degrees of freedom. AIC and BIC values corresponding to

this model were 438826 and 438919, respectively. The coefficients have the same sign as for the Poisson
regression model, although some coefficients differ quite a bit. Distance from coastline is almost twice the

coefficient from Table 5.1, and Medicinal1:Cleaner fish1 differs a lot.

Table 5.4: Result from the likelihood ratio test between the Poisson regression model and the nega-
tive binomial regression model.

number of Df LogLik Df Chisq p-value
11 3620749752
12 −219401 1 7241060701 < 2.2 · 10−16
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Figure 5.5: Plot of deviance residuals against fitted values for the negative binomial regression
model.
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Figure 5.6: Plot of Pearson residuals against fitted values for the negative binomial regression
model.
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5.5 Zero-inflated models
In Dataset 1, 11% of the datapoints were zeros, which is more than predicted by the Pois-
son regression model and the negative binomial model. To check if a zero inflated model
(ZI) fit the data better, both the Poisson regression model and the negative binomial re-
gression model were compared with their zero inflated counterparts (ZIP and ZINB). The
parameter vector in the ZIP regression model is θ0 = (β0, β1, ..., β10, α0, α1, ..., α10)T . In
the ZINB regression model, the parameter vector is θ = (β0, β1, ..., β10, r, α0, α1, ..., α10)

T .
Hence, θ0 ∈ θ, and the ZIP model is nested within the ZINB model. These two models
were compared with a likelihood ratio test. The following null hypothesis H0 : r = 0 was
tested against the alternative hypothesis H1 that r > 0, which is a test on the boundary of
the parameter space. Then, the likelihood ratio statistic is a 50% mixture of a probability
of zero and a χ2- distribution with one degree of freedom (Stram and Lee, 1994). The
lrtest-function in R was used to run the test, and test results are given in Table 5.6. The
null hypothesis was rejected in favour of the alternative hypothesis (p-value< 2.2 ·10−16)
and the ZINB regression model was preferred.

A ZINB regression model was fitted and the output is shown in Table 5.5. The same
covariates were used both for the zero part and the count part, as a priori we did not know
which component that might be affected by this predictor, and an effect on both parts was
assumed. Hence, xi = zi in this case. From Table 5.5, the odds for a zero inflation was
written as

log
( πi

1− πi

)
= −1.327 + 1.183 · 10−2 · Sea temperature− 3.788 · 10−2 · FFX−

5.994 · 10−5 · Distance from coastline

+ 7.903 · 10−5 · Shortest distance− 2.105 ·Mechanical1

− 6.195 · 10−1 ·Medicinal1 + 2.320 · 10−2 · Cleaner fish1

+ 6.950 · 10−1 ·Mechanical1:Medicinal1

− 8.201 · 10−2 ·Mechanical1:Cleaner fish1

− 7.970 · 10−1 ·Medicinal1:Cleaner fish1
(5.3)

From the model, Sea temperature, Shortest distance, Cleaner fish1 and the interaction
term between Mechanical1 and Medicinal1 increased the odds of a zero inflation, and
the other terms reduced the odds of a zero inflation. Sea temperature, Distance from
coastline, Shortest distance and Cleaner fish1 were not significant, hence did not seem
to be important for the zero inflation. Therefore the model was refitted without the non-
significant terms, and a similar residual plot to that of the full model was observed.

From the residual plot in Figure 5.7, as for previous fitted models, the points are not
randomly spread out, which indicates that the model was not a good fit to the data. The
full model gave the lowest AIC when backward elimination was performed.
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5.5 Zero-inflated models

Table 5.5: Regression coefficients with associated estimate, std. error, z-value and p-value in zero
inflated negative binomial regression.

Count model coefficients Estimate Standard error z-value p-value
Intercept 1.202 · 101 4.288 · 10−2 280.428 < 2 · 10−16

Sea temperature 4.347 · 10−2 2.957 · 10−3 14.699 < 2 · 10−16

FFX −5.506·10−3 2.456 · 10−3 −2.242 0.025
Distance from coastline 8.476 · 10−4 6.010 · 10−5 14.104 < 2 · 10−16

Shortest distance −6.702·10−5 3.944 · 10−6 −16.996 < 2 · 10−16

Mechanical1 1.086 2.740 · 10−2 39.635 < 2 · 10−16

Medicinal1 5.133 · 10−1 5.449 · 10−2 9.420 < 2 · 10−16

Cleaner fish1 −3.555·10−1 2.411 · 10−2 −14.744 < 2 · 10−16

Mechanical1:Medicinal1 −5.532·10−1 5.459 · 10−2 −10.134 < 2 · 10−16

Mechanical1:Cleaner fish1 2.222 · 10−1 3.597 · 10−2 6.178 6.49 ·10−10

Medicinal1:Cleaner fish1 −8.487·10−2 5.580 · 10−2 −1.521 0.128
Log(r) −1.318·10−1 9.986 · 10−3 −13.202 < 2 · 10−16

Zero-inflation coefficients Estimate Standard error z-value p-value
Intercept −1.327 1.184 · 10−1 −11.203 < 2 · 10−16

Sea temperature 1.183 · 10−2 8.539 · 10−3 1.386 0.165770
FFX −3.788·10−2 7.609 · 10−3 −4.979 6.41 · 10−7

Distance from coastline −5.994·10−5 1.817 · 10−4 −0.330 0.741565
Shortest distance 7.903 · 10−5 1.114 · 10−4 0.709 0.478198
Mechanical1 −2.105 1.256 · 10−1 −16.769 < 2 · 10−16

Medicinal1 −6.195·10−1 1.718 · 10−1 −3.605 0.000312
Cleaner fish1 2.320 · 10−2 5.727 · 10−2 0.405 0.685420
Mechanical1:Medicinal1 6.950 · 10−1 2.910 · 10−1 2.389 0.016906
Mechanical1:Cleaner fish1 −8.201·10−2 1.760 · 10−1 −0.466 0.641328
Medicinal1:Cleaner fish1 −7.970·10−1 2.168 · 10−1 −3.676 0.000237

The AIC value was 425604

Table 5.6: Result from the likelihood ratio test between the ZIP and ZINB regression model

number of Df LogLik Df Chisq p-value
22 −3226381595
23 −212779 1 6452337633 < 2.2 · 10−16
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Figure 5.7: Plot of Pearson residuals against fitted values for the zero- inflated negative binomial
regression model.
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5.6 Regression tree and random forest
In the regression tree, independent observations were assumed. The response variable,
Mobile lice, was log-transformed because its distribution was very right-skewed (log+1 -
transformation was used because of right skewness and zero-inflation). The transformed
variable was left-skewed, mainly due to the zeros (see Figure 4.8). Then, the dataset was
divided into a training set and a test set, by dividing the set in two, randomly half by half,
before a regression tree was fitted to the training set. The fitted regression tree was pruned
in order to minimize equation (2.68). For α = 0, no pruning was carried out. For a large
enough α, no partition was done and only the root node was predicted by the tree. For the
latter case, the value for α was denoted as α0, and the penalty term was re-scaled as

cp =
α

α0
, (5.4)

where cp is the complexity parameter. Figure 5.8 shows the MSE relative to when cp =
0.1, which is the default value for the complexity parameter, and gave an error = 1. The
choice to decrease cp, by decreasing α, gave more nodes in the tree. In order to still keep a
tree that is pruned, and simultaneously minimize the relative error cp = 0.01 was chosen.
This gave six nodes in the corresponding tree shown in Figure 5.9. The rpart-function
from the rpart package was used to create the tree (Therneau and Atkinson, 2019).

The number of mobile lice was predicted based on the regression tree in Figure 5.9. If
mechanical delousing was used, a number of exp (12.48) = 263024 mobile lice at the farm
were predicted. If mechanical delousing was not used, we proceeded to the left in the tree.
Medicinal treatments can be interpreted in the same way. If medicinal treatments were not
used, Distance from coastline and Shortest distance come into account. The regression
tree suggested some important distances, these were Distance from coastline = 11.32 m,
Shortest distance = 1987 m and Shortest distance = 2153 m. If the distance from the
coastline to the farm was < 11.32 m the number of mobile lice at that farm was predicted
to be exp (9.597) = 14721. If Distance from coastline was ≥ 11.32 m, and Shortest
distance was < 1987 m, according to the tree, exp (9.93) = 20537 mobile lice were
predicted. If all the previous conditions hold, and 1987m ≤ Shortest distance < 2153 m
the tree predicted a number of exp (2.465) = 12 mobile lice. Finally, if Shortest distance
was ≥ 2153 m a number of exp (8.163) = 3509 mobile lice were predicted at the farm.
All predictions were made regardless of time of year. From a single regression tree, the
numbers should be carefully interpreted.

The method of random forest with bootstrapping was used to create regression trees.
From the randomForest package the randomForest-function in R was utilized to create
the default value of 500 trees (Liaw and Wiener, 2002). For the p = 7 predictors in the
dataset, m = 3 predictors were used to be considered in each split in the tree. Figure 5.11
consists of the two columns %IncMSE and IncNodePurity. %IncMSE measures the mean
decrease of accuracy in the out-of-bag predictions when variable i was excluded from the
model.

For each split in a tree, it was calculated how much this split reduced the node impurity,
which is the difference between the RSS, before and after the split. In the second column
in Figure 5.11 the reduction in node impurity is seen, which is summed over all splits, in
all trees, for that variable. From Figure 5.11 Mechanical, Distance from coastline, Shortest
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distance and Sea temperature were the most important variables in the prediction. The test
set MSE from the random forest model was 8.39, an improvement from 13.39 from the
single regression tree without using bagging. The variance explained by the random forest
model is a measure of how well out-of-bag predictions explain the variance of the training
set.

The variance explained by the random forest model was 47.67%.

Figure 5.8: The relative error in MSE (error = 1 corresponds to the choice of cp = 0.1, the default)
plotted against the complexity parameter, cp. The formula for cp was given in equation (5.4) and the
lowest relative error was to choose 6 nodes in the tree with cp = 0.01. The corresponding regression
tree is shown in figure 5.9.
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Figure 5.9: Plot of a single regression tree where the complexity parameter, cp, was chosen to be
0.01. The tree had six nodes and five splits.
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Figure 5.10: Plot of MSE versus number of trees in the random forest model.
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Figure 5.11: Variance important plots for the random forest model.
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5.7 Generalized additive models
A generalized additive model was fitted to the data by the gam-function from the gam
package in R (Hastie, 2019). Mobile lice was fitted against smoothing splines of degree
three for Sea temperature, FFX, Distance from coastline and Shortest distance. The three
last variables, the treatment variables, were fitted with a separate constant for each level.
The resulting equation for this model was given from (2.76), and is

yi = β0 + f1(xi1) + f2(xi2) + f3(xi3) + f4(xi4) + f5(xi5) + f6(xi6) + f7(xi7) + εi,

where β0 = 53513. Or, written in a more interpretative way as

Mobile lice = 53513 + f1(Sea temperature) + f2(FFX) + f3(Distance from coastline)

+ f4(Shortest distance) + f5(Mechanical)
+ f6(Medicinal) + f7(Cleaner fish) + ε

(5.5)

The null hypothesis, H0, of a linear relationship between the quantitative variables and
the response was tested against the alternative hypothesis, H1, of a non-linear relationship,
i.e. smoothing spline of degree three, between the quantitative variables and the response.
From the ANOVA-test from Table 5.7, there is reason to believe that the smoothing splines
were sufficient for the variables Sea temperature, FFX, Distance from coastline and Short-
est distance(all p-values < 0.05). In Figure 5.13, as in Figure 5.14, the variance increases
with higher fitted values. This indicates that the model was not a good fit to the data. R2

was calculated to beR2 = 1− Deviance
Null deviance = 1− 5.43·1015

6.418·1015 = 0.154, which is a low number
and the model explained little of the variation in the data.

Figure 5.12 shows the results from the fitted generalized additive model in equation
(5.5). Fixing the other variables, a rapid increase in lice levels around 7–14◦C is seen,
before it flattens out and decreases around 14–18◦C. There were few data points for tem-
peratures > 18◦C, hence this region should be carefully interpreted. For FFX, a decrease
in the interval around 2–7m/s is seen, and a slight increase for wind measurements> 7m/s.
From Figure 5.12, the number of mobile lice increases when the distance from the coast-
line increases, and the number of lice decreases when the farms are further away from
each other. The linear trend in lice levels for Distance from coastline > 650m should be
carefully interpreted. There were few data points in this interval, which increases the risk
of overfitting. The single point at around 1500m decides the shape of the graph for values
> 700m. For the same reason, the decrease in the number of mobile lice for Shortest
distance > 6000m should be carefully interpreted. A rapid decrease in Mobile lice is seen
for Shortest distance in the interval from 4000–6000m.
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Table 5.7: DF for terms and F-values for Nonparametric Effects

Df Npar F Pr(F)
(Intercept)
s(Sea temperature, 3) 2 37.236 < 2 · 10−16

s(FFX, 3) 2 3.344 0.03532
s(Distance from coastline, 3) 2 4.608 0.00998
s(Shortest distance, 3) 2 22.353 2.019 · 10−10

The AIC value was 502156

Figure 5.12: The first four plots in the first row show fitted natural splines in Sea temperature, FFX,
Distance from coastline and Shortest distance with point-wise standard errors, respectively. The
three last plots are step functions fitted to the factor variables Mechanical, Medicinal and Cleaner
fish.
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Figure 5.13: Plot of deviance residuals versus fitted values for the generalized additive model.
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Figure 5.14: Plot of Pearson residuals versus fitted values for the generalized additive model.
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Chapter 6
Discussion

The estimated count coefficients from the ZINB regression model, seen in Table 5.5, can
be compared with the plots in Chapter 4. Some coefficients did not correspond particu-
larly well with the plots in Chapter 4. The positive coefficients for Sea temperature and
Distance from coastline indicate that increased sea temperatures and distances from the
coastline correspond to more mobile lice. For Sea temperature seen in Figure 4.1, a posi-
tive coefficient seems appropriate for temperatures up to 15◦C, but the number of mobile
lice drops with higher temperatures. From Figure 4.5, larger distances from the coastline
to the farms seems to coincide with less mobile lice.

The plots in Figure 5.12 can be compared to the figures from Chapter 4. From Figure
4.2 the number of mobile lice decreases for higher FFX measurements, which does not
correspond well to FFX > 7m/s from Figure 5.12. From Figure 4.5 it could seem that
increased distance from the coastline reduces the number of mobile lice, which does not
correspond well with the monotonous increase from Figure 5.12. From Figure 4.3 it seems
to be a decrease in the number of mobile lice when Shortest distance increases, although
not as rapid a decrease as seen in Figure 5.12 for Shortest distance in the interval from
4000–6000 m.

The fitted models estimated an increase in Mobile lice when mechanical delousing and
medicinal treatments were used, and a reduction when cleaner fish were deployed (with
other terms kept constant). The treatments are used when the number of lice exceeds the
limits given in Section 1.1. It is therefore not surprising that treatment variables were as-
sociated with higher lice numbers. Hence, these variables are not a reflection on the effect
of the treatment, nor a cause to salmon lice. The 0/1 -coding in this study made it impossi-
ble to distinguish between cause and effect of the treatments, and the design in this study
made it impossible to say if the treatments could be considered successful or not. The esti-
mated interaction coefficients for Mechanical1:Medicinal1 and Medicinal1:Cleaner fish1
were negative for the GLMs. Several treatments methods are used simultaneously (in the
same quarter) as an attempt to reduce the salmon lice abundance.

Distance from coastline and Shortest distance are variables that in this study, to a
greater extent, can explain the cause of salmon lice. Although conservative evidence is
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lacking, general agreement now exists that the risk of salmon louse infection increase in
areas with intensive fish farming (Bjørn et al., 2001, 2008; Gargan et al., 2007). A study
in Norway found that the distance to the closest fish farms played a key role in the suc-
cess of protected salmon fjords, where salmon lice levels were consistently low over time
when the farms were further away from each other (Serra-Llinares et al., 2014). Distances
looked at were > 30 km, i.e. larger distances than analysed in this thesis. In a study
from Ireland, it was demonstrated that the greatest infestation of L. salmonis on sea trout
were seen close to salmon farms (Gargan et al., 2007). A time series analysis from (Aldrin
et al., 2019) on salmon lice count data also found that the infection pressure on neigh-
bouring farms decreases by increasing seaway distances to the neighbours. In this study,
Shortest distance was estimated by a straight line. Using seaway distances, rather than
straight lines, would have been more accurate.

Mobile lice predictions for Distance from coastline, Shortest distance and Sea temper-
ature from the different models can be compared. In Figure 6.1 predictions of Mobile lice
versus Distance from coastline can be seen, where Sea temperature =12◦C, FFX = 10 m/s,
Shortest distance = 2000 m and all treatment variables equal to zero were kept fixed. The
GLMs and the GAM model predict an increase in Mobile lice with increased distances. On
the other hand, the random forest model predicts a decrease in the number of mobile lice,
before it levels out at ≈ 0 for Distance from coastline > 600 m. The prediction from the
single regression tree can be found directly from Figure 5.9. For Distance from coastline
≤ 11 m a number of exp(2.465) = 12 lice were predicted. For Distance from coastline
≥ 12 m the regression tree predicted a number of exp(9.597) = 14721 lice. As there is
rather few data points for Distance from coastline > 650m, the prediction of ≈ 0 mobile
lice by the random forests model seems most reasonable according to Figure 4.5.

Figure 6.2 shows Mobile lice predicted by Shortest distance where Sea temperature
=12◦C, FFX = 10 m/s, Distance from coastline = 50 m and all treatment variables equal
to zero were kept constant. The single regression tree predicts 14721 lice over the whole
interval, seen directly from Figure 5.9, whereas the GLMs and the GAM predict a decrease
in Mobile lice for greater distances between farms. The random forest model predicts the
highest abundance of lice in the region 3000m < Shortest distance < 4500m. Mobile
lice decreases for Shortest distance > 6000 m and approaches 0, which seems reasonable
according to Figure 4.3, as there are relatively few observations for Shortest distance >
6000 m. It should be mentioned that in Figure 6.2 the prediction from the ZINB regression
model approaches 0 for Shortest distance > 6000 m which seems reasonable.

In Figure 6.3 Mobile lice is predicted by Sea temperature when FFX = 10 m/s, Shortest
distance = 2000 m, Distance from coastline = 50 m and all treatments variables = 0. The
GLMs predicted an monotonous increase in Mobile lice on the interval. Although the
numbers differ a lot, the random forest model and the GAM model both predict an increase
in the mobile lice numbers for Sea temperature from around 7◦C to around 14◦C and it
drops with higher sea temperatures, which seems reasonable according to Figure 4.1. A
study in western Canada, where a multiple regression model was used, found that sea
temperature had little effect on the number of mobile lice (Revie et al., 2004). On the
other hand, a space-time analysis from Norway found that the number of lice increased
with increasing sea temperatures (Aldrin et al., 2013). A study also found that increasing
sea temperature had an increased effect on the maturation rate in both the naupliar stages
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and in the chalimus stage (Stien et al., 2005).
The predictions considered (seen in Figures 6.1, 6.2 and 6.3) clarified the problem by

using GLMs that use the same function throughout the whole interval.

Figure 6.1: Prediction of Mobile lice versus Distance from coastline for observations where Sea
temperature =12◦C, FFX = 10 m/s, Shortest distance = 2000 m and all treatment variables 0
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Figure 6.2: Prediction of Mobile lice versus Shortest distance for observations where Sea tempera-
ture =12◦C, FFX = 10 m/s, Distance from coastline = 50 m and all treatment variables 0
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Figure 6.3: Prediction of Mobile lice versus Sea temperature for observations where Shortest dis-
tance = 2000 m, FFX = 10 m/s, Distance from coastline = 50 m and all treatment variables 0
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Chapter 6. Discussion

6.1 Concluding remarks on models used
The starting point in this analysis was a Poisson regression model. That model was over-
dispersed and a quasi-Poisson regression model and a negative binomial regression model
were fitted. A zero-inflated negative binomial regression model was fitted as an attempt
to account for the zero-inflation in the data. The great spread in the variance seen from
the residual plots from the fitted Generalized linear models indicated lack of fit. From the
AIC criterion, the zero-inflated negative binomial regression model was considered the
best among the fitted GLMs. In search for models that could fit the data better, the GAM
model and the tree based models were fitted. Such models have an advantage of being
more flexible and dynamic, but at the cost of being harder to interpret. This concerns
especially the random forest model. The GAM model did not give a particularly good
fit either. Log-transforming Mobile lice and fitting a random forest model gave the best
result in terms of variance explained by the models. The random forest model stated that
Mechanical, Distance from coastline, Shortest distance and Sea temperature were the most
important variables for the number of mobile salmon lice. The model predicted less lice
with higher sea temperatures, for farms further away from other farms(> 6000 m), and
further away from the coastline (> 650 m), in correspondence with Figures 4.1, 4.3 and
4.5. The predictions from Figures 6.1, 6.2 and 6.3 emphasized that GLMs using the same
analytic functions on the interval, did not give a good fit to the data.

6.2 Challenges and recommendations for further work
A more dynamic way to estimate the number of lice should be investigated. This could be
done by finding a proportionality term between the weight of the salmon and the time after
the salmon smolt sea transfer, which may give a more accurate estimation of the number of
salmon, and therefore also lice. A more accurate number could have resulted in improved
fit by the models. Exact data on the percentage of total biomass capacity utilized at any
time, could also be very useful in this estimation. The number of salmon at the farm could
have been collected directly, which would have given a more accurate estimation of the
lice number.

It is reasonable to assume that salmon farms far away from the coastline, also are
further away from other farms, since the majority of the farms are relatively close to the
coast. Thus, the variable Distance from coastline can be influenced by Shortest distance.
Distance from coastline should hence be investigated further.

For the wind estimates, the directions were not taken into account. To include the
wind direction in a reasonable way in a model could be demanding, but worthwhile, as
wind direction affect the current in the sea that might influence the spread of salmon lice.
There were also cases where the weather stations were far away from the farms. Measuring
wind speed at locations closer to the farms, could provide more accurate measurements.

To see any effect of the use of cleaner fish, mechanical delousing or medicinal treat-
ment methods it could have been interesting to work with a smaller area with fewer farms
and preferably for larger periods. It could be interesting to include the exact number of
cleaner fish deployed at the different farms, to see if this had a significant impact on the
model. Furthermore, it could be interesting with a further analysis to compare weeks
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6.2 Challenges and recommendations for further work

where farms used the treatments method wholly, or only in parts. One could also have
focused more specifically at which kind of medicinal or mechanical treatment that was
used at the farm.

One can use a time series analysis approach to model dependency between data points
and study how the number of lice at one farm one week will affect the number of lice for
future weeks at the farm. This could be done by using a similar strategy as (Aldrin et al.,
2019) where the count of mobile lice at each farm were treated as time series, that also
included potential dependency within the same week between time series of lice counts at
other farms. Other time-dependent approaches should also be considered.

It could have been interesting to add more variables in the analysis, such as the time
since the salmon smolts were released.
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Appendix

R-code used to create the dataset

library(readxl)
library(dplyr)
library(psych)
library(tidyverse)
library(sf)
library(geosphere)
library(osmdata)
library(rnaturalearthdata)
library(progress)
library(openair)
library(lubridate)
#The code to create the initial dataset 1 in 3.1
data = read_excel("lakselus_per_fisk17-19.xlsx")
licedata= subset(data,
Produksjonsomr deId <8 & Produksjonsomr deId>5)
licedata2 = licedata[complete.cases(licedata), ]
##################################################################
#The code to create dataset 3 explained in 3.2
biomassedata<- read_excel("biomasse_lokalitet.xlsx")
#Correponds to dataset 3
biomassekg=select(biomassedata, Lokalitetsnummer, kapasistetkg)
licedatabio=left_join(licedata2, biomassekg,
by="Lokalitetsnummer")
licedatabio$antallfisk=licedatabio$kapasistetkg*0.9/5
licedatabio$lusibevegelse=licedatabio$‘Lus i bevegelige stadier‘

*licedatabio$antallfisk
licedatabio$voksnehunnlus=licedatabio$‘Voksne hunnlus‘

*licedatabio$antallfisk
licedatabio$fastsittendelus=licedatabio$‘Fastsittende lus‘

*licedatabio$antallfisk
##################################################################
#The code to create dataset 2 explained in 3.1
#Look at cleaner fish, mechanical delousing and
medicinal treatment
rens=read_excel("tiltak_mot_lakselus17-19.xlsx")
rens=subset(rens, Produksjonsomr deId <8
& Produksjonsomr deId>5)
medi=subset(rens, rens$Tiltak=="medikamentell")
meka=subset(rens, rens$Tiltak=="mekanisk fjerning")
rens=subset(rens, rens$Tiltak=="rensefisk")
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for (i in 1:nrow(licedatabio)){
if (licedatabio$Uke[i]<14){

licedatabio$Kvartal[i]=1
} else if (licedatabio$Uke[i]>13 &licedatabio$Uke[i]<27){

licedatabio$Kvartal[i]=2
} else if (licedatabio$Uke[i]>26 &licedatabio$Uke[i]<40){

licedatabio$Kvartal[i]=3

} else {
licedatabio$Kvartal[i]=4

}
}
for (i in 1:nrow(rens)){

if (rens$Uke[i]<14){
rens$Kvartal[i]=1

} else if (rens$Uke[i]>13 &rens$Uke[i]<27){
rens$Kvartal[i]=2

} else if (rens$Uke[i]>26 &rens$Uke[i]<40){
rens$Kvartal[i]=3

} else {
rens$Kvartal[i]=4

}
}

for (i in 1:nrow(medi)){
if (medi$Uke[i]<14){

medi$Kvartal[i]=1
} else if (medi$Uke[i]>13 &medi$Uke[i]<27){

medi$Kvartal[i]=2
} else if (medi$Uke[i]>26 &medi$Uke[i]<40){

medi$Kvartal[i]=3

} else {
medi$Kvartal[i]=4

}
}
for (i in 1:nrow(meka)){

if (meka$Uke[i]<14){
meka$Kvartal[i]=1

} else if (meka$Uke[i]>13 &meka$Uke[i]<27){
meka$Kvartal[i]=2

} else if (meka$Uke[i]>26 &meka$Uke[i]<40){
meka$Kvartal[i]=3

} else {
meka$Kvartal[i]=4

}
}
rens=rens[c(2,3,5,18,20)]
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medi=medi[c(2,3,5,18,20)]
meka=meka[c(2,3,5,18,20)]
sammensattmedrens =
left_join(licedatabio, rens,
by=c(" r ", "Lokalitetsnummer", "Kvartal"))
sammensattmedmedi =
left_join(licedatabio, medi,
by=c(" r ", "Lokalitetsnummer", "Kvartal"))
sammensattmedmeka=
left_join(licedatabio, meka,
by=c(" r ","Lokalitetsnummer", "Kvartal" ))
#Remove duplicated rows
sammensattmedrens1=
subset(sammensattmedrens,
!duplicated(subset(sammensattmedrens,
select=c(Uke, Kvartal, r , Lokalitetsnummer,Fylke))))
sammensattmedmedi1=
subset(sammensattmedmedi,
!duplicated(subset(sammensattmedmedi,
select=c(Uke, Kvartal, r , Lokalitetsnummer,Fylke))))
sammensattmedmeka1=
subset(sammensattmedmeka,
!duplicated(subset(sammensattmedmeka,
select=c(Uke, Kvartal, r , Lokalitetsnummer,Fylke))))

#Order the data points in ascending order
sammensattmedrens1 =
sammensattmedrens1
[order(sammensattmedrens1$ r , sammensattmedrens1$Uke),]
sammensattmedmedi1=
sammensattmedmedi1
[order(sammensattmedmedi1$ r , sammensattmedmedi1$Uke), ]
sammensattmedmeka1=
sammensattmedmeka1
[order(sammensattmedmeka1$ r , sammensattmedmeka1$Uke), ]

#Create the variables for lice treatments
sammensattmedmeka1$mekaniskfjerning=0
sammensattmedmedi1$medikamentell=0
sammensattmedrens1$rensefiskniv =0
sammensattmedrens1[is.na(sammensattmedrens1)]=F
sammensattmedmedi1[is.na(sammensattmedmedi1)]=F
sammensattmedmeka1[is.na(sammensattmedmeka1)]=F
#Look at 2017
for (i in 1369:2727){

if(sammensattmedrens1$Tiltak[i]=="rensefisk"){
sammensattmedrens1$rensefiskniv [i]=1

}

}
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for (i in 2728:4270){
if(sammensattmedrens1$Tiltak[i]=="rensefisk"){

sammensattmedrens1$rensefiskniv [i]=1
}

}
for (i in 4271:5850){

if(sammensattmedrens1$Tiltak[i]=="rensefisk"){
sammensattmedrens1$rensefiskniv [i]=1

}

}
Look at 2018
for (i in 5851:7221){

if(sammensattmedrens1$Tiltak[i]=="rensefisk"){
sammensattmedrens1$rensefiskniv [i]=1

}

}

#Secon quarter
for (i in 7222:8623){

if(sammensattmedrens1$Tiltak[i]=="rensefisk"){
sammensattmedrens1$rensefiskniv [i]=1

}

}
#Third quarter
for (i in 8624:10187){

if(sammensattmedrens1$Tiltak[i]=="rensefisk"){
sammensattmedrens1$rensefiskniv [i]=1

}

}
#Forth quarter
for (i in 10188:11780){

if(sammensattmedrens1$Tiltak[i]=="rensefisk"){
sammensattmedrens1$rensefiskniv [i]=1

}

}

#Look at 2019
for (i in 11781:13149){

if(sammensattmedrens1$Tiltak[i]=="rensefisk"){
sammensattmedrens1$rensefiskniv [i]=1

}

}
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#Second quarter
for (i in 13150:14586){

if(sammensattmedrens1$Tiltak[i]=="rensefisk"){
sammensattmedrens1$rensefiskniv [i]=1

}

}

#Third quarter
for (i in 14587:16163){

if(sammensattmedrens1$Tiltak[i]=="rensefisk"){
sammensattmedrens1$rensefiskniv [i]=1

}

}

#Forth quarter
for (i in 16164:17746){

if(sammensattmedrens1$Tiltak[i]=="rensefisk"){
sammensattmedrens1$rensefiskniv [i]=1

}

}

#Medicinal treatment
#Look at 2017
#first quarter
for (i in 1:1368){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1

}

}

#Second quarter
for (i in 1369:2727){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1

}

}

#Third quarter
for (i in 2728:4270){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1

}
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}

#Forth quarter
for (i in 4271:5850){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1

}

}

#Look at 2018
for (i in 5851:7221){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1

}

}

#Second quarter
for (i in 7222:8623){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1

}

}

#Third quarter
for (i in 8624:10187){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1

}

}

#Fourth quarter
for (i in 10188:11780){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1

}

}

#Look at 2019
for (i in 11781:13149){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1
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}

}

#Second quarter
for (i in 13150:14586){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1

}

}

#Third quarter
for (i in 14587:16163){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1

}

}

#Fourth quarter
for (i in 16164:17746){

if(sammensattmedmedi1$Tiltak[i]=="medikamentell"){
sammensattmedmedi1$medikamentell[i]=1

}

}

Mechanical treatment
#Look at 2017
#First quarter
for (i in 1:1368){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}

}

#Second quarter
for (i in 1369:2727){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}

}
#Third quarter
for (i in 2728:4270){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}
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}

#Fourth quarter
for (i in 4271:5850){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}

}

#Look at 2018
for (i in 5851:7221){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}

}

#Second quarter
for (i in 7222:8623){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}

}

#Third quarter
for (i in 8624:10187){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}

}

#Fourth quarter
for (i in 10188:11780){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}

}

#Look at 2019
for (i in 11781:13149){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}

}
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#Second quarter
for (i in 13150:14586){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}

}

#Third quarter
for (i in 14587:16163){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}

}

#Fourth quarter
for (i in 16164:17746){

if(sammensattmedmeka1$Tiltak[i]=="mekanisk fjerning"){
sammensattmedmeka1$mekaniskfjerning[i]=1

}

}

sammensattmedmedi2=select(sammensattmedmedi1, r , Uke,
Lokalitetsnummer, medikamentell)

sammensattmedmeka2=select(sammensattmedmeka1, r , Uke,
Lokalitetsnummer, mekaniskfjerning)

sammensattmedrens2=
left_join(sammensattmedrens1, sammensattmedmedi2)

sammensattmedrens2=
left_join(sammensattmedrens2, sammensattmedmeka2)

sammensattmedrens2=select(sammensattmedrens2, -c(28,30,32))
###########################################################
#Create dataset 4 that estimated the distance
to the coastline in 3.3

sammensattmedrens3=select(sammensattmedrens2,
Lokalitetsnummer,Lon,Lat,
Produksjonsomr deId.x, Fylke)
sammensattmedrens3=subset(sammensattmedrens3,
!duplicated(subset(sammensattmedrens3,
select=c(Lokalitetsnummer,Lon,Lat,Produksjonsomr deId.x))))
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rownames(sammensattmedrens3) <- 1:nrow(sammensattmedrens3)
d1_sf = sammensattmedrens3 %>%
st_as_sf(coords = c(’Lon’,’Lat’)) %>%

st_set_crs(4326)
d1_sf = select(d1_sf, Lokalitetsnummer,geometry)
osm_box = getbb (place_name = "Tr ndelag") %>%

opq () %>%
add_osm_feature("natural", "coastline") %>%
osmdata_sf()

osm_boxmore = getbb (place_name = " M r e og Romsdal") %>%
opq () %>%
add_osm_feature("natural", "coastline") %>%
osmdata_sf()

osm_boxnordland = getbb (place_name = "Nordland") %>%
opq () %>%
add_osm_feature("natural", "coastline") %>%
osmdata_sf()

library(geosphere)
# use dist2Line from geosphere
dist = dist2Line(p = st_coordinates(d1_sf),

line =
st_coordinates(osm_box$osm_lines)[,1:2])

dist2= dist2Line(p = st_coordinates(d1_sf),
line =
st_coordinates(osm_boxmore$osm_lines)[,1:2])

dist3= dist2Line(p = st_coordinates(d1_sf),
line =
st_coordinates(osm_boxnordland$osm_lines)[,1:2])

#combine initial data with distance to coastline

distt=as.data.frame(dist)
distt=select(distt,distance)
colnames(distt)[colnames(distt)=="distance"] <- "distanceT"

distm=as.data.frame(dist2)
distm=select(distm, distance)
colnames(distm)[colnames(distm)=="distance"] <- "distanceM"

distn=as.data.frame(dist3)
distn=select(distn, distance)
colnames(distn)[colnames(distn)=="distance"] <- "distanceN"

disttot=cbind(distt, distm, distn)
disttot$Distance=apply(disttot, 1, FUN=min)
disttot1=select(disttot, Distance)

#Merge this with the location numbers
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locdist=
select(sammensattmedrens3, Lokalitetsnummer, Lon, Lat)
locdist$Distance=disttot1$Distance
#We must merge this with the rest
sammesattmedrensogdist=
left_join(sammensattmedrens2, locdist,
by=c("Lokalitetsnummer", "Lon", "Lat"))
##########################################################
#Code to create dataset 6 from section 3.5
vinddatasett = read_excel("Stasjonermedvindogretning.xlsx")
stasjonsnavnkoordinater=read_excel("Stasjonsnavnkoordinater.xlsx")
stasjonkoordogvind=
left_join(vinddatasett, stasjonsnavnkoordinater, by=c("Stnr"))
stasjonskoordogvind1
=select(stasjonkoordogvind, Stnr, Dato, FFM, FFN, FFX, Lat, Lon)

vinddatasett$date=as.Date(vinddatasett$Dato)
split= split.data.frame(vinddatasett, vinddatasett$Stnr)
vinddataveke10380=timeAverage(split$‘10380‘, avg.time = "week")
vinddataveke59610=timeAverage(split$‘59610‘, avg.time = "week")
vinddataveke59680=timeAverage(split$‘59680‘,avg.time = "week")
vinddataveke59695=timeAverage(split$‘59695‘, avg.time = "week")
vinddataveke59800=timeAverage(split$‘59800‘, avg.time = "week")
vinddataveke60190=timeAverage(split$‘60190‘, avg.time = "week")
vinddataveke60240=timeAverage(split$‘60240‘, avg.time = "week")
vinddataveke60500=timeAverage(split$‘60500‘, avg.time = "week")
vinddataveke60810=timeAverage(split$‘60810‘, avg.time = "week")
vinddataveke60930=timeAverage(split$‘60930‘, avg.time = "week")
vinddataveke60990=timeAverage(split$‘60990‘, avg.time = "week")
vinddataveke61060=timeAverage(split$‘61060‘, avg.time = "week")
vinddataveke61410=timeAverage(split$‘61410‘, avg.time = "week")
vinddataveke61420=timeAverage(split$‘61420‘, avg.time = "week")
vinddataveke62270=timeAverage(split$‘62270‘, avg.time = "week")
vinddataveke62480=timeAverage(split$‘62480‘, avg.time = "week")
vinddataveke62980=timeAverage(split$‘62980‘, avg.time = "week")
vinddataveke63420=timeAverage(split$‘63420‘, avg.time = "week")
vinddataveke63630=timeAverage(split$‘63630‘, avg.time = "week")
vinddataveke63705=timeAverage(split$‘63705‘, avg.time = "week")
vinddataveke63820=timeAverage(split$‘63820‘, avg.time = "week")
vinddataveke64330=timeAverage(split$‘64330‘, avg.time = "week")
vinddataveke65310=timeAverage(split$‘65310‘, avg.time = "week")
vinddataveke65451=timeAverage(split$‘65451‘, avg.time = "week")
vinddataveke65940=timeAverage(split$‘65940‘, avg.time = "week")
vinddataveke66150=timeAverage(split$‘66150‘, avg.time = "week")
vinddataveke67280=timeAverage(split$‘67280‘, avg.time = "week")
vinddataveke67560=timeAverage(split$‘67560‘, avg.time = "week")
vinddataveke68010=timeAverage(split$‘68010‘, avg.time = "week")
vinddataveke68290=timeAverage(split$‘68290‘, avg.time = "week")
vinddataveke68860=timeAverage(split$‘68860‘, avg.time = "week")
vinddataveke69100=timeAverage(split$‘69100‘, avg.time = "week")
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vinddataveke69380=timeAverage(split$‘69380‘, avg.time = "week")
vinddataveke70150=timeAverage(split$‘70150‘, avg.time = "week")
vinddataveke71000=timeAverage(split$‘71000‘, avg.time = "week")
vinddataveke71550=timeAverage(split$‘71550‘, avg.time = "week")
vinddataveke71850=timeAverage(split$‘71850‘, avg.time = "week")
vinddataveke71990=timeAverage(split$‘71990‘, avg.time = "week")
vinddataveke72580=timeAverage(split$‘72580‘, avg.time = "week")
vinddataveke73466=timeAverage(split$‘73466‘, avg.time = "week")
vinddataveke73500=timeAverage(split$‘73500‘, avg.time = "week")
vinddataveke73550=timeAverage(split$‘73550‘, avg.time = "week")
vinddataveke74350=timeAverage(split$‘74350‘, avg.time = "week")
vinddataveke75220=timeAverage(split$‘75220‘, avg.time = "week")
vinddataveke75410=timeAverage(split$‘75410‘, avg.time = "week")
vinddataveke75550=timeAverage(split$‘75550‘, avg.time = "week")
vinddataveke76240=timeAverage(split$‘76240‘, avg.time = "week")
vinddataveke76330=timeAverage(split$‘76330‘, avg.time = "week")
vinddataveke76450=timeAverage(split$‘76450‘, avg.time = "week")
vinddataveke76530=timeAverage(split$‘76530‘, avg.time = "week")
vinddataveke76750=timeAverage(split$‘76750‘, avg.time = "week")
vinddataveke77230=timeAverage(split$‘77230‘, avg.time = "week")
vinddataveke77280=timeAverage(split$‘77280‘, avg.time = "week")
vinddataveke77425=timeAverage(split$‘77425‘, avg.time = "week")
#We find which of the weather stations that are complete,
#and which that are not and store these in a dataframe.

vinddatany=rbind(vinddataveke10380, vinddataveke59680,
vinddataveke59695,
vinddataveke59800, vinddataveke60190, vinddataveke60240,
vinddataveke60500,
vinddataveke60810, vinddataveke61060, vinddataveke61410,
vinddataveke61420,
vinddataveke62270, vinddataveke62480, vinddataveke62980,
vinddataveke63420,
vinddataveke63630, vinddataveke63705, vinddataveke63820,
vinddataveke64330,
vinddataveke65310, vinddataveke65451, vinddataveke65940,
vinddataveke66150,
vinddataveke67280, vinddataveke67560, vinddataveke68290,
vinddataveke68860,
vinddataveke69100, vinddataveke69380, vinddataveke71000,
vinddataveke71550,
vinddataveke71850, vinddataveke72580, vinddataveke73550,
vinddataveke74350,
vinddataveke75220, vinddataveke75410, vinddataveke76240,
vinddataveke76330,
vinddataveke76450, vinddataveke76530, vinddataveke76750,
vinddataveke77230,
vinddataveke77280, vinddataveke77425)

vinddatany$date=as.Date(vinddatany$date)
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vinddatany$Uke = week(vinddatany$date)
vinddatany$ r = year(vinddatany$date)
vinddatany=subset(vinddatany, Uke!=53)

stasjonsnavnkoordinater$location_id=1:45
DB2=select(stasjonsnavnkoordinater,location_id, Lat, Lon )
sammesattmedrensogdist$location_id=1:17746
DB1=select(sammesattmedrensogdist, location_id, Lat, Lon)
DistFun = function(ID){

TMP = DB1[DB1$location_id==ID,]
TMP1 = distHaversine(TMP[,3:2],DB2[,3:2])
TMP2 = data.frame(DB1ID=ID,DB2ID=DB2[which.min(TMP1),1],
DistanceBetween=min(TMP1) )
print(ID)
return(TMP2)

}

DistanceMatrix = bind_rows(lapply(DB1$location_id, DistFun))
DistanceMatrix$Stnr=0
DistanceMatrix=select
(DistanceMatrix, location_id, DistanceBetween)
DistancewithStnr=left_join
(DistanceMatrix, stasjonsnavnkoordinater)

for (i in 1:17746){
DistancewithStnr$Lokalitetsnummer[i]=
sammesattmedrensogdist$Lokalitetsnummer[i]

}

DistancewithStnr=select(DistancewithStnr, Stnr, Lokalitetsnummer)
sammesattmedrensogdist$Stnr=DistancewithStnr$Stnr

vinddatany=select(vinddatany, r , Uke, Stnr, FFM, FFX, FFN)

Dataset1=left_join(sammesattmedrensogdist, vinddatany)
write.table(Dataset1, file = "Datasetttotalrens1.csv",
row.names=FALSE, na="",col.names=TRUE, sep=",")
################################################################
#We create dataset 5 from section 3.4
closestloc=subset(data, !duplicated(subset(Dataset1,
select=c(Lokalitetsnummer,Lon,Lat))))
closestloc=select(closestloc, Lokalitetsnummer, Lon, Lat)
distanse=data.frame()

for (i in 1:nrow(closestloc)){
for (j in 1:nrow(closestloc)){

distanse=
append(distanse, distm(c(closestloc$Lon[i],closestloc$Lat[i]),
c(closestloc$Lon[j],closestloc$Lat[j]),fun=distHaversine))

}
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}
output=matrix(unlist(distanse), ncol = 240, byrow = F)
outputframe=as.data.frame(output)
for ( i in 1:240){

closestloc$Mindist[i]=min
(outputframe[,i][which(outputframe[,i]>0)])

}

closestloc=left_join(Dataset1, closestloc)
#Create final dataset, dataset 1 in 3.6
write.table(closestloc, file = "Datasettrensclosdist.csv",
row.names=FALSE,na="",col.names=TRUE, sep=",")
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