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Abstract

Informational cascades occur when rational individuals consider it optimal to ignore their
private knowledge, and rather choose to copy the behaviour of their predecessors when
making a decision. The phenomenon is closely related to the process of gaining infor-
mation through observation of other individuals’ actions - what is called observational
learning.

In this thesis, we present a model of sequential decision-making with a binary action
space. We assume that prior to making his or her decision, each individual observes the
decisions of the previous decision-makers. We further assume that each decision-maker
has a personal competence related to the decision at hand. All individuals have perfect
knowledge about their own competence, but have only uncertain knowledge about other
individuals’ competences. We define the model in a mathematical fashion, and derive a
general expression for the probability of both possible decisions for each individual.

The model is numerically implemented, and sequences of decisions are simulated.
Using the Metropolis-Hastings algorithm, we investigate if there is enough information
in the observed decisions alone to be able to estimate parameters from the model. Results
from the simulation study indicate that there is not enough information in the observed
decisions to obtain sufficiently accurate estimates for the model parameters. We suggest
to improve the algorithm in order to increase the rate of convergence to the limiting
distribution, in addition to allow more information to enter the system.
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Sammendrag

Informasjonskaskader er et fenomen knyttet til beslutningstakning. De oppstår når
rasjonelle individer betrakter det som optimalt å ignorere sin egen, private kunnskap, og
heller velger å kopiere atferden til tidligere beslutningstakere. Fenomenet er tett knyt-
tet til observasjonslæring; å samle informasjon gjennom observasjon av andre individers
handlinger.

I denne rapporten presenterer vi en modell for sekvensiell beslutningstakning med
et binært handlingsrom. Vi antar at hvert individ observerer beslutningen til tidligere
beslutningstakere før han eller hun tar sin egen beslutning. I tillegg antar vi at hver
beslutningstaker har en personlig kompetanse knyttet til beslutningen som skal tas.
Hvert individ kjenner til sin egen kompetanse, men har kun et usikkert estimat på an-
dres kompetanse. Vi definerer modellen matematisk, og utleder et generelt uttrykk for
sannsynligheten for de to mulige beslutningene til hvert individ.

Modellen er numerisk implementert, og kjeder av beslutninger simuleres. Ved å bruke
Metropolis-Hastings-algoritmen undersøker vi om det er tilstrekkelig informasjon om sys-
temet i de observerte beslutningene til å estimere modellparametre. Resultatene fra
simuleringsstudien tyder på at det ikke er nok informasjon i de observerte beslutningene
alene til å oppnå rimelige estimater på modellparametrene. Vi foreslår å tillate mer in-
formasjon i systemet, i tillegg til å forbedre algoritmen for å oppnå raskere konvergens
til målfordelingen.
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Chapter 1

Introduction

An informational cascade is a phenomenon related to decision-making and observational
learning - the process of gaining information through observation of other individuals’ de-
cisions. The phenomenon occurs in situations where rational individuals, after observing
the decisions of other individuals, consider it most optimal to follow the existing pattern
of behaviour and ignore their own, private knowledge. A familiar situation where an
information cascade can occur is presented by Banerjee (1992). Imagine two restaurants
placed next to each other, restaurant A and restaurant B. Upon arriving, you are not
familiar with either restaurant, but have done some research and intend to go to restau-
rant A. However, you see that there are no customers in restaurant A, while restaurant B
has many customers. Now, you might consider it optimal to go to restaurant B because
you infer that the other customers have information that is unknown to you. Individuals
arriving after you are also likely to go through a similar process of reasoning, and an in-
formational cascade will occur. If all customers have uncertain information about which
restaurant is the better, but restaurant B is randomly chosen by the first few customers,
there can occur a cascade where all subsequent guests choose restaurant B even though
restaurant A might be the objectively better restaurant. In particular, informational cas-
cades may not be favourable for the public, because the lack of diversity in the observed
decisions will fail to reflect the private knowledge of each decision-maker, leaving this
information unknown for the public. The separate papers of Bikhchandani et al. (1992)
and Banerjee (1992) are often mentioned as the first to describe the concepts of informa-
tional cascades. The phenomenon has later been a subject of extensive research, and is
of interest in fields ranging from psychology and biology (Zentall, 2006) to behavioural
economics and network analysis (Rosas et al., 2017).

We will in this thesis consider a model of sequential decision-making with a binary ac-
tion space. The model is based on the model introduced by Bikhchandani et al. (1998),
where decision-makers in sequence choose one out of two possible actions: Either to
adopt or reject. Prior to their decision, they will observe a private signal indicating
what the correct action is, in addition to the probability that their signal was correct.
The lower this probability is, the more uncertain the decision-maker will be on his or
her decision. Each of the decision-makers will also observe the actions of the previous
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2 CHAPTER 1. INTRODUCTION

decision-makers. This model is referred to as the ’observable-actions’ model. Results
are compared to the ’observable-signals’ model, a benchmark model where all subse-
quent decision-makers has perfect knowledge both about the private signals and the
decisions of the previous decision-makers. Bikhchandani et al. (1998) shows that under
the observable-signals paradigm, all individuals will eventually make the same, correct
decision. For the ’observable-actions’ model, all individuals will conform on the same
decision, either correct or wrong, if two individuals in a row chooses the same action.
In both models, it is assumed that each decision-maker act rational with regard to the
posterior probability. In Chapter 2.1, we look closely into an example of an informational
cascade and the underlying rationale of each decision-maker in order to understand why
this phenomenon occurs.

In the model to be considered in this thesis, we adapt the idea of using probabilities
as a measure of uncertainty in the observed, private signal of each individual. In the
model by Bikhchandani et al. (1998), each individual is assigned a probability that their
private signal was correct, and all individuals have the same probability for observing
the correct signal. Hence, this probability will govern the overall rate of wrong cascades.
In our model, we will assume that each decision-maker observes different probabilities.
If a decision-maker observes a private signal with a high probability that the signal was
correct, this individual can be said to be better informed than an individual with a lower
such probability. The concept of an individually assigned probability as an uncertainty
in the observed signal can be interpreted as a personal competence, where the individual
with the higher competence related to his private signal will have a greater prerequisite
for making the correct choice. In a population of decision-makers, it is natural to assume
that different individuals will have somewhat different competences.

The aim of this thesis is to continue the work done in Falnes (2019), where two models
of sequential decision-making with a binary action space was introduced. It was assumed
that each decision-maker would act rationally with regard to the posterior probability.
In the two models, all decision-makers have different competences. In the first model,
each decision-maker has perfect knowledge about all previous competences and decisions,
but not the corresponding, private signals. In the second model, each individual has
information about previous decisions, but not the corresponding signals or competences.
However, in this model each individual will have his or her own uncertain estimate for
the previous individuals’ competences, but these estimates are independent of the true
competence. The analysis showed that informational cascades occur for both models. In
this thesis we will introduce and define a model based on the second model. The aim is to
model the situation where each individual’s competence estimates are correlated to the
true competence. This model is implemented numerically. From this implementation,
chains of decisions can be simulated under different choices of parameters. A Bayesian
method for parameter estimation is derived. In order to assess this method, we estimate
parameters from simulated data.

The report is structured as follows: In Chapter 2, we take a closer look at infor-
mational cascades and the mechanisms behind them in order to understand why this
phenomenon occurs and to motivate further study. Additionally, some statistical back-
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ground theory used later is also introduced here. In Chapter 3, the model of study is
introduced and mathematically defined. In Chapter 4, we derive a method for Bayesian
parameter estimation, and the results of the simulation study are presented and discussed
in Chapter 5. In Chapter 6, the thesis is summed up, and suggestions for further work
is presented.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Background

In this chapter we present some relevant background theory. We first take a closer look at
informational cascades. Further, we introduce some statistical concepts that we use later.
These include Bayesian parameter estimation and the Metropolis-Hastings algorithm. We
will also discuss how directed acyclic graphs (DAGs) can be used to represent conditional
independence relations.

2.1 Informational cascades

To better understand what an informational cascade is and the mechanisms behind it seen
from both the individual and public perspective, we begin by introducing the laboratory
experiment conducted by Anderson and Holt (1997) with human test subjects. They
constructed a game with two urns filled with balls of two different labels. In urn A, 2/3
of the balls were labeled ’a’ and the last 1/3 were labeled ’b’, while urn B contained
2/3 balls with the label ’b’ and the last 1/3 were labeled ’a’. With an equal (prior)
probability, one of these urns is chosen to be the correct urn. The aim of the participants
is to correctly identify this urn, and to help them, they will get to observe one ball drawn
at random (with replacement) from the correct urn. This is what we define as a private
signal, and this information is hidden from the other participants. However, the decision
of each decision-maker is announced publicly. This means that participants will know
the decisions, but not the private signals of all previous participants. Sequentially, each
participant receives his or her private signal and then make a guess on the correct urn
based on the information available. The experiment showed that very often, individuals
will tend to conform on one guess, despite the fact that their private signals suggested
that the opposite decision was the correct one. This tendency was particularly prominent
when the first few individuals conformed on one decision.

According to the definition of Bikhchandani et al. (1992), the participants in the
above experiment are in an informational cascade. If we take a closer look at the rationale
behind each decision, we will see that despite the fact that each individual decision-maker
acts optimally and rationally with regard to the posterior probability, there is a positive
probability that the public conforms on the inferior decision. We will in the following

5



6 CHAPTER 2. BACKGROUND

assume the same prior probability for all individuals, and that individuals act rationally
with regard to the posterior probability.

For the first participant, the posterior probability that a ball is drawn from urn A,
given that it is labeled ’a’, is P (A|a) = 2/3. The first guess will then reveal the private
signal of the first individual, which is now a part of the public information. The next
participant will observe the first decision, and as a result, he or she can infer the private
signal of the first individual. There are now two possible situations.

1. If the first guess was ’A’ and individual 2 observed ’a’ as his or her private signal,
he or she knows that there has been two private signals indicating that ’A’ is the
correct urn. The similar holds if the first guess was ’B’, and the private signal of
individual 2 was a ball labeled ’b’.

2. If the first guess was ’A’ (’B’), but individual 2 observed ’b’ (’a’), he or she now
sees urn A and B as equally likely events. In his or her eyes, there has now been
a total of one ’a’-signal and one ’b’-signal. Consequently, his or her final decision
will be random. This can be confirmed with a simple calculation using Bayes’ rule,
noting that each private signal is drawn independently from the correct urn:

P (A|a, b) = P (a, b|A)P (A)
P (a, b)

=
0.5 · 2/3 · 1/3

0.5 · 1/3 · 2/3 + 0.5 · 1/3 · 2/3
=

1

2
.

The third participant will face one of the following situations.

1. If the two previous decisions were ’A’ (’B’), the third individual will infer that
there has been two ’a’-signals (’b’-signals) in total, or that there has been one of
each, but the second person chose ’A’ (’B’) at random. Individual 3 and all of the
succeeding participants are probable to infer that there has been a majority of one
of the signals, and sees it rational to make the same decision as their predecessors,
irrespective of their own, private signal.

2. If there has been one decision of each, the third participant knows that there has
been one ’a’-signal and one ’b’-signal in total, and decides based on his or her private
information. The next participant will face the same situation as participant 2, as
the game effectively restarts when there has been one of each decision.

From the above example we see that as long as each decision differs from the previous,
the public is able to draw information about private signals based on the corresponding
decisions of each participant. As soon as a few individuals begin to favour one decision,
new, similar decisions will not add any new information about decision-makers’ private
knowledge. As each new decision is uninformative for the succeeding decision-makers,
each new individual will simply do the exact same reasoning as the individual before
him. Effectively, succeeding individuals will infer that there is a majority of private
signals favouring one of the labels, based only on the two first decisions in the cascade.
This causes the counter-intuitive situation where each single decision is a result of logical
processing of the available information, but the public as a whole may conform on the
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less optimal choice. According to Bikhchandani et al. (1992), informational cascades are
most likely to occur in situations where individuals’ knowledge alone is not sufficient
to make an optimal choice, and where other individuals’ decisions can be observed.
The more uncertain an individual is, the more rational it is to see other individuals’
decisions as more informative than his or her own information. In recent years, research
on informational cascades concern, among other things, online shopping habits. Duan
et al. (2009) argue that informational cascades are particularly prominent on the Internet
because of the large number of products and the information overload. This makes it
difficult for individuals to acquire the knowledge to make the optimal choice. At the
same time, other individuals’ choices are easily available as for example best-seller lists
and other ranking systems, making it both rational and efficient to follow the choices of
others.

2.2 Bayesian inference and MCMC

Statistical inference consists of methods to draw generalizations about populations (Walpole
et al., 2012), and includes among other things estimation of unknown quantities. In
this thesis, we are interested in estimation of parameters that are present in statistical
models. Statistical models are typically defined through assumptions concerning rela-
tionships between random variables or observed data, and often consist of collections of
probability distributions. The properties of such distributions are governed by its pa-
rameters. Bayesian statistical modelling is based on Bayes’ theorem. From the Bayesian
point of view, the parameters of interest are considered to be stochastic variables. This
as opposed to the frequentist, or classical perspective, where parameters are treated as
fixed constants. The main objective of Bayesian parameter estimation is to analyse the
posterior distribution of the parameters using prior knowledge about the parameters in
combination with the observed data. As an example, we denote θ as the vector of the
parameters of interest. The knowledge or prior belief of the parameters, before any data
is observed, is summarized in what is called the prior distribution p(θ). Further, we let
z denote the observed data, and define the likelihood p(z|θ). With Bayes’ theorem, we
define the posterior distribution by

p(θ|z) = p(z|θ)p(θ)
p(z)

∝ p(z|θ)p(θ),

where we write the last transition as p(z) does not depend on θ. The posterior distribution
can be considered as an adjustment to our prior knowledge of the parameters after data
is observed.

2.2.1 The Metropolis-Hastings Algorithm

This subsection is meant to serve as a reminder of the Metropolis-Hastings algorithm.
For a more thorough introduction to the topic, the reader is referred to Gamerman and
Lopes (2006). The Metropolis-Hastings (M-H) algorithm is a Markov chain Monte Carlo
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(MCMC) technique first described by Metropolis et al. (1953) and later generalized by
Hastings (1970). In general, MCMC methods are a collection of algorithms with the
objective of sampling from probability distributions that often are high-dimensional or
in other manners complex and hence difficult to sample from using direct methods. As the
name suggests, MCMC-methods are based on the theory of Markov chains. Informally,
the idea is to construct a Markov chain that has the desired distribution as its limiting
distribution. As the number of iterations increases, the drawn states of the Markov
chain become increasingly closer to the stationary distribution and can be considered
approximate draws from the limiting distribution.

In this thesis, we will use the M-H algorithm to estimate the joint posterior distribu-
tion p(θ|z) where z is the observed data and θ = (θ1, . . . , θl) a collection of parameters.
The distribution we want to sample from is often referred to as the target distribution.
We will use single-site updates. This means that we update one and one element of
the parameter vector θ. We let θ(t) denote the sample at iteration t in the algorithm.
A proposal distribution q(θ∗|θ(t)) has to be defined. The proposal distribution has to
be chosen such that the constructed Markov chain is aperiodic and irreducible. These
are sufficient conditions for convergence to a unique limiting distribution (Roberts and
Smith, 1994). However, the convergence properties of the chain will be highly dependent
on the choice of proposal distribution (Givens and Hoeting, 2013).

Samples from the target distribution - in our case p(θ|z) - is obtained by first defining
the proposal distribution q(θ∗|θ(t)). An initial value θ(0) is set. This value will need to
fulfill the condition p(θ(0)|z) > 0, but can otherwise be chosen arbitrarily. A proposal θ∗

from q(θ∗|θ(t)) is drawn and accepted with the M-H acceptance probability defined by

a = min

(
1,
p(θ∗|z)
p(θ(t)|z)

· q(θ
∗|θ(t))

q(θ(t)|θ∗)

)
. (2.1)

If the proposal is accepted, we set θ(t+1) = θ∗. Otherwise, θ(t+1) = θ(t) and a new value
is proposed.

Since the drawn states from the first iterations typically depend on the initial value,
they are not considered draws from the distribution of interest. Because of this, they
should not be included when doing inference on the generated samples from an MCMC
algorithm. The period characterized by the drawn states before the chain has reached its
equilibrium distribution is often called the burn-in period and consists of a given number
of iterations m. One of the main difficulties when using MCMC methods is to decide the
number of iterations m, and hence verify whether or not the constructed Markov chain
has converged sufficiently close to the limiting distribution. Theoretically, we need an
infinite number of iterations to obtain samples from the target distribution. There exist
many methods to assess convergence based on both visual inspections and statistical
properties of the sampled distribution. In this report we consider it sufficient to utilize
some visual inspections. One of these includes to run several chains from different initial
values θ(0) and investigate if they have the same behaviour after m iterations. If the
chain is independent of the starting value, it is an indication that it has converged.
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Graphically, this inspection can be performed by assessing a trace plot. This is a plot
with the number of iterations t on the x-axis, and the corresponding state at time t, θ(t),
on the y-axis. Inspection of trace plots can give us an indication of which value for m
we should choose to ensure that the samples we use for inference are representative for
the limiting distribution. We can also use the trace plots to get a sense of the mixing
properties of the chain. When evaluating the performance of an implemented MCMC-
method, we are interested in how fast the chain converges and how well the target
distribution is explored. This is related to the dependence between two drawn states
and the number of iterations apart these states need to be before they are considered
independent. If the drawn states seem to move rapidly around an equilibrium, we say
that the mixing is good. On the other hand, if few values are accepted and the chain
stays in the same state for many iterations in a row, the mixing is poor.

2.3 Conditional independence and DAGs

Two random variables, X and Y , are said to be conditionally independent given a third
random variable Z, if and only if

fX,Y |Z(x, y|z) = fX|Z(x|z) · fY |Z(y|z), (2.2)

meaning they are independent in their conditional probability distribution given Z (see
for example Dawid (1979)). A shorter notation is X ⊥⊥ Y |Z. As an intuitive explanation
of the above expression, we can say that Y offers no additional knowledge about X when
Z is known.

A directed acyclic graph (DAG) is a useful way to represent and visualise conditional
independence relations among random variables. The following presentation about DAGs
and conditional independence is inspired by Højsgaard et al. (2012, Ch. 1). We define a
graph as the pair G = (V, E), where V is a set of vertices or nodes and E is a set of edges.
In a DAG, the edges are directed, and the graph is acyclic, see Figure 2.1. A node a is
the parent node of node b if there is a directed edge a→ b, and we denote the parental
set of node b as pa(b). Similarly, a node c is an ancestor of node b if it exists a directed
path c 7→ b, and the set of all ancestors of node b is denoted an(b). We say the DAG G
with vertices (Xv)v∈V represent the probability distribution for V if

f(xV) =
∏
v∈V

f(xv|xpa(v)), (2.3)

where f(x) is the probability function. Using the above in an example, we can write
joint probability of the system in Figure 2.1 as factors of conditional probabilities

f(x1, x2, x3, x4, x5, x6) = f(x1)f(x2|x1)f(x3|x1)f(x4|x2, x3)f(x5|x2)f(x6|x3).

Let X̂v denote all random variables except the variables represented by the descendants
and parents of node v. From the definition of conditional probability given in (2.2) and
from (2.3), it follows that Xv ⊥⊥ X̂v|Xpa(v). We use the graph depicted in Figure 2.1 to
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X1

X3X2

X4 X6X5

Figure 2.1: An example of a DAG. All edges are directed, illustrated by a one-way arrow.
The graph is acyclic, meaning there are no directed cycles in the graph. Node 1 has no
parent nodes, but is the parent node of nodes 2 and 3. The set {1, 2, 3} constitute the
ancestral set an(4) of node 4.

illustrate this property, by showing that the random variablesX1 andX4 are independent
given X2 and X3. The system can be factorized to

f(x1, x4, x5, x6|x2, x3) ∝ f(x1)f(x2|x1)f(x3|x1)f(x4|x2, x3)f(x5|x2)f(x6|x3).

Integrating out irrelevant variables, we obtain

f(x1, x4|x2, x3) ∝ f(x1)f(x2|x1)f(x3|x1)f(x4|x2, x3),

and we observe that x1 and x4 are independent in their conditional densities, and thus
conditionally independent given x2 and x3 according to the definition.



Chapter 3

A model with uncertainty in others’
competence

The aim of this chapter is to present the model of study. We will introduce the necessary
notation and describe the model in a mathematical fashion. Based on the model de-
scription, we will further derive a general expression for the probability of each possible
action of individual i. This expression is implemented numerically and will be used in
the simulation studies presented in Chapter 5.

3.1 Definition and notation

As explained in the introduction, we wish to model the situation where individuals se-
quentially make decisions with a binary action space {0, 1}, and where one of the deci-
sions is defined as the correct one. The correct decision, or the true value, is denoted
X ∈ {0, 1}. This value will be the same, but is unknown, for all individuals i = 1, . . . , n
in the sequence of decision-makers. Each individual in this sequence will first get to
observe a private signal which we denote Yi ∈ {0, 1}. Additionally, each individual is
given the probability that their observed signal yi is correct (equal to x). We denote this
probability as pi, and define it as

P (Yi = x|X = x) = pi.

This probability can be interpreted as a measure on how competent each individual
is. Each individual i will only get to observe his or her own competence pi. However,
individual i will have his or her own estimates of the previous individuals’ competences.
Further, individual i will regard his or her competence estimates as the true competence
of the prior individuals. We let j denote the index of a previous individual, such that
j = 1, . . . , i− 1. Individual i’s estimate for pj , the unknown competence of individual j,
is denoted p̃ij . Finally, the decision of individual i is stochastic, and denoted Zi ∈ {0, 1}.
It is a guess based on his or her knowledge about x, which is summarized in the posterior

11
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x p1

y1

z1

(a) Individual 1.

x

y1

z1

p2p1
2~

y2

z2

(b) Individual 2.

Figure 3.1: Illustration of dependencies between all parameters for the first two decisions
z1 (a) and z2 (b). Here, y1 and y2 denotes the private signals of individuals 1 and 2. The
true value is denoted x, and the probabilities p1 and p2 denotes the true competences
of each individual. The shaded nodes illustrates unknown variables. In addition to x,
which is unknown for all individuals, individual 2 will not observe the private signal,
y1, of individual 1. Additionally, individual 2 will not observe the true competence of
individual 1, but regards his or her estimate p̃21 as the true competence.

probability

P (X = x|Yi = yi, Zi−1 = zi−1, . . . , Z1 = z1, pi, p̃
i
i−1, . . . , p̃

i
1). (3.1)

Figure 3.1 visualises the model with graphs seen from the perspective of the first
two individuals. In (a), we see that the decision of individual 1, z1, only depends on
his or her own competence p1 and private signal y1. The second individual will observe
the first decision and take it into account when the next decision in the chain is made.
However, individual 1’s private signal y1 is not available, and he or she only has an
uncertain estimate p̃21 of the competence of the first decision-maker. Since individual
number 2 regards his competence estimate as the true competence of individual 1, p1 is
not included in the model graph for the second decision.

As noted in Chapter 2.3, model graphs are useful for visualising conditional indepen-
dence relations among a set of random variables. In our model, we assume that each
private signal yi is conditionally independent of each other given the corresponding com-
petence pi or corresponding competence estimate p̃i and the true value x. This means
that

f(y1, . . . , yn|x, p̃1, . . . , p̃nn−1, pn) = f(y1|x, p̃n1 ) . . . f(yn−1|x, p̃nn−1)f(yn|x, pn), (3.2)

a property we state for later reference. As seen in (3.1), each decision zi will depend on
all of the available information individual i has. The model is defined in a sequential
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fashion. This means that the decision at index i can only depend on previous decisions zj
for j < i. We assume that each decision zi depends on the corresponding private signal
of individual i, but not other individuals’ private signals. Similarly, zi depends on the
competence and competence estimates of individual i. As a result, the decision zi will
be conditionally independent of the true value x given yi, pi and p̃i1, . . . , p̃ii−1. In terms
of equations, we use the model graphs to see that the joint conditional distribution of
the full system of previous decisions from individual n’s point of view, given all private
signals and competence estimates are given by

f(z1, . . . , zn−1, x, pn|y1, . . . , yn, p̃n1 , . . . , p̃nn−1)
∝ f(x)f(z1, . . . , zn−1|y1, . . . , yn−1, p̃n1 , . . . , p̃nn−1)f(pn),

(3.3)

where we have used that the decisions up to zn−1 must be independent of individual n’s
private signal yn. Integrating over pn on both sides of the above expression, we get

f(z1, . . . , zn−1, x|y1, . . . , yn, p̃n1 , . . . , p̃nn−1)
∝ f(x)f(z1, . . . , zn−1|y1, . . . , yn−1, p̃n1 , . . . , p̃nn−1),

(3.4)

and we observe that x and z1, . . . , zn−1 are independent in their conditional densities.
Finally, we note that the i’th decision is independent of future decisions, competences
and competence estimates. Using this, we can repeatedly apply the definition on condi-
tional probability (sometimes known as the chain rule of probability) to rewrite the joint
conditional distribution over all decisions z1, . . . , zn−1 above. We obtain

f(z1, . . . , zn−1|p̃n1 , . . . , p̃nn−1, y1, . . . , yn−1)

= f(z1|y1, p̃n1 )
n−1∏
i=2

f(zi|z1, . . . , zi−1, p̃n1 , . . . , p̃ni , yi).
(3.5)

3.2 Competences and competence estimates

Above, the probability pi is introduced as a measure of the competence of individual i.
We elaborate on this description by noting that the closer pi is to 1, the more probable
it is that individual i’s observed signal is correct. Hence, if pi is large, individual i will
have a greater prerequisite to make the correct choice compared to individuals with lower
competences. Since we assume that individuals come from the same population, we let
all competences pi for i = 1, . . . , n be independently and identically distributed. In our
model, it is natural to assume that each competence pi ∈ (0.5, 1). If individual i observes
a signal yi with probability pi < 0.5, he or she will draw the conclusion that the observed
signal was most probably wrong, and that the opposite of the signal, 1 − yi, is correct
with probability 1− pi. Because of this symmetry, we will limit the competences to the
interval (0.5, 1). In our model, this is done by assuming that the competences come from
a transformed beta-distribution with parameters α and β. A standard beta distributed
variable p have bounds (0, 1), and in general we can transform this to having bounds
(a, b) by the relationship

pi = (b− a)p+ a. (3.6)
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Figure 3.2: Simulated competences p and competence estimates p̃ for different values of
σ. The original competences are beta distributed with parameters α = 5 and β = 10.

The probability density function of a nonstandard beta-distribution with bounds (a, b) is
found by normalising the standard beta density f((X − a)/(b− a))/(b− a) and is given
by

f(p) =
(p− a)α−1(b− p)β−1

B(α, β)(b− a)α+β−1
,

where we use (a, b) = (0.5, 1).
According to the model description, decision-makers will only know the exact value

of their own private competence, but have uncertain estimates of the competences of pre-
vious decision-makers. These estimates should be correlated to the original competences
in order to model how well individuals in the system know each other or their ability
to judge other individuals’ competences. This is modelled by first taking the log-odds
(also known as logit) transform to create a map of the probability values from (0, 1) to
(−∞,∞). By adding noise from a known distribution to this transformation, we can
control the correlation between the probability estimates and the original probabilities.
We obtain

ti = logit ((pi − 0.5)/0.5) + ε, (3.7)

where logit(pi) = log(pi/(1 − pi)) and where we assume that ε ∼ N (0, σ2). We then
use the inverse logit function to re-transform probabilities back to (0.5, 1). As a result,
individual n’s estimates for the previous individuals’ competences are given by

p̃ni =

(
eti

1 + eti

)
· (1− 0.5) + 0.5,

where we have used (3.6). Figure 3.2 illustrates how the correlation between the original
competences p and the estimated competences decreases as σ increases. Figure 3.3 shows
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Figure 3.3: Simulated competences p and competence estimates p̃ for different values of
σ. The original competences are beta distributed with parameters α = 5 and β = 10.

the distribution of the original competences and the competence estimates for some values
of σ.

For later reference, we note that given pi, ti given by (3.7) follows a normal distri-
bution with E(ti) = µ = logit((pi − 0.5)/0.5) and Var(ti) = σ2. In general, a random
variable U whose logit transformation follows a normal distribution with mean µ and
standard deviation σ, follows the logitnormal distribution. This distribution has proba-
bility density function (pdf) given by

f(u) =
1√
2πσ

· 1

u(1− u)
exp

{
−1

2

(
logit(u)− µ

σ

)2
}
, (3.8)

see for example Frederic and Lad (2008). Since logit((p̃ni −0.5)/0.5) = ti, the distribution
of the competence estimates shifted to (0, 1) given the true competences is logitnormal
with location parameter µ = logit((pi − 0.5)/0.5) and scale parameter σ.

It is not obvious how different choices of the parameter σ will affect the resulting
chains of decisions. When σ is chosen rather low, the competence estimates will be close
to the true competences in the population. Hence, the decisions will depend on the
true distribution of p. The situation where σ → 0 resembles Model 1 in Falnes (2019),
where all individuals knows the exact value of each others competence. If σ is very large,
a given individual i will get very high competence-estimates for some of the previous
decision-makers (close to 1), and very low for others (close to 0.5). This will happen at
random and independently of the actual competences of the previous individuals.
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3.3 Sub-optimal decisions

Based on the model definition, the optimal decision of individual n is deterministic, and
given by

zn,optimal = argmax
x

P (X = x|Yn = yn, Zn−1 = zn−1, . . . , Z1 = z1, pn, p̃
n
n−1, . . . , p̃

n
1 ).

(3.9)
In order to simplify notation, we use boldface letters to denote the vector of previous
decisions zn−1 = (z1, . . . , zn−1) and the vector of individual n’s competence estimates
p̃n = (p̃n1 , . . . , p̃

n
n−1).

We assume that decision-makers have a positive probability of making the least opti-
mal decision. This will make our model more realistic. Decision-makers - human beings,
for instance - are usually not able to perform exact calculations of complex quantities like
(3.1) and deterministically make the optimal decision. There is naturally an uncertainty
in most decision-making processes, and we can model this by adding noise to our model.
In order to do this, we introduce the softmax function, which we use to weight the two
posterior probabilities P (X = 0|yn, pn, p̃n, zn−1)) and P (X = 1|yn, pn, p̃n, zn−1)). The
decision of individual n is then random, and expressed in terms of the probability

P (Zn = zn|yn, pn, zn−1, p̃n)

=
exp (P (X = zn|yn, pn, zn−1, p̃n)/τ)

exp (P (X = zn|yn, pn, zn−1, p̃n)/τ) + exp (P (X = 1− zn|yn, pn, zn−1, p̃n)/τ)
.

(3.10)

The parameter τ is a control parameter used to model the degree of randomness in
the final decisions. This is illustrated in Figure 3.4 where the probability for the n’th
decision in a simulated decision-chain is plotted against τ . The figure shows that as
τ → 0, the probability of choosing the optimal decision, given by (3.9), goes to 1. Since
P (Zn = zn|·) + P (Zn = 1 − zn|·) = 1, we have that as τ → ∞, the probability of each
decision approaches 0.5, and the final decision is random.

3.4 Derivation of the n’th decision

We are interested in simulating chains of decisions. In order to do that, we need to be
able to calculate the expression given in (3.10). Hence, we take a closer look at each of
the probabilities

P (X = 0|yn, pn, zn−1, p̃n) and P (X = 1|yn, pn, zn−1, p̃n),

where P (X = 0|yn, pn, zn−1, p̃n) + P (X = 1|yn, pn, zn−1, p̃n) = 1. From these proba-
bilities, we will derive expressions that only include the known quantities presented in
sections 3.1-3.3. We begin by using the definition on conditional probability. We can
write

P (X = x|yn, pn, zn−1, p̃n) =
P (x, yn, pn, zn−1, p̃

n)

P (yn, pn, zn−1, p̃n)
. (3.11)
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Figure 3.4: Illustration of how the parameter τ controls the weights of the probability
of a given decision, P (Zn = zn|yn, pn, zn−1, p̃n). When τ → 0, individuals follows the
optimal behaviour given by (3.9), and as τ →∞, the probability of choosing each of the
two possible actions approaches 1/2.

Continuing, we use the definition on joint probability in terms of conditional distributions
to rewrite the fraction in (3.11). We look at the expressions in the numerator and
denominator separately, and obtain

P (X = x|yn, pn, zn−1, p̃n) =
P (zn−1, yn|x, pn, p̃n)P (x, pn, p̃

n)

P (zn−1, yn|pn, p̃n)P (pn, p̃n)
.

From the dependency graphs in Figure 3.1, we can observe that x is independent of pn
and p̃n. Hence, we get P (x, pn, p̃n) = P (x)P (pn, p̃

n) in the numerator, and cancel the
common factors in the numerator and the denominator. This yields

P (X = x|yn, pn, zn−1, p̃n) =
P (zn−1, yn|x, pn, p̃n)P (x)

P (zn−1, yn|pn, p̃n)
:=

c

d
. (3.12)

We will now focus on the expression in the numerator of (3.12). As noted in Section
3.1, the model is defined sequentially. As a result, we must have that the private signal
of individual n, yn, are conditionally independent of the previous decisions zn−1 given
pn and x. This follows trivially from the model definition. Hence we have that

P (zn−1, yn|x, pn, p̃n)P (x) = P (yn|x, pn)P (zn−1|x, p̃n)P (x).

Let y1, . . . , yn−1 denote the previous individuals’ private signals. These are unknown to
individual n. To account for this, we need to use the law of total probability. In this
way, we introduce sums over each previous yi to obtain an expression we can compute.
This gives us an expression for the numerator in 3.12

c = P (yn|x, pn)P (x)
1∑

y1=0

· · ·
1∑

yn−1=0

P (zn−1|y1, . . . , yn−1, p̃n)P (y1, . . . , yn−1|x, p̃n),
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where we have used that zn−1 is conditionally independent of x given yn−1 = (y1, . . . , yn−1)
and p̃n, as discussed in Section 3.1 and shown in equations (3.3) and (3.4).

Now shifting focus to the denominator of (3.12). We are in a similar situation as
previously, as the previous private signals y1, . . . , yn−1 are unknown. Unlike before, the
variable x is not given. Hence, we use the law of total probability over both the previous
private signals and x. Doing this, we obtain

d =
1∑

x′=0

1∑
y1=0

· · ·
1∑

yn−1=0

P (zn−1, yn|pn, p̃n, x′, y1, . . . , yn−1)P (x
′, y1, . . . , yn−1|pn, p̃n).

As before, we use that the current private signal yn is independent of the previous
decisions zn−1, and get

1∑
x′=0

1∑
y1=0

· · ·
1∑

yn−1=0

P (zn−1, yn|pn, p̃n, x′, y1, . . . , yn−1)P (x
′, y1, . . . , yn−1|pn, p̃n) =

1∑
x′=0

P (yn|x′, pn)
1∑

y1=0

· · ·
1∑

yn−1=0

P (zn−1|p̃n, x′, y1, . . . , yn−1)P (x
′, y1, . . . , yn−1|pn, p̃n).

We again use that zn−1 is conditionally independent of x′ given yn−1 and p̃n. We can
then write

d =

1∑
x′=0

P (yn|x′, pn)
1∑

y1=0

· · ·
1∑

yn−1=0

P (zn−1|p̃n, y1, . . . , yn−1)P (x
′, y1, . . . , yn−1|pn, p̃n).

Focusing on the last factor P (x′,yn−1|pn, p̃n), we use the definition on conditional prob-
ability and obtain

P (x′,yn−1|pn, p̃n) =
P (x′,yn−1, pn, p̃

n)

P (pn, p̃n)
.

We then use the definition on joint probability in terms of conditional probabilities in
the numerator to obtain

P (x′,yn−1, pn, p̃
n)

P (pn, p̃n)
=
P (yn−1|x′, pn, p̃n)P (x′, pn, p̃

n)

P (pn, p̃n)
= P (yn−1|x′, pn, p̃n)P (x′),

since x′ and pn, p̃n are independent. Further, the private signals of individuals prior to
individual n, yn−1, must be independent of individual n’s competence. Using this, we
can write P (yn−1|x′, pn, p̃n) = P (yn−1|x′, p̃n).

As a result of all of the above, we can write the fraction in (3.11) as

P (X = x|yn, z1, . . . , zn−1, pn, p̃n1 , . . . , p̃n) =
P (zn−1, yn|x, pn, p̃n)P (x)

P (zn−1, yn|pn, p̃n)

=
P (yn|x, pn)P (x)

∑1
y1=0 · · ·

∑1
yn−1

P (zn−1|y1, . . . , yn−1, p̃n)P (y1, . . . , yn−1|x, p̃n)∑1
x′=0 P (yn|x′, pn)P (x′)

∑1
y1=0 · · ·

∑1
yn−1=0 P (zn−1|p̃n, y1, . . . , yn−1)P (y1, . . . , yn−1|x′, p̃n)

.

(3.13)
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The above expression can be simplified by rewriting the joint probabilities of the
decisions zn−1 and private signals yn−1. Beginning with the decisions, we note by the
model definition that each decision zi depends only on the previous decisions z1, . . . , zi−1,
and not future decisions as shown in (3.5). Using this, we can write the joint, conditional
probability

P (zn−1|yn−1, p̃
n) = P (z1|y1, p̃n1 )P (z2|z1, y2, p̃n1 , p̃n2 ) . . . P (zn−1|zn−2, p̃n, yn−1)

=
n−1∏
i=1

P (zi|zi−1, p̃n
i , yi).

Given the true value x and the current competence estimate p̃ni , the private signals are
conditionally independent of each other as showed in (3.2). Hence, we can write

P (yn−1|p̃n, x) =
n−1∏
i=1

P (yi|p̃ni , x).

We use the above, and finally write (3.13) as

P (X = x|yn, z1, . . . , zn−1, pn, p̃n1 , . . . , p̃n)

=
P (yn|x, pn)P (x)

∏n−1
i=1

∑1
yi=0 P (zi|zi−1, p̃n

i , yi)P (yi|x, p̃ni )∑1
x′=0 P (yn|x′, pn)P (x′)

∏n−1
i=1

∑1
yi=0 P (zi|zi−1, p̃n

i , yi)P (yi|p̃ni , x′)
.

In order to calculate the above expression, one need the recursion given by the expression
inside the product sum in both the numerator and the denominator. This is found by
calculating the probability for each of the previous decisions given by the softmax function
in (3.10).

3.5 Simulating chains of decisions

The model described and derived in the previous subsections is implemented in the
programming language Python. Random sampling from known probability distributions
is done using routines from the SciPy Statistics library1. In the implementation of the
model, we have assumed that the prior distribution of the unknown, true value X is
f(x) = 0.5. This means that prior to observing the private signal and other individuals’
decisions, each decision-maker sees each value of X as equally likely.

Figure 3.5 shows examples of simulated chains of decisions for different choices of
the parameters α and β, which governs the distribution of the true competence pi for
each individual. In the figure, values for τ and σ are held constant. We use τ = 0.05,
which is rather low and corresponds to a high probability of making the optimal choice.
This mimics the situation where individuals make mostly rational decisions. We have

1SciPy v1.3.3 Reference Guide https://docs.scipy.org/doc/scipy/reference/index.html, ac-
cessed 14.05.2020

https://docs.scipy.org/doc/scipy/reference/index.html
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Figure 3.5: Simulated chains of decisions of n = 50 individuals for four different choices
of the parameter-pairs α and β. The true value is x = 0 in all simulations. In plots a)
and b) in the upper row, the mean value of the simulated competences is E(pi) = 0.75.
For the lower row, the mean value of the simulated competences is E(pi) = 0.6. The
standard deviation in plot a) and c) is SD(pi) = 0.1, while for b) and d) SD(pi) = 0.02.
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Figure 3.6: Probabilities for X = 0 for each individual before and after applying the
softmax function. Corresponds to the simulation in Figure 3.5.
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let σ = 1, which makes the correlation between the competence estimates and the true
competences Corr(p, p̃) = 0.47. Competence estimates are thus somewhat close to the
true competences. The true value X = 0 in all situations. The plots show that for these
specific examples, cascades happen in all cases. In general, the typical behaviour of a
chain seems to be that the first few decisions will to various degrees vary between 0 and
1. This is as expected, as decision-makers have observed few previous decisions, and will
naturally emphasize their own, private knowledge. As more and more individuals make
their decisions, decision-chains will tend to stabilize on one decision for the rest of the
decision-makers.

In Figure 3.5 d), we can observe that decision-makers eventually settle on the wrong
decision. This is what we define as a wrong cascade. In a), b) and c), individuals conform
on the correct decision. We note that one should be careful to draw conclusions from
single samples. However, there seems to be a tendency that the larger the variation in the
simulated competences (red curve), the more varying will the simulated decisions be (blue
dots). This is a result confirmed by Falnes (2019) for two similar models, and may be
connected to the fact that some individuals will receive particularly strong private signals,
and choose to emphasize their private knowledge to a larger extent than others with
weaker such signals. It is also reasonable to assume that the higher the mean value of the
true competences, the more probable it is that the resulting cascade is correct. A larger
fraction of the simulated signals y will be correct, and individuals are also more confident
on their private knowledge. With σ chosen such that the correlations between competence
estimates and the true competences are rather high, individuals are also likely to think
that others’ competences are high, and view previous decisions as informative. Figure 3.6
shows the probabilities for choosing X = 0 for the simulation in Figure 3.5. The figure
visualizes the effect the softmax-weighting has on the final probabilities for choosing a
specific value. We remind that P (X = 0|zi−1, p̃i, pi, yi) + P (X = 1|zi−1, p̃i, pi, yi) = 1
and similarly P (Zi = 0|zi−1, p̃i, pi, yi) + P (Zi = 1|zi−1, p̃i, pi, yi) = 1. As the number of
individuals grow, the probability of choosing a specific value slowly increases towards 1
and is weighted to be very close to 1 by the softmax-function for this value of τ .

For the parameters α = 62 and β = 62 depicted in plot b) of Figure 3.5, we illustrate
in Figure 3.7 the effect different values of τ have on the chain of final decisions. In all
simulations in the figure, the same seed has been used. This means that the illustrated
competences, competence estimates and private signals are the same in all situations.
As seen in Figure 3.4, small changes to τ give rather large changes to the degree of
randomness in each decision. As we will discuss later, this plot can also give us an
idea of how to choose reasonable parameter values. Plot a) illustrate a value of τ close
to 0, which means that most individuals will make the optimal choice. As mentioned
previously, the mean value of the competences and competence estimates are rather high,
making individuals consider the observed decisions of previous individuals as informative.
Only a few individuals in the beginning of the chain act opposite of the predominant
behaviour, before enough decisions is observed and individuals conform on the correct
value. The simulation depicted in b) illustrates the same situation, but with a higher
value for τ . Decisions seem more random, and the chain uses a longer time to converge.
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Figure 3.7: Simulated chains of decisions of n = 100 individuals for three different choices
of the parameter τ . The true value is x = 0 in all simulations. In all three plots, the
same seed has been used. The other parameters are fixed, and α = 62, β = 62 and σ = 1.
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Since individuals have high estimates of other individuals competences, many individuals
in a row will make the same, wrong decision after observing previous individuals. Even
when the chain seems to have converged, there will still be single individuals that act
differently than the rest. The last plot illustrate a high value of τ . The probabilities of
each final decision is weighted to be close to 0.5, which means that most decisions are
arbitrary, and the individuals do not seem to conform on one decision.
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Chapter 4

Parameter estimation

We have now defined a model for sequential decision making, implemented it numerically
and are able to simulate chains of decisions. The parameter choices of α and β govern
the overall competence in the population, while σ governs the accuracy of the knowledge
individuals have about the competence of the other decision-makers. Finally, the pa-
rameter τ reflects the degree of randomness in the individuals’ decisions. As seen in the
previous chapter, different choices of parameters will result in decision chains with dif-
ferent characteristics. The objective of this chapter is to derive a method for parameter
estimation. One way to do this is to use maximum likelihood estimation by for example
deriving the likelihood of the system and use numerical optimization with respect to the
different parameters of interest. However, we will see that the large number of unknown
variables in the system makes this approach computationally infeasible, and we will in
stead address the Bayesian approach. In particular, we will make use of the M-H algo-
rithm and give as input simulated decision chains as the observed data. The goal is to
investigate whether or not there is enough information in the decision-chains to be able
to simulate from the posterior distribution of the parameters.

4.1 The posterior distribution of the system

Based on the model definition, we can formulate the posterior distribution of the system.
First, we let θ denote the parameters of interest, θ = (τ, σ, α, β). These are the hyper-
parameters of the system. The only observed variables in the model are the decisions of
individuals 1, . . . , n, denoted z = (z1, . . . , zn). The posterior distribution is given by

p(θ|z) ∝ f(θ)(z|θ). (4.1)

In order to evaluate the likelihood f(z|θ), we need to account for the unobserved vari-
ables in our system. These are the personal competences of each individual, the private
signals and the competence estimates of the previous decision-makers, in addition to the
true value x. We denote the personal competences of all individuals p = (p1, . . . , pn)
and the private signals y = (y1, . . . , yn). The competence estimates are denoted p̃ =
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(p̃21, . . . , p̃
n
1 , . . . , p̃

n
n−1). summing up, the collection of unknown variables and parame-

ters in our system is the hyperparameters in θ, in addition to x,p,y, p̃. The analytical
expression for the likelihood is given by

f(z|θ) =
∫
p

∫
p̃

n∏
i=1

1∑
yi=0

f(z,p, p̃, y1, . . . , yn|θ)dpdp̃.

The complex nature of the above expression makes it infeasible to calculate analytically
as it consists of integrals of high dimension. In particular, we have n integrals over each
competence pi, and 1/2 ·n ·(n−1) integrals over the competence estimates p̃ij , in addition
to the n sums over each private signal yi. This is why we instead turn to the MCMC
approach and approximate the full posterior of the variables up to a proportionality
constant. We make use of the fact that the posterior in (4.1) is proportional to the joint
posterior of the system given the observed data,

f(θ|z) ∝ f(θ, x,p, p̃,y|z),

and use the more convenient, latter distribution as our target distribution in the M-H
algorithm. By the model formulation, we have that

f(θ, x,p, p̃,y|z) ∝ f(θ)f(x)f(p|θ)f(y|p, θ)f(p̃|p, θ)f(z|y,p, θ)

where f(θ) denotes the prior distribution of the parameters of interest, and the other
distributions are defined previously. The marginal posterior for a given parameter is
found by integrating out the other variables. We use component-wise updates, and write
out the posterior distribution in terms of univariate distributions. We get

f(θ, x,p, p̃,y|z) ∝

f(τ)f(σ)f(α)f(β)f(x)

n∏
i=1

f(pi|α, β)
i−1∏
j=1

f(p̃ij |pi, σ)f(yi|x, pi, p̃ij)f(zi|zi−1, yi, pi, p̃i, τ),
(4.2)

where zi−1 = (z1, . . . , zi−1) and p̃i denotes individual i’s estimates of the previous in-
dividual’s competences. We now derive a method to approximate this distribution by
random sampling with the M-H algorithm.

4.2 Prior distributions

As mentioned in Chapter 2.1, the choice of prior distributions should reflect the knowl-
edge we have about the parameters of interest prior to observing any data. Ideally,
information like this can for example come from domain experts or others that have spe-
cific knowledge about the situation under study. Sometimes it may be difficult to obtain
such knowledge and we need to use a vague prior distribution for the parameters. One
approach is to choose priors so the resulting posterior becomes a known distribution it is
trivial to sample from, and one can use the Gibbs sampling procedure, see for example
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Gamerman and Lopes (2006, Ch. 5). This is not possible in our case, and there is no
obvious choice of prior. Our aim is to investigate whether or not we are able to sample
from the posterior distribution of the parameters given the observed decisions. Hence,
we consider it convenient to use the flexible gamma distribution for our purpose. The
hyperparameters can be adjusted in various manners to resemble different cases of prior
knowledge, and thus give us an idea of how well the method works on real data.

In our model, we assume that the parameters in θ are independent, and write

f(θ) = f(τ)f(σ)f(α)f(β).

Each of the parameters are defined to be positive, which is ensured in the prior distri-
bution when we assume gamma priors. We state that the prior distributions are given
by

f(τ) ∝ τ gτ−1e−τ/hτ ,
f(σ) ∝ σgσ−1e−σ/hσ ,
f(α) ∝ αgα−1e−α/hα ,
f(β) ∝ βgβ−1e−β/hβ ,

where gθi and hθi are fixed parameters of the gamma distribution, and θi denotes element
i in θ. We omit the normalizing constants as we are interested in the M-H acceptance
probability stated in (2.1), which is a ratio where all constants cancel.

4.3 Proposal distributions

The M-H algorithm requires a proposal distribution q(θ∗|θ(t)) with the objective of
proposing a new state θ∗ for the Markov chain, given the current state θ(t). We will
use a single-site M-H algorithm, which means that we will iteratively propose a new
state for one and one component in the system given by (4.2). Hence, we will define a
univariate proposal distribution for each component. In general, the rate of convergence
and the mixing properties of the chain will depend on the choice of proposal distribu-
tions. We do not want the proposals to be too far from, nor too close to the current
state. A small step size will lead to small changes and a high acceptance rate, but highly
correlated samples and a slow exploration of the target, and the chain will use many
iterations to converge. Similarly, too large steps will lead to a low acceptance rate.

We will first consider the parameters of main interest, namely the hyperparameters
in θ = (τ, σ, α, β). These parameters are all defined to be positive, and each proposal
distribution has to ensure that the proposals at all times stay within this domain. In
order to model this, we will let v denote a gamma distributed variable with expected
value close to 1 and a small variance. By letting the proposed value for parameter θi be
given by θ∗i = θ

(t)
i · v, we ensure that all proposals are positive and that the proposed

states are sufficiently close to the current state. We here explicitly state the proposal
distribution for the parameter τ , but note that the proposal distribution of all parameters
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in θ will have the same form. If v ∼ Gamma(a, b), then it can be shown that the proposal
distribution for τ∗ = τ (t) · v where the current state τ (t) is given, is

q(τ∗|τ (t)) ∝ (τ∗)a−1

τ (t)
a · e−τ∗/(b·τ (t)). (4.3)

Hence, τ∗|τ (t) ∼ Gamma(a, b · τ (t)).
Now turning to the updates of the other variables in (4.2). The true value x and

the private signals y are discrete and binary, so a good proposal for these variables is to
simply propose the opposite of the current state. Hence,

q(x∗|x(t)) = 1 · I(x∗ = 1− x) and q(y∗i |y
(t)
i ) = 1 · I(y∗i = 1− yi), i = 1, . . . , n,

where I(·) denotes the indicator function.
When it comes to updates on the competences and the competence estimates, we

need to ensure that the proposed values p∗ ∈ (0.5, 1) and p̃∗ ∈ (0.5, 1). For this reason,
we will use the same trick as for modelling the generation of the competence estimates
in Section 3.2. We let

ζ
(t)
i = logit((p(t)i − 0.5)/0.5) + ei,

where ei ∼ N (0, ν2p), meaning ei follows a zero-mean normal distribution with standard
deviation νp. Transforming the above quantity back to the interval (0.5, 1), we get the
proposals

p∗i =

(
eζ

(t)
i

1 + eζ
(t)
i

)
· 0.5 + 0.5.

As stated in Section 3.2, (p∗i − 0.5)/0.5|p(t)i follows the logitnormal distribution with
density given by (3.8) with location parameter µ = logit((p(t)i − 0.5)/0.5) and scale
parameter νp. We use the same proposal distribution for each of the components of the
competence estimates p̃, where we denote the scale parameter of the proposal distribution
νp̃.

4.4 The M-H acceptance probability

With the prior and proposal densities defined, we are now ready to define the Metropolis-
Hastings acceptance ratio given in (2.1). As previously mentioned, the full posterior
distribution is our target distribution. We define the ratio from the M-H acceptance
probability given in (2.1) as

r(φ∗|φ(t)) := f(φ∗|z)
f(φ(t)|z)

· q(φ
(t)|φ∗)

q(φ∗|φ(t))
,

where φ = (τ, σ, α, β,p, p̃,y, x). Since we will only update one parameter at the time
from φ, the factors not being updated will cancel out in the above fraction. In order
to make computations as fast and stable as possible, we simplify the expression for the
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acceptance probability as much as possible for each of the parameters. For each of the
hyperparameters in θ = (τ, σ, α, β), cancelling out constant factors gives

rτ (τ
∗|τ (t)) = f(τ∗)

f(τ (t))
·
∏n
i=1 f(zi|zi, yi, p̃i, τ∗)∏n
i=1 f(zi|zi, yi, p̃i, τ (t))

· q(τ
(t)|τ∗)

q(τ∗|τ (t))
,

rσ(σ
∗|σ(t)) = f(σ∗)

f(σ(t))
·
∏n
i=1

∏i−1
j=1 f(p̃

i
j |pi, σ∗)∏n

i=1

∏i−1
j=1 f(p̃

i
j |pi, σ(t))

· q(σ
(t)|σ∗)

q(σ∗|σ(t))
,

rα(α
∗|α(t)) =

f(α∗)

f(α(t))
·
∏n
i=1 f(pi|α∗, β)∏n
i=1 f(pi|α(t), β)

· q(α
(t)|α∗)

q(α∗|α(t))
,

rβ(β
∗|β(t)) = f(β∗)

f(β(t))
·
∏n
i=1 f(pi|α, β∗)∏n
i=1 f(pi|α, β(t))

· q(β
(t)|β∗)

q(β∗|β(t))
,

where the proposal distributions q(θ∗i |θ
(t)
i ) are given by (4.3). We will also update the

other parameters component wise. From (4.2), we can see that for each of the personal
competences pi, the fraction in the acceptance probability will be

rpi(p
∗
i |p(t)) =

f(p∗i |α, β)f(zi|zi−1, yi, p∗i , p̃i, τ)
∏i−1
j=1 f(p̃

i
j |p∗i , σ)

f(p(t)|α, β)f(zi|zi−1, yi, p
(t)
i , p̃

i, τ)
∏i−1
j=1 f(p̃

i
j |p

(t)
i , σ)

·
q(p

(t)
i |p∗i )

q(p∗i |p
(t)
i )

,

where j denotes the index of the previous decision-makers. Similarly, the acceptance
ratio for the competence estimates of the i’th individual are given by

rp̃ij
=

f(p̃ij
∗|pi, σ)f(yi|x, p̃i

∗
j )f(zi|zi−1, pi, yi, p̃i

∗
j , p̃

i
−j)

f(p̃i
(t)

j |pi, σ)f(yi|x, p̃i
(t)

j )f(zi|zi−1, pi, yi, p̃i
(t)

j , p̃i−j)
,

where p̃i−j denotes the competence estimates not being updated, i. e.
(p̃i−j = p̃i1, . . . , p̃

i
j−1, p̃

i
j+1, . . . , p̃

i
i−1). The acceptance ratios for the private signals yi is

given by

ryi(y
∗
i |yi) =

f(zi|zi−1, p̃i, τ , y∗i )f(y
∗
i |x, pi)

∏n
k=i+1 f(y

∗
i |x, p̃ki )

f(zi|zi−1, p̃i, τ , y
(t)
i )f(y

(t)
i |x, pi)

∏n
k=i+1 f(y

(t)
i |x, p̃ki )

·
q(y

(t)
i |y∗i )

q(y∗i |y
(t)
i )

.

Finally, the acceptance ratio for x is given by

rx(x
∗|x) =

f(x∗)
∏n
i=1

∏i−1
j=1 f(yi|x∗, pi)f(yi|x∗, p̃ij)

f(x(t))
∏n
i=1

∏i−1
j=1 f(yi|f(x(t), pi)f(yi|x(t), p̃ij)

· q(x
(t)|x∗)

q(x∗|x(t))
.

All the necessary framework for the M-H algorithm is now derived, and the method is
ready to be implemented numerically.

4.5 Notes on the implementation

The derived method for parameter estimation is implemented in the programming lan-
guage Python. The advantage of using Python is that it is easy to read and implement.
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However, Python is an interpreted language, and will have a significant amount of over-
head, compared to a compiled language, e.g. C or Fortran. The objective of this thesis
is of an exploratory fashion; we are interested in some key properties of the method and
our system. This includes assessing whether or not it is sensible to later make us of the
derived method for inference on data from for example a proper experiment or other
forms of ’real-world data’. For our use, it is reasonable to use Python, but implement-
ing the code in a lower-level, compiled language would probably improve the run-time
significantly.

As previously mentioned, we use component-wise updates. This means that we for
each iteration in the M-H algorithm update one and one parameter in θ. Hence, in
one iteration we visit α, β, σ and τ once. It is reasonable to assume that the more
examples of decision-chains simulated with the same parameters, the more information
is present in the system when estimating parameters. For this reason, we assume that it
is advantageous to use multiple decision-chains when sampling the posterior of a set of
parameters. This means that one iteration corresponds to updating the hyperparameters
by using one of the input decision-chains. In the next iteration, we use the second input
decision-chain, and so on. The exact number of chains one should use is one of the
properties we will study in the next chapter.

In addition to the hyperparameters, states from the posterior distribution of the
unknown variables y, p, p̃ and x will need to be updated. These variables are spe-
cific to each chain of decisions, and we consider them less ’interesting’ than the model
parameters in θ. Additionally, updating y, p and p̃ involves evaluating the likelihood
f(zi|zi−1, p̃i, yi, τ) which is computationally expensive. This is why we choose to update
these variables less frequently. Every 4’th time we have been through all decision-chains,
we also update the parameters corresponding to each decision-chain. In order to make
computations as stable as possible, calculations of the M-H acceptance ratios are done
on log-scale. Many of the factors in the probability expressions will often produce very
small numbers, and by doing calculations on log-scale we might avoid excessive rounding
errors.



Chapter 5

Numerical experiments

The parameter estimation method derived in the previous chapter is implemented. In this
chapter, we present a simulation study and discuss the results. In particular, we simulate
chains of decisions, and use these decisions as input when we estimate parameters. The
aim is to investigate some key properties about the derived method - is there enough
information in the system based on the observed decisions alone? How many chains of
decisions do we need as input in order to have stable computations and convergence, and
to what degree are we able estimate the correct parameters? We compare the performance
of the method with decision-chains of different characteristics, and test the sensitivity for
different prior distributions. This analysis will be a useful tool if one in the future wish
to test the method on real data.

5.1 Generating decisions: Two cases

Throughout the simulation studies conducted in this chapter, we will consider two dif-
ferent cases of simulated decisions. Specifically, we introduce two different sets of the
hyperparameters τ, σ, α, β, and from each set simulate decision-chains. These parameters
should be chosen such that the resulting decisions resemble realistic situations. Moreover,
each of the cases should to some extent exhibit different characteristics. The purpose of
this is to analyse the difference in the performance of the method for two distinct situa-
tions. It is natural to assume that the information in the decisions lies in the variability
in the decisions before the cascades occur, as cascades have proved to occur relatively
fast in most of the simulations. Therefore, we would like one of the cases to resemble a
situation where many individuals are uncertain and decisions are varying. This case will
be compared to a case where cascades occur during the first few individuals, and there
presumably is less information in the simulated decision-chains.

The chosen parameter-values for the two different cases are presented in Table 5.1.
For each of these two cases, we simulate 10 chains of decisions, each of length n = 50
individuals. Figure 5.1 shows the resulting simulated decisions from each case. In all
simulations, we have let the true value X = 0. In the first case, parameters α and β
are chosen such that the overall competence in the population is rather low (close to
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τ σ α β

Case 1 0.05 1 2 50
Case 2 0.1 2 15 20

Table 5.1: Parameter choices for each of the two cases used in the simulation study.

0.5) for all individuals. Further, we use τ = 0.05, which means that there is a very
high chance to make the optimal decision. In other words, most individuals will act
rationally. Additionally, we let σ = 1 for the first case. This corresponds to a correlation
of 0.47, between the true competences and the competence estimates. Hence, competence
estimates are moderately close to the true competences. The simulated chains from Case
1 is depicted in the upper plot in Figure 5.1. About half of the simulated decision-
chains ends up as wrong cascades. This is probably due to the low competences in the
population.

For Case 2, α and β are chosen such that competences are higher, with a mean
value of 0.71. The variance of the simulated competences is also higher compared to
Case 1. This means that to a greater extent than in Case 1, some individuals will
have a higher competence, while others will have a lower competence than the mean
value. The parameter τ = 0.1, which is higher than in Case 1, but reasonably low,
meaning most individuals make the optimal decision. Nevertheless, each individual will
have a larger probability of not making the optimal decision in Case 2 compared to
Case 1. Also, σ = 2, which makes the correlation between competences and competence
estimates about 0.26. In total and compared to Case 1, individuals in Case 2 will have
an overall higher competence, but are more prone to making random decisions and has
less information about other individuals’ true competence. However, from the simulated
decisions seen in the lower plot in Figure 5.1, decisions from Case 2 are to a greater degree
correct, but less variable than in Case 1. It is therefore reasonable to believe that there
will be more ’difficult’ to estimate parameters form the situation resembled by Case 2.

5.2 Experimental setup

In this section we present a plan for the numerical experiments we conduct in this report.
We begin by assessing the convergence properties of the method, before we move on to
study the resulting posterior distributions for each of the cases.

For all experiments, we have chosen a set of parameters for the prior distributions and
a set of tuning parameters for the proposal distributions. These values are summarized
in Table 5.2. In the choice of tuning parameters for the prior distributions of α and β,
we have assumed it is reasonable to consider it known that α is rather low (somewhere
between 0 and 20) and β is higher than α (between 20 and 100). With regard to the
decision to be taken, this corresponds to the situation where the overall competence in the
population is low. Based on values for the 5 and 95 percentiles for the prior distribution of
α and β, we will expect the mean value of the competences to lie in the interval (0.51, 0.7)
with expected value E[pi] = 0.56. For Case 2, we assume it is reasonable to assume that
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Figure 5.1: The 10 decision chains simulated from Case 1 and 2.
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Case 1 Case 2 Case 2*
Prior Proposal Prior Proposal Prior Proposal

(aθi , bθi) (gθi , hθi) (aθi , bθi) (gθi , hθi) (aθi , bθi) (gθi , hθi)

τ (1.1, 0.5) (10, 0.1) (1.1, 0.5) (10, 0.1) (1.1, 0.5) (10, 0.1)
σ (5, 0.5) (10, 0.1) (5, 0.5) (10, 0.1) (5, 0.5) (10, 0.1)
α (4, 2) (7, 0.15) (4, 7) (7, 0.15) (9, 2) (7, 0.15)
β (11, 5) (7, 0.15) (4, 7) (7, 0.15) (9, 2) (7, 0.15)

p − νp = 0.4 − νp = 0.4 − νp = 0.4
p̃ − νp̃ = 1 − νp̃ = 1 − νp̃ = 1

Table 5.2: Parameter values for the prior and proposal distributions presented in Chap-
ters 4.2 and 4.3 for the hyperparameters, p and p̃ in the numerical experiments. The
initial value for p̃ is generated randomly by adding noise to the initial value of p as
described in Chapter 4.3.

we know that α and β are approximately equal, and we have chosen the same prior for
the two parameters. Based on the 5 and 95 percentiles for the priors, we expect that
the overall competences lie within (0.57, 0.92) with expected value 0.75, before observing
any data. This is a larger interval than for Case 1, meaning the prior distributions
for α and β in Case 2 are less informative than for Case 1. Lack of prior knowledge
about the parameters is resembled by choosing quite vague prior distributions. In this
way, the resulting posteriors are determined mainly by the observed data. However,
if there is little information in the system, results will be affected by changes in the
prior distribution. Because of this, we also introduce a third case, Case 2*. This case is
similar to Case 2, except a change in the parameters of the prior distributions of α and β.
We are interested in investigating the effect of adjusting the prior distributions of these
parameters such that the variances are reasonably decreased. In particular, based on the
5 and 95 percentiles of the prior distribution of α and β, we go from the situation where
we assume the competence in the population lies in the very broad interval (0.57, 0.92)
to (0.62, 0.88). This corresponds to a more specific knowledge that most competences
are neither very high nor very low.

When it comes to the choices of parameters for the prior distributions of τ and σ, we
have considered the mathematical properties of the parameters based on Figures 3.2 and
3.4. It is considered reasonable to assume that τ should be less than 1, which for the
decision in Figure 3.4 corresponds to higher than 60% probability of making the optimal
choice. Similarly, it is considered reasonable to assume that σ should be between 0 and
6, which corresponds to a correlation between 1 and 0.1.

No systematic experiments for the tuning parameters for the proposal distributions
are performed. The choice of these parameters are hence somewhat arbitrary, but are
based on some preliminary runs with focus on monitoring the acceptance rates for the
sampled parameters. Recall that acceptance rates can give us an indication of the mixing
of the resulting Markov chains, and that acceptance rates should not be either too high
or too low.



5.2. EXPERIMENTAL SETUP 35

τ (0) σ(0) α(0) β(0) p(0)

Run 1 10 10 10 10 0.9
Run 2 50 50 150 150 0.75
Run 3 1 0.01 50 1 0.51

Table 5.3: Initial values for each of the runs in Experiment 1. For each case, the hyper-
parameters summarized in Table 5.2 are used. The three different runs are performed
for Case 1, Case 2 and Case 2*.

5.2.1 Experiment 1: Convergence properties

We begin by properly investigate the convergence and mixing of the sampled chains
from the derived parameter estimation procedure. When doing inferences on output
from MCMC-methods, we assume that the samples are from the target distribution.
It is therefore crucial that the chain in fact has converged sufficiently. As mentioned
in Chapter 2.2.1, one way to assess the convergence of an MCMC-method is to run
multiple chains with different initial values. After the burn-in period, the chain should
be independent of the initial value, and the different chains should behave similarly.
Hence, this analysis will also give insight about the number of iterations to choose for
the burn-in period of each of the sampled chains. We stress that since we are interested in
estimating the full posterior of the system, we need to choose this number at an iteration
where all of the parameters have converged.

In this experiment, we use all 10 decision-chains as input to the algorithm, as it is
assumed that this gives the most stable results. We further assume that the last 20
decisions of each chain of decisions provide very little information as the decision-chains
in most cases have cascaded at an early individual. Consequently, we run this analysis for
decision-chains of length n = 30 individuals as input, both for Case 1, Case 2 and Case
2*, using the prior and proposal distributions presented in Table 5.2. We choose some
sets of different and extreme initial values for each of the parameters, which is presented
in Table 5.3. In this experiment we iterate through each input chain a total of 40000
times. Since we use 10 chains, this corresponds to 400000 updates of the hyperparameters
and 10000 updates of the chain-specific parameters.

5.2.2 Experiment 2: Testing properties of the input decision-chains

Based on some preliminary runs of the implemented method it has been found that the
method is not sufficiently stable with only one decision chain as input. We are therefore
interested in quantifying the improvement of including multiple chains. Another aspect to
consider is the payoff between including more chains and the increased usage of cpu-time.
Theoretically, one can assume that if we had an infinite amount of cpu-time and data,
for instance in terms of number of decision-chains, the method should converge perfectly.
This is obviously not possible to carry out in real life. However, as observed in Figure 5.1,
we see that after n ≈ 30 individuals, the simulated decisions are mostly stable for both
cases. Decisions will vary most during the first few decisions, before cascades occur. It is
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τ σ α β p

Initial values 10 10 10 10 0.9

Table 5.4: The initial values used in Experiment 2.

Case 1 Case 2
n = 30 n = 50 n = 30 n = 50

Run 1 1 chain 1 chain 1 chain 1 chain
Run 2 4 chains 4 chains 4 chains 4 chains
Run 3 10 chains 10 chains 10 chains 10 chains

Table 5.5: Number of input decision-chains for the runs in Experiment 2. For each case,
the same set of prior distributions, proposal distributions and initial values is used.

therefore reasonable to assume that most information in the system is contained in the
first decisions, and we will investigate if the performance of the method will be affected
by using shorter chains, where the last sequences of mostly equal decisions are removed.
If it turns out that the last parts of the chains are insignificant for the estimation of the
posterior distribution of the system, we can save ourselves for some unnecessary usage
of cpu-time.

In this experiment, we will for each of the two cases presented in Section 5.1 choose a
set of initial values, and use the parameters for the prior and the proposal distributions
listed in Table 5.2 for the M-H algorithm. The initial values used in this experiment are
listed i Table 5.4. These are chosen to be reasonably close to the true value for both cases.
We run the parameter estimation procedure using 1, 4 and 10 decision-chains as input
for each case. For each of these, we will do one run with decision-chains of length n = 30
and one run with chains of length n = 50 individuals. Since we use the same initial values
and the same tuning parameters for each run, these experiments will give us an idea of
the number of decision-chains to include, in addition to the number of decisions in each
chain to include in order to obtain stable results. The second experiment is summarized
in Table 5.5.

5.2.3 Experiment 3: Properties of the sampled posterior distribution

After having established convergence of the MCMC method, in addition to having in-
vestigating stability of the method for different variations of the input data, it is natural
to take a closer look at the resulting samples of the posterior distribution of the system.
The aim of the third experiment is to assess the accuracy of the resulting estimates from
some of the runs performed in Experiment 1. We are also interested in the differences in
the results for the different cases.

The main objective of the numerical experiments in this chapter is to assess whether
or not there is enough information in the observed chains of decisions alone to give
reasonable parameter estimates, as the large amount of unobserved variables makes it
reasonable to suspect the contrary. It is natural to assume that the accuracy of the
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resulting samples of the posterior distributions from our MCMC-method improves with
more information available. Therefore, it is interesting to compare the resulting posterior
distributions from the runs described above to the results from the situation where the
private signals of each individual, y1, . . . , yn, are assumed to be observed additionally
to the decisions. For this reason, we will repeat the runs from Experiment 1 for Case
1, Case 2 and Case 2*, but with the change that the private signals are assumed to be
known. The resulting posterior distributions will be compared to the corresponding runs
of Experiment 1, where the private signals were unobserved.

5.3 Results and discussion

In this section, we present the results of the experiments described above.

5.3.1 Experiment 1

We begin by presenting the results from Experiment 1, where we are interested in assess-
ing the convergence of the method. Figure 5.2 shows the trace-plots for the first iterations
of the first experiment for Case 1. We have zoomed in on the first 150000 iterations,
since we in this particular analysis are interested in the convergence of the chain. We
observe that the method seems to converge towards the same steady-state for all of the
parameters for the different starting values. The parameters τ and σ converges relatively
fast in all of the runs. We are however interested in the full posterior, and the system
has not converged until all parameters seem to reach some equilibrium. The parameters
α and β seem to converge more slowly. The bottom row in the figure shows the trace
plots for the competences of two arbitrary individuals, number 5 and 15. We use rather
infrequent updates of these parameters, which are specific to each of the input chains.
The figure visualizes the competences corresponding to the first out of the ten chains. In
order to find the number of iterations before the whole system has reached a steady-state,
we need to assess all the sampled competences, in addition to the other chain specific
variables y, p̃ and x for all chains. It seems to take about 2000-2500 iterations before
all parameters have converged. Since we have used 10 chains as input, this corresponds
to 80000-100000 iterations of the hyperparameters before convergence, which is about
20%-25% of the whole chain. Overall, the sampled chains seem to behave equally after
the burn-in period, which is an indicator of sufficient convergence for the chain.

Turning to the mixing properties of the chain, there does not seem to be any special
trends in the trace plots for the hyperparameters in Figure 5.2. The trace plots for the
competences p shows that after convergence, the chain often stays in the same states for
many iterations, and only very small steps are accepted. This cause bad exploration of
the target distribution. The acceptance rates of the parameters are shown in Figure 5.3.
These are overall quite high, but are particularly high for σ and τ . This may contribute
to a slow exploration, and is an indication of high autocorrelation. This is not ideal. By
construction of MCMC-samplers, two successively drawn values are dependent. However,
when the correlation between sample θ(t)i and θ

(t+k)
i decays very slowly as k increases,
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Figure 5.2: Trace plots for the first iterations of Experiment 1 for Case 1. Note that we
have zoomed into the first few iterations to visualize the convergence properties of the
chains. Initial values are indicated in the labels, and for some of the parameters these
are outside of the plot.
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Figure 5.3: Acceptance rates for the runs in Experiment 1 for case 1.

we need many iterations of the algorithm to obtain a representative sample of the target
distribution. For this reason, one could consider to adjust tuning parameters in order to
make the method propose larger steps.

The first experiment discovered that the chains for different initial values in Case 2
did not seem to converge towards the same posterior distribution for the chosen number
of iterations. The trace plots from this experiment is depicted in Figure 5.4. Estimates
for τ and σ, depicted in the upper row, seems reasonable. For α and β, it is clear that the
different chains are dependent on the different starting values. Since the competences are
governed by the parameters α and β, the tendency becomes particularly evident in the
trace plots for p5 and p15 plotted in the lowest row, where we see that the chains quickly
becomes ’glued’ to either 1 or 0.5, and stays in the same states for many consecutive
iterations. The trace plots for Case 2* is shown in Figure 5.5. Compared to the trace
plots from Case 2, the figure shows that some properties of the sampled chains improve
by assuming more prior knowledge about the parameters α and β. The mixing for the
trace plots of the personal competences seems to be better for Case 2*. However, there
is still apparent that the sampled chains are dependent on the different starting values.
This is particularly evident for Run 1, depicted as the grey curves, whereas the red and
blue curves seem to behave somewhat equally. The true values for α and β also seem
to be within the variation range of the sampled chains. It is possible that the starting
values for Run 1 is too ’far away’ from the limiting distribution. In combination with a
slow convergence rate, this may cause the chain to require many more iterations before
sufficient convergence is reached.

Summing up, the runs for Case 1 and Case 2* seem to have essentially converged.
However, convergence is slow. For certain poor initial values one will need to run the
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Figure 5.4: Trace plots for Case 2 in Experiment 1.
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Figure 5.5: Trace plots for Case 2* in Experiment 1.
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algorithm for many more iterations than performed in this experiment in order to obtain
representative samples of the limiting distribution. Some modifications of the imple-
mented algorithm may improve the rate of convergence. As discussed in Chapter 2.2.1,
the choice of proposal distribution affects the convergence, and changing these by for
example update several parameters at the time may improve the algorithm.

5.3.2 Experiment 2

We now present some results form the second experiment. As we conducted many rather
similar runs, we do not present all of them here. The overall aim of this experiment
is to investigate the stability of the method with regard to different variations of the
observed decisions used as input, and we present and summarize the key findings. Since
the overall tendencies was the same for both of the cases presented in Chapter 5.1, we
present mostly results for Case 1, and in this section only briefly discuss Case 2.

The upper and lower plots in Figure 5.6 show the trace plots from Case 1 for decision-
chains of length n = 30 and n = 50, respectively. In both figures, there is used 10 input
decision-chains. The corresponding histograms after discarding the burn-in period is
shown in the upper and lower plots in Figure 5.7. For n = 30, the true parameter
values seems to mostly lie within the variation range of the sampled posteriors. However,
the true parameter value of τ is far out in the tail. Compared to the lower plot, there
seems to be little difference. The parameters τ , σ and β seem to have equally good
mixing. Convergence happens approximately equally fast for the situations depicted in
the figures, though possibly a bit later for the longer decision-chains in the four lower
plots. The variance of the sampled τ is somewhat smaller when using n = 50, and the
samples from the posterior of α seem to converge towards 0. This will cause the sampled
competences to converge towards 0.5 for n = 50. This may, however, be reasonable, as
the true distribution for p has its spike close to 0.5. Based on these results, there seem
to be no reason to include the last decisions of chains where cascades happen early.

Much of the above-mentioned also holds for Case 2. The runs for this case gave
reasonable estimates for σ and τ , and there was negligible differences between the runs
with decision-chains of length n = 30 and n = 50. However, for this case, the estimated
posterior samples for α and β were not satisfying. The resulting posterior distributions
was different for the runs with chains of n = 30 and n = 50, but both gave estimates
unreasonably far away from the true parameter values. This leaves us with the conclusion
that there seems to be little difference between chains of length n = 30 and n = 50. It is
unnecessary to include long parts of decision chains that has already cascaded. This will
only increase the cpu-time without substantially contributing to the resulting estimates.

We now focus on the number of decision-chains to use as input in the method. Figure
5.8 shows the trace plots of the parameters σ and p15. The latter denotes the sampled
posterior competence of the arbitrarily chosen individual number 15 for the first decision-
chain used as input, for a differing number of input decision-chains, each of length n = 50.
It is clear from the plots that the method is unstable for one and four input decision-
chains, as the sampled values for σ suddenly spikes. The same tendency is observed
for the other runs in this experiment. The rightmost column shows the sampled values
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Figure 5.6: Trace plots for the hyperparameters in Case 1 for decision-chains consisting
of n = 30 (upper plot) and n = 50 individuals (lower plot). 10 decision-chains are used
as input.
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Figure 5.8: Trace plots of simulated chains for Case 1 with a differing number of input
decision chains. In all runs, it has been used chains of length n = 50. It is clear that
the derived method is becomes more stable for an increasing number of input decision
chains.

where ten input decision-chains are used, and the computations here seems to be stable,
although there is a small spike for the sampled σ-values around iteration 75000. This may
indicate that calculations are somewhat unstable even when using ten chains as input.
As previously, mixing is clearly poor for the sampled competences. The true value of the
competences is rather close to 0.5 (the true mean value for pi = 0.52), and the method
seems to reach a steady-state at 0.5, meaning it detects the overall low competences in
the population. Also for the posterior of the competences, we see that only one decision
chain as input to the method carries too little information to give reasonable estimates,
as the true value is mostly outside the variation range of the samples.

Table 5.6 contains summary statistics for the run with 10 input decision chains. The
table shows an overview of sample means along with empirical 90% credible intervals from
the marginal posterior distribution of each parameter. From the table it is clear that the
derived method does not give satisfying results for Case 2, for these particular choices
of parameters. We will discuss this further in the next experiment. Overall, the same
tendencies are however observed for both of the cases in Experiment 2. The method is
more unstable when using fewer decision-chains as input. Based on the results presented
in this subsection, four or fewer chains give numerically unstable results, whereas for ten
chains the results seem stable. Similarly, using long chains where cascades have occurred
at an early individual gives little additional information to the system compared to using
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Case 1 Case 2
True n = 30 n = 50 True n = 30 n = 50

σ 1.00 1.44 (0.28, 3.49) 1.60 (0.31, 3.91) 2.00 1.48 (0.29, 3.66) 1.3 (0.18, 4.04)
τ 0.05 0.13 (0.066, 0.24) 0.13 (0.07, 0.21) 0.10 0.09 (0.04, 0.18) 0.15 (0.07, 0.25)
α 2.00 3.27 (1.30, 6.40) 0.41 (0.24, 0.65) 15.00 2.06 (0.88, 4.05) 0.22 (0.05, 0.35)
β 50.00 36.18 (18.24, 63.55) 30.52 (16.31, 49.86) 20.00 13.60 (5.59, 25.37) 0.27 (0.11, 0.51)

Table 5.6: Posterior means together with values for the endpoints of the 90% credibility
intervals from each of the estimated marginal posterior distributions for Experiment 2
using 10 decision-chains as input.

shorter chains where only the most informative parts are included.

5.3.3 Experiment 3

Figure 5.9 shows the corresponding histograms of Run 1 for Case 1, after discarding
the burn-in period of m = 100000 iterations for the hyperparameters. These histograms
represents the posterior marginal distributions resulting from the MCMC procedure. The
red line in the plots shows the true parameter value used to simulate the decisions, while
the black line shows the sample mean. Overall, the histograms show varying results. For
the parameter τ , the true value is far out in the tail of the distribution. This suggests
that the method is not able to provide a reasonably good estimate for this parameter.
The same is the case for the parameter α, which again have an effect on the sampled
competences pi. The sampled posterior distribution looks similar for both individual 5
and 15, even though the true competence of individual 15 is slightly higher than the
average in the distribution. This might suggests that there is not enough information in
the decisions for the method to be able to distinguish the different competences between
different individuals. The parameter estimates for σ and β seems reasonable for this
particular case. However, we note that the variation of both posteriors seem very large
as many values are covered in the variation range.

As previously mentioned, there did not seem to be enough information in Case 2
for the samples to properly converge. Hence, the assumption that the resulting chains
constitute samples from the posterior distribution does not hold, and the samples cannot
be used for inference as they do not represent the distribution of interest. The differences
in performance of the method was anticipated, and is probably caused by the fact that
there is less information contained in the decisions from Case 2, in combination with the
vague prior knowledge. We therefore move directly to Case 2*. Figure 5.10 shows the
histograms corresponding to the third run in Experiment 1 for Case 2*. This run has
favourable initial values, so the sampled Markov chains seem to converge rather early,
as seen in the trace plots in Figure 5.5. The overall tendency is the same as for Case
1. For many of the parameters, the true parameter value lies within the variation range
of the sampled posterior. However, the sampled distribution for the parameter α has
a long tail, and the true value lies far out in this tail. The sampled posteriors of the
competences plotted in the lowest row seem reasonable, although the variances of the
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Figure 5.9: Histograms of the sampled marginal posteriors of the hyperparameters and
competences for individuals 5 and 15, corresponding to Experiment 1, Run 3 for Case 1.

distributions are large.
Overall, the amount of information in the decision-chains alone seems to be insufficient

for the method to give reasonably good estimates for all of the system parameters, as
the sampled joint posterior distributions are not sufficiently accurate. In Case 1, we
are for example able to detect that the competences in the population are low, but not
exactly how low. The method accepts mostly competences close to 0.5, which does not
entirely resemble the true distribution, which has its peak at a slightly higher competence.
We further need a rather specific prior knowledge about the overall competences in the
population in order to obtain reasonable estimates in Case 2. This is not necessarily
favourable, as it may be unrealistic to assume that this amount of prior knowledge
is available. Additionally, sensitivity for different priors indicates that there is little
contribution in terms of information from the decision-chains alone.

We now compare the results discussed above to the same experiments for the situation
where we assume that the private signals y are observed together with the decisions. As
previously discussed, the results for Case 2 up to this point has been poor, as the chains
does not properly converge for different starting values. The same tendency is also
evident when we condition on the private signals as well as the decisions. Since there is
little improvement by also assuming that the private signals are known, the conclusion
is that the combination of little informative decision-chains, together with vague prior
knowledge is not sufficient to obtain reasonable samples from the posterior distribution
of the system for this particular case.

The histograms in Figure 5.11 visualises the differences between the sampled marginal
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Figure 5.10: Histograms of the sampled marginal posteriors of the hyperparameters and
competences for individuals 5 and 15, corresponding to Experiment 1, run 3 for Case 2*.

posteriors in Case 2* when the private signals are assumed to be known versus unknown.
Conditioning on more information do not seem give any pronounced improvement on
the sampled posteriors of the system for Case 2*, as the marginal posteriors seem quite
similar. The same tendency is observed for Case 1. The tables 5.7-5.9 shows the mean
value and the endpoints of the equal-tailed 90% credible intervals from the sampled
marginal distributions for each case. In the tables, the left column shows summary
statistics where the private signals are assumed to be unknown, and the right columns
shows summary statistics where we assume private signals are observed. Hence, the tables
shows the differences between the situation where the private signals are observed versus
unobserved for all cases for a given run. Overall, the gain of assuming that the private
signals known seem to be small. For Case 1, slight improvements of the estimate of the
parameters σ, τ and β can be observed in terms of a sample mean that is closer to the
true value, and more accurate credible intervals for the marginal posterior distributions.
For Case 2, there is no improvement. Additionally, the sampled posterior for σ seems
to have a particularly long tail as some very large values are accepted. For Case 2*, the
different samples seem to give equally accurate estimates.
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Figure 5.11: The figure illustrates differences of the sampled marginal posteriors of the
hyperparameters and competences for individuals 5 and 15 for the situations where the
private signals are assumed to be known and unknown. The runs correspond to Run 3
in Experiment 1.

The results presented in this subsection suggest that the amount of information in
the system is insufficient. It is difficult to obtain sufficiently accurate estimates for
the posterior distribution of the parameters of interest using the implemented method.
In general, better estimates can be obtained by for example conditioning on even more
data. Further improvements can also be obtained by using even more and longer decision-
chains as input. However, this may be unrealistic to achieve when applying the method
in practice, as the amount of available decision-data may be limited. Additionally, this
will increase the required cpu-time and it may be necessary to improve the algorithm in
terms of efficiency.
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Case 1
True y unknown y known

σ 1.00 1.44 (0.30, 3.48) 1.29 (0.24, 3.20)
τ 0.05 0.17 (0.09, 0.31) 0.11 (0.04, 0.20)
α 2.00 0.18 (0.01, 0.44) 0.16 (0.01, 0.39)
β 50.00 47.10 (22.60, 81.78) 49.26 (24.08, 84.59)

Table 5.7: Summary statistics for Case 1 in Experiment 3. The setup corresponds to Run
3 in Experiment 1. The table shows posterior means along with values for the endpoints of
the 90% credibility intervals in parentheses from each of the estimated marginal posterior
distributions for the hyperparameters.

Case 2
True y unknown y known

σ 2.00 1.20 (0.24, 2.93) 14.02 (1.81, 41.17)
τ 0.10 0.13 (0.06, 0.23) 0.14 (0.07, 0.25)
α 15.00 0.36 (0.21, 0.56) 3.77 (1.81, 6.85)
β 20.00 19.63 (6.98, 41.38) 28.78 (10.95, 63.02)

Table 5.8: Summary statistics for Case 2 in Experiment 1.The setup corresponds to Run 3
in Experiment 1. The table shows posterior means along with values for the endpoints of
the 90% credibility intervals from each of the estimated marginal posterior distributions
for the hyperparameters.

Case 2*
True y unknown y known

σ 2.00 1.52 (0.30, 3.67) 1.48 (0.29, 3.61)
τ 0.10 0.10 (0.04, 0.19) 0.14 (0.04, 0.19)
α 15.00 5.73 (2.60, 10.62) 6.53 (3.30, 11.49)
β 20.00 10.89 (3.93, 23.96) 8.05 (3.54, 16.57)

Table 5.9: Summary statistics for Case 2* in Experiment 3. The setup corresponds to
Run 3 in Experiment 1. The table shows posterior means along with values for the
endpoints of the 90% credibility intervals from each of the estimated marginal posterior
distributions for the hyperparameters.
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Chapter 6

Closing remarks

In this report, we have introduced and defined a statistical model for sequential decision-
making where each individual have uncertain estimates about other individuals’ com-
petences. We derived a general expression for the probability of each possible decision
for each decision-maker, and this expression was in turn implemented numerically. For
different choices of parameter-values, we are able to simulate chains of decisions from the
proposed model. We further derived an MCMC-method for parameter estimation based
on the observed decisions, and performed a simulation study to assess the performance
of this method.

The results from the simulation study suggest that the sampled Markov chains es-
sentially converges for Case 1 and 2*. However, the convergence is slow, and assessing
the convergence of an MCMC-procedure is in general difficult. The varying accuracy
of the estimated parameters from the different marginal posterior distribution suggests
that it is difficult to obtain sufficiently accurate samples from the joint posterior distri-
bution of the system parameters based on the decision-chains alone. The method relies
on specific knowledge about the parameters α and β. Based on this, we conclude that
the information in the observed decisions alone is sparse. Allowing more information to
enter the system by assuming that the private signals y are observed as well did only
give a marginal improvement of the results. Most of the information lies in the first
parts of the decision-chains, until the cascades occur. Taking advantage of this speed up
computations. However, several chains of decisions are required to obtain stable results.

When it comes to the properties of the sampled posterior distribution, it is reasonable
to assume that parameter estimates will improve by allowing for more information to
enter the system. In particular and based on the results presented in Chapter 5, this
involves using considerably more than ten decision-chains as input, or longer and more
informative decision-chains. However, in addition to the increased demand of cpu-time,
the necessary amount of decision-chains of the same nature may be difficult to acquire
in practical situations. If it is achievable, another possibility may be to assume that one
or more of the other system variables are known, and condition on this data as well.

In future work, we suggest addressing the convergence issues of the method. In
general, this can be accomplished by running the algorithm for more iterations than
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what was done in the numerical experiments presented here. Further improvements in
order to make the algorithm more efficient involve using a more sophisticated proposal
distribution. This can be done by for example updating multiple parameters at each
iteration.
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