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Abstract

In this thesis, prediction models of systolic blood pressure are proposed, implemented,
evaluated, and compared to the Framingham model, based on data from The Troende-
lag Health Study, hereafter shortened to the HUNT Study. The ability of the models to
classify the binary systolic hypertension status of the participants is also evaluated. In ad-
dition to this, we study the effect of physical activity, measured by PAI (Personal Activity
Intelligence), on systolic blood pressure. The goal of the prediction models is to predict
the systolic blood pressure at HUNT3 for people with initially healthy blood pressure at
HUNT2, based on information from HUNT2.

Firstly, we examine the available data set from HUNT and select the relevant popu-
lation and variables from the total available data set. Secondly, we correct the effect of
blood pressure medication on the systolic blood pressure at HUNT3 for the people using
this kind of medication at the time of HUNT3. The final data set includes the systolic
blood pressure, and 15 relevant explanatory variables from HUNT2, as well as a few other
variables with various information, for n=17 365 participants. We perform an exploratory
data analysis on the final data set, where the main results are that the distribution of systolic
blood pressure at HUNT3 is approximately normal with a somewhat heavier right tail, and
the systolic blood pressure at HUNT3 is mainly correlated with the systolic and diastolic
blood pressure at HUNT2, birth year and BMI at HUNT2. Before fitting the models we
standardize the explanatory variables.

We consider four prediction models; a small and large version of a Gaussian general-
ized linear model, and a small and a large version of a gamma generalized linear model.
In addition to this, we implement a modified version of the Framingham model, which is
a well-known prediction model of hypertension risk from literature, on our data set. We
immediately observe that the fitted prediction generalized linear models have very similar
regression coefficients and residuals. Furthermore, we discover that the standard devia-
tion of the residuals depends linearly on the predicted systolic blood pressure and on the
explanatory variables. We also observe that the effect of physical activity, measured by
PAI, on the predicted systolic blood pressure is surprisingly small. Finally, we evaluate
the performance of the models with some common evaluation methods such as root mean
squared error, Brier score, Continuous Rank Probability Score, PIT diagrams, sensitivity,
specificity, and C-statistic.

We conclude that the prediction models we propose are able to identify some clear
trends in the data, for instance the importance of birth year and previous systolic and di-
astolic blood pressure. Furthermore, they generally predict a higher probability of systolic
hypertension for the participants who become systolic hypertensive, and have a C-statistic
similar to C-statistic of the Framingham model by Parikh et al. (2008). However, the vari-
ances in the individual prediction distributions are large and the models are not able to
accurately predict the systolic blood pressure at HUNT3. As possible future work we sug-
gest including lifestyle explanatory variables from later time points, for instance HUNT3,
and choosing a prediction model that models the variance.
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Sammendrag

I denne oppgaven blir prediksjonsmodeller for systolisk blodtrykk foreslått, implementert,
evaluert og sammenlignet med Framingham modellen, basert på data fra Helseundersøkelsen
i Trøndelag, heretter forkortet til HUNT-studien. Modellens evne til å klassifisere den
binære systoliske hypertensjon statusen til deltakerne vil også evalueres. I tillegg til dette
så ser vi nærmere på effekten fysisk aktivitet, målt gjennom PAI (Personlig Aktivitets-
Intelligens), har på det systoliske blodtrykket. Målet til prediksjonsmodellene er å predikere
det systoliske blodtrykket ved HUNT3 for personer som i utgangspunktet har sunt blodtrykk
ved HUNT2, basert på informasjon fra HUNT2.

Vi starter med å utforske det tilgjengelige datasettet fra HUNT og velge ut de relevante
deltakerne og variablene. Deretter korrigerer vi effekten av blodtrykksmedisin på det sys-
toliske blodtrykket ved HUNT3 for deltakerne som bruker slik medisin ved HUNT3. Det
endelige datasettet inneholder det systoliske blodtrykket og 15 relevante forklaringsvari-
abler fra HUNT2, samt noen få ekstra variabler med diverse nyttig informasjon, for n= 17
365 deltakere. Vi utfører en utforskende dataanalyse av det endelige datasettet, der hove-
dresultatene er at distribusjonen til det systoliske blodtrykket ved HUNT3 er tilnærmet nor-
malfordelt med en litt tyngre høyre hale, og at det systoliske blodtrykket ved HUNT3 hov-
edsakelig er korrelert med det systoliske og diastoliske blodtrykket ved HUNT2, fødselsår
og BMI ved HUNT2. Vi standardiserer så forklaringsvariablene før vi tilpasser modellene.

Vi foreslår fire prediksjonsmodeller; en liten og en stor versjon av en Gaussisk gener-
alisert lineær modell, og en liten og en stor versjon av en gamma generalisert modell. I
tillegg til dette så implementerer vi en modifisert versjon av Framingham-modellen, som er
en velkjent prediksjonsmodell for risk av hypertensjon fra litteraturen, på vårt datasett. Vi
oppdager umiddelbart at de tilpassede prediksjonsmodellene har veldig like regresjonsko-
effisienter og residualer. Videre ser vi at standardavviket til residualene avhenger lineært
av det predikerte systoliske blodtrykket og forklaringsvariablene. Vi observerer også en
overraskende liten effekt av fysisk aktivitet, målt gjennom PAI, på det predikerte systoliske
blodtrykket. Til slutt, bruker vi noen kjente evalueringsmetoder som rot-middel-kvadrat-
avvik, Brier score, Continuous Rank Probability Score, PIT diagram, sensitivitet, spesi-
fisitet og C-statistikken til å evaluere modellenes prediksjoner.

Vi konkluderer med at prediksjonsmodellene vi foreslår er i stand til å identifisere
noen klare trender i datasettet, for eksempel viktigheten av fødselsår og tidligere sys-
tolisk og diastolisk blodtrykk. Modellene predikerer stort sett høyere sannsynlighet av
systolisk hypertensjon for de som blir systolisk hypertensive, og har en C-statistikk som
er lik C-statistikken til Framingham modellen av Parikh et al. (2008). På den andre siden
så er variansen i de individuelle prediksjonsfordelingene stor og modellene klarer ikke å
gi nøyaktige prediksjoner av det systoliske blodtrykket ved HUNT3. Som mulig videre
arbeid foreslår vi å inkludere livsstilsvariabler fra senere tidspunkter, for eksempel ved
HUNT3, og å velge en prediksjonsmodell som modellerer variansen.
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Chapter 1
Introduction

Essential hypertension is a medical condition that affects more than a billion people glob-
ally and is one of the leading causes of premature death according to the World Health
Organization. The symptoms of hypertension are often vague, if there at all, which causes
many people to have undetected hypertension. Since untreated hypertension increases
the risk of heart attack, heart failure, irregular heartbeat, and kidney failure, this is a big
problem (WHO, 2019). A way of predicting hypertension would make patients and doc-
tors able to start early preventive measures and treatments, and thus decrease the human
suffering and economic consequences caused by hypertension.

WHO (2019) defines hypertension as persistently elevated blood pressure. The blood
pressure varies as the heart contracts and relaxes, and is often measured by the systolic
and the diastolic blood pressure. The systolic blood pressure is defined as the maximum
blood pressure when the heart contracts and the diastolic blood pressure is defined as the
minimum blood pressure while the heart rests. The criteria for a hypertension diagnosis is
if the systolic blood pressure is measured as greater than or equal to 140 mmHg, and/or
the diastolic blood pressure is measured as greater than or equal to 90 mmHg, for both
measurements taken on two separate days (WHO, 2019).

Throughout the course of a life, the systolic and diastolic blood pressure will naturally
change. Usually the systolic and diastolic blood pressure increase with age until approx-
imately the age of 50. However, while the systolic blood pressure tends to continue to
increase, the diastolic blood pressure tends to flatten out, or even lower somewhat, after
the age of 50. This explains why it is increasingly common to get hypertension as you
age and why systolic hypertension is the most common form of hypertension for people
above the age of 50. Some important lifestyle factors that have been shown to increase the
risk of hypertension are too high body weight, too much salt, and alcohol and not enough
fruit, vegetables, and potassium in the diet, and low levels of physical activity (Chobanian
et al., 2003). In fact, Cornelissen and Smart (2013) has performed a systematic review and
meta-analysis of studies that look at the effect of exercise on blood pressure and found that
both endurance and resistance training lower the systolic and the diastolic blood pressure.

Many papers proposing and evaluating risk prediction models for hypertension have
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been published in the statistical literature. Sun et al. (2017) gives an overview of 26 such
studies including a total of 48 risk prediction models for hypertension. The majority of
the studies include traditional explanatory variables such as body mass index (BMI), age,
systolic blood pressure, diastolic blood pressure and parental history of hypertension, etc.,
while only 6 studies include genetic risk scores. The studies have cohorts from the US,
Europe, China, Japan, Korea, Iran, and India. Follow-up times vary from study to study,
with the shortest at 3 years and the longest at 30 years. However, the majority of the
studies have a follow-up time between 3 and 10 years. To predict the risk of hypertension
the studies propose different methods, with logistic regression being the most common,
followed by COX regression, and Weibull regression, and one case of linear regression.
As a measure of the discrimination ability of the models, many of the papers report the area
under the receiver-operator statistic (AUC) or the C-statistic (Harrell Jr. et al., 1996), and
the results range from 60% to 90% for the C-statistic and from 0.64 to 0.97 for the AUC.
As a measure of the calibration ability of the models the Hosmer-Lemeshow chi-square
statistic (Hosmer and Lemeshow, 1989) is reported for 15 of the 48 models, and all of them
report a value below 16. The Framingham model proposed by Parikh et al. (2008) has a
good C-statistic and is one of four models with Hosmer-Lemeshow chi-square statistics
below 5. In addition to this, only a few of the models have been externally validated, yet
the Framingham model has been externally validated 7 times, the most times of any of the
models in the review paper by Sun et al. (2017) by far. There were noticeable differences
in the performances of the Framingham model on different populations (Sun et al., 2017).

The topic of this thesis was inspired by a project called ”A Digital Twin For Essential
Hypertension Management And Treatment- My Medical Digital Twin”, hereafter short-
ened to MyMDT. It is a cross-disciplinary project lead by Prof. Ulrik Wisloeff, involving
researchers from departments such as Medicine, Mathematics, Computer Science, etc. at
the Norwegian University of Science and Technology (NTNU). To reach its goal of im-
proving the prevention and treatment of hypertension, MyMDT will use machine learning
to merge a physical model of the cardiovascular system with personal data collected from
custom-made wearable sensors. The result will be a personalized digital representation of
the user, called a medical digital twin, which can be used in a clinical decision support
system (NTNU, 2020). MyMDT bases its models, in part, on data from the Troendelag
Health Study, hereafter shortened to the HUNT Study.

The HUNT Study is a large longitudinal population health study in a county in Norway,
which started in 1984 and is still ongoing. In total, the HUNT study has gathered health
information and biological samples from over 230 000 participants. In addition to many
other health variables, the HUNT study includes measurements of the systolic and diastolic
blood pressure, and other variables related to the blood pressure. All the inhabitants in
the county Troendelag in Norway who were over 20 years old at the time of the survey
were invited to participate. This information, as well as more detailed information about
the HUNT Study, can be found on the webpage of the HUNT Databank (https://
hunt-db.medisin.ntnu.no/hunt-db/#/).

The goal of this thesis is to predict the systolic blood pressure at the time of HUNT3
for people with initially healthy blood pressure at HUNT2, based on data from HUNT2.
We predict only the systolic blood pressure both for the sake of simplicity and because the
review paper by He and Whelton (1999) found that there is a stronger association between
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systolic blood pressure and coronary heart disease, stroke, and end-stage renal disease.
To reach this goal we use continuous generalized linear models, as well as a modified
version of the Framingham model. We choose to compare our models to, and implement
a modified version of, the Framingham model on our data because the Framingham model
is a well-known model and has been externally validated many times. Even though the
models proposed by us only predict the continuous systolic blood pressure, their ability
to classify the binary systolic hypertension status of the participants at HUNT3 is also
evaluated. In addition to this, we focus especially on the effect of the physical activity
measurement PAI, proposed by Nes et al. (2017), on the predicted systolic blood pressure.

Both the MyMDT project and this thesis aim to create good prediction models of blood
pressure and hypertension based on data from the HUNT Study. However, the MyMDT
project also includes current data from wearable sensors, while the models in this thesis
will base its predictions solely on information from HUNT2. In this respect, the results in
this thesis can be seen as a benchmark for the MyMDT models.

In Chapter 2 we present the available data set, explain how we select the relevant
data from the total data set, and perform an exploratory data analysis. The statistical
framework is presented in Chapter 3, before we present the proposed prediction models,
the Framingham model, and the evaluation schemes in Chapter 4. The numerical details of
the models and their performances on the systolic blood pressure from HUNT3 are given
in Chapter 5. We also compare the performances of the models in Chapter 5. The results
are discussed, we reach a conclusion and suggest possible future work in Chapter 6.

3
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Chapter 2
Data and exploratory analysis

This chapter aims to present the data set used in this thesis. This is done by presenting the
available data set, explaining how the relevant data is selected from the total data set, and
presenting the insights we gained through exploratory data analysis.

2.1 Available data set

In this thesis, we are working with data from the Troendelag Health Study, hereafter short-
ened to the HUNT Study, which is a large longitudinal population health study in a county
in Norway. The study consists of questionnaire data, clinical measurements, and sam-
ples collected through four surveys named HUNT1 (1984-1986), HUNT2 (1995-1997),
HUNT3 (2006-2008), and HUNT4 (2017-2019). All the inhabitants in the county over 20
years of age at the time of the survey were invited to participate in the surveys. This infor-
mation, as well as more detailed information about the four HUNT surveys, can be found
on the webpage of the HUNT Databank ( https://hunt-db.medisin.ntnu.no/
hunt-db/#/). The data available to us includes 237 variables for all the 78 962 people
who participated in HUNT2 and/or HUNT3.

2.1.1 Relevant data

We are not interested in all of the available data. The reason for this is that our goal is
to create prediction models of systolic blood pressure at HUNT3 from information from
HUNT2, for people who are initially healthy with respect to blood pressure. To select
the relevant data from the available data, we include participants who meet the inclusion
criteria and exclude the rest. We have defined the inclusion criteria in cooperation with
Emma Ingström, a PhD-student in the MyMDT-project. Our inclusion criteria, listed in
order of importance, are

• the participant has participated in both HUNT2 and HUNT3

5
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• the participant doesn’t have any missing values of mean systolic or mean diastolic
blood pressure measurements from HUNT3

• the participant is initially healthy with respect to blood pressure. In other words,
the participant has no self-reported, or measured, history of cardiovascular disease,
diabetes or hypertension at the time of HUNT2

• the participant has no missing values of cardiovascular disease, diabetes or hyper-
tension at the time of HUNT2

• the participant doesn’t have any missing values of their use of blood pressure medi-
cation at the time of HUNT3

• the participant has no missing values of the proposed explanatory variables (listed
in Section 2.1.3)

• the participant has no missing values of cardiovascular disease or diabetes at the
time of HUNT3

2.1.2 Selecting the population
We start by getting a quick overview of the available data set and find that it has 237
columns, one for each variable, and 78 962 rows, one for each participant. The columns
are either factors or contain numeric values. Each participant is identified by a project
person identification (PID) number, and there are no duplicates in this list, which means
that there is a one-to-one correspondence between row and participant.

Since we are only interested in persons who participated in both HUNT2 and HUNT3,
we remove the persons who only participated in one of the surveys. This was the case for
46 496 of the participants in the data set, and we are thus left with 32 466 participants.

We want to create prediction models of systolic blood pressure at HUNT3 for initially
healthy people at HUNT2, so we remove participants who have missing blood pressure
measurements at HUNT2, are not healthy with regard to blood pressure at the time of
HUNT2, have missing blood pressure measurements from HUNT3, or missing informa-
tion about their use of blood pressure medication at the time of HUNT3.

For the sake of clarity, we present our definition of cardiovascular disease, diabetes,
and hypertension. Throughout this thesis we define cardiovascular disease, hereafter de-
noted CVD, as a self-reported history of either heart attack, angina pectoris, or stroke. A
participant is defined as diabetic if they have a self-reported history of diabetes or if their
measured non-fasting glucose level is above 11.1 mmol/L, as this probably indicates dia-
betes (Chobanian et al., 2003). In this thesis, we use a common definition of hypertension
which is mean systolic blood pressure equal to or higher than 140 mmHg and/or mean
diastolic blood pressure equal to or higher than 90 mmHg and/or current or previous usage
of blood pressure medication (Sun et al., 2017).

In Figure 2.1 the health status of the participants at the time of HUNT2 are presented.
It is clear from the figure that there are relatively few people with CVD or diabetes, while
many of the participants are hypertensive. In fact, approximately 39% of the people who
participated in both HUNT2 and HUNT3 were defined as hypertensive at the time of

6



FALSE

TRUE

NA

0 10000 20000 30000

CVD

FALSE

TRUE

NA

0 10000 20000 30000

Diabetes

FALSE

TRUE

NA

0 5000 10000 15000 20000

Hypertension

#P
ar

tic
ip

an
ts

Figure 2.1: The health status at HUNT2 of the participants who participated in both HUNT2 and
HUNT3, with regards to cardiovascular disease (CVD), diabetes, and hypertension. TRUE indicates
that the participant has the illness, while FALSE indicates the opposite, and NA indicates a missing
value.

HUNT2. We also observe that there seems to be a small number of missing values in
these variables. To examine the missing values further, and get a closer look at the missing
values in the other variables relevant for selecting the correct population, see Figure 2.2.
After removing all the people who don’t fulfill the health requirements and have missing
values of blood pressure from HUNT2 or HUNT3, or the specified illnesses at HUNT2 or
blood pressure medication use at HUNT3, we are left with 19 126 participants.

2.1.3 Considering explanatory variables

After selecting the population we want to study and use for our prediction model, a natural
next step is to consider which explanatory variables to include in our model. Based on vari-
ables found to be important in Sun et al. (2017) and Parikh et al. (2008), and advice from
Emma Ingström, a PhD-student also working on HUNT Study Data, we propose a set of
variables from HUNT2 that we believe to be possibly important explanatory variables. The
variables we consider are listed below with a short explanation. More detailed information
can be found by searching for the variable name, given in parentheses, in the HUNT Data-
bank (url: https://hunt-db.medisin.ntnu.no/hunt-db/#/). Proposed ex-
planatory variables from HUNT2:

• Mean systolic blood pressure (BPSystMn23@NT2BLM) A numeric variable con-
taining the rounded arithmetic mean of the second and third measurement of the
systolic blood pressure. The measurements are given in mmHg, and were taken
using a blood pressure cuff around the upper arm and a Dinamap device.
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Figure 2.2: Missing values in variables of health regarding blood pressure of the people who par-
ticipated in both HUNT2 and HUNT3. The percentage of missing values is shown for each relevant
variable, and the number at the end of the variable name indicates whether the variable is from
HUNT2 or HUNT3.

• Mean diastolic blood pressure (BPDiasMn23@NT2BLM) A numeric variable con-
taining the rounded arithmetic mean of the second and third measurement of the di-
astolic blood pressure. The measurements are given in mmHg, and were taken using
a blood pressure cuff around the upper arm and a Dinamap device.

• Birth year A numeric variable containing the year the participant was born. The
values were found in The Norwegian National Registry.

• Sex A factor with two levels, ”Female” and ”Male”, describing the sex of the par-
ticipants. These values were found in the Norwegian National Registry.

• BMI (Body Mass Index) (Bmi@NT2BLM) A numeric variable containing the Body
Mass Index of the participant. This value is calculated by dividing a person’s weight
in kilograms by the square of their height in meters (Keys et al., 1972), and is there-
fore measured in kg/m2.

• PAI (Personal Activity Intelligence) A factor with the levels ”Low”, ”Moderate”
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and ”High” describing the participants’ PAI score. A PAI score equal to or below 49
is categorized as ”Low”, a PAI score in the interval (49, 99] is categorized as ”Mod-
erate” and a PAI score above 99 is categorized as ”High”. PAI, short for Personal
Activity Intelligence, is a measure of physical activity defined by Nes et al. (2017).
This score is calculated from HUNT variables describing the number of hours of
self-reported light physical activity, ExeLigDuLY@NT2BLQ1, and hard physical
activity, ExeHarDuLY@NT2BLQ1, per week during the last year.

• RecPA (Physical activity above/below recommended level) A boolean variable that
describes whether the participant is meeting the recommended level of physical ac-
tivity. It is TRUE if the physical activity of the participant is higher or equal to the
recommended level, and FALSE if not. MVPA is a measure of physical activity
defined by Ernstsen et al. (2016), and the recommended level of physical activity
is defined as an MVPA score of 2.5. The MVPA score is derived from HUNT
variables describing the number of hours of self-reported light physical activity,
ExeLigDuLY@NT2BLQ1, and hard physical activity, ExeHarDuLY@NT2BLQ1,
per week during the last year.

• Hypertensive parents A boolean variable which is TRUE if the participant has re-
ported that one or both of their parents have ever been hypertensive, and FALSE
otherwise. It is created from the HUNT variables BPHigMothEv@NT2BLQ2,
BPHigFathEv@NT2BLQ2, BPHigBrotEv@NT2BLQ2, BPHigSistEv@NT2BLQ2,
BPHigChiEv@NT2BLQ2, BPHigFamNon@NT2BLQ2, which describe the family
history of hypertension.

• Alcohol A numerical variable that contains the total number of glasses of alco-
hol the participant has consumed during the last 14 days. This variable is cre-
ated by adding the number of glasses of beer (AlcBeL2WN@NT2BLQ1), wine
(AlcWiL2WN@NT2BLQ1) and spirits (AlcLiL2WN@NT2BLQ1) consumed during
the last 14 days.

• Smoking (SmoStat@NT2BLQ1) A factor with the levels ”Never smoked daily”,
”Ex smoker daily”, and ”Current smoker daily”, which contains the self-reported
smoking habits of the participant. For convenience, the levels are called Never,
Previous, and Current, respectively, for the rest of this thesis.

• Cholesterol (SeChol@NT2BLM) A numerical variable which contains the choles-
terol in a non-fasting blood sample from the participant. The measurements are
given in mmol/L.

• HDL Cholesterol (SeHDLChol@NT2BLM) A numerical variable which contains
the HDL cholesterol in a non-fasting blood sample from the participant. The mea-
surements are given in mmol/L.

• Non-fasting blood glucose (SeGluNonFast@NT2BLM) A numerical variable which
contains the glucose in a non-fasting blood sample from the participant. The mea-
surements are given in mmol/L.
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Figure 2.3: Missing values in the proposed explanatory variables. The percentage of missing values
is shown for each explanatory variable. All the variables are from HUNT2.

• GFR (Glomerular filtration rate) (SeGluNonFast@NT2BLM) A factor with 5
levels ”Stage 1: GFREst > 90 ml/min”, ” Stage 2: GFREst 60-89 ml/min”, ” Stage
3: GFREst 30-59 ml/min”, ”Stage 4: GFREst 15-29 ml/min” and ”Stage 5: GFREst
< 15 ml/min” which describes the estimated glomerular filtration rate stage of the
participant. For convenience, the levels are called Stage 1, Stage 2, Stage 3, Stage
4, and Stage 5, respectively, for the rest of this thesis. The value is estimated from a
blood sample from the participant.

• Creatinine (SeCreaCorr.NT2BLM) A numerical variable containing the creati-
nine level in a blood sample from the participant. The measurements are given in
µmol/L.

• Education level (Educ@NT2BLQ1) A factor with five levels ”Primary school 7-10
years, continuation school, folk high school”, ”High school, intermediate school,
vocational school, 1-2 years high school”, ”University qualifying examination, ju-
nior college, A levels”, ”University or other post-secondary education, less than 4
years”, ”University/college, 4 years or more”, which describes the participants high-
est level of education. For convenience, the levels are called Level 1, Level 2, Level
3, Level 4, and Level 5, respectively, for the rest of this thesis.

We would like to include only participants with no missing values of the explanatory
variables included in the model. To examine if any of the variables have too many missing
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values, such that it might not be worth including it as an explanatory variable, the number
and percentage of missing values in each proposed explanatory variable is shown in Figure
2.3. It is clear that alcohol has the biggest amount of missing values. In fact, more than
40% of participants have missing information about their alcohol consumption during the
last 14 days. Removing these people would downsize our data set by a great amount. In
addition to this, several studies have not listed alcohol as significant in relation to blood
pressure prediction (Parikh et al., 2008; Sun et al., 2017). For these reasons, we decide not
to include alcohol consumption as an explanatory variable in our prediction models. There
are some missing values in some of the other variables as well, but small amounts relative
to the total number of observations. Therefore, we choose to include these variables,
and remove the participants with missing values in the explanatory variables listed above
(excluding alcohol). We are left with 17 733 participants.
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Figure 2.4: Missing values in variables on health regarding blood pressure at the time of HUNT3.
The percentage of missing values is shown for each evaluation variable. All the variables are from
HUNT3.

2.1.4 Health during HUNT3

We take a closer look at some variables that contain information about the blood pressure-
related health of the participants at the time of HUNT3. The reason for this is that we want
to know who is on blood pressure medication during HUNT3 such that we can correct the
effect the blood pressure medication has on the measured blood pressure. In addition to
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this, we want to know who has a history of diabetes or CVD at the time of HUNT3. The
reason for this is that these illnesses are associated with hypertension (Chobanian et al.,
2003), and we want to have the opportunity to check how our prediction models perform
on these subgroups.

We have already removed the participants with missing information about their use
of blood pressure medication at the time of HUNT3 when we selected the population.
According to Paz et al. (2016) it is reasonable to add 15 mmHg to the mean systolic blood
pressure and 10 mmHg to the mean diastolic blood pressure to get a blood pressure value
similar to what it would have been if the participant had not been using blood pressure
medication.

In Figure 2.4 we see that there are no missing values in the history of CVD, and rel-
atively few missing values in the history of diabetes, at HUNT3. Since there are so few
participants with missing values, we conclude that it is worth removing these participants
such that it is easier if we choose to evaluate the performance of the prediction models on
these subgroups later on.

After removing the participants with missing values of CVD and diabetes at the time
of HUNT3, we are left with 17 365 participants.

2.2 Exploratory data analysis

2.2.1 Response variable

We start our exploratory data analysis by looking at the blood pressure measurements
from HUNT3, see Figure 2.5. It is clear that both the diastolic and systolic blood pressure
seems to approximately follow a Gaussian distribution. The systolic blood pressure has
a somewhat heavier right tail than the diastolic blood pressure. This might be because
the diastolic blood pressure tends to decrease with age after one turns 60 years, while the
systolic blood pressure tends to increase linearly with age (Franklin et al., 1997). Another
interesting observation is that even though we excluded all the people who were hyper-
tensive at the time of HUNT2, there is a relatively large portion of the participants who
are hypertensive, ie. above the red line, at the time of HUNT3. We see this more clearly
in Figure 2.6, where we observe that approximately 20% of the participants are systolic
hypertensive at the time of HUNT3. Our criteria for systolic hypertension is that the mean
systolic blood pressure, of measurements taken on two separate days, is above 140 mmHg.

Since we are using the systolic blood pressure from HUNT3 as the response variable in
our prediction model, we want to examine it in more detail. From Figure 2.5 we know that
the distribution looks approximately Gaussian with a heavier right tail. This is examined
further in Figure 2.7, where it is clear that the systolic blood pressure has a lighter left
tail and a heavier right tail than a normal distribution. However, it is not very far from a
Gaussian distribution.

We move on to check if the correction of the blood pressure measurements from people
using blood pressure medication, details in Section 2.1.4., is reasonable. In Figure 2.8 both
the corrected and the uncorrected systolic blood pressure from HUNT3 is shown. We see
that without correction the mean of the blood pressure of participants using blood pressure
medication, marked by the blue line, is just slightly higher than the mean of the blood
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Figure 2.5: The systolic and diastolic blood pressure of the participants at HUNT3. The red line is
marking the hypertension threshold, and is thus at 140 mmHg for the systolic blood pressure and 90
mmHg for the diastolic blood pressure.
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Figure 2.6: The number of participants with systolic hypertension at HUNT3. TRUE indicates
systolic blood pressure ≥ 140 mmHg, and FALSE indicates systolic blood pressure < 140 mmHg.
Approximately 20% of the participants had systolic hypertension at the time of HUNT3.

pressure of the participants not using blood pressure medication, marked by the black line.
The corrected systolic blood pressure values have a higher mean, yet the total distribution
of the systolic blood pressure still seems reasonable. The distribution is still approximately
Gaussian, and there are no big outliers nor multiple peaks. Since the correction seems
reasonable, we use the corrected version of the systolic blood pressure from now on.

Before we move on to explore the explanatory variables, it is interesting to examine
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Figure 2.7: A normal QQ-plot of the systolic blood pressure of the participants at HUNT3.
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Figure 2.8: The plot to the left shows the uncorrected systolic blood pressure measurements from
HUNT3. The plot to the right shows the systolic blood pressure at HUNT3 where the effect of blood
pressure medication has been corrected. The participants who were currently on blood pressure
medication at the time of HUNT3 are presented in turquoise, and other participants are presented
in light red. The blue and black lines are marking the mean of the systolic blood pressure of the
participants, respectively, using and not using blood pressure medication at HUNT3.

the systolic blood pressure of the participants with diabetes or CVD at the time of HUNT3,
ie. the illnesses we excluded in HUNT2. In Figure 2.9 we see that for both diabetes and
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CVD the mean of the systolic blood pressure of the affected participants is slightly higher
than the mean of the non-affected participants.
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Figure 2.9: These plots show the systolic blood pressure of the participants at HUNT3. In the left
plot, the participants with diabetes at the time of HUNT3 are presented in turquoise, and the other
participants are presented in light red. In the right plot, the equivalent is true for participants with
CVD. The blue and black lines in the left plot are marking the mean of the systolic blood pressure
of the participants who are, respectively, suffering from diabetes or not suffering from diabetes at
HUNT3. The same goes for the lines in the right plot, but for participants with CVD.

2.2.2 Explanatory variables
In this section, we want to examine the explanatory variables, and see how they are cor-
related with each other and the response. A figure showing the correlation between all
the explanatory variables, both numerical and categorical, and the response can be found
in the Appendix. To get a quick overview, we start by looking at the correlation between
all the continuous variables and the continuous response, see Figure 2.10. Not surpris-
ingly, the systolic blood pressure from HUNT2 has the highest positive correlation with
the systolic blood pressure from HUNT3, followed closely by the diastolic blood pressure
from HUNT2. More interestingly, we see a noticeable negative correlation between the
response, ie. the systolic blood pressure from HUNT3, and birth year, and a somewhat
smaller positive correlation between the response and both BMI and cholesterol. We ex-
amine these relations in more detail later in this section. Another interesting observation
is the negative correlation between birthyear and cholesterol. We divide the explanatory
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variables into four categories: Basic information, Blood pressure, Lifestyle, and Blood
samples, and start examining the explanatory variables in the Basic information category.
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Figure 2.10: The correlation between all the continuous explanatory variables from HUNT2 and
the continuous response, ie. the systolic blood pressure from HUNT3. The number at the end of the
variable name indicates which HUNT survey the variable belongs to.

Basic information

In Figure 2.11 a) we see the distribution of the participants’ birth year. The oldest partic-
ipant was born in 1910, ie. 98 years old at the end of the HUNT3 survey. In contrast, the
youngest participant was born in 1977 and turned 20 during the last year of the HUNT2
survey. This was the cut-off for being allowed to participate in HUNT2, and we see this
cut-off clearly in Figure 2.11 a). Both mean and median birth year is 1954, and thus the
median age of the participants is approximately 42 years during HUNT2 and 53 years
during HUNT3. This is slightly higher than the median age of the general Norwegian pop-
ulation, which has a median age of 39.8 years, according to Worldometer (2020). This is
expected due to the minimum age limit for HUNT2. If we don’t consider the cut-off, the
values seem to follow an approximately Gaussian distribution, with a small spike at the
median 1954.

The relationship between the systolic blood pressure from HUNT3 and birth year is
presented in Figure 2.11 b). In general, there seems to be a negative correlation, which
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Figure 2.11: a) The distribution of the birthyear of the participants. (b) The systolic blood pressure
from HUNT3 versus the birthyear of the participants.

coincides with Figure 2.10 where the correlation is shown to be -0.31. It is not a completely
linear relationship, which is particularly noticeable at the extremes of the birth year range.
On the other hand, there are many fewer participants in the youngest and oldest age groups,
which might explain why these age groups deviate from the trend. The variance in systolic
blood pressure seems to increase slightly with age, ie. decrease with birth year. One could
speculate that this increase in variation is because lifestyle choices accumulate with the
years and contribute to either a stable systolic blood pressure stable or to an increase in
systolic blood pressure.

We move on to study the amount of female versus male participants, and the relation-
ship between sex and systolic blood pressure. From Figure 2.12 a) it is clear that there are
significantly more women than men among our participants. In fact, 61.93% of the par-
ticipants are female, while only 49.61% of the general Norwegian population is female,
according to Statistics Norway (2018).

In Figure 2.12 b) we see the distribution of the systolic blood pressure from HUNT3
for each sex. Males have a clearly higher median systolic blood pressure than females.
Another interesting observation is that it seems like the females have a larger variation in
systolic blood pressure, but this might be due to the higher number of female participants.

Blood pressure

In this section, we explore the explanatory variables related to blood pressure. The distri-
butions of the systolic and diastolic blood pressure from HUNT2 seem to be approximately
Gaussian when disregarding the hypertension cut off, and can be found in Figure 6.2 in
the Appendix. We already know from Figure 2.10 that systolic and diastolic blood pres-
sure from HUNT2 are correlated with the systolic blood pressure from HUNT3. This can
also be seen more clearly in Figure 2.13. From this figure, we also observe that there is a
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Figure 2.12: a) Sex of the participants (b) Systolic blood pressure from HUNT3 versus sex of the
participants

higher correlation between blood pressure measurements from the same survey, than the
systolic blood pressure measurements from different surveys. The multicollinearity caused
by the correlation between systolic and diastolic blood pressure from HUNT2 might lead
to challenges if we include both as explanatory variables in the prediction models.

We are also interested in the hypertension status of the parents of the participants. In
Figure 2.14 a) we see that approximately 32% of the participants have at least one parent
with a history of hypertension. Parikh et al. (2008) concluded that parental hypertension
is a significant predictor of hypertension. In contrast, in Figure 2.14 b) parental hyper-
tension seems to have a very small effect on the systolic hypertension of the participant.
The participants with at least one hypertensive parent have a very slightly higher median
systolic blood pressure than the other group, but this is almost not noticeable. One could
speculate that the reason for the small effect observed here is that we have excluded all the
participants who were hypertensive at the time of HUNT2 and that we would have seen a
bigger effect if these participants had been included.

Lifestyle

It is interesting to study the variables related to the lifestyle of the participants at the
time of HUNT2, and see how these relate to the systolic blood pressure at the time of
HUNT3. The underlying assumption in including variables describing the lifestyle of the
participants approximately 11 years before the time of the predictions is that the lifestyle
of the participants is fairly constant.

We start by examining the BMI of the participants at the time of HUNT2, see Fig-
ure 2.15 a). The distribution seems approximately Gaussian, but with a slightly heavier
right tail and some outliers of BMI as high as 52.8 kg/m2. The most common value is
23.8 kg/m2, and the mean is 25.3 kg/m2. We observed a positive correlation of 0.21 be-

18



1

0.56

0.44

0.56

1

0.39

0.44

0.39

1

SystolicBP2

DiastolicBP2

SystolicBP3

Sys
to

lic
BP2

Dias
to

lic
BP2

Sys
to

lic
BP3

−1.0

−0.5

0.0

0.5

1.0
Correlation

Figure 2.13: Correlation between systolic and diastolic blood pressure measurements from HUNT2
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name indicates which HUNT survey the variable belongs to.
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Figure 2.14: a) The distribution of participants with at least one parent with a history of hyperten-
sion at the time of HUNT2 ; (b) Systolic blood pressure from HUNT3 versus a parental history of
hypertension from HUNT2.

tween BMI from HUNT2 and the systolic blood pressure from HUNT3 in Figure 2.10.
We examine this relationship further in Figure 2.15 b) and notice that overall the median
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systolic blood pressure increases with the BMI. It seems to increase linearly for BMI from
15 to 35 kg/m2, which includes most of the participants. The change in median systolic
blood pressure flattens out between 35 kg/m2 to 50 kg/m2, and then increases again for
the (50,55] kg/m2 group. This might indicate a generally nonlinear relationship between
systolic blood pressure and BMI. However, there are many fewer participants in the upper
BMI range, and the variance seems to be bigger, so it is hard to say for certain. Another in-
teresting observation is that the participants with the highest systolic blood pressure have a
BMI between 20 and 30 kg/m2, which is within the normal and overweight range (Ardern
et al., 2004). This might just be because the majority of participants lie within this range.
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Figure 2.15: a) The distribution of BMI of the participants at the time of HUNT2 (b) Systolic blood
pressure from HUNT3 versus BMI from HUNT 2.

In this thesis we are particularly interested in the effect physical activity might have on
hypertension. We use two variables to measure the physical activity of the participants at
the time of HUNT2, PAI and RecPa. See the Appendix for their distributions among the
participants in Figure 6.3. The relationship between these two variables and the systolic
blood pressure at the time of HUNT3 are shown in Figure 2.16. There seems to be a
surprisingly small effect of a higher level of physical activity. Participants with a high PAI
score have a slightly lower median blood pressure than participants with low PAI score,
but the effect is barely noticeable. The same goes for participants with a physical activity
level above the recommended level versus participants below the recommended level. One
interesting observation is that the few participants with the lowest systolic blood pressure
all have a high PAI score or physical activity above the recommended level.

The last variables we consider concerning lifestyle are daily smoking habits and high-
est education level achieved at the time of HUNT2. The distribution of these variables
can be found in Figure 6.4 in the Appendix. There seems to be a correlation between
daily smoking habits and systolic blood pressure, and between education level and sys-
tolic blood pressure, in Figure 2.17. However, since both education and smoking are
lifestyle aspects that have changed a lot during the last decades, we check the correlation
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Figure 2.16: Systolic blood pressure from HUNT3 versus: PAI from HUNT2 (left); RecPA from
HUNT2 (right).

between these variables and birthyear in Figure 2.18. In this figure, we observe a stronger
and reversed version of the correlations in Figure 2.17. This indicates that the correlations
between daily smoking habits and systolic blood pressure, and education level and systolic
blood pressure, might be caused mostly by the negative correlation between birthyear and
systolic blood pressure explored earlier in this chapter.

Blood samples

The last category of explanatory variables is the values found from blood samples taken
from the participants during HUNT2. The distribution of the continuous blood sample
variables HDL cholesterol, cholesterol, creatinine, and non-fasting glucose can be found
in Figure 6.5 in the Appendix. All four variables seem approximately Gaussian distributed,
but with slightly heavier right tails.

In Figure 2.19, the correlations between the response and the continuous blood sample
explanatory variables are shown. Cholesterol is, as noted previously, somewhat positively
correlated with the response, but it isn’t a strong correlation. Another interesting obser-
vation is the equally large negative correlation between HDL cholesterol and creatinine.
Other than this, there are no particularly strong positive or negative correlations.

The distribution of the categorical variable describing the GFR stage of the participants
during HUNT2 is shown in Figure 2.20 a). It is clear that the number of participants within
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Figure 2.17: Systolic blood pressure from HUNT3 versus: Smoking at HUNT 2 (left); Education
from HUNT2 (right). The levels of Smoking and Education are described in further detail in Section
2.3.
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Figure 2.18: Birthyear versus: Smoking at HUNT 2 (left); Education from HUNT2 (right). The
levels of Smoking and Education are described in further detail in Section 2.3.

23



1

0.1

−0.19

0.06

0.12

0.1

1

0.09

0.09

0.19

−0.19

0.09

1

−0.02

−0.08

0.06

0.09

−0.02

1

0.11

0.12

0.19

−0.08

0.11

1

Creatinine

Cholesterol

HDL.Cholesterol

Glucose

SystolicBP3

Cre
at

ini
ne

Cho
les

te
ro

l

HDL.
Cho

les
te

ro
l

Gluc
os

e

Sys
to

lic
BP3

−1.0

−0.5

0.0

0.5

1.0
Correlation

Figure 2.19: Correlation between the continuous explanatory variables from blood samples in
HUNT 2, ie. Glucose, HDL Cholesterol, Cholesterol, and Creatinine, and systolic blood pressure
from HUNT3.
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each stage decreases as the GFR decreases (ie. as stage number increases). In fact, there
are few participants with GFR in Stage 3, only one participant with GFR in Stage 4, and
no participants with GFR in Stage 5. This makes GFR stand out since all categories in the
other categorical explanatory variables have been well represented. Due to this, we put
all the participants with GFR in Stage 3, Stage 4, and Stage 5 together in a new category
called Stage 345.

There seems to be a small, but noticeable, positive correlation between systolic blood
pressure from HUNT3 and GFR stage from HUNT2, see Figure 2.20 b). The median
systolic blood pressure is increasing from Stage 1 to Stage 345. It is interesting to note
that the participants with the highest systolic blood pressure have GFR in Stage 1 and
Stage 2, but this is probably due to the fact that there are so many more participants with
GFR in these stages than with GFR in Stage 345.
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Figure 2.20: a) Distribution of participants among the different stages of GFR at time of HUNT2.
(b) Systolic blood pressure from HUNT3 versus stages of GFR. Note that there are 5 possible stages
of GFR, but the fifth stage is not represented among the participants, is therefore not shown in these
plots.

2.3 Data transformation
Before using the data to fit the prediction models, we standardize the continuous explana-
tory variables by subtracting the mean of the variables and diving by the standard deviation
of the variables. We do this for easier interpretation of the coefficients in the prediction
models, and easier comparison of the importance of the continuous explanatory variables.
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Chapter 3
Statistical Framework

3.1 Generalized Linear Models

The presentation of generalized linear models in this section is based on Fahrmeir et al.
(2013). Generalized linear models are a generalization of the classical linear model. In the
classical linear model, the response y is assumed to be continuous and follow an approx-
imately Gaussian distribution, and have an expected value that can be written as a linear
combination of the explanatory variables. In a generalized linear model, there are less
restrictive assumptions, and as a consequence, generalized linear models can be used to
model binary, continuous, categorical, or count data responses. We assume n observations
and k explanatory variables, such that we have a n× 1 response vector Y = [y1, ..., yn]T ,
and a n × p design matrix X, with elements [X]ij = xij . The main assumptions of a
generalized linear model can be divided into distributional and structural assumptions.

Distributional assumptions

Consider the covariates xi = [1, xi1, ..., xik]T , where p = k + 1. Given these covariates,
the response variables are independent and the density of the response variable yi belongs
to a univariate exponential family with

f(yi|θi) = exp
(
yiθi − b(θi)

φ
wi + c(yi, φ, wi)

)
, (3.1)

where θi is the natural parameter, φ is the dispersion parameter, wi is a weight function
which equals 1 for ungrouped data, and b and c are known functions. The mean and
variance of a univariate exponential family are given by

E(yi) = µi = b′(θi), Var(yi) = σ2
i =

φ

wi
b′′(θi).
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Structural assumptions

The linear predictor ηi is defined as

ηi = xi
Tβ = β0 + β1xi1 + ...+ βkxik.

The conditional mean µi of the response variable yi can be found by setting the linear
predictor as input to the response function h,

µi = h(ηi) = h(xi
Tβ).

Inversely, the linear predictor can be found from the conditional mean through the link
function g

ηi = g(µi).

We assume that the response function h is one-to-one and twice differentiable and that
the link function g is the inverse of the response function g = h−1.

Some examples of distributions which belong to the univariate exponential family are
the Gaussian, gamma, Poisson, and binomial distributions.

Inference

Given the observed data (yi,xi), i = 1, ..., n, the maximum likelihood estimate of the
regression coefficients β̂ML is found by maximizing the likelihood function L(β). From
the distributional assumptions, it is known that the response variables yi, i = 1, ..., n, are
conditionally independent and thus the likelihood function can be written as the product
of the likelihood of the individual observations yi, i = 1, ...n,

L(β) = f(y|β) =

n∏
i=1

f(yi|β) =

n∏
i=1

Li(β) (3.2)

Since the natural log function is monotonically increasing, the estimate β̂ML that max-
imizes the the log of the likelihood function l(β) also maximizes the likelihood function
L(β). The maximum likelihood estimate of the regression coefficients β̂ML is thus defined
as the estimated regression coefficients β̂ that maximize the log-likelihood function l(β),
where

l(β) = ln(L(β)) = ln(

n∏
i=1

f(yi|β)) =

n∑
i=1

ln(f(yi|β)) =

n∑
i=1

li(β). (3.3)

The maximum likelihood estimate of the regression coefficients β̂ML is consequently
found by solving the equation

∂l(β)

∂β
=

n∑
i=1

∂li(β)

∂β
=

n∑
i=1

si(β) = s(β) = 0 (3.4)

where the derivative of the log-likelihood function l(·) with regards to β is called the
score function s(β).
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To solve the equations s(β̂) = 0, it is common to use an iterative algorithm. One such
algorithm is the iteratively reweighted least squares algorithm, often called IRWLS, see
Fahrmeir et al. (2013) for details.

It can be shown that as the total sample size n goes to infinity, n→∞, the distribution
of the maximum likelihood estimator of the regression coefficients β̂ML goes towards a p-
variate Gaussian distribution with the true regression coefficients β as expected value and
the inverse Fisher matrix, evaluated at the maximum likelihood estimate, as the estimated
covariance matrix,

β̂ML ≈ Np(β,F−1(β̂ML)). (3.5)

The Fisher matrix F(β) is defined as

F(β) = E
(
− ∂2l(β)

∂β∂βT

)
. (3.6)

3.2 Root mean square error
Root mean square error, hereafter denoted RMSE, is a commonly used measure of the
distance between predicted or fitted values ŷ = [ŷ1, ...ŷn] and the observed values y =
[y1, ..., yn]. In other words, it can be used to describe the goodness-of-fit of a regression
model or prediction model. It is defined as

RMSE =

√√√√ 1

n

n∑
i=1

[(ŷi − yi)2] (3.7)

3.3 Brier score
The Brier score is a method for evaluating the accuracy of categorical probabilistic predic-
tion models. It was proposed by Brier (1950), and according to Hersbach (2000) it is one
of the oldest methods still in use for evaluating the accuracy of probabilistic models.

Consider a probabilistic prediction model with variable of interest Y , where Y can
belong to one of r mutually exclusive categories. The probability that the i-th observation
of Y belongs to category j is denoted by fij , where i = 1, 2, ..., n and j = 1, ..., r. These
probabilities must sum to 1 for each observation i,

r∑
j=1

fij = 1, for i = 1, 2, ..., n. (3.8)

The Brier score (BS) of the prediction model is defined by Brier (1950) as

BS =
1

n

r∑
j=1

n∑
i=1

(fij − oij)2, (3.9)
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where oij is a binary variable which is either 0 or 1. It is 1 if the i-the observation of
Y belonged to category j, and 0 if not. From the definition, it is clear that the Brier score
(BS) has the range (0, 2), where a Brier score of 0 can only be achieved by a model which
predicts 100% probability for the correct category for all observations i = 1, 2, ..., n.

For binary prediction models, for example if the random variable Y describes whether
an event occurs or not, a slightly altered version of the Brier score is often used. An
example is Hersbach (2000), where they define a version of the Brier score (BS∗) as half
the Brier score from the original paper by Brier (1950). This altered version BS∗ can be
formulated as

BS∗ =
1

2n

2∑
j=1

n∑
i=1

(fij − oij)2 =
1

n

n∑
i=1

(pi − oi)2, (3.10)

where pi is the probability of the event occurring at the i-th observation, and oi ∈
{0, 1} is a binary variable indicating whether the event actually occurred at the i-th obser-
vation. With this new formulation, the Brier score has the range (0, 1). A Brier score of
0 indicates a perfect prediction model, and a Brier score of 1 indicates the worst possible
prediction model.

Typically, in binary situations where BS∗ is used, the event of interest is whether the
i-th observation yi of the random variable Y is below a given threshold value yt. In other
words, if yi ≤ yt then the event has occurred and oi = 1, otherwise the event hasn’t
occurred and oi = 0 (Hersbach, 2000).

From this point on in this thesis, we use the alternative definition BS∗ of the Brier
score.

3.4 Continuous rank probability score
The presentation of the continuous rank probability score in this section is based on the
presentation in the article by Hersbach (2000), which is again based on the work of Brown
(1974); Unger (1985); Matheson and Winkler (1976); Bouttier (1994). The continuous
rank probability score, hereafter denoted CRPS, is a method for evaluating and comparing
the accuracy of probabilistic forecast models. It can be viewed as a generalization of
the mean absolute error, and for a deterministic forecast it is, in fact, equivalent to the
mean absolute error. We consider a probabilistic forecast of the random variable Y , with
cumulative distribution function F (Y ), and we denote the true observation by y. The
CRPS is defined as

CRPS(F, y) =

∫ ∞
−∞

[F (x)−H(y − x)]2dx, (3.11)

where CRPS has the same unit as the random variable Y , due to the multiplication
with dx, and H(z) is the Heavyside step function

H(z) =

{
0 for z < 0

1 for z ≥ 0.
(3.12)
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There are several ways to interpret the CRPS. According to Hersbach (2000) it can be
considered as a measurement of the distance between the cumulative distribution function
of the probabilistic forecast and the empirical cumulative distribution function. This means
that a well-calibrated probabilistic model has low CRPS. On the other hand, CRPS can also
be understood through its relation to the Brier score, see the previous section for further
details on the Brier score. If we consider all real threshold values, yt ∈ R, and take the
integral over all the Brier scores of these thresholds, we get the CRPS.

CRPS =

∫ ∞
−∞

BS∗(yt)dyt (3.13)

3.5 Probability Integral Transformation

Angus (1994) presents and gives a proof of the Probability Integral Transformation the-
orem. We use slightly different notation than Angus (1994) for the sake of consistent
notation in this thesis. The Probability Integral Transformation theorem states that if the
cumulative density function F(·) of the real-valued random variable Y is continuous, then
the random variable Z = F (Y ) is uniformly distributed on the interval (0,1).

If we have a random sample y1, ..., yn and we don’t know the true cumulative distri-
bution function Ft(·) of this sample, we can use the Probability Integral Transformation
theorem to check the goodness-of-fit of a proposed and known cumulative distribution
function Fk(·). A way to visualize this is Probability Integral Transformation diagrams,
hereby denoted PIT diagrams.

These diagrams are created by plotting a histogram of the proposed cumulative dis-
tribution functions applied to the observed values, {Fk(y1), ..., Fk(yn)}. If the sample
y1, ..., yn is truly from the cumulative distribution functionFk(·), then the set {Fk(y1), ..., Fk(yn)}
is uniformly distributed on the interval (0,1), and the bars in the histogram should be ap-
proximately the same height. This is illustrated in Figure 3.1. The density of a random
sample of size 10 000 from a Gaussian distribution with mean 2.5 and standard deviation
1 is plotted in Figure 3.1 a), and in Figure 3.1 b) we see the cdf-values of applying the
true cumulative distribution function on the random sample. It is clear that the bars have
approximately equal height, which means that the cdf-values are approximately uniformly
distributed.

If the true density function F ′t (·) of the sample has a heavier right tail than the proposed
density function F ′k(·), then the bars closer to 1 are higher than the bars closer to 0. The
reason for this is that the points from the sample that lie in the heavy right tail have higher
values than expected by the proposed cdf-function F ′k(·). This is illustrated in Figure 3.2,
where the random sample comes from a Gamma distribution with a heavy right tail, while
the proposed distribution is the same symmetrical Gaussian distribution as shown in Figure
3.1 a). For heavy left tails, we would see the opposite trend where bars closer to 0 is much
higher.

Another scenario is if the proposed density function F ′k(·) has bigger variation than the
true density function F ′t (·). This can be seen in the PIT diagrams as shorter bars towards
both ends of the interval (0,1), see Figure 3.3 b).
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Figure 3.1: a) The distribution of random sample of size 10 000 from a Gaussian distribution
N (2.5, 1) ; (b) PIT Diagram where the proposed cumulative distribution function is the true cumu-
lative distribution function of the random sample.
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Figure 3.2: a) The distribution of a random sample of size 10 000 from a Gamma distribution
with shape parameter k = 3.5 and scale parameter θ = 1, Γ(3.5, 1) shown as dots. The proposed
distribution, the Gaussian distributionN (2.5, 1), is shown as a blue line; (b) PIT Diagram where the
proposed cumulative distribution function is the cumulative distribution ofN (2.5, 1), while sample
in reality is sampled from Γ(3.5, 1).
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Figure 3.3: a) The distribution of random sample of size 10 000 from the Gaussian distribution
N (2.5, 0.52). The proposed distribution, the Gaussian distribution N (2.5, 1), is shown as a blue
line; (b) PIT Diagram where the proposed density function is the Gaussian distribution N (2.5, 1),
while the true density function is the Gaussian distributionN (2.5, 0.52).

3.6 Sensitivity and specificity

Binary classification tests try to correctly classify observations into one of two categories.
There are many examples of such tests. An example from medicine are tests where the
goal is to figure out whether the patient has a certain illness or not. In other words, if
the patient should be classified as ill or not. To measure how well such tests are able
to classify the observations, it is common to use sensitivity and specificity. Simply put,
sensitivity is a measure of how well the test is able to identify the people who are ill, and
specificity measures how well the test identifies people who are not ill. In other words,
sensitivity is the number of people correctly classified as ill (true positives), divided by
all the people who are ill (positives), while specificity is the number of people who are
correctly classified as not ill (true negatives), divided by all the people who are not ill
(negatives) (Lalkhen and McCluskey, 2008).

Sensitivity =
true positives

positives
, Specificity =

true negatives
negatives

The perfect binary classification test classifies all observations perfectly and has sen-
sitivity and specificity equal to 1. However, most tests do not achieve this goal. In these
cases, it is important to balance sensitivity and specificity. The reason for this is that even
a useless test, which just categorizes all observations as negative, has specificity equal to
1.

33



3.7 C-statistic
This presentation of the C-statistic is based on the presentation in Harrell Jr. et al. (1996).
The C-statistic measures how discriminating a prediction model is by measuring the con-
cordance between the predicted responses and the observed responses. We consider a
binary outcome, for instance the presence of a disease. Specifically, we consider a predic-
tion model which gives the probability, for each participant, of getting the disease before
a given time tg . Consider all possible pairs of participants where one has the disease at tg
and the other does not have the disease at tg . The C-statistic is the proportion of such pairs
where the participant who got the disease had a higher predicted probability of getting the
disease than the participant who didn’t get the disease. In other words, the proportion of
pairs with concordant predicted and observed values. The C-statistic can be calculated by
the formula

C-statistic =
B + 0.5E

D ∗ND
, (3.14)

where B is the number of pairs with concordant predictions and observations, E is the
number of pairs where the participants have the same predicted probability, D is the num-
ber of people with the disease at tg and ND is the number of people without the disease at
tg . From the definition above, it is clear that a model with C-statistic equal to 1 has perfect
discrimination, and always assigns higher probability to people who get the disease, than
to people who remain healthy.

Note that for models with binary outcomes, the C-statistic is equivalent to the area un-
der the receiver operating curve (ROC), often referred to as the AUC (Hanley and McNeil,
1982).
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Chapter 4
Models and methods

In this chapter, we present the prediction models and evaluation schemes used in this thesis
and describe how we implement them in R (R Core Team, 2020) using the integrated
development environment RStudio (RStudio Team, 2016).

4.1 Prediction models

4.1.1 Full Gaussian model
The first model we consider is a Gaussian GLM with identity link function and the systolic
blood pressure at the time of HUNT3 as the response variable, denoted Y = [y1, ..., yn],
where n =17 365 is the number of participants. The Gaussian GLM only predicts the
continuous systolic blood pressure at the time of HUNT3, yet its ability to identify the
systolic hypertension status of the participants at HUNT3 is also evaluated. The explana-
tory variables, all from HUNT2, included in the model are:

• Mean systolic blood pressure

• Mean diastolic blood pressure

• Birth year

• Sex

• BMI (Body Mass Index)

• PAI (Personal Activity Intelligence)

• RecPA (Recommended Physical Activity)

• Hypertensive parents

• Smoking
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• Cholesterol

• HDL Cholesterol

• Non-fasting blood glucose

• GFR (Glomerular filtration rate)

• Creatinine

• Education level.

See Chapter 2.1.3 for the reasoning behind this choice of explanatory variables and
further details on each variable. The response vector Y = [y1, ..., yn] is Gaussian dis-
tributed, Y = [y1, ..., yn] ∼ Nn(µ, σ2In), with mean E(Y) = µ and covariance matrix
Var(Y) = σ2In. The linear predictor ηi = xF,i

Tβ of participant i is connected to the
mean µi through an identity link function, for all i = 1, ..., n. Consequently, for each
systolic blood pressure measurement from HUNT3 yi, i = 1, ...,17 365, the model can be
written on the form

yi ∼ N (µi, σ
2),

fN (yi;µi, σ
2) =

1

σ
√

2π
exp

(
−(yi − µi)2

2σ2

)
,

ηi = xF,i
Tβ = µi,

(4.1)

where µi is the mean, σ2 is the variation of the observation noise, and fN (·) is the
probability density function of the Gaussian distribution (Weisstein, 2020b). Using the
same notation as in section 3.1, xF,i

T is the i-th row vector of the design matrix XF , and
thus contains all of participant i’s measurements of the explanatory variables listed above.
β is the vector of true regression coefficients.

The true values of the regression coefficients β and the variation of the observation
noise σ2 are unknown. The iterative reweighted least squares (IRWLS) method is used to
make an estimate β̂ of the true regression coefficient, see Fahrmeir et al. (2013) for details
on IRWLS. To estimate the true variation of the observation noise σ2, we use the sample
variance of the residuals,

σ̂2 =
1

n

n∑
i=1

(ε̂i − ¯̂ε)2, (4.2)

where ε̂i = yi − ŷi are the residuals.
The predicted value of the i-th response is denoted by ŷi and has the distribution

ŷi ∼ N (xF,i
T β̂,Var(ŷi)), (4.3)

where the expression for the variance is found, by applying general rules of variance,
to be
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Var(ŷi) = xF,i
TVar(β̂)xF,i + σ̂2. (4.4)

The residuals ε̂i = yi − ŷi of a Gaussian GLM are thus assumed to have zero mean
and be homoscedastic (Fahrmeir et al., 2013).

The predicted probability of systolic hypertension for participant i at HUNT3 is con-
sequently the integral from 140 to infinity of the probability density function of ŷi.

P (Sys.hyp) =

∫ ∞
140

pdfŷi(x)dx (4.5)

We implement this model using the R-function glm() in RStudio.

4.1.2 Small Gaussian model

When implementing the full Gaussian GLM described in the previous section, it became
apparent that many of the explanatory variables included in that model were not found to
be significant when using a 0.05 significance level, see Chapter 5 for detailed results. To
check whether a smaller model would perform as well or better, we implement a Gaussian
GLM with only a selection of the explanatory variables from the full model. We choose to
include the variables that were found to be significant, for significance level 0.05, as well
as the PAI variable. The reason we also include PAI, even though it was not found to be
significant in the larger model, is that we are especially interested in the effect of physical
activity on systolic blood pressure. The explanatory variables, all from HUNT2, included
in the smaller Gaussian GLM are

• Mean systolic blood pressure

• Mean diastolic blood pressure

• Birth year

• BMI (Body Mass Index)

• PAI (Personal Activity Intelligence)

• Hypertensive parents

• HDL Cholesterol

• Education level.

This second model is just a smaller version of the full model described in the previous
section and can thus be formulated in the same way, except with a different design matrix
XS .

Using the same implementation method as for the full Gaussian model, we implement
the small Gaussian model using the R-function glm() in RStudio.
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4.1.3 Full gamma model

From Figure 2.5 it is clear that the distribution of the systolic blood pressure from HUNT3
is not symmetric. We observe that the right tail is somewhat heavier than the left tail of
the distribution. The Gaussian distribution, however, is symmetric and is therefore not
able to model this aspect of the response. In an effort to include the observed skewness in
our prediction model, we consider a gamma GLM with the systolic blood pressure from
HUNT3 as response variable Y = [y1, ..., yn], the same explanatory variables as listed in
the full Gaussian model in Section 4.1.1, and identity link function. It is reasonable to use
an identity link function since the response values are positive and much bigger than zero.
Same as the Gaussian GLM, the gamma GLM only predicts the continuous systolic blood
pressure at the time of HUNT3, but its ability to identify the systolic hypertension status of
the participants at HUNT3 is still evaluated. For each measurement of the systolic blood
pressure from HUNT3 yi, i = 1, ..., n, we have

yi ∼ Γ(k, λi),

fΓ(yi; k, λi) =
λi(λiyi)

k−1

(k − 1)!
e−λiyi ,

ηi = xF,i
Tβ = µi,

(4.6)

where k is the shape parameter and λi is the rate parameter, and fΓ(·) is the probability
density function of the gamma distribution. Same as for the full Gaussian model, xF,i

T

is the i-th row vector of the design matrix XF , and thus contains all of participant i’s
measurements of the explanatory variables. β is the vector of true regression coefficients.
Since β is unknown, we use the iterative reweighted least squares (IRWLS) method to
make an estimate β̂ of the true regression coefficients, see Fahrmeir et al. (2013) for details
on IRWLS.

The true values of the shape and scale parameters are also unknown. However, we
know the mean E(yi) = µi = k

λi
and the variance Var(yi) =

µ2
i

k = k
λ2
i

of a gamma
distribution (Weisstein, 2020a), and we also know that the gamma distribution belongs
to the exponential family. By comparing the expression for the density function of the
gamma distribution and the general formula for the density function for the exponential
family in Equation (3.1), we see that the dispersion parameter is the reciprocal of the
shape parameter φ = 1

k (UIO, 2014). An estimate of the shape parameter, k̂, is the thus
the inverse of the estimated dispersion parameter, φ̂,

k̂ =
1

φ̂
.

From the expression of the expected value µi of yi, it is clear that an estimate of the
rate parameter λ̂i can be found by dividing the estimated shape parameter k̂ by the fitted
values µ̂i = xF,i

T β̂,

λ̂i =
k̂

µ̂i
.
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Consequently, the predicted value of the i-th response is denoted by ŷi and has the
distribution

ŷi ∼ Γ(k̂, λ̂i). (4.7)

The residuals ε̂i = yi− ŷi of a gamma GLM are thus assumed to have zero mean. The
variance of the residuals can be expressed by

Var(yi − ŷi) = Var(yi) + Var(ŷi)− 2Cov(yi, ŷi).

However, since the sample is so large, n=17365, Var(ŷi) is so small that we can ignore
it and thus also ignore Cov(yi, ŷi). In other words, we can estimate the variance of the
residuals by the variance of yi, Var(yi) =

µ2
i

k .
As for the Gaussian GLM, the predicted probability of systolic hypertension for par-

ticipant i at HUNT3 is the integral from 140 to infinity of the probability density function
of ŷi.

P (Sys.hyp) =

∫ ∞
140

pdfŷi(x)dx (4.8)

We implement this model using the R-function glm() in RStudio.

4.1.4 Small gamma model
Similarly to the full Gaussian model, the full gamma model has many explanatory vari-
ables that aren’t found to be significant on a 0.05 significance level, see Chapter 5 for
detailed results. Consequently, we consider a smaller gamma model with systolic blood
pressure from HUNT3 as the response variable, which only includes and PAI and the ex-
planatory variables that were found to be significant on a 0.05 significance level in the full
gamma model. As previously mentioned in the section about the small Gaussian model,
we include PAI because we are especially interested in the effect of physical activity on
systolic blood pressure. It turns out that the explanatory variables included in the small
gamma model are the same as the explanatory variables in the small Gaussian model, see
Section 4.1.2.

The small gamma model is just a smaller version of the full gamma model described
in the previous section and can thus be formulated in the same way, except with a different
design matrix XS .

Same as for the full gamma model, we implement the small gamma model using the
R-function glm() in RStudio.

4.1.5 Framingham model
We want to consider the Framingham model proposed by Parikh et al. (2008), and compare
its performance on our cohort to the performance of the Gaussian and gamma prediction
models proposed in the previous sections. According to Sun et al. (2017), the Framingham
model has been externally validated by seven studies. These seven studies have been
conducted on cohorts of different ethnicities, but the Framingham model has not been
externally validated on a Scandinavian cohort before.
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The Framingham model was originally conducted on a cohort consisting of 1717 white
participants who were 20-69 years of age. Participants with hypertension or diabetes were
excluded. In contrast to the models proposed in the previous sections, which give a predic-
tion distribution for systolic hypertension after approximately 11 years, the Framingham
model outputs the probability of getting hypertension within the next 1, 2, or 4 years.
Parikh et al. (2008) uses the same definition of hypertension as we use in this thesis,
namely systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg
and/or use of blood pressure medication.

An illustration of the Framingham model taken from the original paper by Parikh et al.
(2008) is shown in Figure 4.1. The 4-year risk of hypertension, given in percentages,
is found by adding the points of the relevant levels of the explanatory variables and then
finding the 4- year risk corresponding to the total score in the table to the right. Parikh et al.
(2008) developed the point system version of the Framingham model shown in Figure 4.1
by using methods described in Sullivan et al. (2004) for a multivariable Weibull model
with the explanatory variables listed below:

• sex

• systolic blood pressure

• BMI

• parental hypertension

• cigarette smoking

• interaction between age and diastolic blood pressure.

For the cohort in the paper by Parikh et al. (2008), the original Framingham model
predicted a 4-year risk of hypertension below 5% for 34% of the participants, between 5%
and 10% for 19% of the participants, and above 10% for 47% of the participants. The
discrimination of the 4-year risk was measured by using the overall C-statistic (Harrell Jr.
et al., 1996), and found to be good, with a C-statistic of 78.8% with 95% confidence
interval (73.3,80.3). The calibration of the 4-year risk was also good, as the modified
version of the Hosmer-Lemeshow chi-square statistic (Hosmer and Lemeshow, 1989) was
found to be 4.35. We note that Parikh et al. (2008) do not specify in what manner the
Hosmer-Lemeshow chi-square statistic was modified.

To make the comparison between the Framingham model and our models more reason-
able, we modify the Framingham model by adding 7 years to the age of the participants at
HUNT2 before using the Framingham model to find the probability of being hypertensive
in 4 years. By adding 7 years to the age of the participants at HUNT2, the 4-year risk is
more similar to the predictions of the Gaussian and gamma prediction models proposed
by us, which predict systolic blood pressure approximately 11 years into the future. In
practice, this means that we add 7 years to the age in the interaction term between age and
diastolic blood pressure by subtracting 7 years from the birth year of the participants,

Modified age at HUNT2 = Year of HUNT2 - (BirthYear-7)
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Figure 4.1: The original illustration of the Framingham model. Figure 2 in the paper by Parikh et al.
(2008).

In other words, we use a modified version of Figure 4.1, taken from Parikh et al.
(2008), as pseudocode when implementing the Framingham model on our cohort in R
using RStudio.

4.2 Evaluation methods
One of the important steps of evaluating prediction models is observing how well the
predictions of the models match the observed values, ie. the goodness-of-fit. In addition to
this, it is interesting to check how well-calibrated the prediction models are by comparing
the prediction distributions given by the models to the observed values. Another important
step is to study the discrimination of the prediction model. In other words, the prediction
models’ ability to separate the participants who become systolic hypertensive from the
participants whose systolic blood pressure remains at a healthy level.

4.2.1 Root mean square error

We implement the formula for the RMSE, see Equation (3.7), in RStudio and apply it
to the full and smaller version of both the Gaussian and gamma models. The Framingham
method only predicts the risk of hypertension and does not provide a predicted value of
the systolic blood pressure, so it is not possible to calculate the RMSE for this model.
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4.2.2 Brier score

To find the Brier score of the models we use the BrierScore function from the DescTools
R-package (Signorell et al., 2020). The observed systolic blood pressure from HUNT3 and
the probability of systolic hypertension predicted by the model are given as arguments.
The probability of systolic hypertension is given directly as the response for the Framing-
ham model, and can be found by Equation (4.5) for the Gaussian GLM and (4.8) for the
gamma GLM.

4.2.3 Continuous rank probability score

To find the CRPS of the models we use the crps and crps gamma functions from the
scoringRules R-package (Jordan et al., 2019). The observed systolic blood pressure
from HUNT3 and the parameters of the prediction distributions, ie. (µ̂i,SD(ŷi)) for the
Gaussian model and (k̂, λ̂i) for the gamma model, are given as arguments. Note that the
prediction models we propose do not provide a single cumulative distribution function, but
a different predicted cumulative distribution function for each participant. This means that
each predicted cumulative distribution function is evaluated based on its corresponding
observed value. It is not possible to find the CRPS of the Framingham model since it does
not produce a prediction distribution.

4.2.4 Probability Integral Transformation diagrams

The Probability Integral Transformation diagrams are implemented in RStudio by eval-
uating the predicted cumulative distribution functions at the observed values of the systolic
blood pressure from HUNT3 and plotting the result in a histogram. Note that in contrast
to the case described in Chapter 3.5, the prediction models we propose do not provide a
single cumulative distribution function, but a different predicted cumulative distribution
function for each participant.

4.2.5 Sensitivity and specificity

We find the sensitivity of the proposed models by dividing the number of participants who
were both systolic hypertensive at HUNT3 and had a predicted value of systolic blood
pressure equal to or above 140 mmHg, by all the participants who were systolic hyperten-
sive at HUNT3. The specificity of the proposed models is found by dividing the number
of participants who were not systolic hypertensive at HUNT3 and had a predicted value
of systolic blood pressure below 140 mmHg, by all the participants who were not systolic
hypertensive at HUNT3. Since the Framingham model doesn’t produce any predicted sys-
tolic blood pressure values, we create our own definition of systolic hypertension in the
calculation of sensitivity and specificity of the Framingham model. Namely that a pre-
dicted probability of hypertension above 0.5 equal predicted hypertension.
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4.2.6 C-statistic
The Framingham model and the Gaussian and gamma prediction models we consider can
all be viewed as prediction models that predict the probability of participants getting a
certain disease, systolic hypertension, before a given time tg , the time of HUNT3. This
is the same situation as described in Section 3.7, and we can, thus, use the same formula,
Equation (3.14), to calculate the C-statistic for these models. We implement the simple
formula in RStudio for all 5 models.

4.3 Implementation
The R code used in this thesis is available at https://github.com/fridentnu/
masterthesis. This repository mainly contains the code used to clean, explore, and
transform the data as described in Chapter 2, and to implement, inspect, and evaluate the
prediction models as described in this chapter. In addition, there is some code used to cre-
ate illustrative figures to explain the PIT diagrams in Chapter 3.5 in the file Illustrations.R.
In general, we have used base R functions and functions from the ggplot2 (Wickham,
2016) and DataExplorer (Cui, 2020) R-packages to create figures.

All of the code is written by Fride Nordstrand Nilsen, except the code used to calculate
the PAI-level, PAI.R, and the MVPA- score, MVPA.R. These scripts are written by Emma
Ingström, a Ph.D. student who also works with data from the HUNT study. The code in
PAI.R and MVPA.R is based, respectively, on the papers by Kieffer et al. (2019) and
Ernstsen et al. (2016).

The code files used to clean and explore the data are named DataCleaning.R and
EDA.R, respectively. The data transformation and implementation of the GLM models are
located in Models.R. The modified Framingham model is implemented in Framingham.R.
The code creating the figures of the residuals is located in the file Residuals, while
the code exploring the prediction distributions of individual participants is in the file
EvalParticipant.R. All the evaluation methods are implemented and applied to the
prediction models in Evaluation.R.

Note that due to privacy reasons the data used in this thesis is not available on the
GitHub-webpage. However, the format of the original data is described in Chapter 2 and
in DataCleaning.R.
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Chapter 5
Results

In this chapter, we present the main results of the prediction models, and we evaluate their
performance on the observed systolic blood pressure at HUNT3. We start by present-
ing the fitted Gaussian and gamma models, before evaluating and comparing the models,
including the Framingham model.

5.1 Presenting main results of the models
Figure 5.1 gives a quick overview of the prediction models by showing the predicted val-
ues of systolic blood pressure at HUNT3, in addition to the observed values of the systolic
blood pressure at HUNT2 and HUNT3. A perfect prediction model has predicted values
equal to the observed values from HUNT3. The predicted values given by our proposed
prediction models, on the other hand, seem more similar to observed systolic blood pres-
sure at HUNT2, and very similar to each other.

5.1.1 Full and small Gaussian models
The assumptions and implementation of the full and small Gaussian model are described
in Chapter 4.1.1-4.1.2, and the values, standard deviations, and p-values of the regression
coefficients are presented in Table 5.1. As noted earlier, only PAI and the explanatory
variables that were found to be significant on a 0.05 significance level in the full Gaus-
sian model are included in the small Gaussian model. From Table 5.1, it is clear that
the regression coefficients of the explanatory variables included in both models are very
similar.

The variable with the biggest positive, and biggest absolute, influence on the predicted
value is not surprisingly the systolic blood pressure at HUNT2. In these models, the
predicted systolic blood pressure will increase by approximately 5 mmHg for each increase
the size of a standard deviation of the systolic blood pressure at HUNT2, when other
explanatory variables are held constant. The second most influential variable is birth year,
with a negative regression coefficient. This means that for two people with equivalent
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Figure 5.1: Histograms of the observed and predicted values of the systolic blood pressure of the
participants.

values of the other variables, the oldest person will get a higher predicted systolic blood
pressure. Other significant explanatory variables listed in decreasing order of influence
are diastolic blood pressure, parental hypertension, BMI, Education Level 4 and 5, HDL
Cholesterol, and PAI.

The most noticeable differences between the small and full model are that PAI has
more influence and is significant in the small Gaussian model. Another difference between
the models is that the standard deviations of the regression coefficients are slightly smaller
in the small model.

5.1.2 Full and small gamma models

The assumptions and implementation of the full and small gamma model are described
in Chapter 4.1.3-4.1.4, and the values, standard deviations, and p-values of the regression
coefficients are presented in Table 5.2. The full and small gamma models have the same
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Exp.Variable FM.Est SM.Est FM.SD SM.SD FM.p.val SM.p.val
(Intercept) 126.644 126.694 0.386 0.277 0 0
BirthYear -3.623 -3.594 0.135 0.118 0 0
SexMale 0.176 NA 0.363 NA 0.628 NA
BMI2 1.412 1.397 0.114 0.111 0 0
SystolicBP2 5.028 5.005 0.133 0.128 0 0
DiastolicBP2 2.183 2.163 0.131 0.13 0 0
PAI2Moderate -0.074 -0.119 0.32 0.271 0.817 0.661
PAI2High -0.603 -0.72 0.498 0.251 0.226 0.004
RecPA2TRUE -0.067 NA 0.42 NA 0.873 NA
BPHigPar2TRUE 1.906 1.933 0.226 0.224 0 0
Smoking2Previous -0.387 NA 0.261 NA 0.139 NA
Smoking2Current -0.141 NA 0.262 NA 0.591 NA
Cholesterol2 -0.061 NA 0.12 NA 0.612 NA
HDLCholesterol2 -0.653 -0.624 0.118 0.109 0 0
Glucose2 0.043 NA 0.107 NA 0.691 NA
GFR2Stage 2 0.336 NA 0.35 NA 0.337 NA
GFR2Stage 345 0.058 NA 1.326 NA 0.965 NA
Creatinine2 -0.316 NA 0.202 NA 0.118 NA
Education2Level 2 -0.178 -0.194 0.295 0.293 0.547 0.508
Education2Level 3 0.15 0.164 0.412 0.409 0.717 0.688
Education2Level 4 -0.725 -0.704 0.363 0.357 0.046 0.049
Education2Level 5 -0.837 -0.822 0.407 0.399 0.04 0.039

Table 5.1: The value, standard deviation, and p-value of the regression coefficients of the full and
small Gaussian model. FM denotes the full model, and SM denotes the small model. SD is the
standard deviation and p.val denotes the p-value. NA signifies that the corresponding variable isn’t
included in the small Gaussian model

explanatory variables as the corresponding Gaussian models. It is clear that the regression
coefficients of the full and small gamma model are very similar, and that they are also
very close to the regression coefficients of the Gaussian prediction models, presented in
Table 5.1. In fact, the list of explanatory variables in decreasing order of influence for the
gamma prediction models is identical to the corresponding list for the Gaussian models.
For clarity, the explanatory variables listed in order of biggest to smallest influence on
the predicted systolic blood pressure are systolic blood pressure at HUNT2, birth year,
diastolic blood pressure at HUNT2, parental hypertension, BMI, Education Level 4 and 5,
HDL Cholesterol, and PAI.

Similar to the Gaussian models, we observe that PAI has more influence in the small
gamma model than in the full gamma model and that a High level of PAI is significant
only in the small model. The standard deviations of the regression coefficients are slightly
smaller in the small model, like in the Gaussian models.
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Exp.Variable FM.Est SM.Est FM.SD SM.SD FM.p.val SM.p.val
(Intercept) 126.636 126.744 0.382 0.276 0 0
BirthYear -3.598 -3.587 0.134 0.117 0 0
SexMale 0.446 NA 0.357 NA 0.212 NA
BMI2 1.437 1.425 0.113 0.11 0 0
SystolicBP2 4.931 4.942 0.129 0.124 0 0
DiastolicBP2 2.155 2.134 0.128 0.127 0 0
PAI2Moderate -0.1 -0.127 0.315 0.268 0.751 0.635
PAI2High -0.586 -0.652 0.49 0.246 0.231 0.008
RecPA2TRUE -0.043 NA 0.414 NA 0.918 NA
BPHigPar2TRUE 1.909 1.915 0.223 0.221 0 0
Smoking2Previous -0.433 NA 0.258 NA 0.093 NA
Smoking2Current -0.207 NA 0.257 NA 0.421 NA
Cholesterol2 -0.032 NA 0.118 NA 0.785 NA
HDLCholesterol2 -0.671 -0.672 0.116 0.106 0 0
Glucose2 0.049 NA 0.106 NA 0.644 NA
GFR2Stage 2 0.34 NA 0.344 NA 0.323 NA
GFR2Stage 345 0.468 NA 1.333 NA 0.725 NA
Creatinine2 -0.352 NA 0.197 NA 0.074 NA
Education2Level 2 -0.284 -0.279 0.295 0.293 0.336 0.342
Education2Level 3 0.111 0.126 0.403 0.4 0.782 0.752
Education2Level 4 -0.867 -0.835 0.359 0.352 0.016 0.018
Education2Level 5 -0.967 -0.924 0.401 0.393 0.016 0.019

Table 5.2: The value, standard deviation, and p-value of the regression coefficients of the full and
small gamma model. FM denotes the full model, SM denotes the small model, SD denotes standard
deviation and p.val denotes the p-value. NA signifies that the corresponding variable isn’t included
in the small gamma model.

5.1.3 Residuals
From Table 5.1 and Table 5.2 we observe that the regression coefficients of all four models
are quite similar. Since the regression coefficients, and thus also the predicted values, of
the models, are similar, it follows that the residuals of the models should be similar too.
To check this we study the difference between the residuals of the small and full Gaussian
model, between the small and full gamma model, and between the small Gaussian and
small gamma model in Figure 5.2.

Not surprisingly, we observe that the residuals are very similar in all three cases. Com-
paring the full and small models the majority of residuals are within 1 mmHg of each
other. The difference is even smaller between the small Gaussian and small gamma model,
where the majority of residuals are within 0.25 mmHg of each other. Consequently, we
only study the residuals of the small gamma model from now on, since any trends we find
in the residuals is representative for the residuals from all four prediction models.

In Figure 5.3 a) the relationship between the residuals of the small gamma model and
the predicted systolic blood pressure is shown. As mentioned in Chapter 4, the residuals of
both the Gaussian GLM and the gamma GLM are assumed to have mean 0, which seems to
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Figure 5.2: Difference between residuals from two different models versus observed systolic blood
pressure from HUNT3. SystolicBP3 is short for observed systolic blood pressure at HUNT3. a) Full
Gaussian model residuals minus small Gaussian model residuals; b) Full gamma model residuals
minus small gamma model residuals; c) Small Gaussian model residuals minus small gamma model
residuals
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Figure 5.3: The a) values; and b) standard deviations and corresponding 95% confidence intervals of
the standard deviation,; of the residuals of the small gamma model versus the predicted systolic blood
pressure. The standard deviations are not plotted for intervals containing less than 15 participants.

be approximately true for most values of the predicted systolic blood pressure. Observing
the figure more closely, we see that for predicted systolic blood pressure between 90 and
100 mmHg, the median of the residuals is somewhat higher than 0. On the other hand, the
median of the residuals is very slightly below zero for predicted blood pressure between
110 and 150 mmHg. For all values of the predicted blood pressure, there are more positive
than negative outliers. This fits with the lack of a heavy right tail in the predicted values
compared to the observed values shown in Figure 5.1.
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The relationship between the standard deviations of the residuals and the predicted
systolic blood pressure given by the small gamma model is presented in Figure 5.3 b). The
approximate 95% confidence interval for the standard deviations of the residuals are plot-
ted in blue in the figure. Note that the 95 % confidence intervals are calculated by taking
the square roots of the limits of the 95% confidence interval of the variance, which are
found using the critical values in the χ2-distribution. In other words, the 95% confidence
intervals only indicate the approximate uncertainty in the standard deviation estimates.

The Gaussian GLM assumes that the standard deviation of the residuals should be
constant with the response, see Chapter 4.1.1. This is clearly not the case in Figure 5.3 b).
The gamma GLM however, assumes that the standard deviation should increase linearly
with the expected value of the response, see Chapter 4.1.3, which suits the results much
better.

Figure 5.4 presents the residuals of the small gamma model versus the explanatory
variables in the small gamma model. The median of the residuals is mostly independent
of the value of the explanatory variables, and approximately 0. In the intervals with the
fewest participants, the median tends to deviate slightly from 0. An example is the interval
between 80 to 90 for systolic blood pressure from HUNT2 where the median of the resid-
uals is close to 10. The most extreme deviation of the median from 0 is for diastolic blood
pressure below 40 mmHg. However there are so few participants in this category, and our
main focus is not on the participants with extreme values of blood pressure. We move on
to study the standard deviations of the residuals in relation to the explanatory variables.

Figure 5.5 presents the standard deviations, as well as the 95% confidence intervals of
the standard deviations, of the residuals of the small gamma model versus the explanatory
variables in the small gamma model. The standard deviation is not plotted if there are fewer
than 15 participants in an interval/category. We already know that the standard deviation
of the residuals is assumed to depend linearly on the expected value of the response in
a gamma GLM. Since we use the identity link function, the standard deviation of the
residuals should also depend linearly on the linear predictor, which is a linear combination
of the explanatory variables.

We immediately notice that the standard deviations of the residuals depend on the val-
ues of the explanatory variables. There is a significant and linear increase in the standard
deviation of the residuals as the systolic blood pressure from HUNT2 increases, see Figure
5.5 a). There is a similar trend for the diastolic blood pressure from HUNT2 in Figure 5.5
b), except for the first two intervals. The reason for the high standard deviation in these
two intervals might be that are so few participants in these intervals, see Figure 6.2 in
the Appendix. The explanatory variable with the biggest change in the standard deviation
of the residuals is birth year, see Figure 5.5 c). The older the participant, the bigger the
standard deviation of the residuals is. However, it is important to note that there are fewer
participants born before 1930, see Figure 2.11.

Once again, the effect of different levels of PAI in Figure 5.5 d) is small, but visible.
The standard deviation decreases slightly with an increased activity level. If we disregard
the interval with the highest BMI values, there seems to be a linear increase in the standard
deviation of the residuals as a function of BMI in Figure 5.5 e). The standard deviation for
the interval is above the line. This is probably caused by the small number of participants
in this category, see Figure 2.15. The standard deviation is slightly bigger for participants
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Figure 5.4: Residuals from the small gamma model versus a) Systolic blood pressure at HUNT2;
(b) Diastolic blood pressure at HUNT2; (c) Birthyear; (d) PAI; (e) BMI; (f) Parental hypertension;
(g) HDL Cholesterol; (h) Highest education level achieved at HUNT2

with parental history of hypertension, but the effect is quite small, see Figure 5.5 f). There
is a small decrease in the standard deviations as the HDL Cholesterol increases, and in
the last two intervals there are fewer than 15 participants so the standard deviation is not
plotted in Figure 5.5 g). Since education level is a categorical variable not connected to a
continuous scale, it is perhaps not surprising that there isn’t a clear trend for the standard
deviations in Figure 5.5 h). We know from Figure 2.18 that Education level and birth
year are quite correlated, and we see the same trend here. The difference in standard
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Figure 5.5: SD of residuals from small gamma model versus a) Systolic blood pressure at HUNT2;
(b) Diastolic blood pressure at HUNT2; (c) Birthyear; (d) PAI; (e) BMI; (f) Parental hypertension;
(g) HDL Cholesterol; (h) Highest education level achieved at HUNT2. The standard deviation is not
plotted if there are fewer than 15 participants in an interval/category.

deviation for the different education levels is therefore probably caused by the decrease of
the standard deviation of the residuals as birth year increases, see Figure 5.5 c).

Generally, the standard deviation of the residuals seems to depend approximately lin-
early on the explanatory variables. We also notice that the sign of the slope of the line
matches the sign of the regression coefficient of the corresponding explanatory variable.
However, the value of the slope does not correspond to the value of the regression coeffi-
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cient. This is clear since the systolic blood pressure from HUNT2 has the largest regression
coefficient in absolute value, while birth year has the biggest change in standard deviation.

5.1.4 Prediction distributions of individual participants
Before we evaluate the total performance of prediction models, we present the prediction
distributions from the four models for two individual participants, see Figure 5.6. Neither
participant had diabetes, CVD, or was taking blood pressure medication at the time of
HUNT3.
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Figure 5.6: Prediction distributions of the different models for two different participants. M1 is the
full Gaussian model, M2 is the small Gaussian model. M3 is the full gamma model, and M4 is the
small gamma model. BP2 is the systolic blood pressure from HUNT2, while BP3 is the systolic
blood pressure from HUNT3. Note that due to the similarity of the models M1 is behind M2, and
M3 is behind M4, and so M1 and M3 are not visible.

Participant a) is a woman who at the time of HUNT2 was in her 40s, had a Low PAI
level, and a BMI of approximately 25 kg/m2. Her systolic blood pressure, see Figure 5.6 a),
increased from 124 mmHg at HUNT2 to 147 mmHg at HUNT3. All the models predicted
an increase in systolic blood pressure, but only to a predicted value of approximately 130
mmHg at the time of HUNT3. In other words, the predicted values given by the prediction
models are very similar for all the models, which can also be seen in Figure 5.6 a). From
the figure, it is clear that the prediction distributions for the small and full versions of the
models are practically identical. The gamma and Gaussian prediction distributions are also
close, but the gamma distributions have a slightly heavier right tail.

Participant b) is a man who at the time of HUNT2 was in his 20s, had a High PAI
level, and a BMI of approximately 21 kg/m2. From Figure 5.6 b), we observe that he had
decreasing systolic blood pressure from HUNT2, 121 mmHg, to HUNT3, 116 mmHg. The
prediction models all predicted a decrease in the systolic blood pressure, yet they predicted
a slightly bigger decrease, with predicted value at approximately 114 mmHg. Similarly
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to Participant a) the differences between the prediction distributions of the small and full
versions of the models are not visible. The prediction distributions for the gamma and
Gaussian model are not as close for Participant b) as for Participant a). In this case, the
Gaussian distribution actually has heavier tails in both directions.

For both Participant a) and Participant b) the prediction distributions from all four
prediction models have large variances. In other words, the uncertainties in the predictions
are big. To check if this is a general trend we plot a histogram of the standard deviations
of all the individual prediction distributions from the small gamma model in Figure 5.7.
The standard deviations of the small gamma prediction distributions are calculated based
on the estimated shape and rate parameters of the small gamma model. The values of the
standard deviations vary from 10 up to 16, with 13 to 14 being the most common values.
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Figure 5.7: The standard deviations of the individual prediction distributions of systolic blood
pressure given by the small gamma model.

5.2 Evaluation of model performance
In this section, we study the performance of the prediction models by using the evaluation
methods described in Chapters 3 and 4. In particular, we are interested in the goodness-of-
fit, calibration, and discrimination of the models. In addition to the previously described
evaluation methods, we study the distribution of the probabilities of systolic hypertension
and check whether the expected percentage of systolic hypertension matches the observed
percentage.

In the previous sections, it has been shown that the regression coefficients and the
residuals of the full and small versions of the same GLM are nearly identical. From pre-
diction distributions of two individual participants in Chapter 5.1.4, it might seem like the
same similarities can be found in the prediction distributions. Table 5.3 presents the nu-
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Eval.Method Full.Gauss Small.Gauss Full.Gamma Small.Gamma Framingham
Exp. Hyp 20.782 20.778 20.094 20.089 16.155
RMSE 13.705 13.708 13.706 13.708 NA
BrierScore 0.13246 0.13251 0.13244 0.13242 0.1348
CRPS 7.5498 7.5506 7.5022 7.5035 NA
Sensitivity 15.11 15.081 14.875 14.639 11.723
Specificity 96.979 97.008 96.979 97.101 97.688
C-statistic 78.082 78.053 78.049 78.05 77.483

Table 5.3: Overview of the numerical results of the evaluation methods applied to the 4 prediction
GLMs and the Framingham model. Exp.Hyp is short for expected percentage of systolic hyperten-
sives. Sensitivity, specificity and C-statistic are also given as percentages.

merical results of the evaluation methods applied to all the prediction models, including
the modified Framingham model. The performance of the small and full versions of the
GLMs are very similar, which is as expected due to all the other similarities previously dis-
cussed. Consequently, we only evaluate the small Gaussian and the small gamma model
from now on. To compare the performance of these models with a prediction model from
literature, we also evaluate a modified version of the Framingham model, see Chapter 4.1.5
for details.

5.2.1 Predicted probability of systolic hypertension

We are interested in the predicted probability given to each participant of getting systolic
hypertension, and how this matches the observed systolic hypertension at HUNT3. Figure
5.8 presents histograms of the predicted probabilities of getting systolic hypertension given
by the small Gaussian and gamma GLMs and the predicted probability of getting general
hypertension given by the Framingham model. All three models have predicted a low
probability of hypertension for more participants than they have predicted high probability
for. However, from the figure, it is clear that the Framingham model predicts close to 0
probability of hypertension for almost twice as many participants as the GLMs. The small
Gaussian and small gamma models have a more linear decline in the number of participants
as the predicted probability increases than the Framingham model. There is a large portion
of the participants with a predicted probability of systolic hypertension relatively close to
50% for all three models, especially the GLMs. None of the models predict over 80%
probability of hypertension for a significant amount of participants.

The observed systolic hypertension at HUNT3 was that 19.551% of the cohort were
systolic hypertensive. Consequently, the fact that the models predict more instances of
low probability of hypertension than high probability of hypertension matches the ob-
served data. The expected percentage of systolic hypertension at HUNT3 according to the
prediction models are presented in Table 5.3. The small Gaussian model expects 20.778%
of the cohort to be systolic hypertensive, while the small gamma model was a little closer
to the truth with an expected percentage of 20.089%. The Framingham model had a more
conservative estimate of 16.155%.
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Figure 5.8: The predicted probabilities of systolic hypertension at HUNT3 for the participants
given by the a) Small Gaussian model; b) Small gamma model; c) Framingham model. Note that the
Framingham model gives the probability for general hypertension, not just systolic hypertension.

5.2.2 RMSE
The RMSE of both the small Gaussian and the small gamma model is 13.708, see Table
5.3. This indicates that neither model has predicted values of the systolic blood pressure
that fit the observed systolic blood pressure at HUNT3 particularly well. In other words,
the goodness-of-fit of the models are not good. Since the Framingham model doesn’t
provide a predicted value of systolic hypertension, it isn’t possible to find the RMSE of
the Framingham model.

5.2.3 Brier score
The Brier score measures the accuracy of the predictions of each participant’s hyperten-
sion status at HUNT3 made by the prediction models. From Table 5.3 we observe that
the small Gaussian model has a Brier score of 0.13251, while the small gamma model has
a slightly smaller Brier score of 0.13242 and the Framingham model a somewhat higher
Brier score of 0.13480. The GLMs have a similar performance to the well-known Fram-
ingham model, which indicates the validity of our models in this aspect. Since a perfectly
accurate prediction model has Brier score 0, and the worst possible model has Brier score
1, the models perform reasonably well. The small gamma model has the highest accuracy
of predicting whether a participant becomes hypertensive.

5.2.4 CRPS
The CRPS is a measure of how well the models are calibrated and can be interpreted
as a measure of the distance between the predicted cumulative distribution function and
the empirical cumulative distribution function of the observed systolic blood pressure at
HUNT3. The small gamma model has a CRPS of 7.5035, which is somewhat smaller
than the CRPS of the small Gaussian model at 7.5506. This indicates that the distributions
predicted by the small gamma model are a little closer to the empirical distribution of the
systolic blood pressure. The reason for this might be that the gamma distribution has a
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slightly heavier right tail, and we also observe a heavy right tail in the observed systolic
blood pressure in Figure 5.1. Since the Framingham model doesn’t provide a predicted
cumulative distribution function of systolic hypertension, it isn’t possible to find the CRPS
of the Framingham model.

5.2.5 PIT Diagram
PIT diagrams are a visual way to check the goodness-of-fit of the predicted cumulative dis-
tribution functions given by the prediction models compared to the empirical distribution
function of the observed systolic blood pressure. The PIT diagrams of the small Gaussian
and small Gamma model are presented in Figure 5.9. As explained in detail in Chapter
3.5, a PIT diagram where the observations come from the proposed cumulative distribu-
tion should have bars of equal height. From Figure 5.9 we observe that both models have a
higher bar closest to 1, which indicates that the empirical cumulative distribution function
has a heavier tail than the predicted cumulative distribution function of the small gamma
and small Gaussian models. In contrast, the bar closest to 0 is noticeably shorter than the
other bars, especially so for the small Gaussian model. This indicates that the predicted
cumulative distributions have a heavier left tail than the empirical distribution function.
We also notice that the bars between approximately 0.15 and 0.7 for the small Gaussian
model, and approximately 0.15 and 0.6 for the small gamma model are taller than the
other bars. The bars in the PIT diagram of the small gamma model are more equal in
height than the bars in the PIT diagram of the small Gaussian model, which indicates that
the cumulative distribution functions of the small gamma model are closer to the empirical
distribution function of the observed systolic blood pressure at HUNT3.
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Figure 5.9: PIT diagrams of a) the small Gaussian model; and (b) the small gamma model.

As with the CRPS, it is not possible to create a PIT diagram of the Framingham model
since it does not provide a predicted cumulative distribution function of the systolic blood
pressure.
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5.2.6 Sensitivity and specificity
The sensitivity of our tests measures how well they are able to identify the people who
become systolic hypertensive, while the specificity of the tests measure how well they are
able to identify the people with a systolic blood pressure which remains at a healthy level.
The small Gaussian model is able to identify 15.081 % of the people who become hyper-
tensive, the small gamma model identifies 14.639 %, and the Framingham model identifies
11.723%. As previously seen in the expected percentage of hypertension, the Framingham
model predicts fewer people will get hypertension than the GLMs predict will get systolic
hypertension. However, neither of the three models are able to identify anywhere near the
true number of people who become systolic hypertensive. The specificity of the models is
much better. All three models have a specificity of 97 % or higher, with the small Gaus-
sian model at 97.008%, the small gamma model at 97.101%, and the Framingham model
at 97.688%. In other words, very few people who remain non-hypertensive is predicted
to become hypertensive or systolic hypertensive. In conclusion, all three models are much
better at identifying the participants who remain healthy, than the participants who get
hypertension and systolic hypertension. This might be because there are so many more
people who remain healthy compared to people who become hypertensive. Note that good
specificity is not necessarily an indication of a reasonable model in itself, since a model
which predicts that everyone remains non-hypertensive, regardless of the values of the
explanatory variables, would have a specificity of 100%.

5.2.7 C-statistic
The C-statistic measures the concordance between the predicted blood pressure and the
observed blood pressure. In other words, it measures to what degree the prediction models
assign a higher probability of hypertension to the people who become systolic hypertensive
than to the people who still have healthy systolic blood pressure at HUNT3. The C-statistic
of the small Gaussian model is 78.053, it is 78.050 for the small gamma model and 77.483
for the Framingham model. The performances of the models are very similar and quite
good. In most cases, the models assign a higher probability of hypertension to the people
who become hypertensive. The small Gaussian model has a slightly better discrimination
ability than the two other models.
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Chapter 6
Discussion and conclusion

In this chapter, we discuss the model assumptions, the performance of the models, the
effect of physical activity on the predicted systolic blood pressure, and compare the per-
formance of the models to the original Framingham model. Lastly, we reach a conclusion
and suggest some ideas for possible future work.

6.1 Discussion
In Chapter 2 we discovered that the percentage of women in our cohort, 61.93%, is no-
ticeably higher than the percentage of women in the total Norwegian population, 49.61%
(Statistics Norway, 2018). This calls into question whether our cohort is representative
of the total Norwegian population. However, the question of representability is out of the
scope of this thesis. Luckily, our cohort is quite large which makes certain deviations from
the total Norwegian population less of a problem. In fact, we include more participants in
this thesis than 25 of the 26 studies on blood pressure prediction reviewed in the paper by
Sun et al. (2017).

The first issue we noticed when presenting the fitted models in Chapter 5.1 is that there
are small differences between the predictions from the different models. Since the small
versions only contain PAI and the explanatory variables that were found to be significant
on a 0.05 significance level in the full models, it is as expected that the small and full
versions of the same GLM are quite similar. The similarities between the Gaussian and
the gamma models are not surprising either. One reason for this is that the models include
the same explanatory variables. The other reason is that a gamma distribution goes towards
a Gaussian distribution, with identical mean and variance, when the shape parameter goes
towards infinity (Leemis and McQueston, 2008). The estimated shape parameter k̂ for
both the small and the full gamma model is approximately 88, which is quite large.

In Figures 5.3b and 5.5 we observe that the standard deviation of the residuals of the
small gamma model depends approximately linearly on both the predicted systolic blood
pressure and the explanatory variables. Since the residuals are shown to be very similar
in Figure 5.2, it is reasonable to assume that this trend is true for the residuals from all
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the prediction GLMs. This trend deviates from the assumptions in the Gaussian GLM,
where the standard deviation of the residuals is assumed to be constant and independent
of the predicted response and the explanatory variables, see Chapter 4.1.1. On the other
hand, the gamma GLM with identity link does assume a linear dependence between the
standard deviation of the residuals and both the predicted systolic blood pressure and the
linear predictor, see Chapter 4.1.3. In Figure 5.5 the sign of the slope of the dependence
between the standard deviation of the residuals and the explanatory variables matches the
sign of the corresponding regression coefficient. However, the values of the slopes do not
correspond to the values of the corresponding regression coefficients. An example of this
is that we see the biggest difference in the standard deviation of the residuals for birth year,
but the largest absolute regression coefficient belongs to the systolic blood pressure from
HUNT2. In other words, the standard deviation of the residuals does not completely fit the
model assumptions of either prediction GLM.

We move on to discuss the performance of the models. Based on Figure 5.1 and an
RMSE of approximately 13.7 for all the prediction GLMs, it is clear that the prediction
models proposed by us do not give accurate predictions of the systolic blood pressure at
HUNT3. The prediction distributions for individual participants in Figure 5.6 indicate that
the variance in each individual prediction distribution is relatively large. This is confirmed
in Figure 5.7. As a consequence, it is reasonable to assume that even though the observed
value is far from the predicted value, the observed value often lies well within the predic-
tion distribution. In spite of a large RMSE we find from CRPS and Brier score coverage
that the prediction distributions reflects the uncertainty in the predictions.

A possible reason for the poor accuracy and large individual uncertainty is that 11
years is a too long time period to assume a constant lifestyle. In our prediction models, we
only include explanatory variables with information from HUNT2, and the lifestyle might
have changed drastically during the 11 years before the prediction time point at HUNT3.
Following this line of argumentation, we would perhaps achieve better accuracy if we in-
cluded explanatory variables containing information about the lifestyle of the participants
at several times during the 11 years. Another possible reason is that 11 years may be sim-
ply too long to be able to accurately predict blood pressure. Life itself is unpredictable,
and perhaps there are too many factors that affect a person’s life and blood pressure in
11 years for it to be possible to include all the relevant explanatory variables in a general
prediction model and expect accurate predictions for most individuals.

This line of thought may also explain the surprisingly small observed effect of physical
activity level on the predicted systolic blood pressure. There are some notable effects of
physical activity level, measured by PAI level, such as the fact that the High level of
PAI is significant on a 0.05 significance level in the small Gaussian and small gamma
model, the standard deviation of the residuals decrease slightly as PAI increases and the
few participants with the lowest observed systolic blood pressure all have a High PAI
level, see Figure 2.16. Otherwise, the data exploration analysis in Chapter 2 and the small
regression coefficient of PAI in Chapter 5 shows that PAI has a small effect on the predicted
systolic blood pressure.

As discussed previously, the small effect of physical activity may be due to the fact that
lifestyle, including physical activity level, probably changes during the 11 years between
the surveys. We may see a bigger effect of physical activity if we included information
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about the physical activity level of the participants at several time points between the
studies. According to this argument we would expect better results if, as in the MyMDT
study, the current PAI score was found through wearable sensors. It is also important
to note that the PAI level used in this thesis is calculated from self-reported variables
on physical activity during the year before HUNT2. In other words, the PAI level used
here is at best a rough estimate of the participants’ physical activity, and at worst may be
incorrect due to poor reporting. Eventually, it might just be that physical activity just isn’t
that important for the systolic blood pressure, and that there are other factors that are more
important, such as age, BMI, and parental hypertension.

In addition to evaluating the models’ performance on predicting the systolic blood
pressure at HUNT3, we study their ability to classify the systolic hypertension status at
HUNT3. The sensitivity score at approximately 15% shows that the models are quite poor
at detecting the participants who become systolic hypertensive. Previously in this chapter
we have discussed the large uncertainty in the prediction distributions, and in Figure 5.8
we observe that there are quite a few participants with just below 50% predicted proba-
bility of systolic hypertension. This explains why the Brier score is relatively reasonable,
even though the sensitivity is poor. On the other hand, the C-statistic at approximately
78% for all the models is quite good, which means that most participants who become
systolic hypertensive have a higher predicted probability of systolic hypertension than the
participants who remain healthy.

We want to compare the performance of the prediction GLMs proposed by us with the
performance of the Framingham model. Firstly, we compare the performance of our mod-
els to the performance of the modified Framingham model applied to our cohort. From
Table 5.3 we see that the results are similar, but that the modified Framingham model
estimates even lower probabilities of hypertension than the GLMs. A possible explana-
tion for the lower estimates of the modified Framingham model is that the model was
originally meant to predict the 4-year risk of hypertension, and we have only altered it
slightly before using it to predict the 11-year risk of hypertension. On the other hand, the
Framingham model, both the original and the modified version, predicts the probability
of general hypertension, not systolic hypertension. Therefore, it would be reasonable to
expect higher estimates, since systolic hypertension is a special case of general hyperten-
sion. The slightly worse results might also be caused by the fact that the Framingham
model was not created for this population, and in previous external validations it has had
poorer results for certain populations (Sun et al., 2017).

Secondly, we want to compare the performance of our models with the original Fram-
ingham model proposed by Parikh et al. (2008). In the original paper Parikh et al. (2008)
reports a C-statistic of 78.8%, with the 95% confidence interval (73.3,80.3). This is just
slightly higher than the C-statistics of the models we implement, which lie just below 78
% (see Table 5.3). According to Sun et al. (2017), the Framingham model has been exter-
nally verified by 7 studies from different countries. Consequently, the fact that our models
produce similar C-statistics to this model is an indicator that, at least in this aspect, the
GLMs and modified Framingham model perform well on the HUNT Study Data.

Parikh et al. (2008) also reported a Hosmer-Lemeshow chi-square statistic of 4.35 for
the original Framingham model. Proposed by Hosmer and Lemeshow (1989), the Hosmer-
Lemeshow chi-square statistic is a common evaluation method for blood pressure predic-
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tion models. However, we do not calculate the Hosmer-Lemeshow chi-square statistic
for the prediction GLMs or the modified Framingham model. The reason for this is that
Parikh et al. (2008) state that they use a modified version of the Hosmer-Lemeshow chi-
square statistic, without specifying how they modified it. Consequently, we do not know
how to calculate a Hosmer-Lemeshow chi-square statistic that would be comparable to the
statistic given in the paper.

6.2 Conclusion
The goal of this thesis is to predict the systolic blood pressure at the time of HUNT3 for
people with initially healthy blood pressure at HUNT2, based on HUNT2 Study data. We
also evaluate the models’ ability to classify the systolic hypertension status at HUNT3. In
addition to this, we study the effect of the physical activity measurement PAI, proposed by
Nes et al. (2017), on the predicted systolic blood pressure. To reach this goal we present,
implement and evaluate a small and full version of a Gaussian GLM and a gamma GLM,
and a modified version of the Framingham model. Ultimately, we compare the perfor-
mances of the models to each other and to the performance of the original Framingham
model. The performances of the GLMs are very similar, and none of them perform sig-
nificantly better than the others. Comparing the GLMs to the Framingham model, they
perform slightly better than the modified version applied to the same cohort, and has a
marginally lower C-statistic than the C-statistic reported in the original Framingham paper
(Parikh et al., 2008). Physical activity, measured in PAI, is observed to have a surprisingly
small effect on the predicted systolic blood pressure.

We conclude that the prediction models we propose are able to identify some clear
trends in the data, for instance, the importance of birth year and previous systolic and di-
astolic blood pressure. Furthermore, they generally predict a higher probability of systolic
hypertension for the participants who become systolic hypertensive, and have a C-statistic
similar to C-statistic of the original Framingham model by Parikh et al. (2008). However,
the variances in the individual prediction distributions are large and the models are not
able to accurately predict the systolic blood pressure at HUNT3.

6.3 Future work
We identify two possible directions for future work. Firstly, we observe that the vari-
ance of the residuals depends on the predicted systolic blood pressure and the explanatory
variables in a different way than described by the model assumptions of either prediction
GLM. A suggestion for future work is thus to choose a prediction model that models the
variance. Another suggestion for future work is to include information about the lifestyle
of the participants, for instance, physical activity level, from several time points between
HUNT2 and HUNT3. This might help since it is 11 years between HUNT2 and HUNT3,
which is a long time to assume a constant lifestyle. A simple version of this would be to
include lifestyle variables from HUNT3, such as PAI and BMI, as explanatory variables.
Another possibility is to include lifestyle information from wearable sensors, like they do
in the MyMDT project (NTNU, 2020).
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Appendix

A1. Additional figures from EDA
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Figure 6.1: Correlation between all the explanatory variables from HUNT2, both categorical and
continuous, and the response, ie. the systolic blood pressure from HUNT3.
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Figure 6.2: Distribution of diastolic (left) and systolic (right) blood pressure from HUNT2. Notice
that we have removed all participants who were hypertensive at time of HUNT2, ie. diastolic blood
pressure >= 90 mmHg and/or systolic blood pressure >= 140 mmHg.
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Figure 6.3: The distributions of physical activity of the participants at the time of HUNT2. To the
left the PAI distribution is shown, and the RecPa distribution is shown to the right. See Section 2.1.3
for more details.
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Figure 6.4: The distributions of the daily smoking habits (left plot) and highest education level (right
plot) of the participants at the time of HUNT2. The levels of Smoking and Education are described
in further detail in Section 2.1.3
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Figure 6.5: The distribution of the continuous explanatory variables from blood samples in HUNT2.
Top left: HDL Cholesterol; Top right: Cholesterol; Bottom left: Creatinine; Bottom right: Glucose.
See Section 2.1.3 for details.
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