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Abstract

The hierarchical ensemble Kalman filter (HEnKF), introduced in Omre
and Myrseth (2010), is an extension of the ensemble Kalman filter (EnKF).
By imposing a hierarchical model on the state space variables, HEnKF
has shown to yield more robust results than EnKF. However, as a con-
sequence of this, HEnKF is computationally demanding, especially for
high-dimensional systems. By imposing a Gaussian Markov random field
(GMRF) on the state space variables, we are able to reduce the computa-
tional cost of HEnKF.

In this thesis, we propose a new prior distribution for the model param-
eters of the state space variables, where we assume a GMRF. We argue
that we are able to reduce computational cost of HEnKF, by utilizing the
sparse matrix structure provided by the GMRF. Two numerical examples
are presented, where results provided by the prior distribution originally
used in HEnKF are compared to results provided by the prior distribution
presented in this thesis.

In both of the numerical examples, the prior distribution presented in
this thesis is able to provide a considerable reduction in computational
demand, compared to the prior distribution originally used in HEnKF.
The prior distribution introduced in this thesis is also able to produce
reliable results in both examples, even when the state space variable is
high-dimensional, while the quality of the results provided by the prior
distribution originally used in HEnKF decreases as the dimension of the
state space variable increases. The theory presented in this thesis suggests
that the computational complexity of HEnKF applying the presented prior
distribution is linear as a function of the dimension of the state space
variable. From the numerical results presented in this thesis, we observe
that the computational complexity is somewhat higher.

iii



iv



Sammendrag

Hierarkisk ensemble Kalmanfilter (HEnKF), introdusert i Omre and
Myrseth (2010), er en utvidelse av ensemble Kalmanfilter (EnKF). Ved å
ilegge en hierarkisk modell p̊a state space-variablene har HEnKF vist å gi
mer robuste resultater enn EnKF. En konsekvens av dette er imidlertid
at HEnKF er beregningsmessig krevende, spesielt for høydimensjonale
systemer. Ved å ilegge et Gaussisk Markovfelt (GMRF) p̊a state space-
variablene er vi i stand til å redusere den beregningsmessige kostnaden
ved HEnKF.

I denne oppgaven foresl̊ar vi en ny apriorifordeling for modellparame-
terne til state space-variablene, hvor vi antar en GMRF. Vi argumenterer
for at vi er stand til å redusere den beregningsmessige kostnaden i HEnKF,
ved å anvende den glisne matrisestrukturen vi oppn̊ar gjennom en GMRF.
To numeriske eksempler er presentert, hvor resultater anskaffet med apriori-
fordelingen opprinnelig brukt i HEnKF er sammenlignet med resultater
anskaffet med apriorifordelingen presentert i denne oppgaven.

I begge de numeriske eksemplene er apriorifordelingen presentert i
denne oppgaven i stand til å redusere den beregningsmessige kostna-
den, sammenlignet med apriorifordelingen opprinnelig brukt i HEnKF.
Apriorifordelingen introdusert i denne oppgaven i stand til å produsere
p̊alitelige resultater i begge eksempler, selv n̊ar state space-variabelen er
høydimensjonal, mens kvaliteten p̊a resultatene med apriorifordelingen opp-
rinnelig brukt i HEnKF avtar n̊ar dimensjonen p̊a state space-variabelen
øker. Teorien presentert i denne oppgaven antyder at den beregningsmes-
sige kompleksiteten for HEnKF med den presenterte apriorifordelingen
er lineær som funksjon av dimensjonen p̊a state space-variabelen. Fra
de numeriske eksemplene presentert i denne oppgaven observerer vi en
beregningsmessig kompleksitet som er noe høyere.
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1 Introduction

In many cases, we wish to predict the outcome of a future event. This event
can be described by a latent variable, denoted xT+1, where T is the current
time-step. Suppose that this latent variable is related to the latent variables
from the previous time-steps, x0, . . . ,xT . Further, suppose that each of these
latent variables xt give rise to an observation dt, for t = 0, . . . , T . Our primary
objective is to assess the one-step forecasting problem, which is to predict the
latent variable xT+1 given the set of observations d0, . . . ,dT .

The state space model (Brockwell and Davis, 1991, chap. 12.1) defines a set
of properties regarding the relationship between the observations d0, . . . ,dT and
latent variables x0, . . . ,xT+1. By assuming a few additional properties regarding
Gaussianity and linearity, the Kalman filter, introduced in Kalman (1960), is
able to produce an analytic solution to the one-step forecasting problem. This
filter was originally applied in the tracking of spacecrafts, where xt defines the
position of the spacecraft at time-step t, and where the observation dt defines
its velocity and azimuth at the same time-step. The relationship between the
observations and the latent variables are defined by the motion equations.

However, when at least one of the assumed properties are invalid, the Kalman
filter is analytically unfeasible, and the filter must be approximated. There
exists several approximations, such as the extended Kalman filter (Gordon et al.,
1993), the randomized maximum likelihood filter (Oliver, 1996), the particle
filter (Arulampalam et al., 2002) and the unscented Kalman filter (Julier and
Uhlmann, 1997). The ensemble Kalman filter, introduced in Evensen (1994),
approximates the Kalman filter when the relationship between two consecutive
latent variables is assumed Gaussian and nonlinear. Applications of the ensemble
Kalman filter includes meteorology, see Houtekamer and Mitchell (1997).

Although the ensemble Kalman filter has proven to yield reliable results in
many applications, the filter struggles with a few artifacts. These artifacts are
mainly related to estimation of the covariance matrix. The hierarchical ensemble
Kalman filter, introduced in Omre and Myrseth (2010), manages to reduce the
impact of these artifacts, by imposing a hierarchical model on the latent variables.
This entails enforcing prior distributions on the model parameters. However, the
hierarchical ensemble Kalman filter faces some issues regarding computational
demands. These issues partially stem from the choice of prior distributions on
the model parameters, and become more severe as the dimensions of the problem
increase.

We believe that by imposing a different set of prior distributions on the model
parameters, we are able to reduce the computational demands of the hierarchical
ensemble Kalman filter, without notably reducing the quality of the results. By
assuming that the elements of the latent variables follow a Markov structure, we
are able to obtain a sparse precision matrix, i.e. the inverse of the covariance
matrix. This enables us to reduce the number of computations performed in the
hierarchical ensemble Kalman filter. The extent of this reduction relies on the
structure of the Markov structure imposed on the latent variables. Since we are
able to change the structure of the Markov chain as we choose, we are given a
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wide range of options. That is, we are given more freedom to find a suitable
hierarchical model for each situation.

In Section 2, we present the theory necessary to understand the new concepts
presented in this report, which is introduced in Section 3. Section 4 introduces
the setup of the numerical examples performed in this report. The results and
the discussion of these are presented in Section 5. Lastly, Section 6 gives a small
summary and conclusion of the results.

2 Background

This section presents the theory that is necessary for understanding the new
material introduced in Section 3. Section 2.1 presents the state space model,
which sculpts the foundation of our problem setup. The linear Gaussian state
space model, which is a special case of the state space model, is introduced in
Section 2.2. Section 2.3 presents the Kalman filter, while Section 2.4 introduces
an approximation of the Kalman filter, namely the ensemble Kalman filter. The
hierarchical ensemble Kalman filter is presented in Section 2.5, which is an
extension of the ensemble Kalman filter. Section 2.6 introduces the Gaussian
Markov random field, while Section 2.7 discusses how Cholesky decomposition
can be applied to efficiently compute equations involving band matrices. Sections
2.5, 2.6 and 2.7 are especially important, as the new material presented in Section
3 combines the theory introduced in these sections.

2.1 State space model

This section presents the state space model (SSM), which is the underlying
model for the problem we consider. The state space model is both defined
mathematically and illustrated visually. For more information about the state
space model, see Omre and Myrseth (2011) and Brockwell and Davis (1991).

The state space model consists of two sequences that are linked together;
a sequence of observations, denoted d0:T = (d0,d1, . . . ,dT ), and a sequence
of latent variables x0:T+1 = (x0,x1, . . . ,xT+1). The vector dt is of length D,
dt ∈ RD, and denotes the observation at an arbitrary time-step t. Similarly,
xt is a vector of length K, xt ∈ RK , and denotes the latent variable at time t.
Throughout this report, vectors are printed in bold, and the index t is exclusively
used for denoting time-step. Also, we choose to write d0:T and x0:T+1 in bold,
as it is more reasonable to consider these as sequences of vectors, rather than
matrices.

Shumway and Stoffer (2016, chap. 6.2) explain that estimating xt|d0:T is
called forecasting for t > T , while it is called filtering for t = T , and smoothing
for t < T . In this report, our main objective is to assess the one-step forecasting
problem, i.e. estimating xT+1 given all of the observations available at time
T , d0:T = (d0,d1, . . . ,dT ). We also want to assess the filtering problem, i.e.
estimate xt given d0:t for t = 0, . . . , T . Assessment of the forecasting and filtering
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problems are discussed further in Section 2.3. In the following, we describe the
properties of the state space model.

We first consider the sequence of latent variables, x0:T+1 = (x0,x1, . . . ,xT+1).
Each latent variable xt+1, given xt, is conditionally independent of the previous
latent variables, for t = 1, . . . , T + 1. That is, the sequence of latent variables
x0:T+1 follows a first order Markov chain

f(xt+1|x0:t) = f(xt+1|xt). (1)

Alternatively, we can define a forward-function, denoted w(.), which specifies
the relationship between two consecutive latent variables

xt+1 = wt(xt,vt), (2)

where vt is a noise term. This is called the forward model. Note that the state
space model makes no distributional assumptions about the noise term vt.

We now proceed to define the relationship between the observations d0:T

and the latent variables x0:T+1. First, each observation dt is conditionally
independent of the remaining observations, given xt, for t = 0, . . . , T . To denote
every observation in d0:T except dt, we write d−t. Similarly, we denote every
latent variable in x0:T+1 except xt as x−t. This enables us to describe the
conditional independence between the observations as follows

f(dt|d−t,x0:T+1) = f(dt|x0:T+1), t = 0, . . . , T. (3)

Second, dt is conditionally independent of the remaining latent variables
given xt. We use the term single-state dependence to describe this property.
The single-state dependence can be formulated as

f(dt|x0:T+1) = f(dt|xt), t = 0, . . . , T. (4)

Note that the right hand side of (3) equals the left hand side of (4). These two
properties enables us to write the following expression

f(d0:T |x0:T+1) =

T∏
t=0

f(dt|xt), (5)

which we denote as the likelihood model.
Figure 1 illustrates the connection between the two sequences d0:T and x0:T+1.

The edges indicate the causal dependencies between the latent variables and the
observations, and within the latent variables. We see that there are only edges
between a latent variable and the previous. This indicates the Markov property
between the latent variables, (2). We also see that there are no edges between
observations, only between a latent variable and the observation at the same time-
step. This enlightens the conditional independence between the observations, (3)
and the single-state dependence, (4). Note that no distributional assumptions
are made in the state space model. In the following section, we present the
linear Gaussian state-space model, which makes further assumptions about the
likelihood and forward models.
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x0 x1 xt xt+1 xT xT+1

d0 d1 dt dt+1 dT

Figure 1: A hidden Markov model. The edges illustrate the stochastic dependen-
cies between the nodes. The latent variables xt, t = 0, . . . , T + 1 are unobserved,
while the observations dt, t = 0, . . . , T are observed.

2.2 Linear Gaussian state space model

This section presents the linear Gaussian state space model, which is a special
case of the state space model. We assume the same model as in Section 2.1. For
more information about the linear Gaussian state space model, see Omre and
Myrseth (2011) and Brockwell and Davis (1991).

The linear Gaussian state space model assumes a state space model, as
specified in Section 2.1. We recall that this model satisfies (1) to (5), and is
illustrated in Figure 1. However, the linear Gaussian state space model makes
further assumptions about the connections between the observations and latent
variables. In the following, we present these properties.

First, we assume that the pdf of the latent variable in the initial time-step is
Gaussian, i.e.

x0 ∼ N(µ0,Σ0), (6)

where µ0 ∈ RK is the mean vector and Σ0 ∈ RK×K is the covariance matrix of
x0. Second, we make further assumptions about the forward model, presented
in (2). We assume that the latent variable xt+1 given xt, is normally distributed
around a linear transformation of xt. That is,

xt+1|xt ∼ N(Atxt,Σx), (7)

for some matrix At ∈ RK×K , and some covariance matrix Σx ∈ RK×K . Since
the pdf of xt+1|xt is Gaussian around a linear transformation of xt, we say that
the forward model is Gauss-linear. By defining a random variable vt ∼ N(0,Σx),
we are able to make an alternative formulation of the forward model

xt+1 = Atxt + vt. (8)

Second, we make assumptions about the likelihood model for dt given xt.
We assume that dt given xt is Gauss-linear as well. That is,

dt|xt ∼ N(Hxt,Σd), (9)

for some matrix H ∈ RD×K , and some covariance matrix Σd ∈ RD×D. Alter-
natively, by defining a variable ut ∼ N(0,Σd), we can formulate this property
as

dt = Hxt + ut. (10)
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In the following section, we present an algorithm for computing f(xT+1|d0:T ).
This algorithm relies on the properties in (6), (7) and (9) in order to provide
results that are analytically tractable.

2.3 Kalman filter

This section presents the Kalman filter, and explains the filter step-by-step. We
outline the presentation of the filter in an algorithm. We assume the same model
as specified in Sections 2.1 and 2.2. For more information about the Kalman
filter, see Kalman (1960), Shumway and Stoffer (2016) and Omre and Myrseth
(2011).

The Kalman filter, introduced in Kalman (1960), is a recursive algorithm that
creates estimates of a latent variable xt, given the observations d0:t = (d0, . . . ,dt).
More specifically, the filter is able to provide an analytic expression for f(xt|d0:t),
for all t = 0, . . . , T for linear Gaussian state space models. We recall that this
is called filtering (Shumway and Stoffer, 2016, chap. 6.2). The Kalman filter is
also able to solve the one-step forecasting problem, i.e. to compute an analytical
expression for f(xT+1|d0:T ), which is our primary objective. Before we introduce
the Kalman filter, we present two theorems that are necessary for proving the
Kalman filter.

Theorem 1. Assume that (3) and (9) hold, and

xt|d0:t−1 ∼ N(µt|0:t−1,Σt|0:t−1), (11)

then
xt|d0:t ∼ N(µt|0:t,Σt|0:t), (12)

where

µt|0:t = µt|0:t−1 +KKF(dt −Hµt|0:t−1) (13)

Σt|0:t = (I −KKFH)Σt|0:t−1 (14)

and where KKF = Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1. The matrices H and Σd

are defined in (9).

The full proof of Theorem 1 is presented in Appendix A. In the following, we
present a sketch of the proof to give the reader a better understanding of the
Kalman filter. To derive the distribution for xt|d0:t, we apply Bayes’ rule

f(xt|d0:t) =
f(xt|d0:t−1)f(dt|xt,d0:t−1)

f(dt|d0:t−1)
. (15)

Since we assume that the observations are conditionally independent, (3), we
have that

f(dt|xt,d0:t−1) = f(dt|xt). (16)

Thus,

f(xt|d0:t) =
f(xt|d0:t−1)f(dt|xt)

f(dt|d0:t−1)
. (17)
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The expression for f(xt|d0:t−1) is given in (11), while the expression for f(dt|xt)
is given in (9). By inserting these expressions into (17), we notice that f(xt|d0:t)
is Gaussian with the parameters defined in (13) and (14). Now we proceed to
the second theorem necessary to prove the Kalman filter.

Theorem 2. Assume that (1) and (7) hold, and

xt|d0:t ∼ N(µt|0:t,Σt|0:t), (18)

then
xt+1|d0:t ∼ N(µt+1|0:t,Σt+1|0:t), (19)

where

µt+1|0:t = Atµt|0:t, (20)

Σt+1|0:t = Σx +AtΣt|0:tA
ᵀ
t , (21)

where At and Σx are defined in (7).

The full proof of Theorem 2 is given in Appendix B. In the following, we
present a sketch of the proof to give the reader some notion of how the Kalman
filter works. The distribution for xt+1|d0:t can be assessed by computing

f(xt+1|d0:t) =

∫
f(xt+1,xt|d0:t)dxt. (22)

By rewriting the integrand, we have

f(xt+1|d0:t) =

∫
f(xt+1|xt,d0:t)f(xt|d0:t)dxt. (23)

Since we assume that the latent variables follow a first order Markov chain, (1),
we have

f(xt+1|d0:t) =

∫
f(xt+1|xt)f(xt|d0:t)dxt. (24)

The first factor in the integrand is given in (7), while the second factor is given in
(18). By inserting these expressions into the equation above, we see that xt+1|d0:t

is Gaussian with the parameters given in (20) and (21). The expressions for the
filtering and one-step forecasting distributions are presented in the following
theorem.

Theorem 3. Assume a linear Gaussian state space model, that is, where (1),
(3), (4), (6), (7) and (9) hold, then

xt|d0:t ∼ N(µt|0:t,Σt|0:t), (25)

xt+1|d0:t ∼ N(µt+1|0:t,Σt+1|0:t), (26)
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for t = 0, . . . , T , where

µt|0:t = µt|0:t−1 +KKF(dt −Hµt|0:t−1), (27)

Σt|0:t = (I −KKFH)Σt|0:t−1, (28)

µt+1|0:t = Atµt|0:t, (29)

Σt+1|0:t = AtΣt|0:tA
ᵀ
t + Σx, (30)

where KKF = Σt|0:t−1H
ᵀ(HΣt|0:t−1H + Σd)

−1 is the Kalman gain matrix for
the Kalman filter, µ0|0:−1 = µ0 and Σ0|0:−1 = Σ0 are defined in (6), At and Σx
are defined in (7), and H and Σd are defined in (9).

Proof. In order to prove this theorem, i.e. to prove that (25) and (26) hold for
t = 0, . . . , T , we structure the proof as a ”proof by induction”. We first prove
that the theorem holds for the initial time-step t = 0. We then prove that the
theorem holds for time-step t if we assume that it holds for t−1. In the following,
we prove that (25) and (26) hold for t = 0.

In order to prove that (25) holds for t = 0, we apply Theorem 1. Since we
assume that (3) and (9) hold, and that x0 ∼ N(µ0,Σ0) from (6), we have from
Theorem 1 that

x0|d0 ∼ N(µ0|0:0,Σ0|0:0), (31)

where

µ0|0:0 = µ0|0:−1 +KKF(d0 −Hµ0|0:−1), (32)

Σ0|0:0 = (I −KKFH)Σ0|0:−1, (33)

where µ0|0:−1 = µ0 and Σ0|0:−1 = Σ0. That is, (25) holds for t = 0. In order
to prove (26) for t = 0, we apply Theorem 2. Since we assume that (1) and (7)
hold, we have from Theorem 2 that

x1|d0 ∼ N(µ1|0:0,Σ1|0:0), (34)

where

µ1|0:0 = A0µ0|0:0, (35)

Σ1|0:0 = A0Σ0|0:0A
ᵀ
0 + Σx. (36)

That is, (26) holds for t = 0, which means that the theorem holds for t = 0.
We now want to prove that Theorem 3 holds for time-step t if we assume

that it holds for t− 1. We do this step-wise, by first proving that (25) holds, and
then proving that (26) consequently also holds. By assuming that the theorem
holds for time-step t− 1, we have from (26) that

xt|d0:t−1 ∼ N(µt|0:t−1,Σt|0:t−1). (37)

Since we assume that (3) and (9) hold, we have from Theorem 1 that

xt|d0:t ∼ N(µt|0:t,Σt|0:t), (38)

7



where

µt|0:t = µt|0:t−1 +KKF(dt −Hµt|0:t−1), (39)

Σt|0:t = (I −KKFH)Σt|0:t−1. (40)

This means that (25) holds.
Now that an expression for f(xt|d0:t) is accessible, we are able to prove that

(26) also holds. Since we assume that (1) and (7) hold, we are able to apply
Theorem 2 to prove (26). From Theorem 2, we have that

xt+1|d0:t ∼ N(µt+1|0:t,Σt+1|0:t), (41)

where

µt+1|0:t = Atµt|0:t, (42)

Σt+1|0:t = AtΣt|0:tA
ᵀ
t + Σx, (43)

which means that (26) holds. This completes the proof of Theorem 3.

In Theorem 3, we see that both the filtering and forecasting distributions are
Gaussian, which means that assessing the distributions only consists of computing
the expressions for the mean vector and covariance matrix. In addition, we see
that the parameters of the filtering distribution f(xt|d0:t), given in (27) and
(28), are functions of µt|0:t−1 and Σt|0:t−1 only. Hence, f(xt|d0:t) can be assessed
through the forecasting distribution at time-step t− 1, f(xt|d0:t−1). Similarly,
we see that the expressions for the distribution parameters of the forecasting
distribution f(xt+1|d0:t), given in (29) and (30), are functions of µt|0:t and Σt|0:t

only. That is, the forecasting distribution at time-step t, f(xt+1|d0:t), can be
assessed through the filtering distribution at time-step t, f(xt|d0:t). Thus, it is
possible to formulate the Kalman filter as a recursive algorithm.

The algorithm for the Kalman filter alternates between an update-step and a
forecast-step, which are both performed once for each time-step t = 0, . . . , T . In
the update-step at time-step t, we assess the filter distribution f(xt|d0:t), given
in (25). In practice this entails computing (27) and (28). In the forecast-step
at time-step t, we assess the forecasting distribution f(xt+1|d0:t), given in (26),
through the distribution acquired in the update-step, f(xt|d0:t). This is done
by computing (29) and (30).

The three first steps of the Kalman filter, in addition to the last step, is
illustrated in Figure 2. Figure 2(a) illustrates the update-step in the first iteration,
i.e. for t = 0, where the distribution f(x0|d0) is assessed. The forecast-step
for t = 0 is visualized in Figure 2(b), where f(x1|d0) is computed. Figure 2(c)
illustrates the update-step for t = 1, where f(x1|d0:1) is assessed. Similarly,
Figure 2(d) visualizes the forecast-step in the last iteration, i.e. for t = T ,
where we compute f(xT+1|d0:T ). Algorithm 1 presents the Kalman filter as an
algorithm. In the following section, we consider an approximation of the Kalman
filter, when the linear Gaussian state space model is invalid.
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x0 x1 xt xt+1 xT xT+1

d0 d1 dt dt+1 dT

(a) The update-step in the first iteration of the Kalman filter. We condition x0 on the first
observation d0.

x0 x1 xt xt+1 xT xT+1

d0 d1 dt dt+1 dT

(b) The forecast-step in the first iteration of the Kalman filter algorithm. We forecast x1, given
the observation d0.

x0 x1 xt xt+1 xT xT+1

d0 d1 dt dt+1 dT

(c) The update-step in the second iteration of the Kalman filter. We condition x1 on d1.

x0 x1 xt xt+1 xT xT+1

d0 d1 dt dt+1 dT

(d) The forecast-step in the last iteration of the Kalman filter. We forecast xT+1, given the
observations d0, . . . ,dT .

Figure 2: The three first plots visualize the three first steps of the Kalman filter
algorithm. The last plot visualizes the last step. The squares indicate which
observations that each latent variable is conditioned on.
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Initiate µ0 and Σ0 from (6)
for t = 0, . . . , T do

Update:
Calculate µt|0:t using (27)
Calculate Σt|0:t using (28)
Forecast:
Calculate µt+1|0:t using (29)
Calculate Σt+1|0:t using (30)

end
Algorithm 1: Algorithm for the Kalman Filter. The pdf for the initial state,
f(x0), is assumed known. The subscripts on µ and Σ indicate which latent
variable that is considered and which observations that are conditioned on.

2.4 Ensemble Kalman filter

This section presents the ensemble Kalman filter, which is an approximation
of the Kalman filter, presented in 2.3. We first explain the background for the
development of the ensemble Kalman filter, and proceed with a presentation of
the filter. Lastly, we present the filter in the form of an algorithm. For more
information about the ensemble Kalman filter, see Evensen (1994) and Omre
and Myrseth (2011).

Section 2.3 presents the Kalman filter, and explains how the filter solves the
filtering and one-step forecasting problems. In the proof of Theorem 3, we notice
that all of the properties in the state space model and linear Gaussian state space
model are necessary in the Kalman filter. In the following, we do not assume
that the forward model, (2), is Gauss-linear, as in the linear Gaussian state
space model. However, we assume that the remaining properties of the model
are valid, i.e. (1), (3), (4), (6) and (9) hold. Thus, the Kalman filter has to be
approximated. A possible solution is the extended Kalman filter, which replaces
the nonlinear forward function with a linear approximation. However, extended
Kalman filter is unfeasible for high-dimensional systems, which is unfortunate as
we mainly focus on high-dimensional systems in this report. Another option is
the ensemble Kalman filter, which also approximates the Kalman filter, and is
well-suited for high-dimensional systems. The ensemble Kalman filter represents
the filtering and forecasting distributions through a set of realizations, rather
than through a mean vector and covariance matrix. In the following, we give a
detailed description of the ensemble Kalman filter.

The ensemble Kalman filter and the Kalman filter are structurally similar.
Both filters assess f(xt|d0:t) and f(xt+1|d0:t) for t = 0, . . . , T through a recursive
algorithm, alternating between an update-step and a forecast-step. However,
since EnKF represents the distributions through a set of realizations, the update
and forward-steps in the two filters differ. In the following, we introduce some
necessary notation before we consider the update- and forward-steps of the
ensemble Kalman filter.

Recall that the Kalman filter assesses the forecasting distribution f(xt|d0:t−1)
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by computing its mean vector µt|0:t−1 and Σt|0:t−1, in (29) and (30), respectively.
The ensemble Kalman filter provides a Gaussian approximation of f(xt|d0:t−1)
through a set of approximately independent realizations, which are thought to
represent the distribution. Each realization is called an ensemble member, and
we denote the jth ensemble member by χt,j ∈ RK . For the remainder of this
report, we let the index j denote the ensemble member. The number of ensemble
members is called the ensemble size and we denote this by J . The ensemble
members are generated independently from the pdf of the latent variable in
the initial time-step, i.e. χ0,j ∼ f(x0) for j = 1, . . . , J , and then adjusted
according to the likelihood and forward models, in order to represent the correct
distribution at all times. The set of ensemble members is called an ensemble,
and the we denote the ensemble representing f(xt|d0:t−1) as χt. The ensemble
χt is a matrix of consisting of J column vectors, where χt,j is the jth column

vector of χt, i.e. χt ∈ RK×J . The ensemble is represented as a matrix, rather
than a set of ensemble members. Representing the ensemble as a matrix enables
us to extensively simplify the expressions that are presented in Section 3. In the
following, we first consider the update-step of the ensemble Kalman filter.

As for the Kalman filter, the objective of the update-step is to assess the
filtering distribution f(xt|d0:t). EnKF assesses the filtering distribution by first
approximating the forecasting distribution f(xt|d0:t−1) through the ensemble.
The approximation of f(xt|d0:t−1) is a Gaussian pdf N(µt|0:t−1,Σt|0:t−1), where
µt|0:t−1 and Σt|0:t−1 are unknown parameters. These parameters are approxi-
mated through the ensemble χt. The mean µt|0:t−1 is estimated by the average
of the ensemble members

µ̂t|0:t−1 =
1

J

J∑
j=1

χt,j . (44)

Similarly, we use the sample covariance of the ensemble to estimate Σt|0:t−1

Σ̂t|0:t−1 =
1

J − 1

J∑
j=1

(χt,j − µ̂t|0:t−1)(χt,j − µ̂t|0:t−1)ᵀ. (45)

We denote the Gaussian pdf N(µ̂t|0:t−1, Σ̂t|0:t−1) as f̂(xt|d0:t−1, χt), and it is
used as the Gaussian approximation of f(xt|d0:t−1). Note that the Gaussian
approximation is conditioned on χt, because µ̂t|0:t−1 and Σ̂t|0:t−1 are calculated
through the ensemble.

Now that a Gaussian approximation of f(xt|d0:t−1) is available, we are able to
approximate f(xt|d0:t). We approximate f(xt|d0:t) by a Gaussian approximation

denoted f̂(xt|d0:t, χt). As in Section 2.3, we apply Bayes’ rule to derive the
expressions for the distribution parameters

f̂(xt|d0:t, χt) =
f̂(xt|d0:t−1, χt)f(dt|xt,d0:t−1)

f(dt|d0:t−1)
. (46)

Due to conditional independence between observations, (3), we have that

f(dt|xt,d0:t−1) = f(dt|xt). We have that the prior f̂(xt|d0:t−1, χt) is Gaussian
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with parameters defined in (44) and (45), and that f(dt|xt) is defined in (9).

By inserting these pdfs into (46), we have that the posterior f̂(xt|d0:t, χt) is a
Gaussian pdf N(µ̂t|0:t, Σ̂t|0:t). The full derivation of the distribution is presented
in Appendix C, and the expressions for the parameters are only presented here

µ̂t|0:t = µ̂t|0:t−1 +KEnKF(dt −Hµ̂t|0:t−1) (47)

Σ̂t|0:t = (I −KEnKFH)Σ̂t|0:t−1, (48)

where KEnKF = Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1 is the Kalman gain matrix for

EnKF. Note that the expressions are identical to the expressions in (39) and
(40), except that µt|0:t−1 and Σt|0:t−1 are replaced with µ̂t|0:t−1 and Σ̂t|0:t−1.
This completes the assessment of f(xt|d0:t).

In order to ensure that the ensemble represents the filter distribution f(xt|d0:t),
the ensemble members need to be adjusted to the observation in the current
time-step, dt. By the term ”adjusted”, we mean that if the ensemble is a set
of realizations from f(xt|d0:t−1), the adjusted ensemble is a set of realizations
from f(xt|d0:t). If the ensemble is not adjusted to dt, the ensemble Kalman
filter fails to approximate the Kalman filter. The following expression adjusts
the existing ensemble members on the current observation, dt

χ̃t,j = χt,j +KEnKF(dt + ut,j −Hχt,j), (49)

where ut,j ∼ N(0,Σd) and where the tilde indicates that the jth ensemble
member χ̃t,j is adjusted according to d0:t. Similarly, χ̃t denotes the ensemble
that represents f(xt|d0:t). If χt is a set of realizations from f(xt|d0:t−1), (49)
guarantees that χ̃t is a set of realizations from f(xt|d0:t) .

An alternative approach to adjusting the existing ensemble members to dt
in (49), is to sample new ensemble members from f̂(xt|d0:t, χt). This enables
us to provide independent ensemble members that are adjusted according to
dt. However, because of the uncertainty regarding the validity of the Gaussian
approximation, we want to avoid sampling from f̂(xt|d0:t, χt) at all costs. That

is, the Gaussian approximation f̂(xt|d0:t, χt) is utilized to approximate the filter
distribution only. This completes the update-step of the ensemble Kalman filter.
In the following we consider the forecast-step.

The forecast-step in the ensemble Kalman filter resembles the forecast-step
in the traditional Kalman filter. Recall that the objective of the forecast-step
at time t in the Kalman filter is to provide an expression for the forecasting
distribution f(xt+1|d0:t). In practice, this entails we compute the distribution
parameters of f(xt+1|d0:t) by (29) and (30). However, since the forward model
is assumed to be nonlinear, these expressions are invalid in EnKF. Since EnKF
represents f(xt|d0:t) through an ensemble, EnKF applies the formulation of
the forward model from (2) on each ensemble member individually, in order to
obtain an ensemble that represents f(xt+1|d0:t). That is,

χt+1,j = wt(χ̃t,j ,vt,j), j = 1, . . . , J, (50)

where vt,j ∼ N(0,Σx). This completes the forecast-step in EnKF. The ensemble
Kalman filter is summarised in Algorithm 2.
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Initiate χ0 = {χ0,j ∼ f(x0), j = 1, . . . , J}
for t = 0, . . . , T do

Update:
Calculate µ̂t|0:t−1 using (44)

Calculate Σ̂t|0:t−1 using (45)
Calculate µ̂t|0:t using (47)

Calculate Σ̂t|0:t using (48)
Calculate χ̃t,j using (49) for j = 1, . . . , J
Forecast:
Calculate χt+1,j using (50) for j = 1, . . . , J

end
Algorithm 2: Algorithm for the ensemble Kalman Filter. The pdf for the
initial state, f(x0), is assumed known.

2.5 Hierarchical ensemble Kalman filter

The hierarchical ensemble Kalman filter (HEnKF), introduced in Omre and
Myrseth (2010), is an extension of the ensemble Kalman filter, presented in
Section 2.4. This section explains the background for the development of HEnKF,
and provides a presentation of the filter. We assume the same model as in Section
2.4, that is, a state-space model where (1), (3), (4), (6) and (9) apply.

The ensemble Kalman filter (EnKF), presented in Section 2.4 has proven
to be a powerful tool for making estimates on a latent variable given a set of
observations. However, EnKF fails to account for the estimation uncertainty in
Σ̂t|0:t−1, which is the estimate of Σt|0:t−1. In addition, Σ̂t|0:t−1 fails to contain
the same amount of information about the distribution as Σt|0:t−1. This is
because of rank deficiency, which occurs when the ensemble size J is smaller than
both K and D, which we recall are the dimensions of the state space variable
xt and the observation dt, respectively. As a result of this, Omre and Myrseth
(2010) suggests enforcing a hierarchical model on f(xt|d0:t−1) in the update-step,
which entails imposing prior distributions for µt|0:t−1 and Σt|0:t−1. This enables
us to account for the estimation uncertainty in Σt|0:t−1. By imposing a suitable
prior distribution for Σt|0:t−1, we are able to remove the issue of rank deficiency
completely. The variables µt|0:t−1 and Σt|0:t−1 are mentioned extensively in this
chapter, which is why we simplify the notation by denoting these variables as
µt and Σt, respectively, for the remainder of this chapter. In the following, we
present a detailed description of the hierarchical ensemble Kalman filter.

The structure of the hierarchical ensemble Kalman filter resembles the struc-
ture of ensemble Kalman filter. Both filters alternates between an update-step
and a forecast-step, and represent the distributions through an ensemble. How-
ever, since the hierarchical ensemble Kalman filter enforces a hierarchical model
on the state variables, adjustments has to be made for the update-step. It also
entails that HEnKF has to assign prior distributions for µt and Σt as a part of
the initialization. In the following, we first consider the update-step.
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The update-step in HEnKF consists of deriving the distribution f(µt,Σt|χt),
and then adjusting the ensemble members to the current observation dt, as
in EnKF. First, we consider the derivation of f(µt,Σt|χt). An expression for
f(µt,Σt|χt) can be found by using Bayes’ rule and the prior distribution f(µt,Σt)

f(µt,Σt|χt) =
f(µt,Σt)f̂(χt|µt,Σt)

f(χt)
. (51)

HEnKF chooses the prior distribution f(µt,Σt) such that deriving the expression
for f(µt,Σt|χt) is analytically tractable. This is possible by choosing a prior

distribution such that f(µt,Σt) is a conjugate prior to the likelihood f̂(χt|µt,Σt),
i.e. the prior f(µt,Σt) and the posterior f(µt,Σt|χt) belong to the same family
of distributions (Gamerman and Lopes, 2006, p. 50). In order to choose a suitable

prior distribution, we first need to assess the likelihood f̂(χt|µt,Σt).
The ensemble members are considered to be independent, thus we have that

f̂(χt|µt,Σt) =

J∏
j=1

f̂(χt,j |µt,Σt). (52)

Each ensemble member χt,j is considered to be realizations from the pdf of

xt|d0:t−1. Since xt|d0:t−1,µt,Σt ∼ N(µt,Σt), we have that f̂(χt|µt,Σt) is Gaus-
sian. That is, the joint prior distribution f(µt,Σt) should belong to the Gaussian
conjugate family, see Gelman et al. (2003). Omre and Myrseth (2010) chooses
the prior to belong to the normal-inverse-Wishart distribution. In the following,
we present the expressions for the prior and posterior distributions f(µt,Σt|χt).

We write the prior distribution as f(µt,Σt) = f(µt|Σt)f(Σt). The following
distributions are assigned to µt|Σt and Σt

µt|Σt ∼ N(ξt, αtΣt), (53)

Σt ∼ IW(Ψt, νt), (54)

where αt > 0 is the variance scaling parameter, and IW(Ψt, νt) is the inverse-
Wishart distribution with matrix parameter Ψt ∈ RK×K and νt degrees of
freedom. The expression for the posterior distributions are only presented here
(Omre and Myrseth, 2010). The posterior distributions are as follows

µt|Σt, χt ∼ N(ξ∗t , α
∗
tΣt) (55)

Σt|χt ∼ IW(Ψ∗t , ν
∗
t ) (56)

where

ξ∗t =
1

1 + Jαt
ξt +

Jαt
1 + Jαt

µ̂t|0:t−1, (57)

α∗t =
αt

1 + Jαt
, (58)

Ψ∗t = Ψt + (J − 1)Σ̂t|0:t−1 +
J

1 + Jαt
(µ̂t|0:t−1 − ξt)(µ̂t|0:t−1 − ξt)ᵀ, (59)

ν∗t = νt + J, (60)
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where µ̂t|0:t−1 and Σ̂t|0:t−1 are defined in (47) and (48), respectively.
Note that the parameters are conditioned on χt, which means that the

distribution parameters are adjusted according to d0:t−1. That is, the distribution
parameters will be adjusted according to dt in the the following time-step,
when µt+1 and Σt+1 are adjusted to χt+1. Also note that the parameters in
the posterior distributions are weighted averages of the prior parameters and
ensemble members. This means that the prior is assigned much weight when
the ensemble size J is small, and that the prior is assigned less weight when J
is large. When J −→∞, the prior is assigned no weight, and HEnKF coincides
with EnKF.

Note that HEnKF adjusts µt and Σt to χt by deriving a distribution
f(µt,Σt|χt), as an alternative to the updating in EnKF, which is to compute
(47) and (48). The HEnKF-approach allows us to combine our prior assump-
tions about µt and Σt with knowledge about the observations d0:t−1 through
the ensemble χt, as we can see in (57) to (60). By imposing a sensible prior
distribution for Σt, HEnKF is also able to guarantee that Σt remains full-rank.
Also, choosing a prior f(µt,Σt) from the Gaussian conjugate family reduces
the amount of computations that has to be performed, since computing the
normalizing constant for f(µt,Σt|χt) is avoided, which in many cases is difficult
to compute.

It should also be noted that the normal-inverse-Wishart distribution is
considered to be the standard choice of conjugate prior distribution when the
likelihood is multivariate normal, which is arguably the reason why Omre and
Myrseth (2010) chose this distribution. Later, we shall see that the choice of this
distribution give rise to some issues regarding computability. This completes the
derivation of f(µt,Σt|χt). In the following, we consider the adjustment of the
ensemble members to the current observation, dt.

The adjusting of the ensemble members resembles the adjusting in EnKF.
Recall that in EnKF, each ensemble member is adjusted based on Σ̂t|0:t−1, see
(49). However, since HEnKF considers Σt as a stochastic variable, HEnKF
generates a sample of Σt from f(Σt|χt), in order to perform the updating of
the ensemble members. That is, HEnKF adjusts each ensemble member on a
different sample of Σt. The generated sample of Σt that is applied to updating
ensemble member number j is denoted Σt,j , i.e. Σt,j ∼ f(Σt|χt). The updating
is as follows

χ̃t,j = χt,j + Σt,jH
ᵀ(HΣt,jH

ᵀ + Σd)
−1(dt + ut,j −Hχt,j), (61)

where ut,j ∼ N(0,Σd) and Σt,j ∼ IW(Ψ∗t , ν
∗
t ). As in (49), by computing the

ensemble χ̃t through (61), the ensemble χ̃t is a set of realizations from f(xt|d0:t)
if χt is a set of realizations from f(xt|d0:t−1). This completes the update-step
of HEnKF, and we proceed to the forecast-step.

The forecast-step in HEnKF resembles the forecast-step in EnKF. However,
in addition to forwarding the ensemble members, the distribution parameters for
µt and Σt has to be forwarded as well. For more details about the updating of
µt and Σt, see Omre and Myrseth (2010). An important detail in the forwarding
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of the distribution parameters, is that the forecast-step preserves the distribution
families of µt and Σt. This is important because it means that the distribution
families of both µt and Σt are preserved throughout the entire filter algorithm,
since both the update- and forward-steps preserve the distribution families. This
reduces the computational demands of the filter extensively, as it reduces the
updating and forecasting of µt and Σt to computing their parameter values, and
reassessing the distribution families of µt and Σt in each time-step is omitted.
The forwarding of the ensemble members is identical to the forwarding in EnKF,
see (50). This completes the presentation of the hierarchical ensemble Kalman
filter.

2.6 Gaussian Markov random fields

This section presents Gaussian Markov random fields (GMRF), which is an
important part of the new theory presented in Section 3. For more information
about Gaussian Markov random fields, see Rue and Held (2005).

Before we present GMRF, we introduce the notation that is necessary to
present GMRF in a digestible manner. Consider a stochastic variable x, which
is a vector of length K, i.e. x ∈ RK . We assume that x is normally distributed
with mean vector µ and covariance matrix Σ, i.e. x ∼ N(µ,Σ). We denote the
kth element of x as xk, i.e. x = (x1, . . . , xk, . . . , xK). In order to denote all
elements of x between the ith and kth element, we write x{i+1:k−1}. If we want
to denote all elements of x, except the ith and kth element, we write x−{i,k}.
That is, if we want to denote that the ith and kth element of x are conditionally
independent given the remaining elements, we write

xi ⊥ xk|x−{i,k}. (62)

We let Q denote the precision matrix of x, which is the inverse of the covariance
matrix, i.e. Q = Σ−1. Further, we denote the (i, k)th entry of Q with a
superscript, i.e. Qi,k.

In the following, we define the graph associated to x. The graph associated to
x consists of K nodes, where node k is associated to the kth element of x. The
graph consists of a set of edges, where each edge connects two of the nodes in
the graph. The following definition determines whether there is an edge between
two nodes or not. There exists no edge between node i and k if and only if

xi ⊥ xk|x−{i,k}. (63)

That is, if xi and xk are conditionally independent given the remaining elements
of x, then there is no edge between nodes i and k, and vice versa.

Further, we define the term sequential neighbour. Each node k has a set of
sequential neighbours, which we denote Λk. We define Λk as the smallest subset
of {1, . . . , k − 1} such that f(xk|x{1:k−1}) = f(xk|xΛk) holds, where xΛk is the
vector containing the stochastic variables associated with the nodes in Λk. From
the definition of Λk, we have that

xk ⊥ x{1:k−1}\Λk |xΛk . (64)
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That is, xk is conditionally independent of x{1:k−1}\Λk given xΛk . To denote the
number of sequential neighbours of node k, we write |Λk|. The set Λk is ordered
in ascending order, which enables us to enumerate the nodes in Λk from 1 to |Λk|.
We denote the lth sequential neighbour of node k as Λk(l), and we denote the
stochastic variable associated to the lth sequential neighbour of node k as xΛk(l).
If node i is a sequential neighbour of node k, i.e. i ∈ Λk, then Λ−1

k (i) denotes
the index of node i in Λk. That is, if node i is the lth sequential neighbour of
node k, i.e. Λk(l) = i, then Λ−1

k (i) = l. This means that Λk(Λ−1
k (i)) = i.

We present a theorem that provides a useful connection between the sequential
neighbourhood and conditional independence.

Theorem 4. Assume 1 ≤ i < k ≤ K. We then have

i /∈ Λk and @s ∈ {k + 1, . . . ,K} : i, k ∈ Λs ⇐⇒ xi ⊥ xk|x−{i,k}. (65)

The proof is presented in Appendix E. The theorem states that if either
i ∈ Λk or there exists a sequential neighbourhood Λs such that i, k ∈ Λs, then
xi and xk are not conditionally independent given the remaining elements of x.
That is, there are two possibilities as to why there is an edge between node i and
k. Either node i is a sequential neighbour of node k, i.e. i ∈ Λk, or both nodes
are sequential neighbours of the same node, i, k ∈ Λs for some s ∈ {k + 1,K}.
In the following, we discuss a theorem that connects the presented theory to the
sparsity of the precision matrix Q.

From Theorem 2.2 in Rue and Held (2005), we have that Qi,k = 0 if and
only if the ith and kth element of x are conditionally independent given the
remaining elements,

xi ⊥ xk|x−{i,k} ⇐⇒ Qi,k = 0. (66)

Hence we have a useful connection between the graph associated to x, and the
structure of the precision matrix Q. If there is no edge between node i and k,
then (63) holds. This implies that Qi,k = 0. Conversely, if Qi,k = 0, then there
is no edge between node i and k. This enables us to assess the sparsity of Q
through the graph. In the following, we apply this theorem on an example.

Assume that x follows a second order Markov chain,

xk ⊥ x{1,...,k−3}|x{k−2,k−1}. (67)

That is, the kth element of x is conditionally independent of the k − 3 first
elements, given the two elements before xk. We can also represent the conditional
dependencies in x by a graph. Since x follows a second order Markov chain, the
sequential neighbourhood for node k is

Λk = {k − 2, k − 1} for k > 2. (68)

That is |Λk| = 2 if k > 2, and |Λk| = k − 1 if k ≤ 2. Thus, there exist edges
between node k and the two previous nodes. Since node k is a sequential
neighbour of node k + 1 and k + 2, there are also edges between node k and the
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k − 2 k − 1 k k + 1 k + 2 k + 3

Figure 3: An excerpt of the graph for x. There is an edge between each node
and its four closest nodes.

two following nodes. Figure 3 shows a part of the graph associated to x. We
see that there is only an edge between a node and its four closest nodes. In the
following, we show how the Markov property on x influences the structure of
the precision matrix Q in this example.

By combining (66) and (68), we have that

Qi,k = 0 for |i− k| > 2. (69)

That is, Q has the following structure

Q =



• • •
• • • •
• • • • •
• • • • •
• • • • •
• • • • •

. . .

• • • • •
• • • • •
• • • • •
• • • • •
• • • •
• • •



, (70)

where • represents the nonzero entries of Q. That is, only the elements on the
diagonal, and the two first lower and upper diagonals are nonzero, which means
that in total 5 diagonals are nonzero. The bandwidth of a matrix Q is defined as

max{|i− k| : Qi,k 6= 0}. (71)

In our example, Q is a band matrix with bandwidth two. In general, if x follows
an mth order Markov chain, Q has 2m+ 1 nonzero-diagonals and bandwidth
m. This result is very useful, as band matrices have many beneficial properties
regarding computational complexity (Rue and Held, 2005, chap. 1.2.1), which is
utilized in the next section.
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2.7 Applying Cholesky decomposition on band matrices

This section discusses how we in certain cases are able to apply Cholesky
decomposition to efficiently compute expressions involving band matrices. This
is a crucial part of the new theory presented in Section 3. For more information,
see Rue and Held (2005).

Let z1 and z2 be vectors of length K, i.e. z1, z2 ∈ RK . We assume that z1

is unknown and that z2 is known. Further, assume that Q is a known symmetric
positive-definite matrix of size K ×K. Our objective is to compute

z1 = Q−1z2. (72)

as efficiently as possible. It is obviously possible to compute the right hand side
directly, that is, by first inverting Q, and then compute Q−1z2. Another option is
to use Cholesky decomposition. In the following, we first describe how Cholesky
decomposition is applied to compute (72), when Q is a full matrix. Further, we
discuss how Cholesky decomposition enables us to reduce the computational
complexity of computing (72) when we assume that Q is a band matrix.

We first utilize that Q is a symmetric positive-definite matrix. For every
symmetric and positive-definite matrix, there exists a lower triangular matrix L
such that Q = LLᵀ. By combining this expression with (72), we have

z1 = L−ᵀL−1z2. (73)

We now want to split up the right hand side into two equations. We define a
vector z3 ∈ RK , such that

z3 =L−1z2, (74)

z1 =L−ᵀz3. (75)

Note that inserting the expression for z3 in (74) into (75) yields (73). In order
to compute z1, we first compute z3 from (74), and then compute z1 from (75).
In the following, we first consider the computation of (74).

We rewrite (74) as
z2 = Lz3. (76)

Since L is a lower triangular matrix, L has the following structure

L =



•
• •
• • •
• • • •

. . .

• • . . . . . . • •
• • . . . . . . • • •
• • . . . . . . • • • •


, (77)

where • denotes the nonzero entries of L. In order to utilize the structure of
L, we compute (76) row-by-row. That is, we compute z2 recursively, by first
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solving the first row of the matrix equation z2 = Lz3, and then repeat this for
every row down to the last row. In the following, we discuss this in detail.

Since L is lower diagonal, L only has one nonzero entry on the first row, see
(77). Thus, the equation for the first row of z2 = Lz3 becomes

z1
2 = L1,1z1

3 , (78)

where z1
2 and z1

3 are the first elements of z2 and z3, respectively. Since z2 is
known, we have that z1

3 = L1,1/z1
2 . Now that z1

3 is known, we are able to solve
the second row of z2 = Lz3 efficiently. The Cholesky decomposition L has at
most two nonzero entries on the second row, as seen in (77). Thus, the equation
for the second row becomes

z2
2 = L2,1z1

3 + L2,2z2
3 . (79)

Since z1
3 is known, we are able to solve the equation for z2

3

z2
3 =

1

L2,2
(z2

2 − L2,1z1
3). (80)

Similarly, we are able to compute z3
3 , z4

3 , etc, recursively. In general, the
expression for the lth element of z3 becomes

zl3 =
1

Ll,l
(zl2 −

l−1∑
s=1

Ll,szs3). (81)

Now that z3 is computed, we are able to compute z1 from (75). We apply
the same logic to solve this equation as for solving (74). By rewriting (75), we
have

z3 = Lᵀz1. (82)

As for (76), we compute (82) row-by-row. However, since Lᵀ is upper diagonal,
we iterate in the opposite direction than for (76). That is, we first compute the
last row of z3 = Lᵀz1, and iterate backwards up to the first row of z1. The
expression for the lth element of z1 is as follows

zl1 =
1

Ll,l
(zl3 −

K∑
s=l+1

Ls,lzs1). (83)

In the following we compare the computational complexity of computing (72)
brute-force, to the presented Cholesky decomposition-approach.

In general, we have that inverting Q has a computational complexity ofO(K3).
The computational complexity of multiplying Q−1 with z2 is O(K3), which
means that the overall complexity of computing (72) brute-force is O(K3). The
computational complexity of Cholesky decomposing Q is O(K3). By computing
z3 through (81), the computational complexity is O(K2), because computing
each of the K elements of z3 has a computational complexity of O(K). Similarly,
the computational complexity of computing z1 from (83) is O(K2). Thus, the
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overall complexity of computing (72) with Cholesky decomposition is O(K3).
Hence Cholesky decomposition is of little use when Q is assumed to be a full
matrix. In the following, we make further assumptions about the sparsity of Q,
and discuss how this affects the computational complexity of computing (72).

We now assume that Q is a band matrix with bandwidth m, where the term
bandwidth is defined in (71). The computational complexity can be reduced by
utilizing the fact that Q is a band matrix with known bandwidth. Appendix D
shows that L only has nonzero entries on the diagonal and on the m first lower
diagonals. For example, if the bandwidth of Q is two, i.e. m = 2, L has the
following structure

L =



•
• •
• • •
• • •

. . .

• • •
• • •
• • •


, (84)

where • indicate the nonzero entries of L. In the following, we show how we are
able to compute (72) more efficiently, when Q has bandwidth m.

As previously, we compute (72) by solving (74) and (75). Recall that (74)
is solved by computing z3 elementwise through (81). However, because of the
structure of L, we are able to simplify this expression. Since Q has bandwidth
m, L has at most m+ 1 nonzero entries on each row. The nonzero entries are
the diagonal entry, and the first m entries located to the left of the diagonal.
For example, we can see from (84) that each row has at most 3 nonzero entries
when m = 2. Thus, (81) can be simplified to

zl3 =
1

Ll,l
(zl2 −

l−1∑
s=l−m

Ll,szs3), (85)

where we notice that the sum goes from l −m to l − 1, while the sum in (81)
goes from 1 to l − 1.

Similarly, we are able to compute (75) more efficiently as well. Each row of
Lᵀ has at most m + 1 nonzero entries, and these elements are located on the
diagonal and to the right of the diagonal. Hence, (83) can be simplified to

zl1 =
1

Ll,l
(zl3 −

l+m∑
s=l+1

Ls,lzs1), (86)

where we notice that the sum goes from l + 1 to l + m, while the sum in
(83) goes from l + 1 to K. Algorithm 3 presents a summary of computing
(72) with Cholesky decomposition when Q is a band matrix with bandwidth
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Compute Cholesky decomposition, Q = LLᵀ.
Solve z2 = Lz3 for z3:
for l = 1, . . . ,K do

Compute zl3 using (85)
end
Solve z3 = Lᵀz1 for z1:
for l = K, . . . , 1 do

Compute zl1 using (86)
end

Algorithm 3: Algorithm for computing z1 = Q−1z2 with Cholesky decom-
position when Q has bandwidth m.

m. In the following, we discuss the computational complexity of the Cholesky
decomposition-approach for band matrices.

As mentioned, the computational complexity of Cholesky decomposing Q
is O(K3). However, since Q is a band matrix with bandwidth m, we have
that L has at most m + 1 entries on each row. Thus, the number of nonzero
entries in L is O(Km). Computing each entry has a computational complexity
of O(m). Thus, Cholesky decomposing Q has a computational complexity of
O(Km2). In addition, we are able to reduce the computational complexity of
computing (81) and (83), by rather computing (85) and (86). The computational
complexity of computing (85) is O(Km) for each element of z3, which is the
same as for computing (86). Thus, the overall computational complexity of
utilizing Cholesky decomposition to compute (72) is O(Km2). As mentioned,
the brute-force approach has a computational complexity of O(K3). In our
numerical examples, we have that K � m. Thus, Cholesky decomposition
extensively reduces the computational complexity.

3 Alternative prior distribution for HEnKF

In this section, we propose a new family of prior distributions for the hierarchical
ensemble Kalman filter, followed by a presentation of the corresponding posterior
distributions and the precision matrix for the latent variable xt. Lastly, we show
how the proposed prior distributions can be applied to reduce the computational
costs of the hierarchical ensemble Kalman filter.

3.1 New prior distribution for HEnKF

Recall that the ensemble Kalman filter, presented in Section 2.4, fails to account
for the estimation uncertainty in the estimation of the covariance matrix. The
hierarchical ensemble Kalman filter, presented in Section 2.5, solves this by
imposing a prior distribution on the model parameters. However, this increases
the computational cost of the update step, which is apparent by comparing (49)
to (61). In the following, we aim to reduce the computational demands of HEnKF,
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while still obtaining reliable results. That is, we impose a prior distribution
on the model parameters that enables us to reduce the computational cost of
computing (61). We believe that this prior distribution is able to provide reliable
results by inheriting some of the beneficial properties from the hierarchical model,
such as accounting for estimation uncertainty. In the following, we apply (66)
and Theorem 4 from Section 2.6 to construct a new prior distribution.

Recall that we in Section 2.5 assume that xt|d0:t−1 is normally distributed
with mean vector µt and covariance matrix Σt, where the distributions for µt|Σt
and Σt are defined in (53) and (54), respectively. In the following, we assume
that xt|d0:t−1 is a Gaussian Markov random field, as presented in Section 2.6.
That is, we assume that there is a graph associated to xt, where the kth element
of xt is associated to node k in the graph. We assume that node k is assigned
a sequential neighbourhood that satisfies (64), which we denote Λk. Further,
we assume that Λk is time-invariant, which is why Λk is denoted without the
subscript t. We denote the stochastic variables related to the set of sequential
neighbours of node k as xΛk

t , i.e. xΛk
t ∈ R|Λk|. In the following, we introduce

the model parameters for xt|d0:t−1.
We denote the model parameters of xt|d0:t−1 as ηt and φt. We assume that

φt is a vector of length K, i.e. φt ∈ RK , and we denote the kth element of φt as
φkt . Further, we assume that ηt is a collection of K vectors, and we denote the
kth vector by ηkt , i.e. ηt = (η1

t , . . . ,η
k
t , . . . ,η

K
t ). We have that ηkt is a vector

of length |Λk| + 1, i.e. ηkt ∈ R|Λk|+1, where we recall that |Λk| is the number

of sequential neighbours for node k. We denote the lth element in ηkt as ηk,lt .
Since ηkt is of length |Λk|+ 1, the collection of vectors in ηt are generally not
of the same size. Hence, it is not reasonable to represent ηt as a matrix, but
rather as a collection of vectors, which is why we denote ηt in bold. Before we
introduce the prior distributions for φt and ηt|φt, we present the distribution
for xt|d0:t−1,ηt,φt.

We have that

f(xt|d0:t−1,ηt,φt) =

K∏
k=1

f(xkt |x
{1:k−1}
t ,d0:t−1,ηt,φt). (87)

Since we assume that xt|d0:t−1,ηt,φt is a GMRF, we apply (64) to simplify the
expression above

f(xt|d0:t−1,ηt,φt) =

K∏
k=1

f(xkt |x
Λk
t ,d0:t−1,ηt,φt). (88)

We also assume that

f(xkt |x
Λk
t ,d0:t−1,ηt,φt) = f(xkt |x

Λk
t ,d0:t−1,η

k
t , φ

k
t ). (89)

Further, we assume that

xkt |x
Λk
t ,d0:t−1,η

k
t , φ

k
t ∼ N

ηk,1t +

|Λk|∑
l=1

x
Λk(l)
t ηk,l+1

t , φkt

 , (90)
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where ηk,l+1
t is element l + 1 in the vector ηkt . By writing the mean as a dot

product of two vectors, we have

xkt |x
Λk
t ,d0:t−1,η

k
t , φ

k
t ∼ N

((
1,
(
xΛk
t

)ᵀ)
· ηkt , φkt

)
. (91)

This completes the presentation of the pdf of xt|d0:t−1,ηt,φt.
Recall that we impose prior distributions on the model parameters in Section

2.5. Similarly, we now want to impose prior distributions on φt and ηt|φt. We
first present the prior distribution for φt. We assume that the elements of φt
are a priori independent

f(φt) =

K∏
k=1

f(φkt ). (92)

We assign the following distribution to each element φkt

φkt ∼ InvGam(αkt , β
k
t ). (93)

That is, φkt is inverse-gamma distributed with parameters αkt and βkt . In the
prior distribution for ηt|φt, we assume that

f(ηt|φt) =

K∏
k=1

f(ηkt |φkt ) (94)

and
ηkt |φkt ∼ N(µηkt , φ

k
tΣηkt ), (95)

for some µηkt ∈ R|Λk|+1, and Σηkt ∈ R(|Λk|+1)×(|Λk|+1). This completes the pre-
sentation of the prior distribution. Note that the prior f(ηt,φt) is normal-inverse-
gamma distributed, which is in the Gaussian conjugate family. This means that
the distribution f(ηt,φt) is a conjugate prior of the likelihood f(xt|d0:t−1,ηt,φt),
which again means that f(ηt,φt|xt) is normal-inverse-gamma distributed as
well.

3.2 New posterior distribution

In Section 3.1 we present a family of alternative prior distributions for the hier-
archical ensemble Kalman filter. In the following, we present the corresponding
posterior distributions f(φt|χt) and f(ηt|φt, χt). Note the distributions are
only presented here, while the full derivation of the posterior distributions are
presented in Appendix F. We assume the same structure as in Section 3.1, that
is, we assume a sequential neighbourhood between the elements of the latent
variable xt. Recall that in the update-step in HEnKF, we assume that each
ensemble member χt,j is distributed according to f(xt|d0:t−1,ηt,φt). Thus

f(χt,j |ηt,φt) =

K∏
k=1

f(χkt,j |χ
Λk
t,j ,d0:t−1,η

k
t , φ

k
t ), (96)
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where χΛk
t,j is the vector containing the values of χt,j related to the sequential

neighbours of the kth node, i.e. χΛk
t,j ∈ R|Λk|. We also assume that the ensemble

members are independent. Thus, the distribution for the entire ensemble χt is

f(χt|ηt,φt) =

J∏
j=1

f(χt,j |ηt,φt) =

J∏
j=1

K∏
k=1

f(χkt,j |χ
Λk
t,j ,d0:t−1,η

k
t .φ

k
t ), (97)

By (91), we have that

χkt,j |χ
Λk
t,j ,d0:t−1,η

k
t , φ

k
t ∼ N

((
1,
(
χΛk
t,j

)ᵀ)
· ηkt , φkt

)
. (98)

As mentioned, the full derivation of the posterior distributions are presented
in Appendix F. However, a brief summary of the derivation is presented here.
In order to find the distribution for φt|χt, we apply Bayes’ rule

f(φt|χt) =
f(φt)f(χt|φt)

f(χt)
∝ f(φt)f(χt|φt). (99)

Further, we have that

f(φt)f(χt|φt) =

∫
f(φt)f(χt|ηt,φt)f(ηt|φt)dηt. (100)

The first factor in the integrand is given by (92) and (93), the second factor is
given by (97) and (98), while the third factor is defined in (94) and (95). By
inserting these expressions into (100), we get that f(φt|χt) has the shape of a
product of inverse-gamma distributions. More specifically, we have that

f(φt|χt) =

K∏
k=1

f(φkt |χt), (101)

where
f(φkt |χt) = InvGam(α̃kt , β̃

k
t ), (102)

α̃kt = αkt +
J

2
(103)

β̃kt =

(
1

βkt
+

1

2

(
γkt − (ρkt )ᵀ

(
Θk
t

)−1
ρkt

))−1

. (104)

where γkt , ρkt and Θk
t are defined as

γkt = µᵀ
ηkt

(
Σηkt

)−1

µηkt +
(
χkt
)ᵀ · χkt , (105)

ρkt =
(

Σηkt

)−1

µηkt +
(
1J ,
(
χΛk
t

)ᵀ)ᵀ
χkt (106)
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Θk
t =

(
Σηkt

)−1

+
(
1J ,
(
χΛk
t

)ᵀ)ᵀ
·
(
1J ,
(
χΛk
t

)ᵀ)
, (107)

where 1J ∈ RJ×1 is a column-vector of length J consisting of ones. The vector
χkt consists of the kth element of every ensemble member. That is, χkt is the kth
row-vector of χt, i.e. χkt ∈ RJ . The matrix χΛk

t consists of χΛk
t,j for j = 1, . . . J .

That is, χΛk
t,j is the jth column vector of χΛk

t , i.e. χΛk
t ∈ R|Λk|×J . Note that the

last term in Θk
t is an outer product. From (101), we have that elements of φt

are a posteriori independent. This is advantageous, as it enables us to sample
the elements of φt|χt separately. In the following, we proceed to the derivation
of the distribution for ηt|φt, χt.

The full derivation of the distribution for ηt|φt, χt is presented in Appendix
F. However, a summary of the derivation is presented here. The distribution for
ηt|φt, χt is derived by applying Bayes’ rule

f(ηt|φt, χt) =
f(ηt|φt)f(χt|φt,ηt)

f(χt|φt)
∝ f(ηt|φt)f(χt|φt,ηt), (108)

where the first factor is defined by (94) and (95), while the second factor is
defined by (97) and (98). By inserting these expressions, we get that f(ηt|φt, χt)
has the shape of a product of normal distributions. More specifically, we have

f(ηt|φt, χt) =

K∏
k=1

f(ηkt |φkt , χt), (109)

where
ηkt |φkt , χt ∼ N

((
Θk
t

)−1
ρkt , φ

k
t

(
Θk
t

)−1
)
. (110)

From (109), we see that the elements of ηt are a posteriori independent. This
enables us to sample the elements of ηt|χt separately, which is advantageous.
The distribution for ηt,φt|χt is then

f(ηt,φt|χt) = f(ηt|φt, χt)f(φt|χt) =

K∏
k=1

f(ηkt |φkt , χt)f(φkt |χt). (111)

3.3 Precision matrix

Recall that in HEnKF, presented in Section 2.5, we compute (61) in order to
adjust the ensemble χt to the current observation. In order to compute (61),
we sample Σt,j from f(Σt|χt) for each ensemble member χt,j , where we recall
that Σt is the covariance matrix of xt|d0:t−1. Section 3.1 presents alternative
prior distributions for the model parameters of xt|d0:t−1. Consequently, Σt,j

must be sampled from the posterior distribution corresponding to the new
prior distribution. This posterior distribution is presented in Section 3.2. In the
following, we show how the inverse of Σt,j can be computed based on samples from
the posterior distributions. More precisely, we present expressions connecting
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the precision matrix Qt,j = Σ−1
t,j , to samples from f(ηt|φt, χt) and f(φt|χt). We

assume the same structure as in Sections 3.1 and 3.2. That is, we assume that
xt|d0:t−1 is a GMRF and that there exists a sequential neighbourhood for each
element of xt|d0:t−1. We only present the expressions for the entries of Qt here,
while the full derivation is presented in Appendix G.

Before we present the expression for the precision matrix, we need to define
a set Λ̃k. We define Λ̃k as the set of nodes that have node k as their sequential
neighbour. That is, if node k is a sequential neighbour of l > k, i.e. k ∈ Λl, then
l ∈ Λ̃k. Hence Λk is a subset of the subsequent nodes, i.e. Λ̃k ⊆ {k + 1, . . . ,K}.
In the following, we present the expressions for the nonzero entries of the precision
matrix Qt,j . We first consider the diagonal entries. The (k, k)th entry of Qt,j is
defined as

Qk,kt,j =
1

φkt,j
+
∑
l∈Λ̃k

(η
l,Λ−1

l (k)+1
t,j )2

φlt,j
, (112)

where φt,j and ηt,j are samples from f(φt|χt) and f(ηt|φt, χt), respectively, as

defined in (101) and (109), and that η
l,Λ−1

l (k)+1
t,j is element number Λ−1

l (k) + 1

in the vector ηlt,j . We now proceed to the off-diagonal entries of Qt,j .
In the following, we assume k < l. By combining Theorem 4 with (66), we

are able to decide which off-diagonal entries of Qt,j that are zero. We have that

k /∈ Λl and @s ∈ {k + 1, . . . ,K} : l, k ∈ Λs ⇐⇒ Ql,kt,j = 0 for k < l. (113)

That is, there are two possibilities as to why an off-diagonal element Ql,kt,j is
nonzero. Either node k ∈ Λl, or there exists a node s such that k, l ∈ Λs. It is
also possible that both are true simultaneously. The set Λ̃k ∩ Λ̃l is the set of all
nodes that have both node k and l as their sequential neighbours. That is, if
l, k ∈ Λs, then s ∈ Λ̃k ∩ Λ̃l. In the following, we present the expression for an
off-diagonal entry Ql,kt,j for three different cases. The first case is when k ∈ Λl

and Λ̃k ∩ Λ̃l = ∅. The second case is when k /∈ Λl and Λ̃k ∩ Λ̃l 6= ∅. The third
case is when k ∈ Λl and Λ̃k ∩ Λ̃l 6= ∅. We consider the first case first.

If k ∈ Λl and node k and l are not sequential neighbours of the same nodes,
i.e. Λ̃k ∩ Λ̃l = ∅, then

Ql,kt,j = Qk,lt,j = −
η
l,Λ−1

l (k)+1
t,j

φlt,j
. (114)

In the second case, that is when k /∈ Λl, and Λ̃k ∩ Λ̃l 6= ∅, we have

Ql,kt,j = Qk,lt,j =
∑

s∈Λ̃k∩Λ̃l

η
s,Λ−1

s (l)+1
t,j η

s,Λ−1
s (k)+1

t,j

φst,j
. (115)

In the third case, when k ∈ Λl and Λ̃k ∩ Λ̃l 6= ∅, the expression for Ql,kt,j is
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the sum of the two expressions above

Ql,kt,j = Qk,lt,j = −
η
l,Λ−1

l (k)+1
t,j

φlt,j
+

∑
s∈Λ̃k∩Λ̃l

η
s,Λ−1

s (l)+1
t,j η

s,Λ−1
s (k)+1

t,j

φst,j
. (116)

From (116) we see that sparsity of the precision matrix Qt,j is determined
by Λk for k = 1, . . . ,K. If we choose Λk = ∅ for k = 1, . . . ,K, the precision
matrix is diagonal. On the other extreme, if we choose Λk = {1, . . . , k − 1}
for k = 1, . . . ,K, the precision matrix is full. Thus, by adjusting the set of
sequential neighbours for each node, we are able to modify the precision matrix
as we choose. This completes the presentation of the precision matrix. In the
following, we show how we can utilize the sparsity of the precision matrix to
reduce the computational cost of the hierarchical ensemble Kalman filter.

3.4 Reduction in computational cost

In Section 3.3, we present expressions connecting the entries of the matrix Qt,j
to a sample from f(ηt,φt|χt), where we recall that Qt,j = Σ−1

t,j is a sampled
precision matrix of xt|d0:t−1 and where ηt and φt are the model parameters
of xt|d0:t−1. As mentioned at the end of Section 3.3, the sparsity of Qt,j is
determined by the sequential neighbourhood imposed on the elements of xt|d0:t−1.
In this section, we explain how we are able to reduce the computational cost
of the hierarchical ensemble Kalman filter, from Section 2.5, when we assume
that Qt,j is sparse. This is done by combining the theory from Sections 2.7 and
3.3. More specifically, we consider how the computational costs of computing
(61) can be reduced by applying Cholesky decomposition. We assume the same
structure as in Sections 3.1 to 3.3.

Our aim is to compute the last term in (61) as efficiently as possible. That
is, computing

Σt,jH
ᵀ(HΣt,jH

ᵀ + Σd)
−1(dt + ut,j −Hχt,j). (117)

We denote this expression as ∆χt,j , i.e.

∆χt,j = Σt,jH
ᵀ(HΣt,jH

ᵀ + Σd)
−1(dt + ut,j −Hχt,j). (118)

In the following, we present a procedure for computing ∆χt,j that is more efficient
than the brute-force approach, i.e. computing the inverse of HΣt,jH

ᵀ + Σd

directly.
First, we use that Σt,j = Q−1

t,j and Σd = Q−1
d

∆χt,j = Q−1
t,jH

ᵀ(HQ−1
t,jH

ᵀ +Q−1
d )−1(dt + ut,j −Hχt,j). (119)

We apply the Sherman-Morrison-Woodbury matrix identity (Woodbury, 1950)
on (HQ−1

t,jH
ᵀ + Σd)

−1.

(HQ−1
t,jH

ᵀ +Q−1
d )−1 = Qd −QdH(Qt,j +HᵀQdH)−1HᵀQd. (120)
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Thus we want to evaluate

∆χt,j = Q−1
t,jH

ᵀ(Qd−QdH(Qt,j+HᵀQdH)−1HᵀQd)(dt+ut,j−Hχt,j). (121)

We denote r1 = dt + ut,j −Hχt,j

∆χt,j = Q−1
t,jH

ᵀ(Qd −QdH(Qt,j +HᵀQdH)−1HᵀQd)r1 (122)

We split up the outer parentheses, and we obtain

∆χt,j = Q−1
t,jH

ᵀQdr1 −Q−1
t,jH

ᵀQdH(Qt,j +HᵀQdH)−1HᵀQdr1. (123)

Our aim is to apply Cholesky decomposition to reduce the computational cost
of computing the expression above. In order to achieve this, we have to make
additional assumptions about the sparsity of H and Qd. That is, we assume
that H and Qd are structured such that Qt,j +HᵀQdH is a sparse matrix with
known bandwidth. In the following, we first consider the first term in (123).

In order to compute Q−1
t,jH

ᵀQdr1, we make use of the following fact. The

computational complexity of computing AB, where A ∈ Ru×v and B ∈ Rv×w is
O(uvw). Thus, in order to compute Q−1

t,jH
ᵀQdr1 as efficiently as possible, we

should always multiply the last two factors first, Q−1
t,j (Hᵀ(Qdr1)). In order to

prevent inverting Qt,j directly, we make use of the theory presented in Section
2.7. That is, we define r2 = HQdr1 and r3 = Q−1

t,jHQdr1, and apply Algorithm

3 to compute r3 = Q−1
t,j r2.

In order to compute the second term of (123), we use the same strategy. We
define the vector r4 as

r4 = Q−1
t,jH

ᵀQdH(Qt,j +HᵀQdH)−1HᵀQdr1. (124)

We first compute r5 = (Qt,j +HᵀQdH)−1r2 = (Qt,j +HᵀQdH)−1HᵀQdr1. In
order to compute r5, we apply Algorithm 3. We then compute r6 = HᵀQdHr5.
Lastly, we compute r4 = Q−1

t,j r6 through Algorithm 3. Algorithm 4 presents a
summary of computing ∆χt,j using the presented procedure.

Compute r1 = dt + ut,j −Hχt,j
Compute r2 = HᵀQdr1

Compute r3 = Q−1
t,j r2 using Algorithm 3

Compute r5 = (Qt,j +HᵀQdH)−1r2 using Algorithm 3
Compute r6 = HᵀQdHr5

Compute r4 = Q−1
t,j r6 using Algorithm 3

Return ∆χt,j = r3 − r4

Algorithm 4: Algorithm for computing (118) using Cholesky decomposition.

In Section 2.7 we argue that the computational complexity of Cholesky
decomposing a K ×K-matrix with bandwidth m can be reduced from O(K3)
to O(Km2). If we assume that H and Σd are diagonal matrices, we argue that
the computational complexity of computing ∆χt,j through Algorithm 4 also can
be reduced to O(Km2).
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4 Implementation and experimental setup

In this section, we first give a brief explanation of how the hierarchical ensemble
Kalman filter, from Section 2.5, is implemented with the prior distribution
presented in Section 3.1. We then present two test cases where the results
provided by our proposed prior distribution are compared against results provided
by the prior distribution introduced in Omre and Myrseth (2010).

4.1 Implementation

In this section we explain how we implement the hierarchical ensemble Kalman
filter, introduced in Omre and Myrseth (2010), with the prior distribution
presented in Section 3.1. We first present some of the packages that are used in
the implementation, and how they are utilized to reduce the computational cost.
We then explain how we apply object-oriented programming to simplify the
implementation of the hierarchical ensemble Kalman filter. Lastly, we explain
how the observations in the numerical examples are generated.

We implement the hierarchical ensemble Kalman filter in Python. Several
packages are used extensively in the implementation, in order to reduce the
computational cost. The package numpy is used to represent matrices and vectors,
in addition to sampling realizations from the normal distribution. We notice
that sampling from the normal distribution is a major contributing factor to the
overall computational cost, especially for high-dimensional systems. This stems
from the way computers simulate realizations from the normal distribution. If
x ∼ N(µ,Σ), where x,µ ∈ RK and Σ ∈ RK×K , we have that x is simulated by
computing

x = µ+Bz, (125)

where BBᵀ = Σ and z ∼ N(0, IK). There are several ways to compute B. In
numpy, the default is computing B using singular value decomposition. However,
by computing B using Cholesky decomposition, we are able to reduce the
computational cost.

We use the package scipy for inverting sparse matrices and sampling from
the inverse-gamma distribution. This package is used in combination with
the package sksparse.cholmod to perform Cholesky decomposition on sparse
matrices. With this package we are able to utilize that the structure of the
matrix is known. Also, this package enables us to store the structure of the
sparse matrices. Hence the structure of the sparse matrices only needs to be
assessed once, which enables us to only compute the nonzero entries of the sparse
matrices.

In order to implement a Gaussian Markov random field, as presented in
Section 2.6, we construct a class Neighbourhood. Recall that in Section 2.6,
we assign a sequential neighbourhood to each element of the state vector xt.
Each instance of the class Neighbourhood represents a node k ∈ {1, . . . ,K}
in the graph associated to xt, and stores the sequential neighbours of node k.
Recall from Section 2.4 that we approximate the one-step forecasting distribution
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f(xt|d0:t−1) by an ensemble χt. We implement a class Ensemble, in order to
represent the ensemble as a matrix. That is, each ensemble member is represented
as a vector, and the ensemble members are column vectors of the ensemble matrix.
A subclass of Ensemble is also implemented, called Ensemble matrix form. This
class inherits its attributes from Ensemble, and represents each ensemble member
as a matrix, rather than a vector. This means that the ensemble is represented
as a sequence of matrices, i.e. a tensor. Each instance of Ensemble matrix form

stores an ensemble on both matrix and tensor form. This is implemented such
that when the ensemble is updated on matrix form, the tensor representation is
updated accordingly, and vice versa. This is very useful for the Markov structure
imposed on the state-space variables in Section 4.3.

Recall from Section 2.1 that the filtering and forecasting problems are assessed
through a set of observations dt in each time-step. In order to create a reference
solution in each time-step, we generate the initial reference solution x0 from (6),
and then compute xt using (2). The observations dt are then generated through
(10). In order to compare the results provided by the two prior distributions
to the same reference solution, we store the reference solutions x0, . . . ,xT+1 in
txt-files. In the first numerical example, presented in Section 4.2, we assume
that the forward function, (8), is deterministic. Thus, we only need to store the
reference solution from the initial time-step, x0, because the reference solutions
for time-steps t = 1, . . . T + 1 can be acquired by applying the forward function
in (2) on x0.

4.2 First numerical example

This section presents the setup of the first numerical example. This numerical
example is largely based on the first numerical example presented in Omre
and Myrseth (2010). The aim of the numerical examples is to compare results
provided by the prior distribution used in Omre and Myrseth (2010) to the
results provided by the prior distribution presented in Section 3.1. We first
present the numerical values for the constants, vectors and matrices defined in
the state space model, Section 2.1. Further, we define the numerical values for
the parameters in the prior distributions presented in Sections 2.5 and 3.1.

For the likelihood model, presented in (10), we set H = IK and Σd = σ2
dIK ,

with σ2
d = 20. Further, we set T = 10, which means that our objective is to assess

x11|d0, . . . ,d10. The reference solution in the initial time-step, is simulated by
(6) with µ0 = 0 and Σ0 = 20C, where C is the correlation matrix, and is defined
as

c(∆) = e−3∆/20, (126)

where ∆ is the interdistance between the elements of x0. The reference solution
xt is computed by (8), where vt = 0 and where At is a K ×K-matrix. The
forward function At forwards the 10 elements in xt from 5t− 4 to 5t+ 5 by a
”10-node sliding average”. That is,

xkt+1 =
1

10

k+5∑
s=k−4

xst for k ∈ {5t− 4, 5t+ 5}. (127)
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Figure 4: The red and black lines display the reference solutions at time-steps
t = 0 and t = T + 1 = 11, respectively, for K = 100. For K between 56 and 100,
the reference solutions coincide.

In the case when k < 5, we take the average of the nodes from 1 to k + 5, i.e.

xkt+1 =
1

k + 5

k+5∑
s=1

xst for k < 5. (128)

Similarly, when k > K − 5, we have

xkt+1 =
1

K − k + 6

K∑
s=k−4

xst for k > K − 5. (129)

The remaining elements of xt+1 are unchanged. That is, the forward function
smooths the 10 elements in xt between 5t− 4 and 5t+ 5 in each iteration, while
the remaining elements remain unchanged. The reference solutions at t = 0 and
t = 11, i.e. realizations of x0 and x11, for K = 100 are visualized in red and
black, respectively, in Figure 4. We notice that there are less fluctuations in
the reference solution at t = 11 and in the reference solution at t = 0 in the
first 55 elements, while the last 45 elements are identical. That is, the first
half of the reference solution at t = 11 is smoother than the second half. This
coincides with the forward function in (127). Also note that the forward function
is linear. Since the forward function is linear, the model assumptions in the
linear Gaussian state space model, presented in Section 2.2, holds, and hence
the reference solution is Gaussian.

As also discussed above, our objective is to assess the computational cost of
HEnKF for the two prior distributions presented in Sections 2.5 and 3.1. Hence
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we run HEnKF for different values of K, which we recall is the dimension of
xt. We run HEnKF for a set of values of K, ranging between K = 100 and
K = 10000. The ensemble size, defined in Section 2.4, is set to J = 10.

We now set the values for the hyperparameters for the prior distributions
presented in Omre and Myrseth (2010). Recall that the prior distributions for
µt|Σt and Σt are defined in (53) and (54), respectively. The values we set for the
parameters of prior distributions resembles the values set in the first numerical
example in Omre and Myrseth (2010). We set E(µt) = ξt = 0, αt = 500,Ψt =
(νt −K − 1)Σ0 and νt = K + 30.

In Section 3.1, we present the prior distributions for φt and ηt|φt, defined
in (93) and (94), respectively. We now present the parameter values for these
distributions. Recall that we impose a sequential neighbourhood Λk on each
element of xt, i.e. xkt . In order to assess how the performance of the prior
distributions depends on the choice of sequential neighbourhood, we present
three different examples. In each example, we impose a different sequential
neighbourhood on the elements of xt. In the following, we present the values of
the hyperparameters in the three different examples.

In the first example, we set the following parameter values. We
set Λk = {k − 1}, i.e. a first order Markov chain. We set
Cov(ηkt |φkt ) = Σηkt = σ2

ηkt
I|Λk|+1, with σ2

ηkt
= 100 for k ∈ {1, . . . ,K}. In the sec-

ond example, we set Λk = {k − 2, k − 1}, i.e. a second order Markov chain. As
for the first example, we set Cov(ηkt |φkt ) = Σηkt = σ2

ηkt
I|Λk|+1, with σ2

ηkt
= 100

for k ∈ {1, . . . ,K}. In the third example, we set Λk = {k − 5, . . . , k − 1},
i.e. a fifth order Markov chain. We set Σηkt = diag(100, 5, . . . , 5), where

Σηkt ∈ R(|Λk|+1)×(|Λk|+1). That is, the first diagonal element is 100, i.e.

Σ1,1

ηkt
= 100, while the remaining diagonal elements are set to 5. Notice that we

in all three examples set the elements of ηkt to be a priori independent. In all
of the three examples we set E(ηkt |φkt ) = µηkt = 0 for k ∈ {1, . . . ,K}. We also

set the same values for the hyperparameters of φkt in all three examples. We set
αkt = 2.5 and βkt = 7.5 for k ∈ {1, . . . ,K}.

4.3 Second numerical example

In this section, we present the setup of the second numerical example in this
report. The aim of this numerical example is to compare the results provided
by the prior distribution presented in Omre and Myrseth (2010) to the results
provided by the prior distribution introduced in Section 3.1 on a nonlinear state
space model, where we recall that the state space model is defined in Section
2.1. Additionally, we represent the state space vector xt by a two-dimensional
grid. For the prior distribution presented in 3.1, we apply a Markov structure
on the state space variable xt that adapts to the grid. This enables us to assess
how the run time of HEnKF increases as the bandwidth of the precision matrix
of xt increases. As in Section 4.2, we first present the numerical values for the
constants, vectors and matrices in the state space model. We then define the
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L+ 1 2L

K − L+ 1 K

Figure 5: The grid associated to the state space vector xt. Node k in the grid is
associated to the kth element in the space vector xt. The grid is quadratic with
length and width L and enumerated from left to right, top down.

numerical values for the hyperparameters in the two prior distributions that are
compared.

In the likelihood model, from (10), we set H = IK and Σd = σ2
dIK with

σ2
d = 2, where K is the dimension of the state space variable xt. Further, we

set T = 4. That is, our aim is to estimate the one-step forecasting distribution
f(x5|d0:4). The reference solution in the initial time-step, which is a realization
of x0, is sampled from a multivariate standard normal distribution. Recall from
Section 2.6, that the conditional dependencies between the elements of the state
space vector xt is represented by a graph. Node k in the graph represents the
kth element in xt, and Λk represents the set of sequential neighbours for node k.
In this example, we visualize the graph associated to xt as a two-dimensional
grid of nodes, where the length and the width of the grid are L, as visualized
in Figure 5. That is, the grid is quadratic with dimensions L× L and K = L2.
The nodes in the graph are enumerated row-by-row, from left to right. That
is, node 1 is in the upper left corner, while node L is in the upper right corner.
Node K − L is in the lower left corner, while node K = L2 is in the lower right
corner. In the following, we present the forward function.

The forward function takes the K nodes in the graph, and chooses m < K
of these nodes randomly. In this example, we set m = K/10. For each of these
nodes, we denote a as the average of the nodes inside a 5× 5-window centered
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around the randomly chosen node. As an illustrative example, the nodes inside
the 5× 5-window around node k are colored yellow in Figure 6. We denote the
number of nodes inside this window as n. In the case when a randomly chosen
node is along one of the edges or corners of the grid, such as node 1, we take the
average of the nodes inside the 5× 5-window that are also inside the grid. That
is, for node 1, we take the average of the n = 9 closest nodes. Further, we define
r = a

√
n. We then compute u = Φ(r), where Φ is the cdf of the standard normal

distribution. Further, we compute s = F−1
t (u, τ), where F−1

t is the inverse cdf
of the t-distribution with τ degrees of freedom. In this example, we set τ = 500.
To ensure that this variable is scaled correctly, we compute

w =
s√

τ/(τ + 1)
. (130)

The value in the randomly chosen node is then set to w. That is, the forward
function assumes that r is standard normally distributed, and then transforms r
into a t-distributed variable with τ degrees of freedom. The motivation behind
the choice of forward function is that the distribution for the elements of xt
becomes more heavy-tailed for each iteration, since the t-distribution has heavier
tails than the standard normal distribution. This function also enables us to
compare the two prior distribution on a nonlinear state space model. The
reference solutions at t = 0 and t = T + 1 = 5, i.e. realizations of x0 and x5,
are visualized in Figure 7, in red and black, respectively. We notice that the
reference solution at t = 5 is somewhat more heavy-tailed than the reference
solution at t = 0.

As in the first numerical example, introduced in Section 4.2, the reference
solution xt is computed by (2). Since the forward function is nonlinear, the
reference solution is generally not Gaussian. As mentioned in Section 4.1, we
store the reference solutions in order to compare the two prior distributions to
the same reference solutions. The ensemble size, defined in Section 2.4, is set to
J = 10.

We now set the values for the hyperparameters in the prior distributions
presented in Omre and Myrseth (2010). Recall that the prior distributions for
µt|Σt and Σt are defined in (53) and (54), respectively. We set E(µt) = ξt = 0,
αt = 500, Ψt = (ν0 −K − 1)Σ0 and νt = K + 30.

In Section 3.1, we introduced prior distributions for φt and ηt|φt, defined
in (93) and (94), respectively. We now set the parameters values for these
distributions. Recall from Section 2.6 that we assign a sequential neighbourhood
Λk for each node k in the graph associated to xt. We assume that this graph
is identical to the grid applied in the forward function. That is, the grid is
quadratic with length and width L. The sequential neighbourhood for node
k is defined as Λk = {k − L− 1, k − L, k − 1}. We visualize a part of the grid
and the sequential neighbours of node k in Figure 8, where node k is colored
green and its sequential neighbours are colored yellow. We draw edges between
the nodes, in accordance with the theory presented in Section 2.6. We draw
green edges between node k and the nodes in Λk, and we draw yellow edges
between all pair of nodes in Λk. Further, we set Σηkt = diag(100, 5, . . . , 5),
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k − 2L− 2 k − 2L− 1 k − 2L k − 2L+ 1 k − 2L+ 2

k − L− 2 k − L− 1 k − L k − L+ 1 k − L+ 2

k − 2 k − 1 k k + 1 k + 2

k + L− 2 k + L− 1 k + L k + L+ 1 k + L+ 2

k + 2L− 2 k + L− 1 k + L k + L+ 1 k + 2L+ 2

Figure 6: Each node represents an element of the state space vector xt. The
yellow nodes represents the 5× 5-window centered around node k.

Figure 7: The red and black lines visualize the reference solutions at time-steps
t = 0 and t = T + 1 = 5, respectively. That is, realizations of x0 and x5 for
K = 100.
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k − L− 1 k − L k − L+ 1

k − 1 k k + 1

k + L− 1 k + L k + L+ 1

Figure 8: Each node represents an element of the state space vector xt. The
yellow nodes represent the sequential neighbourhood of node k, denoted Λk. The
edges indicate the conditional dependencies between the nodes, in accordance
with the theory presented in Section 2.6. That is, the green edges indicate

that xrt 6⊥ xkt |x
−{k,r}
t for some r ∈ Λk, while the yellow edges indicate that

xrt 6⊥ xst |x
−{r,s}
t for some r, s ∈ Λk.

where Σηkt ∈ R(|Λk|+1)×(|Λk|+1). That is, the first diagonal element is 100, i.e.

Σ1,1

ηkt
= 100, while the remaining diagonal elements are set to 5. Further, we set

E(ηkt |φkt ) = µηkt = 0 for k ∈ {1, . . . ,K}. For the hyperparameters of φkt , we set

αkt = 2.5 and βkt = 7.5 for k ∈ {1, . . . ,K}. Note that we set the same parameter
values for t = 0, . . . T + 1.

5 Results and discussion

In this section, we present the results from the numerical examples described in
Section 4. Sections 5.1 and 5.2 present the results from the numerical examples,
introduced in Sections 4.2 and 4.3, respectively. Our overall objective is to
compare the results provided by the prior distributions from Omre and Myrseth
(2010), which we present in Section 2.5, to the results provided by the prior
distributions introduced in Section 3.1, by considering their computational costs
and the quality of the results. In both of the numerical examples, the ensemble
size is set to J = 10.

5.1 First numerical example

As mentioned, we compare the results provided by the prior distributions intro-
duced in Section 2.5 to the results provided by the prior distributions presented
in Section 3.1. In the following, we refer to the prior distributions presented in
Section 2.5 as the old prior distributions, while the prior distributions presented
in Section 3.1 are referred to as the new prior distributions. Recall from Section
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4.2, that we compare the results provided by the two prior distributions for
different values of K, where K is the dimension of the state space vector xt.
Also recall from Section 4.2 that we run HEnKF with the new prior distributions
for three different sets of prior assumptions. In the three examples, we assume
that the state space vector xt follows a first, second and fifth order Markov
chain, respectively. That is, we compare results provided by four different prior
assumptions in total; one using the old prior distributions, and three using the
new.

We want to compare the two prior distributions by comparing their compu-
tational cost, and by comparing the quality of the results. In order to assess the
quality of the results, we present a set of plots. In each plot, we visualize the
reference solution at time-step t = 11, which is a realization from f(x11). The
realization is displayed along with a 95% empirical prediction interval of x11|d0:10.
This interval is based on the ensemble χ11, which we recall is an approximation
of the one-step forecasting distribution f(x11|d0:10). The ensemble is created
using one of the four different prior assumptions. In the following, we present
the prediction intervals created for K = 100.

Figure 9 visualizes the reference solution at t = 11 along with a 95% empirical
prediction interval created with the old prior distribution for K = 100. Figures
10, 11 and 12 illustrate 95% empirical prediction intervals created with the new
prior distribution, for a first, second and fifth order Markov chain, respectively.
By comparing the four prediction intervals, we notice that all of the prediction
intervals manage to capture the fluctuations in the first half of the reference
solution quite well. For the second half, we notice that the old prior distribution
and the new prior distribution with a fifth order Markov chain provide shorter
prediction intervals that fluctuate rapidly, which seize to capture the sharp
movements in the reference solution. We observe that the prediction intervals
provided by the new prior distribution with first and second order Markov chains
are smoother, and do not capture the movements in the second half of the
reference solution. The prediction intervals seize to contain almost the entire
reference solution, nonetheless.

Figures 13 to 16 visualize the same as Figures 9 to 12, for K = 1000, rather
than K = 100. Note that we only display the first 100 elements, as displaying
all 1000 elements yields plots that are practically impossible to interpret. From
Figures 13 to 16, we observe similar effects as for K = 100. That is, all four
prediction intervals manage to capture the movements in the first half, while
only the prediction intervals provided by the old prior distribution and the new
prior distribution with a fifth order Markov chain capture the movements in
the second half. However, the prediction intervals provided by the new prior
distribution with first and second order Markov chains still manage to contain
the reference solution. Also here we notice that the new prior distribution with
first and second order Markov chains provide smoother prediction intervals than
the fifth order Markov chain and the old prior distribution.

Figures 17 to 20 visualize the same as Figures 13 to 16, however for K = 10000.
Here we notice similar effects as for K = 100 and K = 1000. That is, all of the
four prior assumption provide prediction intervals that capture the movements in
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Figure 9: Old prior, K = 100.

Figure 10: New prior, first order Markov chain, K = 100.

Figure 11: New prior, second order Markov chain, K = 100.

Figure 12: New prior, fifth order Markov chain, K = 100. The black line
represents the reference solution at t = 11 for K = 100. The continuous, blue
line represents the mean of the ensemble χ11 for K = 100. The dashed, blue
lines represent the bounds of the 95% empirical prediction interval based on the
ensemble. 39



Figure 13: Old prior, K = 1000.

Figure 14: New prior, first order Markov chain, K = 1000.

Figure 15: New prior, second order Markov chain, K = 1000.

Figure 16: New prior, fifth order Markov chain, K = 1000. The black line
represents the reference solution at t = 11 for K = 1000. The continuous, blue
line represents the mean of the ensemble χ11 for K = 1000. The dashed, blue
lines represent the bounds of the 95% empirical prediction interval based on the
ensemble. 40



the first half quite well. In the second half, the old prior distribution and the new
prior distribution with a fifth order provide shorter prediction intervals. However,
we notice that the prediction intervals provided by new prior distribution with
a fifth order Markov chain better capture the rapid fluctuations in the second
half of the reference solution. This effect is especially visible in the area around
K = 60 and K = 70. The prediction intervals created with the new prior
distribution using first and second order Markov chains do not capture the
rapid fluctuation in the second half, but still seize to contain almost the entire
reference solution. As for K = 100 and K = 1000, we notice that the new
prior distribution with first and second order Markov chains provide smoother
prediction intervals than the fifth order Markov chain.

In general, from Figures 9 to 20, we observe that the old prior distribution and
the new prior distribution with a fifth order Markov chain provide short prediction
intervals that capture the movements in reference solution well, compared to the
new prior distribution with first and second order Markov chains. It should be
noted that this numerical example also was performed with values of K other
than the ones presented here, and that the figures from these examples shows
similar effects. A plausible explanation to this effect can be found by considering
the number of parameters in the two prior distributions. In the following, we
discuss how the number of parameters in the two prior distributions influence
the prediction intervals.

The old prior distribution has O(K2) parameters, as seen in (53) and (54),
while we see from (94) and (95) that the new prior distribution has O(Km2)
parameters, where m is the order of the Markov chain imposed on xt. Recall from
Section 2.5 that these parameters are adjusted to account for the information
in the observations, through the likelihood model. That is, for the old prior
distribution, there are O(K2) parameters that are adjusted, while there are
O(Km2) parameters in the new prior distribution that are adjusted. Since
m2 < K in this example, there are more parameters in the old prior distribution
that are being adjusted to the information in the observations. This suggests
that the ensemble provided by the old prior distribution is more flexible to
adjusting to the observations, since the old prior distribution provides the
observations with more parameters to adjust. That is, this suggests that the
prediction intervals provided by the old prior distribution are more agile. This is
a plausible explanation to why these prediction intervals capture the movements
in the reference solution well, compared to the prediction intervals provided
by the new prior distribution with first and second order Markov chains. We
also notice from the figures that the new prior distribution with a fifth order
Markov chain provides prediction intervals that captures the fluctuations in the
reference solution. A plausible explanation is that the ensemble provided by this
distribution has a sufficient amount of parameters to adjust to the observations.

From Figures 9, 13 and 17, we also notice that prediction intervals provided
by the old prior distribution become shorter and smoother as K increases. These
effects are also visible in the prediction intervals created for the values of K
other than the ones presented here. A plausible explanation can be found by
considering the posterior distribution corresponding to the old prior distribution.

41



Figure 17: Old prior, K = 10000.

Figure 18: New prior, first order Markov chain, K = 10000.

Figure 19: New prior, second order Markov chain, K = 10000.

Figure 20: New prior, fifth order Markov chain, K = 10000. The black line
represents the reference solution at t = 11 for K = 10000. The continuous, blue
line represents the mean of the ensemble χ11 for K = 10000. The dashed, blue
lines represent the bounds of the 95% empirical prediction interval based on the
ensemble. 42



Recall that we in (59) compute Ψ∗t , which is the matrix parameter in the posterior
distribution for Σt, i.e. f(Σt|χt). In the expression for Ψ∗t , we notice that the
expression involves Σ̂t|0:t−1, where Σ̂t|0:t−1 is defined in (45) as the empirical

covariance matrix based on the ensemble χt. If the number of entries in Σ̂t|0:t−1

is much larger than the number of entries in χt, the variance of the estimator
Σ̂t|0:t−1 becomes large. In this example, we have that J = 10, which means
that the ensemble is a matrix of size K × 10, i.e. χt ∈ RK×10. However, the
number of entries in Σ̂t|0:t−1 is K2, since Σ̂t|0:t−1 ∈ RK×K . Since K2 � 10K,
the number of entries to be estimated is much larger than the number of entries
in χt. When the variance of the estimator is high, there is a chance that Σ̂t|0:t−1

is an overestimate of the true covariance matrix of xt. This means that the
estimator Σ̂t|0:t−1 assumes that the correlation between the elements of xt is
higher than what is inherent in the true covariance of xt. This suggests that the
elements of each ensemble member become more correlated, and that the resulting
prediction intervals become smoother. Also, if Σ̂t|0:t−1 is an overestimate of the
true covariance matrix, this suggests that the information contained in dt is more
spread out among the elements in each ensemble member. That is, χt,j relies
more on the information in the observations, which suggests that the prediction
intervals shrink. Note that if this effect is caused by the estimation variance of
Σ̂t|0:t−1, this issue can be solved by increasing the ensemble size J , which causes

the estimation variance of Σ̂t|0:t−1 to decrease.
From the presented figures, we do not observe that the prediction intervals

provided by the new prior distributions become shorter as K increases, as we
observe for the old prior distribution. A plausible explanation to this is that
the new prior distribution imposes a Markov chain on xt, which reduces the
chance of overestimating the correlation between the elements of xt. That is, the
Markov assumption prevents two elements of xt far away from each other to be
conditionally dependent given the remaining elements of xt. This is also visible
by considering the precision matrix Qt. For the new prior distribution, most
of the entries in Qt are zero, which enforces conditional independence between
most of the elements of xt. The old prior distribution, however, assumes that Σt
is a full matrix, which makes it possible for the correlation between the elements
of xt to be overestimated.

As mentioned, we also want to compare the computational cost of HEnKF
using the different prior distributions. This is done by counting the CPU-time
for each of the four examples, for a set of different values of K between 100
and 10000. Figure 21 shows the CPU-time of HEnKF using the different prior
distributions as a function of K. The blue, yellow and green lines display the
CPU-time when imposing a first, second and fifth order Markov chain on xt,
respectively. The red line displays the CPU-time for the old prior distribution.
We expect the CPU-time to increase when the Markov order increases, as the
number of computations in each matrix multiplication increases. However, we see
that the CPU-time for the first and second order Markov chains are practically
identical, and that the CPU-time for the fifth order Markov chain is only slightly
larger. We also see that the new prior distribution provide a large reduction
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Figure 21: Comparison of CPU-times as a function of the dimension K. The
red line represents the CPU-time in seconds as a function of K for the old
prior distribution. The blue, yellow and green lines represent the new prior
distributions for a first, second and fifth order Markov chain, respectively.

in computational cost, compared to the old prior distribution. For K = 10000,
the CPU-time using the old prior distribution is close to 22000 seconds, while
the CPU-time when imposing a first order Markov chain is approximately 7100
seconds. It should also be noted that the CPU-time varies slightly for each run.
However, for K = 10000, this variation is small.

In Section 2.7, we state the computational complexity of Cholesky decom-
posing a K ×K-matrix can be reduced from O(K3) to O(Km2) by applying
Algorithm 3, when we assume that the matrix is sparse and has known band-
width m. From Section 2.6, we have that the bandwidth of the precision matrix
of xt, denoted Qt, is equal to the order of the Markov chain imposed on xt.
Thus, Algorithm 4 suggests that (61) can be computed with a computational
complexity that is linear as a function of K, since m is constant as a function of
K. If every computation in HEnKF could be performed with a computational
complexity of O(K) or less, we would expect the CPU-time to increase linearly
as a function of K. However, from Figure 21, we see that the CPU-time is not
linear as a function of K, but suggests that the computational complexity is
higher than O(K). This might be due to the sampling of the ensemble members
in the initial time-step χ0,j , that are sampled from N(0,Σ0). Recall that Σ0, in
(126), is a full matrix, and that sampling from a multivariate normal distribution
involves computing B such that BBᵀ = Σ0. The computation of B can generally
not be performed with a computational complexity of O(K) or less.
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5.2 Second numerical example

As mentioned in Section 4.3, we compare the prior distribution presented in
Omre and Myrseth (2010) to the prior distribution introduced in Section 3.1
on a nonlinear state space model, where the state space model is defined in
Section 2.1. This enables us to assess the quality of the results provided by
the two prior distributions when the assumptions of a linear Gaussian state
space model, Section 2.2, do not hold. As in Section 5.1, we refer to the prior
distribution in Omre and Myrseth (2010) as the old prior distribution, while the
prior distribution from Section 3.1 are referred to as the new prior distribution.

The numerical performance of the two prior distributions are compared in the
same way as in Section 5.1. That is, we compare the CPU-time for HEnKF using
the two prior distributions, and we assess the quality of the results. The quality
of the results are assessed by comparing the 95% empirical prediction intervals
provided by the ensemble at time-step t = T + 1 = 5, χ5, to the reference
solution at the same time-step. Recall from Section 2.4 that χ5 approximates
the one-step forecasting distribution f(x5|d0:4). We compare the results for
K = 100, 4900 and 10000. In the following, we first consider K = 100.

Figure 22 displays the prediction interval provided by the old prior distribution
for K = 100. Similarly, the prediction intervals provided by the new prior
distribution are visualized in Figure 23 for K = 100. We notice that the
prediction intervals provided by both prior distributions capture almost the
entire reference solution. In addition, we notice the new prior distribution
provides longer prediction intervals than the old prior distribution.

Figures 24 and 25 present the prediction intervals provided by the old and
new prior distributions, respectively, for K = 4900. Note that the figures
only visualize the 100 elements of xt between 2400 and 2500, as displaying all
4900 elements yields plots that are impossible to interpret. By comparing the
two intervals, we see that the prediction interval provided by the new prior
distribution better captures the movements in the reference solution, compared
to the old prior distribution. We also notice that the new prior distributions
provide longer prediction intervals than the old prior distribution.

Figures 26 and 27 display the prediction intervals provided by the old and new
prior distributions, respectively, for K = 10000. Note that we display the 100
elements between 4950 and 5050. Here we notice that the old prior distribution
fails to produce a prediction interval that captures the movements in the reference
solution. However, we see in Figure 27 that the prediction intervals provided by
the new prior distribution almost contain the entire reference solution. We also
notice that the old prior distribution provides a much smaller prediction interval
than the new prior distribution.

In general, we notice that both prior distributions provide reliable prediction
intervals for K = 100. We also observe that the new prior distribution manages to
provide reliable prediction intervals as K increases, while the prediction intervals
provided by the old prior distribution becomes shorter decreases as K increases,
which prevents the prediction intervals to capture the reference solution. This
numerical example was also performed with values of K other than the ones

45



Figure 22: Old prior, K = 100. The black line represents the reference solution
at t = 5 for K = 100. The continuous, blue line represents the mean of the
ensemble χ5, which is created with the old prior distribution for K = 100. The
dashed, blue lines represent the bounds of the 95% empirical prediction interval
based on the ensemble.

Figure 23: New prior, K = 100. The black line represents the reference solution
at t = 5 for K = 100. The continuous, blue line represents the mean of the
ensemble χ5, which is created with the new prior distribution for K = 100. The
dashed, blue lines represent the bounds of the 95% empirical prediction interval
based on the ensemble.
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Figure 24: Old prior, K = 4900. The black line represents the reference solution
at t = 5 for K = 4900. The continuous, blue line represents the mean of the
ensemble χ5, which is created with the old prior distribution for K = 4900. The
dashed, blue lines represent the bounds of the 95% empirical prediction interval
based on the ensemble.

Figure 25: New prior, K = 4900. The black line represents the reference solution
at t = 5 for K = 4900. The continuous, blue line represents the mean of the
ensemble χ5, which is created with the new prior distribution for K = 4900. The
dashed, blue lines represent the bounds of the 95% empirical prediction interval
based on the ensemble.
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Figure 26: Old prior, K = 10000. The black line represents the reference solution
at t = 5 for K = 10000. The continuous, blue line represents the mean of the
ensemble χ5, which is created with the old prior distribution for K = 10000.
The dashed, blue lines represent the bounds of the 95% empirical prediction
interval based on the ensemble.

Figure 27: New prior, K = 10000. The black line represents the reference
solution at t = 5 for K = 10000. The continuous, blue line represents the
mean of the ensemble χ5, which is created with the new prior distribution for
K = 10000. The dashed, blue lines represent the bounds of the 95% empirical
prediction interval based on the ensemble.
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presented here, and the results from these examples suggest the same effects.
A plausible explanation to this, is that the old prior distribution estimates the
correlation between the elements of xt to be higher than what is inherent in the
true covariance matrix of xt, as discussed in Section 5.1. This might cause the
prediction intervals to become shorter. A plausible explanation why the new
prior distribution provides reliable results, is related to the Markov structure
imposed on xt. First, the Markov property puts restrictions on the conditional
dependencies between the elements of xt, as discussed in Section 5.1. Second,
since the Markov structure imposed on xt, i.e. Λk = {k − L− 1, k − L, k − 1},
adapts to the grid associated to xt, the new prior distribution is provided
information about the grid applied in the state space model. The old prior
distribution makes no assumptions about the grid, which might suggests that
the new prior distribution is able to utilize the information about the grid to
produce more reliable results.

As for the first numerical example, we compare the CPU-time of HEnKF for
the two prior distributions. In practice, this is done by measuring the CPU-time
for both prior distributions for a set of different values of K, ranging between
100 and 10000. Figure 28 displays the CPU-time as a function of K, where the
CPU-time for the old prior distribution is displayed by the yellow line, while the
CPU-time for the new prior distribution is the blue line. We notice that the new
prior distribution provide a considerable reduction in CPU-time. For K = 10000,
we have that the CPU-time using the old prior distribution is approximately
10000 seconds, while the CPU-time using the new prior distribution is around
3600 seconds.

In this numerical example, the new prior distribution assumes that the sequen-
tial neighbourhood for the kth element of xt is Λk = {k − L− 1, k − L, k − 1},
where L is the width and length of the grid associated to xt, i.e. L2 = K. Recall
that the precision matrix of xt is denoted Qt, and that the structure of Qt is
related to the sequential neighbourhood, as specified in Section 3.3. Since the
sequential neighbourhood Λk changes with L, the bandwidth of Qt, denoted m,
also changes with L. In Appendix H, we prove that m = L+1 =

√
K+1. Figure

28 suggests that the new prior distribution is able to provide a considerable
reduction in computational cost, even though the bandwidth m of Qt increases
as K increases.

As stated in Section 2.7, the computational complexity of Cholesky decompos-
ing a K ×K-matrix with bandwidth m can be reduced to O(Km2) by applying
Algorithm 3. In this example we have that m =

√
K + 1, which means that

the computational complexity becomes O(K(
√
K + 1)2) = O(K2). Algorithm 4

then suggests that (61) can be computed with a computational complexity of
O(K2). This suggests that if every computation in HEnKF could be performed
with a computational complexity of O(K2) or less, the CPU-time would increase
quadratically as a function of K. That is, we would expect the square root of
the CPU-time to increase linearly as a function of K. Figure 29 visualizes the
square root of the CPU-time for the new prior distribution as a function of K.
The figure suggests that the square root of the CPU-time is almost linear in
K, which again suggests that the computational complexity is approximately
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Figure 28: Comparison of CPU-times as a function of the dimension K. The
yellow line represents the CPU-time in seconds for the old prior distribution
as a function of K. The blue line represents the CPU-time for the new prior
distribution.

O(K2).

6 Closing remarks

In this report, we propose a prior distribution to be applied in the hierarchical
ensemble Kalman filter (HEnKF), as an alternative to the prior distribution
applied in Omre and Myrseth (2010). The proposed prior distribution is chosen
with the intent to reduce the computational cost of HEnKF. The aim of this
report is to compare the presented prior distribution to the prior distribution
used in Omre and Myrseth (2010), by comparing the computational costs and
their numerical results.

Two numerical examples are performed. In both examples, the proposed
prior distribution provides a considerable reduction in computational demands.
In the nonlinear example, the presented prior distribution produces reliable
results that better adapts to the dimension of the problem, compared to the
prior distribution applied in Omre and Myrseth (2010).

Further research on this topic could include applying the proposed prior
distribution on larger models than the ones presented in this thesis, for example
on large grids in three dimensions. In addition, the proposed prior distribution
could be applied on state space models different from the ones presented in the
numerical examples, in order to test if the computational complexity could be
reduced as suggested in thesis. Also, the proposed prior distribution could be
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Figure 29: The blue line represents the square root of the CPU-time as a function
of K, for the new prior distribution.

applied on more realistic examples, for example on real-world data, or on data
that resembles reality.
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Appendices

A Proof of Theorem 1

In this section we prove Theorem 1. That is, if (3) and (9) hold, and the prior
f(xt|d0:t−1) is defined as in (11), the posterior distribution is

xt|d0:t ∼ N(µt|0:t,Σt|0:t), (131)

where µt|0:t and Σt|0:t are defined in (13) and (14), respectively.

Proof. By Bayes’ rule, we have

f(xt|d0:t) =
f(xt|d0:t−1)f(dt|xt,d0:t−1)

f(dt|d0:t−1)
. (132)
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We are able to simplify the second factor in the numerator. Since we assume
that (3) holds, the observation dt is conditionally independent of the previous
observations d0:t−1 given xt. We have that

f(dt|xt,d0:t−1) = f(dt|xt). (133)

In addition, since f(dt|d0:t−1) is not a function of xt, we have that

f(xt|d0:t) ∝ f(xt|d0:t−1)f(dt|xt). (134)

In the following, we prove that f(xt|d0:t) has the form of a Gaussian distri-
bution, and hence calculating the normalizing constant f(dt|d0:t−1) in (132) is
unnecessary. By combining the equation above with (11) and (9), we have that

f(xt|d0:t) ∝ e−
1
2 (xt−µt|0:t−1)ᵀΣ−1

t|0:t−1
(xt−µt|0:t−1)

e−
1
2 (dt−Hxt)ᵀΣ−1

d (dt−Hxt).
(135)

By expanding the parentheses and omitting the terms not containing xt, and we
obtain

f(xt|d0:t) ∝e−
1
2 (xᵀ

tΣ−1
t|0:t−1

xt−µᵀ
t|0:t−1

Σ−1
t|0:t−1

xt−xᵀ
tΣ−1

t|0:t−1
µt|0:t−1)

· e− 1
2 ((Hxt)

ᵀΣ−1
d Hxt−dᵀ

tΣ−1
d Hxt−(Hxt)

ᵀΣ−1
d dt).

(136)

All of the terms in the exponents are scalars. This means that the each term
is equal to its own transpose, which enables us to transpose each term as we
choose. That is,

µᵀ
t|0:t−1Σ−1

t|0:t−1xt = (µᵀ
t|0:t−1Σ−1

t|0:t−1xt)
ᵀ = xᵀ

tΣ−1
t|0:t−1µt|0:t−1, (137)

dᵀtΣ−1
d Hxt = (dᵀtΣ−1

d Hxt)
ᵀ = (Hxt)

ᵀΣ−1
d dt, (138)

where we have that Σ−1
t|0:t−1 = Σ−ᵀt|0:t−1 and Σ−1

d = Σ−ᵀd , since covariance matrices

are symmetric. This means that (136) simplifies to

f(xt|d0:t) ∝ e−
1
2 (xᵀ

tΣ−1
t|0:t−1

xt+(Hxt)
ᵀΣ−1

d Hxt−2µᵀ
t|0:t−1

Σ−1
t|0:t−1

xt−2dᵀ
tΣ−1

d Hxt).
(139)

By noting that (Hxt)
ᵀΣ−1

d Hxt = xᵀ
tH

ᵀΣ−1
d Hxt, the first two terms in the

exponent can be rewritten as

xᵀ
tΣ−1

t|0:t−1xt + (Hxt)
ᵀΣ−1

d Hxt = xᵀ
t (Σ−1

t|0:t−1 +HᵀΣ−1
d H)xt. (140)

Similarly, the last two terms in the exponent in (139) can be written as

−2µᵀ
t|0:t−1Σ−1

t|0:t−1xt−2dᵀtΣ−1
d Hxt = −2(µᵀ

t|0:t−1Σ−1
t|0:t−1 +dᵀtΣ−1

d H)xt. (141)

The enables us to write (139) as

f(xt|d0:t) ∝ e−
1
2 (xᵀ

t (Σ−1
t|0:t−1

+HᵀΣ−1
d H)xt−2(µᵀ

t|0:t−1
Σ−1
t|0:t−1

+dᵀ
tΣ−1

d H)xt) (142)
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We define the matrix C and the vector D as

C =Σ−1
t|0:t−1 +HᵀΣ−1

d H, (143)

D =(µᵀ
t|0:t−1Σ−1

t|0:t−1 + dᵀtΣ−1
d H)ᵀ. (144)

Thus, (142) becomes

f(xt|d0:t) ∝ e−
1
2 (xᵀ

tCxt−2Dᵀxt) = e−
1
2x

ᵀ
tCxt+D

ᵀxt . (145)

From Definition 2.2 in Rue and Held (2005), we have that

xt|d0:t ∼ NC(D, C), (146)

where NC denotes the normal distribution with canonical parametrization. From
Rue and Held (2005) we also have that

NC(D, C)
d
= N(C−1D, C−1), (147)

where the ”d” indicates that the two distributions are equal in distribution. By
combining the two expressions above, we have

xt|d0:t ∼ NC(D, C)
d
= N(C−1D, C−1). (148)

That is,

µt|0:t = C−1D (149)

Σt|0:t = C−1 (150)

In the following, we first derive the expression for µt|0:t.
From (143) and (144), we have that

µt|0:t = C−1D = (Σ−1
t|0:t−1 +HᵀΣ−1

d H)−1(µᵀ
t|0:t−1Σ−1

t|0:t−1 + dᵀtΣ−1
d H)ᵀ (151)

By the Sherman-Morrison-Woodbury matrix identity (Woodbury, 1950), we
have

(Σ−1
t|0:t−1 +HᵀΣ−1

d H)−1

=Σt|0:t−1 − Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1HΣt|0:t−1.

(152)

By applying this matrix identity on (151), we have

µt|0:t =(Σt|0:t−1 − Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1HΣt|0:t−1)

· (µᵀ
t|0:t−1Σ−1

t|0:t−1 + dᵀtΣ−1
d H)ᵀ

(153)

By expanding the parentheses, we have

µt|0:t = µt|0:t−1 − Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1Hµt|0:t−1

+ Σt|0:t−1H
ᵀΣ−1

d dt − Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1HΣt|0:t−1H

ᵀΣ−1
d dt

(154)
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By rewriting the first term on the second row as

Σt|0:t−1H
ᵀΣ−1

d dt

=Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1(HΣt|0:t−1H

ᵀ + Σd)Σ
−1
d dt,

(155)

the expression above becomes

µt|0:t = µt|0:t−1 − Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1Hµt|0:t−1

+ Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1(HΣt|0:t−1H

ᵀ + Σd)Σ
−1
d dt

− Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1HΣt|0:t−1H

ᵀΣ−1
d dt

(156)

By expanding the factor (HΣt|0:t−1H
ᵀ + Σd) on the second row, we have

µt|0:t = µt|0:t−1 − Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1Hµt|0:t−1

+ Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1HΣt|0:t−1H

ᵀΣ−1
d dt

+ Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1ΣdΣ

−1
d dt

− Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1HΣt|0:t−1H

ᵀΣ−1
d dt

(157)

The second and fourth row cancel. The factor ΣdΣ
−1
d on the third row also

cancels, and we have

µt|0:t = µt|0:t−1 − Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1Hµt|0:t−1

+ Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1dt

(158)

Recall from Theorem 1 that KKF is defined as

KKF = Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1. (159)

Hence, the expression for µt|0:t becomes

µt|0:t = µt|0:t−1 −KKF(dt −Hµt|0:t−1) (160)

Which is what we set out to prove. We proceed to the expression for Σt|0:t

Σt|0:t = C−1 = (Σ−1
t|0:t−1 +HᵀΣ−1

d H)−1 (161)

By (152), we have

Σt|0:t = Σt|0:t−1 − Σt|0:t−1H
ᵀ(HΣt|0:t−1H

ᵀ + Σd)
−1HΣt|0:t−1 (162)

From (159), we have that

Σt|0:t = Σt|0:t−1 −KKFHΣt|0:t−1 = (I −KKFH)Σt|0:t−1. (163)

Which is what we set out to prove. This completes the proof of Theorem 1.
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B Proof of Theorem 2

In the following, we prove Theorem 2. That is, we prove that f(xt+1|d0:t) is
Gaussian with parameters defined in (20) and (21), when (1) and (7) hold, and
when f(xt|d0:t) is Gaussian as defined in (18).

Proof. We have that

f(xt+1|d0:t) =

∫
f(xt+1,xt|d0:t)dxt

=

∫
f(xt+1|xt,d0:t)f(xt|d0:t)dxt

(164)

Since the latent variables follows a first order Markov chain, (1), we have that
f(xt+1|xt,d0:t) = f(xt+1|xt). Thus the integral above becomes

f(xt+1|d0:t) =

∫
f(xt+1|xt)f(xt|d0:t)dxt. (165)

The first factor in the integrand is given in (7), while the second factor is given
in (18). The expression then becomes

f(xt+1|d0:t) =

∫
1

(2π)K/2|Σx|K/2
e−

1
2 (xt+1−Atxt)ᵀΣ−1

x (xt+1−Atxt)

· 1

(2π)K/2|Σt|0:t|K/2
e
− 1

2 (xt−µt|0:t)
ᵀΣ−1

t|0:t
(xt−µt|0:t)dxt

(166)

We omit all factors not containing either xt+1 or xt, and put the factor only
containing xt+1 outside the integral.

f(xt+1|d0:t) ∝ e−
1
2x

ᵀ
t+1Σ−1

x xt+1

∫
e−

1
2x

ᵀ
tA

ᵀ
tΣ−1

x Atxt

· e−
1
2x

ᵀ
tΣ−1

t|0:t
xt+x

ᵀ
t+1Σ−1

x Atxt+µ
ᵀ
t|0:t

Σ−1
t|0:t

xtdxt.

(167)

We define a matrix C and a vector D

C = Aᵀ
tΣ−1

x At + Σ−1
t|0:t, (168)

D = (xᵀ
t+1Σ−1

x At + µᵀ
t|0:tΣ

−1
t|0:t)

ᵀ. (169)

This enables us to simplify the expression for f(xt+1|d0:t)

f(xt+1|d0:t) ∝ e−
1
2x

ᵀ
t+1Σ−1

x xt+1

∫
e−

1
2x

ᵀ
tCxt+D

ᵀxtdxt. (170)

From Definition 2.2 in Rue and Held (2005), we have that the integrand has the
form of a Gaussian pdf with canonical parametrization, i.e. NC(D, C), where
NC denotes the normal distribution with canonical parametrization. From Rue
and Held (2005) we also have that

NC(D, C)
d
= N(C−1D, C−1), (171)
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where the ”d” indicates that the two distributions are equal in distribution. This
enables us to rewrite the integrand as

f(xt+1|d0:t) ∝ e−
1
2x

ᵀ
t+1Σ−1

x xt+1+ 1
2D

ᵀC−1D∫
e−

1
2 (xt−C−1D)ᵀC(xt−C−1D)dxt.

(172)

The integral simplifies to (2π)K/2|C|−1/2. This factor is omitted, since it is not
a function of xt+1. By inserting the expressions for C and D, we obtain

f(xt+1|d0:t) ∝ e−
1
2x

ᵀ
t+1Σ−1

x xt+1

· e
1
2 (xᵀ

t+1Σ−1
x At+µ

ᵀ
t|0:t

Σ−1
t|0:t

)(Aᵀ
tΣ−1

x At+Σ−1
t|0:t

)−1(xᵀ
t+1Σ−1

x At+µ
ᵀ
t|0:t

Σ−1
t|0:t

)ᵀ
(173)

By multiplying the parentheses in the exponent and omitting the term not
containing xt+1, we obtain

f(xt+1|d0:t) ∝ e−
1
2x

ᵀ
t+1Σ−1

x xt+1+ 1
2x

ᵀ
t+1Σ−1

x At(A
ᵀ
tΣ−1

x At+Σ−1
t|0:t

)−1Aᵀ
tΣ−1

x xt+1

· eµ
ᵀ
t|0:t

Σ−1
t|0:t

(Aᵀ
tΣ−1

x At+Σ−1
t|0:t

)−1Aᵀ
tΣ−1

x xt+1

(174)

where we utilize that Σ−1
x = Σ−ᵀx . By the Sherman-Morrison-Woodbury matrix

identity (Woodbury, 1950), we have that

Σ−1
x At(A

ᵀ
tΣ−1

x At + Σ−1
t|0:t)

−1Aᵀ
tΣ−1

x = Σ−1
x − (Σx +AtΣt|0:tA

ᵀ
t )−1 (175)

By replacing the left hand side with the right hand side in the expression for
f(xt+1|d0:t) above, we obtain

f(xt+1|d0:t) ∝ e−
1
2x

ᵀ
t+1Σ−1

x xt+1+ 1
2x

ᵀ
t+1(Σ−1

x −(Σx+AtΣt|0:tA
ᵀ
t )−1)xt+1

· eµ
ᵀ
t|0:t

Σ−1
t|0:t

(Aᵀ
tΣ−1

x At+Σ−1
t|0:t

)−1Aᵀ
tΣ−1

x xt+1

(176)

Two of the terms in the exponent on the first line cancel, and we obtain

f(xt+1|d0:t) ∝ e−
1
2x

ᵀ
t+1(Σx+AtΣt|0:tA

ᵀ
t )−1xt+1

· eµ
ᵀ
t|0:t

Σ−1
t|0:t

(Aᵀ
tΣ−1

x At+Σ−1
t|0:t

)−1Aᵀ
tΣ−1

x xt+1

(177)

We define a matrix E and a vector F

E = (Σx +AtΣt|0:tA
ᵀ
t )−1 (178)

F = (µᵀ
t|0:tΣ

−1
t|0:t(A

ᵀ
tΣ−1

x At + Σ−1
t|0:t)

−1Aᵀ
tΣ−1

x )ᵀ (179)

Thus, we have

f(xt+1|d0:t) ∝ e−
1
2x

ᵀ
t+1Ext+1+F ᵀxt+1 (180)

From Definition 2.2 in Rue and Held (2005), we have that

xt+1|d0:t ∼ NC(F , E), (181)
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where NC denotes the normal distribution with canonical parametrization. From
Rue and Held (2005) we also have that

NC(F , E)
d
= N(E−1F , E−1), (182)

where the ”d” indicates that the two distributions are equal in distribution. By
combining the two expressions above, we have

xt+1|d0:t ∼ NC(F , E) = N(E−1F , E−1). (183)

That is,

µt+1|0:t = E−1F (184)

Σt+1|0:t = E−1 (185)

In the following, we first derive the expression for µt+1|0:t.
By inserting the expressions for E and F , we have that

µt+1|0:t = E−1F

= (Σx +AtΣt|0:tA
ᵀ
t )(µᵀ

t|0:tΣ
−1
t|0:t(A

ᵀ
tΣ−1

x At + Σ−1
t|0:t)

−1Aᵀ
tΣ−1

x )ᵀ

= (Σx +AtΣt|0:tA
ᵀ
t )Σ−1

x At(A
ᵀ
tΣ−1

x At + Σ−1
t|0:t)

−1Σ−1
t|0:tµt|0:t,

(186)

where we utilized that

Σ−1
t|0:t = Σ−ᵀt|0:t, (187)

(Aᵀ
tΣ−1

x At + Σ−1
t|0:t)

−1 = (Aᵀ
tΣ−1

x At + Σ−1
t|0:t)

−ᵀ. (188)

By applying the Sherman-Morrison-Woodbury matrix identity (Woodbury, 1950),
we have

(Aᵀ
tΣ−1

x At + Σ−1
t|0:t)

−1

= Σt|0:t − Σt|0:tA
ᵀ
t (AtΣt|0:tA

ᵀ
t + Σx)−1AtΣt|0:t

(189)

By replacing the right hand side with the left hand side in the expression above,
we have

µt+1|0:t =(Σx +AtΣt|0:tA
ᵀ
t )Σ−1

x At

·(Σt|0:t − Σt|0:tA
ᵀ
t (AtΣt|0:tA

ᵀ
t + Σx)−1AtΣt|0:t)

·Σ−1
t|0:tµt|0:t.

(190)

We see that Σt|0:t cancels out

µt+1|0:t =(Σx +AtΣt|0:tA
ᵀ
t )Σ−1

x At

·(I − Σt|0:tA
ᵀ
t (AtΣt|0:tA

ᵀ
t + Σx)−1At)µt|0:t.

(191)

Further calculations yield

µt+1|0:t =(At +AtΣt|0:tA
ᵀ
tΣ−1

x At)

·(I − Σt|0:tA
ᵀ
t (AtΣt|0:tA

ᵀ
t + Σx)−1At)µt|0:t.

(192)
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By expanding the parenthesis on the first line and the outer parenthesis on the
second line, we have

µt+1|0:t = (At +AtΣt|0:tA
ᵀ
tΣ−1

x At)µt|0:t

− (At +AtΣt|0:tA
ᵀ
tΣ−1

x At)Σt|0:tA
ᵀ
t (AΣt|0:tA

ᵀ
t + Σx)−1Atµt|0:t.

(193)

We have that

(At +AtΣt|0:tA
ᵀ
tΣ−1

x At)Σt|0:tA
ᵀ
t

=(AtΣt|0:tA
ᵀ
t +AtΣt|0:tA

ᵀ
tΣ−1

x AtΣt|0:tA
ᵀ
t )

=AtΣt|0:tA
ᵀ
t (I + Σ−1

x AtΣt|0:tA
ᵀ
t ).

(194)

Thus, by inserting this expression on the second line in (193), we have

µt+1|0:t = Atµt|0:t +AtΣt|0:tA
ᵀ
tΣ−1

x Atµt|0:t

−AtΣt|0:tA
ᵀ
t (I + Σ−1

x AtΣt|0:tA
ᵀ
t )(AtΣt|0:tA

ᵀ
t + Σx)−1Atµt|0:t.

(195)

By multiplying with Σx and Σ−1
x on the second line, we obtain

µt+1|0:t = Atµt|0:t +AtΣt|0:tA
ᵀ
tΣ−1

x Atµt|0:t

−AtΣt|0:tA
ᵀ
tΣ−1

x (Σx +AtΣt|0:tA
ᵀ
t )(AtΣt|0:tA

ᵀ
t + Σx)−1Atµt|0:t

(196)

The parentheses on the second line cancel out

µt+1|0:t =Atµt|0:t +AtΣt|0:tA
ᵀ
tΣ−1

x Atµt|0:t

−AtΣt|0:tA
ᵀ
tΣ−1

x Atµt|0:t

(197)

The last two terms cancel out, and we have

µt+1|0:t = Atµt|0:t (198)

Which is what we set out to prove. We now consider Σt+1|0:t.
The expression for Σt+1|0:t is

Σt+1|0:t = E−1 = Σx +AtΣt|0:tA
ᵀ
t (199)

Thus, we have that

xt+1|d0:t ∼ N(Atµt|0:t,Σx +AtΣt|0:tA
ᵀ
t ), (200)

which completes the proof.

C Derivation of filter distribution in EnKF

Our objective is to derive the expressions for the parameters of f̂(xt|d0:t), namely
µ̂t|0:t and Σ̂t|0:t, presented in (47) and (48)

µ̂t|0:t = µ̂t|0:t−1 +KEnKF(dt −Hµ̂t|0:t−1), (201)

Σ̂t|0:t = (I −KEnKFH)Σ̂t|0:t−1, (202)
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where µ̂t|0:t−1 and Σ̂t|0:t−1 are the distribution parameters of f̂(xt|d0:t−1, χt)

and KEnKF = Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1.

By Bayes’ rule, we have

f̂(xt+1|d0:t, χt) =
f̂(xt|d0:t−1, χt)f(dt|xt,d0:t−1)

f(dt|d0:t−1)
. (203)

We are able to simplify the second factor in the numerator. Since we assume
that (3) holds, the observation dt is conditionally independent of the previous
observations d0:t−1 given xt. We have that

f(dt|xt,d0:t−1) = f(dt|xt). (204)

In addition, since f(dt|d0:t−1) is not a function of xt, we have that

f̂(xt|d0:t, χt) ∝ f̂(xt|d0:t−1, χt)f(dt|xt). (205)

In the following, we show that f̂(xt|d0:t, χt) has the form of a Gaussian
distribution, and hence calculating the normalizing constant f(dt|d0:t−1) in

(203) is unnecessary. We have that f̂(xt|d0:t−1, χt) is normally distributed
with mean µ̂t|0:t−1 and covariance matrix Σ̂t|0:t−1, and from (9) we have that
dt|xt ∼ N(Hxt,Σd). Thus

f̂(xt|d0:t, χt) ∝ e−
1
2 (xt−µ̂t|0:t−1)ᵀΣ̂−1

t|0:t−1
(xt−µ̂t|0:t−1)

e−
1
2 (dt−Hxt)ᵀΣ−1

d (dt−Hxt)

(206)
By expanding the parentheses and omitting the terms not containing xt, we
obtain

f̂(xt|d0:t, χt) ∝e−
1
2 (xᵀ

t Σ̂−1
t|0:t−1

xt−µ̂ᵀ
t|0:t−1

Σ̂−1
t|0:t−1

xt−xᵀ
t Σ̂−1

t|0:t−1
µ̂t|0:t−1)

· e− 1
2 ((Hxt)

ᵀΣ−1
d Hxt−dᵀ

tΣ−1
d Hxt−(Hxt)

ᵀΣ−1
d dt)

(207)

All of the terms in the exponents are scalars. This means that the each term
is equal to its own transpose, which enables us to transpose each term as we
choose. Thus,

µ̂ᵀ
t|0:t−1Σ̂−1

t|0:t−1xt = (µ̂ᵀ
t|0:t−1Σ̂−1

t|0:t−1xt)
ᵀ = xᵀ

t Σ̂−1
t|0:t−1µ̂t|0:t−1, (208)

dᵀtΣ−1
d Hxt = (dᵀtΣ−1

d Hxt)
ᵀ = (Hxt)

ᵀΣ−1
d dt, (209)

where we have that Σ̂−1
t|0:t−1 = Σ̂−ᵀt|0:t−1 and Σ−1

d = Σ−ᵀd , since covariance matrices

are symmetric. This means that (207) simplifies to

f̂(xt|d0:t, χt) ∝ e−
1
2 (xᵀ

t Σ̂−1
t|0:t−1

xt+(Hxt)
ᵀΣ−1

d Hxt−2µ̂ᵀ
t|0:t−1

Σ̂−1
t|0:t−1

xt−2dᵀ
tΣ−1

d Hxt)

(210)
By noting that (Hxt)

ᵀΣ−1
d Hxt = xᵀ

tH
ᵀΣ−1

d Hxt, the first two terms in the
exponent can be rewritten as

xᵀ
t Σ̂−1

t|0:t−1xt + (Hxt)
ᵀΣ−1

d Hxt = xᵀ
t (Σ̂−1

t|0:t−1 +HᵀΣ−1
d H)xt. (211)
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Similarly, the last two terms in the exponent in (210) can be written as

−2µ̂ᵀ
t|0:t−1Σ̂−1

t|0:t−1xt−2dᵀtΣ−1
d Hxt = −2(µ̂ᵀ

t|0:t−1Σ̂−1
t|0:t−1 +dᵀtΣ−1

d H)xt. (212)

The enables us to write (210) as

f̂(xt|d0:t, χt) ∝ e−
1
2 (xᵀ

t (Σ̂−1
t|0:t−1

+HᵀΣ−1
d H)xt−2(µ̂ᵀ

t|0:t−1
Σ̂−1
t|0:t−1

+dᵀ
tΣ−1

d H)xt) (213)

We define the matrix C and the vector D as

C =Σ̂−1
t|0:t−1 +HᵀΣ−1

d H, (214)

D =(µ̂ᵀ
t|0:t−1Σ̂−1

t|0:t−1 + dᵀtΣ−1
d H)ᵀ. (215)

Thus, (213) becomes

f̂(xt|d0:t, χt) ∝ e−
1
2 (xᵀ

tCxt−2Dᵀxt) = e−
1
2x

ᵀ
tCxt+D

ᵀxt . (216)

From Definition 2.2 in Rue and Held (2005), we have that

xt|d0:t ∼ NC(D, C), (217)

where NC denotes the normal distribution with canonical parametrization. From
Rue and Held (2005) we also have that

NC(D, C)
d
= N(C−1D, C−1). (218)

where the ”d” indicates that the two distributions are equal in distribution. By
combining the two expressions above, we have

xt|d0:t ∼ NC(D, C)
d
= N(C−1D, C−1). (219)

That is,

µ̂t|0:t = C−1D (220)

Σ̂t|0:t = C−1 (221)

In the following, we first derive the expression for µ̂t|0:t.
From (214) and (215), we have that

µ̂t|0:t = C−1D = (Σ̂−1
t|0:t−1 +HᵀΣ−1

d H)−1(µ̂ᵀ
t|0:t−1Σ̂−1

t|0:t−1 + dᵀtΣ−1
d H)ᵀ (222)

By the Sherman-Morrison-Woodbury matrix identity (Woodbury, 1950), we
have that

(Σ̂−1
t|0:t−1 +HᵀΣ−1

d H)−1

=Σ̂t|0:t−1 − Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1HΣ̂t|0:t−1.

(223)
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By applying this matrix identity on (222), we have

µ̂t|0:t =(Σ̂t|0:t−1 − Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1HΣ̂t|0:t−1)

· (µ̂ᵀ
t|0:t−1Σ̂−1

t|0:t−1 + dᵀtΣ−1
d H)ᵀ

(224)

By expanding the parentheses, we have

µ̂t|0:t = µ̂t|0:t−1 − Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1Hµ̂t|0:t−1

+ Σ̂t|0:t−1H
ᵀΣ−1

d dt − Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1HΣ̂t|0:t−1H

ᵀΣ−1
d dt.

(225)
By rewriting the first term on the second row as

Σ̂t|0:t−1H
ᵀΣ−1

d dt

=Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1(HΣ̂t|0:t−1H

ᵀ + Σd)Σ
−1
d dt,

(226)

the expression above becomes

µ̂t|0:t = µ̂t|0:t−1 − Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1Hµ̂t|0:t−1

+ Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1(HΣ̂t|0:t−1H

ᵀ + Σd)Σ
−1
d dt

− Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1HΣ̂t|0:t−1H

ᵀΣ−1
d dt.

(227)

By expanding the factor (HΣ̂t|0:t−1H
ᵀ + Σd) on the second row, we have

µ̂t|0:t = µ̂t|0:t−1 − Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1Hµ̂t|0:t−1

+ Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1HΣ̂t|0:t−1H

ᵀΣ−1
d dt

+ Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1ΣdΣ

−1
d dt

− Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1HΣ̂t|0:t−1H

ᵀΣ−1
d dt.

(228)

The second and fourth row cancel. The factor ΣdΣ
−1
d on the third row also

cancels, and we have

µ̂t|0:t = µ̂t|0:t−1 − Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1Hµ̂t|0:t−1

+ Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1dt.

(229)

Recall that KEnKF is defined as

KEnKF = Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1. (230)

Hence, the expression for µ̂t|0:t becomes

µ̂t|0:t = µ̂t|0:t−1 −KEnKF(dt −Hµ̂t|0:t−1). (231)

Which is what we set out to prove. We proceed to the expression for Σ̂t|0:t

Σ̂t|0:t = C−1 = (Σ̂−1
t|0:t−1 +HᵀΣ−1

d H)−1. (232)
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By (223), we have

Σ̂t|0:t = Σ̂t|0:t−1 − Σ̂t|0:t−1H
ᵀ(HΣ̂t|0:t−1H

ᵀ + Σd)
−1HΣ̂t|0:t−1. (233)

By using (230)

Σ̂t|0:t = Σ̂t|0:t−1 −KEnKFHΣ̂t|0:t−1 = (I −KKFH)Σ̂t|0:t−1. (234)

This expression coincides with the expression in (202). This completes the

derivation of the expressions for the parameters of f̂(xt|d0:t).

D Proof of structure in Cholesky factorization

Section 2.7 states that the Cholesky factorization of a band matrix with band-
width m is lower-triangular with nonzero entries located only on the main
diagonal and the m first lower diagonals, see (77). This section proves that this
is the case for all band matrices with bandwidth m.

We have that Q is a band matrix with bandwidth m. That is, we only have
nonzero entries on the main diagonal and the m first upper and lower diagonals.
This can be formulated as

Qi,k = 0 ∀i, k : |i− k| > m, (235)

where Qi,k is the (i, k)th entry of Q. Section 2.7 states that Q is positive definite
and symmetric. Hence, there exists a unique lower triangular matrix L such that
Q = LLᵀ. We want to prove that

Li,k = 0 ∀i, k : |i− k| > m. (236)

Proof. This is trivial for the entries above the main diagonal, since L is lower
triangular, and hence we can omit the absolute value around i− k. That is, we
assume i > k without loss of generality.

Li,k = 0 ∀i, k : i− k > m. (237)

We prove this expression for an arbitrary row of L, namely the ith row.
Without loss of generality, we assume that i > m. Rewriting (237) yields

Li,k = 0 ∀k : k < i−m. (238)

That is, we want to prove that Li,k = 0 for all k such that 1 ≤ k < i−m. In
order to prove this, we make use of the following formula for calculating the
off-diagonal entries of L

Li,k =
1

Lk,k
(Qi,k −

k−1∑
s=1

Li,sLk,s), k < i. (239)

In order to prove that Li,k = 0 for all k such that 1 < k ≤ i−m, we first prove
that Qi,k = 0 for k < i−m.
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From (235), we have that Qi,k = 0 when |i− k| > m. Since we consider the
entries below the diagonal, we have i > k. This entails that we can remove the
absolute value around |i − k|. That is, Qi,k = 0 for i − k > m or equivalently
k < i−m. Hence, in the case when k < i−m, we are able to simplify (239) to

Li,k =
1

Lk,k
(−

k−1∑
s=1

Li,sLk,s), k < i−m. (240)

In order to prove that Li,k = 0, we structure the proof as a ”proof by
induction”, by first proving that Li,1 = 0, and then proving that Li,k = 0 if
Li,1 = · · · = Li,k−2 = Li,k−1 = 0. Proving that Li,1 = 0 is trivial, since the
summation in (240) goes from s = 1 to k − 1, and hence the sum is zero when
k = 1.

We now assume that Li,1 = · · · = Li,k−2 = Li,k−1 = 0, and we want to prove
that Li,k = 0 for k < i−m. By writing out the summation in (240), we have

Li,k =
1

Lk,k
(−Li,1Lk,1 − Li,2Lk,2 · · · − Li,k−1Lk,k−1), k < i−m. (241)

Since we assume Li,1 = · · · = Li,k−2 = Li,k−1 = 0, we have that the second
factor in every term is zero. Hence Li,k = 0. This proves that (236) holds, which
completes the proof.

E Proof of Theorem 4

In the following, we prove Theorem 4 presented in Section 2.6. That is, we prove
that: Assume 1 ≤ i < k ≤ K. We then have

i /∈ Λk and @s ∈ {k + 1, . . . ,K} : i, k ∈ Λs ⇐⇒ xi ⊥ xk|x−{i,k}. (242)

Proof. From Theorem 2.1 in Rue and Held (2005), we have that

xi ⊥ xk|x−{i,k} ⇐⇒ f(x) = g(x−{i})h(x−{k}), (243)

for some functions g and h. Since we assume that x is a GMRF, the pdf of x
can be written as

f(x) =

K∏
l=1

f(xl|x{1:l−1}) =

K∏
l=1

f(xl|xΛl) ∝
K∏
l=1

e
− 1

2σ2
l

(xl−Dᵀ
l x

Λl−Cl)2

(244)

for some constants Cl and σ2
l > 0, and some vector Dl ∈ R|Λl|. We can rewrite

this as

f(x) ∝e
− 1

2σ2
k

(xk−Dᵀ
kx

Λk−Ck)2

e
− 1

2σ2
s

(xs−Dᵀ
sx

Λs−Cs)2

·
K∏
l=1
l 6=s
l 6=k

e
− 1

2σ2
l

(xl−Dᵀ
l x

Λl−Cl)2

. (245)
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From the first line in the expression above, we see that if i ∈ Λk, we get a

factor eMxixk , for some constant M 6= 0. Similarly, we see that if i, k ∈ Λs
for some s, we obtain a factor eNx

ixk for some N 6= 0. That is, we have
that f(x) 6= g(x−{i})h(x−{k}), for some functions g and h. This entails that
xi 6⊥ xk|x−{i,k}. From (243) we see that f(x) = g(x−{i})h(x−{k}) if and only if
i /∈ Λk and i, k /∈ Λs. That is, (243) holds if and only if i /∈ Λk and @s : i, k ∈ Λs.

F Derivation of posteriors in Section 3.2

Recall that Section 3.1 presents prior distributions for ηt|φt and φt. In the
following, we present the derivation of the corresponding posterior distributions
for ηt|φt and φt, which is presented in Section 3.2. That is, the distributions
for ηt|φt, χt and φt|χt, where we recall from Section 2.4 that χt is the ensemble
representing f(xt|d0:t−1).

We first present the derivation of f(ηt|φt, χt). By Bayes’ rule, we have

f(ηt|φt, χt) =
f(ηt|φt)f(χt|ηt,φt)

f(χt|φt)
(246)

We omit the denominator, which is constant as a function of ηt:

f(ηt|φt, χt) ∝ f(ηt|φt)f(χt|ηt,φt). (247)

Since the elements of ηt|φt are a priori independent, (94), we have

f(ηt|φt, χt) ∝ f(χt|ηt,φt)
K∏
k=1

f(ηkt |φt) (248)

From (94), we have that f(ηkt |φt) = f(ηkt |φkt ). In addition, we have that

f(χt|ηt,φt) =
K∏
k=1

f(χkt |ηkt , φkt , χ
Λk
t ). (249)

Thus, we can write

f(ηt|φt, χt) ∝
K∏
k=1

f(ηkt |φkt )f(χkt |ηkt , φkt , χ
Λk
t ). (250)

In the following, we consider the second factor in the expression above.
For each element in xt, we have xkt ∼ N((1, (xΛk

t )ᵀ) · ηkt , φkt ). We assume
that the ensemble members are distributed according to f(xt|d0:t−1), i.e.
χkt,j ∼ N((1, (χΛk

t,j )ᵀ) · ηkt , φkt ). Since all of the ensemble members are assumed

independent, we have that χkt ∼ N
((

1J , (χ
Λk
t )ᵀ

)
· ηkt , φkt IJ

)
, where IJ is the
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identity matrix of size J and 1J is a vector of length J consisting of ones. That
is,

f(χkt |ηkt , φkt , χ
Λk
t ) ∝ 1

|φkt |J/2
·e−

1
2

(
χkt−

(
1J ,(χ

Λk
t )ᵀ

)
·ηkt
)ᵀ

(φkt IJ )−1
(
χkt−

(
1J ,(χ

Λk
t )ᵀ

)
·ηkt
)
.

(251)
By expanding the parentheses in the expression above, we have

f(χkt |ηkt , φkt , χ
Λk
t ) ∝ 1

|φkt |J/2
· e−

1
2 (χkt )ᵀ(φkt IJ )−1χkt+(χkt )ᵀ(φkt IJ )−1

(
1J ,(χ

Λk
t )ᵀ

)
·ηkt

·e−
1
2

((
1J ,(χ

Λk
t )ᵀ

)
·ηkt
)ᵀ

(φkt IJ )−1
((

1J ,(χ
Λk
t )ᵀ

)
·ηkt
)

(252)
Since (φkt IJ)−1 = (φkt )−1IJ , we can write

f(χkt |ηkt , φkt , χ
Λk
t ) ∝ 1

|φkt |J/2
· e
− 1

2φkt

(χkt )ᵀχkt+ 1

φkt

(χkt )ᵀ
(
1J ,(χ

Λk
t )ᵀ

)
·ηkt

·e
− 1

2φkt

((
1J ,(χ

Λk
t )ᵀ

)
·ηkt
)ᵀ(

1J ,(χ
Λk
t )ᵀ

)
·ηkt

(253)

The exponent on the last row can be rewritten as

− 1

2φkt

((
1J , (χ

Λk
t )ᵀ

)
· ηkt

)ᵀ (
1J , (χ

Λk
t )ᵀ

)
· ηkt

= − 1

2φkt
(ηkt )ᵀ ·

(
1J , (χ

Λk
t )ᵀ

)ᵀ (
1J , (χ

Λk
t )ᵀ

)
· ηkt .

(254)

Thus,

f(χkt |ηkt , φkt , χ
Λk
t ) ∝ 1

|φkt |J/2
· e
− 1

2φkt

(χkt )ᵀχkt+ 1

φkt

(χkt )ᵀ
(
1J ,(χ

Λk
t )ᵀ

)
·ηkt

·e
− 1

2φkt

(ηkt )ᵀ·
(
1J ,(χ

Λk
t )ᵀ

)ᵀ(
1J ,(χ

Λk
t )ᵀ

)
·ηkt
.

(255)

In the following, we consider the first factor in (250).
We have that

ηkt |φkt ∼ N(µηkt , φ
k
tΣηkt ). (256)

That is

f(ηkt |φkt ) ∝ 1

|φkt |(|Λk|+1)/2
· e−

1
2 (ηkt−µηkt

)ᵀ(φktΣ
ηkt

)−1(ηkt−µηkt
)
. (257)

We have that

(µηkt )ᵀ(φktΣηkt )−1ηkt = (ηkt )ᵀ(φktΣηkt )−1µηkt . (258)

We proceed by expanding the parentheses in (257)

f(ηkt |φkt ) ∝ 1

|φkt |(|Λk|+1)/2
· e−

1
2 (ηkt )ᵀ(φktΣ

ηkt
)−1ηkt

·e(µ
ηkt

)ᵀ(φktΣ
ηkt

)−1ηkt− 1
2 (µ

ηkt
)ᵀ(φktΣ

ηkt
)−1µ

ηkt

(259)
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By inserting (255) and (259) into (250), we have

f(ηt|φt, χt) ∝
K∏
k=1

f(ηkt |φkt )f(χkt |ηkt , φkt , χ
Λk
t )

∝
K∏
k=1

e
− 1

2 (ηkt )ᵀ(φktΣ
ηkt

)−1ηkt− 1

2φkt

(ηkt )ᵀ·
(
1J ,(χ

Λk
t )ᵀ

)ᵀ(
1J ,(χ

Λk
t )ᵀ

)
·ηkt

· e
(µ

ηkt
)ᵀ(φktΣ

ηkt
)−1ηkt+ 1

φkt

(χkt )ᵀ
(
1J ,(χ

Λk
t )ᵀ

)
·ηkt

· 1

|φkt |(J+|Λk|+1)/2
· e
− 1

2 (µ
ηkt

)ᵀ(φktΣ
ηkt

)−1µ
ηkt
− 1

2φkt

(χkt )ᵀχkt
.

(260)

Note that the terms in the exponent on the second line are quadratic as a
function of ηkt , while the terms on the third line are linear in ηkt . The terms on
the last line do not contain ηkt . We rearrange the terms on each line

f(ηt|φt, χt) ∝
K∏
k=1

f(ηkt |φkt )f(χkt |ηkt , φkt , χ
Λk
t )

∝
K∏
k=1

e
− 1

2 (ηkt )ᵀ
(

1

φkt

(Σ
ηkt

)−1+ 1

φkt

(
1J ,(χ

Λk
t )ᵀ

)ᵀ(
1J ,(χ

Λk
t )ᵀ

))
ηkt

· e

(
1

φkt

(µ
ηkt

)ᵀ(Σ
ηkt

)−1+ 1

φkt

(χkt )ᵀ·
(
1J ,(χ

Λk
t )ᵀ

))
ηkt

· 1

|φkt |(J+|Λk|+1)/2
· e
− 1

2φkt

(µ
ηkt

)ᵀ(Σ
ηkt

)−1µ
ηkt
− 1

2φkt

(χkt )ᵀχkt
.

(261)

In order to simplify the expression, we define

Θk
t = (Σηkt )−1 +

(
1J , (χ

Λk
t )ᵀ

)ᵀ (
1J , (χ

Λk
t )ᵀ

)
(262)

ρkt =
(

(µηkt )ᵀ(Σηkt )−1 + (χkt )ᵀ ·
(
1J , (χ

Λk
t )ᵀ

))ᵀ
(263)

γkt = (µηkt )ᵀ(Σηkt )−1µηkt − (χkt )ᵀχkt (264)

Now, we can write (261) as

f(ηt|φt, χt) ∝
K∏
k=1

f(ηkt |φkt )f(χkt |ηkt , φkt , χ
Λk
t )

∝
K∏
k=1

1

|φkt |(J+|Λk|+1)/2
· e
− 1

2φkt

(ηkt )ᵀΘkt η
k
t+ 1

φkt
(ρkt )

ᵀ
ηkt− 1

2φkt

γkt

(265)

Since γkt and the first factor not are functions of ηkt , we omit these. We
notice that the expression has the form of a normal distribution with canonical

67



parametrization. By rearranging the terms, we have

f(ηt|φt, χt) ∝
K∏
k=1

e
1

2φkt

(ρkt )ᵀ(Θkt )−1ρkt− 1
2 (ηkt−(Θkt )−1ρkt )

ᵀ
(

1

φkt

Θkt

)
(ηkt−(Θkt )−1ρkt )

(266)
The first term is constant as a function of ηkt , and thus we can omit it. The
second term has the form of a normal distribution,

ηkt |φt, χt ∼ N

(
(Θk

t )−1ρkt ,

(
1

φkt
Θk
t

)−1
)
. (267)

Which completes the derivation of the expression for the posterior distribution
for ηkt |φt. We now go on with the derivation of the expression for the posterior
derivation of φt.

We start by using Bayes’ rule

f(φt|χt) =
f(φt)f(χt|φt)

f(χt)
. (268)

The expression in the denominator is not a function of φt, and thus we omit it,

f(φt|χt) ∝ f(φt)f(χt|φt) = f(χt,φt). (269)

In order to calculate this expression, we use the law of total probability

f(φt|χt) ∝
∫
f(χt,ηt,φt)dηt. (270)

We apply the formula for conditional probability

f(φt|χt) ∝
∫
f(χt|ηt,φt)f(ηt|φt)f(φt)dηt. (271)

We put the last factor outside the integral

f(φt|χt) ∝ f(φt)

∫
f(χt|ηt,φt)f(ηt|φt)dηt. (272)

In order to treat the integrand, we utilize the fact that the elements of ηt|φt are
a priori independent, (94), and the GMRF imposed on χt

f(φt|χt) ∝ f(φt)

∫
· · ·
∫ K∏

k=1

f(χkt |ηkt , φkt , χ
Λk
t )f(ηkt |φkt )dηkt , (273)

where we have K integrals in the expression above. We can swap the ordering
of the product-sign and the integral-sign without affecting the result

f(φt|χt) ∝ f(φt)

K∏
k=1

∫
f(χkt |ηkt , φkt , χ

Λk
t )f(ηkt |φkt )dηkt . (274)
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We notice that the integrand is identical to the expression in (265).

f(φt|χt) ∝ f(φt)

K∏
k=1

∫
e
− 1

2φkt

(ηkt )ᵀΘkt η
k
t+ 1

φkt
(ρkt )

ᵀ
ηkt− 1

2φkt

γkt

(φkt )(|Λk|+J+1)/2
dηkt . (275)

We put the last term in the exponent outside the integral, and rearrange the
integrand factors

f(φt|χt) ∝f(φt)

K∏
k=1

1

(φkt )(|Λk|+J+1)/2
e
− 1

2φkt

γkt
e

1

2φkt

(ρkt )ᵀ(Θkt )−1ρkt

∫
e
− 1

2 (ηkt−(Θkt )−1ρkt )
ᵀ
(

1

φkt

I|Λk|+1

)
Θkt (η

k
t−(Θkt )−1ρkt )

dηkt .

(276)

We notice that the integrand has the shape of a multivariate normal distribution.
Since the normalizing constant is not contained in the integral, we multiply with
the normalizing constant, and the expression becomes

f(φt|χt) ∝ f(φt)

K∏
k=1

∣∣∣( 1
φkt
I|Λk|+1

)
Θk
t

∣∣∣−1/2

(φkt )(|Λk|+J+1)/2
e
− 1

2φkt

γkt
e

1

2φkt

(ρkt )ᵀ(Θkt )−1ρkt
(277)

We omit |Θk
t |−1/2, since it is constant as a function of φt. Since φkt > 0, we have

f(φt|χt) ∝ f(φt)

K∏
k=1

(φkt )(Λk+1)/2

(φkt )(|Λk|+J+1)/2
e
− 1

2φkt

γkt
e

1

2φkt

(ρkt )ᵀ(Θkt )−1ρkt

= f(φt)

K∏
k=1

1

(φkt )J/2
e
− 1

2φkt

γkt
e

1

2φkt

(ρkt )ᵀ(Θkt )−1ρkt

(278)

We now consider the first factor. Since the elements of φt are a priori independent,
(92), and that φkt ∼ InvGam(αkt , β

k
t ), we have

f(φt) =

K∏
k=1

f(φkt ) =

K∏
k=1

1

(βkt )α
k
t Γ(αkt )

e−1/(φkt β
k
t )

(φkt )α
k
t+1

∝ e−1/(φkt β
k
t )

(φkt )α
k
t+1

. (279)

The distribution for φt|χt is then

f(φt|χt) ∝
K∏
k=1

e−1/(φkt β
k
t )

(φkt )α
k
t+1

1

(φkt )J/2
e
− 1

2φkt

γkt
e

1

2φkt

(ρkt )ᵀ(Θkt )−1ρkt

K∏
k=1

1

(φkt )α
k
t+J/2+1

e
− 1

φkt

( 1

βkt

+ 1
2γ
k
t − 1

2 (ρkt )ᵀ(Θkt )−1ρkt )

(280)
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We see that f(φt|χt) has the form of an inverse gamma distribution with
parameters

α̃kt = αkt +
J

2
(281)

β̃kt =

(
1

βkt
+

1

2
(γkt − (ρkt )ᵀ(Θk

t )−1ρkt )

)−1

. (282)

This completes the derivation of the posterior distributions.

G Derivation of precision matrix in Section 3.3

Recall from (61), that a covariance matrix Σt,j is sampled from the posterior
f(Σt|χt), in order to adjust ensemble member χt,j to the observation dt. In Sec-
tions and 3.1 and 3.2, we introduce a new prior distribution and its corresponding
posterior distribution, respectively. Consequently, Σt,j must be sampled from the
new posterior distribution f(ηt,φt|χt). In this section we derive the expressions
for the elements of the precision matrix Qt,j = Σ−1

t,j for xt|d0:t−1,ηt,φt. For
simplicity, we omit the indexes t and j, since they remain unchanged and are of
little interest throughout the derivation. The precision matrix Q can be derived
by noting that the pdf of x|η,φ can be written in two different ways. First, we
can write

f(x|η,φ) ∝ e− 1
2 (x−µ)ᵀQ(x−µ). (283)

Further rewriting yields

f(x|η,φ) ∝ e− 1
2

∑K
k=1

∑K
i=1 x

kxiQk,i−xkµiQk,i−xiµkQk,i+µkµiQi,k . (284)

Alternatively, we can write the pdf as

f(x|η,φ) =

K∏
l=1

f(xl|ηl, φl,xΛl) ∝
K∏
l=1

e
− 1

2φl
(xl−(1,(xΛl )ᵀ)ηl)2

. (285)

By expanding the brackets, we obtain

f(x|η,φ) ∝ e−
1
2

1

φk
(xk)2− 2

φk
(1,(xΛk )ᵀ)ηk)xk+ 1

φk
((1,(xΛk )ᵀ)ηk)2

e−
1
2

1
φs (xk)2− 2

φs (1,(xΛs )ᵀ)ηs)xs+ 1
φs ((1,(xΛs )ᵀ)ηs)2

K∏
l=1
l 6=k
l 6=s

e
− 1

2
1

φl
(xl)2− 2

φl
(1,(xΛl )ᵀ)ηl)xl+ 1

φl
((1,(xΛl )ᵀ)ηl)2

.
(286)

By comparing the terms in the exponents of (284) and (286) that are quadratic
in x, we are able to derive the expression for Q. We first consider the terms that
contain (xk)2.
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From (284), we have that the only term that contains (xk)2 is Qk,k(xk)2. In
(286), we see that (xk)2 appears in the first term on the first line, 1

φk
(xk)2. We

must also consider the nodes that have node k as their sequential neighbour.
If node k is a sequential neighbour of node s, i.e. s ∈ Λ̃k, the third term on
the second line of (286) contains (xk)2. Recall that the index of node k in Λs
is denoted Λ−1

s (k). From (286), we see that there is a dot product between
(1, (xΛs)ᵀ) and ηs. Since xk is the Λ−1

s (k)th element in xΛk , we have that xk

is multiplied with the Λ−1
s (k) + 1th element in ηs. Thus, we have the term

1
φs (xkηs,Λ

−1
s (k)+1)2 in the exponent of (286). We must also take into account

that there could be several nodes in Λ̃k. Thus, we have

Qk,k =
1

φk
+
∑
s∈Λ̃k

1

φs
(ηs,Λ

−1
s (k)+1)2. (287)

This completes the derivation of the diagonal entries of Q. In the following, we
consider the terms containing xkxs.

We assume that s > k. From Theorem 4, we have that Qk,s 6= 0 if and only
if either k ∈ Λs or k, s ∈ Λl for some l = {s + 1, . . . ,K}, or both. Recall that
we can rewrite the statement k, s ∈ Λl as l ∈ Λ̃k ∩ Λ̃s. That is, Λ̃k ∩ Λ̃s denotes
the set of nodes that has both nodes k and s as their sequential neighbours, i.e.
k, s ∈ Λl =⇒ l ∈ Λ̃k ∩ Λ̃s. In the following, we consider the three cases in which
Qk,s 6= 0. The first case is when k ∈ Λs and Λ̃k ∩ Λ̃s = ∅. The second case is
when k /∈ Λs and Λ̃k ∩ Λ̃s 6= ∅. The third case is when k ∈ Λs and Λ̃k ∩ Λ̃s 6= ∅.
In the following, we consider the first case.

We assume that k ∈ Λs and Λ̃k ∩ Λ̃s = ∅. From (286), we have that xkxs

appears in the second term on the second line, i.e. in − 2
φs η

s,Λ−1
s (k)+1xsxk. From

(284), we have that xsxk appears in the term Qk,sxkxs and in the term Qs,kxsxk.
Since Q is symmetric, we have Qk,s = Qs,k. By comparing the terms in (284)
and (286), that contain xkxs in the first case, we have

Qs,k +Qk,s = 2Qk,s = 2Qs,k = − 2

φs
ηs,Λ

−1
s (k)+1,

Qk,s = Qs,k = − 1

φs
ηs,Λ

−1
s (k)+1.

(288)

We now consider the second case, when we assume that k /∈ Λs and that
Λ̃k ∩ Λ̃s 6= ∅. We consider l ∈ Λ̃k ∩ Λ̃s. That is, we consider the l that satisfies
s, k ∈ Λl. The last term on the third line in (286) can be written as

1

φl
((1, (xΛl)ᵀ)ηl)2 (289)

=
1

φl
(ηl,1 + xΛl(1)ηl,2 + · · ·+ xΛ−1

l (Λl(k))ηl,Λ
−1
l (k)+1 (290)

+ · · ·+ xΛ−1
l (Λl(s))ηl,Λ

−1
l (s)+1 + . . . xΛl(|Λl|)ηl,|Λl|+1)2. (291)
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We have that xΛ−1
k (Λk(k)) = xk and xΛ−1

k (Λk(s)) = xs. Thus, the expression above
becomes

1

φl
((1, (xΛl)ᵀ)ηl)2 (292)

=
1

φl
(ηl,1 + xΛl(1)ηl,2 + · · ·+ xkηl,Λ

−1
l (k)+1 (293)

+ · · ·+ xsηl,Λ
−1
l (s)+1 + . . . xΛl(|Λl|)ηl,|Λl|+1)2. (294)

By expanding the parenthesis, we see that the term 2xkηl,Λ
−1
l (k)+1xsηl,Λ

−1
l (s)+1

appears. The factor xkxs appears in (284) in Qk,sxkxs and in Qs,kxkxs. Because
Q is symmetric, we have Qk,s = Qs,k. Thus, we have that Qk,s+Qs,k = 2Qk,s =
2Qs,k. By comparing the terms in (284) and (286), we have

Qk,s +Qs,k = 2Qk,s =
∑

l∈Λ̃k∩Λ̃s

2ηl,Λ
−1
l (k)+1ηl,Λ

−1
l (s)+1, (295)

Qk,s = Qs,k =
∑

l∈Λ̃k∩Λ̃s

ηl,Λ
−1
l (k)+1ηl,Λ

−1
l (s)+1, (296)

where account for all l that satisfies s, k ∈ Λl.
For the third case, we assume that k ∈ Λs and Λ̃k ∩ Λ̃s 6= ∅. In this case, the

expression Qk,s is the sum of the two previous cases. That is,

Qk,s = Qs,k = − 1

φs
ηs,Λ

−1
s (k)+1 +

∑
l∈Λ̃k∩Λ̃s

ηl,Λ
−1
l (k)+1ηl,Λ

−1
l (s)+1. (297)

This completes the derivation of the expression for the elements of the precision
matrix Q.

H Proof of bandwidth-dimension relation in Sec-
tion 5.2

In Section 4.3, we impose the following sequential neighbourhood on the state
space variable xt, Λk = {k−L− 1, k−L, k− 1}, where K = L2 is the dimension
of xt. We state in Section 5.2 that m =

√
K + 1, where m is the bandwidth

of the matrix Qt, the precision matrix of xt. In the following, we prove this
statement.

Proof. In order to derive the relationship between K and m, we first assess
the sparsity of Qt by considering the sequential neighbourhood Λk. Figure 30
displays some of the nodes associated to xt. The figure only displays the edges
connected to node k, and the nodes connected to node k. That is, the nodes in
the figure are the only nodes that are not conditionally independent of node k.
We divide the nodes in Figure 30 into three groups, represented by the three
colors in the figure. The yellow nodes are the sequential neighbours of node
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k − L− 1 k − L k − L+ 1

k − 1 k k + 1

k + L− 1 k + L k + L+ 1

Figure 30: Each node represents an element of the state space vector xt. The
edges indicate the conditional dependencies between the nodes if we assume that
the sequential neighbour for node k is Λk = {k−L− 1, k−L, k− 1}. The yellow
nodes represent the sequential neighbourhood of node k, denoted Λk. The blue
nodes represent the nodes that has node k as one of their sequential neighbours,
Λ̃k. The red nodes represent the nodes that are sequential neighbours of at least
one of the nodes in Λ̃k. Note that the only edges included in the graph are the
edges connected to node k.

k, i.e. all nodes in the set Λk, while the blue nodes are the nodes that have
node k as a sequential neighbour, i.e. the nodes contained in Λ̃k. The red nodes
are the nodes that are sequential neighbours of at least one of the nodes in Λ̃k,
i.e. the nodes r that satisfies k, r ∈ Λs for some s ∈ {1, . . . ,K}. For instance,
node k−L+ 1 is colored red because both nodes k and k−L+ 1 are sequential
neighbours of node k + 1, i.e. k, k − L+ 1 ∈ Λk+1. Similarly, node k + L− 1 is
red because k, k + L− 1 ∈ Λk+L. Also note that some of the nodes belong to
more than one of these three groups.

From Theorem 4, we have that xkt 6⊥ xrt |x
−{k,r}
t , if and only if at least

of the three following statements are true, r ∈ Λk, r ∈ Λ̃k or k, r ∈ Λs for
some s ∈ {1, . . . ,K}. The nodes satisfying the first statement, r ∈ Λk, are
the yellow nodes in Figure 30, while the nodes satisfying r ∈ Λ̃k are the blue
nodes. The nodes r satisfying k, r ∈ Λs for some s ∈ {1, . . . ,K} are the red

nodes in Figure 30. That is, the only elements xrt satisfying xkt 6⊥ xrt |x
−{k,r}
t ,

are the elements in xt associated to the colored nodes in Figure 30. From (66),

we have that Qk,rt 6= 0 ⇐⇒ xkt 6⊥ xrt |x
−{k,r}
t . That is, if node r is a colored

node in colored in Figure 30, then Qk,rt 6= 0. This entails that the bandwidth
of Qt is m = max |k − r|, where r is the node number for one of the colored
nodes in Figure 30. From this figure, we see that the bandwidth of Qt is
m = |k− (k−L− 1)| = L+ 1. Since K = L2, we have that m =

√
K + 1, which

completes the proof.
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