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Summary

This Master’s thesis explores a deep learning approach to solving high-dimensional partial
differential equations. Numerical analysis of partial differential equations is of great im-
portance as it can describe essential physical phenomenons like heat distribution and wave
propagation. The complexity of traditional numerical methods usually increases exponen-
tially with the dimensionality of the problem, limiting numerical analysis and modeling
in the high-dimensional case. In this thesis, the method introduced in the paper Solving
high-dimensional partial differential equations using deep learning (Han et al., 2018) is
explored. The proposed method aims to solve high-dimensional partial differential equa-
tions with lower computational cost than traditional numerical methods. To do so, a tech-
nique of artificial intelligence called deep learning is utilized. The method is named the
deep BSDE method, from the utilization of deep learning and backward stochastic differ-
ential equations (BSDEs). The method considers the class of semilinear parabolic partial
differential equations.

This thesis presents the necessary background theory for understanding the deep BSDE
method. This includes an introduction to artificial intelligence, where deep neural net-
works are explained. The connection between semilinear parabolic partial differential
equations and backward stochastic differential equations is presented. The methodology
is described along with an explanation of the neural network architecture. Implemen-
tation details are provided, and essential algorithms are presented and discussed. The
method is tested on the Allen-Cahn equation and the Hamilton-Jacobi-Bellman equation.
The Allen-Cahn equation is a reaction-diffusion equation that describes phase separation
processes, and the Hamilton-Jacobi-Bellman equation is a result of applying dynamic pro-
gramming to continuous optimal control problems. Further numerical experiments are
also conducted, exploring how different features of the method affect the performance.

The deep BSDE method is implemented in the machine learning platform TensorFlow,
and the numerical results are satisfying, achieving both high accuracy and low computa-
tional cost. The method achieved a relative approximation error of 0.20% for the Allen-
Cahn equation, and 0.22% for the Hamilton-Jacobi-Bellman equation. The promising re-
sults open up the possibility of solving more complex and demanding problems in several
areas, such as economics, finance, operational research, and physics.
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Sammendrag

Denne masteroppgaven utforsker en metode for å løse høydimensjonale partielle differen-
tialligninger ved bruk av dyp læring. Numerisk analyse av partielle differentialligninger
er av stor betydning ettersom det kan beskrive viktige fysiske fenomener slik som varme-
fordeling og bølgeforplantning. Kompleksiteten i tradisjonelle numeriske metoder øker
vanligvis eksponensielt med dimensjonaliteten til problemet, og begrenser dermed nu-
merisk analyse og modellering i høydimensjonale tilfeller. I denne oppgaven vil metoden
som introduseres i artikkelen Solving high-dimensional partial differential equations us-
ing deep learning (Han et al., 2018) bli utforsket. Den foreslåtte metoden har som mål å
løse høydimensjonale partielle differentialligninger med lavere beregningskostnader enn
tradisjonelle numeriske metoder. For å oppnå dette benyttes en teknikk innen kunstig in-
telligens som kalles dyp læring. Metoden heter deep BSDE-metoden, fra bruken av dyp
læring og bakover stokastiske differentialligninger (BSDEs). Metoden tar for seg gruppen
med semilineære parabolske partielle differentialligninger.

Denne oppgaven presenterer den nødvendige bakgrunnsteorien for å forstå deep BSDE-
metoden. Dette inkluderer en introduksjon til kunstig intelligens, der dype nevrale nettverk
blir forklart. Forbindelsen mellom semilinære parabolske partielle differensialligninger og
bakover stokastiske differensialligninger blir presentert. Metodikken blir beskrevet sam-
men med en forklaring av den nevrale nettverksarkitekturen. Implementeringsdetaljer blir
gitt, og viktige algoritmer blir presentert og diskutert. Metoden blir testet på Allen-Cahn-
ligningen og Hamilton-Jacobi-Bellman-ligningen. Allen-Cahn-ligningen er en reaksjon-
diffusjonsligning som beskriver faseseparasjonsprosesser, og Hamilton-Jacobi-Bellman-
ligningen er et resultat av å bruke dynamisk programmering på kontinuerlige optimale
kontrollproblemer. Ytterligere numeriske eksperimenter blir også utført for å undersøke
hvordan forskjellige egenskaper ved metoden påvirker ytelsen.

Deep BSDE-metoden implementeres i maskinlæringsplattformen TensorFlow, og de
numeriske resultatene er tilfredsstillende med både høy nøyaktighet og lave beregningskost-
nader. Metoden oppnådde en relativ tilnærmingsfeil på 0.20% for Allen-Cahn-ligningen,
og 0.22% for Hamilton-Jacobi-Bellman-ligningen. Resultatene er lovende og åpner for
muligheten for å løse mer komplekse og krevende problemer på flere områder, som økonomi,
finans, operativ forskning og fysikk.
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Chapter 1
Introduction

This Master’s thesis explains the method that is introduced in the paper Solving high-
dimensional partial differential equations using deep learning, published by Proceedings
of the National Academy of Sciences (Han et al., 2018). The goal is to implement the
method and test it on two high-dimensional partial differential equations (PDEs). The the-
sis provides the reader with an understanding of the mathematical background and of the
methodology that Han et al. present. Different features of the method are investigated
through numerical experiments. This chapter presents the motivation for the work, and re-
lated work on the topic of solving high-dimensional partial differential equations. Finally,
the structure of the thesis is presented.

1.1 Motivation
Machine learning is an old concept, but its use has recently exploded in the industry with
a growing commitment to artificial intelligence solutions. With enormous data generation
in today’s society, numerous applications for artificial intelligence have been explored. In
healthcare, it is used in medical diagnosis in for example determining breast cancer risk
from mammograms (Wired, 2016). Speech recognition is another artificial intelligence
application that Apple uses in their virtual assistant “Siri” (SiriTeam, 2017). Tesla also
uses this technology in image analysis for autonomous cars (Marr, 2018a). Another inter-
esting application is to optimize power control by short-term predictions on wind power
production (Qureshi, 2017). After years of research the systems have become increasingly
reliable, and are now employed in many industries. In 2015, an artificial intelligence sys-
tem outperformed humans in a challenge of object classification in images. In 2016, an
artificial intelligence system defeated the world champion in the game Go. And in 2018,
the first autonomous cars hit the roads. These achievements are taken from the list The
most amazing artificial intelligence milestones so far in (Marr, 2018b). The International
Data Corporation predicts that the global spending on artificial intelligence systems will
reach $37.5 billion in 2019, and grow to reach $97.9 billion in 2023 (IDC, 2019). Arti-
ficial intelligence is a highly relevant technology, and because of the great achievements

1



Chapter 1. Introduction

artificial intelligence systems are providing, it will undoubtedly be an important part of
our future.

A recent field of study is using machine learning to solve PDEs, with the goal of
solving higher-dimensional problems with lower computational cost. Traditional numer-
ical methods suffer the so called curse of dimensionality. The curse of dimensionality
means that the computational cost increases the more dimensions that are involved in the
equation. The term was first introduced by Bellman in 1957. Deep learning is a tech-
nique of machine learning that has proven to be very effective in dealing with complex
and high-dimensional problems such as image analysis and speech recognition. Han et al.
(2018) shows promising results in achieving lower computational cost for solving high-
dimensional PDEs using deep learning. Their presented method is named the deep BSDE
method, from the utilization of deep learning and backward stochastic differential equation
(BSDE) theory.

Numerical analysis of PDEs plays a key role in research and many industries. PDEs ex-
press connections between rates of change with respect to multiple independent variables.
They can describe phenomenons like for example distribution of heat by the famous heat
equation, and wave propagation by the famous wave equation. The Allen-Cahn equation
can describe phase separation in alloys, and analysis of this process can be used to opti-
mize materials (Kostorz, 1995). Due to the curse of dimensionality, the analysis can some-
times be limited when using traditional numerical methods. Sparsity as a consequence of
increased dimensionality can lead to unreliable results, and growing computational cost
can lead to overly time consuming solving and require unobtainable amounts of mem-
ory. Learning cost efficient ways of solving and analyzing PDEs in higher dimensions is
therefore of great importance and extremely beneficial.

1.2 Related Work
Traditional numerical methods such as finite differences method and finite elements method
suffer the curse of dimensionality. The problem usually becomes significant already when
the equation exceeds four dimensions, and these methods are therefore usually unavail-
able in the high-dimensional case. Complex problems are today commonly tackled with
simplifications and ad hoc assumptions to enable more practical solving methods.

There exist some efficient algorithms for solving high-dimensional problems. Specif-
ically, for linear parabolic PDEs one can find the solution at any space-time point us-
ing Monte Carlo methods based on the Feynman-Kac formula. For a class of inviscid
Hamilton-Jacobi equations, (Darbon and Osher, 2016) presents an effective algorithm
based on results from compressed sensing and on the Hopf formulas for the Hamilton-
Jacobi equations. It also exists a general algorithm for nonlinear parabolic PDEs that is
based on the Feynman-Kac and Bismut-Elworthy-Li formula and a multilevel decompo-
sition of Picard iteration (Hutzenthaler et al., 2017). It has proven to be very efficient in
solving nonlinear parabolic PDEs in finance and physics. Semilinear PDEs with polyno-
mial nonlinearity can be solved using the branching diffusion method (Henry-Labordere
et al., 2014). This method exploits that the solution can be given as an expectation of a
functional of branching diffusion processes. It does not suffer from the curse of dimen-
sionality, but the approximated solutions can blow up in finite time and the method is
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therefore limited in its applicability.

1.3 Thesis Structure
The thesis is structured as follows. Chapter 2 presents the necessary background theory to
understand the deep BSDE method. The methodology is described stepwise in Chapter 3
together with the network architecture. Implementation details are included in Chapter 4.
The numerical results are presented and discussed in Chapter 5 and 6, respectively. Lastly,
Chapter 7 provides the conclusion of this thesis.
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Chapter 2
Background Theory

The deep BSDE method aims to solve high-dimensional PDEs efficiently by using the
technique deep learning. To do so, the PDE is first reformulated as two stochastic pro-
cesses, and then an artificial neural network is used to approximate the unknown coeffi-
cients in these processes. In this chapter, the background theory for the deep BSDE method
is laid down. Deep learning is explained, and the reformulation of the PDE is shown using
Itô’s formula. Lastly, example PDEs are presented and reformulated.

2.1 Deep Learning
In this section, an introduction to deep learning is given. The layout of artificial neural
networks is presented, and the idea of learning is explained. Specifically, the multilayer
feedforward perceptron model is described and presented for a simple example problem.
A combination technique, deep reinforcement learning, is also described as it bears resem-
blance to the methodology of the deep BSDE method.

2.1.1 Introduction to Deep Learning
The field of artificial intelligence (AI) attempts to create intelligent systems that think and
act humanly and rationally (Russell and Norvig, 2016, chap. 1.1). An important aspect is
that the system learns and improves from data. AI systems can be used to solve problems
that are challenging for humans, but straight-forward for computers. These are problems
that are relatively simple to describe mathematically, and because of large amounts of
data, or complex or many calculations are difficult for humans to solve. Another type of
problems are the ones that are easy to solve for humans, but difficult to describe formally.
It can be intuitive problems like speech recognition or image analysis (Goodfellow et al.,
2016, chap. 1).

Machine learning is an example of an approach to AI. In machine learning the goal
is to find statistical patterns in data, and possibly use it to make rational future decisions.
An example of this could be in medical diagnosis, where clinical parameters of patients
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Chapter 2. Background Theory

can be used to predict the progression of diseases. Machine learning that is not limited
to map input to output, but also learn the representations of the data, is called represen-
tation learning. The representations are made up by functions and vectors. Complex and
abstract patterns in raw data can be extremely challenging to find. Deep learning solves
this problem by expressing the representations in terms of several simpler representations.
These simpler representations can be seen as layers, and building them on top of each other
results in a deep graph. It is because of this, the approach has been given the name deep
learning. It is common to describe the functions in deep learning as hierarchical because of
the layers. Adding more layers allows representation of increasingly complex functions.
Fig. 2.1 puts deep learning into perspective in the AI field. Deep learning as an approach
to AI is described in further detail in chapter 1 of (Goodfellow et al., 2016).

Figure 2.1: Deep learning as an approach to AI; deep learning is a type of representation learning,
which is a type of machine learning, which is an approach to AI.

2.1.2 Artificial Neural Networks
Artificial neural networks (ANNs) are inspired by biological neural networks, and aim to
approximate a function f∗(x). The network is provided with a set of input examples x and
their corresponding output values y = f∗(x) that are called target values. The function
f∗(x) is therefore not known, but the target values for a finite set of examples are known.
The network is equipped with parameters or “weights” θ and proceeds to define a mapping
f(x; θ) based on the examples, where the network learns the value of the parameters θ that
lead to the most accurate approximation of the function f∗, mapping the input examples
to their target values. This iterative process of adjusting the parameters θ is called training,
and the provided data of examples is therefore called training data. A sufficient amount
of training data is needed to create a good representation of the function. After a network
has been trained on data, the defined parameters θ are used to compute output from new
input. These outputs can be seen as predicted values based on the information provided
in the training data. Before describing exactly how the training is performed, some terms
and notations will be introduced first.

ANNs consist of layers, where each layer consists of units. The first layer in the
network is the input layer for which all variables in the input is given a unit. The final layer
is the output layer that provides the result, being the approximated function values. The
layers connecting the input and output are called hidden layers. This is because the output
for each of the layers is not known. The layers can be interpreted as functions that together
form the final approximation. For example three hidden layers of functions f1, f2, f3

connected in a chain, would form the approximation f(x; θ) = f3(f2(f1(x; θ1); θ2); θ3).
The structure of a simple ANN, consisting of one hidden layer, is shown in Fig. 2.2. The
term deep learning is usually used for ANNs with more than one hidden layer.
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2.1 Deep Learning

Figure 2.2: An illustration of a simple ANN from chapter 18.7 in (Russell and Norvig, 2016). 1 and
2 are units in the input layer, 3 and 4 are units in the hidden layer, and lastly 5 and 6 are units in the
output layer. The weight for the link between unit i and j is denoted by wi,j .

Each unit in the hidden layers is made to act like a neuron. Neurons are the core
components of the nervous system in the human body. A neuron is an electrically excitable
cell that communicates with other cells through connections called synapses. A simple
mathematical model of a neuron is shown in Fig. 2.3.

Figure 2.3: A simple mathematical model for a neuron from chapter 18.7 in (Russell and Norvig,
2016).

It is from this idea the name artificial neural network arises. The term ai is the activation
from a unit i, and wi,j represents the weighted link between units i and j. The input func-
tion computes a weighted sum of the inputs inj =

∑n
i=0 wi,jai. The activation function

g(inj) is applied to derive the output aj . Each unit also has a dummy input a0 = 1 with
associated weight w0,j . Typical choices for the activation function are the rectified linear
unit (ReLU) g(z) = max{z, 0}, the sigmoid function g(z) = (1 + exp(−z))−1, the tanh
function g(z) = tanh(z), and the softplus function g(z) = ln(1 + exp(z)). Given the
input vector (x1, x2), the output of the single hidden layer network in figure 2.2 at unit 5
is given by

a5 = g(w0,5 + w3,5a3 + w4,5a4)

= g(w0,5 + w3,5g(w0,3 + w1,3a1 + w2,3a2) + w4,5g(w0,4 + w1,4a1 + w2,4a2))

= g(w0,5 + w3,5g(w0,3 + w1,3g(w0,1) + w2,3g(w0,2))

+ w4,5g(w0,4 + w1,4g(w0,1) + w2,4g(w0,2))).
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Two simple examples of problems that can be solved using ANNs are the logical con-
nectives AND and inclusive OR. In these examples the learning of the networks is not
included, only the resulting weights that solve the problems. Suppose you have two input
units, u1 and u2, that take on values in {0, 1}, one output unit, u3, and a threshold of 1 as
activation function, g(z) = 1 if z ≥ 1 otherwise g(z) = 0. Fig. 2.4 shows this example
network.

Figure 2.4: An illustration of a simple ANN with two input units and one output unit. The weight
for the link between unit i and j is denoted by wi,j . With appropriate weights, this neural network
can model the logical connectives AND and inclusive OR.

With the weights w1,3 = 0.6 and w2,3 = 0.6, the input function only exceeds 1 if both
inputs are 1, which satisfies the logical connective AND:

a3 = g(1 · 0.6 + 1 · 0.6) = 1,

a3 = g(1 · 0.6 + 0 · 0.6) = 0,

a3 = g(0 · 0.6 + 0 · 0.6) = 0.

However, when w1,3 = 1.1 and w2,3 = 1.1, it is sufficient that one of the inputs is 1 for
the input function to exceed 1, and therefore this creates an ANN for inclusive OR:

a3 = g(1 · 1.1 + 1 · 1.1) = 1,

a3 = g(1 · 1.1 + 0 · 1.1) = 1,

a3 = g(0 · 1.1 + 0 · 1.1) = 0.

The ANN learns by adjusting the weights in the network in a way that the approxi-
mation of the function iteratively becomes more accurate. This is done using a gradient
descent based algorithm. After each iteration, the prediction error is computed using a
loss function, and a gradient is estimated to update the weights. In machine learning
a loss function expresses the utility. The loss function, L(f(x; θ), f∗(x)), is defined as
the amount of utility that is lost by using the predicted value from the model, f(x; θ),
instead of the correct one, f∗(x), (Russell and Norvig, 2016, chap. 18.4.2). In other
words, it expresses how inaccurate the model is. A loss function could for example be
L(f(x; θ), f∗(x)) = |f(x; θ) − f∗(x)|, expressing the difference between the approxi-
mated values and the target values. The optimization algorithms aim to minimize this loss
function. To do so, a gradient estimate is computed by taking the gradient of the loss func-
tion with respect to the parameters θ. This estimate indicates the direction in which the
loss function increases faster. It is therefore used to update the parameters θ in a way that
promises a decrease of the loss function by moving in the opposite direction. The gradient
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estimate over a set of m examples, {x1, x2, . . . , xm}, is given by

ĝ =
1

m
∇θ

m∑
i=1

L(f(xi; θ), f
∗(xi)),

(Goodfellow et al., 2016, chap. 8.1.3). Since all units in the hidden layers have contributed
to the final error shown in the output layer, the error gradient is propagated backwards
through all the units from the output layer to the input layer. In high-dimensional problems,
a stochastic gradient descent-type (SGD) algorithm is typically used to compute the error
gradient and backpropagation. An SGD method is usually preferred over normal gradient
descent since it requires less computation. SGD algorithms will be further described in
Section 4.2, and specifically the Adam optimizer will be presented and described in detail.

2.1.3 Multilayer Feedforward Perceptron Model
The multilayer feedforward perceptron (MLP) model is one of the more commonly used
deep learning models (Goodfellow et al., 2016, chap. 6). The model is an ANN that
consists of several layers. The term feedforward is used to describe that the network has
connections in only one direction, and the model therefore graphically forms a directed
acyclic graph that describes how the layers are composed together. The ANN is fully
connected, meaning that all units are connected to all the units in the next layer. In Fig.
2.5 the sine function is approximated using an MLP model. The python code to generate
this example can be found in Appendix A.

Figure 2.5: A plot of the approximation of the sine function using an MLP model with two hidden
layers, each with 100 units. The green line is the function to be approximated f∗(x) = sin(x), and
the blue circles mark the values predicted by the deep neural network for the respective values of x.

The pseudo code for creating the MLP model that approximates the sine function in
Fig. 2.5 is given in Algorithm 1. The model is implemented in the machine learning
platform TensorFlow. The set {x1, x2, . . . , x100} denotes the set of input examples of the
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Chapter 2. Background Theory

model, and the set {y1, y2, . . . , y100} denotes the set of target values, where yi = sin(xi)
for i = 1, 2, . . . , 100. Together they form the training data. First, the deep ANN graph
is created. The input layer has one unit, taking on the value of x. Two hidden layers,
h1 and h2, are then defined, each with 100 units. The output layer also has one unit,
returning the resulting approximation f(x; θ). The layers are created with the function
tensorflow.contrib.layers.fully connected, that adds a fully connected
layer where the input, number of units and activation function is specified. In this example
the ReLU is used. Next, the loss function L(f(x; θ), y) is set to be

∑
(f(x;θ)−y)2

2 . Then, an
optimization algorithm is chosen. The goal is to minimize the loss function on the training
data. This is done by updating the parameters θ using the optimization algorithm. This pro-
cess is called training the MLP model. To understand how the parameters θ are updated us-
ing the Adam optimizer, see Section 4.2. In the implementation, the training is simply per-
formed for 10000 iterations with the function tensorflow.Session().run where
the training data and optimization algorithm is specified. After the model is trained, a new
set of test data is generated, xtest, and the function tensorflow.Session().run is
used again to obtain the model’s predicted target values.

Algorithm 1: An MLP model for approximating the sine function

Data: Training data: {x1, x2, . . . , x100}, {y1, y2, . . . , y100};
Result: Trained MLP model with optimized parameters θ based on the training

data
1 x = input layer (1 unit);
2 h1 = hidden layer (fully connected from x, 100 units, activation function =

ReLU);
3 h2 = hidden layer (fully connected from h1, 100 units, activation function =

ReLU);
4 result = output layer (fully connected from h2, 1 unit);

5 loss =
∑

(result−y)2

2 ;
6 optimizer = Adam optimizer;
7 Initialize model;
8 for 0 to 10000 do
9 xtrain = 100 random numbers from 0 to 10 ;

10 ytrain = sin(xtrain);
11 Train MLP model;
12 end
13 xtest = 50 random numbers from 0 to 10;
14 Test MLP model on xtest;

2.1.4 Deep Reinforcement Learning

Machine learning is typically split into three categories; supervised learning, unsupervised
learning and reinforcement learning (RL). In supervised learning the data consists of la-
beled examples that can be used to label new data, and thereby predict future events. Con-
trary to this method, unsupervised learning uses unlabeled data and instead tries to define a
function that describes an initially unknown structure in the data. RL aims to sequentially
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produce actions that maximizes the total reward, based on trial and error and feedback on
own actions and experiences. To better understand the mindset in RL, essential terms are
here explained:

Agent Agent is a term used to explain the active decision making. An agent executes
actions, and receives observations and rewards.

State (S) A state explains the situation the agent is in for the specific space and time lo-
cation. This includes a summary of the previous observations, rewards and actions.

Action (A) An agent takes actions based on a set of possible actions, which represent all
the possible moves the agent can make.

Reward (R) A reward is a measurement of how successful the action of the agent was.
After the agent takes a specific action, the new state gives a corresponding reward.

Environment The environment is the entire space where the agent moves. It takes the
agent’s current state and action as input, and returns the reward and next state as
output.

Policy (π) The policy is the agent’s strategy on which action to take next based on the
current state.

Value function (Q(S,A)) The value function expresses the expected accumulated reward
from a state S and action A.

The interaction between agent and environment in a Markov process can be seen in Fig.
2.6. In a Markov process the next step only depends on the current state.

Figure 2.6: The agent-environment interaction in RL for a Markov process.

While ANNs aim to learn a function representation from training data, RL cover how
to train an agent in the absence of training data (Russell and Norvig, 2016, chap. 21.1).
The basic idea in RL is that the agent, after taking action, receives feedback in the form
of a reward, or reinforcement, indicating how successful the action was. More actions and
observations lead to increased knowledge of the environment and the reward function. The
system may even have no prior knowledge of this. It is like playing a new game without
knowing any of the rules, and then suddenly being told by the opponent that you lost. How
frequently the reward is received can vary. For example, when playing chess the reward
is only received at the end of the game. However, with the goal of reaching a destination,
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every step reducing the distance to the destination can be considered a positive reward.
In practice, the agent takes action based on a policy. In RL, the agent seeks to find the
optimal policy that maximizes the expected total reward. The optimal policy is learned
through observed rewards. If again the goal is to reach a destination, the agent would after
trying various steps learn that steps in the direction of the target result in better rewards.
With this new knowledge the agent’s policy would be updated to direct the agent to the
desired destination.

The value function Q(S,A) expresses the expected accumulated reward from a state
S and action A. To denote expected value, the symbol E is used. Conditional expectation
expresses the expected value of a term given the value of some other term. For instance,
the conditional expectation E[X|Y ] denotes the expected value of X given Y . The value
function under the policy π is then expressed as

Qπ(S,A) = E[R+ γRt+1 + γ2Rt+2 + . . . |S,A],

where γ denotes a discount factor (Mnih et al., 2015) that states the importance of future
rewards Rt+i to the current state. The value function sums up all expected future rewards
with importance given that the agent is in state S and executes action A. Using S′ and A′

to denote the state arrived at after action A, and the action picked at state S′, respectively,
the value function can be written as

Qπ(S,A) = ES′,A′ [R+ γQπ(S′, A′)|S,A].

The subscript in the expectation describes under which distribution the expectation is being
taken. RL models aim to find the optimal policy that maximizes the expected total reward.
The optimal value function, being the highest value function available, is achieved by the
action A′ that maximizes the value function at Q∗(S′, A′). So the optimal policy (the goal
of the model) is achieved by the action A that maximizes the value function Q∗(S,A):

Q∗(S,A) = ES′
[
R+ γmax

A′
Q∗(S′, A′)|S,A

]
,

π∗(S) = arg max
A

Q∗(S,A).

In traditional RL, the value function is updated iteratively to obtain the optimal one as
follows,

Q(S,A)← Q(S,A) + α ·
(
R+ γmax

A′
Q(S′, A′)︸ ︷︷ ︸

Target

−Q(S,A)︸ ︷︷ ︸
Prediction

)
,

where α denotes a learning rate. Since the last terms subtract the prediction from the
target, this represents the loss.

There exists a method for exploiting the benefits from both deep learning and RL
called deep RL (François-Lavet et al., 2018). This method unites function approximation
and target optimization. While traditional RL is limited to low-dimensional input, deep
ANNs are efficient at extracting abstract representation from high-dimensional input. In
deep RL, an ANN can therefore be used to approximate the value function (or policy),

Q(S,A; θ) ≈ Q∗(S,A).
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The loss of the network at iteration i, using mean squared error, is given by

Li(θi) = ES,A,R,S′
[(
R+ γmax

A′
Q(S′, A′; θ∗i )−Q(S,A; θi)

)2
]
,

where θi denotes the network parameters at iteration i, and θ∗i denotes the network param-
eters used to compute the target at iteration i. The learning in deep RL is still performed
by iteratively adjusting the weights θ along gradients that promise less error.

2.1.5 The Expressive Power of Deep Neural Networks
The effectiveness of multilayer ANNs is somewhat unclear, and there still lacks a complete
theoretical framework for explaining it. There has, however, been done extensive research
on the expressive power of ANNs with regard to both the width (number of units in the
hidden layers) and the depth (number of hidden layers) of the network through approxi-
mation theory. For instance, (Eldan and Shamir, 2016) with references therein state that
sufficiently large ANNs with 2 hidden layers can approximate any continuous function on
a bounded domain when using appropriate activation functions. Although, the required
width of the network may be exponential in the dimension. Such networks are imprac-
tical and also prone to overfitting, as they discuss in the introduction of the paper. They
then proceed to show that there exists a function on Rd that can be expressed by a rela-
tively small MLP with 3 hidden layers, that cannot be expressed by any bounded network
consisting of 2 hidden layers.

It is important that the deep ANN is sufficiently large, so that it is able to represent
the best approximation function that is available. As discussed, this is ensured with 2
hidden layers, but because it may require exponential width, it raises the question whether
a lower bound with respect to the width for universal approximators can be found. Lu
et al. (2017) actually formulate a theorem stating that MLPs with bounded width and
ReLU as activation function are universal approximators. Specifically, any Lebesgue-
integrable function f∗ : Rd → R can be expressed by this kind of network with a width
smaller than 4 + d, where d is the dimension of the function to be approximated. Here,
representation of the best available approximation function is ensured with a practical
network without risking overfitting as a consequence of exponential width. Lu et al. (2017)
proved that a ReLU network with width less than or equal to d cannot approximate all
functions f∗ : Rd → R. The universal approximation theorem for width-bounded ReLU
networks is rendered here.

Theorem 1 (Universal Approximation Theorem for Width-Bounded ReLU Networks).
For any Lebesgue-integrable function f∗ : Rd → R and any ε > 0, there exists a fully-
connected ReLU network with width dm ≤ d+ 4, such that the function f represented by
this network satisfies ∫

Rd
|f∗(x)− f(x; θ)|dx < ε.

It is clear that a network’s expressive power increases with both increasing width and
depth. It is not given whether a shallow and wide or a narrow and deep network will be
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the best architectural option, and optimal choices will depend on the specific model and
problem characteristics.

2.2 Viewing Partial Differential Equations as Stochastic
Control Problems

The reformulation of PDEs into stochastic processes is inspired by viewing the PDEs as
stochastic control problems. This section briefly explains stochastic control problems and
connects them to PDEs. The reformulation from a PDE to a BSDE is given as a general
formula with the nonlinear Feynman-Kac formula, and shown using Itô’s lemma.

2.2.1 Stochastic Control Problems

Deep learning has proven to work great with high-dimensional problems such as speech
recognition and image analysis, because of its efficient learning and expressive power. This
motivates applying deep learning to other problems that suffer the curse of dimensionality.
In (Han et al., 2016), they study the case of solving high-dimensional stochastic control
problems using deep neural networks. The results are promising in terms of overcoming
the curse of dimensionality.

Control theory covers issues regarding controllability, “one may find at least one way
to achieve a goal”, and optimality, “one hopes to find the best way, in some sense, to
achieve the goal” (Lu and Zhang, 2016). Control theory for stochastic systems is typically
described by stochastic differential equations (SDEs). SDEs are simply differential equa-
tions that contain randomness, or “noise”. As a consequence, the solution also contains
randomness, and is given as a probability distribution. Stochastic control problems are
therefore given by SDEs along with an objective function. The objective is the desired
goal, and may for example be a minimization. In (Han et al., 2016) they use a deep feed-
forward neural network to solve the stochastic control problem by having the objective
function play the role of the loss function in the deep neural network. Their obtained so-
lutions are satisfactory in terms of both accuracy and extendability to high-dimensional
case.

Semilinear parabolic PDEs can be written equivalently as BSDEs, and there are signif-
icant similarities between stochastic control problems and BSDEs. This motivates using
deep learning to solve these PDEs, which is what Han et al. (2018) proceeded to explore
in (Han et al., 2018).

2.2.2 Backward Stochastic Differential Equation Reformulation

Semilinear parabolic PDEs can be written equivalently as BSDEs, and can therefore be
reformulated into a stochastic control problem. The connection between parabolic PDEs
and stochastic processes offers a method of solving the PDEs by simulating random paths
of a stochastic process. Reversely, the expectations of some stochastic processes can be
computed by deterministic methods. To motivate the connection between BSDEs and
PDEs, a proof of the (linear) Feynman-Kac formula will be shown.
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The Feynman-Kac formula states that the solution of certain PDEs can be repre-
sented as a probabilistic expectation value with respect to some Itô diffusion process.
The probability space (Ω,F ,P) on a finite time interval t ∈ [0, T ] is considered, where
{Ft}t∈[0,T ] denotes the normal filtration generated by the Brownian motion {Wt}t∈[0,T ].
A d-dimensional Itô diffusion Xt is a solution to the SDE

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (2.1)

where µ ∈ Rd, σ ∈ Rd×m, and Wt denotes the m-dimensional Brownian motion, where
W : [0, T ]× Ω→ Rm is described by the m-dimensional Wiener process whose compo-
nents W (i)

t are independent, standard one-dimensional Wiener processes with the follow-
ing properties:

1. W0 = 0,

2. t→Wt is continuous in t, with probability 1,

3. the process has stationary, independent increments, and

4. the increments Wt+s − Ws are normally distributed with mean 0 and variance t,
Wt+s −Ws ∼ N (0, t).

The probability density function of the normal distribution N (µ, σ2) is

f(x|µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
,

where µ is the mean value and σ2 is the variance. This is not to be confused with the earlier
presented µ and σ representing terms in an SDE. The mean value and variance will not be
further discussed, only formally presented to give a definition of the normal distribution.
If a function f : [0, T ]× Rd → R is twice continuously differentiable, f(t, x) ∈ C2, then
by Itô’s formula, f(t,Xt), where Xt is given by equation (2.1), is also an Itô process with
differential

df(t,Xt) =
∂f

∂t
dt+ (∇f)TdXt +

1

2
(dXt)

T(Hessxf)dXt. (2.2)

In this expression, ∇ denotes the gradient of a function with respect to x, and Hessx de-
notes the Hessian of a function with respect to x. Consider the d-dimensional Itô diffusion
{Xt}t∈[0,T ] given by equation (2.1), and let the generator A be defined as

(Af)(t, x) =

d∑
i=0

µi(t, x)
∂f

∂xi
+

1

2

d∑
i,j=1

(σσT)i,j(t, x)
∂2f

∂xi∂xj
. (2.3)

Itô’s formula is applied to e−
∫ t
0
r(s,Xs)dsu(t,Xt), where u ∈ C1,2(R+ × Rd) and r ∈

C0(R+ × Rd),

d(e−
∫ t
0
r(s,Xs)dsu(t,Xt)) = e−

∫ t
0
r(s,Xs)dsdu(t,Xt) + u(t,Xt)d(e−

∫ t
0
r(s,Xs)ds)

= e−
∫ t
0
r(s,Xs)ds

(
∂u

∂t
+Au− ru

)
(t,Xt)dt.
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Then, both sides are integrated,

e−
∫ t
0
r(s,Xs)dsu(t,Xt) = u(t, x) +

∫ t

0

e−
∫ s
0
r(v,Xv)dv

(
∂u

∂s
+Au− ru

)
(s,Xs)ds.

By rearranging the equation, the following expression for u is obtained,

u(t, x) = e−
∫ t
0
r(s,Xs)dsu(t,Xt)−

∫ t

0

e−
∫ s
0
r(v,Xv)dv

(
∂u

∂s
+Au− ru

)
(s,Xs)ds.

This stochastic process is a martingale see (Lehmann, n.d.), and will be denoted u(t, x) =
Mt:

Mt = e−
∫ t
0
r(s,Xs)dsu(t,Xt)−

∫ t

0

e−
∫ s
0
r(v,Xv)dv

(
∂u

∂s
+Au− ru

)
(s,Xs)ds, (2.4)

meaning that the conditional expectation of the next value of the process, given all prior
values, is equal to the present value. The term was first introduced by Ville in 1939, and
this definition is taken from (Grimmett et al., 2001): A sequence Y = {Yn : n ≥ 0} is a
martingale with respect to the sequence X = {Xn : n ≥ 0} if, for all n ≥ 0, E|Yn| <∞,
and E[Yn+1|X0, X1, . . . , Xn] = Yn.

Again, consider the Itô diffusion {Xt}t∈[0,T ] given by equation (2.1) with initial con-
ditionXt,x

t = x, and generatorA given by equation (2.3). Let u(t, x) ∈ C1,2([0, T ]×Rd)
satisfy the following PDE

∂u

∂t
+Au− ru = 0,

u(T, x) = h(x),
(2.5)

then by the Feynman-Kac formula, the solution can be probabilistically represented as

u(t, x) = E
[
e−

∫ T
t
r(s,XS)dsh(XT )|Xt = x

]
= E

[
e−

∫ T
t
r(s,Xt,xS )dsh(Xt,x

T )
]
,

(2.6)

for all (t, x) ∈ [0, T ] × Rd. To prove the linear Feynman-Kac formula (2.6), first, it is
noted that since (2.4) is a martingale, the process {Mt′}t≤t′≤T given by

Mt′ = e−
∫ t′
t
r(s,Xt,xs )dsu(t′, Xt,x

t′ )−
∫ t′

t

e−
∫ s
t
r(v,Xt,xv )dv

(
∂u

∂s
+Au− ru

)
︸ ︷︷ ︸

=0 by eq. (2.5)

(s,Xt,x
s )ds

= e−
∫ t′
t
r(s,Xt,xs )dsu(t′, Xt,x

t′ ),

16



2.2 Viewing Partial Differential Equations as Stochastic Control Problems

is also a martingale. The solution of the PDE (2.5) can therefore be written as

u(t, x) = Mt

= E[Mt]

= E[MT ]

= E
[
e−

∫ T
t
r(s,Xt,xs )dsu(T,Xt,x

T )
]

= E
[
e−

∫ T
t
r(s,Xt,xs )dsh(Xt,x

T )
]
,

proving the Feyman-Kac formula u(t, x) = E
[
e−

∫ T
t
r(s,Xt,xs )dsh(Xt,x

T )
]
.

The deep BSDE method considers the general class of PDEs called semilinear parabolic
PDEs, and these are connected to BSDEs through the nonlinear Feynman-Kac formula.
The proof of the nonlinear Feynman-Kac formula is more complicated and will not be
shown in this thesis, however, it can be found in (Pardoux and Peng, 1992). Semilinear
parabolic PDEs of the following form is considered,

∂u

∂t
(t, x) +

1

2
Tr
[
σσT(t, x)(Hessxu(t, x))

]
+∇u(t, x) · µ(t, x)

+ f
(
t, x, u(t, x), σT(t, x)∇u(t, x)

)
= 0,

(2.7)

with the terminal condition u(T, x) = h(x), where T > 0 and h is continuous. The func-
tion u is assumed to be once continuously differentiable with respect to the time variable
t ∈ [0, T ] and twice continuously differentiable with respect to the space variable x ∈ Rd,
i.e. u(t, x) ∈ C1,2([0, T ] × Rd). The variable σ denotes a d × d matrix-valued function,
µ is a vector valued function and f is a continuous nonlinear function. The symbol Tr
denotes the trace of a matrix, Hessx denotes the Hessian of a function with respect to x,
and ∇ denotes the gradient of a function with respect to x. Again, the probability space
(Ω,F ,P) on a finite time interval t ∈ [0, T ] is considered. With x ∈ Rd, h(x) ∈ C3(Rd)
and f(s, x, y, z) ∈ C3([0, T ]× Rd × Rk × Rk×d), the following BSDE

Ys = h(XT ) +

∫ T

s

f(Xr, Yr, Zr)dr −
∫ T

s

(Zr)
TdWr, t ≤ s ≤ T, (2.8)

has the unique solution process given by {(Ys, Zs); t ≤ s ≤ T}t≥0,x∈Rd (Pardoux and
Peng, 1992). The following is a rendered theorem from (Pardoux and Peng, 1992), that
gives the connection between BSDEs and semilinear parabolic PDEs:

Theorem 2. If u ∈ C1,2([0, T ] × Rd) solves equation (2.7), then u(t, x) = Yt, t ≥ 0,
x ∈ Rd, where {(Ys, Zs); t ≤ s ≤ T}t≥0,x∈Rd is the unique solution of the BSDE (2.8).

In the deep BSDE method, the aim is to approximate the process {(Zs); t ≤ s ≤ T}t≥0,x∈Rd
through deep learning, and then use a form of equation (2.8) to compute the process
{(Ys); t ≤ s ≤ T}t≥0,x∈Rd , thereby finding the solution of a semilinear parabolic PDE.
To make the connection between BSDEs and semilinear parabolic PDEs clear, Itô’s for-
mula is applied to u(s,Xs) between s = t and s = T , and then it is noted that {Ys, Zs} =
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Chapter 2. Background Theory

{u(s,Xs), (∇uσ)(s,Xs)} solves the BSDE. All the calculations are now shown. The
following stochastic process {Xt}t∈[0,T ] is considered,

Xt = ξ +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (2.9)

where µ, σ ∈ C3([0, T ]×Rd). In this process, the solution of the semilinear parabolic PDE
is examined at the point x = ξ, for some ξ ∈ Rd. By writing this process in differential
form, the equation (2.1) is obtained. Now, Itô’s formula, given by equation (2.2), is applied
to the solution of the semilinear parabolic PDE, u(s,Xs), that by assumption is once
continuously differentiable with respect to t and twice continuously differentiable with
respect to x,

du(s,Xs) =
∂u

∂s
ds+ (∇u)TdXs +

1

2
(dXs)

T(Hessxu)dXs. (2.10)

In stochastic calculus, with s denoting a time variable and Ws denoting a Brownian mo-
tion, the following rules apply

(dWs)
2 = ds, (2.11)

dWsds = 0, (2.12)

(ds)2 = 0. (2.13)

Inserting equation (2.9) into equation (2.10) and using the substitutions from the rules
(2.11)-(2.13) give

du(s,Xs) =

{
∂u

∂s
+ (∇u)Tµ+

1

2
Tr
[
σT(Hessxu)σ

]}
ds+ (∇u)TσdWs.

The solution u(s,Xs) is now viewed between s = t and s = T ,

u(T,XT )− u(s,Xs) =

∫ T

s

∂u

∂r
+ (∇u)Tµ+

1

2
Tr
[
σT(Hessxu)σ

]
︸ ︷︷ ︸

=−f by eq. (2.7)

dr

+

∫ T

s

(∇u)TσdWr, t ≤ s ≤ T.

(2.14)

The term u(T,XT ) is the terminal condition h(XT ). Since u(s,Xs) solves equation (2.7),
the first integral can be rewritten using this equation, and the whole BSDE (2.14) can
therefore be written as

u(s,Xs) = h(XT ) +

∫ T

s

fdr −
∫ T

s

(∇u)TσdWr, t ≤ s ≤ T. (2.15)

By comparing this equation to the general form of BSDEs in equation (2.8), it is evident
that the solution process is given by {Ys, Zs} = {u(s,Xs), σ

T(s,Xs)∇u(s,Xs)} P-a.s.
So it is shown that if u ∈ C1,2([0, T ] × Rd) solves equation (2.7), then u(t, x) = Yt, as
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2.2 Viewing Partial Differential Equations as Stochastic Control Problems

stated in Thm. 2. The identity {Yt, Zt} = {u(t,Xt), σ
T(t,Xt)∇u(t,Xt)} is known as

the nonlinear Feynman-Kac formula. The reverse of Thm. 2 also holds, and this proof can
be found in (Pardoux and Peng, 1992).

A semilinear parabolic PDE can now be written as a stochastic control problem. Look-
ing at the solution at the point x = ξ, for some ξ ∈ Rd, we now have the following BSDEs
to represent a semilinear parabolic PDE,

Xt = ξ +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (2.16)

Yt = h(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

(Zs)
TdWs. (2.17)

The goal is then to find the {Ft}t∈[0,T ]-adapted solution process {Xt, Yt, Zt}t∈[0,T ]. In-
serting the nonlinear Feynman-Kac formula into equation (2.17) and writing the equation
forwardly give

u(t,Xt)− u(0, X0) =−
∫ t

0

f(s,Xs, u(s,Xs), σ
T(s,Xs)∇u(s,Xs))ds

+

∫ t

0

[∇u(s,Xs)]
Tσ(s,Xs)dWs.

(2.18)

Existence and uniqueness of solutions can be proved under suitable regularity assumptions
on the functions µ, σ and f (Pardoux and Peng, 1992).

Next, a temporal discretization is applied on the time interval [0, T ] : 0 = t0 < t1 <
· · · < tN = T , using the simple Euler scheme for n = 1, . . . , N − 1. The forward
Euler scheme consists of sampling at tn and approximating the time derivative by forward
difference, ∂utn/∂t ≈ (utn+1

− utn)/∆tn. The discretized version of equation (2.18) is
then

u(tn+1, Xtn+1
)− u(tn, Xtn)

≈− f
(
tn, Xtn , u(tn, Xtn), σT(tn, Xtn)∇u(tn, Xtn)

)
∆tn

+ [∇u(tn, Xtn)]Tσ(tn, Xtn)∆Wn,

(2.19)

where ∆tn = tn+1− tn and ∆Wn = Wtn+1
−Wtn , and the discretized stochastic process

{Xt}t∈[0,T ] is

Xtn+1
−Xtn ≈ µ(tn, Xtn)∆tn + σ(tn, Xtn)∆Wn. (2.20)

In the BSDE reformulation of the semilinear parabolic PDE (equation (2.19)) the gradient
of the solution, {σT∇u(t,Xt)}t∈[0,T ], is unknown at each discretization step, tn for n =
1, . . . , N−1. In addition, the solution at the initial time, u(0, X0), is also unknown. These
are the coefficients that are to be approximated through deep learning.

The problem can be interpreted as a RL problem where the process {Zt}t∈[0,T ] =
{σT∇u(t,Xt)}t∈[0,T ] is the policy function, and the values of it thereby determine how
well the method performs. The deep BSDE method then resembles the idea in deep RL,
with the BSDE and the gradient of the solution playing the role of the Markov decision
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Chapter 2. Background Theory

model and the optimal policy function, respectively. In deep RL, an ANN is used to
approximate the policy function. An MLP model is therefore used to approximate the un-
known coefficients at each discretization step, and uses equation (2.19) and (2.20) to obtain
the solution at x = ξ, t = 0. The BSDE reformulation of the general semilinear parabolic
PDE can now be viewed as a stochastic control problem where the objective function is
the loss function in the ANN. The methodology is described stepwise in Chapter 3.

2.3 Example Partial Differential Equations
Here, two examples of semilinear parabolic PDEs that can be solved using the deep BSDE
method are presented, along with a short discussion on the derivation, application and
importance of the PDEs. Using the formula derived in the previous section, the reformu-
lations into BSDEs are given.

2.3.1 The Allen-Cahn Equation
The Allen-Cahn equation is a reaction-diffusion equation that models phase separation
processes. It has applications in areas such as material science, biology, geology and
image analysis (Benner and Stoll, 2013). In material science, it can for example be used
to model phase separation in alloys. Since even small phase separations in alloys may
may lead to significant property changes, analysis of this process can be used to optimize
materials and to study the stability of the alloys (Kostorz, 1995). The Allen-Cahn equation
is a type of semilinear parabolic PDE on the form

ut = ∆u− f(u). (2.21)

It can be derived by taking the functional derivative of the Ginzburg-Landau energy func-
tional when ε = 1 and f = −F ′,

E(u) =

∫
Ω

(
ε2

2
|∇u|2 + F (u)

)
dx,

in a given domain Ω ⊂ Rd as described in (Karasözen et al., 2018). For multi-component
alloy systems in material science, the solution u denotes the phase state between materials,
and is given by the concentration of one of the components of the alloy. The parameter ε
defines the thickness of the interfaces separating the phases. The Allen-Cahn equation can
be rescaled by ε to only study the case ε = 1, as in equation (2.21). An additional mobility
function could be considered in an analytic approach of the equation. The derivation of
the equation and theoretical analysis is beyond the scope of this thesis, but an extensive
discussion on the analytical properties can be read in chapter 6 (p. 153-182) of (Bartels,
2015). The nonlinear term f(u) in equation (2.21) is given by the derivative of a free
energy functional F (u),

f = −F ′.
A typical choice for the free energy functional F is the convex quartic double-well poten-
tial,

F (u) =
1

4

(
1− u2

)2
.
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This functional is bi-stable, in the sense that F (±1) = 0 and F (s) > 0 if s 6= ±1.
The d-dimensional Allen-Cahn equation with the double well potential and initial con-

dition u(0, x) = h(x) is written as

∂u

∂t
(t, x) = ∆u(t, x) + u(t, x)− [u(t, x)]3,

where t ∈ (0, T ] is the time variable, x = (x1, x2, . . . , xd) ∈ Ω ⊂ Rd is the d-dimensional
space variable and u(t, x) ∈ C1,2([0, T ]× Rd). By applying a transformation of the time
variable t 7→ T − t, a terminal condition h(T, x) is obtained as well as a representation
of the Allen-Cahn equation on the semilinear parabolic PDE form presented in equation
(2.7),

∂u

∂t
(t, x) + ∆u(t, x) + u(t, x)− [u(t, x)]3 = 0.

Terminal value problems can easily be transformed to initial value problems, and vice
versa. The Allen-Cahn equation is obtained from the general semilinear parabolic PDE in
(2.7) by setting

µ(t, x) = µ = 0,

σ =
√

2,

f(t, x, u(t, x), σT(t, x)∇u(t, x)) = f(u(t, x)) = u(t, x)− [u(t, x)]3.

It can be helpful to write out the following equality,

Tr(Hessxu(t, x)) =

d∑
i=1

∂2u

∂x2
i

(t, x) = ∆u(t, x).

Using the formulas in equations (2.19) and (2.20), the following set of discretized BSDEs
is obtained for the Allen-Cahn equation,

Xtn+1
−Xtn ≈

√
2∆Wn, (2.22)

u(tn+1, Xtn+1
)− u(tn, Xtn) ≈−

(
u(tn, Xtn)− [u(tn, Xtn)]3

)
∆tn

+
√

2[∇u(tn, Xtn)]T∆Wn.
(2.23)

The unknown exact solution of the Allen-Cahn equation can be found using the branching-
diffusion method.

2.3.2 The Hamilton-Jacobi-Bellman Equation
The Hamilton-Jacobi-Bellman equation (HJB equation) is a second-order PDE, and is well
known for its application in optimal control theory, where the goal is to find a control for a
dynamical system such that an objective function is optimized. The equation is a result of
applying dynamic programming to continuous optimal control problems. Once the HJB
equation is derived, the optimal control can be found by taking the maximizer/minimizer of
the (generalized) Hamiltonian involved in the HJB equation (Yong and Zhou, 1999, chap.
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4). Given a filtered probability space (Ω,F ,P) and a terminal condition u(T, x) = h(x),
the HJB equation can be written as follows,

−∂u
∂t

(t, x) + sup
v∈V ′

G (t, x, v,−Hessxu(t, x),−∇u(t, x)) = 0,

where t ∈ [0, T ) is the time variable, x = (x1, x2, . . . , xd) ∈ Ω ⊂ Rd is the d-dimensional
space variable and u(t, x) ∈ C1,2([0, T ] × Rd). The functions µ, σ, f , h are uniformly
continuous. The function G is called the generalized Hamiltonian, and is

G(t, x, v, p, P ) =
1

2
Tr(Pσ(t, x, v)σ(t, x, v)T) + p · µ(t, x, v)− f(t, x, v).

In the case where σσT(t, x, v) is uniformly positive definite, the HJB equation admits a
classical solution (Yong and Zhou, 1999, chap. 4).

(Han et al., 2018) consider a simple linear-quadratic-Gaussian control problem, mean-
ing that the system is linear, the criterion quadratic and that disturbances are Gaussian.
The state process is set to be

dXt = 2
√
λmtdt+

√
2dWt,

where t ∈ [0, T ], X0 = x, λ is a positive constant that represents the level of control, and
Wt denotes a Brownian motion. The cost functional is given by

J({mt}t∈[0,T ]) = E

[∫ T

0

||mt||2dt+ h(XT )

]
.

The control process is denoted by {mt}t∈[0,T ], and the goal of the linear-quadratic-Gaussian
control problem is to minimize the cost functional through the control process. The opti-
mal control is given by

m∗t =
∇u(t, x)√

2λ
,

and the HJB equation for this problem is then

∂u

∂t
(t, x) + ∆u(t, x)− λ||∇u(t, x)||2 = 0 (2.24)

(Yong and Zhou, 1999, chap. 4). It is obtained from the general semilinear parabolic PDE
in equation (2.7) by setting

µ(t, x) = µ = 0,

σ =
√

2,

f(t, x, u(t, x), σT(t, x)∇u(t, x)) = f(u(t, x)) = −λ||∇u(t, x)||2.

In the context of BSDE for control, Yt = u(t,Xt) denotes the optimal value and Zt =
σT(t,Xt)∇u(t,Xt) denotes the optimal control. Given that the state starts from x, the
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value of the solution u(t, x) at t = 0 gives the optimal cost. The discretized set of BSDEs
for the HJB equation is found using the formulas in equations (2.19) and (2.20),

Xtn+1 −Xtn ≈
√

2∆Wn, (2.25)

u(tn+1, Xtn+1
)− u(tn, Xtn) ≈− (−λ||∇u(tn, Xtn)||2)∆tn

+
√

2[∇u(tn, Xtn)]T∆Wn.
(2.26)

The dimensionality of the HJB equation equals the state space of the control problem, and
these high-dimensional problems occur in for instance game theory with multiple players,
where each player must solve a high-dimensional HJB type equation to obtain their optimal
strategy. The explicit solution of the HJB equation (2.24) can be derived by applying Itô’s
formula (see (Chassagneux et al., 2016) Subsection 4.2), and is given by

u(t, x) = − 1

λ
ln
(
E
[
exp

(
−λh(x+

√
2WT−t)

)])
.

The explicit solution will be used to test the accuracy of the deep BSDE method.
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Chapter 3
Methodology

The deep BSDE method solves terminal value problems expressed by a semilinear parabolic
PDE equipped with a terminal condition. As in deep RL, an MLP model is used to approxi-
mate the policy function, in this case being the gradient of the solution. It is approximated
at each discretization point, and the solution is computed using the discretized BSDEs.
The BSDE reformulation of the general semilinear parabolic PDE can be viewed as a
stochastic control problem where the objective function is given by the loss function. In
this chapter, the methodology of the deep BSDE method is described stepwise. The entire
network architecture for the model is illustrated, and the different connections within it are
explained.

3.1 Equation Reformulation
The deep BSDE method first reformulates a terminal value problem, given by a PDE and
a terminal condition, into a stochastic control problem. A general representation of a d-
dimensional semilinear parabolic PDE is given by

∂u

∂t
(t, x) +

1

2
Tr
[
σσT(t, x)(Hessxu(t, x))

]
+∇u(t, x) · µ(t, x)

+ f
(
t, x, u(t, x), σT(t, x)∇u(t, x)

)
= 0,

with t ∈ [0, T ], x ∈ Rd and terminal condition u(T, x) = h(x). This PDE can be written
equally as a BSDE, given a process {Xt}t∈[0,T ] and looking at the solution at x = ξ, for
some ξ ∈ Rd. The BSDEs are obtained by applying Itô’s formula (see Section 2.2 for
details),

Xt = ξ +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

Yt = h(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

(Zs)
TdWs. (3.1)
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The solution process of the BSDE (3.1) is given by the nonlinear Feynman-Kac formula,
{Yt, Zt} = {u(t,Xt), σ

T(t,Xt)∇u(t,Xt)}. Inserting this solution and applying a tem-
poral discretization on the time interval [0, T ] : 0 = t0 < t1 < · · · < tN = T using the
Euler scheme gives

Xtn+1
−Xtn ≈ µ(tn, Xtn)∆tn + σ(tn, Xtn)∆Wn, (3.2)

and

u(tn+1, Xtn+1)− u(tn, Xtn)

≈− f
(
tn, Xtn , u(tn, Xtn), σT(tn, Xtn)∇u(tn, Xtn)

)
∆tn

+ [∇u(tn, Xtn)]Tσ(tn, Xtn)∆Wn,

(3.3)

for n = 1, . . . , N − 1.

3.2 Approximation Using Deep Learning
Next, deep learning is used to approximate the function x 7→ σT(t, x)∇u(t, x). This is
done by letting an MLP model learn the value of σT(t, x)∇u(t, x) in every discretization
point. Therefore, the model consists of N − 1 subnetworks,

σT(tn, Xtn)∇u(tn, Xtn) = σT∇u(tn, Xtn) ≈ σT∇u(tn, Xtn |θn),

where n = 1, 2, . . . , N − 1, and θn denotes the network parameters for the subnetwork at
t = tn. In Fig. 3.1 an example subnetwork is illustrated.

Figure 3.1: An illustration of an example of a subnetwork at time tn. The subnetwork is fully
connected, and the problem equation is 3-dimensional (3 units in the input and output layer). The
neural network consists of 2 hidden layers, denoted by h1

n and h2
n, with 5 units in each. Every line

represents a parameter (or weight) that is to be optimized. All the parameters in this subnetwork are
gathered in the set θn.

The input of the MLP model is the set of processes

{Xtn}0≤n≤N , {Wtn}0≤n≤N .
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These processes are sampled using equation (3.2). The solution at each discretization
point u(tn, Xtn) for n = 1, . . . , N is then computed using equation (3.3). The output of
the model is the approximated solution at the terminal time,

û({Xtn}0≤n≤N , {Wtn}0≤n≤N ).

A loss function is used to evaluate how well the model performs, and also to update the
network parameters accordingly (see Subsection 2.1.2 for details). In the deep BSDE
method, the expected loss function is defined to be the mean squared error between the
output and the given terminal condition,

L(θ) = E
[
|h(XT )− û({Xtn}0≤n≤N , {Wtn}0≤n≤N )|2

]
.

The initial values u(0, X0) ≈ θu0
and ∇u(0, X0) ≈ θ∇u0

are treated as parameters in
the model, and the total set of network parameters is then θ = {θu0

, θ∇u0
, θ1, . . . , θN−1}.

The model updates these parameters iteratively using an SGD algorithm. More details on
implementation is in Chapter 4. During training, Monte Carlo samples of the processes
{Xtn}0≤n≤N , {Wtn}0≤n≤N are performed to find the optimal network parameters θ. The
solution u(0, ξ) is then obtained by simulating the processes in the model.

3.3 Network Architecture
The network includes three types of connections. Arrows are used to show the flow of
information.

Connection (i) Xtn → h1
n → h2

n → · · · → hHn → σT∇u(tn, Xtn). Each hin, for
i = 1, . . . ,H , denotes a hidden layer in the MLP subnetwork at time step n. The
subnetwork takes the sampled process Xtn as input, and through training finds the
optimal parameters θn in the H hidden layers. The solution process with the spatial
gradient, σT∇u(tn, Xtn), is approximated at each time step n by the corresponding
MLP subnetwork for n = 1, 2, . . . , N − 1.

Connection (ii) (u(tn, Xtn), σT∇u(tn, Xtn),∆Wn) → u(tn+1, Xtn+1). The solution
for each time step is computed using the solution processes in the previous time
step, along with the difference in the current and the previously sampled Brownian
motion. The iteration is computed using equation (3.3).

Connection (iii) (Xtn ,∆Wn) → Xtn+1 . The process Xtn+1 is sampled using equation
(3.2), where the previous processes Xtn and Wn are used.

The architecture of the network is shown in Fig. 3.2, where the different connections
are also marked. As seen from the figure, the network has in total (H + 1)(N − 1) layers
with optimization parameters. The output layer is u(tN , XtN ), where the loss function
L(θ) is computed. The parameters θ are adjusted to minimize this loss function during
training. It should be emphasized that the loss function is not measured at the spatial
gradient of the solution at each time step. While connection (ii) and (iii) are straightfor-
ward computations, connection (i) contains optimization parameters. Connection (i) was
illustrated in Fig. 3.1 as an example of a subnetwork.
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Figure 3.2: An illustration of the network architecture. The arrows show the flow of information
in the network. Each column represents a time step in the discretization, tn for n = 0, 1, . . . , N .
Each MLP subnetwork for n = 1, 2, . . . , N − 1 contains H hidden layers, denoted by hin for
i = 1, 2, . . . , H . The different types of connections in the network are marked with (i), (ii) and (iii)
corresponding to the given definitions. This illustration is based on the figure included in (Han et al.,
2018).
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In this chapter, specifics regarding the implementation of the deep BSDE method are ex-
plained. There are several options and alternatives to what is presented here, but a thorough
description of the choices made in (Han et al., 2018) is provided to be able to both recreate
and verify their obtained results. Different activation functions and the SGD algorithm
Adam optimizer are discussed. To accelerate the training of the MLP, batch normalization
is used, and the algorithm is explained here. The methods for finding the exact solution
of both the Allen-Cahn equation and the HJB equation are described. These solutions are
used when measuring the approximation error in the numerical experiments in the next
chapter. Lastly, the actual implementation of the deep BSDE method in TensorFlow is
described.

4.1 Activation Function
The ReLU is used as activation function g(inj) in (Han et al., 2018), and was introduced
in Subsection 2.1.2. It is defined by g(z) = max{z, 0}, see Fig. 4.1(a). This activation
function is cheap to compute. It also converges quickly and unlike some other functions,
like the sigmoid and tanh function, it does not suffer from the vanishing gradient problem
(Nwankpa et al., 2018). The adverse effects of the vanishing gradient problem increase in
deep neural networks with many hidden layers. It describes the situation when the error
gradient that backpropogates through the network diminishes so much that it is too small
when it reaches the initial layers. It will then have little effect and it will be more difficult
to adjust the weights. It is because of the cheap computation, quick convergence and the
persistent error gradient that the ReLU is commonly used in deep learning.

However, the ReLU has a disadvantage called “the dying ReLU”. This term describes
the situation when a unit continuously takes on negative values and therefore only returns
zero. The unit will then be rendered useless. However, SGD methods compute the gradient
over several data points, so unless they are all zero the problem is not critical and the
approximation will continue to converge. Another challenge with ReLU is that it is not
bounded from above. This can cause the activation to blow up. The sigmoid function
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and tanh function do not risk this since they are both bounded. However, these activation
functions are more computationally expensive. The tanh function differs from the sigmoid
function in that it is zero centered, which makes it easier to handle strongly negative,
neutral and strongly positive inputs. The softplus activation function is very similar to the
ReLU, and has smoothing and nonzero gradient properties. Compared to the ReLU it is
more expensive to compute. Fig. 4.1 shows the four commonly used activation functions
that have been mentioned. The choice of activation function depends on the characteristics
of the problem to be solved.

(a) (b)

(c) (d)

Figure 4.1: Plots of different activation functions. (a) The rectified linear unit (ReLU). (b) The
softplus function. (c) The sigmoid function. (d) The tanh function.

4.2 Optimization Algorithm
As mentioned an SGD method is used to find the neural network parameters that minimize
the given loss function. In an SGD method, the error gradient is computed using only
a random sample from the complete data set, resulting in a much less computationally
expensive operation. Since the entire data set is not accounted for at each iteration step,
the path towards the minima is usually more “noisy” than for the normal gradient descent
optimization, meaning that it requires more iterations. However, for larger data sets the
SGD is usually preferred over gradient descent because it requires less computation time.
This is the case in the learning of most neural networks.

Han et al. (2018) use the Adam optimizer in the training of each subnetwork in the
model. This is a first order SGD-based optimization algorithm (Kingma and Ba, 2014),
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meaning that it only uses the first order information to obtain the local minima of a func-
tion. First order information is retrieved from the first derivative term in the Taylor expan-
sion of this function. The Adam optimizer only uses the gradient (first order) with respect
to the network parameters to obtain the minima of the loss function. Algorithm 2 gives
the pseudo code for the Adam optimizer. The variable α denotes the step size (or learning
rate). The step size is the amount the parameters are allowed to be changed at each itera-
tion (often between 0 and 1). The loss function is given by L(θ), and θ0 are the initialized
parameters. The result is of course the optimized parameters θi that minimize the loss
function. The evaluation of the loss function is done at random subsamples (mini-batches)
of the network. The variable i simply denotes the iteration step. The gradient of the loss
function with respect to θ at iteration i is stored in the variable gi = ∇θLi(θ).

The Adam optimizer uses estimates of first and second moments of the gradients to
compute individual adaptive learning rates. The method gets its name from adaptive mo-
ment estimation. At each iteration it computes estimates of the first moment of the gradient
mi, and second moment of the gradient vi. The variables β1, β2 ∈ [0, 1) control the ex-
ponential decay rates of mi and vi. Because of the initialization, the moment estimates
are biased towards zero. This is counteracted in the bias-corrected estimates m̂i and v̂i.
Lastly, at each iteration the network parameters are updated by θi = θi−1 − α · m̂

(
√
v̂i+ε)

.

Algorithm 2: The Adam optimizer (from Kingma and Ba (2014))

Data: α, β1, β2, L(θ), θ0;
Result: θi

1 m0 ← 0;
2 v0 ← 0;
3 i← 0;
4 while θi not convergent do
5 i← i+ 1;
6 gi ← ∇θLi(θi−1);
7 mi ← β1 ·mi−1 + (1 + β1) · gi;
8 vi ← β2 · vi−1 + (1− β2) · g2

i ;
9 m̂i ← mi/(1− βi1);

10 v̂i ← vi/(1− βi2);
11 θi ← θi−1 − α · m̂i/(

√
v̂i + ε);

12 end

There are several advantages with the Adam optimizer. It is both memory and com-
putationally efficient. In addition it combines advantages from other popular optimization
algorithms, as it does not require a stationary loss function, and works well with sparse
gradients. While classical SGD works with a constant single learning rate for all network
parameters, the Adam optimizer computes individual learning rates for all of the param-
eters, that are also adapted during training. This contributes to achieving good results
fast.
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4.3 Batch Normalization

The training of a neural network consists of iteratively adjusting the network parameters
using an SGD-type optimizer. A significant challenge with this process is the fact that
the input of each layer changes between iterations after the parameters are updated. This
challenge is called the internal covariate shift (Ioffe and Szegedy, 2015). It makes the
training slower, and again networks with a large number of hidden layers are more prone
to this negative effect. To accelerate the training, a technique of batch normalization can
be used. This is performed on each dimension in the input, before the activation function is
applied. Batch normalization makes sure that the distribution of the inputs remains stable
during training by fixing the means and variances of each layer input. The goal of batch
normalization is therefore to mitigate the internal covariate shift and thereby accelerate the
network training.

To achieve fixed distributions of inputs, the inputs of each layer are linearly trans-
formed to have zero means and unit variances. Algorithm 3 gives the pseudo code for
the batch normalization. In line 1 and 2 the mean and the variance of the mini-batch is
computed. Each dimension in the input is then normalized using the mean and variance in
line 3. In the last line, line 4, the parameters γ and β scale and shift the normalized value.
These parameters are learned by the network along with the model parameters θ. By learn-
ing these parameters the expressive power of the network remains. This can be seen by
setting γi =

√
Var(xi) and βi = E(xi), which would retrieve the original input. In the

pseudo code x̂i denotes the normalized value, and yi denotes the linear transformation.

Algorithm 3: The batch normalization transform (from Ioffe and Szegedy
(2015))

Data: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β;
Result: {yi = BNγ,β(xi)}

1 µB ← 1
m

∑m
i=1 xi;

2 σ2
B ← 1

m

∑m
i=1(xi − µB)2;

3 x̂i ← xi−µB√
σ2
B+ε

;

4 yi ← γx̂i + β ≡ BNγ,β(xi);

After normalization the training does not depend as much on the scale of the gradient
or of the parameter initialization. It is therefore possible to have a higher learning rate
without risking divergence. Normally if the learning rate is too large, the optimal solution
may be passed and the algorithm can fail to converge or even diverge. With a learning rate
that is too small, the convergence can be very slow resulting in time consuming training.
With batch normalization, parameters can be easily initialized from a normal or uniform
distribution without pretraining.

4.4 Exact Solution Methods

In the numerical experiments in the next chapter, the accuracy of the model is measured
by comparing the approximated solution of the semilinear parabolic PDEs to a given exact
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solution. In this section, the approaches for obtaining these exact solutions are explained.

4.4.1 Branching-Diffusion Method for the Allen-Cahn Equation
The solution of the Allen-Cahn equation is approximated using the branching-diffusion
method given in Appendix B in (Weinan et al., 2017). The methodology is introduced,
but a thorough explanation is beyond the scope of this thesis. The method exploits that
the solution of semilinear PDEs with polynomial nonlinearity can be represented as an
expectation of a functional of branching diffusion processes. As explained in Subsection
2.2.2, BSDEs provide a nonlinear Feynman-Kac formula for semilinear parabolic PDEs
in the Markovian case. To solve this BSDE, a branching diffusion process is constructed
as follows: a particle starts at time t, in position x, performs a diffusion process, dies after
a mean β exponential time and produces k i.i.d. descendants with probability pk. The
descendants perform the diffusion process driven by independent Brownian motions, and
die and reproduce i.i.d. descendants independently after independent exponential times,
etc, (Henry-Labordere et al., 2014). A diffusion process is a solution to an SDE, and in
this case it refers to the process {Xt}t∈[0,T ] from Subsection 2.2.2. The branching process
is therefore constructed by independent Brownian motions and exponential random vari-
ables. The solution of this branching diffusion is a viscosity solution to a corresponding
semilinear path dependent PDE. By uniqueness, the numerical solution is the solution of
the corresponding BSDE.

The obtained solution of the Allen-Cahn equation with terminal time T = 0.3 and
terminal condition h(x) = 1/(2 + 0.4||x||2), at t = 0, x = (0, 0, . . . , 0) ∈ R100 for
M = 107 Monte Carlo simulations is u(0, (0, 0, . . . , 0)) ≈ 0.0528 with a runtime of 1316
seconds. This will act like the not explicitly known exact solution.

4.4.2 Monte Carlo Method for the Hamilton-Jacobi-Bellman Equa-
tion

The exact solution of the HJB equation is given by

u(t, x) = − 1

λ
ln
(
E
[
exp

(
−λh(x+

√
2WT−t)

)])
.

The solution of the HJB equation with terminal time T = 1 and terminal condition h(x) =
ln((1 + ||x||2)/2), at t = 0, x = (0, 0, . . . , 0) ∈ R100 for λ = 1 is computed using
the Monte Carlo method given in Appendix B in (Weinan et al., 2017). The solution is
obtained from M = 107 Monte Carlo simulations to be u(0, (0, 0, . . . , 0)) ≈ 4.5901 with
a runtime of 171 seconds.

4.5 Machine Learning Platform
TensorFlow is a system for large-scale machine learning (Abadi et al., 2016). This system
is used to implement the deep BSDE method. The TensorFlow platform is end-to-end
open source and therefore available to anyone. It was specifically developed to conduct
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machine learning and deep neural networks research, and because of its generality is ap-
plicable to various machine learning tasks. The system creates dataflow graphs on which
computations are managed. It works very well with training large models, and offers the
user to explore different optimization algorithms and model architectures without having
to modify the core system. Further reading on the TensorFlow system can be found in
(Abadi et al., 2016).

4.6 The Deep BSDE Method Implementation

The MLP model is implemented as a python class for the specific semilinear parabolic
PDE to be solved (for example class SolveAllenCahn), like in (Weinan et al.,
2017). This is beneficial since the model contains numerous variables that within the
class are accessible to all class functions. When running the model, two main functions
are called: build and train. In this section significant functions in the implementa-
tion are described. The entire program for solving the Allen-Cahn equation is provided in
Appendix B, and for solving the HJB equation in Appendix C. The model is implemented
with the same initialization values and hyperparameter values as in (Weinan et al., 2017).

First some basics about the setup in TensorFlow is explained. Computations in Tensor-
Flow are performed on a graph. In order to create the graph, the data structures involved
have to be defined. The data structures in TensorFlow are called tensors, and can store
vectors and matrices. There are different kinds of tensors, and in this model placeholders
and variables are used. Placeholders are usually used for the model input, and their value
is provided when the graph is run. The value of variables, on the other hand, can change
during the run of a graph, and they need to be initialized before a run. get variable is also
used, and special for this tensor is that it only creates a new variable the first time it is
run. If it is run again it just retrieves the existing one with belonging parameters. In the
TensorFlow framework, all computations on the graph are done in a so called session.

The PDE solver class contains an init function that initializes the class with the
model variables shown in Table 4.1.
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Table 4.1: The variables that are defined in the init function in the solver classes.

Variable Definition
d Dimension of problem equation
d h Dimension of hidden layers
T Terminal time
N Temporal discretization steps
l Step size T/N

time stamp Array containing all N+1 time stamps from 0 to T
batch size Number of random paths used in training

M Number of random paths used in testing
n maxstep Maximum iteration steps

n displaystep Constant used to display results periodically
learning rate Learning rate used in training the neural network
extra train ops Array storing extra training operations

After the model is defined, the functions build and train are called. Fig. 4.2 shows
the structure of the program code by presenting the tasks in each function. Descriptions of
the functions build and train are given here:

build This function creates the whole neural network graph. It defines the placeholders
X and dW that are used to store the input of the model. The variables Y0 and Z0 are
also defined to store the values of u(t0, Xt0) and σT∇u(t0, Xt0) respectively. Next,
the forward connections (ii) are created (see Fig. 4.3). The function subnetwork
is called to create connection (i) (see Fig. 4.4). In subnetwork, the function
add layer is called to create the layers in each subnetwork. It creates the network
weights, defines the belonging input function, performs batch normalization using
the function batch norm, and for the hidden layers applies the ReLU activation
function. Then, the loss function is defined as the squared difference between the ter-
minal condition and output value. The difference is clipped to a specified minimum
and maximum value to avoid letting extreme cases affect the learning negatively.

train This function trains the model to solve the semilinear parabolic PDE. It starts
by defining the Adam optimizer as optimizer to minimize the loss with respect to
all trainable variables/weights. The extra training operations consist of computing
the moving averages of variables in the batch normalization (this is only performed
when the model is training). Then M number of Monte Carlo simulations of X
and dW (connection (iii)) are performed using the function sample path (see Fig.
4.5) to create the test data. Next, all global variables are initialized, and the model
is ready to train. The model is trained iteratively on a batch size of X and dW (con-
nection (iii), see Fig. 4.5) using the defined training operations. At each display
step, the loss is tested against the Monte Carlo simulations, the current value of Y0,
and the total runtime of building and training the model up until the current iteration
step are displayed.
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Figure 4.2: Illustration of the structure of the program code (for the entire program code, see Ap-
pendix B and C). The blue boxes refer to functions, and the white boxes describe the tasks that are
performed in the parenting function.

Fig. 4.3, 4.4 and 4.5 show where the different connections in the network architecture in
Fig. 3.2 is created in the program code.

Figure 4.3: Illustration of connection (ii) from Subsection 3.3. In the implementation, this con-
nection is created in function build in variable scope forward connections (for the entire
program code, see Appendix B and C).
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Figure 4.4: Illustration of connection (i) from Subsection 3.3. In the implementation, this connec-
tion is created in function build using function subnetwork and add layer (for the entire
program code, see Appendix B and C).

Figure 4.5: Illustration of connection (iii) from Subsection 3.3. In the implementation, this connec-
tion is created in function train using function sample path (for the entire program code, see
Appendix B and C).

Pseudocodes for all mentioned functions are presented in Algorithm 4, 5, 6, 7 and 8.
The batch normalization was discussed in Section 4.3.
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Algorithm 4: Pseudocode for the function build in the deep BSDE implemen-
tation in Appendix B and C.

Data: Class variables defined in init ;
Result: Neural network graph

1 X placeholder, dW placeholder, Y0 variable, Z0 variable;
2 for n← 0 to N − 2 do
3 Ytn+1

= Ytn − f(tn, Xtn , Ytn , Ztn)l + ZtndWn;
4 Ztn+1

= subnetwork(Xtn);
5 end
6 YtN = YtN−1

− f(tN−1, XtN−1
, YtN−1

, ZtN−1
)l + ZtN−1

dWN−1;
7 loss = |YtN − g(XT )|2;

Algorithm 5: Pseudocode for the function subnetwork in the deep BSDE
implementation in Appendix B and C.

Data: x; Class variables defined in init ;
Result: z layer connected to x through two hidden layers

1 x layer = batch norm(x);
2 layer1 = add layer(x, dh, ReLU) (hidden layer fully connected from x, dh

units, activation function = ReLU);
3 layer2 = add layer(layer1, dh, ReLU) (hidden layer fully connected from

layer1, dh units, activation function = ReLU);
4 z layer = add layer(layer2, dh, None) (hidden layer fully connected from

layer2, dh units);

Algorithm 6: Pseudocode for the function add layer in the deep BSDE im-
plementation in Appendix B and C.

Data: input,dim,activation; Class variables defined in init ;
Result: Network layer

1 w Variable (weights with dim units);
2 layer = w · input (input function);
3 layer bn = batch norm(layer);
4 activation(layer bn)
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Algorithm 7: Pseudocode for the function train in deep BSDE implementa-
tion in Appendix B and C.

Data: Class variables defined in init ;
Result: Trained model

1 grads = gradient of loss w.r.t. trainable variables (weights);
2 optimizer = Adam optimizer;
3 dW test,X test =sample path(M );
4 Initialize model;
5 for 0 to n maxstep do
6 dW train,X train =sample path(batch size);
7 Train model;
8 end

Algorithm 8: Pseudocode for the function sample path in the deep BSDE
implementation in Appendix B and C.

Data: n sample; Class variables defined in init ;
Result: n sample number of random paths for dW and X

1 for i← 0 to N − 1 do
2 dWi+1 ∼ N (mean=0, cov=1, size=n sample)·l;
3 Xi+1 = Xi +

√
2 · dWi

4 end
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Chapter 5
Numerical Experiments

This chapter presents the results from numerical experiments using the deep BSDE method
to solve both the Allen-Cahn equation and the HJB equation. The method is implemented
in TensorFlow on a Lenovo with a 2.4 GHz Intel Core i5 CPU and 8 GB RAM.

Some numerical results are obtained by running several independent runs. This is done
using different random seeds for the NumPy and TensorFlow libraries, so that the sampled
paths and randomized initialization change for each run. To measure the performance of
the method, the approximated values at the initial time of the terminal value problems
are compared to given solutions. The approximated value at u(0, ξ) obtained from the
deep BSDE method is denoted ûθ. The relative approximation error in the numerical
experiments are given in the L1-norm as the following,

E =

∣∣∣∣∣∣∣∣u(0, ξ)− ûθ
u(0, ξ)

∣∣∣∣∣∣∣∣
1

.

5.1 The Allen-Cahn Equation
The d-dimensional Allen-Cahn equation for x ∈ Rd is given by

∂u

∂t
(t, x) + ∆u(t, x) + u(t, x)− [u(t, x)]3 = 0, t ∈ [0, T ),

u(T, x) = h(x) =
1

2 + 0.4||x||2
.

The model variables that express this problem equation from the general formulation in
Subsection 2.2.2 are therefore

µ(t, x) = µ = 0,

σ =
√

2,

f(t, x, u(t, x), σT(t, x)∇u(t, x)) = f(u(t, x)) = u(t, x)− [u(t, x)]3.
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5.1.1 Model Variables

The MLP model for the deep BSDE method is implemented with a total of four layers
for each subnetwork, of which two are hidden layers. The temporal discretization is set to
N = 20 equidistant time steps from initial time t0 = 0 to the terminal time tN = T = 0.3.
The total number of layers with parameters to be optimized is then (H + 1)(N − 1) =
(2+1)(20−1) = 57. Each subnetwork is fully connected as described in Subsection 2.1.3
about MLP models. The input and output layer are both d-dimensional, and the hidden
layers will be d + 10-dimensional. In the numerical experiments, the 100-dimensional
Allen-Cahn equation is considered. The solution is examined in the space point ξ =
(0, 0, . . . , 0). The model is trained with a learning rate of α = 5e− 4 on 64 sample paths,
and tested against 256 Monte Carlo samples. All variable values are summarized in Table
5.1. The ReLU is used as activation function, and the Adam optimizer is used for training
the ANN. The not explicitly known exact solution is approximated using the branching-
diffusion method (see Subsection 4.4.1). The approximation error is therefore measured
relative to u(0, (0, 0, . . . , 0)) ≈ 0.0528.

Table 5.1: The values of the model variables used to solve the Allen-Cahn equation using the deep
BSDE method.

Variable Symbol Value
Dimension of problem equation d 100

Number of hidden layers H 2
Dimension of hidden layers dh 110

Temporal discretization steps N 20
Terminal time T 0.3

Space point of interest ξ (0, 0, . . . , 0)
Terminal condition h(x) 1/(2 + 0.4||x||2)

Batch size m 64
Monte Carlo samples M 256

Learning rate α 5e− 4

5.1.2 Numerical Results

The model variables are set to the values shown in Table 5.1. Table 5.2 presents the
numerical results when solving the 100-dimensional Allen-Cahn equation on five inde-
pendent runs using the specific random seeds {1, 2, 3, 4, 5}. From the table, one can see
that the method obtains a relative error of 0.20% after 4000 iteration steps. The relative
approximation error history is shown in Fig. 5.1. To further examine how much the ran-
domization affects the method, the same experiment was conducted using the five new
random seeds {6, 7, 8, 9, 10}. Table 5.3 shows the numerical results, and Fig. 5.2 presents
the corresponding history of relative approximation error. This time, the method obtains a
relative error of 0.42%. The values at all display steps (every 100th iteration) are included
in Appendix D.
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Table 5.2: Numerical results after solving the Allen-Cahn equation with values in Table 5.1 and for
five independent runs using random seeds {1, 2, 3, 4, 5}. The runtime is given for one of the runs in
seconds.

Number of it-
eration steps

0 1000 2000 3000 4000

Mean of ûθ 0.4163 0.1122 0.0568 0.0530 0.0529
Standard devi-
ation of ûθ

0.0748 0.0450 0.0058 0.0002 0.0001

Mean of rel.
approx. error

6.8841 1.1256 0.0767 0.0054 0.0020

Standard de-
viation of rel.
approx. error

1.4161 0.8517 0.1091 0.0023 0.0018

Mean of loss 0.087874 0.003335 0.000273 0.000221 0.000178
Standard devi-
ation of loss

0.038434 0.003743 0.000055 0.000023 0.000029

Runtime in
seconds

107 280 413 531 721

Figure 5.1: A plot of the relative approximation error when solving the Allen-Cahn equation using
the deep BSDE method as a function of number of iteration steps. The dark line is the mean of the
relative error after five independent runs using the random seeds {1, 2, 3, 4, 5}, and the shaded area
shows the mean ± the standard deviation of the relative error.
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Table 5.3: Numerical results after solving the Allen-Cahn equation with values in Table 5.1 and for
five independent runs using random seeds {6, 7, 8, 9, 10}. The runtime is given for one of the runs
in seconds.

Number of it-
eration steps

0 1000 2000 3000 4000

Mean of ûθ 0.5034 0.1711 0.0693 0.0535 0.0530
Standard devi-
ation of ûθ

0.0968 0.0652 0.0128 0.0005 0.0002

Mean of rel.
approx. error

8.5335 2.2410 0.3116 0.0138 0.0042

Standard de-
viation of rel.
approx. error

1.8331 1.2356 0.2430 0.0088 0.0027

Mean of loss 0.143701 0.010732 0.000499 0.000227 0.000194
Standard devi-
ation of loss

0.055645 0.007724 0.000218 0.000016 0.000024

Runtime in
seconds

102 288 410 538 693

Figure 5.2: A plot of the relative approximation error when solving the Allen-Cahn equation using
the deep BSDE method as a function of number of iteration steps. The dark line is the mean of the
relative error after five independent runs using the random seeds {6, 7, 8, 9, 10}, and the shaded area
shows the mean ± the standard deviation of the relative error.
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The approximated initial value, ûθ, for five independent runs of the deep BSDE method
is shown in Fig. 5.3 against number of iteration steps. The loss function is given byL(θ) =
E
[
|h(XT )− û({Xtn}0≤n≤N , {Wtn}0≤n≤N )|2

]
as described in Section 3.2, taking the

difference between the terminal condition h(XT ) and the approximated solution at the
terminal time û({Xtn}0≤n≤N , {Wtn}0≤n≤N ). The gradient of this loss function with
respect to θ is used by the Adam optimizer to update the parameters θ at each iteration step.
Fig. 5.4 shows the loss function against the number of iteration steps. The deep BSDE
method is also used to compute the time evolution of u(t, (0, 0, . . . , 0)) for t ∈ [0, 0.3].
The result is shown in Fig. 5.5 together with the corresponding result obtained by the
branching-diffusion method.

Figure 5.3: A plot of the approximated initial value when solving the Allen-Cahn equation using
the deep BSDE method as a function of number of iteration steps. The dark line is the mean of ûθ
after five independent runs, and the shaded area shows the mean ± the standard deviation of ûθ .
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Figure 5.4: A plot of the loss function when solving the Allen-Cahn equation using the deep BSDE
method as a function of number of iteration steps. The dark line is the mean of the loss function
after five independent runs, and the shaded area shows the mean± the standard deviation of the loss
function.

Figure 5.5: A plot of the time evolution of the solution to the Allen-Cahn equation,
u(t, (0, 0, ..., 0)), using both the deep BSDE method and the branching-diffusion method. The blue
graph is barely visible as the two graphs are superimposed.
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5.2 The Hamilton-Jacobi-Bellman Equation

The d-dimensional HJB equation for x ∈ Rd is given by

∂u

∂t
(t, x) + ∆u(t, x)− λ||∇u(t, x)||2 = 0, t ∈ [0, T ),

u(T, x) = h(x) = ln

(
1 + ||x||2

2

)
.

The model variables that express this problem equation from the general formula are there-
fore

µ(t, x) = µ = 0,

σ =
√

2,

f(t, x, u(t, x), σT(t, x)∇u(t, x)) = f(u(t, x)) = −λ||∇u(t, x)||2.

5.2.1 Model Variables

The MLP model for the deep BSDE method is implemented with a total of four layers
for each subnetwork, of which two are hidden layers. The temporal discretization is set to
N = 20 equidistant time steps from initial time t0 = 0 to the terminal time tN = T = 1.
The total number of layers with parameters to be optimized is then (H + 1)(N − 1) =
(2+1)(20−1) = 57. Each subnetwork is fully connected as described in Subsection 2.1.3
about MLP models. The input and output layer are both d-dimensional, and the hidden
layers will be d + 10-dimensional. In the numerical experiments, the 100-dimensional
HJB equation for λ = 1 is considered. The solution is examined in the space point ξ =
(0, 0, . . . , 0). The model is trained with a learning rate of α = 1e−02 on 64 sample paths,
and tested against 256 Monte Carlo samples. All variable values are summarized in Table
5.4. The ReLU is used as activation function, and the Adam optimizer is used for training
the ANN. The exact solution is derived using Itô’s formula and given by

u(t, x) = − 1

λ
ln
(
E
[
exp

(
−λh(x+

√
2WT−t)

)])
.

The solution at the initial time at the origin is found by Monte Carlo simulations to be
u(0, (0, 0, . . . , 0)) ≈ 4.5901 (see Subsection 4.4.2).
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Table 5.4: The values of the model variables used to solve the HJB equation using the deep BSDE
method.

Variable Symbol Value
Dimension of problem equation d 100

Number of hidden layers H 2
Dimension of hidden layers dh 110

Temporal discretization steps N 20
Level of control λ 1
Terminal time T 1

Space point of interest ξ (0, 0, . . . , 0)
Terminal condition h(x) ln

(
(1 + ||x||2)/2

)
Batch size m 64

Monte Carlo samples M 256
Learning rate α 1e− 02

5.2.2 Numerical Results

The model variables are set to the values shown in Table 5.4. Table 5.5 presents the nu-
merical results when solving the 100-dimensional HJB equation on five independent runs
using the specific random seeds {1, 2, 3, 4, 5}. From the table, one can see that the method
obtains a relative error of 0.22% after 2000 iteration steps. The relative approximation
error history is shown in Fig. 5.6. To further examine how much the randomization af-
fects the method, the same experiment was conducted using the five new random seeds
{6, 7, 8, 9, 10}. Table 5.6 shows the numerical results, and Fig. 5.7 presents the corre-
sponding history of relative approximation error. This time, the method obtains a relative
error of 0.23%. The values at all display steps (every 100th iteration) are included in
Appendix E.
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Table 5.5: Numerical results after solving the HJB equation with values in Table 5.4 and for five
independent runs using random seeds {1, 2, 3, 4, 5}. The runtime is given for one of the runs in
seconds.

Number of it-
eration steps

0 500 1000 1500 2000

Mean of ûθ 0.4163 3.3151 4.5146 4.5991 4.6001
Standard devi-
ation of ûθ

0.0748 0.0858 0.0168 0.0010 0.0008

Mean of rel.
approx. error

0.9093 0.2778 0.0165 0.0020 0.0022

Standard de-
viation of rel.
approx. error

0.0163 0.0187 0.0037 0.0002 0.0002

Mean of loss 17.470558 1.749224 0.030793 0.020826 0.020852
Standard devi-
ation of loss

0.582694 0.185690 0.003093 0.000864 0.000747

Runtime in
seconds

101 284 359 506 639

Figure 5.6: A plot of the relative approximation error when solving the HJB equation using the deep
BSDE method as a function of number of iteration steps. The dark line is the mean of the relative
error after five independent runs using the random seeds {1, 2, 3, 4, 5}, and the shaded area shows
the mean ± the standard deviation of the relative error.
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Table 5.6: Numerical results after solving the HJB equation with values in Table 5.4 and for five
independent runs using random seeds {6, 7, 8, 9, 10}. The runtime is given for one of the runs in
seconds.

Number of it-
eration steps

0 500 1000 1500 2000

Mean of ûθ 0.5034 3.4062 4.5319 4.5989 4.6008
Standard devi-
ation of ûθ

0.0968 0.1056 0.0201 0.0010 0.0017

Mean of rel.
approx. error

0.8903 0.2579 0.0127 0.0019 0.0023

Standard de-
viation of rel.
approx. error

0.0211 0.0230 0.0044 0.0002 0.0004

Mean of loss 16.681912 1.494773 0.029087 0.021636 0.021417
Standard devi-
ation of loss

0.760256 0.245718 0.007968 0.001342 0.001430

Runtime in
seconds

103 226 319 410 494

Figure 5.7: A plot of the relative approximation error when solving the HJB equation using the deep
BSDE method as a function of number of iteration steps. The dark line is the mean of the relative
error after five independent runs using the random seeds {6, 7, 8, 9, 10}, and the shaded area shows
the mean ± the standard deviation of the relative error.
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The approximated initial value, ûθ, for five independent runs of the deep BSDE method
is shown in Fig. 5.8 against number of iteration steps. The loss function is given byL(θ) =
E
[
|h(XT )− û({Xtn}0≤n≤N , {Wtn}0≤n≤N )|2

]
as described in Section 3.2, taking the

difference between the terminal condition h(XT ) and the approximated solution at the
terminal time û({Xtn}0≤n≤N , {Wtn}0≤n≤N ). The gradient of this loss function with
respect to θ is used by the Adam optimizer to update the parameters θ at each iteration
step. Fig. 5.9 shows the loss function against the number of iteration steps.

Figure 5.8: A plot of the approximated initial value when solving the HJB equation using the deep
BSDE method as a function of number of iteration steps. The dark line is the mean of ûθ after five
independent runs, and the shaded area shows the mean ± the standard deviation of ûθ .
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Figure 5.9: A plot of the loss function when solving the HJB equation using the deep BSDE method
as a function of number of iteration steps. The dark line is the mean of the loss function after five
independent runs, and the shaded area shows the mean± the standard deviation of the loss function.

5.3 Model Features

In the previous sections, the deep BSDE method was tested by solving the Allen-Cahn
equation and the HJB equation using the same variable values as in (Han et al., 2018).
Now, the method will be further explored by varying the different features included in the
model. The features that are going to be tested are the type of activation function, the batch
size, and the number of temporal discretization steps.

5.3.1 Type of Activation Function

Different activation functions with their advantages and disadvantages were discussed in
Section 4.1. The choice of activation function depends on the nature of the data. Fig. 5.10
shows the mean relative approximation error for solving the Allen-Cahn equation after five
independent runs using the different activation functions. The numerical results after 4000
iterations are shown in Table 5.7. The same results when solving the HJB equation can be
found in Fig. 5.11 and Table 5.11.

52



5.3 Model Features

Figure 5.10: A plot of the mean relative approximation error when solving the Allen-Cahn equa-
tion as a function of number of iteration steps. It is solved using the deep BSDE method for five
independent runs using four different activation functions.

Table 5.7: Numerical results after solving the Allen-Cahn equation with values in Table 5.1 for five
independent runs using four different activation functions. The runtime is given for one of the runs
in seconds.

Activation function Mean of rel. approx.
error

Standard deviation
of rel. approx. error

Runtime

ReLU 0.0020 0.0018 721
Softplus 0.0021 0.0014 785
Sigmoid 0.0018 0.0011 1085
Tanh 0.0020 0.0011 1110
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Figure 5.11: A plot of the mean relative approximation error when solving the HJB equation as a
function of number of iteration steps. It is solved using the deep BSDE method for five independent
runs using four different activation functions. The different graphs are difficult to identify as they
are superimposed.

Table 5.8: Numerical results after solving the HJB equation with values in Table 5.4 for five inde-
pendent runs using four different activation functions. The runtime is given for one of the runs in
seconds.

Activation function Mean of rel. approx.
error

Standard deviation
of rel. approx. error

Runtime

ReLU 0.0022 0.0002 639
Softplus 0.0022 0.0002 546
Sigmoid 0.0022 0.0002 694
Tanh 0.0022 0.0002 551

5.3.2 Batch Size
In all machine learning problems, it is essential that the model is provided with sufficient
amount of training data to be able to give the best available representation of the data.
When the model is unable to represent the data well because of limited training data, it
is called underfitting. Overfitting can also occur when the model captures noise in the
data along with the underlying pattern. It is therefore interesting to see how the amount
of training data affects the numerical results. The batch size denotes the number of input
paths that are sampled and used for training at each iteration step. Fig. 5.12 and Fig.
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5.13 show how the relative approximation error and the loss function change for different
batch sizes when solving the Allen-Cahn equation, respectively. A plot of the loss function
after 4000 iterations against different batch sizes is presented in Fig. 5.14. The numerical
results after 4000 iterations can be found in Table 5.9.

Figure 5.12: A plot of the relative approximation error when solving the Allen-Cahn equation as a
function of number of iteration steps. It is solved using the deep BSDE method with different batch
sizes.
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Figure 5.13: A plot of the loss function when solving the Allen-Cahn equation as a function of
number of iteration steps. It is solved using the deep BSDE method with different batch sizes.

Figure 5.14: A plot of the loss function after 4000 iterations for solving the Allen-Cahn equation as
a function of batch size.
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Table 5.9: Numerical results after solving the Allen-Cahn equation for different batch sizes. The
rest of the model variables are set to the values in Table 5.1. The runtime is given in seconds.

Batch size Rel. approx. error Loss Runtime
2 0.0101 0.000818 720
4 0.0012 0.000361 809
8 0.0007 0.000295 660
16 0.0119 0.000234 865
32 0.0020 0.000231 813
64 0.0007 0.000200 721
128 0.0020 0.000163 1103

5.3.3 Temporal Discretization Steps

The deep BSDE method aims to approximate the solution of a semilinear parabolic PDE at
time t = 0 given a terminal condition at time t = T . The BSDE is discretized withN tem-
poral discretization steps between 0 and T . The accuracy of traditional numerical methods,
like for example the finite difference method, depends on the fineness of the discretization
grid. The relative approximation error as a function of iteration steps when solving the
Allen-Cahn equation using the deep BSDE method for different number of temporal dis-
cretization steps is shown in Fig. 5.15. Fig. 5.16 shows the relative approximation error
after 4000 iterations against number of temporal discretization steps. A plot of the loss
function against number of iteration steps for different number of temporal discretization
steps, and the loss after 4000 iterations against number of temporal discretization steps
are shown in Fig. 5.17, and Fig. 5.18, respectively. Numerical results after solving the
Allen-Cahn equation for different number of temporal discretization steps are presented in
Table 5.10.
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Figure 5.15: A plot of the relative approximation error when solving the Allen-Cahn equation as a
function of number of iteration steps. It is solved using the deep BSDE method for different number
of temporal discretization steps.

Figure 5.16: A plot of the relative approximation error after 4000 iteration steps for solving the
Allen-Cahn equation as a function of number of temporal discretization steps.
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Figure 5.17: A plot of the loss function when solving the Allen-Cahn equation as a function of
number of iteration steps. It is solved using the deep BSDE method for different number of temporal
discretization steps.

Figure 5.18: A plot of the loss function after 4000 iterations for solving the Allen-Cahn equation as
a function of number of temporal discretization steps.
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Table 5.10: Numerical results after solving the Allen-Cahn equation for different number of dis-
cretization steps. The rest of the model variables are set to the values in Table 5.1. The runtime is
given in seconds.

Number of discretization
steps

Rel. approx.
error

Loss Runtime

2 0.0239 0.000063 92
4 0.0137 0.000112 113
6 0.0049 0.000120 194
8 0.0034 0.000145 239
10 0.0028 0.000160 342
12 0.0028 0.000185 493
14 0.0024 0.000204 422
16 0.0077 0.000196 474
18 0.0033 0.000193 956
20 0.0007 0.000200 721
22 0.0019 0.000207 853
24 0.0024 0.000223 1093
26 0.0037 0.000222 971
28 0.0006 0.000232 2083
30 0.0020 0.000244 2430
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Discussion

The obtained numerical results are discussed in this chapter. Further, the convergence of
the deep BSDE method is discussed based on the analysis conducted by Han and Long in
(Han and Long, 2018).

6.1 On Numerical Results
The obtained results in Chapter 5 for the Allen-Cahn equation and the HJB equation cor-
respond well with the presented results in (Han et al., 2018). In (Han et al., 2018) the
deep BSDE method achieved a relative error of 0.30% after 4000 iteration steps for the
Allen-Cahn equation. In Section 5.1, it achieved a relative approximation error of 0.20%
after 4000 iteration steps using the same variable values as in (Han et al., 2018). However,
when the same experiment was conducted with five new random seeds, the relative ap-
proximation error increased to 0.42%. Since the two separate results are quite accurate, it
is reasonable to believe that the method is correctly implemented and that the deviations in
the results can be explained as a consequence of the randomization included in the model.
However, this deviation is relatively small and it is evident that the method works for solv-
ing the high-dimensional PDE since the relative approximation error and the loss function
converge to an acceptable accuracy (as seen in Fig 5.1, 5.2 and 5.4). The runtime for one
of the independent runs of 4000 iterations was 721 seconds, which is quite efficient. As a
comparison, the branching-diffusion method had a runtime of 1361 seconds.

In Fig 5.3 the approximated initial value for the Allen-Cahn equation against number
of iteration steps is presented. From the figure one can see that the method converges
towards a solution, and after about 2500 iterations the standard deviation becomes signif-
icantly smaller. The same change can be seen for the loss function in Fig. 5.4. At this
point, the method has reached a relative approximation error of 0.078. After about 3000
iterations, there are oscillations in the relative approximation error in both Fig 5.1 and 5.2.
The oscillations occur when the relative approximation errors have gone below 10−2, and
they are contained within the interval [10−3, 10−2]. This indicates that the method has be-
come slightly unstable, and will not converge further with more iterations. However, since
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the solution obtained by the branching-diffusion method only contains three significant
digits, it would be futile to iterate further after these three digits are obtained by the deep
BSDE method. Fig 5.5 also shows the high performance of the deep BSDE method, since
the approximated time evolution is visibly overlapping with the curve provided using the
branching-diffusion method.

The results obtained for the HJB equation are more consistent with regard to the two
different experiments using different sets of random seeds in each. The relative approxi-
mation errors are slightly higher than in (Han et al., 2018) after 2000 iteration steps, with
0.22% and 0.23% against 0.17%. Again, the deviations are relatively small and most likely
due to the randomization. The relative approximation error and the loss function also con-
verge to an acceptable accuracy as seen in Fig 5.6, 5.7 and 5.9. The runtime for one of the
independent runs of 2000 iterations was 639 seconds, which is again quite efficient.

In Fig 5.8 the approximated initial value for the HJB equation against number of iter-
ation steps is presented. From the figure one can see that the method converges towards a
solution, and after around 1000 iterations the curve flattens out. The same flattening can
be seen for the loss function in Fig. 5.9. The relative approximation error is 0.016 after
1000 iterations. After around 1250 iterations, there is a clear cusp in the relative approxi-
mation error in both Fig 5.6 and 5.7. The cusp is followed by slight oscillations and occur
when the relative approximation errors have reached 10−3. The oscillations are contained
within the interval [10−3, 3 ·10−3]. Again, this is an indication of instability in the method,
but since the solution obtained by Monte Carlo simulations only contains five significant
digits, it would be futile to iterate further after these digits are obtained by the deep BSDE
method.

6.2 On Model Features
In Section 5.3, different model features are tested to see how they impact the model re-
sults. Fig. 5.10 and Fig. 5.11 show the relative approximation error when solving the
Allen-Cahn equation and the HJB equation, respectively, for different activation functions.
From the figures, it is clear that the choice of activation function has minimal significance
to the model, as they all achieve relatively similar accuracy after the same number of iter-
ation steps. However, from Table 5.7 and Table 5.8 one can see that they have different
runtimes. There is only a slight difference, and it is most visible in Table 5.7 when solving
the Allen-Cahn equation where the runtime is longer overall. Here, the advantage of the
cheap computational cost of the ReLU becomes apparent.

The relative approximation error for different batch sizes is shown in Fig. 5.12. Gen-
erally, the approximation error is smaller for higher batch sizes, which is what would be
expected since the model is trained on more sample paths and should have a better rep-
resentation of the expected value of the stochastic processes. This is the same logic as in
Monte Carlo methods. Because of the oscillations in the last iteration steps, the order of
the final approximation errors achieved for the different batch sizes is somewhat random,
as seen in Table 5.9. Unexpectedly, the method achieves a better approximation for a
batch size of 4 than 128, proving that the batch size does not affect the method as much as
it might in other deep learning problems. This is most likely due to the fact that the sample
paths represent the same process. In other deep learning problems, the training data might
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represent a complex function, and more data is needed to cover enough of the domain and
the range of the function to capture the trends. In Fig. 5.13 and Fig. 5.14 one can see that
the higher the batch size is, the more the model manages to minimize the loss function.
Again, this is logical as the model then has a better representation of the expected value of
the stochastic processes.

The number of temporal discretization steps clearly affects the runtime of the method,
as seen in Table 5.10, where the runtime for N = 2 is 92 seconds, and for N = 30 is
2430 seconds. This is obviously because the ANN becomes significantly larger for higher
number of discretization steps. Generally, the approximation error is smaller for more
discretization steps as seen in Fig. 5.15 and Fig. 5.16, which complies with traditional
numerical methods. Because of the oscillations in the last iteration steps, the order of
the final approximation errors achieved for the different number of discretization steps is
somewhat random. In Fig. 5.17 and Fig. 5.18 the loss function is shown for different
number of discretization steps, and here one can see that the model minimizes the loss
function more for fewer number of discretization steps. One reason for this could be
because of the size of the ANN, and that for many discretization steps there are more
parameters to optimize against the loss function.

6.3 On Convergence

The convergence of the deep BSDE method has been investigated in (Han and Long,
2018), and Han and Long have formulated two main theorems that will be rendered and
explained in this section. The proofs are quite extensive and will not be included in this
thesis, however, they can be found in (Han and Long, 2018). In their paper, they extend
the method to include coupled BSDEs and a wider class of quasilinear parabolic PDEs.
This extension will no be considered in this thesis, and simplifications of their theorems
will therefore apply.

The deep BSDE method with notation is revisited to understand the theorems. As
mentioned, only decoupled forward BSDEs (the variables µ and σ are independent of Y )
is considered, and the following is taken from Subsection 2.2.2,

Xt = ξ +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

Yt = h(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

(Zs)
TdWs,

where Xt ∈ Rm, Yt ∈ R, Zt ∈ Rd. The BSDEs are written forwardly using the Euler
scheme from Subsection 2.2.2, giving the set of equations,

Xπ
0 = ξ, Y π0 = ηπ0 (ξ),

Xπ
tn+1

= Xπ
tn + µ(tn, X

π
tn)∆tn + σ(tn, X

π
tn)∆Wn,

Zπtn = φπn(Xπ
tn),

Y πtn+1
= Y πtn − f(tn, X

π
tn , Y

π
tn , Z

π
tn)∆tn + (Zπtn)T∆Wn.
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The discretization uses a partition of the time interval [0, T ], π : 0 = t0 < t1 < · · · <
tN = T , with equidistant time steps ∆tn = T/N = l, where each time step is given by
tn = nl. The symbol π is used in superscript to denote a value approximation based on
the time partition interval π.

The goal is to find appropriate functions ηπ0 : Rm → R and φπn(Xπ
tn) : Rm × R →

Rd for n = 0, 1, . . . , N − 1 through deep learning such that ηπ0 (ξ) and φπn(Xπ
tn) can

approximate Y0 and Ztn , respectively. To achieve this, a stochastic optimizer is employed.
In the numerical experiments in Chapter 5, the Adam optimizer was used. A mathematical
formulation of the stochastic optimization problem is given as,

inf
ηπ0 ∈N ′0,φπn∈Nn

F (ηπ0 , φ
π
0 , . . . , φ

π
N−1) = E|h(Xπ

T )− Y πT |2, (6.1)

where N ′0, Nn, n = 0, . . . , N − 1 are parametric function spaces generated by the ANN.
The goal is to minimize the loss function (right-hand side of (6.1)) with respect to the
network parameters approximating ηπ0 and φπn for n = 0, 1, . . . , N − 1.

6.3.1 A Posteriori Error Estimation
A posteriori error estimator uses the approximated solution itself to derive an estimate of
the solution error. The following is a posteriori error estimation of the deep BSDE method,
taken from (Han and Long, 2018).

Theorem 3 (A posteriori estimates). Under some assumptions, there exists a constant C,
independent of l, d, and m, such that for sufficiently small l,

sup
t∈[0,T ]

(
E|Xt − X̂π

t |2 + E|Yt − Ŷ πt |2
)

+

∫ T

0

E|Zt − Ẑπt |2dt

≤C
[
l + E|h(Xπ

T )− Y πT |2
] (6.2)

where X̂π
t = Xπ

tn , Ŷ πt = Y πtn , Ẑπt = Zπtn for t ∈ [tn, tn+1).

The left-hand side of equation (6.2) in the theorem represents the simulation error. The
theorem therefore states that the simulation error is bounded. The upper bound is given by
the value of the objective function presented in equation (6.1). If the objective function is
optimized to be close to zero, then by Thm. 3 the approximated solution obtained by the
deep BSDE method is close to the actual solution. This is the goal of the deep learning
process. This means that the accuracy of numerical solution is effectively indicated by the
value of objective function. The proof of Thm. 3 can be found in (Han and Long, 2018).

6.3.2 Upper Bound of Optimal Loss
The second result in (Han and Long, 2018) is a theorem providing an upper bound of the
optimal loss of the deep BSDE method. The theorem states that the objective function
can be optimized to be close to zero, and thereby fulfilling the demand in Thm. 3, and
attaining an approximated solution close to the actual solution. The theorem is rendered
here:
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Theorem 4 (Upper bound of optimal loss). Under some assumptions, there exists a con-
stant C, independent of l, d, and m, such that for sufficiently small l,

inf
ηπ0 ∈N ′0,φπn∈Nn

E|h(Xπ
t )− Y πt |2

≤C

{
l + inf

ηπ0 ∈N ′0,φπn∈Nn
E|Y0 − ηπ0 (ξ)|2 +

N−1∑
n=0

E|E[Z̃tn |Xπ
tn ]− φπn(Xπ

tn)|2l

} (6.3)

where Z̃tn = l−1E[
∫ tn+1

tn
Ztdt|Ftn ].

The theorem relates the infimum of the objective function (left-hand side of equation (6.3))
to the expressive power of ANNs. It states that the optimal value of the objective func-
tion is small if the approximation capability of the parametric function spaces N ′0, Nn,
n = 0, . . . , N − 1, is high. The approximation capability of ANNs was discussed in
Subsection 2.1.5, and sufficiently large ANNs with 2 hidden layers are so called universal
approximators. Thm. 1 also presented a universal approximation theorem for width-
bounded ANNs. Because of the universal approximation property, there exists ANNs with
suitable network parameters such that the obtained numerical solution is approximately
accurate. The proof of Thm. 4 can be found in (Han and Long, 2018).
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Chapter 7
Conclusion

The goal of the thesis was to implement the deep BSDE method, and test it on two different
PDEs. In the thesis, necessary background theory is presented to understand the structure
of ANNs, deep learning, and also the reformulation from semilinear parabolic PDEs to
BSDEs. Implementation details are given, and numerical results presented and discussed.
To conclude, a summary of the methodology and the numerical results is given in this
chapter, and lastly, future work is discussed.

7.1 Summary
The presented deep BSDE method solves terminal value problems for semilinear parabolic
PDEs using deep learning. By Itô’s formula, a semilinear parabolic PDE can be written
equivalently as a BSDE for a given stochastic process, in the sense that the solution of the
BSDE also solves the semilinear parabolic PDE. The connected solutions are given by the
nonlinear Feynman-Kac formula. The BSDEs are temporally discretized using the Euler
scheme, and the unknown coefficient (spatial gradient of the solution) is approximated by
an MLP at each time step. The input of the ANN is then sampled paths of the stochastic
process, and the output is the approximated value of the solution at terminal time. The
loss function of the network is given by the difference between the output and the terminal
condition. The goal of the learning is to minimize this loss function with respect to the
network parameters that are included in the MLPs at each discretization step.

The deep BSDE method is implemented to solve the 100-dimensional Allen-Cahn
equation and the 100-dimensional HJB equation, both with 20 temporal discretization
steps. The MLPs consist of two 110-dimensional hidden layers, equipped with the ReLU
as activation function. The ANN is trained on 64 sampled paths and tested against 256
Monte Carlo simulations. The training is performed using the Adam optimizer, which is
an SGD type algorithm, to minimize the loss function. The method achieved a relative
approximation error of 0.20% after 4000 iteration steps for the Allen-Cahn equation, and
0.22% after 2000 iteration steps for the HJB equation. The runtime of a single run when
solving the Allen-Cahn and the HJB equation was 721 and 639 seconds, respectively.
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The model performed well for several activation functions, and the conclusion would
be to choose the most computationally efficient one to make use of this advantage. Af-
ter testing the method on different batch sizes, the method proved not to be as prone to
underfitting for small batch sizes as one could expect from a deep learning perspective.
The accuracy does, however, generally improve for larger batch sizes. The accuracy also
improves for more discretization steps, but also leads to a higher runtime. The choice of
the number of discretization steps is therefore controlled by a tradeoff between runtime
and accuracy.

The numerical results for the deep BSDE method are great in terms of both accuracy
and computational cost. Analysis of PDEs will continue to be important, and methods to
minimize the computational cost of the analysis are continuously subject to research. Tra-
ditional numerical methods suffer the curse of dimensionality, and can therefore become
too computationally expensive or give unreliable results in higher dimensions. The deep
BSDE method may therefore be a preferred option to achieve the most correct represen-
tation of real world phenomenons, by solving PDEs of higher dimensions than previously
possible. It also opens the possibility of solving more complex and demanding problems
in various areas, such as economics, finance, operational research, and physics. For ex-
ample in operational research, one can consider many more participating entities directly,
without having to make ad hoc assumptions. The method could also potentially relieve
computational capacity, since today a lot of computing power is used to solve PDEs nu-
merically.

7.2 Future Work
A posteriori error estimates and an upper bound of optimal loss was presented in this thesis.
It follows that the numerical solution obtained by the deep BSDE method is analytically
proved to be approximately accurate, for which the numerical results comply. However,
there does not exist a complete theoretical framework for explaining the effectiveness of
ANNs. This is currently being eagerly investigated. More numerical experiments on the
different features of the ANN part of the method would be interesting to delve further
into with regard to how it impacts the results. The method can also be further optimized
through hyperparameter tuning of the ANN. It would also be valuable to test the method
on more semilinear parabolic PDEs with varying characteristics, with focus on the affect
on computational cost. (Han and Long, 2018) extends the deep BSDE method to solve
coupled BSDEs and a wider class of quasilinear parabolic PDEs. Future work could also
include exploration of the possibility of using deep learning to solve other types of PDEs
inspired by the mindset in the deep BSDE method.
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Appendix

A Python code for learning the sine function

1 #Import necessary libraries
2 import matplotlib.pyplot as plt
3 import tensorflow as tf
4 import numpy as np
5

6 #Define placeholders
7 x = tf.placeholder(’float’, [None, 1])
8 y = tf.placeholder(’float’, [None, 1])
9

10 #Create neural network graph
11 h1 = tf.contrib.layers.fully_connected(x, 100, activation_fn=tf.nn.relu)
12 h2 = tf.contrib.layers.fully_connected(h1, 100, activation_fn=tf.nn.relu)
13 result = tf.contrib.layers.fully_connected(h2, 1, activation_fn=None)
14

15 #Define loss function
16 loss = tf.nn.l2_loss(result - y)
17

18 #Define an optimizer to minimize the loss
19 optimizer = tf.train.AdamOptimizer().minimize(loss)
20

21 #Initialize variables
22 init = tf.global_variables_initializer()
23

24 #Run 10 000 sessions
25 sess = tf.Session()
26 sess.run(init)
27 for i in range(10000):
28 xtrain = np.random.rand(100) * 10
29 ytrain = np.sin(xtrain)
30 sess.run(optimizer, feed_dict={x: xtrain[:, None], y: ytrain[:, None

]})
31

32 #Get predictions on test data
33 xtest = np.random.rand(50) * 10
34 ypred = sess.run(result, feed_dict={x: xtest[:, None]})
35

36 #Plot sine function together with predictions
37 plt.scatter(xtest, ypred, marker=’o’, label=’Predicted values: $f(x)$’)
38 plt.plot(np.arange(0,10,1/10), np.sin(np.arange(0,10,1/10)), color=’green’

, label=’$fˆ*(x)=sin(x)$’)
39 plt.title(’Approximation of sine function using neural network’)
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40 plt.xlabel(’$x$’)
41 plt.legend(numpoints=1)
42 plt.show()

Listing A: Python code for creating a neural network that learns the sine function using TensorFlow.
The result is shown in Fig. 2.5 in Subsection 2.1.3.

A placeholder is a data structure in TensorFlow that can store vectors and matrices. This
has to be defined in order to create the neural network graph. In the example above, the
graph consists of two hidden layers, h1 and h2, that are fully connected from the input
layer x to the output layer result. The ReLU is used as the activation function in the
hidden layers. After the graph is created, a loss function and optimizer is defined. In the
TensorFlow framework, all computations on the graph are done in a session. Firstly, the
variables are initialized and then 10 000 sessions are run, each training the network on 100
data points from 0 to 10. After the network has been trained, it can perform predictions on
new data.

B Python code for solving the Allen-Cahn equation using
the deep BSDE method

1 #Import necessary libraries
2 import time
3 import numpy as np
4 import tensorflow as tf
5 import matplotlib.pyplot as plt
6 from scipy.stats import multivariate_normal as normal
7 from tensorflow import constant_initializer as const_init
8 from tensorflow import random_normal_initializer as norm_init
9 from tensorflow import random_uniform_initializer as unif_init

10 from tensorflow.python.ops import control_flow_ops
11 from tensorflow.python.training.moving_averages import

assign_moving_average
12

13 class SolveAllenCahn:
14

15 def __init__(self, sess):
16 self.sess = sess
17 #Define variables
18 self.d = 100
19 self.dh = self.d + 10
20 self.T = 0.3
21 self.N = 20
22 self.l = (self.T + 0.0) / self.N
23 self.time_stamp = np.arange(0, self.N) * self.l
24 self.batch_size = 64
25 self.M = 256
26 self.n_maxstep = 4000
27 self.n_displaystep = 100
28 self.learning_rate = 5e-4
29 self.extra_train_ops = []
30

31 def build(self):
32 start_time = time.time()
33 #Define tensor types
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34 self.X = tf.placeholder(dtype=tf.float64, shape=[None, self.d,
self.N+1], name=’X’)

35 self.dW = tf.placeholder(dtype=tf.float64, shape=[None, self.d,
self.N], name=’dW’)

36 self.Y0 = tf.Variable(initial_value=tf.random_uniform(shape=[1],
dtype=tf.float64, minval=0.3, maxval=0.6))

37 self.Z0 = tf.Variable(initial_value=tf.random_uniform(shape=[1,
self.d], dtype=tf.float64, minval=-0.1, maxval=0.1))

38 self.is_training = tf.placeholder(dtype=tf.bool)
39 #Create neural network graph
40 self.allones = tf.ones(shape=tf.stack([tf.shape(self.dW)[0], 1]),

dtype=tf.float64)
41 Y = self.allones * self.Y0
42 Z = tf.matmul(self.allones, self.Z0)
43 with tf.variable_scope(’forward_connections’):
44 for n in range(0, self.N-1):
45 Y = Y - self.f(self.time_stamp[n], self.X[:, :, n], Y, Z)

* self.l
46 Y = Y + tf.reduce_sum(Z * self.dW[:, :, n], axis=1,

keepdims=True)
47 Z = self.subnetwork(self.X[:, :, n+1], str(n+1)) / self.d
48 #Terminal time
49 Y = Y - self.f(self.time_stamp[self.N-1], self.X[:, :, self.N

-1], Y, Z) * self.l
50 Y = Y + tf.reduce_sum(Z * self.dW[:, :, self.N-1], axis=1,

keepdims=True)
51 #Loss calculation
52 delta = Y - self.h(self.T, self.X[:, :, self.N])
53 self.clipped_delta = tf.clip_by_value(delta, clip_value_min

=-50.0, clip_value_max=50.0)
54 self.loss = tf.reduce_mean(self.clipped_delta**2)
55 self.time_build = time.time() - start_time
56

57 def f(self, t, X, Y, Z):
58 #Nonlinear term
59 return Y - tf.pow(Y, 3)
60

61 def h(self, t, X):
62 #Terminal condition
63 return 1 / (2 + 0.4 * (tf.norm(X, ord=2, axis=1, keepdims=True))

**2)
64

65 def subnetwork(self, x, name):
66 #Create a subnetwork
67 with tf.variable_scope(name):
68 x_layer = self.batch_norm(x, name=’initial’)
69 layer1 = self.add_layer(x_layer, dim=self.dh, name=’layer1’)
70 layer2 = self.add_layer(layer1, dim=self.dh, name=’layer2’)
71 z_layer = self.add_layer(layer2, dim=self.d, activation=None,

name=’result’)
72

73 return z_layer
74

75 def add_layer(self, input_, dim, activation=tf.nn.relu, name=’linear’)
:

76 #Create a single layer
77 with tf.variable_scope(name):
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78 #Input function
79 shape = input_.get_shape().as_list()
80 w = tf.get_variable(’weights’, shape=[shape[1], dim], dtype=tf

.float64, initializer=norm_init(mean=0.0, stddev=5.0/np.sqrt(shape[1]+
dim)))

81 layer = tf.matmul(input_, w)
82 #Batch normalization
83 layer_bn = self.batch_norm(layer, name=’normalization’)
84 #Activation
85 if activation != None:
86

87 return activation(layer_bn)
88 else:
89

90 return layer_bn
91

92 def batch_norm(self, x, name):
93 #Perform batch normalization
94 with tf.variable_scope(name):
95 #Define tensor types
96 params_shape = [x.get_shape()[-1]]
97 beta = tf.get_variable(’beta’, shape=params_shape, dtype=tf.

float64, initializer=norm_init(mean=0.0, stddev=0.1, dtype=tf.float64)
)

98 gamma = tf.get_variable(’gamma’, shape=params_shape, dtype=tf.
float64, initializer=unif_init(minval=0.1, maxval=0.5, dtype=tf.
float64))

99 mv_mean = tf.get_variable(’moving_mean’, shape=params_shape,
dtype=tf.float64, initializer=const_init(value=0.0, dtype=tf.float64),
trainable=False)

100 mv_var = tf.get_variable(’moving_variance’, shape=params_shape
, dtype=tf.float64, initializer=const_init(value=1.0, dtype=tf.float64
), trainable=False)

101 #Fix mean and variance of layer x
102 mean, variance = tf.nn.moments(x, axes=[0], name=’moments’)
103 self.extra_train_ops.append(assign_moving_average(mv_mean,

mean, decay=0.99))
104 self.extra_train_ops.append(assign_moving_average(mv_var,

variance, decay=0.99))
105 mean, variance = control_flow_ops.cond(self.is_training,

lambda: (mean, variance), lambda: (mv_mean, mv_var))
106 y = tf.nn.batch_normalization(x, mean, variance, offset=beta,

scale=gamma, variance_epsilon=1e-06)
107 y.set_shape(x.get_shape())
108

109 return y
110

111 def train(self):
112 start_time = time.time()
113 #Define training operations
114 self.global_step = tf.get_variable(’global_step’, shape=[], dtype=

tf.int32, initializer=const_init(value=1), trainable=False)
115 grads = tf.gradients(self.loss, tf.trainable_variables())
116 optimizer = tf.train.AdamOptimizer(self.learning_rate)
117 train_ops = [optimizer.apply_gradients(zip(grads, tf.

trainable_variables()), global_step=self.global_step)] + self.
extra_train_ops
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118 self.train_op = tf.group(*train_ops)
119 self.loss_history = []
120 self.init_history = []
121 self.runtime_history = []
122 dW_test, X_test = self.sample_path(self.M)
123 feed_dict_test = {self.dW: dW_test, self.X: X_test, self.

is_training: False}
124 #Initialization
125 step = 1
126 self.sess.run(tf.global_variables_initializer())
127 temp_loss = self.sess.run(self.loss, feed_dict=feed_dict_test)
128 temp_init = self.Y0.eval()[0]
129 runtime = time.time()-start_time+self.time_build
130 self.loss_history.append(temp_loss)
131 self.init_history.append(temp_init)
132 self.runtime_history.append(runtime)
133 #Training
134 for _ in range(self.n_maxstep+1):
135 step = self.sess.run(self.global_step)
136 dW_train, X_train = self.sample_path(self.batch_size)
137 self.sess.run(self.train_op, feed_dict={self.dW: dW_train,

self.X: X_train, self.is_training: True})
138 if step % self.n_displaystep == 0:
139 temp_loss = self.sess.run(self.loss, feed_dict=

feed_dict_test)
140 temp_init = self.Y0.eval()[0]
141 runtime = time.time()-start_time+self.time_build
142 self.loss_history.append(temp_loss)
143 self.init_history.append(temp_init)
144 self.runtime_history.append(runtime)
145 print(’step: ’, step, ’\t loss: ’, temp_loss, ’\t Y0: ’,

temp_init, ’\t runtime: ’, runtime)
146 step += 1
147 end_time = time.time()
148

149 def sample_path(self, n_sample):
150 #Create sample paths
151 dW_sample = np.zeros([n_sample, self.d, self.N])
152 X_sample = np.zeros([n_sample, self.d, self.N+1])
153 for i in range(self.N):
154 dW_sample[:, :, i] = np.reshape(normal.rvs(mean=np.zeros(self.

d), cov=1, size=n_sample) * np.sqrt(self.l), (n_sample, self.d))
155 X_sample[:, :, i+1] = X_sample[:, :, i] + np.sqrt(2) *

dW_sample[:, :, i]
156

157 return dW_sample, X_sample
158

159 def main():
160 tf.reset_default_graph()
161 with tf.Session() as sess:
162 tf.set_random_seed(1)
163 model = SolveAllenCahn(sess)
164 model.build()
165 model.train()
166 results = np.zeros((len(model.init_history), 4))
167 results[:, 0] = np.arange(len(model.init_history)) * model.

n_displaystep
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168 results[:, 1] = model.loss_history
169 results[:, 2] = model.init_history
170 results[:, 3] = model.runtime_history
171 mat = np.matrix(results)
172 with open(’Allen_Cahn_results_seed1.txt’, ’w’) as f:
173 for line in mat:
174 np.savetxt(f, line)
175

176 if __name__ == ’__main__’:
177 np.random.seed(1)
178 main()

Listing B: Python code for solving the Allen-Cahn equation with the deep BSDE method
implemented in TensorFlow.

C Python code for solving the Hamilton-Jacobi-Bellman
equation using the deep BSDE method

1 #Import necessary libraries
2 import time
3 import numpy as np
4 import tensorflow as tf
5 import matplotlib.pyplot as plt
6 from scipy.stats import multivariate_normal as normal
7 from tensorflow import constant_initializer as const_init
8 from tensorflow import random_normal_initializer as norm_init
9 from tensorflow import random_uniform_initializer as unif_init

10 from tensorflow.python.ops import control_flow_ops
11 from tensorflow.python.training.moving_averages import

assign_moving_average
12

13 class SolveHJB:
14

15 def __init__(self, sess):
16 self.sess = sess
17 #Define variables
18 self.lambda_ = 1
19 self.d = 100
20 self.dh = self.d + 10
21 self.T = 1
22 self.N = 20
23 self.l = (self.T + 0.0) / self.N
24 self.time_stamp = np.arange(0, self.N) * self.l
25 self.batch_size = 64
26 self.M = 256
27 self.n_maxstep = 2000
28 self.n_displaystep = 100
29 self.learning_rate = 1e-2
30 self.extra_train_ops = []
31

32 def build(self):
33 start_time = time.time()
34 #Define tensor types
35 self.X = tf.placeholder(dtype=tf.float64, shape=[None, self.d,

self.N+1], name=’X’)
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36 self.dW = tf.placeholder(dtype=tf.float64, shape=[None, self.d,
self.N], name=’dW’)

37 self.Y0 = tf.Variable(initial_value=tf.random_uniform(shape=[1],
dtype=tf.float64, minval=0.3, maxval=0.6))

38 self.Z0 = tf.Variable(initial_value=tf.random_uniform(shape=[1,
self.d], dtype=tf.float64, minval=-0.1, maxval=0.1))

39 self.is_training = tf.placeholder(dtype=tf.bool)
40 #Create neural network graph
41 self.allones = tf.ones(shape=tf.stack([tf.shape(self.dW)[0], 1]),

dtype=tf.float64)
42 Y = self.allones * self.Y0
43 Z = tf.matmul(self.allones, self.Z0)
44 with tf.variable_scope(’forward_connections’):
45 for n in range(0, self.N-1):
46 Y = Y - self.f(self.time_stamp[n], self.X[:, :, n], Y, Z)

* self.l
47 Y = Y + tf.reduce_sum(Z * self.dW[:, :, n], axis=1,

keepdims=True)
48 Z = self.subnetwork(self.X[:, :, n+1], str(n+1)) / self.d
49 #Terminal time
50 Y = Y - self.f(self.time_stamp[self.N-1], self.X[:, :, self.N

-1], Y, Z) * self.l
51 Y = Y + tf.reduce_sum(Z * self.dW[:, :, self.N-1], axis=1,

keepdims=True)
52 #Loss calculation
53 delta = Y - self.h(self.T, self.X[:, :, self.N])
54 self.clipped_delta = tf.clip_by_value(delta, clip_value_min

=-50.0, clip_value_max=50.0)
55 self.loss = tf.reduce_mean(self.clipped_delta**2)
56 self.time_build = time.time() - start_time
57

58 def f(self, t, X, Y, Z):
59 #Nonlinear term
60 return - self.lambda_ * tf.norm(Z/np.sqrt(2), ord=2, axis=1,

keepdims=True)**2
61

62 def h(self, t, X):
63 #Terminal condition
64 return tf.math.log((1 + (tf.norm(X, ord=2, axis=1, keepdims=True))

**2) / 2)
65

66 def subnetwork(self, x, name):
67 #Create a subnetwork
68 with tf.variable_scope(name):
69 x_layer = self.batch_norm(x, name=’initial’)
70 layer1 = self.add_layer(x_layer, dim=self.dh, name=’layer1’)
71 layer2 = self.add_layer(layer1, dim=self.dh, name=’layer2’)
72 z_layer = self.add_layer(layer2, dim=self.d, activation=None,

name=’result’)
73

74 return z_layer
75

76 def add_layer(self, input_, dim, activation=tf.nn.relu, name=’linear’)
:

77 #Create a single layer
78 with tf.variable_scope(name):
79 #Input function
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80 shape = input_.get_shape().as_list()
81 w = tf.get_variable(’weights’+name, shape=[shape[1], dim],

dtype=tf.float64, initializer=norm_init(mean=0.0, stddev=5.0/np.sqrt(
shape[1]+dim)))

82 layer = tf.matmul(input_, w)
83 #Batch normalization
84 layer_bn = self.batch_norm(layer, name=’normalization’)
85 #Activation
86 if activation != None:
87

88 return activation(layer_bn)
89 else:
90

91 return layer_bn
92

93 def batch_norm(self, x, name):
94 #Perform batch normalization
95 with tf.variable_scope(name):
96 #Define tensor types
97 params_shape = [x.get_shape()[-1]]
98 beta = tf.get_variable(’beta’, shape=params_shape, dtype=tf.

float64, initializer=norm_init(mean=0.0, stddev=0.1, dtype=tf.float64)
)

99 gamma = tf.get_variable(’gamma’, shape=params_shape, dtype=tf.
float64, initializer=unif_init(minval=0.1, maxval=0.5, dtype=tf.
float64))

100 mv_mean = tf.get_variable(’moving_mean’, shape=params_shape,
dtype=tf.float64, initializer=const_init(value=0.0, dtype=tf.float64),
trainable=False)

101 mv_var = tf.get_variable(’moving_variance’, shape=params_shape
, dtype=tf.float64, initializer=const_init(value=1.0, dtype=tf.float64
), trainable=False)

102 #Fix mean and variance of layer x
103 mean, variance = tf.nn.moments(x, axes=[0], name=’moments’)
104 self.extra_train_ops.append(assign_moving_average(mv_mean,

mean, decay=0.99))
105 self.extra_train_ops.append(assign_moving_average(mv_var,

variance, decay=0.99))
106 mean, variance = control_flow_ops.cond(self.is_training,

lambda: (mean, variance), lambda: (mv_mean, mv_var))
107 y = tf.nn.batch_normalization(x, mean, variance, offset=beta,

scale=gamma, variance_epsilon=1e-06)
108 y.set_shape(x.get_shape())
109

110 return y
111

112 def train(self):
113 start_time = time.time()
114 #Define training operations
115 self.global_step = tf.get_variable(’global_step’, shape=[], dtype=

tf.int32, initializer=const_init(value=1), trainable=False)
116 grads = tf.gradients(self.loss, tf.trainable_variables())
117 optimizer = tf.train.AdamOptimizer(self.learning_rate)
118 train_ops = [optimizer.apply_gradients(zip(grads, tf.

trainable_variables()), global_step=self.global_step)] + self.
extra_train_ops

119 self.train_op = tf.group(*train_ops)
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120 self.loss_history = []
121 self.init_history = []
122 self.runtime_history = []
123 dW_test, X_test = self.sample_path(self.M)
124 feed_dict_test = {self.dW: dW_test, self.X: X_test, self.

is_training: False}
125 #Initialization
126 step = 1
127 self.sess.run(tf.global_variables_initializer())
128 temp_loss = self.sess.run(self.loss, feed_dict=feed_dict_test)
129 temp_init = self.Y0.eval()[0]
130 runtime = time.time()-start_time+self.time_build
131 self.loss_history.append(temp_loss)
132 self.init_history.append(temp_init)
133 self.runtime_history.append(runtime)
134 #Training
135 for _ in range(self.n_maxstep+1):
136 step = self.sess.run(self.global_step)
137 dW_train, X_train = self.sample_path(self.batch_size)
138 self.sess.run(self.train_op, feed_dict={self.dW: dW_train,

self.X: X_train, self.is_training: True})
139 if step % self.n_displaystep == 0:
140 temp_loss = self.sess.run(self.loss, feed_dict=

feed_dict_test)
141 temp_init = self.Y0.eval()[0]
142 runtime = time.time()-start_time+self.time_build
143 self.loss_history.append(temp_loss)
144 self.init_history.append(temp_init)
145 self.runtime_history.append(runtime)
146 print(’step: ’, step, ’\t loss: ’, temp_loss, ’\t Y0: ’,

temp_init, ’\t runtime: ’, runtime)
147 step += 1
148 end_time = time.time()
149

150 def sample_path(self, n_sample):
151 #Create sample paths
152 dW_sample = np.zeros([n_sample, self.d, self.N])
153 X_sample = np.zeros([n_sample, self.d, self.N+1])
154 for i in range(self.N):
155 dW_sample[:, :, i] = np.reshape(normal.rvs(mean=np.zeros(self.

d), cov=1, size=n_sample) * np.sqrt(self.l), (n_sample, self.d))
156 X_sample[:, :, i+1] = X_sample[:, :, i] + np.sqrt(2) *

dW_sample[:, :, i]
157

158 return dW_sample, X_sample
159

160 def main():
161 tf.reset_default_graph()
162 with tf.Session() as sess:
163 tf.set_random_seed(1)
164 model = SolveHJB(sess)
165 model.build()
166 model.train()
167 results = np.zeros((len(model.init_history), 4))
168 results[:, 0] = np.arange(len(model.init_history)) * model.

n_displaystep
169 results[:, 1] = model.loss_history
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170 results[:, 2] = model.init_history
171 results[:, 3] = model.runtime_history
172 mat = np.matrix(results)
173 with open(’HJB_results_seed1.txt’, ’w’) as f:
174 for line in mat:
175 np.savetxt(f, line)
176

177 if __name__ == ’__main__’:
178 np.random.seed(1)
179 main()

Listing C: Python code for solving the Hamilton-Jacobi-Bellman equation with the deep BSDE
method implemented in TensorFlow.

D Numerical results for the Allen-Cahn equation
Numerical results when solving the Allen-Cahn equation using random seeds 1, 2, 3, 4, 5:

step, Y0 mean, Y0 std, rel error mean, rel error std, loss mean, loss std, runtime
0, 4.1628e-01, 7.4769e-02, 6.8841e+00, 1.4161e+00, 8.787443e-02, 3.843434e-02, 107
100, 3.6803e-01, 7.4520e-02, 5.9703e+00, 1.4114e+00, 6.535385e-02, 3.200258e-02, 150
200, 3.2422e-01, 7.3803e-02, 5.1405e+00, 1.3978e+00, 4.826244e-02, 2.658619e-02, 165
300, 2.8473e-01, 7.2391e-02, 4.3925e+00, 1.3710e+00, 3.548269e-02, 2.193004e-02, 176
400, 2.4917e-01, 7.0387e-02, 3.7191e+00, 1.3331e+00, 2.582817e-02, 1.785633e-02, 187
500, 2.1759e-01, 6.7610e-02, 3.1210e+00, 1.2805e+00, 1.867666e-02, 1.438847e-02, 198
600, 1.8970e-01, 6.4209e-02, 2.5928e+00, 1.2161e+00, 1.338557e-02, 1.141761e-02, 209
700, 1.6545e-01, 6.0125e-02, 2.1335e+00, 1.1387e+00, 9.538020e-03, 8.914355e-03, 230
800, 1.4464e-01, 5.5477e-02, 1.7393e+00, 1.0507e+00, 6.722671e-03, 6.779927e-03, 240
900, 1.2698e-01, 5.0395e-02, 1.4049e+00, 9.5444e-01, 4.750389e-03, 5.107160e-03, 266
1000, 1.1223e-01, 4.4970e-02, 1.1256e+00, 8.5170e-01, 3.335155e-03, 3.743206e-03, 280
1100, 9.9963e-02, 3.9527e-02, 8.9324e-01, 7.4862e-01, 2.336927e-03, 2.680810e-03, 291
1200, 8.9977e-02, 3.4164e-02, 7.0411e-01, 6.4704e-01, 1.640629e-03, 1.874275e-03, 302
1300, 8.1842e-02, 2.9036e-02, 5.5003e-01, 5.4992e-01, 1.167012e-03, 1.288745e-03, 313
1400, 7.5384e-02, 2.4199e-02, 4.2773e-01, 4.5831e-01, 8.412520e-04, 8.654213e-04, 325
1500, 7.0165e-02, 1.9903e-02, 3.2889e-01, 3.7696e-01, 6.270977e-04, 5.720391e-04, 336
1600, 6.6034e-02, 1.6104e-02, 2.5063e-01, 3.0500e-01, 4.849912e-04, 3.692172e-04, 347
1700, 6.2860e-02, 1.2772e-02, 1.9052e-01, 2.4189e-01, 3.920034e-04, 2.329697e-04, 358
1800, 6.0361e-02, 9.9254e-03, 1.4321e-01, 1.8798e-01, 3.325983e-04, 1.427663e-04, 375
1900, 5.8419e-02, 7.6349e-03, 1.0642e-01, 1.4460e-01, 2.972717e-04, 8.864378e-05, 399
2000, 5.6849e-02, 5.7607e-03, 7.6688e-02, 1.0910e-01, 2.727888e-04, 5.467092e-05, 413
2100, 5.5698e-02, 4.3096e-03, 5.4886e-02, 8.1621e-02, 2.592792e-04, 3.691842e-05, 424
2200, 5.4925e-02, 3.1949e-03, 4.0254e-02, 6.0510e-02, 2.505639e-04, 2.771001e-05, 436
2300, 5.4335e-02, 2.2672e-03, 2.9079e-02, 4.2940e-02, 2.443694e-04, 2.258483e-05, 453
2400, 5.3855e-02, 1.5528e-03, 2.0205e-02, 2.9262e-02, 2.407724e-04, 2.079190e-05, 465
2500, 5.3511e-02, 1.1608e-03, 1.4776e-02, 2.1130e-02, 2.384644e-04, 2.153510e-05, 475
2600, 5.3156e-02, 8.4490e-04, 9.3571e-03, 1.4627e-02, 2.349280e-04, 2.085178e-05, 487
2700, 5.3075e-02, 6.5503e-04, 7.0108e-03, 1.1488e-02, 2.322493e-04, 2.178433e-05, 499
2800, 5.3103e-02, 5.1575e-04, 7.3202e-03, 8.6459e-03, 2.275417e-04, 2.135036e-05, 511
2900, 5.2965e-02, 3.5528e-04, 5.4954e-03, 4.9846e-03, 2.238018e-04, 2.381590e-05, 521
3000, 5.3026e-02, 2.0888e-04, 5.3655e-03, 2.2915e-03, 2.207812e-04, 2.330269e-05, 531
3100, 5.3029e-02, 7.5024e-05, 4.3348e-03, 1.4209e-03, 2.164597e-04, 2.516891e-05, 541
3200, 5.2906e-02, 9.9076e-05, 2.5274e-03, 1.0869e-03, 2.124972e-04, 2.557801e-05, 562
3300, 5.2872e-02, 2.3588e-04, 4.0345e-03, 2.3505e-03, 2.098231e-04, 2.566001e-05, 590
3400, 5.2881e-02, 1.0750e-04, 2.1009e-03, 1.4434e-03, 2.044831e-04, 2.658910e-05, 612
3500, 5.2872e-02, 2.2110e-04, 3.6714e-03, 2.4272e-03, 2.010136e-04, 2.810828e-05, 628
3600, 5.2795e-02, 1.2257e-04, 2.0828e-03, 1.0288e-03, 1.975197e-04, 2.696372e-05, 652
3700, 5.2835e-02, 1.8758e-04, 2.7816e-03, 2.3066e-03, 1.921259e-04, 2.666384e-05, 680
3800, 5.2783e-02, 1.1167e-04, 1.6050e-03, 1.4143e-03, 1.862181e-04, 2.801429e-05, 697
3900, 5.2845e-02, 2.7343e-04, 4.0803e-03, 3.3015e-03, 1.827567e-04, 2.829002e-05, 709
4000, 5.2898e-02, 1.0245e-04, 1.9682e-03, 1.8327e-03, 1.781489e-04, 2.864298e-05, 721

Numerical results when solving the Allen-Cahn equation using random seeds 6, 7, 8, 9, 10:

step, Y0 mean, Y0 std, rel error mean, rel error std, loss mean, loss std, runtime
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0, 5.0337e-01, 9.6788e-02, 8.5335e+00, 1.8331e+00, 1.437011e-01, 5.564459e-02, 102
100, 4.5486e-01, 9.6561e-02, 7.6148e+00, 1.8288e+00, 1.121758e-01, 4.753493e-02, 169
200, 4.1033e-01, 9.5887e-02, 6.7714e+00, 1.8160e+00, 8.761520e-02, 4.043618e-02, 181
300, 3.6965e-01, 9.4485e-02, 6.0009e+00, 1.7895e+00, 6.841093e-02, 3.410527e-02, 197
400, 3.3226e-01, 9.2453e-02, 5.2929e+00, 1.7510e+00, 5.323576e-02, 2.858179e-02, 216
500, 2.9822e-01, 8.9687e-02, 4.6482e+00, 1.6986e+00, 4.141740e-02, 2.381148e-02, 230
600, 2.6721e-01, 8.6094e-02, 4.0607e+00, 1.6306e+00, 3.203349e-02, 1.958802e-02, 241
700, 2.3916e-01, 8.1794e-02, 3.5296e+00, 1.5491e+00, 2.461082e-02, 1.588291e-02, 252
800, 2.1388e-01, 7.6770e-02, 3.0507e+00, 1.4540e+00, 1.879751e-02, 1.265861e-02, 264
900, 1.9126e-01, 7.1174e-02, 2.6224e+00, 1.3480e+00, 1.426094e-02, 9.962493e-03, 275
1000, 1.7113e-01, 6.5237e-02, 2.2410e+00, 1.2356e+00, 1.073172e-02, 7.723961e-03, 288
1100, 1.5337e-01, 5.8984e-02, 1.9048e+00, 1.1171e+00, 8.021467e-03, 5.891384e-03, 302
1200, 1.3778e-01, 5.2597e-02, 1.6094e+00, 9.9615e-01, 5.940456e-03, 4.410208e-03, 313
1300, 1.2405e-01, 4.6349e-02, 1.3495e+00, 8.7781e-01, 4.357074e-03, 3.242002e-03, 325
1400, 1.1216e-01, 4.0196e-02, 1.1243e+00, 7.6129e-01, 3.169324e-03, 2.336460e-03, 337
1500, 1.0190e-01, 3.4374e-02, 9.2984e-01, 6.5102e-01, 2.289760e-03, 1.652354e-03, 349
1600, 9.3034e-02, 2.8993e-02, 7.6202e-01, 5.4911e-01, 1.650863e-03, 1.145534e-03, 361
1700, 8.5436e-02, 2.4226e-02, 6.1811e-01, 4.5882e-01, 1.192021e-03, 7.790693e-04, 372
1800, 7.9041e-02, 1.9913e-02, 4.9698e-01, 3.7714e-01, 8.698701e-04, 5.188309e-04, 384
1900, 7.3729e-02, 1.6107e-02, 3.9638e-01, 3.0505e-01, 6.490267e-04, 3.398815e-04, 396
2000, 6.9253e-02, 1.2828e-02, 3.1161e-01, 2.4295e-01, 4.986863e-04, 2.182453e-04, 410
2100, 6.5619e-02, 1.0106e-02, 2.4279e-01, 1.9141e-01, 4.017790e-04, 1.403724e-04, 421
2200, 6.2590e-02, 7.8849e-03, 1.8543e-01, 1.4934e-01, 3.391697e-04, 8.843842e-05, 433
2300, 6.0187e-02, 5.9830e-03, 1.3991e-01, 1.1331e-01, 2.977515e-04, 5.743995e-05, 445
2400, 5.8379e-02, 4.3932e-03, 1.0566e-01, 8.3205e-02, 2.725372e-04, 3.854861e-05, 458
2500, 5.6917e-02, 3.2225e-03, 7.7965e-02, 6.1032e-02, 2.571286e-04, 2.653649e-05, 479
2600, 5.5716e-02, 2.3307e-03, 5.5897e-02, 4.3295e-02, 2.484813e-04, 1.957296e-05, 492
2700, 5.4858e-02, 1.7261e-03, 3.9931e-02, 3.1509e-02, 2.402114e-04, 1.786722e-05, 503
2800, 5.4261e-02, 1.1985e-03, 2.7679e-02, 2.2680e-02, 2.347535e-04, 1.785761e-05, 514
2900, 5.3874e-02, 7.3153e-04, 2.0335e-02, 1.3855e-02, 2.299998e-04, 1.644973e-05, 527
3000, 5.3531e-02, 4.6246e-04, 1.3843e-02, 8.7587e-03, 2.265953e-04, 1.604588e-05, 538
3100, 5.3258e-02, 3.2660e-04, 8.7056e-03, 6.1447e-03, 2.239844e-04, 1.631363e-05, 550
3200, 5.3132e-02, 2.4233e-04, 6.3600e-03, 4.4920e-03, 2.208020e-04, 1.659344e-05, 561
3300, 5.2929e-02, 1.5912e-04, 3.5060e-03, 1.6525e-03, 2.160555e-04, 1.752887e-05, 572
3400, 5.2872e-02, 1.7456e-04, 2.6637e-03, 2.3844e-03, 2.140824e-04, 1.796415e-05, 584
3500, 5.2869e-02, 1.3607e-04, 2.1716e-03, 1.9030e-03, 2.113229e-04, 1.659046e-05, 596
3600, 5.2899e-02, 1.0886e-04, 2.2698e-03, 1.6084e-03, 2.086347e-04, 1.998030e-05, 607
3700, 5.2903e-02, 1.0801e-04, 2.2335e-03, 1.7256e-03, 2.044841e-04, 2.031164e-05, 629
3800, 5.2976e-02, 1.3665e-04, 3.9254e-03, 1.5311e-03, 2.010309e-04, 2.036221e-05, 650
3900, 5.2994e-02, 1.0560e-04, 3.6811e-03, 2.0000e-03, 1.964408e-04, 2.234523e-05, 671
4000, 5.2977e-02, 1.9666e-04, 4.1898e-03, 2.7481e-03, 1.937513e-04, 2.408719e-05, 693

E Numerical results for the Hamilton-Jacobi-Bellman equa-
tion

Numerical results when solving the HJB equation using random seeds 1, 2, 3, 4, 5:

step, Y0 mean, Y0 std, rel error mean, rel error std, loss mean, loss std, runtime
0, 4.1628e-01, 7.4769e-02, 9.0931e-01, 1.6289e-02, 1.747056e+01, 5.826944e-01, 101
100, 1.3667e+00, 7.3501e-02, 7.0225e-01, 1.6013e-02, 9.866117e+00, 5.304473e-01, 165
200, 2.1217e+00, 7.3926e-02, 5.3777e-01, 1.6106e-02, 4.700103e+00, 4.148533e-01, 195
300, 2.6081e+00, 7.9677e-02, 4.3180e-01, 1.7358e-02, 3.139560e+00, 3.026362e-01, 225
400, 2.9641e+00, 8.1349e-02, 3.5424e-01, 1.7723e-02, 2.436543e+00, 2.351695e-01, 254
500, 3.3151e+00, 8.5775e-02, 2.7777e-01, 1.8687e-02, 1.749224e+00, 1.856897e-01, 284
600, 3.6616e+00, 8.4640e-02, 2.0229e-01, 1.8440e-02, 1.099425e+00, 1.630479e-01, 296
700, 3.9785e+00, 7.0377e-02, 1.3324e-01, 1.5332e-02, 5.716744e-01, 1.055683e-01, 307
800, 4.2346e+00, 4.9612e-02, 7.7454e-02, 1.0808e-02, 2.282552e-01, 5.158093e-02, 318
900, 4.4125e+00, 3.1511e-02, 3.8693e-02, 6.8650e-03, 7.464607e-02, 1.634928e-02, 330
1000, 4.5146e+00, 1.6807e-02, 1.6459e-02, 3.6617e-03, 3.079260e-02, 3.093240e-03, 359
1100, 4.5643e+00, 8.0359e-03, 5.6168e-03, 1.7507e-03, 2.224122e-02, 9.612427e-04, 388
1200, 4.5866e+00, 3.7256e-03, 1.0106e-03, 4.7152e-04, 2.123183e-02, 9.579685e-04, 418
1300, 4.5945e+00, 1.3024e-03, 9.6716e-04, 2.8375e-04, 2.110954e-02, 1.372498e-03, 447
1400, 4.5980e+00, 1.1659e-03, 1.7216e-03, 2.5400e-04, 2.104015e-02, 9.784806e-04, 477
1500, 4.5991e+00, 1.0234e-03, 1.9687e-03, 2.2295e-04, 2.082558e-02, 8.644073e-04, 506
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1600, 4.5993e+00, 5.9528e-04, 2.0061e-03, 1.2969e-04, 2.103400e-02, 1.039068e-03, 536
1700, 4.5993e+00, 6.4562e-04, 2.0141e-03, 1.4066e-04, 2.072233e-02, 8.715655e-04, 565
1800, 4.5995e+00, 1.2581e-03, 2.0510e-03, 2.7409e-04, 2.072133e-02, 1.265973e-03, 594
1900, 4.5988e+00, 1.5457e-03, 1.8959e-03, 3.3675e-04, 2.071271e-02, 6.700979e-04, 622
2000, 4.6001e+00, 8.0372e-04, 2.1762e-03, 1.7510e-04, 2.085202e-02, 7.466265e-04, 639

Numerical results when solving the HJB equation using random seeds 6, 7, 8, 9, 10:

step, Y0 mean, Y0 std, rel error mean, rel error std, loss mean, loss std, runtime
0, 5.0337e-01, 9.6788e-02, 8.9034e-01, 2.1086e-02, 1.668191e+01, 7.602561e-01, 103
100, 1.4521e+00, 9.5866e-02, 6.8365e-01, 2.0885e-02, 9.073578e+00, 5.612733e-01, 166
200, 2.2050e+00, 9.3795e-02, 5.1961e-01, 2.0434e-02, 4.172950e+00, 3.202017e-01, 187
300, 2.6923e+00, 9.8522e-02, 4.1346e-01, 2.1464e-02, 2.769139e+00, 2.827191e-01, 198
400, 3.0507e+00, 1.0550e-01, 3.3538e-01, 2.2985e-02, 2.134726e+00, 2.768237e-01, 213
500, 3.4062e+00, 1.0558e-01, 2.5793e-01, 2.3002e-02, 1.494773e+00, 2.457177e-01, 226
600, 3.7501e+00, 9.9548e-02, 1.8300e-01, 2.1688e-02, 8.994417e-01, 1.935383e-01, 237
700, 4.0524e+00, 8.6611e-02, 1.1715e-01, 1.8869e-02, 4.386448e-01, 1.294924e-01, 258
800, 4.2890e+00, 6.3095e-02, 6.5590e-02, 1.3746e-02, 1.698321e-01, 6.802638e-02, 287
900, 4.4466e+00, 3.7894e-02, 3.1272e-02, 8.2557e-03, 5.866228e-02, 2.466546e-02, 301
1000, 4.5319e+00, 2.0061e-02, 1.2672e-02, 4.3705e-03, 2.908684e-02, 7.967692e-03, 319
1100, 4.5728e+00, 9.3442e-03, 3.7716e-03, 2.0357e-03, 2.300493e-02, 2.855015e-03, 337
1200, 4.5891e+00, 4.4502e-03, 8.9943e-04, 4.2101e-04, 2.200930e-02, 1.624966e-03, 356
1300, 4.5962e+00, 1.6994e-03, 1.3194e-03, 3.7022e-04, 2.215333e-02, 1.520778e-03, 374
1400, 4.5980e+00, 4.5254e-04, 1.7254e-03, 9.8590e-05, 2.194876e-02, 1.132205e-03, 393
1500, 4.5989e+00, 9.6933e-04, 1.9156e-03, 2.1118e-04, 2.163554e-02, 1.341660e-03, 410
1600, 4.5998e+00, 1.5161e-03, 2.1201e-03, 3.3031e-04, 2.150515e-02, 1.124084e-03, 421
1700, 4.5999e+00, 1.3676e-04, 2.1309e-03, 2.9794e-05, 2.171788e-02, 1.412311e-03, 432
1800, 4.6003e+00, 1.1297e-03, 2.2116e-03, 2.4611e-04, 2.170305e-02, 1.176512e-03, 447
1900, 4.5994e+00, 1.1152e-03, 2.0269e-03, 2.4296e-04, 2.125515e-02, 1.296377e-03, 467
2000, 4.6008e+00, 1.6792e-03, 2.3350e-03, 3.6583e-04, 2.141667e-02, 1.429779e-03, 494
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