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Abstract

We consider Dirichlet series with square summable coefficients, constituting the Hardy space
H 2. The purpose of this thesis is to study composition operators on this space. In particular,
we prove a result by Gordon and Hedenmalm which gives a description of the analytic
functions that generate bounded composition operators on the Hardy space of Dirichlet
series.

Sammendrag

Vi betrakter Dirichlet-rekker med kvadratisk summerbare koeffisienter som utgjør Hardy-
rommet H 2. Formålet med denne avhandlingen er å studere komposisjonsoperatorer p̊a
dette rommet. Eksempelvis beviser vi et resultat av Gordon og Hedenmalm som beskriver
de analytiske funksjonene som generer begrensede komposisjonsoperatorer p̊a Hardy-rommet
av Dirichlet-rekker.
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Introduction

In this thesis we are concerned with Dirichlet series of the form

f(s) =
∞∑
n=1

ann
−s, s ∈ C,

having square summable coefficients. We refer to the space of all such series as the Hardy
space H 2. Every element of H 2 is analytic in C1/2, where C1/2 := {s ∈ C : Re s > 1/2}.
Our main focus is the study of composition operators Cϕ on this space. For any analytic
function ϕ : C1/2 → C1/2 we define

Cϕf := f ◦ ϕ, f ∈H 2.

It is of particular interest to know which additional properties that must be assigned to ϕ,
in order to make the associated composition operator act boundedly on H 2. A complete
account for this problem was given in a paper by Gordon and Hedenmalm [9].

A similar theory has previously been developed on the Hardy space H2 of analytic func-
tions on the unit disk, whose power series has square summable coefficients. Most of this
work is attributed to J.E. Littlewood. In particular, he showed that every analytic self-map
ϕ of the unit disk generates a bounded composition operator Cϕ : H2 → H2. However, if
we want to ensure that a map ϕ generates a bounded composition operator on H 2, then
the assumption that ϕ is an analytic self-map of C1/2 is not sufficient. First we have to
impose certain arithmetic restrictions on the map ϕ so that the composition f ◦ ϕ becomes
a Dirichlet series. That is, the map ϕ must be of the form

ϕ(s) = c0s+
∞∑
n=1

cnn
−s,

where the second term is assumed to a convergent Dirichlet series and c0 is a non-negative
integer. Then we have to make sure that ϕ has the right mapping properties, so that the
composition f ◦ ϕ belongs to H 2. In particular, it turns out that ϕ must have an analytic
extension to the half-plane C0.

The norm of a composition operator Cϕ, either on H2 or H 2, is closely related to the
mapping properties of the generating function ϕ. In H2, the operator norm of Cϕ is related
to where ϕ maps the origin. The closer ϕ(0) is to the boundary of D, the larger the op-
erator norm will be. In the case where ϕ(0) = 0 the associated composition operator is a
contraction. This is called Littlewood’s subordination principle. In the space H 2 it is the
point w = ϕ(+∞) that, to some extent, controls the operator norm of Cϕ. The operator

1



norm is larger when the point w is closer to the boundary of C1/2. If ϕ(+∞) = +∞, then
the operator Cϕ is a contraction. The composition operators on H2 and H 2 have, in fact,
lower and upper bounds that only depend on the points ϕ(0) and ϕ(+∞), respectively.

We would like to know when these operators attains their upper bounds. More accurately,
what characterizes those analytic maps ϕ that maximizes the operator norm of Cϕ? This
question was answered in a paper by Shapiro [16], for the space H2. He found that the
operator norm Cϕ is maximal if and only if the map ϕ satisfies a certain property, referred
to as being inner. A map ϕ is called inner if the radial limit

lim
r→1−

|ϕ(reiθ)| = 1,

almost everywhere. This means that an inner function fixes the boundary points of the unit
disk. An analogues result to this was provided by Brevig and Perfekt [5], for the Hardy
space of Dirichlet series. They found that the operator norm of Cϕ is again maximal if and
only if ϕ in some sense maps the boundary of C0 to C1/2. This makes ϕ analogous to the
inner functions on D.

A recurring theme in the study of norms of composition operators is the existence of
subordination principles. A composition operator Cϕ is called subordinate to Cψ if

||Cϕf || ≤ ||Cψf ||

for every f ∈ H 2. Shapiro’s result (Theorem 1.20), that we mentioned above, tells us
that any analytic self-map of the unit disk ϕ, with ϕ(0) = w, generates a composition
operator that is subordinate to any composition operator generated by an inner function
ψ, with ψ(0) = w. Similarly, the result by Brevig and Perfekt (Theorem 5.3) provides
a subordination principle for the composition operators on H 2. In the same paper they
deduce another subordination principle for composition operators generated by a certain set
of analytic functions. These are of the form

ϕc(s) = c+
d∑
j=1

cjp
−s
j ,

where c = (c1, ..., cd) and pj is the j-th prime. The subordination principle says that a
composition operator Cϕb

is subordinate to Cϕc , if the sequence c majorizes the sequence b.
We will not prove these results from [5]. However, we are going to answer a question from
[5] regarding the existence of a more general subordination principle. Namely, will one of
the composition operators always be subordinate to the other, even if we do not assume that
one sequence majorize the other? This questioned will be answered by an example showing
that such a subordination principle does not hold.

The thesis is organized as follows. The first chapter is an exposition of the more familiar
Hardy space H2. This is meant to work as a source of comparison for the forthcoming
chapters. The second chapter is dedicated to the study of Dirichlet series, and we are mostly
interested in those that converge to a bounded analytic function. In chapter 3 we narrow
our attention to the Dirichlet series with square summable coefficients, which constitutes the
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Hardy space H 2. In chapter 4 we consider composition operators on H 2. We show here how
one can obtain a characterization of the analytic maps that generate bounded composition
operators on this space. The final chapter deals with some results regarding the norm of
such operators. In particular, we answer a question posed in a recent paper by Brevig and
Perfekt [5].
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Chapter 1

The Hardy Space H2

The aim of this chapter is to give an account for the general theory of the Hardy space H2 of
analytic functions on the unit disk. Most of the attention is given to compositions operators
generated by an analytic self-map ϕ : D → D. A fundamental result in this regard is Little-
wood’s subordination theorem for which two proofs will be given. In addition, there will be
a characterization of the norm of a composition operator in terms of inner functions, which
are mainly based upon the results of Shapiro [16]. Other results in the present chapter can
be found in [5], [7], [12] and [15].

The Hardy space H2 is the set of analytic functions on the open unit disk, denoted by
D := {z ∈ C : |z| < 1}, whose power series representation has square summable coefficients.
That is, for an analytic function f on D with power series

f(z) =
∞∑
n=0

f̂(n)zn, (1.1)

we say that f ∈ H2 if and only if
∑∞

n=0 |f̂(n)|2 <∞. The norm of an H2-function is defined
as

||f ||H2 =

( ∞∑
n=0

|f̂(n)|2
) 1

2

. (1.2)

For two functions f(z) =
∑∞

n=0 f̂(n)zn and g(z) =
∑∞

n=0 ĝ(n)zn in H2, we define their inner
product by

〈f, g〉H2 =
∞∑
n=0

f̂(n)ĝ(n). (1.3)

The sequence {f̂(n)}∞n=0 of power series coefficients belongs to the Hilbert space `2 by def-
inition. Similarly, every sequence in `2 defines an analytic function on the open unit disk
belonging to H2 by means of the map {f̂(n)}∞n=0 7−→

∑∞
n=0 f̂(n)zn. From the above it is

clear that H2 is isometrically isomorphic to `2. We conclude that the Hardy space H2 is a
Hilbert space.

The norm defined on H2 has another equivalent representation in terms of integral means.
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Let M2
2 (f, r) denote the integral mean

1

2π

∫ π

−π
|f(reiθ)|2 dθ,

where f is assumed to be an analytic function on D and 0 ≤ r < 1. If we now use the series
representation (1.1) of f in the integral mean formula, we get

1

2π

∫ π

−π

∣∣∣∣∣
∞∑
n=0

f̂(n)rneinθ

∣∣∣∣∣
2

dθ =
1

2π

∫ π

−π

∞∑
n=0

∞∑
m=0

f̂(m)f̂(n)rn+mei(n−m)θdθ

=
∞∑
n=0

|f̂(n)|2r2n. (1.4)

The last equality follows from the fact that the exponential functions {einθ}∞n=0 defines an
orthogonal set in L2([0, 2π]). Now it seems reasonable that as r approaches 1 from below,
M2(f, r) converges to ||f ||H2 . We will now see that this is the case.

Lemma 1.1. Let f be an analytic function on D. Then,

||f ||H2 = lim
r→1−

M2(f, r).

Proof. From the equality (1.4) it is clear that M2(f, r) is an increasing function of r. We
therefore have

M2
2 (f, r) =

∞∑
n=0

|f̂(n)|2r2n ≤
∞∑
n=0

|f̂(n)|2 = ||f ||2H2 ,

whenever f ∈ H2 and 0 ≤ r < 1. So M2(f, r) is bounded by the H2 norm. It remains to
show that the whenever limr→1−M2(f, r) = M <∞, then f belongs to H2 and ||f ||H2 ≤M .
If limr→1−M2(f, r) = M <∞, then the partial sums of the series (1.4) are bounded by M2:

N∑
n=0

|f̂(n)|2r2n ≤
∞∑
n=0

|f̂(n)|2r2n ≤M2.

As r → 1−, these partial sums converges to those of ||f ||2H2 , which must therefore be bounded
by M2 as well. If every partial sum of ||f ||2H2 is bounded by M2, then this is also true for
the entire series. This completes the proof.

We denote by H∞ the set of bounded analytic function on the unit disk. We give it the
supremum norm, that is, for f ∈ H∞ we have

||f ||H∞ = sup
z∈D
|f(z)|.

The next result is an immediate consequence of Lemma 1.1.

Corollary 1.2. The space of bounded analytic functions on the unit disc H∞ is a subset of
H2.

5



Proof. Clearly,
1

2π

∫ π

−π
|f(reiθ)|2 dθ ≤ 1

2π

∫ π

−π
||f ||2H∞ dθ = ||f ||2H∞ ,

which holds true for every 0 < r < 1. So for any f ∈ H∞ we get limr→1−M2(f, r) ≤ ||f ||H∞ .
Hence, by Lemma 1.1, f ∈ H2.

Lemma 1.3. Every norm convergent sequence in H2 converges uniformly on compact subsets
of D.

Proof. It will first be necessary to establish an estimate for the pointwise growth of a function
f in H2. From the triangle inequality and the Cauchy-Schwarz inequality we immediately
have

|f(z)| =

∣∣∣∣∣
∞∑
n=0

f̂(n)zn

∣∣∣∣∣ ≤
∞∑
n=0

|f̂(n)||z|n ≤
( ∞∑

n=0

|f̂(n)|2
) 1

2
( ∞∑

n=0

|z|2n
) 1

2

.

We recognize the last two sums as the H2 norm of f and a geometric series summing up to
(
√

1− |z|2)−1, respectively. This leaves us with the following estimate:

|f(z)| ≤ ||f ||H2√
1− |z|2

. (1.5)

Now suppose that we have a sequence {fj}∞j=0 in H2 which converges to a function f , in the
sense that ||fj − f ||H2 → 0. On every closed disk |z| ≤ R, with 0 < R < 1, the estimate
(1.5) implies that

sup
|z|≤R

|fj(z)− f(z)| ≤ ||fj − f ||H
2√

1−R2
.

Hence, {fj}∞j=0 converges uniformly on the closed disk |z| ≤ R. For any compact subset A
of D, we can choose R such that A is contained in the disk |z| ≤ R. Since {fj}∞j=0 converges
uniformly in this disk, it must also converge uniformly in A. We see that the sequence
converges uniformly on every compact subset of D.

Definition 1.4. The reproducing kernel for a point z0 ∈ D is the function

kz0(z) =
∞∑
n=0

z0
nzn =

1

1− z0z
.

It is obvious that the reproducing kernel for any point in the unit disk constitutes an H2

function. An important property of a reproducing kernel kz0 is that the value of a function
f ∈ H2 at z0 is given by the inner product of f and kz0 . That is, f(z0) = 〈f, kz0〉H2 . This
relationship is immediate since

〈f, kz0〉H2 =
∞∑
n=0

f̂(n)zn0 = f(z0).

We can also easily determine the norm of a reproducing kernel kz0 :

||kz0||2H2 =
∞∑
n=0

|z0|2n =
1

1− |z0|2
.
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Observe now that we can write the pointwise estimate (1.5) as

|f(z0)| ≤ ||f ||H2||kz0||H2 ,

which is valid for any fixed z0 ∈ D.

An important property of functions in H2 is the existence of non-tangential boundary
values almost everywhere on T. For f ∈ H2 we define the function fr by

fr(e
iθ) := f(reiθ) =

∞∑
n=0

f̂(n)rneinθ,

where 0 < r < 1. Suppose g ∈ L2(T) have the Fourier series representation
∑∞

n=0 f̂(n)einθ.
The function fr will then converge radially to g.

Theorem 1.5. Suppose f ∈ H2. Then there exists a function g ∈ L2(T) such that the limit

lim
r→1−

fr(e
iθ) = g(eiθ)

exists for almost every θ. In addition, we have ||f ||H2 = ||g||L2.

Proof. It is clear that fr ∈ L2(T) and that ||fr||L2 ≤ ||f ||H2 . Since fr is bounded in L2 for all
0 < r < 1, there exists a sequence rn converging to 1 so that frn converges to some function
g ∈ L2 a.e. Denote the Fourier coefficients of g by ĝ(k). Then

ĝ(k) = 〈g, eiθk〉L2 = lim
n→∞
〈frn , eiθk〉L2 =

{
limn→∞ f̂(k)rkn k ≥ 0

0 k < 0
.

We see that ĝ(k) = f̂(k), so then g(eiθ) =
∑∞

k=0 f̂(k)eikθ.

The next result provides us yet another expression for the H2-norm, which will be par-
ticularly useful later on in the study of composition operators.

Theorem 1.6 (Littlewood-Paley Identity). For every holomorphic function f ∈ H2 on the
unit disk we have

||f ||2H2 = |f(0)|2 + 2

∫
D
|f ′(z)|2 log

1

|z|
dA(z), (1.6)

where dA denotes the normalized Lebesgue measure on D (dA = 1
π
dxdy).

Proof. We start by considering the right hand side of (1.6). We write the integral in polar
coordinates: ∫

D
|f ′(z)|2 log

1

|z|
dA(z) =

∫ π

−π

1

π

∫ 1

0

|f ′(reiθ)|2
(

log
1

r

)
rdrdθ

=

∫ 1

0

(
1

π

∫ π

−π
|f ′(reiθ)|2dθ

)(
log

1

r

)
rdr.
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The second equality follows from Fubini’s theorem. In addition, after multiplying and di-
viding by 2, the integral with respect to θ can be recognized as M2

2 (f ′, r). After calculating
f ′(z) =

∑∞
n=1 nf̂(n)zn−1, we get

2

∫ 1

0

(
1

2π

∫ π

−π
|f ′(reiθ)|2dθ

)(
log

1

r

)
rdr = 2

∫ 1

0

M2
2 (f ′, r)

(
log

1

r

)
rdr

= 2

∫ 1

0

( ∞∑
n=1

n2|f̂(n)|2r2n−2

)(
log

1

r

)
rdr

= 2
∞∑
n=1

n2|f̂(n)|2
∫ 1

0

r2n−2

(
log

1

r

)
rdr

= 2
∞∑
n=1

n2|f̂(n)|2 1

4n2

=
1

2

∞∑
n=1

|f̂(n)|2

Upon multiplying the last expression by 2 and adding |f(0)|2 the result follows.

Definition 1.7. An analytic map ϕ : D → D with radial limits equal to one almost every-
where is called an inner function. That is, ϕ is inner if

lim
r→1−

|ϕ(reiθ)| = 1,

for almost every eiθ ∈ T.

The function fn(z) = zn, for some n ∈ N = {1, 2, 3, ...}, provides a simple example of an
inner function. It clearly defines an analytic function on the unit disk and limr→1− |fn(reiθ)| =
limr→1− |reiθn| = 1.

Lemma 1.8. If ϕ is an inner function and k, l ∈ N, k ≥ l, then

〈ϕk, ϕl〉L2(T) = ϕ(0)k−l.

Proof. By definition we have

〈ϕk, ϕl〉L2(T) =

∫
T
ϕkϕl dm =

∫
T
|ϕ|2lϕk−ldm.

Since ϕ is inner, |ϕ| is equal to 1 almost everywhere on T. Therefore,

〈ϕk, ϕl〉L2(T) =

∫
T
ϕk−ldm = ϕ(0)k−l,

where the last equality follows from the mean value property of analytic functions and the
fact that ϕk−l is analytic in D whenever k ≥ l.

8



For an element b ∈ H∞ we define the linear operator Mb of pointwise multiplication by

Mbf := bf,

for every f ∈ H2. This multiplication operator satisfies the following property:

Lemma 1.9. Let ϕ be an analytic self-map of the unit disc. Then for f ∈ H2, we have

||Mϕf ||H2 ≤ ||f ||H2 .

That is, Mϕ is a contraction on H2.

Proof. The norm of ϕ ∈ H∞ is given by

||ϕ||H∞ = sup
z∈D
|ϕ(z)|.

For any f ∈ H2 and 0 < r < 1 we have that

M2
2 (ϕf, r) =

1

2π

∫ π

−π
|ϕ(reiθ)f(reiθ)|2 dθ

≤ 1

2π

∫ π

−π
||ϕ||2H∞|f(reiθ)|2 dθ

≤ ||ϕ||2H∞ ||f ||2H2 .

If ϕ is a self-map of D, then ||ϕ||H∞ ≤ 1. It follows that ||Mϕf ||H2 ≤ ||f ||H2 , since
limr→∞M2(ϕf, r) = ||Mϕf ||H2 .

Definition 1.10. Suppose ϕ is a holomorphic self-map of the unit disc. We then define the
composition operator Cϕ : H2 → H2 by

Cϕf := f ◦ ϕ.

It is now time to prove Littlewood’s subordination theorem, which is a fundamental result
in the study of composition operators on the Hardy space H2.

Theorem 1.11. Let ϕ be a holomorphic self-map of D that fixes the origin. Then the
composition operator Cϕ is a contraction on H2. That is, ||Cϕf ||H2 ≤ ||f ||H2, for every
function f ∈ H2. In particular, whenever a function f is in H2, then the composition f ◦ ϕ
is in H2 as well.

The following proof of this result is based on Littlewood’s original ideas and can be found
in [15].

Proof. The main idea of the proof is to make use of an operator known as the backward
shift, denoted by B. The operator acts on elements in H2 in the following way,

Bf(z) =
∞∑
n=0

f̂(n+ 1)zn, f ∈ H2.

9



As the operator B shifts the coefficients of f to the left, it annihilates the original constant
term f̂(0) = f(0). Observe now that zBf(z) = f(z)− f(0), giving the identity

f(z) = f(0) + zBf(z). (1.7)

In addition to this there is another useful identity of the backward shift, namely

Bnf(0) = f̂(n). (1.8)

The way we are going to prove the result is by first proving it for polynomials and then
extend the result to every holomorphic function in H2. Therefore, we begin by letting f be
a polynomial. The composition f ◦ ϕ is then bounded on D, so the integral

M2
2 (f, r) =

1

2π

∫ π

−π
|(f ◦ ϕ)(reiθ)|2dθ

remains bounded as r → 1−. It follows that f ◦ ϕ lies in H2. Now, we wish to estimate
the norm of the composition Cϕf with the help of the identities (1.7) and (1.8). We start
by turning (1.8) into an identity concerning our composition Cϕf . This is done simply by
substituting in ϕ(z) for z. We now have

f(ϕ(z)) = f(0) + ϕ(z)(Bf)(ϕ(z)).

Equivalently, we can write this as

Cϕf = f(0) +MϕCϕBf. (1.9)

It is assumed that ϕ(0) = 0, from which is follows that every term in the power series of ϕ
share the factor z. Consequently, this must also true for the second term of (1.9) as this in
turn fixes the origin. What we now know, in particular, is that the second term of (1.9) has
a power series without a constant term. The integral of this power series around some circle
of radius r < 1 about the origin will then vanish. Therefore, the inner product of the two
terms on the right hand side of (1.9) will be zero, making them orthogonal. It follows that

||Cϕf ||2H2 = |f(0)|2 + ||MϕCϕBf ||2H2 ≤ |f(0)|2 + ||CϕBf ||2H2 .

The inequality is due to the fact that multiplication operator acts contractively on H2. But
now we also know that

||CϕBf ||2H2 ≤ |Bf(0)|2 + ||CϕB
2f ||2H2 .

Continuing in this manner eventually gives the following norm estimate for Cϕf :

||Cϕf ||2H2 ≤
n∑
k=0

|Bkf(0)|2 + ||CϕB
n+1f ||2H2 (1.10)

This holds for every positive integer n. Therefore, since f is assumed to be a polynomial,
we can choose n to be the degree of f . Hence, Bn+1f(0) = 0. So from the identity (1.8) and
equation (1.10) we have

||Cϕf ||2H2 ≤
n∑
k=0

|Bkf(0)|2 =
n∑
k=0

|f̂(k)|2 = ||f ||2H2 .

10



This shows that the composition operator have the desired property on the subspace of H2

consisting of holomorphic polynomials. It remains to prove the result for functions in H2

which are not polynomials.
From now on let f be anyH2 function. In order to take advantage of how the composistion

operator acts on polynomials, we consider the j-th partial sum of the Taylor series for f ,
denoted fj. Obviously, fj → f in the H2 norm. We know from Lemma 1.3 that fj converges
to f uniformly on compact subsets of D. This implies that fj ◦ ϕ → f ◦ ϕ uniformly on
compact subsets of D. Any circle of radius r ∈ (0, 1) form a compact subset of D, hence

M2(f ◦ ϕ, r) = lim
j→∞

M2(fj ◦ ϕ, r) ≤ lim sup
j→∞

||fj ◦ ϕ||H2 .

We have already proved that ||fj ◦ ϕ||H2 ≤ ||fj||H2 , so

lim sup
j→∞

||fj ◦ ϕ||H2 ≤ lim sup
j→∞

||fj||H2 .

Finally, since ||fj||H2 ≤ ||f ||H2 , we have

lim sup
j→∞

||fj||H2 ≤ ||f ||H2 .

This means that M2(f ◦ ϕ, r) ≤ ||f ||H2 for 0 < r < 1, so by letting r tend to 1 we get

lim
r→1−

M2(f ◦ ϕ, r) = ||Cϕf ||H2 ≤ ||f ||H2 .

This completes the proof.

Littlewood’s subordination theorem can also be proved through a result on subharmonic
functions. Such an approach is reasonable because |f |α is subharmonic whenever f is an
analytic function and α > 0. The proof can be carried out in the following way:

Proof. As before we let ϕ be a holomorphic self-map of D, with ϕ(0) = 0. Then by Schwarz
lemma, we have |ϕ(z)| ≤ |z| for every z ∈ D. Let G be a subharmonic function on D, and
denote the composition G ◦ ϕ by g. We start by using the subharmonic property of G to
find a function H, harmonic in |z| < r and equal to G on |z| = r, such that G(z) ≤ H(z)
for every |z| ≤ r. Denote the composition H ◦ ϕ by h. Clearly, g(z) ≤ h(z) on |z| = r. Now
we easily see that

1

2π

∫ 2π

0

g(reiθ)dθ ≤ 1

2π

∫ 2π

0

h(reiθ)dθ.

The composition of a harmonic function with a holomorphic function is harmonic, so h is
harmonic. The mean value of a harmonic function over a circle of radius r is given by its
value at the center of that circle. This means that

1

2π

∫ 2π

0

h(reiθ)dθ = h(0).

Since h(z) = H(ϕ(z)) and ϕ fixes the origin, we get that h(0) = H(0). We can now go the
other way around and express H(0) as the mean value of H around the circle of radius r:

H(0) =
1

2π

∫ 2π

0

H(reiθ)dθ.

11



By definition, H(z) = G(z) on |z| = r. Hence,

1

2π

∫ 2π

0

H(reiθ)dθ =
1

2π

∫ 2π

0

G(reiθ)dθ.

To summarize, we have

1

2π

∫ 2π

0

g(reiθ)dθ ≤ 1

2π

∫ 2π

0

G(reiθ)dθ.

This implies that for any analytic function f on D, it must be true thatM2(Cϕf, r) ≤M2(f, r)
for every 0 < r < 1.

Now that we have established that the composition operator Cϕ is bounded whenever ϕ
fixes the origin, it remains to prove that the operator is bounded still when ϕ(0) = w 6= 0.
For this purpose we define, for every point w ∈ D, the Möbius transformation

αw(z) =
w − z
1− wz

.

This function maps the unit disc to itself, while interchanging the origin with the point w.

Theorem 1.12. Suppose ϕ is a holomorphic self-map of D. Then Cϕ is a bounded operator
on H2, with

||Cϕ|| ≤

√
1 + |ϕ(0)|
1− |ϕ(0)|

.

Proof. If ϕ(0) = w, then the map ψ = αw◦ϕ is a holomorphic self-map of D fixing the origin.
The function αw is its own inverse, so ϕ = αw ◦ ψ. The composition operator related to the
function ϕ can now be written as Cϕ = CψCαw . By Littlewood’s subordination theorem it
follows that Cψ is bounded. It remains to show that Cαw is bounded, since then Cϕ becomes
the product of two bounded operators and must in turn be bounded. From Theorem 1.1 we
know that any analytic function f on D satisfies

||f ||2H2 = lim
r→1−

1

2π

∫ π

−π
|f(reiθ)|2dθ.

Assume now that the function f is analytic in a domain δD, with δ > 1. Then the limit can
be moved inside the integral, yielding

||f ||2H2 =
1

2π

∫ π

−π
|f(eiθ)|2dθ.

12



If consider the composition of f with αw, we get

||f ◦ αw||2H2 =
1

2π

∫ π

−π
|f(αw(eiθ))|2dθ

=
1

2π

∫ π

−π
|f(eit)|2|α′w(eit)|dt

=
1

2π

∫ π

−π
|f(eit)|2 1− |w|2

|1− weit|2
dt

≤ 1− |w|2

(1− |w|)2

(
1

2π

∫ π

−π
|f(eit)|2dt

)
=

1 + |w|
1− |w|

||f ||2H2 .

This means that Cαw acts boundedly on analytic functions in δD. This is also true, in
particular, when f is a polynomial. This takes us to the same situation as in the proof of
Theorem 1.11, where we extended the result from being valid for polynomials to all of H2.
The argument in this case is exactly the same, and is therefore omitted. To summarize, we
have found that the operator Cαw is bounded on H2 and

||Cαw || ≤
(

1 + |w|
1− |w|

) 1
2

.

The operator Cϕ is now a product of bounded operators and is therefore bounded. Since Cψ

is a contraction, we get the following estimate for the operator norm:

||Cϕ|| ≤ ||Cψ|| ||Cαw || ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

) 1
2

.

We now return to the topic of reproducing kernels, which proves to be a useful tool in
the investigation of composition operators. The next result reveals a relationship between
reproducing kernels and the adjoint of a composition operator.

Lemma 1.13. Let Cϕ be a composition operator on H2 and kz0 be the reproducing kernel
generated by an arbitrary point z0 on D. Then,

C ∗ϕkz0 = kϕ(z0).

Proof. Recall that f(z0) = 〈f, kz0〉H2 . First,

〈f,C ∗ϕkz0〉H2 = 〈Cϕf, kz0〉H2 = f(ϕ(z0)).

Secondly,
〈f, kϕ(z0)〉H2 = f(ϕ(z0)).

Since these equalities hold for every f ∈ H2, we must have C ∗ϕkz0 = kϕ(z0).

We can make immediate use of the previous lemma by proving that the composition
operator Cαw actually attains the upper bound provided in the proof of Theorem 1.12. More
precisely:

13



Lemma 1.14. For αw(z) = w−z
1−wz we have

||Cαw || =
(

1 + |w|
1− |w|

) 1
2

.

Proof. We know that ||kϕ(z)||H2 ≤ ||Cϕ(z)|| ||kz||H2 , which is valid for every z ∈ D. It follows
that

||Cαw ||2 ≥ sup
z∈D

||kαw(z)||2H2

||kz||2H2

= sup
z∈D

1− |z|2

1− |αw(z)|2
. (1.11)

We need to choose z such that the latter fraction becomes as large as possible. The fraction
happens to increase the most when z tends to the boundary in the opposite direction of w.
So we set z = − w

|w|r and find

αw

(
− w

|w|
r

)
=
w + r w

|w|

1 + |w|r
=

w
|w|(|w|+ r)

1 + |w|r
.

Equation (1.11) now takes the form

||Cαw ||2 ≥ sup
z∈D

1− | − w
|w|r|

2

1− |αw(− w
|w|r)|2

= lim
r→1−

1− r2

1−
(
|w|+r
1+|w|r

)2

= lim
r→1−

(1− r2)(1 + |w|r)2

(1 + |w|r)2 − (|w|+ r)2

= lim
r→1−

(1− r2)(1 + |w|r)2

1 + |w|2r2 − |w|2 + r2

= lim
r→1−

(1− r2)(1 + |w|r)2

(1− r2)(1− |w|2)

=
(1 + |w|)2

1− |w|2

=
1 + |w|
1− |w|

.

Hence, the proof is complete.

Lemma 1.13 also gives us an elegant way of establishing a lower bound for the operator
norm of a composition operator. We also make use of Theorem 1.12 and a trivial inequality
to provide a suitable upper bound for the same operator.

Theorem 1.15. For every composition operator Cϕ we have the following bounds for its
norm:

1√
1− |ϕ(0)|2

≤ ||Cϕ|| ≤
2√

1− |ϕ(0)|2
.

Proof. Let z0 = 0, so that C ∗ϕk0 = kϕ(0) by the lemma above. Earlier we showed that the

norm of a reproducing kernel is given by (1 − |z0|2)−1/2, so now ||k0|| = 1 and ||kϕ(0)||H2 =
(1− |ϕ(0)|2)−1/2. Further, we have

||kϕ(0)||H2 = ||C ∗ϕk0||H2 ≤ ||C ∗ϕ || ||k0||H2 .

14



The first inequality now follows from the fact that ||C ∗ϕ || = ||Cϕ||. Now for 0 ≤ x < 1 we
have

1 + x

1− x
=

(1 + x)(1 + x)

(1− x)(1 + x)
=

(1 + x)2

1− x2
.

Therefore, √
1 + x

1− x
=

1 + x√
1− x2

≤ 2√
1− x2

.

From theorem (1.12) and the above, we have

||Cϕ|| ≤

√
1 + |ϕ(0)|
1− |ϕ(0)|

≤ 2√
1− |ϕ(0)|2

.

We have seen that Cαw is an example of a composition operator that attains the upper
bound from Theorem 1.12. Our next goal is to identify the analytic maps ϕ that generate
such composition operators in general. We shall see that it is both a necessary and sufficient
condition that ϕ is an inner function. We begin by giving a definition.

Definition 1.16. Suppose ϕ is holomorphic on D. The function Nϕ is called the Nevanlinna
counting function and is defined as

Nϕ(w) :=
∑

z∈ϕ−1{w}

log
1

|z|
, w 6= ϕ(0).

The multiplicity of the preimages is taken into account. If the preimage of a point w is
empty, then we set Nϕ(w) = 0.

The Nevannlinna counting function appears after a change of variable w = ϕ(z) in the
Littlewood-Paley identity. The formula (1.6) now takes the form

||Cϕf ||2H2 = |f(ϕ(0))|2 + 2

∫
D
|f ′(w)|2Nϕ(w)dA(w). (1.12)

The following Lemma was originally proved by Shapiro [16]. A slightly stronger result was
given by Brevig and Perfekt in [5], which we will state and prove here. We will also provide
some extra details to the proof.

Lemma 1.17. Let ϕ be a holomorphic self-map of D that fixes the origin. For 0 ≤ δ ≤ 1,
define the set Eδ := {z ∈ T : |ϕ(z)| < δ}. Then

||Cϕf ||2H2 ≤ Cδ|f(0)|2 + (1− Cδ)||f ||2H2 ,

where Cδ = 1
2

1−δ
1+δ

m(Eδ).

Proof. For w ∈ D and z ∈ T, we define the function

ϕw(z) := αw ◦ ϕ(z) =
w − ϕ(z)

1− wϕ(z)
. (1.13)
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As before, the function αw denotes the Möbius transformation interchanging the origin and
the point w. Further, we have

|ϕw(z)|2 =

∣∣∣∣ w − ϕ(z)

1− wϕ(z)

∣∣∣∣2 =

(
w − ϕ(z)

1− wϕ(z)

)(
w − ϕ(z)

1− wϕ(z)

)
=

(
w − ϕ(z)

1− wϕ(z)

)(
w − ϕ(z)

1− wϕ(z)

)
=
|w|2 − wϕ(z)− wϕ(z) + |ϕ(z)|2

|1− wϕ(z)|2
.

The denominator in the last expression can be written as

|1− wϕ(z)|2 = 1− wϕ(z)− wϕ(z) + |w|2 + |ϕ(z)|2.

From this we can deduce the expression

1− |ϕw(z)|2 =
1− |w|2 − |ϕ(z)|2 + |w|2|ϕ(z)|2

|1− wϕ(z)|2
=

(1− |w|2)(1− |ϕ(z)|2)

|1− wϕ(z)|2
.

Now if z ∈ Eδ, then

1− |ϕw(z)|2 ≥ (1− |w|2)(1− δ2)

(1 + |ϕ(z)|)2

≥ (1− |w|2)(1− δ2)

(1 + δ)2

=
1− δ
1 + δ

(1− |w|2).

We also need the inequality 1−x ≤ log 1
x
, which remains true for 0 < x < 1. Together, these

two inequalities implies that

log
1

|ϕw(z)|2
≥ 1− |ϕw(z)|2 ≥ 1− δ

1 + δ
(1− |w|2),

or equivalently,

log |ϕw(z)| ≤ −1

2

1− δ
1 + δ

(1− |w|2). (1.14)

Applying Jensen’s formula [1] to the function ϕw(z) gives

log |ϕw(0)| =
n∑
k=1

log |ak|+
∫
T

log |ϕw(z)|dm(z), (1.15)

where a1, ..., ak denotes the zeros of ϕw(z) in D. Note that if ϕ(z) = w, then ϕw(z) = 0.
This implies

Nϕ(w) ≤ −
n∑
k=1

log |ak|.
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Using equation (1.15) and the fact that ϕw(0) = w, we get

Nϕ(w) ≤ log
1

|w|
+

∫
T

log |ϕw(z)|dm(z).

Since Eδ ⊆ T and log |ϕw(z)| ≤ 0 for a.e. z ∈ T, it follows from the monotonicity of the
Lebesgue integral that

Nϕ(w) ≤ log
1

|w|
+

∫
Eδ

log |ϕw(z)|dm(z).

We can use the inequality (1.14) to estimate the integral over Eδ which gives∫
Eδ

log |ϕw(z)|dm(z) ≤
∫
Eδ

−1

2

1− δ
1 + δ

(1− |w|2)dm(z) = −1

2

1− δ
1 + δ

(1− |w|2)m(Eδ).

In total, we have

Nϕ(w) ≤ log
1

|w|
− 1

2

1− δ
1 + δ

(1− |w|2)m(Eδ) = log
1

|w|
− Cδ(1− |w|2).

To continue the proof we make use of the change of variable formula (1.12) and obtain

||Cϕf ||2H2 = |f(0)|2 + 2

∫
D
|f ′(w)|2Nϕ(w) dA(w)

≤ |f(0)|2 + 2

∫
D
|f ′(w)|2

(
log

1

|w|
− Cδ(1− |w|2)

)
dA(w).

After a similar calculation as in the proof of the Littlewood-Paley identity we find

2

∫
D
|f ′(w)|2

(
log

1

|w|
− Cδ(1− |w|2)

)
dA(w) =

∞∑
n=1

|f̂(n)|2
(

1− 2Cδ
n

n+ 1

)
≤ (1− Cδ)

∞∑
n=1

|f̂(n)|2,

which completes the proof.

The next theorem is the main result in Shapiro’s paper [16].

Theorem 1.18. Suppose that ϕ is a holomorphic self-map of D with ϕ(0) = 0. Then the
following are equivalent:

1. ϕ is inner.

2. Cϕ : H2 → H2 is an isometry.

3. ||Cϕ|H2
0
|| = 1.
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Proof. (1 =⇒ 2) Assume that ϕ is inner. Since ϕ(0) = 0, it follows from Lemma 1.8 that
〈ϕm, ϕn〉H2 = δm,n, so

||Cϕf ||2H2 = 〈Cϕf,Cϕf〉H2

=
∞∑
m=0

∞∑
n=0

f̂(m)f̂(n)〈ϕm, ϕn〉H2

=
∞∑
n=0

|f̂(n)|2

= ||f ||2H2 .

This is true for every f ∈ H2. Hence, Cϕ is an isometry.
(2 =⇒ 3 ) If ||Cϕf ||H2 = ||f ||H2 for every f ∈ H2, then certainly this must also be true

for every f in the subspace H2
0 . Hence, the operator norm of Cϕ is still 1 when restricted to

this subspace.
(3 =⇒ 1) We prove this using a contrapositive argument. That is, we want to show

that whenever ϕ is not inner, then the operator norm of Cϕ is less than 1 when restriced to
H2

0 . If ϕ is not inner, then it is possible to find a δ ∈ (0, 1) such that the set Eδ defined in
Lemma 1.17 has positive measure. When we restrict Cϕ to the subspace H2

0 , then the lemma
states that

||Cϕf ||2H2 ≤ (1− Cδ)||f ||2H2 .

Since 0 < Cδ < 1, it follows that ||Cϕ|| < 1.

We also want to prove an analogous result for when ϕ does not fix the origin. For this
result we will need a lemma:

Lemma 1.19. Suppose ϕ and ϕ̃ are inner functions. Then the composition ϕ ◦ ϕ̃ is also
inner.

Proof. Consider the integral ∫
T
|ϕ(ϕ̃(z))| dm.

The map ϕ̃ is inner, so there exists a subset E ⊆ T where |ϕ̃(eiθ)| = 1 for all eiθ ∈ E and
m(T\E) = 0. We therefore have∫

T
|ϕ(ϕ̃(z))| dm =

∫
E

|ϕ(ϕ̃(z))| dm =

∫
E

|ϕ(eiθ̃)| dm = 1,

since ϕ is inner. Hence, ϕ ◦ ϕ̃ is inner.

Theorem 1.20. Suppose that ϕ is a holomorphic self-map of D with ϕ(0) = w 6= 0. Then
the following are equivalent:

1. ϕ is inner.

2. ||Cϕf ||H2 = ||Cαwf ||H2 for every f ∈ H2.
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3. ||Cϕ|| =
√

1+|w|
1−|w| .

Proof. (1 =⇒ 2) Let fw = f ◦αw and ϕw = αw ◦ϕ. Since αw is its own inverse, we see that
fw ◦ ϕw = f ◦ ϕ. From Lemma 1.19 we know that if both ϕ and αw are inner function, then
that is also the case for ϕw. Observe that

|αw(eiθ)| =
∣∣∣∣ w − eiθ1− weiθ

∣∣∣∣ = 1,

because
(w − eiθ)(w − e−iθ) = (1− weiθ)(1− we−iθ).

We can therefore conclude that ϕw is inner. Now

||Cϕf ||H2 = ||f ◦ ϕ||H2 = ||fw ◦ ϕw||H2 .

We know now that ϕw is an inner function which fixes the origin, so by Theorem 1.18 we
have

||fw ◦ ϕw||H2 = ||fw||H2 = ||Cαwf ||H2 .

(2 =⇒ 3) Lemma 1.14 tells us that ||Cαw || =
√

1+|w|
1−|w| , so this is trivial.

(3 =⇒ 1) As before, we prove the contrapositive. So assume that ϕ is not inner. Define
ϕw as in (1.13). Then ϕ = αw ◦ ϕw, since αw is its own inverse. For f ∈ H2, we have

f ◦ ϕ = f ◦ αw ◦ ϕw = f ◦ αw ◦ ϕw + f(w)− f(w) = Cϕw(f ◦ αw − f(w)) + f(w).

After writing g = f ◦ αw − f(w), the previous equality simplifies to

Cϕf = Cϕwg + f(w).

Observe that g(0) = ϕw(0) = 0, which implies Cϕwg(0) = 0. This makes Cϕwg orthogonal to
constant functions in H2. Because ϕw(0) = 0 we know from before that ||Cϕw |H2

0
|| =
√
ε < 1.

This yields

||Cϕf ||2H2 = ||Cϕwg||2H2 + |f(w)|2 ≤ ε||g||2 + |f(w)|2 = ε||Cαwf − f(w)||2 + |f(w)|2.

We now need to do another observation, namely that f(0) = 〈f, 1〉H2 . From this we get

〈Cαwf, f(w)〉H2 = f(w)Cαwf(0) = f(w)f(w) = |f(w)|2.

Further,

||Cαwf − f(w)||2H2 = ||Cαwf ||2H2 − 2Re〈Cαwf, f(w)〉H2 + |f(w)|2

= ||Cαwf ||2H2 − 2|f(w)|2 + |f(w)|2

= ||Cαwf ||2H2 − |f(w)|2.

So now we have

||Cϕf ||2H2 ≤ ε||Cαwf − f(w)||2H2 + |f(w)|2 ≤ ε||Cαwf ||2H2 − ε|f(w)|2 − |f(w)|2

= ε||Cαwf ||2H2 + (1− ε)|f(w)|2.
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We continue by estimating |f(w)| using (1.5):

|f(w)| ≤ ||f ||H2√
1− |w|2

.

From Theorem 1.12 it now follows that

||Cϕf ||2H2 ≤ ε

(
1 + |w|
1− |w|

)
||f ||2H2 + (1− ε)

||f ||2H2

1− |w|2

=

(
ε+

1− ε
1 + |w|2

)(
1 + |w|
1− |w|

)
||f ||2H2 .

We assume that w 6= 0, so

ε+
1− ε

1 + |w|2
< 1,

and in turn

||Cϕ|| <

√
1 + |w|
1− |w|

.
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Chapter 2

Bounded Dirichlet series

In this chapter we establish some properties of Dirichlet series that will be useful later on.
We consider the space H ∞ of bounded Dirichlet series on C0 and, in particular, we give a
proof of Bohr’s theorem. Also, we introduce the notion of a vertical limit function and prove
certain results on the topic. Most of the theory in this chapter can be found in [13].

A Dirichlet series is a series of the form

f(s) =
∞∑
n=1

ann
−s, (2.1)

where s = σ + it ∈ C and an is a sequence of complex numbers. Denote by Cθ the set

Cθ = {s ∈ C : Re s > θ}.

To every convergent Dirichlet series f we associate a number σc defined by

σc(f) = inf{θ ∈ R : f is convergent in Cθ},

which we refer to as the abscissa of convergence. A classical and important example of a
convergent Dirichlet series is the Riemann zeta function

ζ(s) =
∞∑
n=1

n−s.

By the standard theory of convergent series we find that the abscissa of convergence for the
zeta function is σc(ζ) = 1.

Definition 2.1. We denote the space of convergent Dirichlet series by D. That is

D :=

{
f(s) =

∞∑
n=1

ann
−s ∣∣σc(f) <∞

}
.

We also consider the abscissa of uniform convergence and absolute convergence, denoted
by σu and σa, respectively. These numbers are defined analogously to the abscissa of con-
vergence σc. Note that if σu is the abscissa of uniform convergence of a Dirichlet series f ,
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then it is understood that f converges uniformly on Cσu+δ, for any δ > 0. Consequently, for
every fixed δ > 0 there exists a constant M such that |f(s)| ≤ M on Cσu+δ. For a function
f(s) =

∑∞
n=1 ann

−s ∈ D we always have σa(f) − σc(f) ≤ 1. Indeed, for any ε > 0 we must
have |an| ≤ Cnσc+ε/2, where the constant C is adjusted depending on the choice of ε. It
follows that

∞∑
n=1

|an|n−σc−1−ε ≤ C
∞∑
n=1

n−1−ε/2,

which means that f certainly converges absolutely in Cσc+1+ε. Since ε was arbitrary we get
σa(f) ≤ σc + 1. Consider now the alternating zeta function defined by

ζ∗(s) =
∞∑
n=1

(−1)n−1n−s.

It is well known that σc(ζ
∗) = 0. Observe that the alternating zeta function converges

absolutely in the domain where the zeta function converges regularly. Therefore, σa(ζ
∗) = 1

and we get σa(ζ
∗) − σc(ζ∗) = 1. Hence, the relation σa − σc ≤ 1 is in fact optimal. There

also exists another relation of this kind, namely σa − σu ≤ 1/2. This result is due to Bohr
([13], Theorem 4.4.2) and is much more involved. The constant 1/2 is optimal as well, which
is a result from [2].

We now introduce an important set of Dirichlet series denoted by H ∞, which is the set
of convergent Dirichlet series that can be analytically continued to a bounded function on
C0. If we let H∞(C0) denote the set of bounded analytic functions on C0, then we can write

H ∞ = H∞(C0) ∩ D.

The norm on H ∞ is defined as

||f ||H ∞ = sup
s∈C0

|f(s)|.

2.1 Bohr’s theorem

The next goal is to prove an important theorem regarding the convergence of a Dirichlet
series f(s) =

∑∞
n=1 ann

−s in the space H ∞, named after Bohr. To that end, we follow two
ideas from [13]. We start out with a lemma that gives us a rough estimate of the coefficients
an.

Lemma 2.2. Let f(s) =
∑∞

n=1 ann
−s ∈H ∞. Then |an| ≤ ||f ||H ∞ for every positive integer

n.

Proof. Let ρ > 0 and consider the integral

lim
T→∞

1

2T

∫ T

−T
f(ρ+ it)mρ+it dt = lim

T→∞

1

2T

∫ T

−T

(
∞∑
n=1

ann
−ρ−it

)
mρ+it dt.
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Since f ∈ H ∞ it is a convergent Dirichlet series in some half-plane. We can then choose
ρ > σa(f) so that

∑∞
n=1 |an|n−ρ <∞. For sufficiently large ρ we then have

lim
T→∞

1

2T

∫ T

−T

(
∞∑
n=1

ann
−ρ−it

)
mρ+it dt = am +

∞∑
n=1
n6=m

an(nm)−ρ lim
T→∞

1

2T

∫ T

−T
n−itmit dt = am.

After a change of variables s = ρ+ it we can write

am = lim
T→∞

1

2iT

∫ ρ+iT

ρ−iT
f(s)msds.

Denote by Γε, for some 0 < ε < ρ, the rectangle with corners at ε− iT , ε + iT , ρ + iT and
ρ− iT . Then the Cauchy integral formula gives

0 = lim
T→∞

1

2iT

∫
Γε

f(s)ns ds

= lim
T→∞

1

2iT

(∫ ρ+iT

ρ−iT

∫ ε+iT

ρ+iT

∫ ε−iT

ε+iT

∫ ρ−iT

ε−iT

)
f(s)ns ds,

or

an = lim
T→∞

1

2iT

(∫ ρ+iT

ε+iT

f(s)ns ds+

∫ ε+iT

ε−iT
f(s)ns ds−

∫ ρ−iT

ε−iT
f(s)ns ds

)
.

Estimation of the first and third integral yields∣∣∣∣ 1

2iT

∫ ρ+iT

ε+iT

f(s)ns ds

∣∣∣∣ ≤ ρnρ||f ||H ∞

2T
,

and ∣∣∣∣ 1

2iT

∫ ρ−iT

ε−iT
f(s)ns ds

∣∣∣∣ ≤ ρnρ||f ||H ∞

2T
.

Clearly, the integrals goes to zero as T →∞. For the remaining integral we have∣∣∣∣ 1

2iT

∫ ε+iT

ε−iT
f(s)ns ds

∣∣∣∣ ≤ nε||f ||H ∞ .

Now, when we let ε approach zero we get |an| ≤ ||f ||H ∞ .

From this result we can infer a useful property of the functions in H ∞, namely that
σa(f) ≤ 1 for every f ∈H ∞. Indeed, for f(s) =

∑∞
n=1 ann

−s ∈H ∞, we have
∑∞

n=1 |an|n−σ ≤
||f ||H ∞

∑∞
n=1 n

−σ. This property will be helpful in proving our next result.

Lemma 2.3. Let f(s) =
∑∞

n=1 ann
−s ∈H ∞ and SNf(s) =

∑N
n=1 ann

−s be its partial sum.
Then there exists a constant C such that

||SNf ||H ∞ ≤ C logN ||f ||H ∞ .
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Proof. For the proof we will need Perron’s formula ([13], Theorem 4.2.3):

A(x) :=
∑
n≤x

an =
1

2iπ

∫ ρ+iT

ρ−iT
f(s)

xs

s
ds+O

[
xρ

T

∑
n≥1

|an|
nρ| log(x/n)|

]
.

Here, ρ > max(0, σa(f)), x, T ≥ 1 and x is assumed not to be an integer. Since f ∈H ∞ we
know that σa(f) ≤ 1, so we can choose ρ = 2. We let x = N + 1/2 for some positive integer
N . We need to estimate the error term. First we find

| log(x/n)| ≥ |1− n/x| =
∣∣∣∣n− xx

∣∣∣∣ =

∣∣∣∣n−N − 1/2

N + 1/2

∣∣∣∣ ≤ 1

2(N + 1/2)
.

We see that | log(x/n)|−1 = O(x). This gives

x2

T

∑
n≥1

|an|
n2| log(x/n)|

≤ x3

T

∑
n≥1

|an|
n2
≥ x3

T
||f ||H ∞

If we now choose T = x3, then we find that the error term of A(x) is dominated by C||f ||H ∞ ,
for some constant C. It remains to estimate the integral. Let 0 < ε < 2 and consider the
rectangle determined by the points 2 − iT , 2 + iT , ε + iT and ε − iT . Cauchy’s integral
formula gives∫ 2+iT

2−iT
f(s)

xs

s
ds =

∫ ε+iT

ε−iT
f(s)

xs

s
ds+

∫ 2+iT

ε+iT

f(s)
xs

s
ds+

∫ ε−iT

2−iT
f(s)

xs

s
ds

=

∫ ε+iT

ε−iT
f(s)

xs

s
ds+

∫ 2

ε

f(u+ iT )
xu+iT

u+ iT
du−

∫ 2

ε

f(u− iT )
xu−iT

u− iT
du.

We have ∣∣∣∣∫ 2

ε

f(u+ iT )
xu+iT

u+ iT
du

∣∣∣∣ ≤ x2||f ||H ∞

T
=
||f ||H ∞

x
,

because T = x3. We also get∣∣∣∣∫ 2

ε

f(u− iT )
xu−iT

u− iT
du

∣∣∣∣ ≤ ||f ||H ∞

x
.

For the remaining integral we do a change of variables s = ε+ it. This gives∫ ε+iT

ε−iT
f(s)

xs

s
ds =

∫ T

−T
f(ε+ it)

xε+it

ε+ it
i dt.

We now estimate the integral in the following way.∣∣∣∣∫ T

−T
f(ε+ it)

xε+it

ε+ it
i dt

∣∣∣∣ ≤ xε||f ||H ∞

∫ T

−T

1√
ε2 + t2

dt.
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Let u = t/ε in order to get

xε||f ||H ∞

∫ T

−T

1√
ε2 + t2

dt = 2xε||f ||H ∞

∫ T/ε

0

1√
u2 + 1

du

= 2xε||f ||H ∞

(∫ 1

0

1√
u2 + 1

du+

∫ T/ε

1

1√
u2 + 1

du

)

≤ 2xε||f ||H ∞

(
1 +

∫ T/ε

1

du

u

)
≤ 4xε||f ||H ∞ log(T/ε).

We observe that this integral is the largest contributor to the size of |A(x)|. If we now
conveniently pick ε = 1

log(x)
, we get

|A(x)| ≤ C||f ||H ∞ log(x3 log(x))

for some constant C. Clearly, log(x3 log(x)) = O(log(x)). Hence,

|A(x)| ≤ C log(x)||f ||H ∞ .

We readily see that the H ∞-norm is invariant under vertical translations. Also, if g(s) =
f(s+ σ), then it is clear that ||g||H ∞ ≤ ||f ||H ∞ for σ > 0. For any s0 ∈ C0 we get

|SNf(s0)| =

∣∣∣∣∣
N∑
n=1

ann
−s0

∣∣∣∣∣ ≤ C logN ||f ||H ∞ ,

which ends the proof.

We are now ready to state and prove Bohr’s Theorem [13].

Theorem 2.4 (Bohr’s theorem). Suppose we have a function f ∈ H ∞, with Dirichlet
series representation f(s) =

∑∞
n=1 ann

−s in some half-plane Cθ. Then this Dirichlet series
converges uniformly in the half-plane Cε for all ε > 0.

Proof. The series
∑∞

n=1 ann
−s converges uniformly in some half-plane Cε if and only if the

related series
∑∞

n=1 ann
−s−ε converges uniformly on every closed half-plane contained in

C0. So we shall show that the latter series converges uniformly on every closed half-plane
contained C0 for all ε > 0. We consider the partial sum SNf(s) =

∑N
n=1 ann

−s and write

N∑
n=1

ann
−s−ε =

N∑
n=1

(Snf(s)− Sn−1f(s))n−ε.

An application of the standard partial summation formula gives

N∑
n=1

(Snf(s)− Sn−1(s))n−ε = SNf(s)N−ε −
N−1∑
n=1

Snf(s)((n+ 1)−ε − n−ε).
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Using Lemma 2.3 we find that the term SNf(s)N−ε is bounded by C logN ||f ||H ∞/N ε. Let
g(x) = x−ε. Then g(n+ 1)−g(n) = g′(c) for some c ∈ [n, n+ 1], by the mean value theorem.
Since g is decreasing monotonically in this interval we must have g′(c) ≤ g′(n). Hence, the
terms Snf(s)((n+ 1)−ε − n−ε) are bounded by C ′ log n||f ||H ∞/(nε+1), again by Lemma 2.3
and the mean value theorem applied to n−ε. The bounds are independent of s, so we get
uniform convergence.

We are now going to prove yet another result regarding uniform convergence of functions
that can be represented as Dirichlet series. The next theorem is, in fact, a stronger version
of Bohr’s Theorem and of great utility.

Theorem 2.5. Let ϕ : Cθ → Cν be an analytic function, with ϕ ∈ D. Then σu(ϕ) ≤ θ.

Proof. We define ψ(s) := ϕ(s + θ) − ν. Now, ψ is an analytic function on C0 which can
represented as a Dirichlet series in some half-plane. So we need to prove that σu(ψ) ≤ 0.
Herglotz representation theorem ([8], Theorem 3.5) tells us that every harmonic non-negative
function h on C0 can be expressed as

h(σ + it) = cσ +

∫
R
Pσ(t− τ) dµ(τ),

where c ≥ 0 is a constant and Pσ is the poisson kernel, that is

Pσ(v) =
1

π

σ

σ2 + v2
.

If 0 < σ ≤ θ, then we must have σPσ(v) ≤ θPσ(v) or Pσ(v) ≤ θ
σ
Pσ(v). Of course, this

implies that h(σ+ it) ≤ θ
σ
h(θ+ it). We know that ψ can represented as a Dirichlet series for

a large enough choice of Re s. Hence, there exists a half-plane Cϑ on which ψ is bounded by
a constant, say M . Now, for any 0 < α < 1, the function Reψα constitute a non-negative
harmonic function, and we denote it by h. If we write ψ(s) = |ψ(s)|ei arg(ψ), then we see that

h = Re(ψα) = cos(α arg(ψ))|ψ|α

≥ cos(απ/2))|ψ|α,

since −π/2 ≤ arg(ψ) ≤ π/2. We can write this inequality as |ψ|α ≤ K(α)h, where K(α) is
a constant depending on α. Combining this with the inequalities above gives

|ψ(σ + it)|α ≤ K(α)h(σ + it) ≤ K(α)
θ

σ
h(θ + it) ≤ K(α)

θ

σ
|ψ(θ + it)|α ≤ K(α)

θ

σ
Mα

We observe that ψ remains bounded in the half-plane Cσ for every σ > 0. Now we just apply
Bohr’s theorem (Theorem 2.4) to finish the proof.

Quite remarkably, a Dirichlet series converging to an analytic function in some possibly
distant half-plane, actually converges to that function in every half-plane where it is analytic.
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2.2 Vertical limit functions

We will now introduce the concept of a vertical limit function, which will be of great impor-
tance in the study of composition operators on H 2. In order to do so, we need the notion of
a multiplicative character. We say that χ : N→ T is a multiplicative character if it satisfies
χ(mn) = χ(m)χ(n) for all positive integers m and n. We denote the set of all such characters
by M. It is convenient to identify the set M with T∞, the infinite dimensional Cartesian
product of T. This identification is done as follows. Take a point z = (z1, z2, ...) ∈ T∞
and let χ(pj) = zj, where pj denotes the j-th prime. The character χ is now defined for
every prime number and we extend it to all of N by letting χ(n) = χ(pr11 ) · · · χ(prmm ), where
n = pr11 · · · prmm . Note that this definition of χ forces it to be multiplicative. Moreover,
T∞ is a compact group under point-wise multiplication. It therefore exists a unique Haar
measure on T∞, which happens to coincide with the infinite product measure generated by
the normalized Lebesgue measure on T.

Consider now the function f(s) =
∑∞

n=1 ann
−s ∈ D. For any character χ ∈M we define

the function fχ by

fχ(s) =
∞∑
n=1

anχ(n)n−s. (2.2)

We call this a vertical limit function. To understand the reasoning behind this name we look
at the character χ(n) = n−it. This obviously defines a multiplicative character. Also, for
f(s) =

∑∞
n=1 ann

−s we have fχ(s) = f(s+ iτ) =: fτ (s). That is, fχ is a vertical translation
of f . The interesting thing is, as we shall see shortly, that every vertical limit function fχ
corresponds to the limit of a sequence of vertical translations of f . We start out by proving
a famous theorem by Kronecker, and we will give an analytic proof due to Bohr [3].

Definition 2.6. Let a1, ..., an be a set of real numbers. We say that the numbers are Q-
linearly independent if

n∑
j=1

cjaj = 0, with c1, ..., cn ∈ Z,

only when cj = 0 for 1 ≤ j ≤ n.

One typical example of such a set is the following. If p1, ..., pj is a set of j unique primes,
then the real numbers log p1, ..., log pj are Q-linearly independent. This follows from the
relation

j∑
i=1

ci log pi = log
∏

1≤i≤j

pcii ,

and the fundamental theorem of arithmetic.

Theorem 2.7 (Kronecker’s Theorem). Suppose ξ1, ..., ξk are Q-linearly independent real
numbers. Let α1, ..., αk be arbitrary real numbers and let ε > 0. Then there exists integers
n1, ..., nk and a real number t satisfying

|tξj − αj − nj| < ε, j = 1, 2, ..., k.
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Proof. We want to carry out an analytic proof of this result and we will rely on the following
fact. The exponential function e2πix is equal to 1 if and only if x is an integer. Consider the
function

f(t) = 1 +
k∑

m=1

e2πi(tξm−αm).

Clearly, |f(t)| ≤ k+ 1. Observe that |f(t)| is close to k+ 1 if and only if (tξm− αm) is close
to an integer for all m. In this language, Kronecker’s Theorem states that we can get |f(t)|
arbitrarily close to k + 1 by choosing t sufficiently large.

Let F denote the function

F (x1, .., xk) = 1 + x1 + · · ·+ xk.

If we now raise the functions f and F to their p-th power, for some integer p, and use the
multinomial theorem, they take the form

(f(t))p =
∑

bνe
iβνt,

(F (x1, ..., xk))
p =

∑
bλ1,...,λkx

λ1
1 · · · x

λk
k .

Note that the βν must all be different due to the linear independence of the ξi. The p-th
power of the functions f and F must therefore have the same number of terms, and the
absolute value of the coefficients bν and bλ1,...,λk coincide. This yields∑

|bν | =
∑

bλ1,...,λk = (F (1, ..., 1))p = (k + 1)p.

For any fixed ν = ν ′ we have the following identity,

lim
T→∞

1

T

∫ T

0

(f(t))pe−iβν′ t dt = lim
T→∞

1

T

∫ T

0

(∑
bνe

iβνt
)
e−iβν′ t dt

= bν′ + lim
T→∞

1

T

∫ T

0

(∑
ν 6=ν′

bνe
iβνt

)
e−iβν′ t dt

= bν′ +
∑
ν 6=ν′

bν

(
lim
T→∞

1

T

∫ T

0

ei(βν−βν′ )t dt

)

= bν′ +
∑
ν 6=ν′

bν

(
lim
T→∞

ei(βν−βν′ )T − 1

(βν − βν′)iT

)
= bν′

If we now assume that there exists a constant C such that |f(t)| ≤ C < k + 1 for all t ∈ R,
then every coefficient bν of (f(t))p satisfies

|bν | =
∣∣∣∣ lim
T→∞

1

T

∫ T

0

(f(t))pe−iβνt dt

∣∣∣∣ ≤ Cp.
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As k increases by 1, the number of terms in the polynomial development of (1+x1 + ...+xk)
p

is multiplied with at most p + 1. This means that the total number of terms must be less
than (p+ 1)k. We therefore have ∑

|bν | < (p+ 1)kCp,

which implies that
(p+ 1)kCp∑

|bν |
=

(p+ 1)kCp

(k + 1)p
> 1

for all p. However, since C < k + 1 we have that

(p+ 1)kCp

(k + 1)p
→ 0,

as p → ∞. Therefore, our assumption that |f(t)| is less than C for every t ∈ R leads to a
contradiction. Consequently, the proof is complete.

The result below was originally presented in [10], and we will follow a proof from [13].

Theorem 2.8. Suppose that f(s) =
∑

n=1 ann
−s, with σu(f) = θ. Then the vertical limit

functions fχ are precisely the limits of some sequence {fτN} of vertical translations of f ,
in the half-plane Cθ. The sequence {fτN} converges uniformly on Cθ+δ, for every δ > 0.
Moreover, we have σu(fχ) = θ.

Proof. Assume that we have a sequence of vertical translations {fτN}N≥1 converging to an
analytic function on Cθ. It is clear that the function defined as ξτN (n) := n−iτN must
converge to some limit function ξ(n), as N →∞. We readily see that |ξ(n)| = 1 and that ξ
is completely multiplicative. Hence, there exists a character χ ∈ M such that χ(n) = ξ(n)
for all n. Let ϑ > θ. We know that f converges uniformly on Cϑ. We can then take the limit
as N approaches infinity of the translations fτN , and pass the limit inside the summation.
This will, in conjunction with the argument above, ensure that fτN converges to fχ on Cϑ.
Since ϑ was arbitrary, we actually have convergence on all of Cθ and also σu(fχ) = θ.

On the other hand, we want to show that for any character χ ∈M there exists a sequence
of real numbers {τN}N≥1 such that {fτN}N≥1 converges to fχ. For this purpose, we recall
Kronecker’s Theorem (Theorem 2.7). In the language of vertical limit functions the theorem
says that there exists τ ∈ R such that

|χ(n)− n−iτ | < ε, n = 1, ..., N,

for any ε > 0 and positive integer N . Then for all N we should be able to find τN such that

|χ(n)− n−iτN | < 1/N n = 1, ..., N.

As N approach infinity we see that n−iτN → χ(n), which is what we wanted to prove.

Since all characters χ has modulus 1 it is also clear that σa(fχ) = σa(f). We will now
establish a product formula for vertical limit functions. The lemma is a slight improvement
of a result from [13].
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Lemma 2.9. Assume we have a character χ ∈M and two convergent Dirichlet series f and
g. Then the product formula (fg)χ = fχgχ holds in Cθ whenever σu(f) ≤ θ and σu(g) ≤ θ.

Proof. In a remote half-plane where both f and g converges absolutely we can write the
product f(s)g(s) = (

∑∞
n=1 ann

−s) (
∑∞

m=1 bmm
−s) as

f(s)g(s) =
∞∑
n=1

cnn
−s,

where
cn =

∑
ij=n

aibj.

Then

(fg)χ =
∞∑
n=1

cnχ(n)n−s.

On the other hand we have

fχgχ =
∞∑
n=1

dnn
−s,

where
dn =

∑
ij=n

aibjχ(i)χ(j).

But χ is a completely multiplicative character, so

dn = χ(n)
∑
ij=n

aibj = χ(n)cn.

We see that (fg)χ = fχgχ in a half-plane where f and g converges absolutely. Since σu(f) ≤ θ
and σu(g) ≤ θ, the two functions are bounded on Cθ. The product of two bounded functions
are again bounded, so by Bohr’s theorem it follows that σu(fg) ≤ θ. The product formula
therefore holds in all of Cθ.

The next result tells us that the image of a function is invariant under vertical translations.
We follow a proof from [5].

Lemma 2.10. Let ψ : Cθ → Cν be analytic, with ψ(s) =
∑∞

n=1 cnn
−s. Then ψ(Cθ) =

ψχ(Cθ).

Proof. We observe that ψ(+∞) = ψχ(∞) = c1, so the result is clear for constant ψ. Assume
now that ψ is non-constant. For a point w ∈ Cθ we find a closed disc K which contains w
in its interior and satisfies

M = inf
s∈∂K

|ψχ(s)− ψχ(w)| > 0.

By Theorem 2.8 there exists a sequence of vertical translation of ψ converging to ψχ on K.
Let τk be a sequence such that ψ(s + iτk) → ψχ(s). By choosing k large enough we can
ensure that

|ψ(s+ iτk)− ψχ| < M.
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We add and subtract ψχ(w) on the left-hand side, so that

|ψ(s+ iτk)− ψχ(w)− (ψχ(s)− ψχ(w))| < M,

valid for s ∈ K. Denote by f and g the functions

f(s) = ψχ(s)− ψχ(w)

g(s) = ψ(s+ iτk)− ψχ(w)− (ψχ(s)− ψχ(w)).

The function f is clearly zero at s = w. Rouché’s theorem tells us that f and f + g has the
same number so zeros in K. We have

(f + g)(s) = ψ(s+ iτk)− ψχ(w),

so there must be a value of s in K making ψ(s+ iτk) = ψχ(w), and the proof is done.

31



Chapter 3

The Hardy space H 2

We consider here the Hardy space of Dirichlet series H 2. We prove several results concern-
ing the H 2-norm. In that regard, we define the space H2

i (Cθ, α) of analytic functions on Cθ

which, after a Möbius transformation, belongs to Hardy space H2. In the end, we consider
the almost sure behaviour of vertical limit functions.

We now introduce the Hardy space H 2 of Dirichlet series, which possess many similar
properties to the space H2 and is defined analogously. For any Dirichlet series

f(s) =
∞∑
n=1

ann
−s, s = σ + it ∈ C, (3.1)

we say that f belongs to H 2 if and only if
∑∞

n=1 |an|2 < ∞. The norm and inner product
on H 2 are defined as

||f ||H 2 =

(
∞∑
n=1

|an|2
)1/2

and 〈f, g〉H 2 =
∞∑
n=1

anbn,

respectively. A simple calculation involving the Cauchy-Schwarz inequality gives

|f(s)|2 ≤

(
∞∑
n=1

|ann−s|

)2

≤
∞∑
n=1

|an|2
∞∑
n=1

n−2σ, (3.2)

for any f ∈ H 2. Observe now that f certainly converges absolutely in the half-plane C 1
2
,

and we therefore have σa(f) ≤ 1
2
. This also provides us with a basic convergence result.

Lemma 3.1. A sequence of Dirichlet series converging in the H 2-norm converges uniformly,
to the same limit, on closed half-planes in C1/2.

Proof. Suppose {fj}j≥1 is a sequence in H 2 converging to some limit f . Let θ > 1/2, so
that the closed half-plane Cθ belongs to C1/2. Since ζ(Re s) decreases as Re s increases, we
get

sup
s∈Cθ
|fj(s)− f(s)| ≤ ||fj − f ||H 2ζ(2θ),

by the pointwise estimate (3.2). The zeta function remains bounded for every θ > 1/2, so
the right-hand side of the inequality approaches zero when j →∞ and the result follows.
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Let en denote the function en(s) = n−s for n ≥ 1. We define, for a point a ∈ C1/2, the
reproducing kernel Ka by

Ka(s) =
∞∑
n=1

en(s)en(a) = ζ(s+ a),

so that the relation f(a) = 〈f,Ka〉H 2 holds for every f ∈H 2.
We will now look in to an alternative method for computing the H 2-norm, as we did

with the norm on H2. However, the new expression will not be applicable to every Dirichlet
series f ∈H 2. In particular, we will require σu(f) ≤ 0. The result is due to Carlson [6].

Theorem 3.2. Whenever the series (2.1) converges uniformly on Cε, for any ε > 0, then

||f ||2H 2 = lim
σ→0+

(
lim
T→∞

1

2T

∫ T

−T
|f(σ + it)|2 dt

)
. (3.3)

Proof. We start by rewriting the integrand:

|f(σ + it)|2 = f(σ + it)f(σ + it)

=
∞∑
n=1

∞∑
m=1

anamn
−σm−σn−itmit.

Now consider the integral

lim
T→∞

1

2T

∫ T

−T

(m
n

)it
dt.

We write
(
m
n

)it
= eit log m

n , and get

lim
T→∞

1

2T

∫ T

−T

(m
n

)it
dt = lim

T→∞

1

2T

∫ T

−T
cos
(
t
∣∣∣log

m

n

∣∣∣) dt =

{
1, n = m,

0, n 6= m.

In total, we have for σ > 0

lim
T→∞

1

2T

∫ T

−T
|f(σ + it)|2 dt =

∞∑
n=1

|an|2n−2σ,

since f converges uniformly on Cσ. Upon letting σ go to zero from above the result follows.

Corollary 3.3. The space of bounded Dirichlet series H ∞ is a subset of the Hardy space
H 2.

Proof. If f ∈H ∞, then Bohr’s theorem tells us that f converges uniformly in Cε for every
ε > 0. Now it follows from Theorem 3.2 that the H 2-norm of f is bounded by the H ∞-norm
of f , which is finite.
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For the non-negative real numbers α and θ we define the Möbius transformations

Tα(z) = α
1− z
1 + z

,

and
Sθ(s) = s+ θ.

The map Tα sends the unit disc to the half-plane C0 and Sθ sends C0 to Cθ. Now let f be
an analytic function in Cθ so that the composition f ◦ Sθ ◦ Tα belongs to H2. We denote
the space of all such functions by H2

i (Cθ, α). Recall that the functions in H2 has boundary
values almost everywhere on the unit circle (Theorem 1.5). This property now transfers to
the function f ∈ H2

i (Cθ, α) in the sense that the limit

lim
σ→θ+

f(σ + it)

exists for almost every t ∈ R. We define the norm on H2
i (Cθ, α) by

||f ||2H2
i (Cθ,α) := ||f ◦ Sθ ◦ Tα||2H2 =

1

2π

∫ ∞
−∞
|f ◦ Sθ ◦ Tα(eiθ)|2 dθ.

If we write Tα(eiθ) = −iα tan(θ/2) and use the substitution t = α tan(θ/2), then

1

2π

∫ ∞
−∞
|f ◦ Sθ ◦ Tα(eiθ)|2 dθ =

1

2π

∫ ∞
−∞
|f(θ − it)|2 cos(θ) + 1

α
dt.

Now, with θ = 2 arctan(t/α), we have

1

2π

∫ ∞
−∞
|f(θ − it)|2 cos(θ) + 1

α
dt =

1

π

∫ ∞
−∞
|f(θ + it)|2 α

α2 + t2
dt.

We therefore have

||f ||H2
i (Cθ,α) =

(
1

π

∫ ∞
−∞
|f(θ + it)|2 α

α2 + t2
dt

) 1
2

. (3.4)

We now prove a lemma form [4].

Lemma 3.4. Suppose that a Dirichlet series f(s) =
∑∞

n=1 ann
−s converges uniformly in Cθ.

Then

||f ||2H2
i (Cθ,β) =

∞∑
n=1

∞∑
m=1

anam
(nm)β−θ

[max(n,m)]2β
. (3.5)

Proof. First we calculate the integral ∫ ∞
−∞

cosαt

β2 + t2
dt.

Consider the related contour integral ∫
C

eiαz

β2 + z2
dz,
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where C = [−R,R] ∪ ΓR and ΓR is the half-circle on the upper half plane of radius R. The
integrand has one pole in C at z = iβ. We get

Resz=iβ
eiαz

β + z2
= lim

z→iβ
(z − iβ)

eiαz

β2 + z2
=

1

βeαβ
,

so ∫
C

eiαz

β2 + z2
dz =

π

β
e−αβ.

If we now let R go to infinity and use the ML-inequality, we see that the integral over ΓR
goes to zero. This implies that∫

C

eiαz

β2 + z2
dz =

∫ ∞
−∞

cosαt

β2 + t2
dt =

π

β
e−αβ. (3.6)

Consider now the integral

I(x) =
β

π

∫ ∞
−∞

xit
1

β2 + t2
dt.

We write xit = eit log x so that the integral becomes

I(x) =
β

π

∫ ∞
−∞

cos(| log x|t) 1

β2 + t2
dt.

By (3.6) we have

I(x) = e−| log x|β =
1

[max(x, 1/x)]β
.

Finally, by uniform convergence we get

||f ||2H2
i (Cθ,β) =

1

π

∫ ∞
−∞
|f(θ + it)|2 β

β2 + t2
dt

=
1

π

∫ ∞
−∞

∞∑
n=1

∞∑
m=1

anam(mn)−θ
(m
n

)it β

β2 + t2
dt

=
∞∑
n=1

∞∑
m=1

anam(mn)−θI(m/n)

=
∞∑
n=1

∞∑
m=1

anam
(nm)β−θ

[max(n,m)]2β
.

Corollary 3.5. If f ∈H 2 converges uniformly in Cε for all ε > 0, then

||f ||H 2 = lim
σ→0

lim
β→∞

||f ||H2
i (Cε,β).

Proof. Indeed, as β approaches infinity, we have that

(nm)β

[max(n,m)]2β
=

{
1, if m = n,

0, otherwise.
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We have already seen that any function in H 2 certainly converges uniformly in the half-
plane C1/2+δ, for δ ≥ 0. So the formula (3.5) holds for every f ∈ H 2 when θ = 1

2
. We

denote the matrix on the right hand side of (3.5), in this case, by Mα. That is

Mα :=

(
(nm)α−1/2

[max(n,m)]2α

)
n,m≥1

.

We define the norm of Mα by

||Mα|| := sup
a,b∈`2

|〈Mαa, b〉`2|
||a||`2||b||`2

. (3.7)

We will refer to the inner product on the right-hand side of (3.7) more conveniently as
Bα(a, b), namely

Bα(a, b) := 〈Mαa, b〉`2 =
∞∑
n=1

∞∑
m=1

anbm
(nm)α−1/2

[max(n,m)]2α
.

The following result is due to Brevig [4].

Lemma 3.6. For 0 < α <∞ we have the sharp estimate

||f ||2H2
i (C1/2,α) ≤ ||Mα|| ||f ||2H 2 .

Proof. We have

||f ||2H2
i (C1/2,α) =

∞∑
n=1

∞∑
m=1

anam
(nm)α−1/2

[max(n,m)]2α

≤ ||Mα|| ||f ||2H 2 ,

by (3.5) and (3.7). The matrix Mα is real and symmetric, and is therefore self-adjoint. So
the norm is attained for some b = a, which is exactly what we have in the estimate above.
The estimate is therefore sharp.

The two next results, also from [4], will provide a lower and upper bound for ||Mα||,
respectively.

Lemma 3.7. For every 0 < α <∞, we have ||Mα|| ≥ 2/α.

Proof. By definition we have

||Mα|| ≥
1

||a||`2||b||`2
|Bα(a, b)| ,

for any an, bm ∈ `2. So for any 0 < ε < α we can define an = n−1/2−ε and bm = m−1/2−ε so
that

||Mα|| ≥
1

ζ(1 + 2ε)

∞∑
n=1

∞∑
m=1

(nm)α−1−ε

[max(n,m)]2α
.
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We rewrite the sums as

∞∑
n=1

∞∑
m=1

(nm)α−1−ε

[max(n,m)]2α
=
∞∑
n=1

[
n−α−1−ε

n∑
m=1

mα−1−ε + nα−1−ε
∞∑

m=n+1

m−α−1−ε

]
.

Consider first the sum
∑n

m=1m
α−1−ε. An application of Euler’s summation formula gives

n∑
m=1

mα−1−ε =

∫ n

1

tα−1−ε dt+ (α− 1− ε)
∫ n

1

tα−2−ε(t− [t]) dt

=
nα−ε

α− ε
− 1

α− ε
+O

(
α

∫ n

1

tα−2−ε
)

=
nα−ε

α− ε
+O(nα−1−ε).

The sum
∑∞

m=n+1m
−α−1−ε can be written as

∞∑
m=n+1

m−α−1−ε = ζ(α + 1 + ε)−
n∑

m=1

m−α−1−ε.

We now apply the Euler summation formula to the sum
∑n

m=1m
−α−1−ε. This gives

n∑
m=1

m−α−1−ε =

∫ n

1

t−α−1−ε dt− (α + 1 + ε)

∫ n

1

t−α−2−ε(t− [t]) dt

=
n−α−ε

−α− ε
− 1

−α− ε
− (α + 1 + ε)

∫ ∞
1

t−α−2−ε(t− [t]) dt+O(n−α−1−ε).

If we let n go to infinity in the equation above, then the left-hand side approaches ζ(α+1+ε).
The right-hand side becomes

− 1

−α− ε
− (α + 1 + ε)

∫ ∞
1

t−α−2−ε(t− [t]) dt.

So we must have

ζ(α + 1 + ε) = − 1

−α− ε
− (α + 1 + ε)

∫ ∞
1

t−α−2−ε(t− [t]) dt.

It follows that
∞∑

m=n+1

m−α−1−ε =
n−α−ε

α + ε
+O(n−α−1−ε).

We now compute the following:

n−α−1−ε
n∑

m=1

mα−1−ε = n−α−1−ε
(
nα−ε

α− ε
+O(nα−1−ε)

)
=
n−1−2ε

α− ε
+O(n−2−2ε),

nα−1−ε
∞∑

m=n+1

m−α−1−ε = nα−1−ε
(
n−α−ε

α + ε
+O(n−α−1−ε)

)
=
n−1−2ε

α + ε
+O(n−2−2ε)
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In total, we have

∞∑
n=1

∞∑
m=1

(nm)α−1−ε

[max(n,m)]2α
=
∞∑
n=1

[
n−1−2ε

α− ε
+
n−1−2ε

α + ε
+O(n−2−2ε)

]
= ζ(1 + 2ε)

(
1

α− ε
+

1

α + ε

)
+O

(
ζ(2 + 2ε)

)
.

Dividing this by ζ(1 + 2ε) and letting ε→ 0+ gives ||Mα|| ≥ 2/α.

Lemma 3.8. For every 0 < α <∞, we have ||Mα|| ≤ 1/α + max(1/α, 1).

Proof. We use the Cauchy-Schwarz inequality with weights
√
m/n and

√
n/m to obtain

|Bα(a, b)| ≤

(
∞∑
n=1

|an|2
√
n
∞∑
m=1

(nm)α−1/2

[max(n,m)]2α

√
1

m

)1/2

×

(
∞∑
m=1

|bm|2
√
m
∞∑
n=1

(nm)α−1/2

[max(n,m)]2α

√
1

n

)1/2

.

Define

Sα(n) =
√
n
∞∑
m=1

(nm)α−1/2

[max(n,m)]2α

√
1

m
,

so that

|Bα(a, b)| ≤

(
∞∑
n=1

|an|2Sα(n)

)1/2( ∞∑
m=1

|bm|2Sα(m)

)1/2

≤

(
sup
n
Sα(n)

(
∞∑
n=1

|an|2
))1/2(

sup
n
Sα(m)

(
∞∑
m=1

|bm|2
))1/2

Now for any a, b ∈ `2 with ||a||`2 = ||b||`2 = 1, we get

||Mα|| ≤ sup
n
Sα(n),

since Sα(n) = Sα(m). To continue, write Sα(n) as

Sα(n) = n−α
n∑

m=1

mα−1 + nα
∞∑

m=n+1

m−α−1.

Consider first the sum
∑∞

m=n+1m
−α−1. We have the estimate

∞∑
m=n+1

m−α−1 ≤
∫ ∞
n

t−α−1 dt =
n−α

α
.
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For the n−α
∑n

m=1m
α−1 we consider the cases 0 < α ≤ 1 and α > 1 separately. First, for

0 < α ≤ 1, we have
n∑

m=1

mα−1 ≤
∫ n

0

tα−1 dt =
nα

α
.

For α > 1 we can easily find

n−α
n∑

m=1

mα−1 ≤ n−α(nnα−1) = 1.

Hence,

Sα(n) ≤

{
2/α, 0 < α ≤ 1,

1 + 1/α, α > 1,

which completes the proof.

In the previous chapter we introduced the notion of a vertical limit function. In [10],
Hedenmalm, Lindquist and Seip prove the following result regarding the vertical limit func-
tions corresponding to a Dirichlet series in H 2.

Theorem 3.9. Suppose f(s) =
∑∞

n=1 ann
−s belongs to H 2. Then the function

fχ(s) =
∞∑
n=1

anχ(n)n−s

almost surely (with respect to the Haar measure on T∞) extends to an analytic function on
C0 belonging to the space H2

i (C0). In addition, the non-tangential value

f ∗(χ) = lim
σ→0+

fχ(σ)

exists for almost every χ ∈ T∞

A function f ∈H 2 will, in the worst case, only converge in the half-plane C1/2. However,
the theorem above tells us that a vertical limit function fχ of f most likely converges in the
larger half-plane C0. In other words, the vertical limit functions are better behaved than
their original functions. The following result from [9], proved by Wintner [17] and Kahane
[11], gives us an example of a vertical limit function that will prove to have useful properties.

Lemma 3.10. Let
gχ(s) =

∑
p

χ(p)p−s−1/2.

Then the line Re s = 1
2

is the abscissa of convergence for a dense set characters χ. Moreover,
the line Re s = 0 is the abscissa of convergence for almost all characters χ. In both cases,
the abscissa of convergence is a natural boundary.
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Clearly, gχ does not actually belong to H 2. However, if we let

f(s) =
∑
p

p−s
√
p log p

so that

fχ(s) =
∑
p

p−s
√
p log p

χ(p),

then we observe fχ ∈ H 2 and f ′χ = −gχ. Therefore, fχ must have the same properties as
gχ. We already know from Theorem 3.9 that fχ can be extended analytically to C0, almost
surely. But Lemma 3.10 provides us with additional information about this particular fχ,
namely that there does not exist an analytic extension beyond the imaginary line. Also, for
a dense set of characters, fχ can not be extended analytically beyond the line Re s = 1

2
.
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Chapter 4

Composition operators on H 2

In this chapter we use the results we have established concerning vertical limit functions and
the Hardy space H 2 to prove a result from [9].

In chapter 1 we found that analytic self-maps of the unit disc generates bounded compo-
sition operators on the Hardy space H2. The goal of this chapter is to give a characterization
of the analytic functions ϕ : C1/2 → C1/2 that generates bounded composition operators on
the Hardy space of Dirichlet series H 2. Consider the following definition.

Definition 4.1 (The Gordon–Hedenmalm class). Let ϕ(s) = c0s+
∑∞

n=1 cnn
−s = c0s+ψ(s),

with c0 ∈ N ∪ {0}. We say that ϕ belongs to the Gordon-Hedenmalm class, denoted by G , if
it satisfies the following properties.

1. σu(ψ) ≤ 0

2. If c0 = 0, then ψ(C0) ⊂ C1/2.

3. If c0 ≥ 1, then ψ ≡ 0 or ψ(C0) ⊂ C0.

In [9], Gordon and Hedenmalm proved the following theorem.

Theorem 4.2. A function ϕ : C1/2 → C1/2 generates a bounded composition operator Cϕ :
H 2 →H 2 if and only if ϕ belongs to the Gordon-Hedenmalm class.

The fact that the G contains every analytic function associated with a bounded com-
position operator on H 2 is the main result of this chapter. For the proof of this result we
will follow [9], but also the work of Queffélec and Queffélec from their unpublished second
edition of [13]. The proof is rather complicated, so it is convenient to divide the proof into
several parts. We will treat the proof for necessity and sufficiency of the condition ϕ ∈ G
separately, and we will also distinguish between the case c0 = 0 and c0 ≥ 1. The first step
towards proving the result consists of determining when the composition f ◦ϕ is a Dirichlet
series, for f ∈H 2. We have the following result.

Theorem 4.3. Suppose we have an analytic function ϕ : C1/2 → C1/2. Then ϕ generates a
composition operator Cϕ : H 2 → D if and only if ϕ is of the form

ϕ(s) = c0s+ ψ(s), (4.1)

where c0 is a non-negative integer and ψ ∈ D.
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The proof of the theorem requires the two following lemmas:

Lemma 4.4. Suppose we have a function g(s) =
∑∞

n=N bnn
−s ∈ D. Then

lim
Re s→∞

N sg(s) = bN .

Proof. First write N sg(s) = bN +
∑∞

n>N bn
(
N
n

)s
. This gives

lim
Re s→∞

N sg(s) = bN + lim
Re s→∞

∞∑
n>N

bn

(
N

n

)s
. (4.2)

For ε > 0 and Re s ≥ σa(g) + ε =: σε we have∣∣∣∣bn(Nn
)s∣∣∣∣ ≤ ∣∣∣∣bn(Nn

)σε∣∣∣∣ ,
whenever n > N . Clearly,

∞∑
n>N

∣∣∣∣bn(Nn
)σε∣∣∣∣ <∞.

Weierstrass’ M -test now says that the series
∑∞

n>N bn
(
N
n

)s
converges uniformly, which allows

us to move the limit in (4.2) inside the series. Since limRe s→∞ bn
(
N
n

)s
= 0 as long as N < n,

the result follows.

Lemma 4.5. Suppose that c is a real number such that nc is an integer for all n ∈ N. Then,
c ∈ N ∪ {0}.

Proof. For a smooth function f we define the k-iterated difference (∆kf)(n), where n ∈ N,
as

(∆kf)(n) = (∆k−1g)(n), with g(n) = f(n+ 1)− f(n).

For k = 0 we define (∆0f)(n) = f(n). We can also write the k-iterated difference as

(∆kf)(n) =
k∑
i=0

(−1)k−i
(
k

i

)
f(n+ i).

Denote by f (k) the k-th derivate of f . The proof now relies on the following identity.∫
[0,1]k

f (k)(n+ t1 + · · ·+ tk) dt1 · · · dtk =∫
[0,1]k−1

f (k−1)(n+ 1 + t2 + · · ·+ tk)− f (k−1)(n+ t2 + · · ·+ tk) dt2 · · · dtk =

...

=
k∑
i=0

(−1)k−i
(
k

i

)
f(n+ i).
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Consider now the function f(t) = tc, where c is a real number, but not an integer. Assume
first that c > 0 and that f(t) is an integer whenever t is a natural number, making the
k-iterated difference of f an integer as well. We have

f (k)(t) = c(c− 1) · · · (c− k + 1)tc−k.

If k > c, then limn→∞(∆kf)(n) = 0. On the other hand, since c is not an integer, it follows
that f (k) is always positive or always negative. This means that (∆kf)(n) 6= 0, which can
be seen by inspecting its integral expression. But (∆kf)(n) is an integer by assumption, so
then we must have |(∆kf)(n)| ≥ 1. This is a contradiction, and in turn, c must be an integer
to ensure that f(t) is an integer whenever t is a natural number.

Now, if c < 0, then f(t) tends to zero as t → ∞. But if f(t) is an integer for all t ∈ N,
then f(t) would have to be equal to zero for a sufficiently large choice of t. Of course, this
can never happen. We can conclude that c is a non-negative integer, i.e. c ∈ N ∪ {0}.

Now we are ready to prove Theorem 4.3.

Proof. Assume that ϕ : C1/2 → C1/2 is an analytic function such that the composition f ◦ϕ,
with f ∈H 2, is again a Dirichlet series. If fk(s) = k−s, then we can write

(fk ◦ ϕ)(s) = k−ϕ(s) =
∞∑

n=N(k)

b(k)
n n−s. (4.3)

Here, N(k) represents the smallest natural number n such that b
(k)
N(k) is non-zero. With

Lemma 4.4 in mind, it is clear that

(N(k))sk−ϕ(s) → b
(k)
N(k)

when Re s→∞, or equivalently,

lim
Re s→∞

es logN(k)−ϕ(s) log k = b
(k)
N(k). (4.4)

Let g(s) = s logN(k)− ϕ(s) log k. Clearly, g is holomorphic in C1/2 and consequently maps
this half-plane to a connected domain. Let U be an arbitrarily small open neighborhood of
log b

(k)
N(k). Thanks to (4.4) and the connectivity of g(C1/2), all the values of g(s), for s with

sufficiently large real part, are contained in the set U + 2iπl, for some l ∈ Z. This implies
that

lim
Re s→∞

g(s) = lim
Re s→∞

s logN(k)− ϕ(s) log k = log b
(k)
N(k) + 2iπl, (4.5)

for some integer q. Upon dividing by s log k we obtain

lim
Re s→∞

ϕ(s)

s
=

logN(k)

log k
.

Lets define c0 := logN(k)
log k

and observe that kc0 = N(k). The number N(k) is an integer for
every k ∈ N, so we deduce from Lemma 4.5 that c0 is a non-negative integer. Notice that c0

only depends on the function ϕ, and not on the particular choice of k.
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We now claim that ψ(s) = ϕ(s)− c0s ∈ D. If we can show this, then the first part of the
proof will be complete. As before, we multiply the Dirichlet series (4.3) by (N(k))s = kc0s

and obtain

kc0sk−ϕ(s) = k−ψ(s) =
∞∑

n=kc0

b(k)
n

( n

kc0

)−s
. (4.6)

For simplicity let βj = b
(k)
kc0+j and write (4.6) as

k−ψ(s) = β0 + β1

(
1 +

1

kc0

)−s
+ β2

(
1 +

2

kc0

)−s
+ · · · = β0 + h(s).

We note that β0 6= 0, because β0 = b
(k)
kc0 = b

(k)
N(k) which is non-zero by definition. If we now

apply the logarithm to the previous equation we get

−ψ(s) log k = log(β0 + h(s)) + 2iπl, (4.7)

similarly as in (4.5). According to the proof of Lemma 4.4 the function h(s) =
∑

n>kc0 b
(k)
n n−s

converges uniformly to 0 as Re s → ∞. This allows us to choose Re s large enough so that
|h(s)| < |β0|, and in turn

log(β0 + h(s)) = log

(
1 +

h(s)

β0

)
+ log β0 =

∞∑
n=1

(−1)n−1

n
β−n0 h(s)n + log β0.

Inserting this in to (4.7) yields

−ψ(s) log k =
∞∑
n=1

(−1)n−1

n
β−n0 h(s)n + log β0 + 2iπl.

We have assumed Re s to be large enough for h(s) to converge absolutely. We can therefore
expand the expression of h(s)n for every n and rearrange the terms to obtain an expression
of the form

ψ(s) =
∞∑
r=0

∞∑
n1=1

· · ·
∞∑

nr=1

γn1,...,nr

r∏
j=1

(
1 +

nr
kc0

)−s
.

This expression for ψ is valid for every k and converges in some half-plane. Suppose k = k1

and let
∏r

j=1

(
1 +

nj
k
c0
1

)
be any of the products in the formula above. Since ψ is independent

of k, we can choose another k = k2 so that

r∏
j=1

(
1 +

nj
kc01

)
=

r′∏
j=1

(
1 +

mj

kc02

)
,

for some positive integers r′ and mj, 1 ≤ j ≤ r′. We can write this equality as

p

kc0q1

=
p′

kc0q
′

2

, (4.8)
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for some positive integers p, p′, q and q′. In particular, (4.8) must hold for k1 = 2 and k2 = 3.
So we must have that p3c0q

′
= p′2c0q, or

p =
p′2c0q

3c0q′
.

We deduce from this that 3c0q
′

divides p′, and similarly, 2c0q divides p. Hence, the elements∏r
j=1

(
1 + nr

kc0

)
are all positive integers. We conclude that ψ is a convergent Dirichlet series,

i.e. ψ ∈ D.
It remains to prove the second part of the proof. That is, we want to show that if ϕ

satisfies the condition (4.1), then it generates a composition operator Cϕ : H 2 → D. So let
ϕ be given by

ϕ(s) = c0s+ ψ(s),

where c0 is a non-negative integer and ψ(s) =
∑∞

n=1 cnn
−s ∈ D. For any natural number k

we can write

k−ϕ(s) = k−c0sk−ψ(s) = k−c0s−c1
∏
n≥2

k−cnn
−s

= k−c0s−c1
∏
n≥2

e−cnn
−s log k.

Expanding the exponential term in its Taylor series gives

k−ϕ(s) = k−c0s−c1
∏
n≥2

(
1 +

∞∑
j=1

(−cn log k)j

j!
n−js

)
.

Let g(s) =
∑∞

k=1 bkk
−s ∈H 2. The composition g ◦ ϕ can now be expressed as

(g ◦ ϕ)(s) =
∞∑
k=1

bkk
−ϕ(s) =

∞∑
k=1

bkk
−c0s−c1

∏
n≥2

(
1 +

∞∑
j=1

(−cn log k)j

j!
n−js

)
. (4.9)

We want to show that the expression (4.9) constitute a convergent Dirichlet series in some
half-plane. This can be done by rearrangement of the terms, but this requires the series to
be absolutely convergent. In order to see that the series converges absolutely for some large
Re s we write (4.9) as

∞∑
k=1

bkk
−c0s−c1 exp

((
−
∞∑
n=2

cnn
−s

)
log k

)
.

This series converges absolutely if the series

∞∑
k=1

|bk|k−c0 Re s−Re c1 exp

((
∞∑
n=2

|cn|n−Re s

)
log k

)
. (4.10)

converges. By assumption, ψ(s) is a convergent Dirichlet series in some half-plane Cθ.
So for some s with Re s ≥ θ, the series ψ(s) converges absolutely. Therefore, the series∑∞

n=2 |cn|n−Re s converges. Also, by Lemma 4.4, the series tends to zero when Re s goes to
infinity. Then for c0 6= 0 the series (4.10) converges. For c0 = 0 the same series certainly
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converges if Re c1 > 1/2. We will now see that this is the case. If c0 = 0, then ϕ(s) = ψ(s)
and limRe s→∞ ϕ(s) = c1, again by Lemma 4.4. Since the image of ϕ is contained in C1/2, we
must must have Re c1 ≥ 1/2. If ϕ is a constant function, then we trivially have Re c1 > 1/2.
Otherwise, there must exist a number n ≥ 2 such that cn is non-zero. Denote the first such
number by N . Then ϕ(s) = c1 + cNN

−s + O((N + 1)−Re s)). So for Re s sufficiently large,
the image of ϕ takes the form of a small punctured disc around the point c1. This disc must
be contained in C1/2, which implies that Re c1 > 1/2.

We now know which restrictions we have to impose on an analytic function ϕ so that it
generates a bounded composition operator Cϕ : H 2 → D. Before we can give a proof of the
main result of this chapter, we will need to establish some properties of such functions.

Theorem 4.6. Suppose ϕ : Cθ → Cν is an analytic function of the form (4.1). We then
have the following mapping properties.

1. If ψ is constant, i.e. ψ ≡ c1, then c1 ∈ Cν−c0θ.

2. If ψ is non-constant, then it sends Cθ to the open half-plane Cν−coθ.

3. Assume again that ψ is non-constant. Then for every ϑ > θ, we have ψ(Cϑ) ⊂
Cν+ε−c0θ. Here, ε > 0 depends on the choice of ϑ. In addition, Reψ is bounded
from above on Cϑ.

Proof. (1) First note that Reϕ(s) = c0 Re s + Reψ(s) > ν, or equivalently, Reψ(s) >
ν − c0 Re(s). For a fixed s ∈ Cθ we denote its real part by ϑ, so that Reψ(s) > ν − c0ϑ.
Since ψ is analytic in the half-plane Cϑ, we know from Theorem 2.5 that its Dirichlet series
converges uniformly in the same half-plane. So ψ must therefore be bounded in Cϑ. Now
consider the function 2−ψ which, by the above, is bounded on Cθ. The maximum modulus
principle tells us that |2−ψ| ≤ 2c0ϑ−ν , since the maximum must occur on the boundary of the
domain. We choose an arbitrary s with real part greater than θ, so that we actually have
|2−ψ| ≤ 2c0θ−ν . This means that Re ψ(s) ≥ ν − c0θ on Cθ.

(2) Applying the open mapping theorem to the result above completes the proof.

(3) Let F (s) = 2−ψ(s). We want to show that sup |F (s)| < 2c0θ−ν for s ∈ Cθ. To that
end, we will consider the function

MF (x) := sup{|F (s)| : Re s > x},

for x ≥ θ. If ψ(s) =
∑∞

n=1 cnn
−s, then F (s)→ 2−c1 as Re s goes to infinity. The function ψ

is nonconstant, so as Re s→∞ we can write

ψ(s) = c1 + cNN
−s +O((N + 1)−Re s),

where N = min{n ∈ N : n ≥ 2, cn 6= 0}. We observe that the image under ψ of some distant
half-plane contains a punctured disc centered at c1. This shows that there exists values of s
such that |F (s)| > 2−Re c1 . Hence, MF (x) is nonconstant. We have seen that M(θ) ≤ 2c0θ−ν ,
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and since MF (x) is nonconstant there must be a value of x so that MF (x) is strictly less
than 2c0θ−ν .

We can conclude by Hadamard’s three lines theorem ([14], Theorem 12.8) that MF is
logarithmically convex. Fix x large enough so that MF (x) < 2c0θ−ν . For x > ϑ > θ, we can
write ϑ = (1− λ)θ + λx, with λ ∈ (0, 1), and get

MF (ϑ) ≤MF (θ)1−λMF (x)λ < 2(c0θ−ν)(1−λ)2(c0θ−ν)λ = 2c0θ−ν ,

which is what we wanted to show.
Now we will see that Reψ is bounded above on Cϑ. According to Theorem 4.3 we have

2−ψ ∈ D. We have also just seen that 2−ψ is bounded above on Cϑ. So the Dirichlet series
representation of 2−ψ converges uniformly on Cϑ, by Bohr’s theorem. Assume now that Reψ
is not bounded above Cϑ. Then there have to exist a sequence of points {sn}n≥1 such that

lim
n→∞

2−ψ(sn) = 0.

On the other hand, we know that ψ tends to the constant term c1 as Re s approaches infinity.
Then it is obvious that the sequence {sn}n≥1 must remain bounded as n→∞. This implies,
however, that some vertical translation of 2−ψ(sn) should have a zero somewhere on the real
line. But then 2−ψ(sn) would have to be identically zero, which is not the case as it is
nonconstant. We have reached a contradiction and the result follows.

In the result above it is actually possible to replace the function ψ with a vertical limit
function ψχ and everything would still hold true. Lemma 2.10 shows that their image must
be the same. To see that Reψχ is bounded above one could repeat the argument used to
show that Reψ is bounded above.

Corollary 4.7. Suppose ϕ ∈ G and that ϕ is not a vertical translation. That is, ϕ(s) 6= s+iτ .
Then ϕ sends C1/2 into a slightly smaller half-plane.

Proof. The proof differs depending on the value of c0. Consider first the case c0 = 0. By
assumption, ϕ maps C0 to C1/2. If ϕ is a constant c1, that is, its Dirichlet series part ψ is
constant, then Re c1 > 1/2 and the result follows by Theorem 4.6.

Now, assume that c0 = 1. If ψ = c1, a constant, then Re c1 ≥ 0, since ϕ ∈ G . But we
have assumed that ϕ is not a vertical translation, and in particular, not the identity map.
This implies that Re c1 6= 0, which gives the result again by Theorem 4.6.

Finally, suppose that c0 ≥ 2. We know that ψ(C0) ⊂ C0, so ϕ(C1/2) ⊂ ϕ(C1) and we are
done.

Corollary 4.8. Let ϕ : Cθ → Cν be an analytic function of the form (4.1). Then we have
the following properties:

1. (n−c0s)χ = χ(n)c0n−c0s.

2. (n−ϕ)χ = χ(n)c0n−ϕχ.
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Proof. (1) Clearly, (n−c0s)χ = ((nc0)−s)χ = χ(nc0)(nc0)−s = χ(n)c0n−c0s.

(2) First write n−ϕ(s) = n−c0sn−ψ(s). If χ = n−iτ , then it easily follows that

(n−ψ)χ = n−ψχ .

By Theorem 2.8 this also holds for any χ ∈M. Now, using property 1. and Lemma 2.9, we
get

(n−ϕ(s))χ = (n−c0sn−ψ(s))χ = (nc0s)χ(n−ψ(s))χ = χ(n)c0n−c0sn−ψχ(s)

= (n−ϕ(s))χ = χ(n)c0n−ϕχ(s).

For a function ϕ of the form ϕ(s) = c0s+
∑∞

n=1 cnn
−s and a character χ ∈M, we define

ϕχ(s) := c0s+
∞∑
n=1

cnχ(n)n−s,

and we refer to this as a vertical limit function as well. If f ∈ H 2, then the composition
f ◦ ϕ is another Dirichlet series and we are interested in knowing what the vertical limit
functions of this composition looks like. The theorem below provides us with a describtion
of these vertical limit functions.

Theorem 4.9. Let ϕ : Cθ → C1/2 be an analytic function, where ϕ(s) = c0s + ψ(s), with
c0 ∈ N ∪ {0}, ψ ∈ D and θ ≥ 0. If ϕ is non-constant, then for every f ∈ H 2 and χ ∈ M
we have

(f ◦ ϕ)χ(s) = fχc0 ◦ ϕχ(s) for all s ∈ Cθ.

Proof. Consider the partial sum fN(s) =
∑N

n=1 ann
−s. By Theorem 2.9 it follows that

(fN ◦ ϕ)χ(s) =
N∑
n=1

anχ(n)c0n−ϕχ(s) = (fN)χc0 ◦ ϕχ(s).

We need to show that the identity above remains valid as N →∞. The function f converges
absolutely in C1/2, since f ∈H 2. We can then write, for s ∈ Cθ,

(f ◦ ϕ)(s) =
∞∑
n=1

ann
−ϕ(s).

To continue, we will need the following mapping property of ϕ. Let Re s > ϑ > θ. Then
we have Reϕ(s) ≥ 1/2 + ε, for some ε > 0. If c0 = 0, then this follows immediately from
Theorem 4.6, since ϕ is nonconstant. If c0 ≥ 1, then we use Theorem 4.6 again and find

Reϕ(s) = c0 Re s+ Reψ(s) ≥ c0 Re s+ 1/2− c0θ ≥ c0(ϑ− θ) + 1/2 > 1/2.

This mapping property of ϕ ensures that fN ◦ ϕ converges uniformly to f ◦ ϕ on Cϑ, since
we have

|(f ◦ ϕ)(s)|2 ≤

(
∞∑
n=1

|ann−ϕ(s)|

)2

≤
∞∑
n=1

|an|2
∞∑
n=1

n−2 Re s,

by the Cauchy–Schwarz inequality.
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4.1 Necessity

We are now going to prove the necessity part of Theorem 4.2, and for that we need a lemma.

Lemma 4.10. Suppose we have an analytic function ϕ on C1/2. If n−ϕ can be extended
analytically to a function fn on an open simply connected superset Ω of C1/2, for n = 2, 3,
then ϕ can be extended analytically to Ω as well.

Proof. If fn = n−ϕ(s) on C1/2, then

f ′n(s)

fn(s)
= −ϕ′(s) log n,

or

ϕ′(s) = − f ′n(s)

fn(s) log n
.

This expression for the derivative of ϕ is valid for s ∈ C1/2. Also, it constitutes a meromorphic
function in some superset Ω and we have therefore obtained an extension of ϕ′. We wish to
show that this extension has no poles in Ω. We know that fn is analytic everywhere in its
domain. Hence, if f ′n/fn has a pole at some point s0 ∈ Ω, then s0 is a zero of fn. So fix
s0 ∈ Ω and assume fn(s0) = 0. Denote the order of s0 by hn. We now have

Ress=s0 {ϕ′(s)} = Ress=s0

{
− f ′n(s)

fn(s) log n

}
=
−hn
log n

.

This equality is supposed to hold for n = 2, 3. If we divide the equation for n = 2 and n = 3
on each other we we obtain

log 2

log 3
=
h2

h3

∈ Q.

Since log 2/ log 3 is not rational, we have arrived at a contradiction. As a consequence, we
have shown that the extension of ϕ′ is analytic in Ω. Finally, Ω is a simply connected domain,
so ϕ can be extended to Ω as well.

Proof. (Necessity) Our starting point is a bounded composition operator Cϕ on H 2, and we
want to show that ϕ(s) = c0s+ψ(s) ∈ G . We have already seen that ϕ must be of the form
ϕ(s) = c0s + ψ(s), with c0 ∈ N ∪ {0} and ψ ∈ D. We consider first the case c0 ≥ 1. Let
fn = n−ϕχ = (n−ϕ)χ. By assumption, we have n−ϕ ∈H 2. Theorem 3.9 says that fn almost
surely has an extension to C0. If we now apply Lemma 4.10 to fn, with Ω = C0, we find
that ϕχ can be almost surely extended to C0. Now consider a function f ∈ H 2. Then the
composition f ◦ ϕ is in H 2 as well. So, again by Theorem 3.9, we know that (f ◦ ϕ)χ can
be almost surely extended to C0. Since the map z → zc0 preserves the measure on T, we
get that the map χ→ χc0 is measure-preserving on T as well. This implies that fχc0 can be
almost surely extended to C0. Denote by M ⊂ M the subset of characters for which these
functions can be extended to C0. We know from Theorem 4.9 that we can write

(f ◦ ϕ)χ(s) = fχc0 ◦ ϕχ(s), (4.11)
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for every s ∈ C1/2. What we now need to show is that there exists a character χ ∈ M such
that ϕχ(C0) ⊂ C0. We can describe this equivalently as the set

Γ = {s ∈ C0 : Reϕχ(s) > 0}

begin equal to C0 for some χ. The image ϕχ(C0) must be a connected open set, by continuity
and the open mapping theorem. The function ϕ sends C1/2 to C1/2, and so does ϕχ. From
this it is clear that Γ contains C1/2. Moreover, Γ is an open set. Now we denote by Γc the
connected part of Γ that contains C1/2. If we assume that Γ 6= C0, then we are certainly
able to find a point s0 on the boundary of Γc which is also in C0. Note that Γc have to be
open in C0. If not, there would have to be points immediately to the left of that boundary
which satisfies Reϕχ(s) ≤ 0, while the points on the boundary satisfies Reϕχ(s) > 0. This
would contradict the connectedness of ϕχ(C0). Since ϕχ maps points in Γc to C0 and points
in C0/Γ to C/C0, we get by connectedness that ϕχ maps the boundary ∂Γc to the imaginary
axis. Now we want to show that we can find a point s0 ∈ ∂Γc∩C0 such that ϕ′χ(s0) 6= 0. We
know that ϕχ is nonconstant, so ϕ′χ can not be identically zero. And since ϕ′χ is analytic, it
must have isolated zeros. Denote by Z the zeros of ϕ′χ in C0. Let B ∈ C0 be a ball containing
s0. The real part of an analytic function is harmonic, so we have∫

B

h(x+ iy) dxdy = 0,

for h = Reϕχ. Clearly, there exists points u, v ∈ B\Z satisfying h(u) < 0 and h(v) > 0.
One can now find a path from u to v in B which does not intersect with Z, and somewhere
along this path, say at w, we must have h(w) = 0. This means that ϕ′χ(w) 6= 0. We have
shown that there are points s0 ∈ ∂Γc∩C0 with ϕ′χ(w) 6= 0. This implies that ϕχ is conformal
close to the point s0. Remember that the formula (4.11) can be extended analytically to Γc,
in particular. Since ϕχ is conformal near s0 we see that the formula

fχc0 = (f ◦ ϕ)χ ◦ ϕ−1
χ (4.12)

is an analytic extension of fχc0 to some small part of the imaginary axis close to the point
ϕχ(s0) ∈ ∂C0. However, Lemma 3.10 shows that there exists an f ∈ H 2 such that fχc0
almost surely has a natural boundary at ∂C0. This implies that the formula (4.12) does not
hold in general and there must be some χ ∈ M for which ϕχ(C0) ⊂ C0. It then follows
by Theorem 4.6 that ψχ(C0) ⊂ C0. Recall that the action of twisting does not change the
mapping properties of a function (Lemma 2.10). Hence, ψ(C0) ⊂ C0.

We consider now the case c0 = 0. We first note that fχc0 = f , so that

(f ◦ ϕ)χ(s) = f ◦ ϕχ(s).

This time we want to show that ϕχ(C0) ⊂ C1/2. The idea is the same as before. Let Γ be
the set

Γ = {s ∈ C0 : Reϕχ(s) > 1/2},

and Γc the connected part containing C1/2. Again, if Γ 6= C0, then there is a point s0 on the
boundary of Γc which is also in C0. It is safe to assume that this point satisfies ϕ′χ(s0) 6= 0,
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making ϕχ conformal near s0. The point ϕχ(s0) lies on the boundary ∂C1/2, so that the
formula

f = (f ◦ ϕ)χ ◦ ϕ−1
χ ,

which is valid in Γc, is also an analytic continuation of f to some small part of ∂C1/2. We
now also need to find an example of a function f ∈H 2 that can not be extended past C1/2.
This is again given by Lemma 3.10. Indeed, since there exists a dense set of characters χ
such that

fχ(s) =
∑
p

p−s
√
p log p

χ(p)

has Re s = 1
2

as a natural boundary, we can choose one of these to be our example. This
completes the proof of the necessity part.

4.2 Sufficiency

In this section we prove the sufficiency part of Theorem 4.2. We start out with a lemma from
[4] which provides an upper bound for the norm of a composition operator when c0 = 0.

Lemma 4.11. Assume that ϕ ∈ G , with c0 = 0, and f ∈ H 2. If α = Re c1 − 1/2, where
c1 = ϕ(+∞), then

||Cϕf ||H 2 ≤ ||f ||H2
i (C1/2,α).

Proof. We can assume that c1 is real-valued. This is justified by the fact that we can always
consider a vertical translation of ϕ for which the constant term is real-valued and the H 2-
norm is not affected by a vertical translation. Suppose now that f(s) =

∑N
n=1 ann

−s is a
Dirichlet polynomial. It follows from Corollary 3.5 that

||Cϕf ||H 2 = lim
β→∞

||f ◦ ϕ||H2
i (C0,β) = lim

β→∞
||f ◦ ϕ ◦ Tβ||H2 ,

for ϕ ∈ G with c0 = 0. Define F := f ◦ S1/2 ◦ Tα and φ := T −1
α ◦ S−1

1/2 ◦ ϕ ◦ Tβ. Observe that

F ∈ H2 and that φ is an analytic self-map of the unit disc. We also have f ◦ϕ ◦ Tβ = F ◦ φ.
By Theorem 1.12 it follows that

||f ◦ ϕ ◦ Tβ||H2 = ||F ◦ φ||H2 ≤

√
1 + |φ(0)|
1− |φ(0)|

||F ||H2 .

Further, we have

lim
β→∞

φ(0) = lim
β→∞

T −1
α (ϕ(β)− 1/2) = T −1

α (c1 − 1/2).

For α = c1 − 1/2 we see that limβ→∞ φ(0) = 0. Hence,

||Cϕf ||H 2 ≤ ||F ||H2 = ||f ◦ S1/2 ◦ Tα||H2 = ||f ||H2
i (C1/2,α). (4.13)
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For an arbitrary f ∈H 2 there exists a sequence {fj}j≥1 of Dirichlet polynomials converging
to f in the H 2-norm. By (4.13) and Lemma 3.6 we have

||Cϕfj||H 2 ≤ ||fj||H2
i (C1/2,α) ≤

√
||Mα|| ||fj||H 2 .

By assumption, the right hand side of the inequality above remains bounded when j ap-
proaches infinity. This shows that the result must hold for every f ∈H 2.

It is worth mentioning here that the upper bound provided in the previous lemma is
actually attained for some ϕ. In particular, we have the following lemma:

Lemma 4.12. For every Re c1 > 1/2 there exists ϕ ∈ G , with c0 = 0, such that ϕ(+∞) =
Re c1 and

||Cϕf ||H 2 = ||f ||H2
i (C1/2,α),

for all f ∈H 2.

Proof. We define

ϕα(s) := S1/2 ◦ Tα(2−s) =
1

2
+ α

1− 2−s

1 + 2−s
.

Observe that ϕα is a Dirichlet series sending C0 to C1/2. Also, ϕα(+∞) = c1 = 1/2 + α.
Consider the subspace X of H 2, defined by

X :=

{
f(s) =

∞∑
k=0

a2k2
−ks

}
.

We can map X onto H2 by sending 2−s to z, making the two spaces isometrically isomorphic.
Finally, since the composition f ◦ ϕα belongs to X for all f ∈H 2, we have

||Cϕf ||H 2 = ||F ||H2 = ||f ◦ S1/2 ◦ Tα||H2 = ||f ||H2
i (C1/2,α).

Proof. (Sufficiency) We want to show that ϕ ∈ G is a sufficient condition for Cϕ to be a
bounded operator on H 2. Assume first that c0 = 0. Then the result follows immediately
by Lemma 4.11. For c0 ≥ 1 we can follow a similar approach as the proof of Lemma 4.11.
The qualitative difference in this case is that ϕ(C0) ⊂ C0, which means that we can leave
out the horizontal shift S1/2. We define instead F := f ◦ Tα and φ := T −1

α ◦ ϕ ◦ Tβ, for some
Dirichlet polynomial f . As before, we get

||f ◦ ϕ ◦ Tβ||H2 = ||F ◦ φ||H2 ≤

√
1 + |φ(0)|
1− |φ(0)|

||F ||H2 .

Again, we check what happens to φ(0) as we let β →∞:

lim
β→∞

φ(0) = lim
β→∞

T −1
α (ϕ(β)) = lim

β→∞

ϕ(β)− α
ϕ(β) + α

= lim
β→∞

1− α/ϕ(β)

1 + α/ϕ(β)
.

This time we choose α = c0β, such that ϕ(β) = α +O(1) as β, α→∞. Then

lim
β→∞

φ(0) = 0.
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The composition f ◦ ϕ is a convergent Dirichlet series in some half-plane by Theorem 4.3.
Moreover, since f is a polynomial, the composition f ◦ϕ is bounded on C0. So the Dirichlet
series associated to this composition converges uniformly on closed half-planes in C0. Now
we can use Corollary 3.5 to get

lim
β→∞

||F ||H2 = lim
β→∞

||f ||H2
i (C0,α) = ||f ||H 2 ,

so that
||Cϕf ||H 2 ≤ ||f ||H 2 .

This completes the sufficiency part of the proof.
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Chapter 5

Norms of composition operators on
H 2

In this chapter we study the norms of composition operators on the Hardy space H 2. We
primarily consider results from a paper by Brevig and Perfekt [5].

We begin this chapter by establishing a lower and upper bound for the operator norm of
a composition operator Cϕ : H 2 → H 2, similarly as we did for the composition operators
on H2 in Theorem 1.15. For the lower bound we will, as before, use a reproducing kernel
argument. We need the following lemma.

Lemma 5.1. For a composition operator Cϕ : H 2 → H 2 and a reproducing kernel Ka we
have

C ∗ϕKa = Kϕ(a).

Proof. The proof is identical to that of Lemma 1.13.

Theorem 5.2. Suppose ϕ ∈ G and let α = Reϕ(+∞)− 1/2. Then√
ζ(2 Reϕ(+∞)) ≤ ||Cϕ|| ≤ 1/α + max(1/α, 1).

Proof. By lemma 5.1 it follows that

||Kϕ(a)||H 2 = ||C ∗ϕKa||H 2 ≤ ||C ∗ϕ || ||Ka||H 2 = ||Cϕ|| ||Ka||H 2 .

The norm of the reproducing kernel is given by

||Ka||2H 2 =
∞∑
n=1

∣∣n−a∣∣2 = ζ(2 Re a).

Letting a go to infinity yields ||Ka||H 2 = 1. Now we have

||Cϕ|| ≥ ||Kϕ(a)||H 2 =
√
ζ(2 Reϕ(+∞)).

For the upper bound we combine Lemma 3.6 and Lemma 4.11, which gives

||Cϕf ||H 2 ≤ ||f ||H2
i (C1/2,α) ≤ ||Mα|| ||f ||H 2 ,

valid for every f ∈ H 2. Lemma 3.8 tells us that ||Mα|| ≤ 1/α + max(1/α, 1), so the proof
is complete.
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The next result we are going to consider provides an interesting analogy to the result by
Shapiro that we proved in chapter 1 (Theorem 1.20). Recall that the result was concerned
with composition operators generated by inner functions. We therefore need to clarify what
it means for a Dirichlet series f in H 2 to be inner. Recall that the non-tangential boundary
value

f ∗(χ) = lim
σ→0+

fχ(σ),

exists for almost every χ ∈ T∞. If |f ∗(χ)| = 1 for almost every χ ∈ T∞, then we say that f
is inner. We can now state the result ([5], Theorem 21).

Theorem 5.3. Suppose that ϕ ∈ G , with c0 = 0, maps C∗0 into C1/2 and that ϕ(+∞) = ω.
Let Θ be a Riemann map from D to C1/2 with Θ(0) = ω and set ψ(s) = Θ(2−s). Then

||Cϕf ||H 2 ≤ ||Cψf ||H 2 , f ∈H 2, (5.1)

and the following are equivalent.

1. Θ−1 ◦ ϕ is inner.

2. ||Cϕf ||H 2 = ||Cψf ||H 2.

3. ||Cϕ|| = ||Cψ||.

The Riemann map Θ is a special case of the function

ϕα(s) = S1/2 ◦ Tα(2−s) =
1

2
+ α

1− 2−s

1 + 2−s

that we saw earlier. We only need to ensure that ϕα(0) = ω, which is done by letting
α = ω−1/2. Shapiro’s result (Theorem 1.20) tells us that the operator norm ||Cϕ|| is maximal
if and only if the analytic self-map ϕ of the unit disc maps the boundary to the boundary.
Since Möbius transformations sends boundaries to boundaries, we see that condition 1 in
the result above is equivalent to ϕ∗(χ) = 1/2 for almost every χ ∈ T∞. The operator norm
of Cϕα is maximal by Lemma 4.12. This means that the maps ϕ ∈ G , with c0 = 0, that fixes
the boundary in the described sense, generate composition operators that attains its upper
bound.

From here on out, we will study the norms of composition operators generated by affine
symbols, mainly based on a paper by Brevig and Perfekt [5]. An affine symbol is a Dirichlet
series of the form

ϕc(s) = c+
d∑
j=1

cjp
−s
j , (5.2)

where c = (c1, ..., cd) and pj is the j-th prime. Since we are going to consider composition
operators generated by such symbols it will be necessary to determine when they belong
to the Gordon-Hedenmalm class. We see immediately that we must have Re c > 1/2. In
addition, we must have

∑
j≥1 |cj| ≤ Re c − 1/2. Let C∗0 denote the extended half-plane

C0 ∪ {∞}. The image of this half-plane under an affine symbol is given by the following
result from [5].

55



Lemma 5.4. Let ϕ be an affine symbol of the form (5.2) belonging to G . Then ϕ(C∗0) =
D(c, r), where

r =
d∑
j=1

|cj| ≤ Re c− 1/2.

For the remainder of this chapter we will consider a special family of sequences that we
denote by L (d, r). This is the set of sequences c = (c1, ..., cd), with cj ≥ 0, and the sum of
the sequence being equal to r. To each sequence c ∈ L (d, r) we associate a function

Lc(s) :=
d∑
j=1

cjp
−s
j .

Further, we write c↓ to denote the decreasing rearrangement of a sequence c. If b and c are
two sequences in L (d, r) satisfying

k∑
j=1

b↓j ≤
k∑
j=1

c↓j

for k = 1, 2, ..., d− 1, we say that b majorizes c and write b ≺ c. In [5] the following result
was proved.

Lemma 5.5. Let 1 ≤ q ≤. If b, c ∈ L (d, r) and b ≺ c, then ||Lb||H q ≤ ||Lc||H q . The
inequality is strict if b is not a permutation of c and 1 < q <∞.

Let f be a Dirichlet series in H 2 and

ϕc(s) = c+
d∑
j=1

cjp
−s
j = c+ Lc(s),

with c ∈ L (d, r). Taylor expanding f about the point s = c yields

f(s) =
∞∑
k=0

f (k)(c)

k!
(s− c)k.

The composition of f with ϕc can now be expressed as

Cϕcf(s) = f(c+ Lc(s)) =
∞∑
k=0

f (k)(c)

k!
(Lc(s))

k.

We can expand the k-th power of Lc(s) using the multinomial formula and obtain an ex-
pression of the form

(Lc(s))
k =

∑
|α|=k

(
k

α

) d∏
j=1

c
αj
j p
−αjs
j .
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Clearly, 〈m−s, n−s〉H 2 = 0 whenever m 6= n. Hence, by the fundamental theorem of arith-
metic, we find that 〈(Lc(s))

k, (Lc(s))
l〉H 2 = 0 whenever k 6= l. This gives

||Cϕcf ||2H 2 =
∞∑
k=0

|f (k)(c)|2

(k!)2
||Lkc||2H 2 (5.3)

We are led to the following subordination principle. If b ≺ c, then

||Cϕb
f ||2H 2 ≤ ||Cϕcf ||2H 2 .

This is stated more precisely in the following theorem from [5].

Theorem 5.6. Fix and r such that Re c− 1/2 ≥ r > 0 and let d be a positive integer. For
c ∈ L (d, r), let

ϕc := c+
d∑

n=1

cjp
−s
j .

Suppose that b, c ∈ L (d, r) and b ≺ c. Then

||Cϕb
f ||2H 2 ≤ ||Cϕcf ||2H 2 , f ∈H 2.

In addition, we have the following equivalent statements.

1. b is a permutation of c.

2. ||Cϕb
f ||H 2 = ||Cϕcf ||H 2 for every f ∈H 2.

3. ||Cϕb
|| = ||Cϕc ||.

The first fart of the result result follows from (5.3) and Lemma 5.5.
In ([5], Section 7.2), the following example of two affine symbols was given:

ϕa = c+
r

2
(2−s + 3−s),

ϕb = c+
r

6
(4 · 2−s + 3−s + 5−s).

They found that neither of them majorizes the other, yet one of the associated composition
operators is subordinate to the other. This made them pose the following question.

If ϕb and ϕc are two affine symbols with the same mapping properties, is it true that
either Cϕb

is subordinate to Cϕb
, or Cϕb

is subordinate to Cϕb
?

We are now going to answer this question, and see that a general subordination principle
of this kind does not hold. We want to construct a counterexample and begin with a basic
observation. If ϕb and ϕc are two affine symbols, then we can not have ||Lkb||2H 2 ≤ ||Lkc||2H 2

or ||Lkc||2H 2 ≤ ||Lkb||2H 2 for all k ∈ N, since this would lead to one operator being subordinate
to the other by the arguments above. We start by finding an example such that the above
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inequalities changes direction at least once for different values of k. For simplicity, we will
work with the space L (3, 1). Consider the example:

ϕ1(s) = c+
2

3
· 2−s +

1

3
· 3−s,

ϕ2(s) = c+
3

4
· 2−s +

1

8
· 3−s +

1

8
· 5−s.

The value of c must satisfy
∑

j≥1 |cj| ≤ Re c− 1/2, so that ϕ1 and ϕ2 belongs to G . We can
fix c = 2. We compute the relevant norms:

||ϕ1 − c||2H 2 =
5

9
= 0.55555...

||ϕ2 − c||2H 2 =
19

32
= 0.59375...

||(ϕ1 − c)2||2H 2 =
11

27
= 0.40740...

||(ϕ2 − c)2||2H 2 =
795

2048
= 0.38818...

Observe that
||ϕ1 − c||2H 2 < ||ϕ2 − c||2H 2

and
||(ϕ1 − c)2||2H 2 > ||(ϕ2 − c)2||2H 2 .

The inequalities changes direction already for k = 2. It remains to find two Dirichlet series
f and g so that

||Cϕ1f || < ||Cϕ2f || (5.4)

and
||Cϕ1g|| > ||Cϕ2g||. (5.5)

The easiest choice here would be f(s) = mc−s and g(s) = nc−s for some m,n ≥ 1. In order
to determine what m and n should be, we have to examine the formula (5.3). We see that
|f (k)(c)| = (logm)k and g(k)(c) = (log n)k. In order to make f satisfy (5.4), its derivative
have to grow slowly with respect to k. A natural choice is then m = 2. In this case, the
value of |f (k)(c)| decreases as k increases. We compute the first 10 terms in the formula
(5.3) for the composition operators ||Cϕ1f || and ||Cϕ2f ||, with the help of a computer. It is
worth mentioning that the computation could be checked by hand, if we approximate the
logarithmic term by rational numbers. We omit the first term since this is the same for both
composition operators. This gives

10∑
k=1

|f (k)(c)|2

(k!)2
||(ϕ1 − c)k||2H 2 = 0.02005... ,

10∑
k=1

|f (k)(c)|2

(k!)2
||(ϕ2 − c)k||2H 2 = 0.02098... .
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The second sum is larger then the first, as expected. But we need to know that this inequality
holds when we include all the terms in (5.3). We immediately see that ϕ1 ∈ H ∞ and
||(ϕ1 − c)k||H ∞ ≤ 1. By Theorem 3.2 it is clear that ||(ϕ1 − c)k||2H 2 ≤ ||(ϕ1 − c)k||H ∞ ≤ 1,
so we get the following estimate.

∞∑
k=J

|f (k)(c)|2

(k!)2
||(ϕ1 − c)k||2H 2 ≤

∞∑
k=J

(log 2)2k

(k!)2

≤ 1

(J !)2

∞∑
k=J

(log 2)2k.

We observe that the right-hand side is geometric series. We therefore have

1

(J !)2

∞∑
k=J

(log 2)2k =
1

(J !)2

(log 2)2J

1− (log 2)2

≤ 1

(J !)2

(log 2)2

1− (log 2)2

≤ 1

(J !)2
.

The last inequality follows from the fact that the map x 7→ x
1−x is increasing on the open

unit interval and (log 2)2 < 1/2. Now, for J = 11, we find

∞∑
k=11

|f (k)(c)|2

(k!)2
||(ϕ1 − c)k||2H 2 ≤

1

(11!)2
< 6.3 · 10−16.

Finally, we have

||Cϕ1f ||2H 2 =
10∑
k=0

|f (k)(c)|2

(k!)2
||(ϕ1 − c)k||2H 2 +

∞∑
k=11

|f (k)(c)|2

(k!)2
||(ϕ1 − c)k||2H 2

≤ 0.02006...

≤
10∑
k=0

|f (k)(c)|2

(k!)2
||(ϕ2 − c)k||2H 2

≤ ||Cϕ2f ||2H 2 ,

which proves that f(s) = 2c−s satisfies (5.4). We are left with the problem of choosing n
so that g(s) = nc−s satisfies (5.5). We will see that n = 4 is sufficient and we repeat the
argument we used for f . First,

10∑
k=1

|g(k)(c)|2

(k!)2
||(ϕ1 − c)k||2H 2 = 0.00962... ,

10∑
k=1

|g(k)(c)|2

(k!)2
||(ϕ2 − c)k||2H 2 = 0.00917... .
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This time, the first sum is larger than the second. Again, we estimate the remaining terms:

∞∑
k=J

|g(k)(c)|2

(k!)2
||(ϕ2 − c)k||2H 2 ≤

∞∑
k=J

(log 4)2k

(k!)2

=
∞∑
k=J

4k(log 2)2k

(k!)2
.

Since we are going to consider J > 10 it is safe to assume that 4k < k!. Hence,

∞∑
k=J

4k(log 2)2k

(k!)2
≤

∞∑
k=J

(log 2)2k

k!

≤ 1

J !

∞∑
k=J

(log 2)2k

≤ 1

J !
.

In the latter inequality we have just repeated the argument above. So we get

∞∑
k=11

|g(k)(c)|2

(k!)2
||(ϕ2 − c)k||2H 2 ≤

1

11!
< 2.51 · 10−8.

The function g now satisfies (5.5) since

||Cϕ2g||2H 2 =
10∑
k=0

|g(k)(c)|2

(k!)2
||(ϕ2 − c)k||2H 2 +

∞∑
k=11

|g(k)(c)|2

(k!)2
||(ϕ2 − c)k||2H 2

≤ 0.00918...

≤
10∑
k=0

|g(k)(c)|2

(k!)2
||(ϕ1 − c)k||2H 2

≤ ||Cϕ1g||2H 2 .

This answers the question and we can conclude that such a subordination principle does not
hold.
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