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Abstract

The copula is a very interesting tool in statistics. It’s used in many setting from
quantitative finance to climate models. Copulas are to a large extent useful because
they can elegantly separate the dependence structure from marginal distributions in
a multivariate distribution. We will explain this in detail in the thesis. If you for the
first time look at the definition of a copula it might be difficult to understand what
a copula actually is. Therefore, we also give a description of the copula function
in terms of distribution function, which is intuitive for someone with some prior
knowledge of statistics. We also write about Sklar’s Theorem, which theoretically
explains the connection between the bivariate distribution, its marginal distributions
and the copula. Next we generalise the theory of the copula from 2 to n dimensions,
and we also show how to estimate the parameters of a copula. Finally, we show how
you can use the copula to simulate samples from a bivariate distribution.
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Sammendrag

Copulaen er et interessant verktøy i statistikken. Den er brukt i mange forskjellige
omr̊ader fra finans til klimamodeller. En stor grunn til at copulaen er nyttig er
hvordan man kan bruke copulaen til å splitte en bivariat fordeling opp i avhengighets-
strukturen og selve marginalfordelingene. Vi vil forklare dette i denne oppgaven. Hvis
du for første gang ser p̊a definisjonen til copulaen kan det være vanskelig å forst̊a hva
copulaen egentlig er. Derfor har vi gitt en foklaring p̊a hva en copula er i form av
sansynlighetsfordelinger, som burde være intuitiv for en person som allerde har litt
kunnskap om statistikk. Vi skriver ogs̊a om sklars teorem, som teoretisk forklarer
denne sammenhengen mellom den bivariate fordelingen, dens marginalfordelinger
og avhengighetsstrukturen mellom marginalfordelingene. Vi generaliserer ogs̊a denne
teorien fra 2 til n dimensjoner, og vi forklarer hvordan man kan estimere parameterne
til en copula. Vi avslutter oppgaven med å vise hvordan man kan bruke en copula
til å simulere fra en bivariat fordeling.

2



Preface

This thesis is part of my 2 year Master of Science degree in Mathematical Sciences
with specialization in statistics at NTNU. My supervisor has been professor Øyvind
Bakke, and the subject of study was the copula. In the process of writing the thesis
I’ve got a lot of help, and I would like to especially thank Øyvind for all the help
and guidance through writing this thesis.

3



Contents

1 Introduction 6

2 Definition and basic properties 8

3 Another perspective on copulas 19

4 Sklar’s Theorem 21

5 Multivariate Copulas 26

6 Parametric estimation 29

MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

IFME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

MPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4



7 Transformations 36

8 Simulation 38

9 Conclusion 40

5



Chapter 1
Introduction

If we know the marginal distributions of a multivariate distribution the reader might
already know that this is not enough to fully describe the multivariate distribution.
What is lacking to fully describe the multivariate distribution, is the dependence
between the marginal distributions. It is here the copula comes into play as the
copula is a tool to show the dependence structure between marginal distributions in
a multivariate distribution.

On the applied side the copula is a very useful tool in finance where modeling of joint
distribution is needed. For example, if you want to make a multivariate distribution
function of different asset return Roncalli [1] says that you can use the copula to
split up the problem into two parts. Part one is modeling the marginal distribution
of the individual assets returns. Part two is figuring out a copula that describe the
dependence structure between the different assets returns.

Copulas were not used a lot in finance before year 2000, but this changed after Li [4]
published his article in 1999. His paper led to use of the Gaussian copula “to price
and manage the risk of Collatarised Debt Obligations” [5, p. 1]. After the finance
crisis in 2007–2008 the Gaussian copula was target of some criticism. One of these
critics was Felix [6], who called the Gaussian copula “The Formula that Killed Wall
Street”. However, Watts [5] states that changing the Gaussian copula with another
copula would not have changed the outcome of the crisis. Watts also says that the
crisis was more a product of poor estimation of the correlation between assets rather

6



than the choice of the Gaussian copula.
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Chapter 2
Definition and basic properties

To define what a copula is we first need some preliminaries. We first define what
a 2-increasing function is. Let R be the real line (−∞,∞) and let R be the real
line included ±∞, that is [−∞,∞]. We then define the extended real plane as the
Cartesian product R × R. We also use the notation I for the subset [0, 1] of the
of the real line R. Sometimes we will talk about a box B which could be of some
dimension n. If n = 2 we describe B as a Cartesian product [x1, x2]× [y1, y2] where
(x1, y1), (x2, y1), (x1, y2), (x2, y2) are called the vertices of the box B.

We will also introduce the notation VC(B), which is called the C-volume of the box
B. It is defined as C(x2, y2)−C(x1, y2)−C(x2, y1)+C(x1, y1) where (x1, y1), (x2, y1),
(x1, y2), (x2, y2) are the vertices of the box B.

Definition 1. A copula C(u, v) is a function that maps values from I × I to I and
satisfies the following three properties:
a) The copula is grounded, meaning C(u, 0) = C(0, v) = 0 for all u and v.
b) C(u, 1) = u and C(1, v) = v for all u and v.
c) The copula is a 2-increasing function, that is C(x2, y2) − C(x1, y2) − C(x2, y1) +
C(x1, y1) ≥ 0 for all possible x1, x2, y1, y2 where y1 ≤ y2 and x1 ≤ x2.

Some of these properties might feel a bit arbitrary, especially that a copula has to be
a 2-increasing function, and you might wonder if it is possible to make the definition
of a copula simpler.
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It can be shown that a 2-increasing function is non-decreasing in each argument if it
is grounded. To prove this we start with a lemma from [2, p. 9].

Lemma 1. Let S1 and S2 be nonempty subsets of R, and let H be a 2-increasing
function with domain S1 × S2. Let x1, x2 be in S1 with x1 ≤ x2, and let y1, y2 be in
S2 with y1 ≤ y2. Then the function t 7→ H(t, y2) −H(t, y1) is nondecreasing on S1,
and the function t 7→ H(x2, t)−H(x1, t) is nondecreasing on S2

Proof. Since H is 2-increasing we know that

H(x2, y2)−H(x1, y2)−H(x2, y1) +H(x1, y1) ≥ 0,

so that
H(x2, y2)−H(x1, y2) ≥ H(x2, y1)−H(x1, y1)

since y2 ≥ y1, t 7→ H(x2, t)−H(x1, t) must be a nondecreasing function. The proof
for the function t 7→ H(t, y2)−H(t, y1) is exactly same.

We will generalize the definition of grounded. Assume S1 has a least element a1 and
that S2 has a least element a2. Then a function H from S1 × S2 to R is grounded if
H(u, a2) = 0 = H(a1, v) for all (u, v) in S1 × S2. Notice that this still means that a
copula is grounded if C(u, 0) = 0 = C(0, v) for all (u, v) in I since a copula goes by
definition from I2 to I. If we now add the additional requirement that H is grounded
we get next lemma.

Lemma 2. Let S1 and S2 be nonempty subsets of R, and let H be a grounded 2-
increasing function with domain S1×S2. Then H is nondecreasing in each argument.

Proof. We let x1 and y1 be equal to the least element in S1 and S2 and since H is
grounded the result follows immediately.

This proof does not mean that a 2-increasing function on its own implies that the
function is non-decreasing in each argument, or the other way, that a function which
is non-decreasing in each argument implies that it is a 2-increasing function. Two
counterexamples of this taken from [2, p. 8] shows this.
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Example 1. Let C be defined on I2 by C(x, y) = max(x, y). Then C is obviously
non decreasing in each argument. However, VC([0, 1] × [0, 1]) = C(1, 1) − C(1, 0) −
C(0, 1) + C(0, 0) = 1 − 1 − 1 + 0 = −1, which means that the function is not a
2-increasing function.

For the next example we need a lemma first

Lemma 3. (2x− 1)(2y − 1) is a 2-increasing function.

Proof. To show that (2x−1)(2y−1) is a 2 increasing function. we have to show that
C(x2, y2) − C(x1, y2) − C(x2, y1) + C(x1, y1) ≥ 0 for all 0 ≤ x1 ≤ x2 ≤ 1 and
0 ≤ y1 ≤ y2 ≤ 1 We calculate the value of VC([x1, x2]× [y1, y2]) and we get

(2x2 − 1)(2y2 − 1)− (2x2 − 1)(2y1 − 1)− (2x1 − 1)(2y2 − 1) + (2x1 − 1)(2y1 − 1)

= 4x2y2 − 2x2 − 2y2 + 1− 4x2y1 + 2x2 + 2y1 − 1

− 4x1y2 + 2x1 + 2y2 − 1 + 4x1y1 − 2x1 − 2y1 + 1

= 4(x2y2 − x2y1 − x1y2 + x1y1)

= 4(x2[y2 − y1] + x1[y1 − y2])

= 4(x2 − x1)(y2 − y1) ≥ 0

Now we use the previous lemma in this example.

Example 2. Let C be defined on I2 by C(x, y) = (2x − 1)(2y − 1). Then C is a
2-increasing function, however it is a decreasing function of x for each y in (0, 1

2
) and

a decreasing function of y for each x in (0, 1
2
), since 2y − 1 and 2x − 1 is negative

when x and y is in the interval (0, 1
2
).

We proceed with bounds for copulas. We already know that 0 ≤ C(u, v) ≤ 1 for all
(u, v) in I2, but tighter bounds exist.

Theorem 4. Let C(u, v) be a copula. Then for all (u, v) in I2

max (u+ v − 1, 0) ≤ C(u, v) ≤ min (u, v) .

10



Proof. Let (u, v) be a point in I2. Since a copula is increasing in each argument we
have that C(u, v) ≤ C(u, 1) = u. A similar argument gives C(u, v) ≤ C(1, v) = v,
and we obtain that C(u, v) ≤ min(u, v). For the next inequality

0 ≤ VC ([u, 1]× [v, 1]) = C(1, 1)− C(u, 1)− C(1, v) + C(u, v) = 1− u− v + C(u, v),

so that
C(u, v) ≥ u+ v − 1.

And since 0 ≤ C(u, v) we conclude that max(u+ v − 1, 0) ≤ C(u, v).

An interesting question is if these bounds are actually copulas. It turns out they
actually are, and we will denote them as M(u, v) = min(u, v) and W (u, v) = max(u+
v−1, 0). Another copula that is of special interest is the product copula Π(u, v) = uv
as it has a link to independence. We will come back to this copula later, but first we
prove that they are all copulas.

Lemma 5. M(u, v) = min(u, v), W (u, v) = max(u+ v − 1, 0) and Π(u, v) = uv are
copulas

Proof. (1) We start with M(u, v). M(u, v) is obviously grounded and condition 1b)
from Definition 1 holds. What is left is showing that that M(u, v) is a 2-increasing
function, or in other words that

min(x2, y2)−min(x1, y2)−min(x2, y1) + min(x1, y1) ≥ 0

for 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1. We start by assuming that x1 ≤ y1, which
means that x1 is the least number which simplifies our earlier inequality to

min(x2, y2)−min(x2, y1) ≥ 0.

Now there are three possibilities, x2 ≤ y1 ≤ y2 , y1 ≤ x2 ≤ y2 or y1 ≤ y2 ≤ x2. We
start by assuming x2 ≤ y1 ≤ y2 which gives us

min(x2, y2)−min(x2, y1) = x2 − x2 = 0 ≥ 0.

The second inequality gives

min(x2, y2)−min(x2, y1) = x2 − y1 ≥ 0
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and the third gives

min(x2, y2)−min(x2, y1) = y2 − y1 ≥ 0.

We continue with W (u, v). W (0, v) = max(v − 1, 0) = 0 since v − 1 ≤ 1 − 1 = 0,
the argument for W (u, 0) is similar. W (u, 1) = max(u, 0) = u and similarly we have
W (1, v) = max(v, 0) = v. Next we show that W (u, v) is a 2-increasing function, that
is

max(x2 +y2−1, 0)−max(x1 +y2−1, 0)−max(x2 +y1−1, 0)+max(x1 +y1−1, 0) ≥ 0

with 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1. We first look at the the case when
x2 + y2 < 1, when we get that

max(x2 + y2 − 1, 0)−max(x1 + y2 − 1, 0)−max(x2 + y1 − 1, 0)+

max(x1 + y1 − 1, 0) = 0− 0− 0 + 0 = 0 ≥ 0,

so we can safely assume that x2 + y2 ≥ 1 in the rest of the cases. We now look at the
case that x1 + y1 ≥ 1

max(x2 +y2−1, 0)−max(x1 +y2−1, 0)−max(x2 +y1−1, 0)−max(x1 +y1−1, 0)

= (x2 + y2 − 1)− (x1 + y2 − 1)− (x2 + y1 − 1) + (x1 + y1 − 1)

= 0 ≥ 0.

This means we will further assume x1 + y1 < 1. After all this we only have 4 cases
left to check. Each of x1 + y2 and x2 + y1 can be ≥ 1 or < 1. We start with the case
where they both are ≥ 1:

max(x2 +y2−1, 0)−max(x1 +y2−1, 0)−max(x2 +y1−1, 0) + max(x1 +y1−1, 0)

= (x2 + y2 − 1)− (x1 + y2 − 1)− (x2 + y1 − 1) + 0

= 1− x1 − y1 ≥ 0.

Next we assume x1 + y2 ≥ 1 and x2 + y1 < 1

max(x2 +y2−1, 0)−max(x1 +y2−1, 0)−max(x2 +y1−1, 0) + max(x1 +y1−1, 0)

= (x2 + y2 − 1)− (x1 + y2 − 1)− 0 + 0

= x2 − x1 ≥ 0.
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We now assume x1 + y2 < 1 and x2 + y1 ≥ 1

max(x2 +y2−1, 0)−max(x1 +y2−1, 0)−max(x2 +y1−1, 0) + max(x1 +y1−1, 0)

= (x2 + y2 − 1)− 0− (x2 + y1 − 1) + 0

= y2 − y1 ≥ 0.

For the last case let x1 + y2 < 1 and x2 + y1 < 1

max(x2 +y2−1, 0)−max(x1 +y2−1, 0)−max(x2 +y1−1, 0) + max(x1 +y1−1, 0)

= (x2 + y2 − 1)− 0− 0 + 0 ≥ 0.

Now for the last copula Π(u, v). Showing that Π(u, v) is grounded and that 1b)
holds is rather straightforward. Again we are left with showing that our copula is a
2-increasing function.

x2y2 − x2y1 − x1y2 + x1y1 = x2(y2 − y1)− x1(y2 − y1) = (x2 − x1)(y2 − y1) ≥ 0

This is true because of our requirement that 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1
which concludes our proof.

There are also more bounds on copulas, but to prove these we first need to introduce
margins. Let S1 and S2 have the a greatest element b1 and b2. Then a function H
from S1×S2 into R has margins, and those margins are defined as x 7→ H(x, b1) with
domain S1 and y 7→ H(b2, y) with domain S2. We will often define these margins as
F and G, respectively. We continue with a lemma considering grounded 2-increasing
functions with margins.

Lemma 6. Let H be a 2-increasing function from S1 × S2 into R where S1 and S2

are nonempty subsets of R and F and G are H’s margins. Let (x1, y1) and (x2.y2)
be any points in S1 × S2. Then

|H(x2, y2)−H(x1, y1)| ≤ |F (x2)− F (x1)|+ |G(y2)−G(y1)|

Proof. From the triangle inequality, we have

|H(x2, y2)−H(x1, y1)| ≤ |H(x2, y2)−H(x1, y2)|+ |H(x1, y2)−H(x1, y1)|.

13



If we now assume that x1 ≤ x2 we have from Lemma 1 that H(x2, y) −H(x1, y) ≤
F (x2)−F (x1). We have from Lemma 2 that 0 ≤ H(x2, y)−H(x1, y). Combining these
two we get 0 ≤ H(x2, y)−H(x1, y) ≤ F (x2)− F (x1). If we now assume x2 ≤ x1 we
get similar inequalities. Hence we have that |H(x2, y2)−H(x1, y2)| ≤ |F (x2)−F (x1)|
for all x1 and x2 in S1. Combining this with a similar process for any y1 and y2 in S2

we complete the proof.

Since a copula is a 2-increasing function with margins we directly get this theorem
from the previous lemma.

Theorem 7. Let C be a copula. Then for every (u1, u2), (v1, v2) in I2,

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1|.

This gives us some limitations on how fast a copula can increase or decrease in any
direction.

We have now seen that if a function is nondecreasing in each argument, it is not
implied that it is a 2-increasing function. And a function being 2-increasing does not
imply that is is nondecreasing in each argument. So the last question is: if you have a
function that is grounded and definition 1b holds and the function is nondecreasing
in each argument, will this imply that the function is also a 2-increasing? The answer
is no and we have the following counterexample taken from [2, p. 16]

Example 3. Let

Q(u, v) =

{
min

(
u, v, 1

3
, u+ v − 2

3

)
, 2

3
≤ u+ v ≤ 4

3

max (u+ v − 1, 0) , otherwise

(see Figure 1). We want to show that Q (1) is grounded, (2) definition 1b) holds (3)
W (u, v) ≤ Q(u, v) ≤ M(u, v), (4) is continuous, (5) is increasing in each argument,
(6) is not a 2-increasing function, and (7) satisfies Theorem 7.

Proof. (1) Assume that u = 0. Then we have two cases to check: When 2
3
≤ v ≤ 1,

and otherwise. In both cases it is easy to check that Q(0, v) = 0. The argument is
the same for Q(u, 0).
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(2) We first assume that u = 1. Here we also have two cases: When 0 ≤ v ≤ 1
3

and otherwise. Assume first that 0 ≤ v ≤ 1
3
. Then

Q(1, v) = min

(
1, v,

1

3
, v +

1

3

)
= v

In the second case we get that Q(1, v) = max(v, 0) = v.

(3) We remind the reader that 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. We start by showing
that W (u, v) ≤ Q(u, v). Since Q(u, v) = W (u, v) when u + v < 2

3
or u + v > 4

3
, the

only case we have to check is when 2
3
≤ u+ v ≤ 4

3
. In this case we must show that

min

(
u, v,

1

3
, u+ v − 2

3

)
≥ max (u+ v − 1, 0) .

We check that each argument is greater than or equal to each argument of the
maximum. First u ≥ u− (1− v) = u+ v − 1 and we also have u ≥ 0. The argument
for v is exactly the same. 1

3
> 0 and u+ v − 2

3
≥ 2

3
− 2

3
= 0 .

We now take a look at the claim that Q(u, v) ≤ M(u, v). We first check the case
when 2

3
≤ u+ v ≤ 4

3
, for which me must show that

min

(
u, v,

1

3
, u+ v − 2

3

)
≤ min(u, v).

This is true because a minimum of u and v will be greater than or equal to a minimum
of u, v and more arguments. We are now left with showing that Q(u, v) ≤ M(u, v)
when u + v < 2

3
or 4

3
< u + v. But in this case Q(u, v) = W (u, v) by definition

of Q and we have already seen that W (u, v) ≤ M(u, v) from Theorem (4), and we
conclude that Q(u, v) ≤M(u, v).

(4) We remind the reader of the definition of Q

Q(u, v) =

{
min

(
u, v, 1

3
, u+ v − 2

3

)
, 2

3
≤ u+ v ≤ 4

3

max (u+ v − 1, 0) , otherwise;

First Q is continuous on the three regions of its domain, since a maximum or min-
imum of continuous functions is continuous. What we are left with showing is that
Q is continuous on the boundary of the regions. First, when u+ v = 2

3

Q(u, v) = min

(
u, v,

1

3
, u+ v − 2

3

)
= 0,
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and when u+ v = 4
3

Q(u, v) = min

(
u, v,

1

3
, u+ v − 2

3

)
=

1

3
.

The limits when approaching the boarder from the other region are

Q(u, v) = max (u+ v − 1, 0)→ 0

when u+ v → 2
3

Q(u, v) = max (u+ v − 1, 0)→ 1

3

when u + v → 4
3
. This means that lim(x,y)7→(u,v) Q(x, y) = Q(u, v) for all (u, v) in I2

and we conclude that Q is continuous on ‖x‖.

(5) Assume that v is fixed. Then Q is non-decreasing both when 2
3
≤ u+ v ≤ 4

3
and

otherwise. Since Q is continuous it follows that u → Q(u, v) is non-decreasing. The
proof that Q is non-decreasing in v when u is fixed is similar.

(6) We will show that Q is not a 2-increasing function by considering VQ

([
1
3
, 2

3

]2)
.

We calculate

Q

(
2

3
,
2

3

)
=

1

3
, Q

(
2

3
,
1

3

)
=

1

3
, Q

(
1

3
,
2

3

)
=

1

3
, Q

(
1

3
,
1

3

)
= 0

and we conclude that

VQ

([
1

3
,
2

3

]2
)

=
1

3
− 1

3
− 1

3
+ 0 = −1

3

(7) We want to show that |Q(u2, v2) − Q(u1, v1)| ≤ |u2 − u1| + |v2 − v1| for all u1,
u2, v1 and v2. We assume without loss of generality that Q(u2, v2) ≥ Q(u1, v1) and
we divide the proof into 3 cases where 4/3 ≤ u2 + v2, 2/3 ≤ u2 + v2 ≤ 4/3 and
u2 + v2 ≤ 2/3.

(I) Assume 4/3 ≤ u2 + v2: Then Q(u2, v2) = u2 + v2 − 1 and we get

|Q(u2, v2)−Q(u1, v1)| ≤ |u2+v2−1−(u1+v1−1)| = |u2−u1+v2−v1| ≤ |u2−u1|+|v2−v1|
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To justify the first inequality we have to check check that u1+v1−1 ≤ Q(u1, v1) for all
the possible values of Q(u1, v1). (a) Q(u1, v1) = u1 +v1−1: Indeed u1 +v1−1 ≤ u1 +
v1−1. (b) Q(u1, v1) = u1: u1 ≥ u1−(1−v1) = u1+v1−1. We have a similar argument
when Q(u1, v1) = v1. (c) Q(u1, v1) = 1/3: u1 + v1 − 1 ≤ 1/3 since u1 + v1 ≤ 4/3
when Q(u1, v1) = 1/3. (d) Q(u1, v1) = u1 + v1− 2/3: u1 + v1− 1 ≤ u1 + v1− 2/3. (e)
Q(u1, v1) = 0: u1 + v1 − 1 ≤ −1/3 ≤ 0 since u1 + v1 ≤ 2/3.

(II) Assume 1/3 ≤ u2+v2 ≤ 4/3. First, also u1+v1 ≤ 4/3, since otherwise Q(u1, v1) =
u1 + v1 − 1 > 1/3 ≥ Q(u2, v2). We now check for all the possible values of Q(u1, v1).
(a) Q(u1, v1) = 1/3:

|Q(u2, v2)−Q(u1, v1)| ≤ |1/3− 1/3| = 0

The first inequality is true because when 1/3 ≤ u2+v2 ≤ 4/3 we have thatQ(u2, v2) =
min(u2, v2, 1/3, u2 + v2 − 2/3) ≤ 1/3. (b) Q(u1, v1) = u1 + v1 − 2/3 or Q(u1, v1) = 0

|Q(u2, v2)−Q(u1, v1)| ≤ |u2 + v2 − 2/3− (u1 + v1 − 2/3)|
= |u2 − u1 + v2 − v1| ≤ |u2 − u1|+ |v2 − v1|

We have the first inequality because Q(u2, v2) = min(u2, v2, 1/3, u2 + v2 − 2/3) ≤
u2 + v2− 2/3 and u1 + v1− 2/3 ≤ Q(u1, v1) which is obviously true when Q(u1, v1) =
u1 + v1− 2/3, and it is also true when Q(u1, v1) = 0 since u1 + v1 ≤ 2/3 by definition
of Q when Q(u1, v1) = 0. (c) Q(u1, v1) = u1:

|Q(u2, v2)−Q(u1, v1)| ≤ |u2 − u1 ≤ |u2 − u1|+ |v2 − v1|

We justify the first inequality by noticing that Q(u2, v2) ≤ Q(u2, 1) = u2 since
Q is increasing in each argument. (d) Q(u1, v1) = v1: Similar argument as when
Q(u1, v1) = u1.

(III) u2 + v2 ≤ 2/3: Q(u2, v2) = Q(u1, v1) = 0 which means that

|Q(u2, v2)−Q(u1, v1)| = |0− 0| ≤ |u2 − u1|+ |v2 − v1|.
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Figure 2.1: A 3D plot of the function Q(u, v) of example 3.
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Chapter 3
Another perspective on copulas

So far we have considered the three requirements for a function to be a copula in
Definition 1. To understand why these are the requirements for a copula we can
look at it from a completely different angle. But first we remind the reader of the
definition of a distribution function.

Definition 2. A function F is a distribution function if these two statements are
true:

(1) F is nondecreasing.
(2) limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

We also need the definition of the join distribution function.

Definition 3. A function H of two variables is a joint distribution function if these
two statements holds:

(1) H is a 2-increasing function.
(2) lim

y→−∞
H(x, y) = 0 for all x, lim

x→−∞
H(x, y) = 0 for all y and lim

(x,y)→(∞,∞)
H(x, y) =

1.

This means that a joint distribution function is grounded, and has margins x 7→
limy→∞H(x, y) and y 7→ limx→∞H(x, y).
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A special case is when (U, V ) is a pair of two random variables where U and V
both have the marginal distribution U [0, 1] (uniform distribution on [0, 1]). If we
now define H as the joint distribution, namely H(u, v) = P (U ≤ u ∩ V ≤ v) then
H is a copula. With this in mind it’s understandable why all copulas have to be
grounded as H(u, v) = 0 if u or v is equal to 0. To see that H(1, v) = v we use the
fact that a joint distribution function with domain I2 will have the property that
H(1, v) = G(v) where G is the marginal distribution of V . Since G ∼ U [0, 1] we
have that G(v) = v. Conversely a copula C can be seen as a joint cdf with marginals
uniformly distributed on I.

To understand why copulas have to be 2-increasing it can be useful to have in mind
that

H(u2, v2)−H(u1, v2)−H(u2, v1) +H(u1, v1) = P (u1 ≤ U ≤ u2 ∩ v1 ≤ V ≤ v2) ≥ 0.

We can use this new insight to show that M(u, v) and W (u, v) are copulas (see page
11). First consider the case there U = V Then H(u, v) = P (U ≤ u ∩ U ≤ v) =
P (U ≤ min(u, v)) = min(u, v) = M(u, v). And since it’s a joint distribution function
with uniform marginals on [0, 1], it is a copula by the above remarks.

Next consider the case that V = 1 − U . Then H(u, v) = P (U ≤ u ∩ 1 − U ≤ v) =
P (U ≤ u ∩ 1 − v ≤ U) = P (1 − v ≤ U ≤ u) = max(u + v − 1, 0) = W (u, v). Also
1−U is uniform on [0, 1] and with same reasoning as in the last example we conclude
that W (u, v) is a copula.
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Chapter 4
Sklar’s Theorem

Theorem 8 (Sklar’s Theorem). Let H be a joint distribution function with margins
F and G. Then there exists a copula C such that for all x, y in R

H(x, y) = C(F (x), G(y)).

If F and G are continuous then C is unique. Conversely, if C is a copula and F
and G are distribution functions, then the function H is a joint distribution function
with margins F and G.

Proof. We prove the Theorem in the case that F and G are continuous, both with
range I. The readers is referred to [2, p. 21] for the general case. The joint distribution

H satisfies the conditions in Lemma 6, since H is a 2-increasing function from R2
to

R. This gives us that

|H(x2, y2)−H(x1, y1)| ≤ |F (x2)− F (x1)|+ |G(y2)−G(y1)|

for all pairs of (x1, y1) and (x2, y2) in R2
. If F (x2) = F (x1) and G(y2) = G(y1)

it follows that H(x2, y2) = H(x1, y1). This implies that the function C defined by
C(F (x), G(y)) = H(x, y) is well defined with domain which is the range of F ×
range of G, which is equal to I2 when F and G are continuous.

To verify that C is a copula we have to check the conditions in Definition 1. We start
with Definition 1 (a): Let v ∈ I. Then since G is continuous, there exists y such that

21



G(y) = v, and
C(0, v) = C(F (−∞), G(y)) = H(−∞, y) = 0.

Similarly let u ∈ I. Then since G is continuous, there exists x such that F (x) = u,

C(u, 0) = C(F (x), G(−∞)) = H(x,−∞) = 0.

Next is Definition 1(b): Again, for v ∈ I, assume G(y) = v. Since F (∞) = 1 we have

C(1, v) = C(F (∞), G(y)) = H(∞, y) = G(y)

and similarly, for u ∈ I, assume F (x) = u. Since G(∞) = 1

C(u, 1) = C(F (x), G(∞)) = H(x,∞) = F (x).

For Definition 1(c) we want to show that

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0

when u1 ≤ u2 and v1 ≤ v2. We choose xi and yi such that F (xi) = ui and G(yi) = vi,
i = 1, 2. This translates our problem into showing that

H(x2, y2)−H(x1, y2)−H(x2, y1) +H(x1, y1) ≥ 0,

which is true because H is a 2-increasing function since it is a joint distribution
function. And u1 ≤ u2 if and only if x1 ≤ x2, and v1 ≤ v2 if and only if y1 ≤ y2 which
concludes one direction of our proof.

Now for the converse direction. We want to show that if C is a copula and F and
G are distribution functions then H is a joint distribution function with F and G
as its marginals. We start with showing that C(F (x), G(y)) is a joint distribution
function.

Definition 3 (a): We have to show that H is 2-increasing, that is,

H(x2, y2)−H(x1, y2)−H(x2, y1) +H(x1, y1) ≥ 0

for all x1 ≤ x2 and y1 ≤ y2. We now define ui and vi as previously in this proof.
Since we have already shown that F (x1) ≤ F (x2) and G(y1) ≤ G(y2) if and only if
u1 ≤ u2 and v1 ≤ v2 our problem translates into showing

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0,
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when u1 ≤ u2 and v1 ≤ v2, which is the definition 1 (c) of a copula.

Definition 3 (b): We check if the limits are correct

H(∞,∞) = C(F (∞)), G(∞)) = C(1, 1) = 1,

H(−∞, y) = C(F (−∞), G(y)) = C(0, G(y)) = 0

for all y, and
H(x,−∞) = C(F (x), G(−∞)) = C(F (x), 0) = 0

for all x.

We have now proved that C(F (x), G(y)) is a joint distribution function. What’s left
to prove is that F and G are H’s marginal distributions,

H(∞, y) = C(F (∞), G(y)) = C(1, G(y)) = G(y)

for all y, and similarly

H(x,∞) = C(F (x), G(∞)) = C(F (x), 1) = F (x)

for all x, which completes our proof.

So a copula is a connection between marginal distribution and joint distributions.
This is also the reason why copula is called copula as it “couples” marginal distribu-
tions together into a joint distribution. From Sklar’s theorem we know that we can
construct a joint distribution function if we have two marginal distributions F , G and
a copula C. A question which might be asked is if you can construct a copula from a
joint distribution and its marginals. The answer is yes, for continuous distributions.

Corollary 9. Let H be a joint distribution function with its marginals F and G con-
tinous with range I and let C be the unique copula such that H(x, y) = C(F (x), G(y))
for all x, y ∈ R. Then for all u, v ∈ I, C(u, v) = H(F−1(u), G−1(v)), where F−1(u)
denotes any x such that F (x) = u and G−1(v) denotes any y such that G(y) = v.

Proof. Let u, v ∈ I. Assume F (x) = u and G(y) = v. We then have from Sklar’s
Theorem that

H(F−1(u), G−1(v)) = H(x, y) = C(F (x), G(y)) = C(u, v).
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We have earlier stated that the copula Π(u, v) = uv has a link to independence. The
reason is that the joint distribution of two random variables X and Y is H(x, y) =
F (x)G(y) if and only if X and Y are independent. It follows from corollary 9 that
two random variables are independent if and only if their copula is the independent
copula Π(u, v) = uv. We summarize this in the next corollary.

Corollary 10. Let X and Y be continuous random variables with F and G their
respective distribution functions. Then their copula is C(u, v) = uv if and only if X
and Y are independent random variables.

Example 4. We can use Corollary 9 to create the Gaussian copula. We start with
a random vector (X, Y ) which we assume have a bivariate normal distribution H
with the parameters µx, µy, σx, σy and ρ. Since we want to use that C(u, v) =
H(F−1(u), G−1(v)) we have to figure out what F−1(u) and G−1(v) is. Since H is a
bivariate normal distribution we know that the marginal distribution F G are normal
distributions with parameters µx, µy, σx and σy. We now use this to calculate F−1(u).
Firstly we have that

F (x) = P (X ≤ x) = P

(
X − µx
σx

≤ x− µx
σx

)
= Φ

(
x− µx
σx

)
where Φ is the cumulative distribution function of a N (0, 1) variable. We use this to
find the inverse of the distribution function

F−1(u) = x⇔ u = F (x)⇔ u = Φ

(
x− µx
σx

)
⇔ Φ−1(u) =

x− µx
σx

⇔ x = µx + σxΦ
−1(u)

⇔ F−1(u) = µx + σxΦ
−1(u).

Similarly,
G−1(v) = µy + σyΦ

−1(v).

We also know that

H(x, y) =
1

2πσxσy
√

1− ρ2

∫ x

−∞

∫ y

−∞

exp

(
− 1

2(1− ρ2)

[
(z − µx)2

σ2
x

+
(w − µy)2

σy
− 2ρ(z − µx)(w − µy)

σxσy

])
dz dw.
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We plug in F−1(u) for x and G−1(v) for y and we get

C(u, v) = H(F−1(u), G−1(v)) =
1

2πσxσy
√

1− ρ2

∫ µx+σxΦ−1(u)

−∞

∫ µy+σyΦ−1(v)

−∞

exp

(
− 1

2(1− ρ2)

[
(z − µx)2

σ2
x

+
(w − µy)2

σy
− 2ρ(z − µx)(w − µy)

σxσy

])
dz dw.

Now we introduce a change of variables namely s = z−µx
σx

and t = w−µy
σy

. This

gives that σxds = dz and σydt = dw. We also have that z = −∞ ⇒ s = −∞,
z = µx + σxΦ

−1(u)⇒ s = Φ−1(u), w = −∞⇒ t = −∞ and w = µy + σyΦ
−1(v). We

then use Corollary 9 and get that

C(u, v) = H(F−1(u), G−1(v)) =
1

2π
√

1− ρ2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
exp

[
−(s2 − 2ρst+ t2)

2(1− ρ2)

]
ds dt.

We see that µx, µy, σx and σy has disappeared in the calculations. For that reason,
we use notation Cρ(u, v) when we are talking about the Gaussion copula, since it
only depends on the parameter ρ. The correlation structure is seperated from the
marginal distributions.
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Chapter 5
Multivariate Copulas

Until now we have focused specifically on the copula with dimension equal to 2. We
shall soon define copulas with dimension n ≥ 2 where n is an integer. We will start
with some new notation taken from [2, p. 43].

Let Rn
denote the cartesian product R×R×· · ·×R. For vectors a = (a1, a2, . . . , an)

and b = (b1, b2, . . . , bn), a ≤ b means that ak ≤ bk for all k. We will also denote
by [a, b] be the n-dimensional box or an n-box [a1, b1]× [a2, b2]× · · · × [an, bn]. The
vertices of an n-dimensional box can be described as c = (c1, c2, . . . , cn) where ck is
equal to ak or bk for all k. An n-place real function H is a function whose domain is
a subset of Rn

and its range is a subset of R. We are now ready for the definition of
the H-volume of a box B.

Definition 4. Let S1, S2, . . . Sn be nonempty subsets of R, and let H be an n-place
real function with domain S1 × S2 × · · · × Sn. Let B = [a, b] be an n-box with all
vertices in the domain of H. Then the H-volume of B is given by

VH(B) =
∑

sgn(c)H(c),

where the sum is taken over all the vertices c of B. Notice that this means that there
are 2n parts in the sum. sgn(c) is given by

sgn(c) =

{
1 if ck = ak for an even number of k’s,

−1 if ck = ak for an odd number of k’s.
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This definition extends the previous definition naturally. Now that we have defined
the H-volume we can give the requirements for an n-place real function to be an
n-dimensional copula.

Definition 5. An n-dimensional copula is a function C from Id to I with the fol-
lowing properties: a) For every u = (u1, u2, . . . , ud) in Id, C(u) = 0 if uk = 0 for at
least one k.
b) If all uk = 1 except ut, then C(u) = ut.
c) For all a and b in Id such that a ≤ b, VC [a, b] ≥ 0.

As we can see the multivariate definition of a copula is similar to the original defini-
tion. Lots of previous results we have proved for copulas with dimensional equal to
2 also holds for copula with dimension n, such as Sklar’s Theorem and the corollary
of Sklar’s Theorem. Because of it’s importance we state Sklar’s Theorem in the mul-
tivariate case here. But first we have to define what an n-dimensional distribution
function is, and what margins are in the multivariate sense.

If each Sk is nonempty and has a greatest element bk, then the one dimensional
margins of H is defined as Hk(x) = (b1, . . . , bk−1, x, bk+1, . . . , bn). Higher dimensional
margins are defined by fixing fewer arguments in H.

Definition 6. An n-dimensional distribution function is a function H with domain
Rn

such that: a) H is n-increasing, meaning that VH(B) ≥ 0 for all boxes B with
vertices that lie in the domain of H.
b)H(t) = 0 for all t in Rn

such that tk = −∞ for at least one k, and H(∞,∞, . . . ,∞) =
1.

Theorem 11 (Sklar’s Theorem). Let H be an n-dimensional distribution function
with margins F1, F2, . . . , Fn. Then there exists an n-dimensional copula C such that
for all x in Rn

,

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)).

If F1, F2, . . . , Fn are all continuous then C is unique. Conversely, if C is an n-
dimensional copula and F1, F2, . . . , Fn are distribution functions, then the function
H defined by the previous equation is an n-dimensional distribution function with
margins F1, F2, . . . , Fn.

We say that a copula C admits a density c if

c(u) =
∂n

∂un . . . ∂u1

C(u1, . . . , un)
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exists and is integrateable [3, p. 13]. This means that if we differentiate the equation
of Theorem 11 using the chain rule and c(u) exists we get

h(x1, x2, . . . , xn) = c(F1(x1), F2(x2), . . . , Fn(xn))
n∏
i=1

fi(xi)

where h is the density function of H and fi is the density function of the distribution
function Fi.
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Chapter 6
Parametric estimation

The notation in this chapter and the next one is very similar to that of [3, ch. 4]. Let
us say we have random sample from a continous multivariate distribution function
H and we want to estimate its marginals F1, F2, . . . , Fd and the copula C. We can do
this by parametric or nonparamtric estimation of the marginals. We first start with
the MLE parametric estimation.

MLE

To do this we need to some assumptions:
1) We know the distributions F1, F2, . . . , Fd except for the parameters of Fi which
we call γi which lies in a subset of Rpj where pj ∈ Z+.
2) C comes from a specific family of copulas that admits a density.

So say we have n iid realizations X1, . . . , Xn which all have dimension d. We then
try to maximize the log likelihood function ` which is defined as

`(γ1, . . . , γd, θ) =
n∑
i=1

log[cθ(F1(xi1), F2(xi2), . . . , Fd(xid)] +
d∑
j=1

n∑
i=1

log[fj(xij)], (6.1)

and use the argument [γ̂1, . . . , γ̂d, θ̂] of our maximum as our estimation of the param-
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eters. Since the parameter space can have a very high dimension it can be quite hard
to find the maximum of the likelihood function. If an easier computational estimation
is wanted IFME might be a more optimal solution:

IFME

IFME stands for inference function for margins estimator and is a two-stage estima-
tor. It starts by estimating the parameters γj by γ̂j for all j ∈ {1, 2, . . . , d} where γ̂j
is defined as

γ̂j = argsup
γj

n∑
i=1

log[fj(xij)],

which means that γ̂j is the MLE for each marginal distribution. We now use γ̂j in
our estimate of the unknown parameter θ of the copula family, that is,

θ̂ = argsup
θ

n∑
i=1

log[cθ(Fγ̂1(xi1), Fγ̂2(xi2), . . . , Fγ̂d(xid))].

The drawback of this method is that this is not a maximum likelihood estimator.

Nonparametric estimation

MPLE

If we have the same situation as in the last section, that is n iid realizations with
dimension d, and want to estimate the parameter θ of the family of copula without
assuming which distributions the margins F1, F2, . . . , Fd are from, we can do this
by estimating the margins Fj(x) by F̂j(x) = 1

n+1

∑n
i=1 1(xij ≤ x) where 1 is the

indicator function.

If we have chosen a family of copula Cθ we can then estimate θ by maximum likelihood
methods. If we are in the (unlikely) scenario that the margins F1, F2, . . . , Fd are
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known we estimate θ by

θ̂ = argsup
θ

n∑
i=1

log[cθ(Ui)]

which is the MLE and Ui is defined as

Ui = (F1(xi1), F1(xi2), . . . , F1(xid)).

However if we don’t know the margins we can use the nonparametric estimation of
the margins and do basically the same thing. We just put a hat on Ui and it’s not
an MLE anymore but a pseudo-likelihood estimator (MPLE). We then estimate Ui

by
Ûi = (F̂1(xi1), F̂2(xi2), . . . , F̂d(xid))

for all i ∈ {1, 2, . . . , n}, so that Ûi serves as an estimate of the argument of the
copula density in (6.1). One observation is that if we define the rank Rij as the rank
of xij among x1j, x2j, . . . , xnj,

Ûi =
1

n+ 1
(Ri1, Ri2 . . . , Rid).

Example 5. We now do some estimation where we have 10, 100, 1000 and 10000

data points from the bivariate normal distribution with mean vector µ =

[
0
0

]
and

covariance matrix
∑∑∑

=

[
1 ρ
ρ 1

]
. We now want to use our three methods of estimat-

ing the copula parameter ρ, and also the means and standard deviations from the
two marginal distributions from the MLE and IMFE methods. The experiment is
repeated 100 times, and the results are shown in Table 6.1, 6.2, 6.3 and 6.4.

For the MLE and IFME cases, all the results are the same up to 4 digits in the
two estimation processes, negative ρ values where also not included in the tables
since the estimation of the negative ρ values is the same as the estimation of the
positive ρ values except for a switched sign. The numbers in Table 6.1, 6.2, 6.3 and
6.4 represent the mean of the 100 experiments while the error term is the empirical
standard deviation.

The estimation of the parameter ρ is fairly close to the real value in most of the
estimations, with the exception of the MPLE method with N = 10 where the mean
of the estimation where pretty far from the true value in most of the cases. In general
we see that the empirical standard deviation becomes small as N becomes bigger,
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MLE,IFME ρ
estimate 0 0.2 0.4 0.6 0.8

ρ 0.0000 ±0.0096 0.1993± 0.0092 0.3994± 0.0080 0.5995± 0.0061 0.7997± 0.0035
µ1 −0.0007± 0.0119 −0.0026± 0.0095 −0.0027± 0.0092 −0.0028± 0.0090 −0.0028± 0.0089
µ2 −0.0028± 0.0091 −0.0017± 0.0111 −0.0019± 0.0108 −0.0022± 0.0104 −0.0024± 0.0100
σ1 1.0001± 0.0075 0.9996± 0.0069 0.9996± 0.0069 0.9995± 0.0068 0.9994± 0.0068
σ2 0.9994± 0.0068 0.9997± 0.0072 0.9997± 0.0072 0.9996± 0.0070 0.9995± 0.0069

MPLE estimate 0 0.2 0.4 0.6 0.8
ρ 0.0000 ±0.096 0.1995± 0.0092 0.3998± 0.0081 0.5999± 0.0061 0.7999± 0.0034

Table 6.1: 100 MLE, IFME, and MPLE estimations where N = 10000 for each estimation

there is also more empirical standard deviation in the MPLE method compared to
the MLE and IFME method in general when N is equal to 10 and 100. However
this is not the case when N = 10 with ρ = 0.6, 0.8 and N = 100 with ρ = 0.6,
although in all of those three cases the mean ρ value is closer to the true ρ value
in the MLE, IFME estimation compared to MPLE estimation. When N is equal to
10000 and 1000 the empirical standard deviation is about the same for the MLE,
IFME method compared to the MPLE method. An explanation for this could be that
when the number of samples get really big, then the information from the samples
becomes a lot more important for the estimation compared to the extra information
from the assumptions in the MLE and IFME methods.

When we compare the empirical standard deviation of ρ across the three method
MLE, IMFE and MPLE for different values of ρ we see that ρ = 0.8 is the value
which leads to the least amount of variance in the estimation. A possible reason for
this is that the parameter space of ρ is [−1, 1] which means that ρ = 0.8 is the closest
value to the boundary of the parameter space which could lead to less variance in
the estimation.

When we look at the empirical standard deviation of the other parameters µx, µy,
σx and σy in table 6.1, 6.2 , 6.3 and 6.4 we see the same trend with ρ, namely higher
empirical standard deviation when we have a low value for the number of samples
N . But changing the true value of ρ does not seem to impact the empirical standard
deviation for µx, µy, σx and σy.

We want to investigate why we get identical estimates of ρ using the MLE and IMFE
method. We start by finding the the maximum likelihood estimator of the parameter
ρ of the bivariate normal distribution when the other parameters µx, µy, σx, σy are
known and the samples are independent. The likelihood function is defined as
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MLE, IFME ρ
estimate 0 0.2 0.4 0.6 0.8

ρ −0.0023± 0.0318 0.1991± 0.0333 0.3991± 0.0292 0.5992± 0.0223 0.7995± 0.0126
µ1 −0.0008± 0.0294 0.0037± 0.0263 0.0041± 0.0265 0.0045± 0.0269 0.0049± 0.0275
µ2 0.0054± 0.0294 0.0047± 0.0322 0.0050± 0.0320 0.0052± 0.0317 0.0054± 0.0312
σ1 1.0015± 0.0226 1.000± 0.0233 1.0000± 0.0235 1.000± 0.0237 1.0001± 0.0239
σ2 1.0007± 0.0237 1.0021± 0.0211 1.0020± 0.0214 1.0018± 0.0219 1.0015± 0.0225

MPLE estimate 0 0.2 0.4 0.6 0.8
ρ −0.0021± 0.0319 0.2013± 0.0336 0.4022± 0.0292 0.6018± 0.0221 0.8006± 0.0125

Table 6.2: 100 MLE, IFME, and MPLE estimations where N = 1000 for each estimation

MLE, IFME ρ
estimate 0 0.2 0.4 0.6 0.8

ρ 0.0044 ±0.0987 0.1966± 0.0949 0.3962± 0.0830 0.5965± 0.0634 0.7977± 0.0358
µ1 0.0150± 0.0959 0.0122± 0.0838 0.0112± 0.0829 0.0099± 0.0823 0.0081± 0.0822
µ2 0.0035± 0.0842 −0.0068± 0.0941 −0.0053± 0.0926 −0.0036± 0.0909 −0.0014± 0.0887
σ1 0.9953± 0.0732 0.9955± 0.0656 0.9950± 0.0639 0.9945± 0.0623 0.9937± 0.0612
σ2 0.9920± 0.0623 0.9912± 0.0680 0.9910± 0.0674 0.9909± 0.0667 0.9910± 0.0655

MPLE estimate 0 0.2 0.4 0.6 0.8
ρ 0.0030± 0.1091 0.2087± 0.1045 0.4147± 0.0860 0.6129± 0.0620 0.8031± 0.0362

Table 6.3: 100 MLE, IFME, and MPLE estimations where N = 100 for each estimation

L(ρ) =
n∏
i=1

f(xi, yi)

=
n∏
i=1

1

2πσxσy
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
(xi − µx)2

σ2
x

+
(yi − µy)2

σy
− 2ρ(xi − µx)(yi − µy)

σxσy

])

=

(
1

2πσxσy
√

1− ρ2

)n n∏
i=1

exp

(
− 1

2(1− ρ2)

[
(xi − µx)2

σ2
x

+
(yi − µy)2

σy
− 2ρ(xi − µx)(yi − µy)

σxσy

])
.

To find the maximum of the log likelihood function we take the logarithm of the
likelihood function take the derivative and put it equal to zero.

`(ρ) = lnL(ρ) = −n ln(2π)− n ln(σx)− n ln(σy)−
1

2
ln(1− ρ2)

− 1

2(1− ρ2)

n∑
i=1

[
(xi − µx)2

σ2
x

+
(yi − µy)2

σy
− 2ρ(xi − µx)(yi − µy)

σxσy

]
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MLE, IFME ρ
estimate 0 0.2 0.4 0.6 0.8

ρ −0.0375± 0.3341 0.1988± 0.3156 0.3913± 0.2784 0.5878± 0.2180 0.7896± 0.1298
µ1 −0.0155± 0.3015 0.0235± 0.3293 0.0275± 0.3286 0.0316± 0.3267 0.0359± 0.3228
µ2 0.0431± 0.3093 0.0432± 0.2812 0.0445± 0.2838 0.0455± 0.2877 0.0458± 0.2936
σ1 0.9259± 0.2226 0.9105± 0.2202 0.9123± 0.2183 0.9152± 0.2154 0.9197± 0.2119
σ2 0.9307± 0.2100 0.9453± 0.2161 0.9445± 0.2158 0.9428± 0.2154 0.9399± 0.2141

MPLE estimate 0 0.2 0.4 0.6 0.8
ρ −0.0653± 0.4684 0.2678± 0.4245 0.4841± 0.3579 0.6784± 0.2129 0.8327± 0.1047

Table 6.4: 100 MLE, IFME, and MPLE estimations where N = 10 for each estimation

d`(ρ)

dρ
=

nρ

1− ρ2
− ρ

(1− ρ2)2

n∑
i=1

(
(xi − µx)2

σ2
x

+
(yi − µy)2

σ2
y

− 2ρ(xi − µx)(yi − µy)
σxσy

)
− 1

2(1− ρ2)

n∑
i=1

(
−2(xi − µx)(yi − µy)

σxσy

)
= 0

We multiply both sides with (1− ρ2)2 and we get

d`(ρ)

dρ
= nρ(1− ρ2)−ρ

n∑
i=1

(
(xi − µx)2

σ2
x

+
(yi − µy)2

σ2
y

− 2ρ(xi − µx)(yi − µy)
σxσy

)
+ (1− ρ2)

n∑
i=1

(
(xi − µx)(yi − µy)

σxσy

)
= nρ− nρ3 − ρ

n∑
i=1

(
(xi − µx)2

σ2
x

+
(yi − µy)2

σ2
y

)
+ ρ2

n∑
i=1

(xi − µx)(yi − µy)
σxσy

+
n∑
i=1

(xi − µx)(yi − µy)
σxσy

= 0.

Then we multiply both sides with −1
n

and we get

ρ3 − ρ2 1

n

n∑
i=1

(xi − µx)(yi − µy)
σxσy

+ ρ

(
1

n

n∑
i=1

[
(xi − µx)2

σ2
x

+
(yi − µy)

σ2
y

]
− 1

)

− 1

n

n∑
i=1

(xi − µx)(yi − µy)
σxσy

= 0.

(6.2)
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To make the equation simpler we define
∑n

i=1
(xi−µx)(yi−µy)√

nσ2
x

√
nσ2

y

= 1
n

∑n
i=1

(xi−µx)(yi−µy)

σxσy
=

k and 1
n

∑n
i=1

[
(xi−µx)2

σ2
x

+ (yi−µy)2

σ2
y

]
= t. This simplifies (6.2) into

ρ3 − ρ2k + ρ(t− 1)− k = 0

ρ(ρ2 − ρk + (t− 1)) = k.
(6.3)

We want to check if ρ = k is a solution of (6.3), and we see that k is a solution in the
equation if t = 2. If we now let µx = x̄, µy = ȳ, σ2

x = 1
n

∑n
i=1(xi − x̄)2, which are the

well-known estimates when estimating the complete parameter vector by maximal
likelihood, and σy = 1

n

∑n
i=1(yi − ȳ)2 we get

t =
1

n

( ∑n
i=1(xi − x̄)2

1
n

∑n
i=1(xi − x̄)2

+

∑n
i=1(yi − ȳ)2

1
n

∑n
i=1(yi − ȳ)2

)
=

1

n
(n+ n) = 2.

This means that the maximum likelihood estimator of ρ is
∑n

i=1
(xi−µx)(yi−µy)√

nσ2
x

√
nσ2

y

if the

other parameters µx, µy, σx and σy are equal to the MLE of the marginal distribu-
tions. Thus, the MLE and the IFME methods give the same estimates of ρ in the
binormal case.
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Chapter 7
Transformations

Another important property of the copula is the fact that it is invariant under in-
creasing transformations. To explain what we mean by this we have to introduce
some new notation. If we have two random variables X and Y we will use the no-
tation CXY , meaning the copula that couples the distribution functions of X and Y
together. We also remind the reader that a continuous random variable means that
the distribution function to the random variable is continuous. In the next theorem
we will use the fact that if an increasing function α with domain that contains the
range of a random variable X, then the distribution function of α(X) is continuous
[2, p. 25]. With this fact we introduce the next theorem and its proof [2, p. 25].

Theorem 12. Let X and Y be continuous random variables with copula CXY .
If α and β are increasing functions on the range of X and Y , respectively, then
Cα(X)β(Y ) = CXY

Proof. Let F1, G1, F2, and G2 denote the distribution functions of X, Y , α(X),
and β(Y ), respectively. Since α and β are increasing functions F2(x) = P (α(X) ≤
x) = P (X ≤ α−1(x)) = F1(α−1(x)). With a similar procedure we get that G2(y) =
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G1(β−1(y)). This gives that for any x and y in the range of X and Y , respectively,

Cα(X)β(Y )(F2(x), G2(y)) = P (α(X) ≤ x, β(Y ) ≤ y)

= P (X ≤ α−1(x), Y ≤ β−1(y))

= CXY (F1(α−1(x)), G1(β−1(y))

= CXY (F2(x), G2(y)).

Since X and Y are continuous random variables, the range of F2 and G2 is I, this
gives that Cα(X)β(Y ) = CXY on I2.

In the theorem above we were only considering the case where α and β are increasing
functions. We have similar cases when α and/or β are decreasing functions [2, p. 26]:

Theorem 13. Let X and Y be continuous random variables with copula CXY . Let α
and β be strictly monotone on the range of X and the range of Y , respectively.

(1) If α is increasing and β is decreasing, then

Cα(X)β(Y )(u, v) = u− CXY (u, 1− v).

(2) If α is decreasing and β is increasing, then

Cα(X)β(Y )(u, v) = v − CXY (1− u, v).

(3) If α and β are both decreasing, then

Cα(X)β(Y )(u, v) = u+ v − 1 + CXY (1− u, 1− v).
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Chapter 8
Simulation

Assume that we want to simulate a continuous random variableX having distribution
function F . One way to do this is to use the inverse of the distribution function, F−1.
The algorithm is as follows [2, p. 41]:

1. Simulate U from U [0, 1].

2. Set X = F−1(U).

Now we prove that X really is a simulation from the distribution F . This statement
is equivalent to proving that P (X ≤ x) is equal to the distribution function F (x).

Proof. Note that for U distributed U [0, 1], P (U ≤ u) = u for u ∈ [0, 1]. Then
P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x), as required.

The same idea can be used to simulate from a copula, but in this case we have to
introduce the conditional distribution of a copula. We define cu(v) = P (V ≤ v | U =
u) where U and V are uniform random variables U [0, 1]. The joint pdf of (U, V ) is
∂2C(u,v)
∂u∂v

, which is also the conditional pdf of V given U = u since the pdf of U is

uniform and has pdf equal to 1. If we integrate ∂2C(u,v)
∂u∂v

from −∞ to v with respect
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to the second argument, which is the same as taking the partial derivative of C(u, v)

with respect to, u we obtain cu(v) = ∂C(u,v)
∂u

. The idea is now to simulate U , then V
is conditioned on U using the previous algorithm [2, p. 41]:

1. Simulate (U, T ) from U [0, 1] random variables.

2. Set V = c−1
u (T ).

3. Now (U, V ) is a simulation from the copula C.

We now show an example of the calculation of cu(v) and c−1
u (t).

Example 6. From Lemma 5 we know that Π(u, v) = uv is a copula. Then cu(v) =
∂C(u,v)
∂u

= v, so the inverse is c−1
u (v) = v. Hence, in this case, to simulate from Π, we

simply simulate u and v independently from U [0, 1]

This makes sense since we know from Corollary 10 that U and V has copula Π if
and only if they are independent.

We have now shown how to simulate X from a distribution F , and (U, V ) from a
copula C. We combine these two methods to show how to simulate (X, Y ) from the
bivariate distribution function H.

1. Simulate (U, V ) from C.

2. Set X = F−1(U) and Y = G−1(V ).

3. Now (X, Y ) is a simulation from the bivariate distribution H.
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Chapter 9
Conclusion

In this thesis we have seen that there is a link between the bivariate distribution, its
marginal distributions and the dependence structure between the marginals. Said in
another way, the copula represents the dependence structure between the marginals
in a multivariate distribution. Sklar’s theorem describes this connection very nicely.
In applications it is not hard to imagine that if you want to make a multivariate
distribution model, it can be useful to split the problem into two parts, namely
choosing the marginal distribution first and the dependence structure afterwards.
The copula makes this strategy easy.

We estimated the parameter ρ in the Gaussian copula with all the three different
estimation methods MLE, IMFE, and non parametric. The MLE and IMFE method
gave the same estimation of ρ in the binormal case, and we calculated the likelihood
function of ρ to show why this is the case. There is a bigger standard deviation in the
nonparametric method compared to the parametric method, however the standard
deviation becomes similar when N gets larger. This makes sense since the model
assumptions is not as important for the estimation when we have a lot of data.

We have shown how the copula is invariant under increasing transformations. We
have also demonstrated how you can simulate from a copula by using a similar
method to the inverse transform sampling method, and how you can combine this
method with the same inverse transform sampling method to be able to simulate
from a bivariate distribution.
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Appendix

#code for Figure 2.1

library(plot3D)

x=seq(0,1,0.1)#x vector

y=seq(0,1,0.1)#y vector

#making a function f(x,y)

zvector=function(X,Y){

n=length(x)

z=matrix(0,n,n) #making a grid with all the x and y values

#making the z values for the graph

for(i in 1:n){

for(j in 1:n){

if(x[i]+y[j]<=4/3 & x[i]+y[j]>=2/3){

z[i,j]= min(x[i],y[j],1/3,x[i]+y[j]-2/3)

}

else{

z[i,j]=max(x[i]+y[j]-1,0)

}

}

}

return(z)

}

z=round(zvector(x,y),2)
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#The plot

persp(x,y,z,theta=25,phi = 30,xlab = "u",ylab = "v",zlab = "Q(u,v)")

#MLE,IMFE estimation and the true MLE value

library(MASS)#package for mvrnorm

library(copula) #package for copula functions

library(pracma)#package for the modulo function (not very important)

#Parametric estimation MLE

#function that that calculates B number of estimaes of rho and the other estimates

#where it is each estimate is based on N samples

MLEestimating=function(B,N){

datamatrix<-matrix(data = NA,ncol = 10,nrow = 5)

for (j in 1:5) {

rho=-0.2+0.2*j #rho=c(0,0.2,0.4,0.6,0.8)

set.seed(123)

rhoest<-rep(0,B) #0 vector

mu1est<-rep(0,B)

mu2est<-rep(0,B)

si1est<-rep(0,B)

si2est<-rep(0,B)

for (i in 1:B) {

mu1=0

mu2=0

s1=1

s2=1

mu <- c(mu1,mu2) #Mean

sigma <- matrix(c(s1^2, s1*s2*rho, s1*s2*rho, s2^2),2) #Covariance matrix

bvs <- mvrnorm(N, mu = mu, Sigma = sigma ) #bivarate samples

#The liklyhood function

MLErho2<- function(argu){

rho<-argu[1]; MU1<-argu[2]; MU2<-argu[3]; SI1<-argu[4]; SI2<-argu[5]

u<-matrix(c(pnorm(bvs[,1],mean=MU1,sd=SI1),
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pnorm(bvs[,2],mean=MU2,sd=SI2)),ncol = 2 , byrow = F)

qnormu<-qnorm(u)

MLEvalue<- -N*log(2*pi)-.5*N*log(1-rho^2)-

sum(qnormu[,1]^2-2*rho*qnormu[,1]*qnormu[,2]+qnormu[,2]^2)/(2*(1-rho^2))-

sum(log(dnorm(qnormu[,1])))-sum(log(dnorm(qnormu[,2])))+

sum(log(dnorm(bvs[,1],mean=MU1,sd=SI1))+log(dnorm(bvs[,2],mean=MU2,sd=SI2)))

return(MLEvalue)

}

#Finding the MLE of rho and all the other estimates

opt<-optim((c(0,0,0,1,1)),MLErho2, method = c("BFGS"),

control=c(fnscale=-1,reltol=1e-10))

#putting the estimates in a vector

rhoest[i]<-opt$par[1]

mu1est[i]<-opt$par[2]

mu2est[i]<-opt$par[3]

si1est[i]<-opt$par[4]

si2est[i]<-opt$par[5]

}

#putting the mean and sd of the estimates in another matrix

datamatrix[j,]<-c(mean(rhoest),sd(rhoest),mean(mu1est),sd(mu1est),mean(mu2est),

sd(mu2est), mean(si1est),sd(si1est),mean(si2est),sd(si2est))

}

#putting col and row names on the matrix

rownames(datamatrix)<-c("0","0.2","0.4","0.6","0.8")

colnames(datamatrix)<-c("meanrho","sdrho","meanmu1","sdmu1","meanmu2","sdmu2",

"meansi1","sdsi1","meansi2","sdsi2")

return(t(datamatrix)) #transposing the matrix

}

#Parametric estimation IFME

IFMEestimation=function(B,N){

datamatrix<-matrix(data = NA,ncol = 10,nrow = 5)

for (j in 1:5) {

rho=-0.2+0.2*j #rho=c(0,0.2,0.4,0.6,0.8)

set.seed(123)

rhoest<-rep(0,B) #0 vector

mu1est<-rep(0,B)
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mu2est<-rep(0,B)

si1est<-rep(0,B)

si2est<-rep(0,B)

for (i in 1:B) {

mu1=0

mu2=0

s1=1

s2=1

mu <- c(mu1,mu2) #Mean

sigma <- matrix(c(s1^2, s1*s2*rho, s1*s2*rho, s2^2),2) #Covariance matrix

bvs <- mvrnorm(N, mu = mu, Sigma = sigma ) #bivarate samples

#calculating the famous MLE of the normal distribution

#which is our estimate of the mean and sd of mu1, mu2 ,si1 and si2

MLEmean<-c(mean(bvs[,1]),mean(bvs[,2]))

MLEsd<-sqrt((N-1)/N)*c(sd(bvs[,1]),sd(bvs[,2]))

#using the famous MLE of normal distribution to calculate u

u<-matrix(c(pnorm(bvs[,1],mean=MLEmean[1],sd=MLEsd[1]),

pnorm(bvs[,2],mean=MLEmean[2],sd=MLEsd[2])),ncol = 2 , byrow = F)

qnormu<-qnorm(u)

#function that that calculates IFME

MLErho<- function(rho){

MLEvalue<- -N*log(2*pi)-.5*N*log(1-rho^2)-

sum(qnormu[,1]^2+qnormu[,2]^2-2*rho*qnormu[,1]*qnormu[,2])/(2*(1-rho^2))-

sum(log(dnorm(qnormu[,1]))+log(dnorm(qnormu[,2])))

return(MLEvalue)

}

#estimating rho

opt<-optimize(MLErho,interval = c(-1,1),maximum = T,tol=1e-10)

#putting the estimates in a vector

rhoest[i]<-opt$maximum

mu1est[i]<-MLEmean[1]

mu2est[i]<-MLEmean[2]

si1est[i]<-MLEsd[1]

si2est[i]<-MLEsd[2]
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}

#putting the mean and sd of the estimates in another matrix

datamatrix[j,]<-c(mean(rhoest),sd(rhoest),mean(mu1est),sd(mu1est),mean(mu2est),

sd(mu2est),mean(si1est),sd(si1est),mean(si2est),sd(si2est))

}

#putting col and row names on the matrix

rownames(datamatrix)<-c("0","0.2","0.4","0.6","0.8")

colnames(datamatrix)<-c("meanrho","sdrho","meanmu1","sdmu1","meanmu2","sdmu2",

"meansi1","sdsi1","meansi2","sdsi2")

return(t(datamatrix)) #transposing the matrix for best visibility

}

#True MLE

MLEfasit=function(B,N){

datamatrix<-matrix(data = NA,ncol = 10,nrow = 5)

for (j in 1:5) {

rho=-0.2+0.2*j #rho=c(0,0.2,0.4,0.6,0.8)

set.seed(123)

rhoest<-c(1:B)*0 #0 vector

mu1est<-c(1:B)*0

mu2est<-c(1:B)*0

si1est<-c(1:B)*0

si2est<-c(1:B)*0

for(i in 1:B){

mu1=0

mu2=0

s1=1

s2=1

mu <- c(mu1,mu2) #Mean

sigma <- matrix(c(s1^2, s1*s2*rho, s1*s2*rho, s2^2),2) #Covariance matrix

bvs <- mvrnorm(N, mu = mu, Sigma = sigma ) #bivarate samples

#Putting the MLEfasit estimates in a vector

rhoest[i]<-cor(bvs[,1],bvs[,2])

mu1est[i]<-mean(bvs[,1])

mu2est[i]<-mean(bvs[,2])
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si1est[i]<-sqrt((N-1)/N)*sd(bvs[,1])

si2est[i]<-sqrt((N-1)/N)*sd(bvs[,2])

}

#putting the mean and sd of the estimates in another matrix

datamatrix[j,]<-c(mean(rhoest),sd(rhoest),mean(mu1est),sd(mu1est),mean(mu2est),

sd(mu2est),mean(si1est),sd(si1est),mean(si2est),sd(si2est))

}

#putting col and row names on the matrix

rownames(datamatrix)<-c("0","0.2","0.4","0.6","0.8")

colnames(datamatrix)<-c("meanrho","sdrho","meanmu1","sdmu1","meanmu2","sdmu2",

"meansi1","sdsi1", "meansi2","sdsi2")

return(t(datamatrix)) #transposing the matrix

}

#Estimating with the MLE method,

#1000 datasets with N=10 result rounded to 4 digits

round(MLEestimating(100,1000),4)

#Estimating with the IFME method,

#1000 datasets with N=10 result rounded to 4 digits

round(IFMEestimation(100,1000),4)

#True MLE of 100 datasets with N=1000 result rounded to 4 digits

round(MLEfasit(100,1000),4)

#Noneparametric estimation MPLE

library(MASS)#package for mvrnorm

library(copula)#package for copula functions

library(pracma)#package for the modulo function (not very important)

MPLEestimation=function(B,N){

datamatrix<-matrix(data = NA,ncol = 2,nrow = 5)

for (j in 1:5) {

rho=-0.2+0.2*j #rho=c(0,0.2,0.4,0.6,0.8)

set.seed(123)

rhoest<-c(1:B)*0 #0 vector
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for (i in 1:B) {

mu1=0

mu2=0

s1=1

s2=1

mu <- c(mu1,mu2) #Mean

sigma <- matrix(c(s1^2, s1*s2*rho, s1*s2*rho, s2^2),2) #Covariance matrix

bvs <- mvrnorm(N, mu = mu, Sigma = sigma ) #bivarate samples

#nonparametric u

u<- matrix(c(rank(c(bvs[,1])),rank(c(bvs[,2]))),ncol=2,byrow = F)/(N+1)

qnormu<-qnorm(u)

#function that calculates the IFME depending on rho

MLErho<- function(rho){

#MLEvalue<--N*log(sqrt(1-rho^2))-sum(bvs^2)/(2*(1-rho^2))+

# 2*rho*sum(bvs[,1]*bvs[,2])/(2*(1-rho^2))-sum(dnorm(bvs,log = T))

MLEvalue<- -N*log(2*pi)-.5*N*log(1-rho^2)-

sum(qnormu[,1]^2+qnormu[,2]^2-2*rho*qnormu[,1]*qnormu[,2])/(2*(1-rho^2))-

sum(log(dnorm(qnormu[,1]))+log(dnorm(qnormu[,2])))

return(MLEvalue)

}

#calculating the optimal rho

opt<-optimize(MLErho,interval = c(-1,1),maximum = T,tol=1e-10)

rhoest[i]<-opt$maximum #putting the estimates in a vector

}

#putting the mean and sd of the rho estimates in a matrix

datamatrix[j,]<-c(mean(rhoest),sd(rhoest))

}

#putting col and row names on the matrix

rownames(datamatrix)<-c("0","0.2","0.4","0.6","0.8")

colnames(datamatrix)<-c("meanrho","sdrho")

return(t(datamatrix)) #transposing the matrix

}

#Estimating with the MPLE method,

#100 datasets with N=1000 result rounded to 4 digits

round(MPLEestimation(100,1000),4)
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#different way of writing the code

cc<-normalCopula(dim = 2) #Gaussian copula with dimension 2 with no rho specified

#fits the best gaussian copula with nonparametrick marginals

MPLE<-fitCopula(normalCopula(dim = 2),data = pobs(bvs),method = "mpl")

summary(MPLE)
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