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Abstract

This thesis studies a method described by Kass and Wickelgren [4] that takes a
polynomial with an isolated zero at the origin and produces an element of the
Grothendieck-Witt ring. We first study some theory about bilinear forms and
polynomial rings that will be necessary to be able to use the method. We then
prove various results about the method, such as the fact that all bilinear forms
of dimension ≥ 2 that are produced by the method always has a hyperbolic
plane H as an orthogonal summand. We finish by proving which elements in
GW(k) we can realise with the method when k is a finite field.
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Sammendrag

Denne masteroppgaven studerer en metode beskrevet av Kass og Wickelgren [4]
som tar et polynom med et isolert nullpunkt i origo og produserer et element
i Grothendieck-Witt-ringen. Vi studerer først litt teori om bilineære former og
polynomringer som vil bli nødvendig for å kunne bruke metoden. Vi beviser s̊a
diverse resultater om metoden, som at alle bilineære former av dimensjon ≥ 2
som produseres av metoden alltid har et hyperbolsk plan H som en ortogonal
summand. Vi avslutter med å bevise hvilke elementer i GW(k) vi kan oppn̊a
med metoden n̊ar k er en endelig kropp.
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Chapter 1

Introduction

In [4], Jesse Leo Kass and Kristen Wickelgren describe various results in A1-
homotopy theory. In particular, they consider the degree map

degA1

: [Pnk/P
n−1
k ,Pnk/P

n−1
k ]→ GW(k)

and their main result is that when f : Ank → Ank has an isolated zero at the origin,

then degA1

0 (f) is the stable isomorphism class of a non-degenerate, symmetric
bilinear form denoted by w0(f), and they provide a method for computing
w0(f). The paper is primarily concerned with proving this main result and
other related results. As a result Kass and Wickelgren end up computing only
a few examples using the algorithm they described.

In this thesis we are interested in studying the algorithm itself and to explore
some of its properties. Looking at the computations that Kass and Wickelgren
did, it is notable that the hyperbolic plane H shows up in all the examples
there. So one question to explore is whether this is a general phenomenon and
that the method will always produce a hyperbolic plane, provided dimension is
at least 2. Another thing that motivates our investigations is the question of
which bilinear forms it is even possible to have as output of the algorithm and
if there are some that can not be realised.

Before getting to any of these questions, though, there is quite a bit of theory we
need to establish first. In order to use the algorithm, we need to be familiar with
computations with bilinear spaces and computations with polynomial rings. So
we will begin by exploring those topics.

In Chapter 2, we examine the theory of bilinear forms. One aim of this chapter
is to develop the techniques to do computations with bilinear forms and spaces,
in particular we will make heavy use of this theory’s close relationship with
matrices. Another goal is to construct the Grothendieck-Witt ring GW(k),
which is where the elements that the algorithm produces are contained and so
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it is essential to develop an understanding of this ring.

In Chapter 3, we study the polynomial ring k[x1, . . . , xn], and particularly the
quotient ring k[x1, . . . , xn]/I where I is an ideal of k[x1, . . . , xn]. A big goal
in this chapter is to familiarise ourselves with computations that use Gröbner
bases of ideals in k[x1, . . . , xn], and this involves us examining a few algorithms.
Once that is in order we also look at how to find k-bases of the quotient ring
and how to compute localisations.

And finally, in Chapter 4 we state the method and explore various properties of
it. We name a few cases where the form at the end of the method can be more
or less deduced just from the polynomials with which we start. We explore the
question of which forms are realisable, and in that process we prove that any
form over an algebraically closed field is realisable. We also prove, for any field,
that any form produced by the algorithm of dimension at least 2 must have H
as an orthogonal summand. Then we thoroughly explore the case of finite fields,
and identify which isometry classes we can realise. We finish off with a small
discussion of questions about this topic that can be studied in the future.
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Chapter 2

Bilinear Forms

We start off with developing some of the theory of bilinear forms. We aim
to develop techniques for doing computations with bilinear spaces. Also, the
algorithm we are studying produces an element in the Grothendieck-Witt ring
of a field k, GW(k), so we are also aiming to construct GW(k) and understand
its structure.

Let k be a field with char(k) 6= 2. We consider here vector spaces over k.

Definition 2.1. A bilinear form on a vector space V over k is a bilinear map
β : V × V → k, so ∀x, x′, y, y′ ∈ V, ∀a ∈ k we have

β(x+ x′, y) = β(x, y) + β(x′, y)

β(x, y + y′) = β(x, y) + β(x, y′)

β(ax, y) = aβ(x, y) = β(x, ay).

β is symmetric if β(x, y) = β(y, x) ∀x, y ∈ V .

We refer to the pair (V, β) as a (symmetric) bilinear space (over k).

The transpose of β is the bilinear form βT : V × V → k, βT (x, y) = β(y, x).

We will primarily work with bilinear spaces that are symmetric, so if nothing
else is specified then a given bilinear space can be assumed to be symmetric. We
can see directly from the definitions that a bilinear space (V, β) is symmetric if
and only if β = βT .

Definition 2.2. A quadratic form on V is a map q : V → k such that q(ax) =
a2q(x) for all x ∈ V, a ∈ k and such that ∀x, y ∈ V the map

(x, y) 7→ q(x+ y)− q(x)− q(y)

is bilinear. We call (V, q) a quadratic space.
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Using the bilinear map in this definition, we can associate to q a symmetric
bilinear form given by

βq(x, y) =
1

2
(q(x+ y)− q(x)− q(y)).

And if β is a bilinear form on V , we can associate to it a quadratic form defined
by

qβ(x) = β(x, x).

We then get qβq = q and βqβ = 1
2 (β + βT ), and hence βqβ = β precisely when β

is symmetric. So we get a one-to-one correspondence:

{symmetric bilinear spaces} ←→ {quadratic spaces}
(V, β) 7−→ (V, qβ)

(V, βq)←− [ (V, q)

And so the theory of symmetric bilinear forms on V and the theory of quadratic
forms on V are equivalent. Note that this is only true when char(k) 6= 2.

Definition 2.3. Let (V, β) and (V ′, β′) be bilinear spaces over k. We say that
(V, β) and (V ′, β′) are isometric, denoted (V, β) ∼= (V ′, β′), if there is a bijective
linear transformation σ : V → V ′ such that β′(σx, σy) = β(x, y), ∀x, y ∈ V .
Then σ is called an isometry.

Isometry of bilinear spaces can easily be shown to be an equivalence relation, and
later on we will primarily be working with isometry classes of bilinear spaces
instead of just the spaces themselves. Because of this we will want several
properties for bilinear spaces to hold not just for the bilinear space, but also for
its entire isometry class.

2.1 Bilinear spaces and matrices

As we will see, there is a close relationship between symmetric bilinear spaces
and symmetric matrices, and we will use this relationship a lot when doing our
computations. We will first observe that when we start with a bilinear space,
we can produce a matrix associated to it.

Definition 2.4. Let (V, β) be a bilinear space and {b1, . . . , bn} a basis of V .
The matrix of β with respect to the basis {b1, . . . , bn} is B = (bij) = (β(bi, bj)).

This definition necessitates that B is a square matrix, so we will assume that
any matrices from here on are square. The definition also applies regardless of
whether (V, β) is symmetric or not, but we are focusing on the symmetric case
below. Note, however, that from the definition it follows that the matrix of
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βT with respect to the same basis will be BT , and from there we see that β is
symmetric exactly when B is symmetric.

Now we can use the matrix B with respect to {b1, . . . , bn} in order to evaluate
β. Let x, y ∈ V and write x =

∑n
i=1 xibi, y =

∑n
i=1 yibi where xi, yi ∈ k.

We identify x and y as column vectors by writing x = [x1, . . . , xn]T and y =
[y1, . . . , yn]T . Then:

β(x, y) =
[
x1 . . . xn

]
β(b1, b1) . . . β(b1, bn)

...
. . .

...

β(bn, b1) . . . β(bn, bn)



y1
...

yn

 = xTBy.

Note that the matrix B depends on the choice of basis for V . But if {b′1, . . . , b′n}
is another basis of V and S = (sij) is the change of basis matrix from {b1, . . . , bn}
to {b′1, . . . , b′n}, then we can compute the matrix of β with respect to the new
basis as B′ = STBS. Since S is invertible, the expression B′ = STBS tells us
that B and B′ are congruent matrices and we denote this by B ∼= B′. Hence
the matrix of a bilinear space is unique up to congruence.

We started with a symmetric bilinear space and produced a symmetric matrix.
We can, in fact, go the other way and start with a symmetric matrix:

Let B be a symmetric n × n-matrix over k. Consider the vector space kn of
column vectors over k, with the canonical basis

e1 =
[
1, 0, . . . , 0

]T
, e2 =

[
0, 1, 0 . . . , 0

]T
, . . . , en =

[
0, . . . , 0, 1

]T
.

We define a symmetric bilinear form on kn by

βB : kn × kn → k, βB(x, y) = xTBy

and so we have produced a symmetric bilinear space 〈B〉 := (kn, βB). Also, if
(V, β) is a symmetric bilinear space such that the matrix of β with respect to
some basis {b1, . . . , bn} is exactly B, then (V, β) ∼= 〈B〉 via bi 7→ ei for all i.

Now, both isometry of bilinear spaces and congruence of matrices can be shown
to be equivalence relations. So the next thing we could hope for is that there
is a relationship between isometry classes of symmetric bilinear spaces and con-
gruence classes of symmetric matrices. As it turns out, that is the case:

Theorem 2.5. Two symmetric bilinear spaces are isometric if and only if their
associated symmetric matrices, with respect to some bases, are congruent.

Proof. Let (V, β) and (V ′, β′) be symmetric bilinear spaces with bases {b1, . . . , bn}
and {b′1, . . . , b′n} respectively, and let B and B′ be the matrices of β and β′ that
correspond to these bases.
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If σ : V → V ′ is an isometry, then we can represent it with an n × n-matrix
S = (sij), meaning that for all j we have σ(bj) =

∑n
i=1 sijb

′
i. Then we have

xTBy = β(x, y) = β′(σx, σy) = xTSTB′Sy

for all x, y ∈ V . So B = STB′S and hence B ∼= B′.

Conversely, if B and B′ are congruent, and so there is an invertible n×n-matrix
S = (sij) such that B = STB′S, then we define a bijective linear transformation
σ : V → V ′ by σ(bj) =

∑n
i=1 sijb

′
i and then we have

β(x, y) = xTBy = xTSTB′Sy = β′(σx, σy)

hence σ is an isometry.

In the theorem we assumed that both bilinear spaces are symmetric. But in
cases where we just know that one given bilinear space is symmetric, we have
the following:

Lemma 2.6. Let (V, β) and (V ′, β′) be bilinear spaces, let (V, β) be symmetric.
If (V, β) ∼= (V ′, β) then (V ′, β′) is also symmetric.

Proof. Let B and B′ be the matrices of (V, β) and (V ′, β′) respectively, with
respect to some basis. B is clearly symmetric. Since (V, β) ∼= (V ′, β′), we have
that B ∼= B′ so there is an invertible matrix S such that B′ = STBS. Then

(B′)T = (STBS)T = STBT (ST )T = STBS = B′

so B′ is symmetric.

So if (V, β) is symmetric, we know that every bilinear space in the isometry class
[(V, β)] is symmetric. And so it makes sense for us for to consider symmetry at
the level of isometry, not just with the bilinear spaces themselves.

To sum it up, we have the following one-to-one correspondence:{
isometry classes of

symmetric bilinear spaces

}
←→

{
congruence classes of
symmetric matrices

}
[(V, β)] 7−→ [B] = [(β(bi, bj))]

[〈B〉] = [(kn, βB)]←− [ [B]

where {b1, . . . , bn} is a basis of V . So whenever we are studying a symmetric
bilinear space up to isometry, we can do that by studying symmetric matrices
up to congruence instead. When we do computations later on, we will precisely
be working with isometry classes of symmetric bilinear spaces, and we will use
this correspondence a lot.
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2.2 Properties of the correspondence

We will now see what tools we have that make the correspondence from the
previous section so useful.

If B is our symmetric matrix and we are working with its congruence class, we
can freely change the matrix as long as the congruence class remains unchanged.
Meaning, for any invertible matrix S we can also work with STBS. In practice,
we will be doing this using elementary matrices.

Recall from linear algebra that the elementary matrices generate the general
linear group, in particular they are invertible. Recall also that multiplying B
with an elementary matrix corresponds to doing an elementary row or column
operation on B.

So now, if E is an elementary matrix, then we are allowed to work with ETBE
instead of B, and the operation performed on B is both the column operation
and the corresponding row operation determined by E. So whenever we want
to do a certain operation on a matrix, say a row operation, then we also have to
do the corresponding column operation in order to stay in the same congruence
class.

We also have the following result [6], which will be very useful during our later
computations:

Theorem 2.7. Every symmetric matrix is congruent to a diagonal matrix.

This allows us to introduce another notation: For a1, . . . , an ∈ k, we define the
bilinear space 〈a1, . . . , an〉 as

〈a1, . . . , an〉 := 〈A〉, where A =


a1 0

. . .

0 an


So then the theorem tells us, equivalently, that every symmetric bilinear space
is isometric to a bilinear space 〈a1, . . . , an〉.

Since we can change 〈a1, . . . , an〉 using simultaneous row and column operations,
it is not difficult to see that we have the following:

Corollary 2.8. Let 〈a1, . . . , an〉 be a bilinear space.

(i) For any permutation π : {1, . . . , n} → {1, . . . , n}, we have

〈a1, . . . , an〉 ∼= 〈aπ(1), . . . , aπ(n)〉

(ii) For any b1, . . . , bn ∈ k\{0}, we have

〈a1, . . . , an〉 ∼= 〈b21a1, . . . , b2nan〉

7



Like matrices, the theory of bilinear spaces also has the following notion:

Definition 2.9. A symmetric bilinear space (V, β) is regular, non-degenerate,
or non-singular if ∀x ∈ V, x 6= 0,∃y ∈ V such that β(x, y) 6= 0.

If (V, β) is not regular, then it is called degenerate or singular.

Then using the correspondence with matrices we get that (V, β) is regular pre-
cisely when the matrix of β, with respect to any basis, is non-singular [6]. In
the theory of matrices, invertibility and the determinant are closely related, and
the determinant is also useful here. However, in the theory of bilinear forms we
need to be a bit more careful when introducing the determinant.

If B is the matrix of (V, β) with respect to some basis, then we want to associate
the determinant det(B) to (V, β) in some way. But doing this directly is not
well-defined since B depends on the choice of basis of V , so we have to account
for this. If B′ is the matrix of β with respect to a different basis, then we know
that B ∼= B′. So B = STB′S for some invertible matrix S. Then we get:

det(B) = det(STB′S) = det(ST ) det(B′) det(S) = det(S)2 det(B′).

So we get that det(B) is unique up to multiplication with squares, in other
words as an element of k×/(k×)2.

Definition 2.10. Let (V, β) be a symmetric bilinear space and let B be the
matrix of β with respect to some basis. The discriminant of (V, β) is defined to
be det(B) ∈ k×/(k×)2.

The above discussion shows that the discriminant of a symmetric bilinear space
is well-defined. Furthermore, since the equation det(B) = a2 det(B′) holds for
any a ∈ k× and for any congruent matrices B and B′, we hence have that the
discriminant is invariant under isometry. In particular, if two symmetric bilinear
spaces have different discriminants then they cannot be isometric.

Using the bracket notation introduced in the previous section, it is easy to see
that for a1, . . . , an ∈ k,

det(〈a1, . . . , an〉) =

n∏
i=1

ai.

Lemma 2.11. Let (V, β) and (V ′, β′) be symmetric bilinear spaces, let (V, β)
be regular. If (V, β) ∼= (V ′, β′), then (V ′, β′) is also regular.

Proof. Let A and B be the matrices of (V, β) and (V ′, β′) respectively, with
respect to some bases. We have det(A) 6= 0 since (V, β) is regular. And since
(V, β) ∼= (V ′, β′), there is an invertible matrix S, meaning det(S) 6= 0, so that
B = STAS. Then we have

det(B) = det(ST ) det(A) det(S) 6= 0.
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So B is invertible and (V ′, β′) is regular.

So like with symmetry, regularity is a property of bilinear spaces that we can
consider at the level of isometry instead of just with the spaces.

Another value we can associate to a bilinear space (V, β) is dimension. And
unlike the determinant, the dimension of (V, β) is straightforwardly defined as
the dimension of the underlying vector space V , so dimk(V, β) = dimk(V ). We
can also find the dimension of (V, β) by finding the rank of a matrix of (V, β).

The dimension of a bilinear space is unique up to isometry and congruence. For
if B ∼= B′ with B′ = CTBC where C is invertible then, since multiplication by
an invertible matrix does not change rank, we get

dim(B′) = dim(CTBC) = dim(B).

2.3 Sums and products

In the previous section we saw things we can do to a symmetric bilinear space
without changing its isometry class. We also have ways of combining different
bilinear spaces, such as the following:

Definition 2.12. Let (V, β) and (V ′, β′) be symmetric bilinear spaces over
the same field k. The (external) orthogonal sum of (V, β) and (V ′, β′) is the
symmetric bilinear space (V ⊕ V ′, β ⊥ β′) where the bilinear form is given by

β ⊥ β′ : (V ⊕ V ′)× (V ⊕ V ′)→ k

(β ⊥ β′)((x, x′), (y, y′)) = β(x, y) + β′(x′, y′)

The orthogonal sum of more than two spaces is defined similarly, and then the
operation is associative. We have the following properties [6], presented without
proof:

Lemma 2.13. Let (V, β), (V ′, β′), (V1, β1), and (V ′1 , β
′
1) be symmetric bilinear

spaces.

(i) (V, β) ⊥ (V ′, β′) ∼= (V ′, β′) ⊥ (V, β)

(ii) If (V, β) ∼= (V1, β1) and (V ′, β′) ∼= (V ′1 , β
′
1), then we have (V, β) ⊥ (V ′, β′) ∼=

(V1, β1) ⊥ (V ′1 , β
′
1)

(iii) (V, β) ⊥ (V ′, β′) is regular ⇐⇒ (V, β) and (V ′, β′) are regular

(iv) If B and B’ are matrices that represent β and β′ respectively, then the

matrix

[
B 0

0 B′

]
represents the bilinear form β ⊥ β′.
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By properties of the determinant, we get in (iv) that

det

[
B 0

0 B′

]
= det(B) det(B′)

so it immediately follows that det((V, β) ⊥ (V ′, β′)) = det(V, β) det(V ′, β′).

Also notice in (iv), that if the matrices of β and β′ are diagonal, then clearly the
matrix of β ⊥ β′ will also be diagonal. Combining this with notation introduced
earlier, then given a1, . . . , an, b1, . . . , bm, a ∈ k, we write

〈a1, . . . , an〉 ⊥ 〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉
n times︷ ︸︸ ︷
〈a, . . . , a〉 =

n times︷ ︸︸ ︷
〈a〉 ⊥ . . . ⊥ 〈a〉 = n〈a〉

Since any symmetric bilinear space is isometric to some 〈a1, . . . , an〉, then when
we are working with isometry classes we can always express orthogonal sums
using this notation.

Using the first three properties in Lemma 2.13, we can also say something more.
Let S(k) denote denote the set of isometry classes of regular symmetric bilinear
spaces over k. Then we have the following:

Theorem 2.14. (S(k),⊥) is a commutative monoid.

Proof. Lemma 2.13 (iii) ensures that ⊥ : S(k)×S(k)→ S(k) really does map to
S(k). Lemma 2.13 (ii) ensures that ⊥ is independent of the choice of representa-
tive for the isometry classes. By construction, the orthogonal sum is associative.
The identity is the zero bilinear space ({0}, (0, 0) 7→ 0). And finally, ⊥ is com-
mutative by Lemma 2.13 (i).

So the orthogonal sum is one example of an operation on bilinear spaces, and it
even gives us structure when we focus on the isometry classes. We also have a
product operation on bilinear spaces, which we will examine next.

Definition 2.15. Let (V, β) and (V ′, β′) be bilinear spaces. The tensor product
of (V, β) and (V ′, β′) is the bilinear space

(V, β)⊗ (V ′, β′) := (V ⊗k V ′, β ⊗ β′)

where the bilinear form is given by

β ⊗ β′ : (V ⊗k V ′)× (V ⊗k V ′)→ k

(x⊗ x′, y ⊗ y′) 7→ β(x, y)β′(x′, y′)

10



This definition does not require us to choose bases for V and V ′, and we will
make use of this version of the tensor product for a proof below. But when we
use bases, we have another way of defining tensor product, and it requires a
small detour into matrices again.

Definition 2.16. Let A = (aij) be an n × n matrix and let B = (bij) be a
m × m matrix. The tensor product, or Kronecker product, of A and B is the
mn×mn matrix

A⊗B =


a11B . . . a1nB
...

. . .
...

an1B . . . annB


This definition uses square matrices, but in general the same definition works
for matrices that are not square. In that case the Kronecker product of an m×n
matrix and a p× q matrix will produce an mp× nq matrix.

We have some properties [6, 3], where we omit the proof:

Lemma 2.17. Let A,A′, B,B′, and C be matrices over k. A and A′ are n× n
matrices, and B and B′ are m×m matrices.

(i) (AA′)⊗ (BB′) = (A⊗B)(A′ ⊗B′)

(ii) (A⊗B)T = AT ⊗BT

(iii) If A and B are symmetric, then so is A⊗B

(iv) (A⊗B)⊗ C = A⊗ (B ⊗ C)

(v) det(A⊗B) = det(A)m det(B)n

From (v) it immediately follows that if A and B are non-singular, then A ⊗ B
is also non-singular.

Using the Kronecker product, we can now define a product on S(k)

Definition 2.18. Let A and B be non-singular symmetric matrices over k. The
tensor product of the symmetric bilinear spaces 〈A〉 and 〈B〉 is defined as

〈A〉 ⊗ 〈B〉 := 〈A⊗B〉.

For any isometry classes of some symmetric bilinear spaces [(V, β)] and [(V ′, β′)],
let A and B be matrices so that (V, β) ∼= 〈A〉 and (V ′, β′) ∼= 〈B〉. Then the
tensor product of [(V, β)] and [(V ′, β)] is defined as

[(V, β)]⊗ [(V ′, β′)] := [〈A⊗B〉].

11



This definition holds only for isometry classes of bilinear spaces, and not for
just the bilinear spaces themselves. So Definition 2.15 is more general than this
one, but we will primarily be working with isometry classes anyways, so this
definition is mostly good enough for our purposes.

It can be also shown [6] that if A and B are the matrices of β and β′ with
respect to some bases, then the matrix of β ⊗ β′ is precisely A ⊗ B. In other
words, when we choose a basis for the vector spaces, then we can use either of
the definitions to get the tensor product and we will get the same one no matter
which definition we use.

We can also see from Definition 2.18 that when we use the bracket notation for
bilinear spaces corresponding to diagonal matrices, the tensor product becomes

〈a1, . . . , an〉 ⊗ 〈b1, . . . , bm〉 = 〈a1b1, . . . , a1bm, . . . , anb1, . . . , anbm〉
=⊥
i,j
〈aibj〉

Proposition 2.19. Tensor product is a well-defined binary operation on S(k).

Proof. Let [(V, β)], [(V ′, β′)] ∈ S(k) be isometry classes of some regular sym-
metric bilinear spaces. Let A,A′, B and B′ be non-singular symmetric matrices
over k so that (V, β) ∼= 〈A〉 ∼= 〈A′〉 and (V ′, β′) ∼= 〈B〉 ∼= 〈B′〉.

Since A ∼= A′ and B ∼= B′, there are invertible matrices C and D such that
A′ = CTAC and B′ = DTBD. Then using Lemma 2.17 (i) and (ii), we have

A′ ⊗B′ = (CTAC)⊗ (DTBD)

= (CT ⊗DT )(A⊗B)(C ⊗D)

= (C ⊗D)T (A⊗B)(C ⊗D)

and since it follows from Lemma 2.17 (v) that C ⊗D is invertible, we get that
A ⊗ B ∼= A′ ⊗ B′. Hence [(V, β)] ⊗ [(V ′, β′)] = [〈A ⊗ B〉] is independent of the
choices of A and B. Finally, since A and B are non-singular and symmetric, so
is A⊗B by Lemma 2.17 (iii) and (v). And so by Lemma 2.6 and Lemma 2.11,
[(V, β)]⊗ [(V ′, β′)] is regular and symmetric.

Theorem 2.20. (S(k),⊥,⊗) is a commutative semiring.

Proof. We have already seen in Theorem 2.14 that (S(k),⊥) is a commutative
monoid. Also, the tensor product is associative by Lemma 2.17 (iv) and it has
〈1〉 as identity, so (S(k),⊗) is a monoid.

To see that (S(k),⊗) is commutative, let A be a symmetric n × n matrix and
let B be a symmetric m ×m matrix. Let eij denote the m × n matrix which
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has 1 in the (i, j) position and 0 elsewhere. Then using the mn×mn matrix

C =


e11 e21 . . . em1

e12 e22 . . . em2

...
...

. . .
...

e1n e2n . . . emn


we get that A⊗B = CT (B ⊗A)C, and so [〈A〉]⊗ [〈B〉] = [〈B〉]⊗ [〈A〉] in S(k).
Hence (S(k),⊗) is a commutative monoid.

Let A,B and C be some matrices. Observe that we have

(A ⊥ B)⊗ C =

[
A 0

0 B

]
⊗ C

=



a11C . . . a1nC 0C . . . 0C
... . . .

...
...

. . .
...

an1C . . . annC 0C . . . 0C

0C . . . 0C b11C . . . b1mC

. . .
. . . . . . . . .

. . . . . .

0C . . . 0C bm1C . . . bmmC


=

[
A⊗ C 0

0 B ⊗ C

]
= (A⊗ C) ⊥ (B ⊗ C)

and similarly for A⊗ (B ⊥ C), so the distribution laws hold.

Finally, we need to show that multiplication by the identity element of (S(k),⊥)
annihilates S(k). Let 0S(k) = ({0}, (0, 0) 7→ 0) denote the identity of (S(k),⊥),
and let [(V, β)] ∈ S(k). Here it is useful to use the version of tensor product
from Definition 2.15. Because then we can see directly that the underlying
vector space of 0S(k) ⊗ (V, β) is {0} ⊗k V = {0}, and so we necessarily need to
have 0S(k) ⊗ (V, β) = 0S(k).

Hence we get that (S(k),⊥,⊗) is a commutative semiring.

This semiring is very important, because later on we will turn it into the
Grothendieck-Witt ring GW(k). Before we do that, however, there is another
important topic we will cover first.
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2.4 Hyperbolic space

The next type of space we want to examine is important to us because it will
show up a lot in later computations, but it requires us to introduce a few more
new terms:

Definition 2.21. Let (V, β) be a regular bilinear space. A non-zero vector
x ∈ V is called isotropic if β(x, x) = 0, otherwise it is called anisotropic. If
(V, β) contains an isotropic vector, then (V, β) is called isotropic, otherwise it is
called anisotropic.

Theorem 2.22. Let (V, β) be a regular 2-dimensional bilinear space. Then the
following are equivalent:

(i) (V, β) is isotropic

(ii) (V, β) ∼= 〈1,−1〉 ∼= 〈a,−a〉 for any a 6= 0

(iii) det(V, β) = −1 mod (k×)2

See [5] for proof.

Definition 2.23. Any bilinear space which satisfies the conditions in Theorem
2.22 is called a hyperbolic plane, and will be denoted by H. An orthogonal sum
of hyperbolic planes is called a hyperbolic space.

If we have a hyperbolic space that is the orthogonal sum of n hyperbolic planes,
then we denote it by nH.

Theorem 2.22, particularly part (ii), essentially tells us how we can recognise
whether a given bilinear space is hyperbolic. Given the matrix of a 2-dimensional
bilinear space, then if we use operations that respect congruence, then we can
conclude that the bilinear space is hyperbolic if we can end up with 〈1,−1〉. If
the bilinear space has dimension that is even and larger than 2, then the goal
would be to bring its matrix to 〈1,−1, . . . , 1,−1〉 ∼= 〈1, . . . , 1,−1, . . . ,−1〉 ∼= nH.

If we are working with a bilinear space with odd dimension, then the whole
space will not be hyperbolic, but there might be a hyperbolic space within the
bilinear space. For instance, we could have something like (V, β) ∼= nH ⊥ 〈a〉 for
some a ∈ k. So the notion of a hyperbolic space is still useful in odd dimensions.

But we do not even necessarily need to bring a matrix of a bilinear space all
the way to 〈1,−1, . . . , 1,−1〉 in order to spot that it is hyperbolic. If (V, β) is
2n-dimensional and (V, β) ∼= 〈B〉, then [6, Thm. 4.5, p.12] tells us that (V, β) is
a hyperbolic space if B has one of the following forms:[

0 C

CT D

] [
0 In

In 0

] [
C 0

0 −C

]
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where C and D are n× n matrices, C is invertible, and In is the n× n identity
matrix.

It will also be useful to be able to spot when a bilinear space contains a hyper-
bolic plane at all, so we have the following.

Theorem 2.24. Let (V, β) be a regular space over k of dimension ≥ 2. Then
(V, β) is isotropic if and only if (V, β) has H as an orthogonal summand.

See [5, Theorem 3.4, p. 13] for the proof. Clearly, Theorem 2.22 part (i) is just
this theorem when the dimensions equals 2. So in total, if we have a bilinear
space and we can find even just one isotropic vector in it, then we know that
there is at least one hyperbolic plane in the space. This will be important for a
proof in Chapter 4.

2.5 The Grothendieck-Witt ring GW(k)

The Grothendieck construction is a procedure that constructs a ring from a
semiring, or a group from a semigroup. Intuitively, the procedure is analogous
to constructing the integers from the natural numbers (including 0), and this
is indeed what happens if we apply the procedure to the natural numbers. We
will use the construction with our commutative semiring (S(k),⊥,⊗). But first
we describe it in a general case, so let R be a commutative semiring.

Definition 2.25. The Grothendieck ring of R is the ring defined to be

Groth(R) :=
R×R
∼

where the equivalence relation is given by

(a, b) ∼ (a′, b′) ⇐⇒ ∃x ∈ R such that a+ b′ + x = a′ + b+ x ∈ R

and where the addition and multiplication are defined by

[a, b] + [c, d] = [a+ c, b+ d]

[a, b][c, d] = [ac+ bd, ad+ bc].

It is easily shown that the equivalence described really is an equivalence relation,
that the addition and multiplication on the equivalence classes are well-defined,
and that Groth(R) satisfies the ring axioms. The zero in the ring is [0, 0] = [a, a]
for any a ∈ R, the unit is [1, 0], and the additive inverse of [a, b] is [b, a].

If R is a semigroup, then this definition without the multiplication produces the
Grothendieck group of R, and many of the properties that follow also apply in
this case.
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Remark. Strictly speaking, the elements of Groth(R) are pairs [a, b], but since
[a, b] = [a, 0] + [0, b] = [a, 0] + (−[b, 0]), we can also think of the elements as
formal differences. Additionally, the elements [a, 0] are enough to generate all
of Groth(R).

Proposition 2.26. There is a canonical semiring homomorphism defined by

i : R→ Groth(R), a 7→ [a, 0]

and this homomorphism has the universal property, meaning for any ring S
and semiring homomorphism f : R → S there is a unique ring homomorphism
f ′ : Groth(R)→ S such that the following diagram commutes

R Groth(R)

S

i

f
f ′

Proof. It is easily checked that i is a semiring homomorphism. Given S and
f : R → S, define f ′ : Groth(R) → S by f ′([a, b]) = f(a) − f(b). It is easily
checked that this is well-defined, that it is a ring homomorphism, and that
f ′(i(a)) = f(a) for all a ∈ R. The remark before the proposition states that
Groth(R) is generated by Im(i), so f ′ must be uniquely determined by f .

In Definition 2.25 we need the x ∈ R in the equation a + b′ + x = a′ + b + x
because not all semirings, specifically not all monoids, have the cancellation
property. And if we do not have cancellation, then ∼ is not an equivalence
relation because it then fails to have transitivity. Another reason cancellation
is important is the following:

Lemma 2.27. If R has the cancellation property, then i is injective.

Proof. For a, b ∈ R such that i(a) = i(b), we have

i(a) = i(b) =⇒ [a, 0] = [b, 0]

=⇒ ∃x ∈ R such that a+ 0 + x = b+ 0 + x

=⇒ a = b

where the last implication uses cancellation. Hence i is injective.

So when R has cancellation, any a ∈ R is sent by i to a unique element of
Groth(R) and so by abuse of notation we can just think of this element as a.

Definition 2.28. The Grothendieck-Witt ring of k, denoted by GW(k), is the
Grothendieck ring of (S(k),⊥,⊗).
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Witt’s cancellation theorem [5, Thm. 4.2, p.15] shows that (S(k),⊥,⊗) has
the cancellation property. Hence i : S(k) → GW(k) is injective. So as the
observation above notes, any isometry class [(V, β)] ∈ S(k) can be thought of as
an element in GW(k) using i.

Later on we will be working exclusively in GW(k) and so to simplify the nota-
tion, we will just write (V, β) instead of [(V, β)] and (V, β) = (V ′, β′) instead of
(V, β) ∼= (V ′, β′).

Although our focus later will be on GW(k), there is an interesting ring that is
closely related. We first note the following:

Lemma 2.29. The hyperbolic spaces form an ideal

(H) = {nH | n ∈ Z} ⊆ GW(k).

Proof. For nH,mH ∈ (H) we have nH ⊥ (−mH) = (n − m)H ∈ (H), so
(H,⊥) ⊆ GW(k) is a subgroup.

Let 〈a1, . . . , an〉 be an n-dimensional regular symmetric bilinear space. We show
by induction on n that 〈a1, . . . , an〉 ⊗H = dimk(〈a1, . . . , an〉)H. For n = 1, we
have 〈a〉 ⊗H ∼= 〈a〉 ⊗ 〈1,−1〉 = 〈a,−a〉 ∼= H = 1H = dimk(〈a〉)H. Assume the
statement holds for n− 1. Then we have

〈a1, . . . , an−1, an〉 ⊗H = (〈a1, . . . , an−1〉 ⊥ 〈an〉)⊗H
= 〈a1, . . . , an−1〉 ⊗H ⊥ 〈an〉 ⊗H
= dimk(〈a1, . . . , an−1〉)H ⊥ H
= (n− 1)H ⊥ 1H

= nH

= dimk(〈a1, . . . , an−1〉)H.

Then for any φ := 〈a1, . . . , am〉 ∈ GW(k) and any nH, we get

φ⊗ nH = φ⊗ (

n times︷ ︸︸ ︷
H ⊥ . . . ⊥ H)

=

n times︷ ︸︸ ︷
(φ⊗H) ⊥ . . . ⊥ (φ⊗H)

=

n times︷ ︸︸ ︷
dimk(φ)H ⊥ . . . ⊥ dimk(φ)H

=

n times︷ ︸︸ ︷
mH ⊥ . . . ⊥ mH

= nmH ∈ (H).

So 〈a1, . . . , am〉 ⊗ nH ∈ (H) and hence (H) is an ideal of GW(k).
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Now that we have a particular ideal of GW(k), the next thing we could want to
do is to consider the quotient ring. And this produces the ring of interest:

Definition 2.30. The Witt ring of k is defined as

W(k) =
GW(k)

(H)
.

The focus in this project is on computations in GW(k) rather than W(k). But
generally speaking, in the theory of bilinear forms W(k) is just as important as
GW(k).

Earlier we described the dimension of bilinear spaces, and it turns out it extends
nicely to GW(k). Because as we can think of the dimension map S(k)→ Z as a
semiring homomorphism, the universal property of i : S(k) → GW(k) gives us
a ring homomorphism dim : GW(k)→ Z. We similarly get the discriminant as
det : GW(k)→ k×/(k×)2.

Since the dimension and discriminant of a bilinear space give us important
information about the space’s equivalence class in GW(k) and W(k), they can
be useful for computing GW(k) or W(k) explicitly. See for example [6, Ch.2,
§3].

We finish this chapter with a few results about finite fields. Later on, we will
do computations over finite fields, and so the results will give us guidance that
will be very important for how we attack the computations. See [6, p. 39] for
the proofs.

Lemma 2.31. Let q = pm where p is an odd prime. Then F×q /(F×q )2 consists
of two elements.

In the general Fq case, which is what we will cover later, we will denote the two
elements by 1 and ε. Note that the set of square classes F×q /(F×q )2 is a group. So
in the finite field case, multiplications with 1 and ε works like the multiplication
in a group of order 2.

Theorem 2.32. Let k = Fq where q = pm and p is an odd prime. Then:

• Every bilinear space over Fq of dimension ≥ 3 is isotropic.

• Two bilinear spaces over Fq are isometric if and only if they have the same
dimension and discriminant.

• For each dimension n, there are exactly two isometry classes of regular
bilinear spaces in dimension n.

The last two points in particular are very important in our later computations,
but we will save the details about that for later.
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Chapter 3

Polynomial rings

We will now develop techniques for doing computations in the polynomial ring
k[x1, . . . , xn] where k is a field. More specifically we need to be able to work
with quotient rings and compute localisations.

First off, we are going to consider the quotient ring k[x1, . . . , xn]/I where the
ideal I = (f1, . . . , fm) ⊆ k[x1, . . . , xn] is generated by fi ∈ k[x1, . . . , xn] for
i = 1, . . . ,m. We want to know what the elements of this quotient ring are like,
so we want to take any h ∈ k[x1, . . . , xn] and compute h+ I ∈ k[x1, . . . , xn]/I.
More specifically, we mean that we want to find a representative r of the coset
h+ I such that r /∈ I and write h+ I = r + I.

It turns out that we need quite a bit of background work before we are able to
do this in the case of multiple variables. In just one variable, however, this is
not very complicated, so we will start with that case.

For h ∈ k[x], we want to compute h+ I ∈ k[x]/I with I = (f1, . . . , fm) ⊆ k[x].
Since k[x] is a principal ideal domain, the ideal reduces to I = (f1, . . . , fm) = (f)
for some f ∈ k[x], so then we are computing h + (f) ∈ k[x]/(f). Additionally,
we have that the division algorithm for the integers extends very nicely to the
polynomials in one variable:

Theorem 3.1. Let f ∈ k[x], f(x) 6= 0. Then for any h ∈ k[x], we can write

h = qf + r

for some q, r ∈ k[x]. If r = 0 or deg(r) < deg(f), then q and r are unique.
Furthermore, there is an algorithm for computing q and r.

Note first that for f(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 where an 6= 0,
the leading term of f is LT(f) = anx

n, meaning the term of f with the highest
degree.
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Proof. The algorithm for computing q and r is shown in Algorithm 1.

Algorithm 1 Division Algorithm for k[x]

1: Input: h, f
2: q ← 0
3: r ← h
4: while r 6= 0 and LT(f) | LT(r) do
5: q ← q + LT(r)/LT(f)
6: r ← r − (LT(r)/LT(f))f
7: end while
8: Output: q, r

Note first that the equation h = qf + r clearly holds for the initial values of q
and r. And because

qf + r =

(
q +

LT(r)

LT(f)

)
f +

(
r − LT(r)

LT(f)
f

)
we get that h = qf + r still holds at the end of each while loop. Additionally,
the algorithm terminates if either r = 0 or if LT(f) does not divide LT(r), which
would mean deg(r) < deg(f). So provided the algorithm does terminate, we
have that q and r have the desired properties.

To see that the algorithm does terminate, observe that the leading term of
(LT(r)/LT(f))f is precisely LT(r) and so line 6 in the algorithm will by design
cancel out LT(r). Hence at at the end of each while loop the degree of r will
strictly decrease. And since r at the start of the algorithm has finite degree, the
algorithm will eventually terminate.

Finally, we need to prove that q and r are unique. Suppose q, q′, r, r′ ∈ k[x] are
such that h = qf + r = q′f + r′ and either r = 0 or deg(r) < deg(f) and either
r′ = 0 or deg(r′) < deg(f). We have (q′ − q)f = r − r′.

Let r, r′ 6= 0 and so deg(r),deg(r′) < deg(f). If we try to assume that r 6= r′,
then we have deg(r − r′) < deg(f). And then

deg(f) > deg(r − r′) = deg((q′ − q)f) = deg(q′ − q) + deg(f) ≥ deg(f)

which is a contradiction, forcing r = r′. So then (q′ − q)f = r − r′ = 0 and as
k[x] is an integral domain and f 6= 0 by assumption, we hence get q = q′. If
we let r = r′ = 0, then we get (q′ − q)f = 0 directly and again q = q′. If we
assume r 6= 0 and r′ = 0, then we get (q′ − q)f = r which again leads to the
contradiction deg(f) < deg(f). So r 6= 0, r′ = 0, and similary r = 0, r′ 6= 0,
are impossible. Hence in all cases we get q = q′ and r = r′.

The reason this algorithm is useful to us, is that if we have any non-zero poly-
nomial f ∈ k[x] and a polynomial h ∈ k[x], then by using the division algorithm

20



we get
h+ (f) = qf + r + (f) = r + (f) ∈ k[x]/(f)

which is what we want. In particular, h ∈ (f) ⇐⇒ r = 0.

In order to compute h+ I ∈ k[x1, . . . , xn]/I more generally, we want to extend
the division algorithm to make it somehow work when we have more than one
variable. By taking another look at Algorithm 2.25, we can see that the idea
of the algorithm is essentially that each time we go through the while loop, we
cancel out the term in h of highest degree. What we are left with we carry back
with us through the loop and we do this until we end up with 0 or a polynomial
where none of the terms can be canceled out by the loop.

Part of the reason this process works so nicely with one variable is that it is
easy to determine what term of h has the highest degree. If axm and bxn are
terms in h, we just check which of m and n is the larger one. With multiple
variables, this is less straightforward and we need to work out how to do it in
order to to extend the division algorithm.

3.1 Monomial orderings

In one variable, we determine which of two monomials has the higher degree
by comparing the exponents. We are also going do this in multiple variables,
so observe first that we can express a monomial in k[x1, . . . , xn] as xα =
xα1
1 xα2

2 · · ·xαnn , where the n-tuple α = (α1, α2, . . . , αn) ∈ Zn≥0 consisting of the
exponents of the monomial uniquely determines the monomial. This gives us
a one-to-one correspondence between Zn≥0 and the monomials of k[x1, . . . , xn],
and it follows that by establishing a way to compare tuples in Zn≥0 we can also
compare the corresponding monomials in the same way. In other words, given
α, β ∈ Zn≥0 if we have α > β then we can also say that xα > xβ .

The next thing to note is that, unlike in k[x], there is not one unique way to
define a way of comparing tuples in Zn≥0 for n > 1. So instead of looking for
one particular ordering, we need to define this notion a bit more generally:

Definition 3.2. A monomial ordering > on k[x1, . . . , xn] is a relation on Zn≥0
that satisfies the following:

(i) > is a total ordering on Zn≥0

(ii) > is a well-ordering on Zn≥0

(iii) For α, β, γ ∈ Zn≥0, if α > β then α+ γ > β + γ

If α > β, then we will say that xα > xβ . Note that we could also define
monomial ordering on the monomials directly, but we would be comparing the
exponents as tuples of Zn≥0 anyways.
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The requirement that > is a total ordering [2, p. 55] means that > has the
transitive property and that for any α, β ∈ Zn≥0, we have one of the following:

α > β, α = β, β > α.

In particular, any two tuples in Zn≥0 are comparable under >. The well-ordering
requirement means that any non-empty subset of Zn≥0 has a least element under
>, so in a non-empty subset A there is some α ∈ A such that for any other
β ∈ A we have β > α.

The third requirement ensures that > is compatible with multiplication in
k[x1, . . . , xn]. In terms of monomials, it says that

xα > xβ =⇒ xαxγ > xβxγ =⇒ xα+γ = xβ+γ .

So in particular, if we have written a polynomial xα1 +xα2 + . . .+xαn such that
the monomials are in decreasing order according to >, meaning α1 > α2 > . . . >
αn, then multiplying by any β will not mess up the ordering. We would get
xα1+β + xα2+β + . . .+ xαn+β where the monomials are still in decreasing order.
In other words, this condition ensures that nothing unpredictable happens with
the monomials when we multiply polynomials together.

Now that we have a way of comparing the monomials, we can use monomial
orderings to extend some old definitions:

Definition 3.3. Let f =
∑
α∈A aαx

α be a non-zero polynomial in k[x1, . . . , xn]
where A ⊆ Zn≥0, let > be a monomial ordering.

(i) The multidegree of f is multideg(f) = max{α ∈ A | aα 6= 0} where the
maximum is taken with respect to >.

(ii) The leading term of f is LT(f) = amultideg(f)x
multideg(f).

Now that we have talked about monomial orderings in general, we will describe
some specific ones. There are many different monomial orderings, but not all of
them are useful to us. We will mention two of them here.

Definition 3.4. The lexicographic order, or lex order, is denoted by >lex and
defined as follows: for α, β ∈ Zn≥0 we have α >lex β if the leftmost non-zero

entry in α− β is positive. If α >lex β then we say xα >lex x
β .

In this ordering we have

(1, 0, . . . , 0) >lex (0, 1, 0, . . . , 0) >lex . . . >lex (0, . . . , 0, 1)

which corresponds to x1 >lex x2 >lex . . . >lex xn, so we essentially have a way
of prioritising the variables. But note that this ordering of the variables is not
unique. If we order the variables differently, for example x2, x3, . . . , xn, x1 so
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that x2 >lex x3 >lex . . . >lex xn >lex x1, then we have a different lexicographic
ordering. So in general we need to specify which ordering of the variables we
are using. If nothing else is stated, however, we will use the standard one,
x1 >lex x2 >lex . . . >lex xn.

The name of this ordering comes from the fact that this monomial ordering is
very similar to how words are ordered in the dictionary. We can see this by
considering words as n-tuples and using the ordering a >lex b >lex . . . >lex z.
Unlike the dictionary, however, the lexicographic order prioritises terms with
more variables, for example x1x2x3x4 >lex x1x2.

A feature of the lexicographic order is that a single variable will dominate any
monomial that only contains variables deemed smaller, so x1 >lex x

m2
2 xm3

3 · · ·xmnn
no matter how large the mi are. We might sometimes want to be able to take
into account the size of the exponentials when ordering monomials. In other
words, we would like to make use of the following:

Definition 3.5. The total degree of a monomial xα ∈ Zn≥0 is

|α| =
n∑
i=1

αi ∈ Z≥0.

There are multiple ways of using this to define monomial orderings, but we will
use the following:

Definition 3.6. The graded reverse lexicographic order, or grevlex order, is
denoted by >grevlex and is defined as follows: for α, β ∈ Zn≥0 we say α >grevlex β
if one of the following is satisfied

(i) |α| > |β| ∈ Z≥0.

(ii) |α| = |β| ∈ Z≥0 and the rightmost non-zero entry in α−β ∈ Zn is negative.

So this ordering priorities the largest total degrees first, and in the case of ties
it compares the monomials in a manner that is similar to the lexicographic
ordering. This idea might not seem very intuitive, but grevlex is an ordering
which is considered to be very efficient for the kind of computations we will be
doing [2].

It should also be noted that when using the canonical ordering of the variables,
grevlex prioritises the variables the same way as the lex ordering, so by default
we have x1 >grevlex x2 >grevlex . . . >grevlex xn.

Now that we have developed a method of ordering multivariate monomials, we
are ready to describe the division algorithm for k[x1, . . . , xn]:

Theorem 3.7. Let > be a monomial ordering on Zn≥0 and let F = {f1, . . . , fs}
be an ordered s-tuple of polynomials in k[x1, . . . , xn]. For any h ∈ k[x1, . . . , xn]
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we can write
h = q1f1 + q2f2 + . . .+ qsfs + r

for some q1, . . . , qs, r ∈ k[x1, . . . , xn] where either r = 0 or r is a k-linear
combination of monomials that are not divisible by any of LT(f1), . . . ,LT(fs).
And r is called the remainder of h on division by F .

The proof is essentially a more general form of the proof for Theorem 3.1, see
[2, Theorem 3, p. 64] for the full proof. The important thing for us here, is
Algorithm 2, which describes how to construct q1, . . . , qs, and r.

Algorithm 2 Division Algorithm for k[x1, . . . , xn]

1: Input: h, f1, . . . , fs
2: q1 ← 0, . . . , qs ← 0, r ← 0
3: p← h
4: while p 6= 0 do
5: i← 0
6: divisionoccured← False
7: while i ≤ s and divisionoccured = False do
8: if LT(fi) | LT(p) then
9: qi ← LT(p)/LT(fi)

10: p← p− (LT(p)/LT(fi))fi
11: divisionoccured← True
12: else
13: i← i+ 1
14: end if
15: end while
16: if divisionoccured = False then
17: r ← r + LT(p)
18: p← p− LT(p)
19: end if
20: end while
21: Output: q1, . . . , qs, r

We will use this algorithm similarly as in the one variable case. So given
h ∈ k[x1, . . . , xn] and an ideal (f1, . . . , fs) generated by polynomials fi ∈
k[x1, . . . , xn], we can use Algorithm 2 to write h = q1f1 + . . . + qsfs + r for
some q1, . . . , qs, r ∈ k[x1, . . . , xn]. Then if r = 0 we have that h ∈ (f1 . . . , fs).

However, there is an important difference between Theorem 3.1 and Theorem
3.7. In Theorem 3.1 we have that q and r are unique, while in Theorem 3.7 we
make no such claim for q1, . . . , qs, and r. This is because they are not unique,
and this actually raises a problem for us.

First off, we can find the reason why q1, . . . , qs and r are not unique by studying
Algorithm 2. Looking at lines 7− 15 we see that in each while loop, we try to
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perform a division by an fi. If the division does not happen then we increment
i and try again with fi+1. We do this until a division happens or we run out of
polynomials by which we want to divide.

The important thing here is that when we give the algorithms some polynomials
f1, . . . , fs by which we want to perform the division, we need to order the
polynomials and then the algorithm will use that order when testing if a division
can be performed in each loop. So if the intermediate polynomial p is divisible
by more than one fi, we will only perform the division by the fi that occurs
first according to the order we picked. This then affects what the qi and r we
get at the end look like.

The reason this becomes a problem for us is that it is possible to have a division
of h by some f1, . . . , fs which gives r = 0 with one ordering of the fi and r 6= 0
with a different ordering. For example, in example 3 from [2, p. 68] we have
that dividing h = xy2 − x by f1 = xy − 1 and f2 = y2 − 1 in that order gives
r = −x + y, while using the opposite order {f2, f1} gives r = 0. The fact that
we can get r = 0 means it is possible to write h = q1f1 + q2f2 and hence that
h ∈ (f1, f2). But if we only tried to check this using the order {f1, f2} we could
mistakenly believe that h /∈ (f1, f2). Clearly this is a big problem if we have
many fi and so many possible orders to consider.

So the next thing we want is a way to remedy this issue. If we can make
the algorithm produce a unique r for any ordering of the divisors, then we
would have solved how to determine if h ∈ (f1, . . . , fs). The solution will be to
reconsider which polynomials by which we do the division.

3.2 Gröbner bases

Recall that what we want is being able to compute h + I ∈ k[x1, . . . , xn]/I
where I = (f1, . . . , fs). Trying to write h = q1f1 + . . . , qsfs + r is certainly one
way of doing it, but we could also try to do it with a different set of generators
for I. This is exactly the key to making Algorithm 2 produce a unique r, so
we essentially want to find a good way of choosing generators for I. We first
introduce the following:

Definition 3.8. Let I ⊆ k[x1, . . . , xn] be a non-zero ideal, fix some monomial
ordering. The leading term set of I is defined as

LT(I) = {LT(f) | f ∈ I \ {0}}

and the leading term ideal of I is the ideal generated by the elements of LT(I),
denoted (LT(I)).

The leading term ideal (LT(I)) is a monomial ideal, which means it is generated
by monomials. It can also be shown that we can find finitely many polynomials
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g1, . . . , gt ∈ I such that (LT(I)) = (LT(g1), . . . ,LT(gt)) [2, p. 77]. Another
useful fact about monomial ideals is that a monomial xα is contained in a
monomial ideal I if and only if there is a monomial in I that divides xα [2, p.
70].

Definition 3.9. Fix a monomial ordering on k[x1, . . . , xn] and let I ⊆ k[x1, . . . , xn]
be a non-zero ideal. A finite subset G = {g1, . . . , gt} of I is called a Gröbner
basis, or standard basis, of I if

(LT(g1), . . . ,LT(gt)) = (LT(I)).

It can be shown that a Gröbner basis of an ideal is indeed a basis of the ideal,
and furthermore that any ideal in k[x1, . . . , xn] has a Gröbner basis [2, p. 78].

Proposition 3.10. Let I ⊆ k[x1, . . . , xn] be a non-zero ideal, let G = {g1, . . . , gt}
be a Gröbner basis of I, and let f ∈ k[x1, . . . , xn] be any polynomial. Then the
remainder r from dividing f by G is unique with respect to ordering the elements
in G.

Proof. The division algorithm allows us to write f = q1g1 + . . . + qtgt + r for
some qi ∈ k[x1, . . . , xn]. To simplify notation we let g = q1g1 + . . .+ qtgt so that
f = g+ r. Let g′ ∈ I and r′ ∈ k[x1, . . . , xn] be another pair of polynomials from
the division algorithm such that f = g+r = g′+r′. Then we have g′−g = r−r′.
Recall from Theorem 3.7 that either r = 0 or no term in r is divisible by any of
the LT(gi), and we have the same for r′.

Let r, r′ 6= 0 and suppose that r 6= r′, then we have r−r′ 6= 0 and since g, g′ ∈ I
we get r − r′ = g′ − g ∈ I = (LT(g1), . . . ,LT(gt)). Then any term in r − r′ is
divisible by some LT(gi), which contradicts that none of the terms in r and r′

are divisible by any LT(gi). So if r, r′ 6= 0 then we need to have r = r′.

If r 6= 0 and r′ = 0, then we get r = r− r′ = g′ − g ∈ I which again contradicts
that r is not divisible by any LT(gi). Similarly for r = 0, r′ 6= 0. Finally, if
r = r′ = 0 then we are directly done.

So finally with this result we are capable of computing f + I ∈ k[x1, . . . , xn]/I,
as for any non-zero ideal I ⊆ k[x1, . . . , xn], any Gröbner basis G of I, and any
polynomial f ∈ k[x1, . . . , xn], then f + I is just the remainder of f divided by
G. And in particular f ∈ I ⇐⇒ the remainder is 0.

Note that the proposition only claims the uniqueness of r, not of the qi. So by
permuting the gi in the division algorithm, we will get different values of the
qi. But this is not a problem for us, since the remainder is the important part
when computing f + I.

What we have determined so far is that when we have a Gröbner basis G of an
ideal I, then for any f ∈ k[x1, . . . , xn] we can compute f + I. But so far we
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have not explored how we can find a Gröbner basis of I in the first place, so we
will study that next.

First off we introduce some notation: When we divide a polynomial f by an
ordered s-tuple F = (f1, . . . , fs) then we will denote the remainder of this

division by f
F

. If F is a Gröbner basis of an ideal then we can just consider it
as a set, without any particular ordering.

Definition 3.11. Let f, g ∈ k[x1, . . . , xn] be any non-zero polynomials. If
multideg(f) = α = (α1, . . . , αn) and multideg(g) = β = (β1, . . . , βn), then we
let γ = (γ1, . . . , γn) where for each i we have γi = max{αi, βi}. Then the
S-polynomial of f and g is defined to be

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g.

Intuitively, we can think of the monomial xγ is the least common multiple of
the leading monomials of f and g.

The S-polynomial essentially combines f and g in a way that cancels out the
leading terms of f and g. It is useful because of the following:

Theorem 3.12 (Buchberger’s Criterion). Let I ⊆ k[x1, . . . , xn] be a non-zero
ideal and let G = {g1, . . . , gt} be a basis of I. Then G is a Gröbner basis of I if

and only if S(gi, gj)
G

= 0 for all pairs i 6= j.

This result is also called the S-polynomial criterion.

The proof can be found in [2, Theorem 6, p. 86], but a notable thing about the
proof is that it is non-constructive. So we can use this result to check whether a
basis is Gröbner or not, but to construct a Gröbner basis we will need to make
use of the following:

Theorem 3.13. Let I = (f1, . . . , fs) ⊆ k[x1, . . . , xn] be a non-zero ideal. Then
a Gröbner basis for I can be constructed using Algorithm 3 in a finite number
of steps.

Sketch of proof. Show that G ⊆ I at each stage of the algorithm, so initially and
after something is added to G. The output G at the end contains F and so is
a generating set for I. To show that the algorithm terminates, show that after
each loop we have (LT(G′)) ⊆ (LT(G)) with strict containment when G′ 6= G.
Then by going through the loop multiple times we get an ascending chain of
ideals in k[x1, . . . , xn]. And since k[x1, . . . , xn] is Noetherian, the chain stabilises
after finitely many steps, hence the algorithm terminates in a finite number of
steps.
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Algorithm 3 Buchberger’s Algorithm

1: Input: F = (f1, . . . , fs)
2: G ← F
3: do
4: G′ ← G
5: for all pairs p 6= q in G′ do

6: r ← S(p, q)
G′

7: if r 6= 0 then
8: G ← G ∪ {r}
9: end if

10: end for
11: while G 6= G′
12: Output: G = (g1, . . . , gt)

What essentially happens in this algorithm is that we have an ideal I and a
set of generators {f1, . . . , fs}, and we try Buchberger’s criterion on f1, . . . , fs.

It fails whenever a remainder S(fi, fj)
G′

is non-zero, and in that case we just
add that remainder to the generating set. At the end of the do...while loop
the algorithm checks whether we added anything to G or not. It breaks the
loop if we did not add anything to G, meaning the current generating set passes
Buchberger’s criterion and so is a Gröbner basis.

It should be noted that this version of the algorithm is not as efficient as it
could be. In particular, the do...while loop computes the remainder of all
pairs of elements in the generating set. But if the remainder of two elements is
zero in one iteration then it will still be zero in all the next iterations, so it is
actually redundant to check this again. So when one new element fj is added to
the generating set {f1, . . . , fj−1}, in the next iterations we only need to check

the remainders S(fi, fj)
G′

for i = 1, . . . , j − 1. There are improvements on the
algorithm that takes this into account, see for example Chapter 3, Section 10 in
[2], but for our purposes the version presented here is good enough.

Another thing to note is that this algorithm constructs a Gröbner basis which
may contain redundant elements. So the following may be useful:

Lemma 3.14. Let G be a Gröbner basis of an ideal I ⊆ k[x1, . . . , xn]. If p ∈ G
is a polynomial such that LT(p) ∈ (LT(G \ {p})), then (LT(G \ {p})) is also a
Gröbner basis of I.

Proof. By definition we have (LT(G)) = (LT(I)). And if LT(p) ∈ (LT(G \ {p}))
then (LT(G\{p})) = (LT(G)) = (LT(I)) and so by definition G\{p} is a Gröbner
basis of I.

A Gröbner basis such that for all p ∈ G we have LT(p) /∈ (LT(G \ {p})) and the
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coefficient of LT(p) is 1 is called a minimal Gröbner basis of I.

Minimal Gröbner bases are unfortunately not unique, but we can single out a
particular one with the following:

Definition 3.15. Let G be a Gröbner basis of an ideal I ⊆ k[x1, . . . , xn]. G is
called a reduced Gröbner basis of I if for all p ∈ G we have that the coefficient
of LT(p) is 1 and no monomial in p is contained in (LT(G \ {p})).

Theorem 3.16. Let I ⊆ k[x1, . . . , xn] be a non-zero ideal. Then for a given
monomial ordering, I has a unique reduced Gröbner basis.

See [2, Theorem 3, p. 93] for proof. It then follows from this theorem that two
ideals are equal if and only if their reduced Gröbner bases are equal. Similarly,
we can check if two sets of polynomials {f1, . . . , fs} and {g1, . . . , gt} generate
the same ideal by comparing their reduced Gröbner bases.

3.3 Quotients and localisations

So far in this chapter we have explored how to compute h+ I ∈ k[x1, . . . , xn]/I.
In other words we have focused on taking elements in k[x1, . . . , xn] and studying
how we turn them into elements of k[x1, . . . , xn]. But we will also need some
results about k[x1, . . . , xn]/I itself. In particular, we will see how we can find a
basis of k[x1, . . . , xn]/I and we will also look at localisations of k[x1, . . . , xn].

First off note that the commutative quotient ring k[x1, . . . , xn]/I is also a k-
vector space where the scalar multiplication comes from considering elements of
k as constant polynomials and multiplying as usual. Then it is easy to see that
k[x1, . . . , xn]/I is a k-algebra. But in particular, we have the following:

Theorem 3.17. Let I ⊆ k[x1, . . . , xn] be an ideal. Then

k[x1, . . . , xn]/I ∼= Spank{xα | xα /∈ (LT(I))}

where the isomorphism is as k-vector spaces.

Sketch of proof. The mapping

Φ: k[x1, . . . , xn]/I → Spank{xα | xα /∈ (LT(I))},

f + I 7→ f
G

can be shown to be a vector space isomorphism.

So then the monomials that are not in (LT(I)) form a basis of k[x1, . . . , xn]/I.
Specifically, a monomial xα ∈ k[x1, . . . , xn] is in a basis of k[x1, . . . , xn]/I if and
only if for each xβ ∈ (LT(I)) there exists an i ∈ {1, 2, . . . , n} such that αi < βi.
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Since we are now considering the structure of k[x1, . . . , xn]/I, the following will
also be important:

Theorem 3.18. Let I ⊆ k[x1, . . . , xn] be an ideal and fix a monomial ordering
on k[x1, . . . , xn]. Then k[x1, . . . , xn]/I is finite dimensional if and only if for
each i = 1, 2, . . . , n there exists some mi ≥ 0 such that xmi ∈ (LT(I)).

Proof. If for each i, we have xmi ∈ (LT(I)) for some mi ≥ 0, then any monomial
xα1xα2 · · ·xαn in the complement of (LT(I)) must be such that 0 ≤ αi ≤ mi−1.
Hence the number of elements in Spank{xα | xα /∈ (LT(I))}, and hence the
number of basis elements for k[x1, . . . , xn], is at most m1m2 · · ·mn <∞.

Conversely, if dimk k[x1, . . . , xn]/I = N <∞, and so the complement of (LT(I))
contains N elements, then for each i at least one of the N + 1 monomials
1, xi, x

2
i , . . . , x

N
n must lie in (LT(I)).

Later on we are primarily interested finite dimensional quotient rings, so this
theorem provides us with a useful restriction on which ideals we can consider.

Finally for this chapter, we consider localisations of k[x1, . . . , xn]/I. We first
describe the construction for a general commutative ring R with unity.

A subset S ⊆ R is a multiplicatively closed subset of R if 1 ∈ S and S is closed
under multiplication. We define a relation on R× S by

(a, s) ∼ (b, t) ⇐⇒ ∃u ∈ S such that (at− bs)u = 0.

One can easily show that this is an equivalence relation. We denote the equiv-
alence classes of this relation by a/s for a ∈ R and s ∈ S. The set of all such
equivalence classes is called the ring of fractions of A with respect to S and it
is denoted by S−1R. This set gets a ring structure by defining addition and
multiplication by

(a/s) + (b/t) = (at+ bs)/st

(a/s)(b/t) = ab/st.

It can be verified that these operations do not depend on the choice of repre-
sentatives for the equivalence classes and that S−1R is a commutative ring with
unity. See [1, Chapter 3] for more details.

Looking at the equivalence relation here, we can see a distinct similarity with
the Grothendieck construction described in section 2.5. Like the Grothendieck
construction, the construction described here is essentially a way of introducing
inverses to a ring. For example, using R = Z and S = Z\{0}, we get S−1R = Q.

And like the Grothendieck construction, the ring of fractions has a canonical
map with the universal property:
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Proposition 3.19. There is a canonical ring homomorphism

f : R→ S−1R, x 7→ x/1

which has the universal property, so if g : R → R′ is a ring homomorphism
such that for all s ∈ S we have that g(s) is a unit in R′, then there exists a
unique ring homomorphism h : S−1R→ R′ such that g = h◦f . So the following
diagram commutes:

R S−1R

R′

f

g
h

See [1, p. 37] for proof.

If p ⊆ R is a prime ideal, then S = R \ p is a multiplicatively closed set. This
allows us to define the following:

Definition 3.20. If p is a prime ideal of R and S = R \ p, then S−1R is called
the localisation of R at p and we denote it by Rp.

As the name suggest, Rp is a local ring, where the unique maximal ideal is the
ideal of Rp generated by p, more specifically S−1p = {a/s ∈ Rp | a ∈ p, s ∈ S}.

Intuitively, what happens when we localise R at p is that we introduce inverses
to all elements in S = R \ p. In other words, everything that is not in p now
has an inverse.

Consider now the polynomial ring k[x1, . . . , xn] and the ideal (x1, . . . , xn). This
ideal consists of all polynomials with constant term zero. Trying to make the
ideal larger requires us to introduce an element of k at which point the ideal
blows up to all of k[x1, . . . , xn]. So (x1, . . . , xn) is maximal and hence prime. So
in other words, we can localise at it, and it is exactly this ideal our localisations
later on will focus on. And intuitively, localising at (x1, . . . , xn) means that
polynomials with a non-zero constant term gets an inverse.

However, our localisations will not be of the polynomial ring k[x1, . . . , xn], but
rather the quotient ring k[x1, . . . , xn]/I for some ideal I. To make this process
easier, we will make use of the following:

Proposition 3.21. Let I be an ideal of the ring R, let S be a multiplicatively
closed subset of R, and let S denote the image of S in R/I. Then S−1I is an

ideal of S−1R and S−1R/S−1I ∼= S
−1

(R/I).

In other words, localisation and taking quotients commutes under ring isomor-
phism.
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Sketch of proof. S−1I being an ideal of S−1R is easily shown by using that I is
an ideal of R. Define a map

f : S−1R→ S
−1

(A/I), x/s 7→ x/s

and show that it induces a map

f : S−1R/S−1I → S
−1

(A/I), x/s 7→ x/s.

Then use the map
R→ S−1R/S−1I, x 7→ x/1

to argue that we get a map

g : S
−1

(R/I)→ S−1R/S−1I, x/s 7→ x/s

and then observe that f and g are inverses of each other.

See [7] for the whole proof.

So in our computations later we will use that(
k[x1, . . . , xn]

I

)
(x1,...,xn)

∼=
k[x1, . . . , xn](x1,...,xn)

I
,

but note that the I on the right is not quite the same as the I on the left. Write Ĩ
for the I on the right side. Ĩ is the ideal in the localisation k[x1, . . . , xn](x1,...,xn)

which is generated by I ⊆ k[x1, . . . , xn], so

Ĩ = {a/s ∈ k[x1, . . . , xn](x1,...,xn) | a ∈ I, s ∈ k[x1, . . . , xn] \ (x1, . . . , xn)}.

Intuitively, since the localisation k[x1, . . . , xn](x1,...,xn) can be understood as

k[x1, . . . , xn] with some additional inverse elements, Ĩ can be thought of as I
but in the localisation, so it must contain more elements to account for the
extra elements in k[x1, . . . , xn](x1,...,xn). Later on, we will drop the tilde in the
notation, but we will have to keep track of which ring we are working in at any
given time.
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Chapter 4

Kass and Wickelgren’s Method
and Properties of it

Finally, we have the background theory needed to study the algorithm. We
start this chapter with some definitions, then we present the method, and we go
on to explore various properties of the algorithm. We continue by investigating
which forms we can attain with the method in the case of finite fields, and finish
with a few words about further questions regarding the method.

4.1 Definitions

Throughout this chapter we are considering polynomial functions f : Ank → Ank .
By Ank we mean the polynomial ring k[x1, . . . , xn] with the Zariski topology.

Definition 4.1. Let f = (f1, . . . , fn) : Ank → Ank be a polynomial function, with
component functions f1, . . . , fn ∈ k[x1, . . . , xn]. The local algebra of f at 0 is
the k-algebra

Q0(f) =

(
k[x1, . . . , xn]

(f1, . . . , fn)

)
(x1,...,xn)

where (f1, . . . , fn) is the ideal in k[x1, . . . , xn] generated by the fi.

The 0 in the subscript of Q0(f) is due to the fact that we can more generally
define the local algebra Qx(f) at any closed point x ∈ Ank . Several of the
other definitions in this section can also be extended to the general case Qx(f).
But since we are only considering the local algebra at the origin here, we may
simplify the notation by writing Q := Q0(f) and will use a similar convention
with other definitions in this section as well.
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Note that Kass and Wickelgren define Q as

k[x1, . . . , xn](x1,...,xn)

(f1, . . . , fn)

but we already know from Proposition 3.21 that this expression is isomorphic
to our definition. So since we will primarily work with Q by finding a basis for
it and Theorem 3.17 gives us a basis via an isomorphism, it is clear that the
two expressions for Q have the same basis up to isomorphism.

It should be noted, however, that Theorem 3.17 gives a basis of the quotient ring
without the localisation. When we are searching for a basis and the localisation
is included, it is not necessarily obvious that Theorem 3.17 still applies. It turns
out it does still apply, but the proof is a bit lengthy. So we save it for a bit
later, in order to get to the algorithm first.

Definition 4.2. Let f : Ank → Ank be a polynomial function with a zero at the
origin. We say that the zero at 0 is isolated if the algebra Q has finite length.

Recall that the length of a finite chain of subspaces of Q of the form

0 = V0 ( V1 ( . . . ( Vn = Q

is n, and the length of Q is the maximum length among all such chains. If no
such finite chain exists then Q has infinite length.

Note that if Q is not finitely generated and we try to build a chain

Spank{v1} ( Spank{v1, v2} ( . . .

then we could never terminate the chain with Spank{v1, . . . , vn} = Q for finitely
many elements vi, and so there are no finite chains of the above form. Hence if Q
has finite length, then it must also be finitely generated and finite dimensional.
And if Q is finite dimensional with basis {v1, . . . , vn}, then a maximal length
chain is given by

0 ( Spank{v1, } ( Spank{v1, v2} ( . . . Spank{v1, . . . , vn} = Q.

Hence Q has finite length if and only if it is finite dimensional. Since we are
only considering polynomial functions with an isolated zero at 0, this guarantees
that we are always working with a finite dimensional space and a finite basis.

Definition 4.3. Let f = (f1, . . . , fn) : Ank → Ank be a polynomial function. The
distinguished socle element at the origin is

E = E0(f) := det(ai,j) ∈ Q

where the ai,j ∈ k[x1, . . . , xn] are polynomials such that for each i = 1, . . . , n
we have

fi(x) =

n∑
j=1

ai,jxj
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As the name implies, E is contained in the socle of Q and Lemma 4 in [4] tells
us that E generates the socle when f has an isolated zero at the origin.

From the definition it is not very obvious that E is actually unique, since there
can be multiple valid ways to write fi =

∑
aijxj . However, we are considering

E as an element of Q, and so a Gröbner basis division might be necessary to
write E in terms of a basis of Q, and then it is unique.

Next up, if we have a k-linear function φ : Q→ k, then

βφ : Q×Q→ k, βφ(a1, a2) = φ(a1 · a2)

defines a symmetric bilinear form on Q. And Lemma 6 in [4] shows that βφ is
non-degenerate if φ(E) 6= 0 and also that if φ1 and φ2 are two k-linear functions
such that φ1(E) = φ2(E) then βφ1

∼= βφ2
.

So once we know E, we can get an essentially unique bilinear form by just
defining φ so that φ(E) 6= 0. This motivates the final definition in this section:

Definition 4.4. The Eisenbud-Khimshiashvili-Levine class, or the ELK class,
of f is the Grothendieck-Witt class

w = w0(f) := [(Q, βφ)] ∈ GW(k)

where φ : Q→ k is any k-linear function such that φ(E) = 1.

So for any f : Ank → Ank with an isolated zero at the origin, the resulting element
w ∈ GW(k) is unique. In particular, since any valid choice of φ will do, we have
a lot of freedom when deciding how to define φ. Since φ is going to be k-
linear, it is enough to define φ on the elements of a basis of Q. And since we
need φ(E) = 1, it is only the basis elements that occur in E that give us any
restrictions on what φ can be. Any basis elements that do not occur in E can
be defined to be anything, and to make the computations as simple as possible
we will favour having φ evaluate to 0 on as many basis elements as possible.

Immediately, there is an interesting observation we can make here. Kass and
Wickelgren note that the socle is the annihilator of (x1, . . . , xn) ⊆ Q [4, Remark
2]. They further note that when f has an isolated zero at the origin, E generates
the socle [4, Lemma 4]. So in our computations we always have that the socle
of Q is the ideal (E) = E · Q. In particular, this means that for all i we have
E · xi = 0 in Q, which means E · xi ∈ (f1, . . . , fn) ⊆ k[x1, . . . , xn](x1,...,xn).

Now, if E ∈ Q has a non-zero constant term, then it is a unit in Q and then for
all i,

E · xi = 0 ∈ Q =⇒ xi = 0 ∈ Q.

This means that (x1, . . . , xn) ⊆ (f1, . . . , fn) in k[x1, . . . , xn](x1,...,xn). And
since (x1, . . . , xn) is a maximal ideal, we get (x1, . . . , xn) = (f1, . . . , fn) in
k[x1, . . . , xn](x1,...,xn). The result is that Q is one-dimensional.
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Now, using contrapositive, we get that if dimkQ ≥ 2 then E must have constant
term 0. So whenever the dimension of Q is at least 2, we are always free to map
the basis element 1 to anything we want.

4.2 The method for computing the ELK class

Since the aim of the algorithm is to start with a polynomial f : Ank → Ank that
has an isolated zero at 0 and end up with an element in GW(k), the definitions
in the previous section actually provide a pretty good intuition for what should
happen in the algorithm.

The method is as follows:

Computing the ELK class

Input: a polynomial f : Ank → Ank with an isolated zero at the origin:

(i) Compute a Gröbner basis for the ideal I = (f1, . . . , fn)

(ii) Compute a k-basis B = {b1, . . . , bt} for the vector space Q

(iii) Compute E ∈ Q and express it in terms of the k-basis

(iv) Explicitly define a k-linear function φ : Q→ k such that φ(E) = 1

(v) For each pair bi, bj ∈ B, express bi · bj in terms of the k-basis, and
then evaluate φ(bi · bj)

(vi) Construct the matrix
φ(b1 · b1) · · · φ(b1 · bt)

...
. . .

...

φ(bt · b1) · · · φ(bt · bt)


and use operations that respect isometry to bring it to a diagonal
form 〈a1, . . . , at〉

Output: an element w = 〈a1, . . . , at〉 ∈ GW(k)

A useful thing we can notice immediately is that dimk(Q) = dimk(w). Because,
for example, if are trying to find a polynomial such that a given form has a
certain dimension, then Q must have the same dimension. This gives us a
restriction on what the polynomial can be.

Note also that to construct the matrix at the end, we need to choose an ordering
on the basis of Q. But since we are working with isometry classes, we can use
simultaneous row and column operations. Then by using swapping of rows, we
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get that any ordering on the basis produces the same isometry class. Hence we
can just choose whatever ordering on the basis that we want.

We now return to a point that we touched upon in the previous section, namely
the issue of whether we can apply Theorem 3.17 to find a basis of Q, since there
is a localisation involved. The solution turns out to be the following:

Theorem 4.5. Let f = (f1, . . . , fn) : Ank → Ank be a polyomial with an isolated
zero at the origin. Then there is an ideal (f1, . . . , fn) ⊆ J ⊆ k[x1, . . . , xn] such
that (

k[x1, . . . , xn]

(f1, . . . , fn)

)
(x1,...,xn)

∼=
k[x1, . . . , xn]

J
.

Proof. If k[x1, . . . , xn]/(f1, . . . , fn) is a local ring, then just set J = (f1, . . . , fn).
So suppose k[x1, . . . , xn]/(f1, . . . , fn) is not local. Since f has an isolated zero
at the origin, we know that Q = (k[x1, . . . , xn/(f1, . . . , xn))(x1,...,xn)

is finite
dimensional. And since(

k[x1, . . . , xn]

(f1, . . . , fn)

)
(x1,...,xn)

∼=
k[x1, . . . , xn](x1,...,xn)

(f1, . . . , fn)

we have that the RHS is also finite dimensional.

Using the finite dimensionality, we have that for each i ∈ {1, . . . , n} there must
exist a large enough N such that {xi, x2i , . . . , xNi } is a linearly dependent set in
k[x1, . . . , xn](x1,...,xn)/(f1, . . . , fn). So there are some a1, a2, . . . , aN ∈ k, not all
zero, such that

a1xi + a2x
2
i + . . .+ aNx

N
i = 0 in

k[x1, . . . , xn](x1,...,xn)

(f1, . . . , fn)

=⇒ a1xi + a2x
2
i + . . .+ aNx

N
i ∈ (f1, . . . , fn) ⊆ k[x1, . . . , xn](x1,...,xn).

Since not all of the coefficients are zero, there is a smallest m such that am 6= 0.
Then write

amx
m
i + am+1x

m+1
i + . . .+ aNx

N
i = xmi (am + am+1xi + . . .+ aNx

N−m
i )

and since am 6= 0, we have that am + am+1xi + . . .+ aNx
N−m
i is a polynomial

with a non-zero constant term. This means it is not in the ideal (x1, . . . , xn)
and so it has an inverse in the localisation k[x1, . . . , xn](x1,...,xn). Multipliying
by this inverse we hence get that

xmi ∈ (f1, . . . , fn) ⊆ k[x1, . . . , xn](x1,...,xn).

Doing this for all i ∈ {1, . . . , n}, we get integers m1, . . . ,mn > 0 such that

xm1
1 , xm2

2 , . . . , xmnn ∈ (f1, . . . , fn) ⊆ k[x1, . . . , xn](x1,...,xn)

37



and then we have(
k[x1, . . . , xn]

(f1, . . . , fn)

)
(x1,...,xn)

∼=
k[x1, . . . , xn](x1,...,xn)

(f1, . . . , fn)

=
k[x1, . . . , xn](x1,...,xn)

(f1, . . . , fn, x
m1
1 , . . . , xmnn )

∼=
(

k[x1, . . . , xn]

(f1, . . . , fn, x
m1
1 , . . . , xmnn )

)
(x1,...,xn)

and if now k[x1, . . . , xn]/(f1, . . . , fn, x
m1
1 , . . . , xmnn ) is a local ring, then we are

done by setting J = (f1, . . . , fn, x
m1
1 , . . . , xmnn ).

To simplify notation, write

R =
k[x1, . . . , xn]

(f1, . . . , fn, x
m1
1 , . . . , xmnn )

and we now want to show that R is local. Note first that (x1, . . . , xn) is a
maximal ideal of k[x1, . . . , xn] and it contains (f1, . . . , fn, x

m1
1 , . . . , xmnn ). So

(x1, . . . , xn) is also a maximal ideal of R.

Now let m be any maximal ideal of R, so it is also maximal in k[x1, . . . , xn]
and it contains (f1, . . . , fn, x

m1
1 , . . . , xmnn ). In particular, we have xm1

1 ∈ m and
since maximal ideals are also prime ideals, we get x1 ∈ m. We similiarly get
x2, . . . , xn ∈ m, and so (x1, . . . , xn) ⊆ m. But since (x1, . . . , xn) is maximal we
must have m = (x1, . . . , xn). Hence (x1, . . . , xn) is the only maximal ideal in R,
so R is local.

So Q is always isomorphic to a quotient ring without localisation, and so we can
apply any of our techniques about polynomial quotient rings to Q, in particular
finding a basis.

As for how we find the mi, it is beneficial first to compute a Gröbner ba-
sis G of (f1, . . . , fn) ⊆ k[x1, . . . , xn], meaning we do this before going through
the isomorphism to (f1, . . . , fn) ⊆ k[x1, . . . , xn](x1,...,xn). Since Q is finite di-
mensional, we know that for each i, there is an integer mi ≥ 0 such that
xmii = LT(g) for some g ∈ G. Then when we use the isomorphism, we get
xmii ∈ (f1, . . . , fn) ⊆ k[x1, . . . , xn](x1,...,xn).

But unfortunately, this is not a complete answer. Because even though we
may have xm1

i ∈ (f1, . . . , fn) ⊆ k[x1, . . . , xn], there are cases where we can find

m′i < mi such that x
m′
i

i ∈ (f1, . . . , fn) ⊆ k[x1, . . . , xn](x1,...,xn). If we just went
with mi, we would end up with the wrong dimension of Q.

This can happen if there is a polynomial in (f1, . . . , fn) that has a polynomial
with non-zero constant term as a factor. For example,

x51 + x31 = x31(x21 + 1)
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and in the localisation, x21 + 1 is a unit. So if x51 + x31 ∈ (f1, . . . , fn) then we
would get x31 ∈ (f1, . . . , xn) and this would not necessarily be visible in the
Gröbner basis that was computed earlier.

Unfortunately, we do not currently have a general technique for ensuring that
we find the minimal mi. But if we do end up with a basis of Q that is too large,
then what seems to happen is that the bilinear form at the end is degenerate.
So at least that should give a clue that there is a bit more work to be done in
finding the correct basis. And the mi we get from the Gröbner basis do give a
baseline to work with, as we could play around with the ideal to see if we are
able to find smaller values of mi.

4.3 Properties of the method

Now we are ready to explore the algorithm and identify some properties. First,
one thing we can ask is if there are some general types of polynomials f : Ank →
Ank for which the computation of w follows a predictable pattern. We start with
one example that builds off our observations from Section 4.1 about the element
E ∈ Q:

Lemma 4.6. Let f = (f1, . . . , fn) : Ank → Ank be so that f(0) = 0 and so that
for each i we have that fi ∈ k[x1, . . . , xn] is a polynomial only in xi,

fi = ai,mix
mi
i + ai,mi−1x

mi−1
i + . . .+ ai,1xi.

Then Q is 1-dimensional and

w = 〈
n∏
i=1

ai,1〉

Proof. Without even getting into Gröbner bases, we can immediately see that
for each i we can write

fi = (ai,mix
mi−1
i + ai,mi−1x

mi−2
i + . . .+ ai,1) · xi = bixi

so then we get

E = det


b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn


=

n∏
i=1

(ai,mix
mi−1
i + ai,mi−1x

mi−2
i + . . .+ ai,1).

39



and when we expand the product one of the terms is a :=
∏n
i=1 ai,1 which is a

non-zero constant. So then Q is 1-dimensional and E reduces to E = a. Then
define φ : Q→ k by 1 7→ 1/a. Then

w = 〈φ(1 · 1)〉 = 〈φ(1)〉 = 〈1/a〉 ∼= 〈a〉 = 〈
n∏
i=1

ai,1〉.

Lemma 4.7. Fix a monomial ordering. If f = (f1, . . . , fn) : Ank → Ank is such
that

• f has an isolated zero at the origin

• {f1, . . . , fn} is a Gröbner basis of the ideal (f1, . . . , fn)

• for each i, we have xi | fi

• the localisation in Q is trivial

• LT(fi) = aix
mi
i

then write m =
∏n
i=1mi a =

∏n
i=1 ai,mi , and then

w =

{
m
2 H if m is even
m−1
2 H ⊥ 〈a〉 if m is odd

Proof. We have

Q ∼=
k[x1, . . . , xn]

(f1, . . . , fn)
∼= Spank{xα | xα /∈ (LT(f1, . . . , fn)}
= Spank{xα | xα /∈ (xm1

1 , . . . , xmnn )}
= Spank{xα | α = (α1, . . . , αn) where αi < mi for all i = 1, . . . , n}

and note that dimkQ =
∏n
i=1mi = m <∞. Since xi | fi for all i we can write

fi = (ai,mix
mi−1
i + . . .) · xi. So then we get

E = det


(a1,m1x

m1−1
1 + . . .) 0 · · · 0

0 (a2,m2
xm2−1
2 + . . .) · · · 0

...
...

. . .
...

0 0 · · · (an,mnx
mn−1
n + . . .)


=

n∏
i=1

(ai,mix
mi−1
i + . . .) =

n∏
i=1

ai,mix
mi−1
i + [lower terms]
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So this is a polynomial in Q with leading term

n∏
i=1

ai,mix
mi−1
i =

n∏
i=1

ai,mi

n∏
i=1

xmi−1i = a · xm1−1
1 xm2−1

2 · · ·xmn−1n .

We define a k-linear function φ : Q→ k by

φ(xα) =

{
1
a if α = (m1 − 1,m2 − 1, . . . ,mn − 1)

0 otherwise

and if we choose to order the basis of Q so that xm1−1
1 xm2−1

2 · · ·xmn−1n is last,
the resulting m×m matrix corresponding to w is of the form

0 1/a

. .
.

1/a 0


If m is even then by using simultaenous row and column operations and our
knowledge about H, we get

0 1/a

. .
.

1/a

1/a

. .
.

1/a 0


∼=



2/a 0
. . .

2/a

−1/2a
. . .

0 −1/2a


= 〈2/a, . . . , 2/a,−1/2a, . . . ,−1/2a〉
∼= 〈2a, . . . , 2a,−2a, . . . ,−2a〉
∼=
m

2
H

If m is odd, then essentially the same operations will work, except for the fact
that there is a term in the (m+1

2 , m+1
2 )-th entry which will be unaffected while

the rest of the matrix is brought to diagonal form. We hence end up with

〈2/a, . . . , 2/a, 1/a,−1/2a, . . . ,−1/2a〉 ∼= 〈2a, . . . , 2a, a,−2a, . . . ,−2a〉
∼= 〈2a, . . . , 2a,−2a, . . . ,−2a, a〉
∼= 〈2a, . . . , 2a,−2a, . . . ,−2a〉 ⊥ 〈a〉

∼=
m− 1

2
H ⊥ 〈a〉
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Singularity g grad(g)

An, n odd x21 + xn+1
2 (2x1, (n+ 1)xn2 )

An, n even x21 + xn+1
2 (2x1, (n+ 1)xn2 )

E6 x31 + x42 (3x21, 4x32)

E8 x31 + x52 (3x21, 5x42)

Singularity Gröbner basis w

An, n odd x1, x
4
2

n−1
2 H ⊥ 〈2(n+ 1)〉

An, n even x1, x
4
2

n
2H

E6 x21, x
3
2 3H

E8 x21, x
4
2 4H

Table 4.1: Some of the computations from [4]

This case may sound awfully specific, but interestingly this lemma actually
covers several of the examples that Kass and Wickelgren did. In [4], they ran
the algorithm with f = grad(g) where g is a polynomial equation of the ADE
singularities. Specifically, the results for An, E6, and E8 matches the description
in this lemma. Table 4.1 shows some of the details from those computations.

We also have the following, which is a kind of variation on Lemma 4.7:

Lemma 4.8. Suppose k[x1, . . . , xn] has the lexicographic ordering, and
f = (f1, . . . , fn) : Ank → Ank is so that

• f has an isolated zero at the origin

• {f1, . . . , fn} is a Gröbner basis of the ideal (f1, . . . , fn)

• the localisation in Q is trivial

• LT(fi) = aix
mi
i

then we get

w =

{
m
2 H if m is even
m−1
2 H ⊥ 〈a〉 if m is odd

where m =
∏n
i=1mi and a =

∏n
i=1 ai.

Proof. This proof is very similar to the previous one. The only significant
difference is the computation of E. For each i, we have

fi = aix
mi
i + [lower terms]

and recall that with the lex ordering, a variable completely dominates term
that only contain ”smaller” variables. Because of this, the assumption that
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LT(fi) = aix
mi
i means that fi can not contain any terms with any variables xj

such that j < i. This means that when we compute E, we get

E = det


(a1,m1

xm1−1
1 + . . .) • · · · •

0 (a2,m2
xm2−1
2 + . . .) · · · •

...
...

. . .
...

0 0 · · · (an,mnx
mn−1
n + . . .)


where it does not matter what is in the entries over the diagonal. This E
evaluates to essentially the same expression as in Lemma 4.7. The leading term
is a · xm1−1

1 xm2−1
2 · · ·xmn−1n where a =

∏n
i=1 ai. The rest of the proof is exactly

like Lemma 4.7.

Up until now in this section we considered a few somewhat general polynomials
and computed their associated bilinear forms generally. It seems likely that
there could exist other generalisations for some choices of f .

But now we are interested in trying to go the other way. Namely if we start
with a bilinear form, can we find a polynomial f so that applying the method to
f yields the given bilinear form? Or more generally, which elements in GW(k)
can we attain with the method by choosing f well?

This actually depends on the field k, and if k algebraically closed, this is easy:

Theorem 4.9. Let k be algebraically closed. Then there is one isometry class
of dimension n in GW(k), and we can attain this form with f = xn.

Proof. Every non-zero element in k is a square, so for all ai ∈ k× we have
〈a1, . . . , an〉 ∼= 〈1, . . . , 1〉 ∼= n〈1〉. So to attain this form, we just need any
function that produces an n-dimensional form. It is easy to verify that f = xn

accomplishes this.

If k is not algebraically closed, then this problem immediately becomes much
more complicated. For example, for k = R, a non-zero number is either a
positive square a2 or a negative square −a2. For 1-dimensional forms this is
okay, as f = x yields 〈1〉 and f = −x yields 〈−1〉. But for dimensions higher
than 1, we have 〈a1, . . . , an〉 ∼= p〈1〉 ⊥ q〈−1〉 for some integers 0 ≤ p, q ≤ n such
that p+ q = n. Note that if, say, p < q, then p〈1〉 ⊥ q〈−1〉 ∼= pH ⊥ (q− p)〈−1〉.

Over an algebraically closed field, we had H ∼= 〈1, 1〉. The moment k is not
algebraically closed, H does not vanish quite as easily. As a matter of fact, for
dimensions ≥ 2 we will always end up with at least one hyperbolic plane:

Theorem 4.10. If dimk(Q) ≥ 2, then w has H as an orthogonal summand.
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Proof. Recall from Theorem 2.24, that if w is isotropic, then it has H as an
orthogonal summand. So we only need to show that there is a non-zero element
a ∈ Q such that w(a, a) = 0.

Pick 1 as a basis element and write Q ∼= Spank{1, b2, . . . , bn}. We have

E = a1 · 1 + a2b2 + . . .+ anbn ∈ Q

for some ai ∈ k. We earlier saw that a1 6= 0 implies that Q is 1-dimensional,
but we have assumed that dimk(Q) ≥ 2, and so we must have a1 = 0. The basis
element 1 does not appear in E and so when we define φ : Q→ k, we can define
φ(1) to be whatever we want. Let φ(1) = 0. Then

w(1, 1) = φ(1 · 1) = φ(1) = 0

hence w is isotropic.

So in any field, if the dimension of Q is at least 2, then we have at least one
hyperbolic plane in w. Interestingly, when dimk(Q) = 2 this theorem essentially
tells us that we can only get H. So any 2-dimensional form that is not isometric
to H is unattainable.

But even with this result, determining more information about the attainability
of forms over fields that are not algebraically closed is still a big task. For k = R,
this theorem really only tells us that the restriction on p and q has changed from
0 ≤ p, q ≤ n to 1 ≤ p, q ≤ n. If we want a more complete answer we need a
better overview of forms over k.

4.4 Finite fields Fq

When k = Fq is a finite field, we have some results that can help us work out
which of the bilinear forms can occur. Therefore, we are now going to determine
completely which isometry classes of bilinear forms over Fq are attainable. We
will also provide examples of polynomials that produce each of the forms when
we run the algorithm on them.

Before we start, there are a couple of things to mention. First off, we are now
considering k = Fq where q = pm and p is a prime number. But since we, as
always, are not considering fields of characteristic 2, p will always be an odd
prime.

The other thing to mention is that this section originally started out merely as
a study of F3, with the hope of learning as much as we could about how the
algorithm behaves here. But while working through the dimensions, we observed
that the arguments and the polynomials were applicable more generally. Hence
this section became what it is now.
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Now, the first result that will help us is Lemma 2.31, which states that F×q /(F×q )2

consists of 2 elements, which we will denote by 1 and ε. Recall also that for
any bilinear forms over a field, the discriminant of the form is an element of the
field’s group of square classes. So for any form over Fq, its discriminant is either
1 or ε.

We are also going to make use of Theorem 2.32, which tells us a few things.
The first part of the theorem says that any bilinear space over Fq of dimension
≥ 3 is isotropic. This is exactly what Theorem 4.10 tells us for a general field
k, so this confirms that from dimension 2 and onwards we will always expect to
see H.

Theorem 2.32 also states that two bilinear forms over Fq are isometric if and
only if they have the same dimension and the same discriminant. And the last
part of the theorem says that there are precisely two isometry classes of regular
n-dimensional bilinear spaces over Fq. These two points essentially gives us
a strategy to follow in our computations. Namely that we will consider one
dimension at a time, and in each dimension we are looking for two isometry
classes.

If we fix the dimension, then two bilinear forms are isometric if and only if they
have the same discriminant. So since we have two possible values for the discrim-
inant, this is where we get that there are two isometry classes per dimension.
In other words, in each dimension there is one isometry class corresponding to
the discriminant 1 and one class corresponding to ε.

Now we are ready to do the computations. Let n = dimk w.

n = 1: f = ax ∈ Fq[x] yields 〈a〉 so choosing a = 1 or a = ε we can get either
class. Note that this polynomial works over any field, as no matter how many
isometry classes there are you can just choose a appropriately to get each of
them.

n = 2: We have already shown that any 2-dimensional bilinear form acquired
through the algorithm must have H as summand. Then as 〈1, 1〉 � 〈1, ε〉, it is
not possible to obtain 〈1, 1〉 through the algorithm. On the other hand, this also
means that any polynomial will result in 〈1, ε〉 ∼= H. But to provide an explicit
example, f = x2 ∈ Fq[x] gets the job done.

n = 3: Take f = ax3 ∈ Fq[x] and then since there is no need to search for
Gröbner bases when there is only one variable, we get immediately that Q ∼=
Spank{1, x, x2} and E = ax2. So we define

φ : Q→ Fq, φ(xs) =

{
1/a s = 2

0 otherwise
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Then we get

w =

 0 1/a

1/a

1/a 0

 ∼= 〈2/a, 1/a,−1/2a〉 ∼= 〈2a,−2a, a〉 ∼= H ⊥ 〈a〉

and as expected we get a hyperbolic plane here. Like the n = 1 case, we get
the isometry classes by choosing a = 1 or a = ε. Note, however, that a = 1
makes the resulting isometry class have discriminant ε and a = ε gives the class
discriminant 1.

n = 4: Let f = (xy, x2 + by2) ∈ Fq[x, y]. With respect to the lexicographic
ordering, a Gröbner basis of (xy, x2 + by2) is given by {xy, x2 + by2, y3}. Then
we get Q ∼= Spank{1, y, y2, x} and

E = det

[
y 0

x by

]
= by2.

So define φ : Q → Fq by letting φ(y2) = 1/b and by letting φ evaluate to 0 on
the other basis elements. Note that φ(x2) = φ(−by2) = −bφ(y2) = −b 1b = −1.
Then we get

w =


0 0 1/b 0

0 1/b 0 0

1/b 0 0 0

0 0 0 −1

 ∼= 〈2/b, 1/b,−1/2b,−1〉

∼= 〈2b,−2b,−1, b〉
∼= H ⊥ 〈−1, b〉.

In this case we get discriminant 1 by setting b = 1 and we get ε by setting b = ε.

As we will see next, the computations for n = 3 and n = 4 can actually be
generalised, so with just two more computations we can cover all the remaining
dimensions.

n ≥ 3 odd: We want to extend the computation from n = 3 so that it works for
all odd numbers≥ 3. So let f = axn ∈ k[x]. We getQ ∼= Spank{1, x, x2 . . . , xn−1}
and E = axn−1, so define

φ : Q→ F3, φ(xs) =

{
1/a s = n− 1

0 otherwise
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and then we get

w =


0 1/a

. .
.

1/a 0

 ∼= 〈2/a, . . . , 2/a, 1/a,−1/2a, . . . ,−1/2a〉

∼= 〈2a, . . . , 2a,−2a, . . . ,−2a, a〉

∼=
n− 1

2
H ⊥ 〈a〉

and once again a = 1 and a = ε produce each of the isometry classes. Which
discriminant the forms have, though, depends on n. If n−1

2 is even, then a = 1
gives the form discriminant 1 and a = ε gives discriminant ε. If n−1

2 is odd,
then it is just the other way around.

n ≥ 4 even: Similarly to the previous case, we want to use a more general version
of the n = 4 case, so let f = (xy, x2 + byn−2). Again using the lexicographic
ordering, we get that a Gröbner basis of (xy, x2 + byn−2) is given by {xy, x2 +
byn−2, yn−1}. Then Q ∼= Spank{1, y, y2, . . . , yn−2, x} and E = byn−2, so we
define

φ : Q→ Fq, φ(x) = 0 and φ(ys) =

{
1/b s = n− 2

0 otherwise

and then we get

w =


0 · · · 1/b 0
... . .

.
. .
. ...

1/b . .
.

0 0

0 · · · 0 −1

 ∼= 〈2/b, . . . , 2/b, 1/b,−1/2b, . . . ,−1/2b,−1〉

∼= 〈2b, . . . , 2b,−2b, . . . ,−2b,−1, b〉

∼=
n− 2

2
H ⊥ 〈−1, b〉

and once again choosing b = 1 or b = ε produces the isometry classes. If n−2
2 is

even, then b = 1 gives discriminant ε and b = ε gives discriminant 1. If n−2
2 is

odd, then it is the other way around.

And with that we now have an overview over which isometry classes over Fq
can be attained using the algorithm, and we also have some polynomials that
produce each class. Table 4.2 demonstrates the first ten dimensions of this with
the polynomials written out explicitly.

We have investigated the attainability of the isometry classes of bilinear forms
over Fk using the algorithm. But we could also ask about attainability of just
the bilinear forms directly. For example, in dimension 1 we used ax to get the
form 〈a〉. We only needed a = 1 and a = ε above to know that both isometry
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dimk(w) 1 ε dimk(w) 1 ε

1 x εx 2 n/a x2

3 εx3 x3 4 (xy, x2 + y2) (xy, x2 + εy2)

5 x5 εx5 6 (xy, x2 + εy4) (xy, x2 + y4)

7 εx7 x7 8 (xy, x2 + y6) (xy, x2 + εy6)

9 x9 εx9 10 (xy, x2 + εy8) (xy, x2 + y8)

Table 4.2: Table of polynomials that produce forms of discriminant 1 and ε

classes are covered. But since we can just choose any non-zero value of a ∈ Fq,
we can explicitly get every 1-dimensional form over Fq via choices of a.

Since a bilinear form over Fq will be contained in one of the two isometry classes,
we can naturally get the form by using a polynomial that lands in the correct
isometry class and then just reach the form through isometry. But it still seems
like an interesting question to explore.

In dimension 2 there is not much to do. We know that we need a hyperbolic
space as an orthogonal summand, but in 2 dimensions we do not have room for
anything else after that. So this case is very much done.

For 3 dimensions we used ax3 to get H ⊥ 〈a〉. Now even though we are in
3 dimensions now, we must have the hyperbolic plane and it occupies two of
the coordinates. So we only have one slot to experiment with, and clearly this
functions just like the 1-dimensional case. Once again, making choices on a will
again allow us to get any form. More precicely, any form with H as a summand.

At a glance, it might seem like we are in trouble in 4 dimensions. We used
(xy, x2 + by2) to get H ⊥ 〈−1, b〉. A hyperbolic plane will occupy two of the
entries, but that should leave us with two entries that we would want to be
free to explore. So currently, the −1 seems like a bit of an obstruction to
this. Fortunately, we only need to do a slight modification in this case. If we
instead use f = (xy, ax2 + by2), then a similar calculation as earlier will yield
H ⊥ 〈−a, b〉. Then we are once again free to put in any non-zero field elements
that we want so we can get any form here.

In dimensions 5 and higher, however, we really are in trouble. The computation
in dimension 5 will give us 2H ⊥ 〈a〉. As before, the last entry a can be anything
non-zero and we know that we must have a copy of H. But currently we have
two hyperbolic planes, and we do not know if we can get rid of one of them
by choosing a polynomial in a clever way and then doing the algorithm with it.
So we do not know if we are able to free up two of the entries, and so we are
presently not able to say if any 5-dimensional form (with one H as summand)
can be realised directly from the choice of polynomial. This problem clearly
extends to dimensions higher than 5, too.
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Instead, we finish this section with a different observation. In our computations
in odd dimensions we used the polynomial axn and we ended up with as many
copies of H as we can fit in the form, and the last entry was determined by
a. If we also use the method on axn in even dimensions we get only copies of
H. So interestingly, axn will fill up the associated bilinear form with as many
hyperbolic planes as we are allowed. So while the above discussion, in a way,
explored how to free up as many entries as possible, it is also neat to know that
we are also able to go the other way and occupy as much space as possible.

4.5 Further questions

This thesis has really explored quite a few different things surrounding Kass
and Wickelgren’s method. But it is only natural that there are still things to
explore. We mention just a few of them here.

In the previous section we looked a bit at which bilinear forms we can achieve
directly through the method by choosing the polynomial wisely, and we already
covered dimensions 1-4. As we also explained there, from dimension 5 and
onwards we do not yet have complete answers. This is naturally something
that can be explored in the future. We can note that here we primarily stuck
with polynomials in one or two variables. It is certainly possible that there are
more answers in polynomial rings of more than two variables. This also risks
the computations becoming much more complicated, but it might be what is
necessary to get somewhere.

A bit related to this, we could also ask if there are more results about the pres-
ence of hyperbolic planes in bilinear forms produced by the algorithm. We have
determined that we always get at least one copy ofH when we use the algorithm.
But are there, for example, situations where the number of hyperbolic planes
in a form is strictly larger than 1? Recall also that when we proved that H is
always an orthogonal summand, we did this by finding an isotropic vector in Q.
Maybe exploring isotropic vectors a bit more could yield interesting results.

We also mentioned in the previous section how axn fills up a form with as
many copies of H as the bilinear form can contain. There could very well be
other polynomials with some interesting behaviour like that. Considering how
ubiquitous the hyperbolic plane has been here it would be interesting to have
more results on it.

Finally, recall that in Theorem 4.5 we wanted to find integers mi so that
xmii ∈ (f1, . . . , fn). After the proof, we discussed some potential hurdles in
trying to find the minimal values of mi. It is fair to say that it would be very
nice to determine an algorithm or criterion or something that would make that
computation easier.
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