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Abstract— The ModHVDC generator is particularly lucrative
for offshore wind power as it reduces the need of several grid
components while also improving availability. This solution
uses physical modularity, where air gaps divide the stator
into separate modules. This could present new challenges
concerning altered magnetic performance and loss of rigidity
in the structure. The goal of this thesis is to identify losses and
radial vibration in a previously designed ModHVDC machine
and compare it to its non-modular equivalent. This has been
done through finite element modelling in COMSOL.

Losses in the electrical steel, magnets and copper were
estimated. Together these amounted to 259.8 kW at full load
in the modular machine, and copper losses was the main
contributor with 224.7 kW. Modularity was found to increase
steel losses by 22% at full load and 31.5% at no load, while
having negligible effect on magnet losses. Magnet segmentation
was employed, reducing magnet losses by 96% at full load in
the modular machine, from 281 kW to 10 kW.

To evaluate vibration, a harmonic analysis of air gap radial
forces was combined with a mechanical analysis. The amplitude
of the radial force harmonics were estimated to be close to equal
for the modular generator and its non-modular equivalent.
Radial vibration was considered unlikely due to 1) the lowest
order of the radial force subharmonics was estimated to be 32,
2) the temporal frequency of the force harmonics was 26.67
Hz, far from the module’s lowest mechanical eigenfrequency of
322 Hz.
Index Terms− Losses, modularity, space harmonics, vibration.

I. INTRODUCTION
Offshore wind offers a sea of opportunities on the road to

decarbonization, with vast areas, high winds, high capacity
factors and low visual and natural impacts. Its adoption is
rapidly increasing, and between 2010 and 2018, the offshore
wind market grew by almost 30% per year [1]. According
to [2], this trend is expected to continue with an increase
in annual offshore wind installations from 6.1 GW in 2020
to 23.9 GW in 2025, which will bring its share to 21% of
global new wind installations. To continue this momentum,
a further reduction of the levelized cost of energy is needed.
The ModHVDC project at NTNU has proposed a generator
that could offer reduced capital and operational expenditures
along with an increased turbine availability and system
efficiency [3]. In this generator, physical modularity allows
a series connection of modules, resulting in an output DC
voltage of 100 kV or higher that may be transmitted directly
to shore.

Physical modularity means that the stator is divided into
physically separate modules, introducing air gaps in the

stator structure. These will function as flux barriers, restrict-
ing the flow of the magnetic flux, which in [4]–[7] were
employed to reduce subharmonics. This in turn gave lower
losses and an increased machine efficiency. However, none of
these machines include an entire base winding in one module
as is the case in the ModHVDC design. With regards to
losses, this type of structure was only found in [8], [9] where
both found that steel losses increase. Air gaps in the yoke
will also remove its intrinsic rigidity, and modules could be
subject to both large forces and vibrations in the radial and
tangential direction. Furthermore, radial forces could also
induce vibrations on the stator frame. The consequences of
this could be severe stator deformations or support structure
deterioration. Previously, vibration of the stator frame has
been analyzed for several modular machines in [10].

This thesis will provide an overview over properties and
challenges regarding losses and module radial vibration in
the modular machine designed in [9]. Further, it may serve
as a decision basis for further work in the ModHVDC
project and when outlining the cooling and support sys-
tem. The machine in question is a direct driven permanent
magnet synchronous machine with concentrated windings.
How modularity influences the results is also investigated
through a comparison between the modular machine, which
has physical modularity, and a non-modular equivalent which
does not.

This thesis starts with presenting theory of modular gen-
erator design and loss estimation before moving on to force
harmonics and how they interact with mechanical properties
to induce vibration. Then, the methods used for the modelling
and analyses are presented. Next follows the results from
estimation of magnetic flux, losses, force harmonics, static
deformation and eigenfrequencies. A discussion regarding
modelling choices, results and their validity is then included
before the conclusion of the work is presented along with
recommendations for further work.

II. THEORY

This section starts with a brief presentation of modular
machine design and how this is applied in the ModHVDC
project. Calculation methods regarding losses then follows
before theory of vibration estimation is explored through
radial force harmonics and mechanical properties.
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Fig. 1: ModHVDC configuration for offshore wind power.

A. Modular machine design

Modularization is the process of decomposing a system
into a number of components. In a permanent magnet syn-
chronous machine, two types of modularity are discussed:
functional and physical [11].

In an electric machine, the stator windings may be grouped
into several modules with their own converter operating
independently from each other. This is defined as functional
modularity. If a fault occurs in the windings or converter of
one or more modules, they may be switched off and bypassed
completely. The operation may continue, which results in an
improved reliability and availability of the machine.

Physical modularity may be achieved through physical
separation of the modules through segmentation of the stator
core. This allows replacement of a single module in case
of a winding failure. In addition, the smaller parts are
lighter and easier to handle, which leads to a quicker and
cheaper replacement. The division of the stator structure also
presents opportunities to insulate modules from each other
both magnetically and electrically. However, it also reduces
the rigidity of the stator yoke, which introduces challenges
for the support structure.

The converters of each module may either be connected
in parallel, series or a combination. A parallel connection
has been investigated in [12]–[15] mainly to utilize the high
fault tolerance of functional modularity. This solution leads
to an equal voltage across all modules, but also a reduced
current through the converters. A simplified illustration of
this connection for a machine with modules is given in
Figure 2.

The series connection was first introduced in [16] and
is utilized in the ModHVDC project [17]–[19]. Through

Fig. 2: Parallel connection of modules.

connecting the modules in series as shown in Figure 1, 100
kV or higher DC voltage on the output may be obtained. This
can be transmitted through cable directly to shore, reducing
the amount of components needed compared to a conven-
tional system, and thus decreasing cost while increasing
system efficiency. The module voltage level corresponds to
the converter voltage limit, which allows the slot insulation
thickness to remain low as the total output voltage increases
[17]. Because of the connection structure, the modules oper-
ate at different voltages relative to each other. This leads to
a requirement of insulation between each module, and such
physical modularity is necessary. In the ModHVDC design,
functional modularity is achieved through assigning one
converter per base winding. This introduces the additional
winding rules [9]:

• The phase layout for each module must be symmetrical
• The number of stator slots must be dividable by the

number of modules divided by 2
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B. Losses

The loss calculation methods need to be different for sep-
arate parts of a machine due to different material properties,
lamination thickness, magnetic field and current behaviours.
Here, they are divided into steel, magnet and copper losses.

1) Steel losses: The CAL2 model in the time domain
proposed in [20] was used to calculate the steel losses
in the machine. This model was chosen because it was
found to have a relative error of only 5% for the 75 kVA,
50 Hz hydro generator investigated in [21]. For the loss
modelling described below, losses in watts per kilogram, p,
are calculated. To get losses in watts, Equation 1 should be
used.

P = LρNsector

∫ ∫
S

p dS (1)

Here, L is the axial length of the machine, ρ is the steel
density, and Nsector is the number of sectors corresponding
to the whole machine. The loss density is integrated over the
surface of one sector.

Losses in the steel of an electric machine may be un-
derstood through the concept of loss separation where they
are calculated based on the different phenomena occurring in
the material. In 1924, Jordan proposed to separate losses into
hysteresis and eddy current losses based on their relationship
with the frequency, f, and the peak value of the magnetic flux
density, B̂ [22]:

p = KhB̂
2f +KeB̂

2f2 (2)

Here, Kh and Ke are constant hysteresis and eddy current
coefficients respectively. In the original model, the skin
effect was neglected, and eddy currents were assumed to
be homogeneously distributed, which meant Ke could be
calculated analytically through material properties:

Ke =
σπ2w2

lam

6δ
(3)

Here, σ is the electrical conductivity, wlam is the lamina-
tion thickness and δ is the material density. This gives what
is known as the classical eddy current losses:

pe,class =
σπ2w2

lamB̂
2f2

6δ
(4)

In [20] a loss separation model called CAL2 was proposed.
This is the same equation as proposed by Jordan, only with
coefficients varying both with the frequency and flux density:

p = Kh(f, B̂)B̂2f +Ke(f, B̂)B̂2f2 (5)

To include non-sinusoidal waveforms in the loss calcu-
lation, a time domain extension of the CAL2 model also
proposed in [20] may be used. In this model, the coefficients
were set to be dependent on the flux density at the fundamen-
tal frequency, simplifying the equations. Here, Equation 6

and Equation 7 may be used to represent the hysteresis and
eddy current loss components.

ph =
1

πT

∫ T

0

Kh(f1, B̂) ·B(t) ·
∣∣∣∣dB(t)

dT

∣∣∣∣ dt (6)

pe =
1

2π2T

∫ T

0

Ke(f1, B̂) ·
∣∣∣∣dB(t)

dT

∣∣∣∣2 dt (7)

Where the time integration is performed over an electrical
cycle of period T. When modelling the variable coefficients,
it was found in [20] that a third order polynomial with respect
to B̂ was a sufficient compromise between a good fit and the
experimental data needed:

Kh(B̂) = kh0 + kh1B̂ + kh2B̂
2 + kh3B̂

3 (8)

Ke(B̂) = ke0 + ke1B̂ + ke2B̂
2 + ke3B̂

3 (9)

Here, kh0−3 and ke0−3 are constants that may be de-
termined through a curve fit by inserting these expressions
into Equation 5 and using a curve fitting tool to find the
best fit relative to the steel loss data. In order to take
the frequency dependency of the coefficients into account,
several frequencies from the loss data should be used in the
fit.

2) Magnet losses: The material used in permanent mag-
nets has high conductivity, which means that they are
susceptible to large eddy currents induced by flux density
variations. These lead to losses that may be calculated
through integrating the current density across the surface of
a single magnet through the following equation [23]:

P =
2L

T
pp

∫ T

0

∫ ∫
S

J2
m

σm
dS dt (10)

Here L is the axial length, T is the rotational period
time, and pp is the number of pole pairs. σm is the con-
ductivity, and Jm is the current density in the magnets. As
the rotational speed is 10 rpm, T is equal to 6 seconds,
which would require enormous amounts of data. To reduce
the time samples needed, T was reduced to one sixteenth
of the rotational period time. This is the rotational time
corresponding to one module, and the symmetry in the
machine indicates that this should yield the same result.

Eddy current losses in the steel of an electric machine
are reduced through laminating the core. This is because
these losses are proportional to the square of the lamination
thickness, as shown in Equation 4. In the same manner, eddy
current losses in the magnets may be reduced significantly
through dividing a magnet into segments of reduced thick-
ness in the direction perpendicular to the magnetic field.
Tangential and axial segmentation, and a combination of the
two has proved beneficial for a reduction of magnet losses
[24]. Figure 3 shows an example of tangential segmentation
and how eddy currents form here compared with a one pieced
magnet.
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Fig. 3: Eddy current paths in a one pieced magnet and
tangentially segmented magnet [25].

The remanent flux density of permanent magnets decreases
with an increasing temperature. For temperatures lower than
the magnet maximum temperature, this may be approximated
through the following equation [26]:

Br,T = Br,T0
(1− αT (T − T0)) (11)

Where Br is the remanent flux density, T0 is defined
as 20oC and T is the magnet temperature. The magnet
temperature coefficient, αT , describes how much the flux
density is reduced per degree increased.

3) Copper losses: The copper losses may be found
through the following equation [27]:

Pcu = NphI
2
ph,rms(Rdc +Rskin(f) +Rproximity(f)) (12)

Here, Nph is the number of phases and Iph,rms is the RMS
value of the phase current. Rdc, Rskin(f) and Rproximity(f)
are respectively the DC, skin and proximity components of
the phase resistance. At low frequencies, the copper losses
are dominated by the Joule effect that is modelled through
the DC-resistance [28]. In COMSOL, the DC-resistance of
a single homogenized multi-turn coil is defined as follows
[29]:

Rdc,coil =

∫
A

NL

σcoilacoilA
dA (13)

Where N is the number of turns, L is the axial length and
σcoil is the wire conductivity. acoil and A are cross-sectional
areas of the wire and entire coil respectively. To get the total
resistance for the entire phase, Rdc,coil must be multiplied
with the number of slots corresponding to it.

C. Radial forces and vibration
1) Space harmonics: In a permanent magnet synchronous

machine, the flux in the air gap will not be a pure sine wave
in space relative to its position along the rotor periphery.
The constant flux density in the permanent magnets gives
raise to a square shaped distribution. This is mixed with
the MMF from the stator windings. Reluctance variations
in the magnetic circuit mainly due to stator slotting leads
to a further disturbance of the distribution. The resulting air
gap flux contains spatial harmonics that may give raise to
unwanted effects such as increased losses or vibrations [30].

Harmonics with a non-zero order lower than the main
harmonic are often referred to as subharmonics.

2) Radial force density: The radial component of the air
gap force density may be calculated through the magnetic
field density using the Maxwell stress tensor [31]:

fr =
1

2µ0
(B2

r −B2
t ) (14)

Where µ0 is the vacuum permeability, and Br and Bt are
the radial and tangential components of the magnetic flux
density in the air gap. In this equation it may be seen that
the force density is dependent on the flux density squared.
This means that the negative poles of the flux will lead
to a positive force, which leads to twice as many poles
in the force density than the flux, and a zeroth harmonic
corresponding to the average, which is now positive. When
doubling the amount of poles, the time it takes until the
pattern repeats itself at a given point will halve, and the
frequency doubles.

The radial force density in any point along the air gap
line may be written as a sum of its harmonics through the
Fourier series in the amplitude-phase form [32]:

fr =
∑
m

f̂rm(t)cos(2πfmt−mα−Ψm) (15)

Here, m is the spatial harmonic order, and f̂rm is the peak
force density of the harmonic. As time passes, the magnetic
field will rotate with the rotor, and the force density at a
given point will vary with time. This is modelled through
the temporal frequency, fm. The stationary variation of the
harmonic in the spatial domain is included through α, which
corresponds to the angular position of any point in the air
gap relative to a fixed stator reference. Ψm is a spatial phase
angle that is unique for each harmonic. The amplitude will
vary with time as because of reluctance variations due to
slotting [33].

3) Harmonic properties: Harmonic orders of the force
density are particularly important to consider when analyzing
vibration in a machine. This is because the order corresponds
to the number of magnetic poles, which will interact with the
stator in their own manner.

The zeroth harmonic corresponds to the average force
along the air gap, which will lead to an inward pressure
on the entire stator as shown in Figure 4.

Fig. 4: Stator deformation for m=0 [32].

The harmonic with m=1 will have one point of maximum
attraction, stems from a non-centered rotor and will rotate
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with the mechanical speed. In this thesis, this is not consid-
ered as the rotor is assumed to be perfectly centered.

The force harmonics with m ≥ 2 will have m points
of maximum attraction and will rotate with an angular
frequency ωrot,m as follows:

ωrot,m = σ(m)
p

m
ωmech (16)

The direction of rotation is either clockwise or anti-
clockwise and may be different for separate harmonics. This
is modelled through σ(m) ∈ {−1, 1}. This has not been
the focus of the thesis and the amplitude of the vibration is
assumed to be equal for both directions. Here, p is the pole
number and ωmech is the mechanical angular frequency. The
force shapes are illustrated in Figure 5 for orders 2 and 4
and in Figure 6 for order 32.

Fig. 5: Stator deformation for m=2 and m=4.

Fig. 6: Stator deformation in entire machine and single
module for m=32.

Here, it is clear that each harmonic with m ≥ 2 corre-
sponds to a stator deformation with 2m poles. The amplitude
of the deformation will be dependent on both the force and
the mechanical properties of the stator. The spatial period
is here defined as the space between each force maximum.
The temporal frequency, fm, corresponds to the time it takes
for the harmonic to cover one spatial period. As the pattern
repeats itself m times for one mechanical rotation, fm may
be calculated as follows:

fm = m
ωrot,m

2π
=
pωmech

2π
= 2fel (17)

The most relevant properties of the radial force density
harmonics are listed in Table I.

TABLE I: Properties of radial force density harmonics

Order ωrot,m fm Effect

m=0 0 0 Uniform attraction
between stator and rotor

m=1 ωmech fmech
One point of
maximum attraction

m ≥ 2 σ(m) p
m
ωmech 2fel

m points of
maximum attraction

The order of the lowest subharmonic of the radial force
density in a permanent magnet synchronous machine is equal
to the greatest common divider (GCD) of the number of slots
and poles [34], and higher orders will be multiples of this
[33].

4) Static deformation: For a standard non-modular stator
ring, the amplitude of static deformation of the stator from
each harmonic with m = 0 and m ≥ 2 may be expressed
through Equation 18 and 19 respectively [32]:

Ys0 =
RRy f̂rm
ETy

(18)

Ysm =
12RR3

y f̂rm

ET 3
y (m2 − 1)2

(19)

Here, R is the internal stator radius, Ry is the average yoke
radius, Ty is the yoke radial thickness and E is the Young’s
modulus of the stator material. The geometric parameters are
illustrated in Figure 7.

Fig. 7: Geometric parameters for mechanical formulas.

From Equation 19 it is clear that the amplitude of the
static deformation for m ≥ 2 is inversely proportional with
m4, and the lowest harmonics generally have the highest
probability of generating vibrations.

5) Eigenfrequencies and resonance: All structures vibrate
naturally at certain eigenfrequencies, each having its own
mode shape describing the deformation that belongs to it.
Both the frequency and the mode shape depends on the
mechanical properties and boundary conditions, and may
be computed through numerical methods considering all
structural details.

Any force harmonic with temporal frequency fm gives
raise to a set of vibrations with the same frequency in an
electrical machine. The magnitude of vibration is dependent
on the mechanical eigenfrequencies. If the frequency of an
exciting force is close to or equal to any of the eigenfre-
quencies of the stator, it may excite resonance, which could
result in dangerous deformations and vibrations [35].
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Fig. 8: Implementation of physical modularity and phase layout.

III. MODELLING

The analysis was conducted through 2D finite element
modelling in COMSOL multiphysics 5.6. The machine con-
sidered was the direct driven permanent magnet generator
with 16 modules, 192 slots and 160 magnets, designed for
wind power applications in [9]. The design itself was not the
focus of the thesis, so only the most relevant properties and
modelling decisions are included in this section. Parameters
related to the base design, geometry and the electrical system
are given Appendix A and C, while material properties are
given in Appendix D. To investigate the effect of modularity,
a non-modular machine was also modelled. A brief walk-
through of the methods used in the analyses, and how they
were validated is also presented in this chapter.

A. Assumptions

The following assumptions and simplifications were made
in the modelling and analysis:

• While converters of the modular machine are connected
in series, the modules of the non-modular machine are
connected in parallel. This assumption is made as the
insulation requirements of a series connection cannot be
met without physical modularity. This will not affect the
modelling as the connection is on the converter side.

• Current in coils contains no time harmonics.
• Constant conductivity in all materials.
• Constant temperature of 80 degrees in the permanent

magnets.
• End windings and skin and proximity effects were

neglected in the calculation of copper losses because
of a low frequency.

• Perfectly centered rotor, which makes force harmonic
with number 1 equal to zero.

• Rotational direction of force harmonics assumed irrele-
vant for radial vibration.

• I-beams were only included in eigenfrequency analysis.
• No mechanical interaction between modules because of

a large air gap between them.
• Frame is assumed to be infinitely stiff.

B. Model setup

1) Modularity: Modelling of the physical modularity was
done through defining an insulation along with an air gap
in the tangential ends of the stator module as illustrated in
Figure 8.

A non-modular equivalent was made to see the effect of
modularity. This model is equal to the modular in all respects
other than that the stator is continuous without any air gaps or
insulation between modules. As described in the theory about
modularity, the converter of each functional module has to
be connected in parallel instead of series for the non-modular
machine. This does not lead to any changes in the modelling
or electrical parameters however, as this connection is on the
converter side.

2) Current: In this machine, one base winding has the
phase layout presented in Table II.

TABLE II: Phase layout of one base winding

Slot 1 2 3 4 5 6 7 8 9 10 11 12
Phase A -A -B B C -C -A A B -B -C C

There are 12 slots in a base winding, which corresponds
to one module as shown in Figure 8. Here, there are two
coils per phase in one module. These are coupled in parallel
before the converter connection. The current was modelled
with a uniform density and was defined as follows for the
no load and full load conditions:

TABLE III: Current modelling

Phase No load Full load

A 0 Îsin(2πft+ θq)

B 0 Îsin(2πft+ 2π/3 + θq)

C 0 Îsin(2πft+ 4π/3 + θq)

Here, Î is the peak slot current, and θq is the angle
required to align the current with the q-axis. This was found
through a time dependent study where the full load current
was applied in the coils with a stationary rotor. The time
with the maximum torque gives the current angle through
the relationship θq = 2πfetτmax .

3) Mesh: To reduce computation time, the mesh for the
general geometry was set to coarse. The maximum element
size along the middle air gap boundary marked with blue
in Figure 9 was set to 1 mm to get a precise representation
of the magnetic field there. In the magnets, the mesh was
made extremely fine to get an accurate calculation of the
eddy current there. Lastly, a fine mesh was applied for the
slot insulation to achieve a converging solution. A section of
the mesh in the module edge is illustrated in Figure 9.
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Fig. 9: Mesh in module edge.

4) Tailoring for each analysis: To avoid excessive com-
putation time, it is important to minimize the model with
respect to its requirements. The analyses in this thesis had
different requirements, and such three separate models were
created. To calculate the losses and eigenfrequencies, only
simulation of one module was necessary. Boundary condi-
tions and material properties may influence eigenfrequencies
significantly. Therefore I-beams were included in this anal-
ysis. In the harmonic analysis, half the machine needed to
be modelled to get sufficient data for an accurate FFT in
MATLAB. This lead to the creation of the models illustrated
in Figure 10.

Fig. 10: Model used in analysis regarding a) losses b)
eigenfrequencies c) harmonics.

For the models used to calculate losses and harmonics, the
Rotating magnetic machinery physics were used with a study
comprising the Stationary and Time dependent steps. When
calculating module eigenfrequencies, the Solid mechanics
physics were used in COMSOL’s Eigenfrequency study.

C. Materials

1) Steel: The steel used both in the stator and rotor was
chosen to be non-grain-oriented (NGO) M250-50A because
of its low specific power loss. Typical loss data for this
material was found in [36] and is given in the appendix. The
BH-curve used is shown in Figure 11. This was predefined
in COMSOL for NGO 50PN250 silicon steel, and provides
values for a field strength up to almost 180 000 A/t.

Fig. 11: BH-curve for non-grain-oriented 50PN250 silicon
steel [37].

To model laminations in 2D in COMSOL, the conductivity
of the steel was set to zero. For the steel, the Young’s
modulus is different in the rolling and tensile direction
because of the manufacturing process. In this thesis, the
Young’s modulus of the tensile direction is used as this is
thought to be in the radial direction.

2) Permanent magnets: NdFeB magnets of grade N45
with an included temperature dependency were assigned for
this machine. The temperature in the permanent magnets
was assumed to be at the maximum limit of 80◦C. When
inserting this into Equation 11 with the given αT , we find
that this reduces the remanent flux density of the magnets
with 6% compared to at room temperature.

The initial design was found to have very high magnet
losses [38]. To deal with this, tangential segmentation was
employed, dividing each magnet into 10 segments of equal
size. The number of segments was chosen based on the max-
imum amount employed in [25]. To model this in COMSOL,
each segment was defined as a coil with a net zero current
over its cross-sectional area.

3) Coils: The coils consist of concentrated copper wind-
ings with 130 turns each. Due to insulation and cavities
between the windings, they will have different mechanical
properties than a solid block of copper. According to [39],
the Young’s modulus for the windings can be assumed to be
1/100 of that of a single copper wire. The mass density will
also be slightly reduced compared to pure copper because of
this. Conductivity was assumed to be constant, not changing
with temperature.
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4) Insulation: In the eigenfrequency analysis, the insula-
tion of mica had to be specified to include its mechanical
properties. For all other analyses, air was used in all insula-
tions as this will have similar magnetic properties.

5) I-beams: To enable the modules to operate at different
voltage levels, they must be insulated from the frame. There-
fore an insulating material is required in the I-beams. In [40]
the use of nylon was proposed. However, E-glass fiber was
used in this thesis as it is thought to be more suitable due to
it being stiffer and more robust.

D. Analysis methods

1) Losses: Losses in the stator and rotor steel were
calculated through implementing the time domain CAL2
equations in the surface integration tool in COMSOL.

The loss coefficients in Equation 8 and Equation 9 were
found through the MATLAB curve fitting tool. The typical
loss density used as input is given in Figure 24 in the
appendix. This only provides data down to 50 Hz, which is
significantly higher than the nominal frequency of 13.33 Hz.
The frequencies used were 50, 100 and 200 Hz, and all their
respective loss data points were utilized. The components of
the coefficient polynomials found are given in Table IV.

TABLE IV: CAL2 loss coefficient polynomial constants

Loss coefficient Value
kh0 0.01525
kh1 0.02271
kh2 -0.03887
kh3 0.01561
ke0 0.0001756
ke1 -0.0001904
ke2 0.0001697
ke3 -4.173e-05

These polynomials are illustrated in the plots shown in
Figure 12.

Fig. 12: CAL2 loss coefficients.

The goodness of the fit was evaluated in MATLAB through
SSE and R-square. SSE is the sum of squares due to error
and measures the total deviation between the fit and the input
data. R-square measures how well the variation of the data
is included, and a value close to 1 indicates a good fit [41].

These evaluations were found to be very close to ideal as is
shown in Table V.

TABLE V: Fit evaluation parameters

Fit parameter Value Ideal value
SSE 0.0383 W/kg 0

R-square 0.9999 1

Magnet losses were estimated using Equation 10 in the
COMSOL surface integration tool, while the copper losses
were found analytically through Equation 12, using the coils
dc-resistance obtained through Equation 13. The skin and
proximity effects were not included.

2) Harmonic analysis: The harmonic analysis was done
through FFT of tables obtained from plots of the radial
flux and force densities at a single time instant. MATLAB’s
discrete FFT-function was used to find the harmonic orders
and their amplitude. The script created to do this is shown
in Appendix G.

3) Eigenfrequency analysis: For this analysis, I-beams
proposed for a modular generator in [40] were implemented.
The height of the beams was reduced slightly to better
fit the thinner yoke of this machine. They were mounted
symmetrically as shown in Figure 13, both just over the
B-phase. The frame was assumed to be infinitely stiff to
simplify the analysis, and a fixed constraint was set on the
outer boundaries of the beams, marked as blue in Figure 13.
Other boundaries marked in red were defined as free.

Fig. 13: Model for eigenfrequency analysis with fixed bound-
ary constraints in blue and free boundaries in red.

Here, only the domains for the stator steel, slots, slot
insulation and I-beams were included in the physics, as
only the eigenfrequencies of a single stator module was
considered.
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IV. RESULTS

Both losses and forces are very dependent on the electro-
magnetic performance of the machine. Therefore, this section
starts with an overview of the magnetic flux density, before
it moves on to losses. The losses are calculated separately,
but are summarized in Table X. Then, the orders, amplitudes
and frequencies of the force harmonics are presented along
with how they are influenced by modularity and time. Static
deformation from force harmonics is then calculated before
eigenfrequencies of a single module are presented.

For all harmonic analysis, only the harmonics with orders
lower than 200 were plotted. This is because subharmonics
are generally more likely to cause vibration. Tables contain-
ing all flux and force harmonics with amplitudes larger than
0.02 T and 10 kN/m2 are given in Appendix H.

A. Magnetic flux density

1) Steel flux density: The magnetic flux density at full
load is plotted in Figure 14 for the modular and non-modular
machine.

Fig. 14: Full load magnetic flux density at t=1.5 ms.

The flux density was observed to be highest in the extrem-
ities of the stator teeth, with maximum values of about 2.8
T. In the middle of the teeth, the peak value was observed
to be just below 2 T. The modularity is seen to significantly
alter flux paths in the steel. When investigating this further,
it was found that the average magnetic flux density for the
steel in the modular machine was 0.81 T compared to 0.73
T in the non-modular machine.

2) Air gap flux density: The tangential and radial com-
ponents of the magnetic flux density in the air gap of one
module of the modular machine is given in Figure 15 for
both load conditions.

Fig. 15: Spatial distribution of the radial and tangential
magnetic flux density in the air gap for one module in
modular machine at t=1.5 ms and a) full load b) no load.

This flux pattern was found to repeat for each module. The
radial flux density is seen to have a maximum just below 1.6
T at full load and about 1 T at no load. The tangential flux
has a peak of about 0.7 T at full load and 0.5 T at no load.

3) Spatial harmonic content: In Figure 16 the spatial
harmonic content of the air gap radial flux density in the
modular machine is shown.

Fig. 16: Spatial harmonic content of radial flux density
distribution in air gap of modular machine at t=1.5.
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4) Influence of modularity: The influence of modularity
on the radial flux density harmonics is shown in Table VI
for full load and Table VII for no load.

TABLE VI: Comparison of radial flux density harmonics in
air gap of modular and non-modular machine at full load

Harmonic Modular Non-modular Difference
number [T] [T] [%]
16 0.270 0.266 1.76
48 0.028 0.033 -13.07
80 0.919 0.917 0.24
112 0.218 0.213 2.36
144 0.018 0.021 -14.46
176 0.070 0.068 2.82

TABLE VII: Comparison of radial flux density harmonics in
air gap of modular and non-modular machine at no load

Harmonic Modular Non-modular Difference
number [T] [T] [%]
80 0.887 0.888 -0.08
112 0.109 0.109 0.35

For the radial flux density, the 80th harmonic corresponds
to the number of pole pairs in the machine and is thus the
main harmonic. The difference in this is below 0.25% both
at full and no load. At full load, the modularity is found to
influence the other harmonics, with a maximum difference
in the amplitudes of 0.005 T.

B. Losses

1) Steel losses: The steel losses were estimated both for
the full load and no load condition using the CAL2 model
in the time domain:

TABLE VIII: Steel losses

Load Loss Modular Non-modular Difference
condition type [W] [W] [%]

Full load
Hysteresis 16 101 13 761 17.0
Eddy current 8 875 6 703 32.4
Total 24 976 20 464 22.0

No load
Hysteresis 5 037 3 850 30.8
Eddy current 1 582 1 182 33.8
Total 6 619 5 032 31.5

Table VIII shows that the modular machine had 22%
higher steel losses than the non-modular at full load, and
31.5% higher at no load. A plot of the steel loss density
is given in Figure 17 for full load and in Figure 18 for no
load. In the extremities of the teeth edges, the loss density
was observed to be up to 150 kW/m2. However, the color
range was manually restricted to 30 kW/m2 for full load and
10 kW/m2 for no load to to get a clearer illustration.

Fig. 17: Loss density in stator and rotor steel at full load.

The loss density at full load is seen to be largest in the
teeth, and especially every second tooth, with the highest
values at their edges. The increased loss in the modular
machine is seen to be distributed across the entire surface,
with an additional high loss density in the bottom half tooth.

Fig. 18: Loss density in stator and rotor steel at no load.

At no load, the modular machine is seen to have the
highest loss density in the half teeth. The losses are also
shown to increase slightly across the rest of the steel surface.

2) Magnet losses: Magnet losses were estimated at the
full load and no load conditions, both for unsegmented and
segmented magnets. The results are given in Table IX.
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TABLE IX: Magnet losses

Load Magnet Modular Non-modular Difference
condition segmentation [W] [W] [%]

Full load Unsegmented 281 090 288 110 -2.4
Segmented 10 040 10 081 -0.4

No load Unsegmented 48 663 48 172 1.0
Segmented 4 351 4 196 3.7

Losses in the modular machine were seen to be reduced
at full load and increased at no load. Segmentation reduced
the losses with over 96% at full load and 91% at no load.
Equation 10 shows that magnet losses are dependent on the
square of the current density in the magnets, which is seen
to be reduced significantly by the segmentation in Figure 19.

Fig. 19: Current density in unsegmented and segmented
magnets at full load.

3) Copper losses: Copper losses were calculated to be
224 740 W at full load. These were equal for the modular
and non-modular machine as the current was defined equally.

4) Total losses: The total losses at full load are calculated
in Table X.

TABLE X: Total losses at full load

Loss type Modular [W] Non-modular [W] Difference [%]
PSteel 24 976 20 464 22.0
Pmagnet 10 040 10 081 -0.4
Pcopper 224 740 224 740 0

Total 259 756 255 285 1.8

Total losses represented approximately 3% of the mechan-
ical power of 8.686 MW found through COMSOL.

C. Radial forces and vibration

1) Air gap force density: In Figure 20, the distribution of
radial force density on one module of the modular machine
is plotted.

Fig. 20: Spatial distribution of the air gap radial force density
for one module at t=1.5 ms.

Here pattern is observed to repeat once over the module.
Here, the highest peaks are found to be around 900 kN/m2

at full load and 400 kNm2 at no load. At some points, the
force density is found to be negative.

2) Spatial harmonic content: The spatial harmonic con-
tent of the force density is plotted in Figure 21 for the
modular machine at both load conditions.

Fig. 21: Spatial harmonic content of radial force density
distribution in air gap of modular machine at t=1.5.

The order with highest amplitude is found to be the zeroth,
which is the average force density. Other harmonics with
high amplitudes are the main harmonic and the 192nd, which
corresponds to the number poles and stator slots respectively.
At full load, multiple subharmonics are found to be of a
considerable size, while at no load they are found to be less
prominent.

The greatest common divider between the number of slots
and magnet poles is 32, which is observed as the lowest
subharmonic present in the machine. All other harmonics
are shown to be multiples of 32. The force shapes over one
module is presented in Figure 22 for all the subharmonics.

11



Fig. 22: Force shapes for lower force harmonics.

The temporal frequency for the non-zero harmonics may
be calculated through Equation 17:

fm = 2fel = 26.67Hz (20)

3) Influence of modularity: The influence of modularity
on the spatial harmonic content of the radial force density
was investigated at t=1.5 ms. Results for full load and no
load are given in Table XI and Table XII respectively.

TABLE XI: Comparison of air gap radial force density
harmonics in modular and non-modular machine at full load

Harmonic Modular Non-modular Difference
number [kN/m2] [kN/m2] [%]
0 177.15 177.59 -0.25
32 87.62 87.45 0.19
64 101.57 102.13 -0.55
96 74.05 74.78 -0.97
128 25.85 25.76 0.36
160 150.55 150.51 0.03
192 138.38 137.95 0.32

TABLE XII: Comparison of air gap radial force density
harmonics in modular and non-modular machine at no load

Harmonic Modular Non-modular Difference
number [kN/m2] [kN/m2] [%]
0 152.07 151.90 0.11
32 40.27 40.51 -0.61
64 4.74 5.17 -8.40
96 1.59 1.85 -14.31
128 13.15 13.28 -0.97
160 151.53 151.01 0.34
192 93.85 93.58 0.29

At full load, the difference between the modular and non-
modular machine is shown to be less than 1 % for each
harmonic. At no load, the percentage difference is found to
be higher for the 64th and 96th. However, these have a very
low amplitude, and the difference is less than 0.5 kN/m2.

4) Time variation of force amplitude: The difference
in the spatial harmonic content of the force density for
two different time instants of the simulation is shown in
Table XIII.

TABLE XIII: Comparison of air gap radial force density
harmonics at t=1.5 ms and t=9 ms for modular machine at
full load

Harmonic t=1.5 ms t=9 ms Difference
number [kN/m2] [kN/m2] [%]
0 174.69 168.67 3.57
32 86.41 72.41 19.34
64 97.82 85.14 14.90
96 70.10 62.50 12.16
128 22.83 24.93 -8.41
160 148.74 145.64 2.13
192 135.58 135.93 -0.26

Here, the amplitude of the harmonics is seen to vary with
time. As explained in the theory, this is because of reluctance
variations and geometric symmetry. After close inspection,
this pulsation was also found to have a frequency twice the
electrical of 26.67 Hz. The difference is seen to vary between
the different harmonics.

5) Static deformation: If the stator ring is assumed to be
uniform without the physical modularity, the static defor-
mation may be calculated very simply through Equation 18
and 19. The deformation from the subharmonics found at full
load for the non-modular machine was calculated analytically
and is given in Table XIV.

TABLE XIV: Static deformation at t=1.5ms assuming uni-
form stator

Harmonic order Ysm [mm]
0 0.121
32 9.34·10−4

64 6.75·10−5

96 9.72·10−6

128 1.07·10−6

160 2.56·10−6

192 1.14·10−6

The stator deformation is found to be largest for the
zeroth harmonic, while it is decreasing for an increasing
harmonic order, as the amplitude is inversely proportional
with m4. The structure in a modular machine is not uniform
however, with insulation and air gaps between each module,
and the distortion will be very difficult to find analytically.
The complexity of the system suggests that an analysis that
couples magnetics and mechanics is advised.

6) Module eigenfrequencies: The fifteen lowest module
mechanical eigenfrequencies found are listed in Table XV.

TABLE XV: 15 lowest eigenfrequencies of single module

Eigenfrequency [Hz]
322 1520 2323
362 1609 2344
689 1752 2375
1187 2089 2381
1458 2125 2389

Mode shapes of the five lowest eigenfrequencies are given
in Figure 23.
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Fig. 23: Mode shapes of lowest eigenfrequencies.

Here, it is clear that the eigenfrequencies of 322 and 362
Hz will have one inward pole per module, and such may be
excited by a force harmonic with order 16 as there are 16
modules in the machine. The other mode shapes are more
difficult to interpret, but it can be argued that eigenfrequency
1187 has two inward poles, which means it could be excited
by the 32nd force harmonic. When examining mode shapes
of higher frequencies, given in Appendix J, they were found
to be more related to the softness of the windings, and have
less influence on the total deformation of the yoke.

V. DISCUSSION

Here, some choices done in the modelling process will first
be evaluated, before the results and their validity is analyzed
and discussed. When evaluating vibration, force harmonics
and mechanical properties are combined as vibration is a
result of their interaction.

A. Machine modelling

1) Coil definitions: A series connection of the modules
will also require physical modularity as explained in the
theory. This means that the non-modular machine has to be
connected in parallel, and will not generate the high output
voltage that the modular machine will, and the two cases
are in that way not entirely comparable. However, these
connections will be outside of the machine and will not
influence the electrical definitions in COMSOL.

The current was modelled ideally, but in reality it will
have time harmonics due to the connection to the converters.
Time harmonics could increase losses [30] and further distort
the time dependency of the force harmonics. Therefore, an
analysis including the effect of time harmonics could be
considered.

2) Temperature: The temperature was unknown when
modelling and analyzing. In the permanent magnets, the tem-
perature was assumed to be equal to the maximum of 80◦C.
This reduced the remanent flux density by approximately
6% compared to room temperature, which will also reduce
the steel losses and force density in the air gap as both
are dependent on the square of the flux density. Also, the
conductivity at 20◦C was used for all materials. Typically,
conductivity decreases with temperature, which would lead
to a higher resistance in the magnets and copper coils.

Temperature variations will influence both the perfor-
mance of the machine as well as the losses and should be
investigated more closely to achieve more accurate results.

This may be done through a coupled analysis in COMSOL
including the Heat transfer in solids physics.

3) Support structure: The dimensions of the I-beams were
only approximations. To ensure that their design is strong
enough to handle all strains, it should be based on an
extensive analysis of all forces interacting with a module.
Furthermore, the support frame was considered infinitely
stiff, and a fixed constraint was set on the outer boundaries
of the beams. This approximation could alter the eigenfre-
quencies, as the frame could also be subject of vibration.
However, the complexity of the system due to the modularity
quickly becomes difficult to handle, and was considered too
advanced for this thesis. The eigenfrequencies obtained here
may therefore only be considered as rough estimations.

I-beams were only included in the eigenfrequency anal-
ysis. Due to their low permeability, the flux density in the
yoke will increase when they are introduced. This may in
turn contribute to higher steel losses. An additional concern
is that the placement of both the beams adjacent to the B-
phase could lead to a worsening of the voltage quality in this
phase. These issues could be an interesting area to investigate
further. Plots of the magnetic flux density and voltage when
including the I-beams are given in Appendix I.

B. Magnetic flux density

In the modular machine, the magnetic flux density in the
steel was found to be significantly higher. This could be
because the air gaps in the stator structure restrict the flux to
flow in less ideal paths. While the modularity did not affect
the main harmonic considerably, the difference between other
force harmonics in the modular and non-modular machine
was found to range between -14.5% and 2.8% at full load.
In tesla, the maximum difference is only 0.005 T however,
which corresponds to just above 0.5% of the main harmonic.

In the air gap flux density plot, the absolute value of the
tangential flux is seen to be generally lower than the radial,
and it will therefore contribute less to the radial forces on
the stator according to Equation 14. Often it is neglected,
but here it was still included as it has considerable peaks of
up to 0.7 T.

C. Losses

1) Steel losses: Steel losses were found to be second
largest of the losses in the machine, but still accounting for
under a tenth of overall losses. The low losses are thought to
be mainly because of the machine’s unusually low frequency
of 13.3 Hz.

In the modular machine, steel losses were found to be
22.0% and 31.5% higher at full load and no load condi-
tions respectively, compared to the non-modular. In the loss
density plots, the increased losses are seen to be distributed
across the entire steel surface, but with an extra notable
increase in the half teeth in the edge of the modules.
This could be detrimental to the insulation. However, the
magnitude is much lower than the copper losses and should
not be the main concern.
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A high loss density in every second tooth was found for
both the modular and non-modular machine. Additionally, a
high density was found both in the bottom half tooth and the
middle of the simulated rotor section of the modular machine
at full load. Intuitively, losses should have been more equal
in all teeth, while rotor losses should be spread more evenly.
The cause of this could be the untidy nature of flux in a
machine with concentrated windings. High losses in only
the bottom half tooth at full load could be because of the
direction of the rotation.

To validate the steel loss calculation method, the Bertotti
model in the time domain was also employed through the
approach described in [38]. The losses using this model were
found to be 2.1% higher at full load for the modular machine
compared to CAL2. Steel losses are considered difficult to
evaluate accurately, and using different loss models could
yield a large variation in the results [21]. Therefore this was
considered sufficient validation for the steel loss calculation
method.

Capabilities of curve fitting routines and loss curve ac-
curacies as well as material manufacturing can add larger
inaccuracies than the calculation method [42]. When finding
the loss coefficients, frequencies of 50, 100 and 200 Hz
were used, while the frequency of the machine was 13.33
Hz. As steel losses increase with the frequency, this most
likely lead to an overestimation. The loss data also only
provided values up to 1.8 T, and the loss coefficients may
not representing losses correctly for flux densities higher than
this. With maximum values of the flux density of about 2.8 T,
this may be an additional error source. For a more accurate
loss approximation, loss data down to 13.33 Hz as well as for
higher magnetic flux densities should be requested from the
supplier. Also a design factor that accounts for manufacturing
should be introduced. This is multiplied with the simulated
losses, and in [42], this was found to typically be between
1.4-2.

2) Magnet losses: Through magnet segmentation, the
magnet losses were found to decrease by 96% to at full
load and 91% at no load. This reduction seemed to be
in line with what was found in [25]. The resulting losses
were just over 10 kW at full load. While this is the lowest
loss component, the magnet losses may still be critical to
consider when designing the cooling system. This is because
if the magnet temperature increases too much, an irreversible
demagnetization could occur [28]. To further decrease the
magnet losses, axial segmentation could also be examined.

In this machine, modularization was found to decrease
magnet losses slightly at full load, while slightly increasing
them at no load. The difference is very small however, and
compared to the segmentation, this effect is minimal.

Magnet losses were found both through defining Equa-
tion 10 and the built in volumetric loss density function in
COMSOL. These functions returned the exact same result,
which suggests that COMSOL applies the same equation. In
order to validate these losses further, it could be an idea to
either calculate them analytically through methods explored
in [25] or to measure them on a prototype.

3) Copper losses: Compared to the other losses, the
copper losses were very high, and will dominate the heat
generation in the machine. Additionally, the steel losses were
found to be highest in the teeth. This makes cooling of the
stator windings and their closest surroundings a clear focal
point in order to avoid degradation of the slot insulation.

In this thesis, the current was defined equally in the
modular and non-modular machine. Therefore, the copper
losses were also considered equal. However, [9] found that
the voltage in the modular machine was 1% lower. This
would mean that more current would be required to deliver
the same power, which in turn would increase the losses.
Furthermore, as much of the steel losses are situated in the
teeth, the increase that we saw from modularity could also
lead to a slightly higher temperature in the coils. This would
lower coil conductivity and such increase losses.

The copper loss calculation was done analytically through
Equation 12. Here Rdc was both calculated by COMSOL and
found analytically through Equation 13, neglecting both end
windings and conductivity temperature dependency. Rskin
and Rproximity were neglected as these are less prominent
at lower frequencies. All the simplifications made here
contribute to a reduction in the losses, and higher losses
should be expected. The analytical calculation was validated
through the built-in volumetric loss density in COMSOL,
which gave equal results.

D. Forces and vibration

In the spatial distribution of the radial force density, peaks
of about 900 kN/m2 were found at full load. Further analysis
yielded a zeroth harmonic of almost 180 kN/m2 at full load,
which corresponds to the average force density in the air gap.
When designing the support structure, it is important that
these strains can be handled as a minimum when considering
the magnetic forces. Also weight and other forces should of
course be taken into account.

From Equation 19, it is seen that the amplitude of the static
deformation is inversely proportional with m4, and the lowest
subharmonic in the force density typically has the highest
probability of generating vibrations [34]. In this machine the
lowest subharmonic has an order of 32 with an amplitude
of 87.6 kN/m2. While this has a quite large amplitude, the
order is very high, and in the non-modular machine, this lead
to a static deformation of only 9.34 ·10−4 mm. According to
Equation 19, the vibration would most likely be more critical
if the lowest subharmonic had an order of for example 2 or
4. However, air gaps of a modular stator structure will reduce
the rigidity of the yoke, which means that the deformation
could be more severe in the modular machine.

The temporal frequency of all non-zero harmonics was
found to be 26.67 Hz, while the lowest eigenfrequency was
estimated to 322 Hz. In order to excite resonances, the
temporal frequency must be close to the eigenfrequency.
Here, this is far from the case, and the large gap suggests that
vibration is unlikely to occur. Furthermore, the mode shape
of the two lowest eigenfrequencies corresponded to the force
shape of the 16th harmonic, which was not present in this
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machine. The eigenfrequency of 1187 Hz had a mode shape
that could be excited by the 32nd force harmonic. However,
this frequency is 44.5 times higher than the temporal fre-
quencies and is also considered unlikely to be excited.

While there was close to no difference between the radial
forces in the modular and non-modular machine, the me-
chanical properties of the yoke will be very different. Here,
this has not been thoroughly investigated. The complexity
of the structure suggests that a finite element analysis is
needed for further inspection. A coupled analysis in COM-
SOL including both the Rotating magnetic machinery and
Structural mechanics physics could be the way forward.
Here, the forces on each tooth could be modelled through
the approach outlined in [33].

In the analysis, only t=1.5 ms was looked at. As was
seen in Table XIII, the amplitude of each harmonic varies
with time. This time dependency shows that even the zeroth
force density harmonic will vary, and such may also cause
vibrations. In Table XIII it is shown that this harmonic
will cause a much larger static deformation than the others,
and a vibration due to this would likely be more severe.
However, this time variation was also found to have a
frequency of 26.67 Hz, which makes it unlikely to excite
any eigenfrequencies of the modules.

In this thesis, tangential vibration has been considered
outside of the scope, but should definitely be one of the main
focuses going forward. The air gaps between the modules
may allow a vibration in the tangential direction that would
not be present in a non-modular machine due to the stiff
yoke. This is best illustrated by the mode shape of the eigen-
frequency of 1187 Hz, which is dragged upwards. Tangential
forces and vibration would exert shear stress on the I-beams,
which could be very detrimental to the support structure.
Frame vibration has also been considered out of scope,
but could easily have been included through the approach
outlined in [10]. However, the low static deformations found
in Table XIV suggest that this will not be an issue.

To validate the approach used in the FFT analysis of flux
and force density, the machine with 116 poles and 120 slots
from [34], [43], [44] was also modelled in COMSOL. An
analysis of the harmonic content of the radial force density
was conducted at the no load condition, which yielded the
same results as found in [34]. The static deformation and
eigenfrequency estimations were not validated.

VI. CONCLUSION

In this thesis, losses and radial vibration in a ModHVDC
generator has been presented. A comparison with a non-
modular equivalent is included to investigate the effect of the
modularity. At full load, total losses in the modular machine
were estimated to 259.8 kW, which comprises 3% of the
mechanical power. Radial vibration was considered unlikely,
and modularity was found to mainly influence steel losses
and mechanical properties.

Because of a low electrical frequency of 13.33 Hz, the
steel losses only attributed to 25 kW for the modular machine
at full load. Modularity increased steel losses by 4.5 kW, or

22% at full load and 1.6 kW, or 31.5% at no load. This
resulted in a 1.8% increase in total losses at full load. The
additional losses were attributed to a higher flux density in
the modular machine, and were found to be distributed across
the entire module surface, also adding potential hotspots in
half teeth at the module edges.

Originally the machine design had very high magnet
losses, amounting to 281 kW at full load. However, magnet
segmentation reduced these by 96% to only 10 kW, and was
thus considered a necessity for the design. At no load the
segmentation reduced magnet losses by 91% from 48.6 to 4.4
kW. The difference in magnet losses between the modular
and non-modular machine was found to be between -2.4 and
3.7%. With segmented magnets this difference is considered
negligible as it amounts to only 41 W at full load and 155
W at no load.

Copper losses amounted to 224.7 kW at full load, and were
such the dominating loss component in this machine. Fur-
thermore, several simplifications were made during copper
loss calculations, and higher losses should be expected. The
influence of modularity on copper losses was not investigated
here, but is thought to increase slightly due potentially lower
voltage in modular machine.

The zeroth harmonic of the radial force density was
found to be 177 kN/m2 at full load, and corresponds to
the average inward pressure along the air gap. Peaks of
around 900 kN/m2 were found in the spatial distribution.
The difference in radial forces from modularity was found
to be insignificant, being under 1% for all harmonics at full
load.

Even though modularity reduces stator rigidity and the
amplitudes of the radial force subharmonics were quite
high, radial vibration was considered unlikely. This had two
reasons:

• The lowest order of the force subharmonics was 32.
Lower orders are considered more likely to cause vi-
bration, and in this context an order of 32 is considered
too high to be of concern.

• Force harmonics had temporal frequencies of 26.67 Hz,
while the lowest mechanical module eigenfrequency
was 322 Hz. The difference between the two is con-
sidered far too large to induce resonance.

However, the amplitude of the harmonics was shown to vary
with time, which means that the zeroth harmonic also could
contribute to vibration. This could be more critical than the
32nd and should be investigated further.

VII. FURTHER WORK

• Coupling Rotating magnetic machinery with Heat trans-
fer in solids in COMSOL to get an accurate remanent
flux density in the magnets and conductivity for all
materials. Also this would ensure that the machine is
operating at a viable temperature.

• Investigate how modularity affects steel losses at other
electrical frequencies.

• Coupling Rotating magnetic machinery with Struc-
tural mechanics in COMSOL to investigate the effects
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of magnetic forces closer. A starting point could be
through methods discussed in [33].

• Investigate module tangential vibration.
• Finding eigenfrequencies of and radial deformation of

frame due to radial forces. This has been done for
several other modular machines in [10].

• Include time harmonics from converters in all analyses.
• Conduct electromagnetic analysis while including the

I-beams to find how this affects the performance.
• Experiment with different support structures to find how

vibration affects them and how this contributes to a
module’s resonance frequency.

VIII. ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors Pål
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IX. APPENDIX

A. Modular direct drive machine model

This machine was built in COMSOL based on the design
work done in [9], and investigating that thesis is advised if
more parameters and variables are needed. The performance
of the machine was estimated through simple calculations in
COMSOL.

TABLE XVI: Modular machine model [9]

Symbol Name Value Unit

Base design
fe Electrical frequency 13.33 Hz
n Speed (counterclockwise) 10 rpm
Nph # of phases 3
Np # of poles 160
Ns # of slots 192
Nmod # of modules 16
Nsec # of sections 16
Nmseg # of magnet segments per magnet 10

Dimensions
Rso Outer stator radius 3739 mm
Rsi Inner stator radius 3517 mm
Rag Air gap radius 3507 mm
Rro Outer rotor radius 3477 mm
Rri Inner rotor radius 3377 mm
L Machine length 1500 mm
g Air gap length 10 mm
lm Magnet thickness 30 mm
km Magnet fraction of pole pitch 0.7
τs Slot pitch 115.1 mm
τp Pole pitch 138.1 mm
hs Slot depth 122 mm
ws Slot width 56.5 mm
wt Tooth width 58.6 mm
Tslot Slot insulation thickness 1.33 mm
Tearth Screen insulation thickness 5 mm
Tmod Module insulation thickness 2.0833 mm
Tair Air gap between modules 10 mm

Electrical parameters at 80◦ C
N # of turns 130
acoil Coil wire cross-section area 38.778 mm2

Î Peak slot current 164.32 A
θq Current angle -2.007 rad
Ep Peak induced voltage 72 kV
Pel Electrical power 8.326 MW
τn Nominal torque 8.294 MN
Pmech Mechanical power 8.686 MW
η Efficiency 95.9 %

B. Model used for validation of spatial harmonic analysis

This model was used to obtain the results found in [34]
using the script for the analysis developed in this thesis.
It was built in COMSOL based on mainly an ANSYS-
model provided by Mostafa Valavi along with parameters
for the same machine found in [44]. It was only simulated at
no-load, which makes the electrical parameters superfluous.
There was no module or screen insulation in this model.

TABLE XVII: Model used for validation of harmonic anal-
ysis [34], [43], [44]

Symbol Name Value Unit

Base design
fe Electrical frequency 50 Hz
n Speed 51.7 rpm
Nph # of phases 3
Np # of poles 116
Ns # of slots 120
Nmod # of modules 1
Nsec # of sections 4
Nmseg # of magnet segments per magnet 1

Dimensions
Rso Outer stator radius 888.5 mm
Rsi Inner stator radius 778.5 mm
Rag Air gap radius 776 mm
Rro Outer rotor radius 773.5 mm
Rri Inner rotor radius 725 mm
L Machine length 55 mm
g Air gap length 5 mm
lm Magnet thickness 22 mm
km Magnet fraction of pole pitch 0.8
τs Slot pitch 41.0 mm
τp Pole pitch 41.9 mm
hs Slot depth 80 mm
ws Slot width 22.3 mm
wt Tooth width 18.7 mm
Tslot Slot insulation thickness 2.4 mm

C. I-beams for eigenfrequency analysis

TABLE XVIII: Parameters for I-beams used in eigenfre-
quency analysis [40]

I-beam parameters
Height 130 mm
Width 120 mm
Web thickness 30 mm
Flange thickness 30 mm
Corner radius 0 mm
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D. Material properties

TABLE XIX: Material properties

Parameter Value Unit

Steel (M250-50A) [36], [44]
Material density 7600 kg/m3

Iron stacking factor 1
Lamination thickness 0.5 mm
Young’s modulus 190 GPa
Poisson’s ratio 0.3

Copper winding [39], [44]
Material density 7412 kg/m3

Conductivity 5.8 · 107 S/m
Maximum temperature 180 ◦C
Young’s modulus 1.1 GPa
Poisson’s ratio 0.35

NdFeB Magnets [37], [45]
Grade N45
Material density 7500 kg/m3

Conductivity 713290 S/m
Remanent flux density at 20 ◦C 1.35 T
Magnet temperature dependency 0.001
Maximum temperature 80 ◦C
Relative permeability 1.05

Air [37]
Conductivity 0 S/m
Relative permeability 1

Muscovite mica [37], [46], [47]
Material density 2900 kg/m3

Conductivity 2.01 · 10−15 S/m
Relative permeability 1
Young’s modulus 170 GPa
Poisson’s ratio 0.25

E-Glass fiber [48], [49]
Material density 2550 kg/m3

Conductivity 2.49 · 10−13 S/m
Relative permeability 1
Young’s modulus 73.1 GPa
Poisson’s ratio 0.22

Fig. 24: Typical loss density for M250-50A steel [36]

E. Software built-in functions

1) COMSOL: The built-in operators used in COMSOL
for modelling and post processing are given in Table XX.

TABLE XX: COMSOL built in functions

Expression Use

timeint(t1,t2,expr) Computing integral of expr over
given time interval.

d(f,x) Differentiation of f with
respect to x.

timemax(t1,t2,expr,’nointerp’) Find maximum of expr within
time period without interpolation.

When computing the time integral outside of the surface
integral, the data series operators Integral and Average found
in the COMSOL surface integration tool were used. These
calculate the integral and the integral divided by the time
interval respectively.

2) Livelink to MATLAB: Table XXI contains the only
Livelink functions needed to extract data from COMSOL
to MATLAB for post processing.

TABLE XXI: Livelink to MATLAB functions

Expression Use

Model=mphload(’NAME’) Imports COMSOL model
to MATLAB

Struct=mphtable(model,’tbl1’) Loads specific table
from imported model

Here, ’NAME’ is the name defined for the COMSOL mph-
file that is loaded. Only one such file may be loaded at a time.
When using mphtable, the output is a struct with 3 elements.
These are column headers, table name and table data. The
model’s table data may then simply be extracted through the
command Struct.data.
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F. Software definitions

TABLE XXII: Variables defined in COMSOL

Variable Definition Description
Br (comp1.rmm.Bx*X+comp1.rmm.By*Y)/sqrt(X2+Y 2) Radial flux density
Bt (comp1.rmm.Bx*Y-comp1.rmm.By*X)/sqrt(X2+Y 2) Tangential flux density
Bnp timemax(0,tmax,rmm.normB,’nointerp’) Peak flux density

TABLE XXIII: Analytic functions defined in COMSOL

Variable Definition
Kh,CAL2 kh0 + kh1 ∗B + kh2 ∗B2 + kh3 ∗B3

Ke,CAL2 ke0 + ke1 ∗B + ke2 ∗B2 + ke3 ∗B3

TABLE XXIV: Surface integrals defined in COMSOL

Description Definition
Ph,CAL2 Kh,CAL2(Bnp ) ∗ f ∗ (1/pi) ∗ timeint(0, tmax, rmm.normB ∗ abs(d(rmm.normB, TIME))) ∗ L ∗ rhos ∗Nsec
Pe,CAL2 Ke,CAL2(Bnp ) ∗ (1/(2 ∗ pi2)) ∗ f ∗ timeint(0, tmax, abs(d(rmm.normB, TIME))2) ∗ L ∗ rhos ∗Nsec
Pe,Bertotti Ke,B ∗ (1/(2 ∗ pi2)) ∗ (f) ∗ timeint(0, tmax, abs(d(rmm.normB, TIME))2) ∗ L ∗ rhos ∗Nsec
Pa,Bertotti Ka,B ∗ (1/(8.76)) ∗ f ∗ (timeint(0, tmax, (abs(d(rmm.normB, TIME)))1.5)) ∗ L ∗ rhos ∗Nsec
Ph,Bertotti (Kh,B ∗ f ∗Bαnp

) ∗ L ∗ rhos ∗Nsec
Pmag Avg(80 ∗ 2 ∗ L ∗ 1/(1/1.4[uohm ∗m]) ∗ (rmm.JZ)2)
PCu 16 ∗ L ∗ f ∗ timeint(0, tmax, rmm.Qrh)

Each surface integral need to be specified over a surface.
The steel losses was integrated over both the rotor and stator
steel of one module. Magnet losses were integrated over a
single magnet (with all its segments), while copper losses
were integrated over all the coil domains in a module.

Fig. 25: Curve fit of coefficients for CAL2 model
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G. MATLAB scripts

1) FFT script: This script uses a model found through
mphload as an input and returns a Table with the harmonics
of a signal stored in a COMSOL table. The COMSOL table
data is assumed to have arc length along the x-axis. The table
number in the mphtable function should be altered to equal
the table number in the COMSOL model.

1 f u n c t i o n Tab le =FFT ( model )
2 S t r u c t = mphtab le ( model , ’ t b l 1 ’ ) ;
3 ModelTable= S t r u c t . d a t a ;
4 ArcLengths = z e r o s ( 1 , 1 ) ;
5 Times= z e r o s ( 1 , 1 ) ;
6 B= z e r o s ( 1 , 1 ) ;
7 rpm =10; %[ r / min ]
8 R ag = 3 . 5 1 2 ; %[m]
9 C i r c u m f e r e n c e =2* p i * R ag ; %[m]

10 AGspeed=rpm* C i r c u m f e r e n c e / 6 0 ; %[m/ s ]
11

12 %% T r a n s f o r m i n g from s p a c e t o t ime
domain

13 f o r i =1 : l e n g t h ( ModelTable )
14 ArcLengths ( i ) =ModelTable ( i , 1 ) ;
15 Times ( i ) = ArcLengths ( i ) / AGspeed ;
16 B( i ) =ModelTable ( i , 2 ) ;
17 end
18 T = Times ( 2 ) ; %Sampl ing p e r i o d
19 Fs = 1 / T ; %Sampl ing f r e q u e n c y
20 L= l e n g t h ( Times ) ;
21 Y= f f t (B) ;
22 %R e t u r n s two s i d e d f a s t f o u r i e r

t r a n s f o r m of B
23

24 %% Symmetr ic two − s i d e d t o one − s i d e d
f r e q u e n c y

25 %Y− a x i s :
26 P2 = abs (Y/ L ) ;
27 P1 = P2 ( 1 : L / 2 + 1 ) ;
28 P1 ( 2 : end −1) = 2*P1 ( 2 : end −1) ;
29 %X− a x i s :
30 f = Fs * ( 0 : ( L / 2 ) ) / L ;
31 H a r m o n i c o r d e r = f . * ( 6 0 / rpm ) ;
32

33 %% Rounding t o i n t e g e r s a l o n g x− a x i s
34 Tab le = z e r o s ( 1 , 1 ) ;
35 j =1 ;
36 f o r i =1 : l e n g t h ( f )
37 i f mod ( round ( H a r m o n i c o r d e r ( i ) *10)

/ 1 0 , 1 ) ==0
38 Tab le ( j , 1 ) = round ( H a r m o n i c o r d e r (

i ) ) ;
39 Tab le ( j , 2 ) =P1 ( i ) ;
40 j = j +1 ;
41 end
42 end
43 end

2) Force density bar plots: The bar plots of the radial
force density harmonics at both load conditions was found
were plotted using the script below. Inputs of the script are
the tables that are obtained as the output of FFT.m. When
plotting the magnetic flux density, the same script may be
used, only altering labels and ticks.

1 f u n c t i o n B a r p l o t F ( F u l l l o a d , No load )
2 Tab le = F u l l l o a d ( 1 : 1 0 0 , 2 ) ;
3 Tab le ( : , 2 ) = No load ( 1 : 1 0 0 , 2 ) ;
4 x = 0 : 2 : 1 9 9 ;
5 x= f l i p ( x ) ;
6 x= r o t 9 0 ( x ) ;
7 xd =( x ( 2 ) −x ( 1 ) ) / 2 ;
8 f i g u r e ( 1 )
9 b a r ( x , Tab le ( : , 1 ) , ’ b a r w i d t h ’ , 0 . 5 )

10 ho ld on
11 b a r ( x+xd , Tab le ( : , 2 ) , ’ b a r w i d t h ’ , 0 . 5 )
12 x l a b e l ( ’ Harmonic o r d e r ’ )
13 y l a b e l ( ’ R a d i a l f o r c e d e n s i t y ( kN /mˆ 2 ) ’ )
14 y t i c k s ( [ 0 20000 40000 60000 80000 100000

120000 140000 1 6 0 0 0 0 ] )
15 y t i c k l a b e l s ({0 , 20 , 40 , 60 , 80 , 100 ,

120 , 140 , 160} )
16 end

3) Comparison tables: The tables with force density
comparison for modes with amplitude over 10 kN/m2, given
in Appendix A were found through the following script.
The inputs of the script are the tables that are obtained
as the output of FFT.m. Harmonic tables for the magnetic
flux density may be found similarly, only through small
alterations.

1 f u n c t i o n Tab le =Harmonics ( Modular ,
Nonmodular )

2 Tab le = z e r o s ( 1 , 1 ) ;
3 t =1 ;
4 f o r i =1 : l e n g t h ( Modular )
5 i f Modular ( i , 2 ) >10000 | | Nonmodular (

i , 2 ) >10000
6 Tab le ( t , 1 ) =Modular ( i , 1 ) ;
7 Tab le ( t , 2 ) =Modular ( i , 2 ) / 1 0 0 0 ;
8 Tab le ( t , 3 ) =Nonmodular ( i , 2 ) / 1 0 0 0 ;
9 Tab le ( t , 4 ) =( Modular ( i , 2 ) −

Nonmodular ( i , 2 ) ) *100 /
Nonmodular ( i , 2 ) ;

10 t = t +1 ;
11 end
12 end
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H. Tables for high order harmonics

TABLE XXV: Comparison of radial flux density harmonics
with amplitudes over 0.02 T at full load

Harmonic Modular Non-modular Difference
number [T] [T] [%]
16 0,270 0,266 1,76
48 0,028 0,033 -13,07
80 0,919 0,917 0,24
112 0,218 0,213 2,36
144 0,018 0,021 -14,46
176 0,070 0,068 2,82
240 0,042 0,043 -0,95
272 0,139 0,139 0,20
304 0,062 0,062 -0,91
400 0,083 0,082 0,21
464 0,045 0,044 2,24
496 0,033 0,032 2,46
560 0,070 0,069 2,07
656 0,030 0,030 -1,28
688 0,022 0,023 -2,29

TABLE XXVI: Comparison of radial flux density harmonics
with amplitudes over 0.02 T at no load

Harmonic Modular Non-modular Difference
number [T] [T] [%]
80 0,887 0,888 -0,08
112 0,109 0,109 0,35
240 0,040 0,040 -1,36
272 0,143 0,143 0,56
304 0,067 0,067 0,23
400 0,073 0,073 0,11
464 0,040 0,039 3,14
560 0,056 0,056 0,11
656 0,033 0,033 0,34
688 0,026 0,026 1,54

TABLE XXVII: Comparison of radial force density harmon-
ics with amplitudes over 10 kN/m2 at full load

Harmonic Modular Non-modular Difference
number [kN/m2] [kN/m2] [%]
0 177.15 177.59 -0.25
32 87.62 87.45 0.19
64 101.57 102.13 -0.55
96 74.05 74.78 -0.97
128 25.85 25.76 0.36
160 150.55 150.51 0.03
192 138.38 137.95 0.32
224 27.43 27.45 -0.10
256 35.25 35.16 0.24
288 31.94 31.74 0.64
320 47.34 47.44 -0.22
352 37.12 36.89 0.60
384 57.86 57.51 0.61
416 22.42 22.35 0.34
480 27.04 26.96 0.28
512 11.09 11.06 0.24
576 45.11 44.97 0.32
640 27.11 27.01 0.36
768 17.50 17.49 0.07
960 16.44 16.24 1.25

TABLE XXVIII: Comparison of radial force density harmon-
ics with amplitudes over 10 kN/m2 at no load

Harmonic Modular Non-modular Difference
number [kN/m2] [kN/m2] [%]
0 152.07 151.90 0.11
32 40.27 40.51 -0.61
128 13.15 13.28 -0.97
160 151.53 151.01 0.34
192 93.85 93.58 0.29
224 23.44 23.09 1.50
320 38.92 39.29 -0.95
352 36.52 36.01 1.42
384 25.15 23.77 5.79
416 12.60 13.36 -5.64
480 12.03 11.92 0.92
576 30.78 30.81 -0.07
608 11.16 11.09 0.59
640 19.64 20.01 -1.86
736 12.74 12.15 4.83
768 11.83 10.52 12.45
800 10.43 12.08 -13.65
960 14.56 14.84 -1.95

TABLE XXIX: Comparison of radial force density harmon-
ics with amplitudes over 10 kN/m2 for t=1.5 ms and t=9 ms
for modular machine at full load

Harmonic t=1.5 ms t=9 ms Difference
number [kN/m2] [kN/m2] [%]
0 174.69 168.67 3.57
32 86.41 72.41 19.34
64 97.82 85.14 14.90
96 70.10 62.50 12.16
128 22.83 24.93 -8.41
160 148.74 145.64 2.13
192 135.58 135.93 -0.26
224 25.23 32.17 -21.58
256 34.01 30.07 13.09
288 30.11 29.36 2.57
320 45.32 25.33 78.91
352 35.28 38.62 -8.64
384 55.08 37.00 48.88
416 20.21 23.75 -14.90
480 25.02 18.43 35.77
512 10.79 2.80 285.61
544 8.48 11.41 -25.68
576 43.52 35.07 24.08
608 7.14 13.15 -45.67
640 26.45 10.91 142.33
736 8.34 12.80 -34.86
768 15.97 16.87 -5.31
800 5.92 14.70 -59.76
960 15.61 16.71 -6.53
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I. Performance including I-beams

Fig. 28: Magnetic flux density norm in module with I-beams.

J. Mode shapes

Fig. 29: Voltage in modular machine with I-beams.

Fig. 26: Mode shapes of eigenfrequency 1520-2125 Hz.

Fig. 27: Mode shapes of eigenfrequency 2323-2389 Hz.
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