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Abstract

Transport and energy sectors are source to the majority of greenhouse gas emissions in Europe. Elec-

tric vehicles are regarded as an effective alternative towards the optimisation of the transport energy

efficiency, the introduction of low-emission energies, and the shift to zero-emission vehicles. Simulta-

neously, there is the need of accelerating the uptake of renewable energies, with a special focus on the

electricity generation. Electric vehicles can indeed also contribute to their introduction, by making the

demand more flexible and adding energy storage to the system, thus tackling the variability of some re-

newable sources such as wind or solar.

Nevertheless, the growing adoption of electric vehicles is not only an opportunity but also a challenge. A

larger fleet of vehicles, together with the tendency of increasing their battery capacity and charging rates,

compromises the safe operation of the distribution grid and limits its hosting capacity. With the purpose

of avoiding the physical upgrade of the network, the concept of Smart Charging arises, aligned with the

principles of the Smart Grid: integrating the behavior of all users to assure the economically efficient

and sustainable operation of the power grid. Among the Smart Charging set of techniques, Smart Pricing

seeks fostering an efficient charging behavior by means of sending the consumers economic signals that

reflect the actual cost of energy. Locational Marginal Pricing (LMP) is a market design, already in use,

that enables the wholesale electric energy prices to reflect the actual cost of energy in different locations,

accounting not only for the system price but also for the congestion and losses costs in the network.

In this thesis, the introduction of a pricing scheme based on LMP for the charging stations is studied.

The purpose is to assess its efficiency in relocating the demand in both time and space, i.e., encouraging

drivers to charge during periods of higher generation thus lower prices, while distributing the load among

the stations with fewer congestion and losses costs. For this purpose, a real-time cooperative simulation

tool has been developed, integrating an Agent-Based Model of the drivers’ behavior, and the Optimal

Power Flow of the network constraints, based on a real Norwegian local network with 856 consumers.

By analysing the response of agents to the dynamic local pricing over several days, and in comparison

with two other reference scenarios, results show how the charging operation can be optimized in the

short and long terms, by relocating the demand in space and time respectively. Comparing the proposed

pricing scheme with the current situation in Norway, the cost of charging energy sees a reduction of up to

35% for the grid and 18% for the drivers while increasing the profit margins to the infrastructure provider,

hence making the charging of electric vehicles more advantageous for all the parties involved.
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Sammendrag

Transport- og energisektorer er kilde til de fleste klimagassutslippene i Europa. Elektriske kjøretøy blir

sett på som et effektivt alternativ mot optimalisering av transportenergieffektivitet, innføring av lavut-

slippsenergier og overgangen til nullutslippskjøretøyer. Samtidig er det behovet for å akselerere opptaket

av fornybare energier, med et spesielt fokus på strømproduksjonen. Elektriske kjøretøyer kan faktisk også

bidra til introduksjonen deres, ved å gjøre etterspørselen mer fleksibel og legge til energilagring til sys-

temet, og dermed takle variasjonen i noen fornybare kilder som vind eller sol.

Likevel er den økende bruken av elektriske kjøretøy ikke bare en mulighet, men også en utfordring.

En større bilpark sammen med tendensen til å øke batterikapasiteten og ladeprisen, kompromitterer

sikker drift av distribusjonsnettet og begrenser det. Med det formål å unngå den fysiske oppgraderin-

gen av nettverket oppstår konseptet Smart lading, i samsvar med prinsippene i Smart Grid: integrere

oppførselen til alle brukere for å sikre økonomisk effektiv og bærekraftig drift av strømnettet. Blant Smart

Charging-settet med teknikker søker Smart Pricing å fremme en effektiv ladeadferd ved å sende forbruk-

erne økonomiske signaler som gjenspeiler de faktiske energikostnadene. Locational Marginal Pricing

(LMP) er en markedsdesign som allerede er i bruk, og som gjør det mulig for grossistprisene for elektrisk

energi å reflektere de faktiske energikostnadene på forskjellige steder, og ikke bare utgjør systemprisen,

men også for belastning og tapskostnader i Nettverk.

I denne oppgaven studeres innføringen av et prisopplegg basert på LMP for ladestasjonene. Hensik-

ten er å vurdere effektiviteten i å flytte etterspørselen i både tid og rom, dvs. oppfordre sjåfører til å

lade i perioder med høyere generasjon og dermed lavere priser, samtidig som belastningen fordeles mel-

lom stasjonene med færre belastninger og tapskostnader. For dette formålet er det utviklet et sanntids

samarbeidende simuleringsverktøy, som integrerer en Agentbasert modell av sjåførenes oppførsel, og

den optimale kraftstrømmen til nettverkets begrensninger, basert på et reelt norsk lokalt nettverk med

856 forbrukere.

Ved å analysere agensenes respons på den dynamiske lokale prisingen over flere dager, og i sammenlign-

ing med to andre referansescenarier, viser resultatene hvordan ladeaksjonen kan optimaliseres på kort og

lang sikt ved å flytte etterspørselen i henholdsvis rom og tid. Sammenlignet den foreslåtte prisordningen

med dagens situasjon i Norge, ser kostnadene for lading av energi en reduksjon på opptil 35 % for net-

tet og 18 % for sjåførene, mens de øker gevinstmarginene til infrastrukturleverandøren, og dermed gjør

ladingen av elektriske kjøretøyer som er mer fordelaktig for alle involverte parter.
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1 | Introduction

1.1 Centrality of the topic

Climate change is one of nowadays greatest challenges faced by humanity, affecting every part of the

world, disrupting economy and endangering lives. It is specifically and largely addressed in both the 2030

Agenda for Sustainable Development (UN [2015]) and the 2050 European long-run strategy (European

Comission), through specific goals and milestones to achieve such as the reduction of greenhouse gas

emissions, the introduction of a higher share of renewables, a higher energy efficiency or the adaption of

government systems.

Transport and energy sectors are inevitably targeted through these milestones, as they account for the

majority of the greenhouse gas emissions. According to IRENA, around two thirds of the total Green-

house Gas emissions originate in the energy sector, and transport accounts for a great part of the propor-

tion left. To achieve a more sustainable scenario, the uptake of renewables has to accelerate, leaving fossil

fuels behind and absorbing the majority of the electricity generation. Together with the energy transition,

transport has to reduce emissions by increasing its efficiency, deploying low-emission alternative ener-

gies, and moving towards zero-emission vehicles. Electric mobility weighs positively on all these lines of

action, and it has been therefore put in the spotlight of measures.

Over 90% of the total used energy in transport comes from fossil (Eurostat [2019]). In passenger trans-

port, passenger cars have a share above 80% in inland transport in Europe, and they are mostly pow-

ered by petrol and diesel. The electrification of passenger cars in Europe is only 2.6% in average, but as

high as 10.7% in countries like Norway (EAFO [2020]). Therefore, a long way is still ahead towards the

climate-neutral scenario of an efficient transport sector. Most studies focusing on the evolution of the

adoption of EVs, agree on the strong influence of policies and the deployment of modern infrastructure
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to achieve higher shares that can contribute to the decarbonisation of the sector, and the mitigation of

climate change. With the purpose of elaborating efficient measures and boosting the needed infrastruc-

ture, future scenarios have to be simulated and analysed in terms of the impact they have on the other

sectors.

Electric mobility has been largely discussed as a great ally to the introduction of renewables, as it intro-

duces flexibility in the demand to absorb the variability of renewables, and it can also serve as storage

to the surplus of energy introduced in the system. Thus, both sectors have to be modeled together and

analyse their interdependence for future sustainable scenarios.

1.2 Motivation

The interdependence of the energy and transport sectors offers great opportunities towards decarbonisa-

tion and a climate-neutral future, however, it entails a number of challenges too. An exponential growth

of the electrification of passenger transport, as the one taking place in Europe, requires the preparedness

of the electrical supply grid. The energy mix can improve towards a higher share of renewables, and so

can the electricity sector, but the power supply grid has to have the capacity to absorb this increase if we

want the clean energy to reach its consumers.

Passenger electric vehicles are not only growing in number, but they also tend to have larger batteries

and faster charging rates. Altogether, the power demand of theElectric Vehiclefleet is growing rapidly.

Several studies have been performed to estimate the EV hosting capacity of the current grids in our cities,

and they vary from 50% to 20% when the charging power increases (Lillebo et al. [2019], Johansson et al.

[2019], Richardson et al. [2010]). Overloads in the transformers and cables seem to be the main bottleneck

to this increasing penetration, and two fundamental solutions emerge: physically upgrading the grid, or

optimizing the operation within, by means of implementing the Smart grid.

Upgrading the grid is significantly more expensive and comprehensive than incorporating the technology

needed for the smart operation of the grid. The charging of EVs is a part of it, and then the concept of

Smart Charging becomes central. Smart Charging is the set of techniques that intend to adapt the EV

charging patterns towards the optimization of their energy consumption, and they can be very varied.

Among them, smart pricing is one of most commonly used, meaning the sending of economic signals to

drivers with the purpose of fostering a more efficient behavior.
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With the introduction of renewables in the power market, market design has to evolve too, and a number

of approaches are brought to the table (IRENA [2019a]). Within them, we can find the increase in the

space and time granularity of the electricity markets, i.e., the more variable and accurate pricing mecha-

nisms that reflect the actual cost of energy. A market design already in use in some parts of the world, and

currently gaining importance, is the nodal pricing or Locational Marginal Pricing scheme, where energy

is priced upon its actual cost at every node of the grid. Combining a more granular market design such as

LMP with the smart pricing of electric vehicles can have a very positive impact on both sectors, and this

is the topic of study in this thesis.

1.3 Research approach

For the purpose of studying the feasibility and opportunities of LMP market schemes in the smart pricing

of EVs, a simulation tool has been developed. This simulation tool incorporates the behavioral dynamics

of agents (drivers) and their charging preferences, as well as the dynamics of the electric grid in use. Both

models have been put in real-time cooperation to analyse their interdependence and responsiveness.

The agents’ behavior has been coded in JAVA for the fitness of this language for object-oriented program-

ming. The grid has been formulated as an Optimal Power Flow optimization problem (OPF), where we

consider the minimization of costs as the objective, and all network constraints are present. This model

of the grid has been solved with the MATPOWER package developed by Ray D. Zimmerman in Matlab ®.

By means of this tool, we have compared already existing charging strategies with the one hereby pro-

posed, the Locational Marginal Pricing of energy at the charging stations. Given that the energy is charged

to consumers with a profit margin for the infrastructure provider, we have also designed a pricing scheme

based on LMP that relates the system cost of energy and the selling price. This pricing scheme is key to

the optimization of the operation, and we it has been designed following two principles:

• Increase the market space granularity, potentiating the differences between nodal costs of energy.

• Increase the market time granularity, by reflecting energy generation fluctuations on the price.

The goal of this pricing scheme is to relocate and optimize charging operation in both time and space, so

that drivers adapt to the introduction of renewables, and the social cost of charging decreases.
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1.4 Contribution

This thesis has further developed a simulation tool for real-time coordination of the responses by the

two main components of the system, the agents and the electric grid. Smart pricing strategies can be

compared by means of this tool, and both the opportunities and challenges of adopting novel market

LMP schemes are studied:

• A simulation tool has been developed, where the agents are modeled individually by means of an

Agent-based model which brings responsivess to the pricing strategies and sheds light on emerging

phenomena. This simulation tool is a combination of JAVA object-oriented programming, and the

electrical model of the grid in MATPOWER (Matlab® package).

• Different smart charging strategies have been compared in terms of the cost of energy they entail,

using the aforementioned simulation tool.

• This study considers energy generation fluctuations over the same day and along several days, to

illustrate the variability of renewable energies in the system, and the opportunities of relocating

the demand over time. The system price is given hour by hour, unlike most Time of Use schemes

who divide the day into a few intervals.

• A pricing scheme has been proposed based on LMP for the charging energy at the stations, and its

effect on the agents’ behavior has been studied, as well as the consequences on the overall cost of

charging energy for the fleet of EVs.

• This thesis focuses on the use of fast charging stations in public facilities. There is scarce literature

in modeling the charging behavior of agents among fast public stations, however, their presence

and use are markedly growing due to the faster charging rates and larger batteries of nowadays EVs

that allow agents to charge without much previous thought.

1.5 Thesis outline

The thesis is structured in six chapters, as well as a preface, abstract and one appendix.

First, an introduction of the thesis is given, describing briefly the motivation of this topic, a summary of

the research approach, and the intended contribution of this work. Then, a second chapter describes the
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background of this topic, from the evolution of the electric vehicles in Norway, to the opportunities and

challenges their adoption implies for the grid. Theoretical concepts about electrical grid and behavior

models are also presented in this chapter. The third and forth chapter describe the methodology fol-

lowed to study the impact of different smart charging strategies on the cost of energy. The model chapter

describes in detail all assumptions and methods used to model the dynamics of the system, and chapter

four summarizes the simulation scenarios and their implications. Chapter five gives an overview of the

results obtained for all the simulations previously defined, and establishes discussion by comparison.

Finally, the sixth chapter outlines the main conclusions of this work, and proposes some guidelines for

future research that extends the topic hereby treated.
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2 | Background

2.1 The evolution of the Electrical Vehicle: The case of Norway.

Transport plays a pivotal role in the sustainable development of societies and it is indeed directly and

indirectly targeted through all 17 UN’s sustainable development goals, as it is both in the problem and

the solution (United Nations [2019]). For instance, transport can make human settlements more inclusive

and resilient, however, it is very energy and material demanding, and it has a large impact on emissions,

land use and human health.

In Europe, transport represents almost a quarter of the greenhouse gas emissions and it is the main cause

of air pollution in cities (European Comission [2016]). Unlike other sectors, transport has not seen a

gradual decline in emissions (see figure 2.1) .

Figure 2.1: GHG Emissions by sector in the EU-28, 1990-2016 (Source: EEA).

Within the 2030 Agenda for Sustainable Development developed in 2015, the need of tackling climate
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change is largely addressed ( UN Sustanability Goal 13, UN [2015]), and countries adopted the Paris

Agreement (2015) to limit global temperature rise to well below 2 degrees Celsius. This is the first-ever

universal and legally binding global climate change agreement. Within this agreement, the first key el-

ement to be approached, is the mitigation through the reduction of emissions (UNFCCC). Transport is

therefore very specifically targeted in this long-term climate neutrality goal, and since the signature of

the agreement, countries are expected to submit an updated National Determined Contributions report

(NDC) every five years. This report includes, among others, their commitment and progression in the

reduction of transport-related CO2.

Following the agreement, the Norwegian government made the commitment to link Norwegian climate

change policy to that of the European Union, and the National Transport plan towards 2029 outlines a

very ambitious strategy in the transport sector, with emissions reduced by 50% before 2030 (Fridstrom

et al.). Three main lines of action can be highlighted from this joint European coordination towards low-

emission mobility (European Comission [2016]):

• Optimising the transport system and improving its efficiency.

• Scaling up the use of low-emission alternative energy for transport.

• Moving towards zero-emission vehicles.

Electric vehicles are proposed as a very plausible (although partial) solution to each of the aforemen-

tioned lines of action. The reason is that electric vehicles can substantially reduce emissions in urban

areas, while minimizing consumption by improving their energetic efficiency and fostering the inclusion

of new transport modes. Nevertheless, the complete life cycle of the vehicles has to be studied in order

to assess their net impact on the environment. For instance, the materials used for the manufacturing

of batteries, or the energy mix from which the power is supplied can neutralize their positive impact.

Therefore, a coordinated plan with the energy sector is to be implemented.

According to the International Energy Agency (IEA [2020]), this life cycle assessment of electric vehicles

has a net positive impact on the reduction of emissions (see figure 2.2), in mid-size cars with a battery

capacity of 40 and 80 kWh.
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Figure 2.2: Comparative life-cycle greenhouse gas emissions over ten year lifetime of an average mid-size car by
powertrain, 2018. Source: Global EV Outlook 2020 (IEA [2020])

The market penetration of EVs is still at an early stage where countries show very distant scenarios, but

the increase in the global stock of EVs is exponentially growing (IEA [2020]). The highest shares of EVs in

the world are present in China (4.9%), followed by Europe (3.5%) and the United States (2.1%). Still, large

differences can be seen among European countries (see figure 2.4 and American states.

Globally, the leading country in EV adoption is Norway, with the highest share of 10.7% in 2020. At the

core of this phenomenon is the Norwegian climate policy that has made BEVs economically accesible

and attractive to drivers (Figenbaum et al. [2015]). Originally, the incentives were introduced to help the

market of BEVs take off, at a time when they were expensive and barely present. Nowadays, the renovated

Norwegian fleet is on the track to reach the level needed to support the 85 g CO2/km target. Indeed, it has

been largely discussed in international studies that the penetration and therefore the effect of EVs in the

mitigation of climate change, is strongly determined by the policies implemented (Tsakalidis and Thiel

[2018]).
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Figure 2.3: Global electric car stock, 2010- 2019. Source: Global EV Outlook 2020, IEA [2020]

Figure 2.4: Countries overview in the number of electric vehicles in Europe. Source: European Alternative Fuels
Observatory (EAFO [2020]).

The adoption of electric vehicles can also encounter a second bottleneck in the infrastructure. Tenden-
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cies show how the charging power has increased in the last years from slow charging to a majority of

vehicles with fast charging rates (over 22 kW) (EAFO [2020]), accompanied by an increase in the number

of fast charging stations in the country (see figure

Figure 2.5: Evolution of normal and fast charging public points in Norway. Source: European Alternative Fuels
Observatory (EAFO [2020])

Road transport has a significantly higher share than the other modes in Europe, both in passenger and

freight transport (see figure 2.6). Therefore, changing the paradigm of the power trains of road transport

vehicles, implies a large structural shift across the energy consumption of the transport sector. Many

have already pointed out the potential but also challenges that the large adoption of passenger EVs might

imply for the electrical grid of supply. This is what motivates the smart charging operation of vehicles in

the grid, which will be discussed in section 2.3.
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(a) Volume of passenger transport in Europe and modal split.

(b) Volume of freight transport in Europe and modal split.

Figure 2.6: Charts of passenger and freight transport volumes in Europe. Source: DG-MOVE and Transport [2019]

2.2 Electric vehicles and charging stations. Classification and standards.

Electric vehicles refer to the electrification of the automotive powertrain, and for which the electric motor

is the primary source of propulsion (Amsterdam Roundtable Foundation and McKinsey & Company The
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Netherlands [2014]). Under this definition, we can distinguish Plug-in Electric Vehicle, Range-extended

Electric Vehicle, Battery Electric Vehicle and Fuel Cell Electric Vehicles. Sometimes, conventional hybrid

electric vehicles (HEVs) are also included under the umbrella of electric vehicles, but in this type the

electric motor is not the primary source of propulsion but a complementary one. The main differences

between them can be appreciated in figure 2.7.

Figure 2.7: Types of electric vehicles. Source: Amsterdam Roundtable Foundation and McKinsey & Company The
Netherlands [2014]

Among these types of EV, the most common are the PHEVs and BEVs. In Europe, BEV predominates over

the PHEVs, and in Norway, the difference is even more notorious. In 2020, the number of new registered

cars in Europe (in % relative to the total newly registered cars) was 4.1% and 3.3% for BEVs and PHEVs

respectively (EAFO [2020]). In Norway, the number of new BEVs more than duplicates the number of

PHEVs (48.9% to 20.6%). For that reason, this study will focus in the charging operation of only BEVs.

BEVs are mostly mid-size passenger cars, but they present quite a large range of characteristics among

models. In Norway, for quite some time, the most common models were Nissan Leaf (27.8%), Volkswa-

gen e-Golf (16%) and Tesla Model S (11.6%), according to the report ellaborated by the Zero Emission

Neighbourhoods in Smart Cities Center in 2018 (Sørensen et al. [2018]). Nowadays, trends have slightly

12



shifted and new models have taken a higher position in the rank, such as the BMW i3 (10.3% of BEVs

in 2020), however, the same three most common models maintain a top position in the Norwegian fleet

with shares of 17.8%, 17% and 8.5% respectively (EAFO [2020]).

In this study, three models will be used for simulation, and they are: Nissan Leaf, Volkswagen e-Golf and

Tesla Model S. The reason of holding on to the previous rank of models is the previous work that has been

developed around them. Previous master thesis and journal articles have been published by this depart-

ment in the simulation and integration of these vehicles in the electrical grid (Eilertsen [2013],Harbo et al.

[2018]). Nevertheless, the features of these vehicles have been upgraded over time, and these updates are

considered in the thesis, summarized in the table 2.1.

Table 2.1: Most common BEV models in Norway. Source: European Altenative Fuels Observatory (EAFO [2020])

EV model

Number (%

BEVs) in Nor-

way

Net battery

capacity

(kWh)

Approx. range

in Norway

(km)

Fast charging (kW

DC)

Nissan Leaf (Nissan-

Norge [2019]
17.8% 40.0 240 50, ChaDeMo

Volkswagen e-Golf

(Volkswagen-Norge

[2018]

17 35.8 215 40, CCS

Tesla Model S (Tesla-

Norge)
8.5 % 150.0 505 Supercharger, 150

The trend among EVs is to augment the battery capacity and the charging rate. Among Norwegian drivers,

the main concern about BEVs is the battery range, since in a sparsely populated country, driving distances

are longer in average (Figenbaum et al. [2015]). With a higher battery capacity and charging rate, driving

a BEV becomes similar to driving an ICE, with which the range anxiety was lower, given the number of

petrol stations and the sufficient range of the tank.

With the emergence of increasingly fast charging stations, the classification of charging modes is made

by means of the configuration of the charging point. The most used standard for charging points is the

one defined by the International Electrotechnical Comission in the first part of their IEC 61851 standard.

Under this standard, we can identify four charging modes defined as follows:
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• Mode 1: Domestic socket and extension cord

The vehicle is connected to the grid by means of a standard socket-outlet of an AC supply, using a

cable a plug. The rated values for the current and voltage under this mode must not exceed 16 A

and 250 / 480 V AC in single-phase / three-phase respectively.

• Mode 2: Dmestic socket and extension, incluiding a protective device

The vehicle is, as before, connected to a standard socket-outlet of an AC supply, but incluiding a

control pilot function and system for personal protecion against electric shock between the stan-

dard plug and the EV. The rated values for current and voltage under this mode must not exceed 32

A and 250 / 480 V AC in single-phase / three-phase respectively.

• Mode 3: Socket in a dedicated circuit

The connection goes from the EV to an AC EV supply equipment that is permanently connected to

an AC supply network, incluiding a control pilot function from the AC EV supply equipment to the

EV.

• Mode 4: Direct current fast charging

The connection of an EV to an AC or DC network utilizing a DC EV supply equipment, incluiding a

control pilot function from the DC EV supply equipment to the EV.

The key to fast charging stations is indeed the off-board fast charging module, allowing higher rates

(Folkson [2014]) and all fast charging station above 22 kW, therefore all considered stations in this

study are defined by this fourth mode.

Worldwide, the country with the highest number of fast-charging stations is China, where 82% of the

accessible fast-charging points are located (IEA [2020]), followed by the United Stated, Japan and Norway.

This number of fast-charging points has been increasing rapidly at a higher rate than the so-called normal

chargers, attaining the number of 4080 in 2020 in Norway (EAFO [2020]).

In Norway, the majority of the fast charging stations are operated by Fortum Charge & Drive, Grønn Kon-

takt, BKK/Lyse and Tesla Superchargers. All of them, except for Tesla, charge per both time and the power

consummed. Their presence and pricing schemes are summoned in table 2.2.
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Table 2.2: Main fast-charging stations providers in Norway. Source : elbil.no

Provider
Number of fast-charging

stations in Norway
Price (Fast-charging)

Fortum Charge & Drive 310 2 kr
mi n +2.5 kr

kW h

Grønn Kontakt 240 1.25 kr
mi n +2.9 kr

kW h

BKK/Lyse 80 1.25 kr
mi n +2.9 kr

kW h

Tesla Supercharger 60 1.7 kr
kW h

2.3 Opportunities and challenges of integrating EVs in the smart grid.

Electric mobility shows numerous advantages in terms of impact for the transport sector transition, as we

have described before. The even more relevant sector to consider towards achieving the long-term goal of

climate neutrality is the energetic sector. Around two-thirds of GHG emission are originated from energy

production and use, and the remaining 35% is distributed among transport, building and district heating,

according to IRENA [2017]. As of today, 84% of the energy comes from fossil fuels and only 16% from

renewable sources. In order to reach the goals established in the Paris Agreement (UNFCCC), countries

would have to accelerate the uptake and base 65% of their energetic consumption on renewables by

2050. This target is presented as a feasible milestone in the energy roadmap defined by IRENA. The use

of renewable energies in the electricity generation would consequently see an increase from today’s 25%

to 80%.

In the numerous analysis studying the interdependence of the transport and energy sectors, electric mo-

bility is mentioned in both the challenges and the solutions. At a glance, electric mobility can contribute

in making the demand more flexible and efficient, but it is also an increased load for the electrical grid.

In this subsection, we will present the double-edged effects of introducing electric mobility in the smart

grid.

2.3.1 The Smart Grid

A Smart Grid can be defined as an electricity network able to efficiently integrate the behavior and actions

of all users connected to it (generators, consumers, and those who play both roles) with the purpose of

ensuring economically efficient, sustainable power system with low losses and high levels of quality and

security of the supply (European Comission [2012]). In relation to the integration of renewable energies
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here at issue, the smart grid can accommodate the following characteristics needed (IRENA [2013]):

• Variability: In particular, solar and wind energies are dependent on every-varying natural resources.

Given that the electricity demand must be at all times supplied, the smart grid has the role of allo-

cating or storing the generated power.

• Distributed generation: When generation systems become smaller and distributed in the grid, the

new business model shall allow those system to connect to the grid. Special attention must be paid

to the safety and stability of their operation within.

• High initial cost: Renewable energies are often very expensive to install, even if their operation

costs are lower and they are more cost-effective on a lifecycle basis. Smart Grids can address the

capital requirements through enhancing private investment in electricity systems by allowing dis-

tributed generation.

2.3.2 Introducing demand flexibility: The EV as a solution

There is great leverage in absorbing the variability of renewable energies by means of the demand flex-

ibility of EVs. Knezović [2017] defines the flexibility of EV power demand in terms of (1) the direction

(G2V/V2G), (2) the power capacity, (3) the starting time, (4) and the duration.

In the landscape of innovations for a renewable-powered future developed by IRENA [2019a], we find

the smart charging of electric vehicles within the main enabling technologies (see figure 2.8). Electric

vehicles do not only introduce demand-side flexibility, they also add decentralized storage in the system.

On the demand side, smart charging of EVs can adapt the charging cycle to the generation events in the

power systems with a balancing effect. This can help mitigate the curtailment of renewables and avoid

extra load during peak times. On the storage side, V2G technologies can even bring a greater flexibility by

supplying power from the batteries of cars to the system when needed.
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Figure 2.8: The landscape of innovations for a renewable-powered future. Source: IRENA [2019a]

2.3.3 Increasing the power demand: The challege of hosting EVs

Many are the analyses focused on the future hosting capacity of EVs in the current distribution grids.

The exponential growth of EVs in Europe (and more remarkably in Norway), has raised concerns on the

grid hosting capacity before reaching the limits of safe operation. In the Energy Insights report devel-

oped by Engel et al. [2018], they estimate a 40 TWh power demand increase owing to the road transport

electrification in Germany alone (see figure 2.9).

In the Norwegian context, we have the results of Lillebo et al. [2019] exploring the effects of increasing

EV penetration levels on the distribution grid. In a fast-charging scenario, the findings estimate that

the grid can tolerate up to 50% EV penetration regarding voltage deviation, and 20% with regard to the

rated power of the weakest cable. Very similar results have been obtained for other countries: Johansson

et al. [2019] calculates the EV hosting capacity of the Swedish distribution network between 50 and 25%

when the charging power increases. In Dublin (Ireland), Richardson et al. [2010] have also estimated the

maximum penetration between 20 and 40%.
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Figure 2.9: The effects of BEV adoption increase in Germany on the electricity demand. Source: Engel et al. [2018]

All aforementioned studies share the vision that the transformers and cables are the most vulnerable

components, as they are the first to be overloaded. Two main strategies are proposed to work around

this problem: physically upgrading the grid, or optimizing the operation. Augmenting the grid capacity

is much more expensive and comprehensive than making the grid "smarter" by inserting smart meters

and optimizing the opration.

All in all, a larger EV penetration in the grid can be studied through three main dimensions, on which we

will later propose actuation methods to reduce the impact (Lopes et al. [2011]):

• Transmission line congestion

• Voltage drop

• Energy losses in the system
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Longer discussion on how these phenomena increase the total cost of energy and how to reduce them

will be analyzed in section 2.5 and 4.

2.4 Smart Charging

Aligned with the concept of the Smart Grid, Smart Charging is the solution to hosting a greater pene-

tration of EVs in the grid without the need of physically upgrading the system. Smart Charging can be

defined as the set of techniques that intend to adapt the EV battery charging patterns towards the op-

timization of energy consumption. It is a term seldom defined and often used, and another definition

that also fits this thesis very well is the one of the company FleetCarma. They define Smart charging as

the intelligent form of charging where the load is shifted based on grid status and in accordance to the

drivers’ needs (FleetCarma [2017]).

Among these techniques defined under the term of Smart charging, we can distinguish three main lines of

action: Smart Pricing, Smart Technology and Smart Infrastructure (Hildermeier et al. [2019]). An overview

of these techniques and some implementation examples are summarized in table 2.3. In turn, these

techniques can be implemented in two different control architectures (García-Villalobos et al. [2014]):

• Centralized control architecture

The aggregator is responsible for directly managing all EVs within its region. This control can be

done by day-ahead profile forecast or in real time. As it is our interest in this thesis, real-time cen-

tralized management implies that the aggregator must collect data from EVs (incluiding their iden-

tification, SOCand user preferences).

With the data of agents, the aggregator will optimize operation and organize the demand in a way

that satisfies both the agents and the grid constraints. The optimization objective of the aggregator

can be very diverse. For istance, the objective can be the frequency regulation, voltage regulation,

the generation cost, the load levelling, etc. A full review of these techniques can be seen in García-

Villalobos et al. [2014].

• Decentralized control architecture

Also known as distributed or local control, the decisions rest on each EV owner rather than the

aggregator. However, these decisions can be influenced by means of the factors upon which the
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agents decide, for instance, the station location or the price. The role of the aggregator in this case,

is merely that of sending the appropriate (economic) signals to the agents when fostering a more

efficient operation.

As for centralized control, the optimization objective of the signals can be varied, ranging from

frequency regulation to the minimization of costs. Among the most commonly used formulations,

we can find: convex optimization, dynamic optimization, game theory, genetic algorithms and

graph search algorithms.

If we compare both control architectures, we can see that centralized control can provide a better usage

of the network, since all information of demand and supply sides are known by the aggregator. On the

other hand, it requires a strong communication infrastructure and the voluntary participation of drivers

in the market pool. These requirements make it poorly scalable and computationally impractical.

Decentralized control is easily scalable, requires less communication infrastructure and the user does

not need to share its details or delegate the decisions related to the charging behavior. However, there

is a greater uncertainty in the final result, and there is still the need of forecasting the reaction of con-

sumers to the economic signals sent by the aggregator. To overcome this challenge, several simulation

environments have been developed, incluiding the one in this thesis.

For their very own definition, some smart charging strategies are better defined under a centralized or

decentralized control architecture. For instance, smart pricing tends to be based on decentralized control

schemes, while smart infrastructure strategies tends to be part of a centralized control.
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Table 2.3: Smart Charging strategies overview

Strategy Description Current state, implementation examples

Smart

Pricing

Consumers receive

economic signals re-

flecting the actual cost

of energy at a given

time. The goal is to re-

ward or penalize agents

to foster a charging be-

havior beneficial to

the grid, i.e., avoiding

load peaks, losses and

congestion.

At present, most pricing schemes in Europe apply the

standard tariff, based on a flat kWh charge for the de-

mand. This way, agents are not aware and do not act re-

garding the actual cost the energy. Even if pilot projects

have shown large participation and impact on the opera-

tion, the current pricing models are simple delineations

of binary meters. For instance, the two-period TOU in

Spain (IRENA [2019c] or the Octopus Agile in UK (Octo-

pus Energy [2018]) can help filling the night valley and re-

duce the day peak. Real-time pricing, on the other hand,

changes by short intervals according to the grid situation.

Therefore, they require smart metering, which deploy-

ment has been lagging behind in most countries.

Smart

Technol-

ogy

The automated opera-

tion can also optimize

energy consumption

by adjusting loads

based on price signals,

without the need of

active intervention by

the consumer. How-

ever, smart technology

has proven to be less

efficient when it is not

coupled with Smart

Pricing, as it does not

encourage behavioral

changes in agents.

This is case of many proposals that exploit the fact that

EVs are often connected longer than they actually need

to fully charge. Under these circumstances, a local ag-

gregator, whether at the level of the charging station or

upstream, adjusts the charging power and intervals de-

pending on the grid status and the needs of the vehicles.

Examples of these techniques are present in the residen-

tial low-voltage system optimization proposed by Alonso

et al. [2014], or in the three-layer EV charging infrastruc-

ture presented in Khaki et al. [2019].
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Smart

Infras-

tructure

Research shows that

holistic planning of the

charging infrastructure

can also increase uti-

lization rates, avoiding

unnecessary invest-

ments in underused

stations and longer

trips than necessary by

agents.

The problem of station location is simply a new applica-

tion to the well-known optimization location problem.

It is a multi-objective optimization problem, and the

most used formulations (Point Demand, Traffic Demand

and Hybrid Model) are abstractions of real scenarios. At

present, most station location algorithms are traditional

adaptive ones represented by genetic algorithms. Deep

Learning has taken over in the last years, introducing sev-

eral benefits for its excellent performance in large-scale

data sets and evolvability (Zhang et al. [2019]).

Some new ideas have also emerged lately in the relax-

ation of the charging stations location. For instance, sev-

eral companies have developed movable chargers that

can operate within a parking space or across the city.

Some examples of this technology are given:

• Mob-Energy (France): The charging robot inte-

grates second-life batteries, and they move across

a parking lot (Mob-Energy [2020]).

• Chargery (Germany): The charging modules are

bike-delivered across the city (Chargery [2020]).

• SparkCharge (USA): Portable and ultrafast vehicle

charging units, to bring bring in the trunk in case

of running out of battery on the way (Spa [2020]).

2.5 Smart Pricing: Locational Marginal Pricing

As we have seen before, the larger demand of power, generated by the growth in the EV fleet, might incur

the violation of the grid constraints to operate in a stable and safe way. This impact can be quantified

through the result it has on:

• Transmission line congestion
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Figure 2.10: LMP components. Source: EnergyAcuity [2018]

• Voltage drop

• Energy losses in the system

If we want to send the agents signals about the actual cost of energy with the purpose of making the

them adopt a more efficient charging behavior, this signal should include the cost of the aforementioned

constraints. That is exactly the purpose of nodal price of energy (also called Locational Maginal Price,

LMP), which can be defined as the price paid for generated or consumed electricity at a given transmis-

sion node (IRENA [2019b]). Consequently, different nodes in the same distribution system will incur in

different prices of energy due to the grid configuration and state (loads, generation, losses, etc.). The

components of the nodal price can be split into three components: the system energy price, the trans-

mission congestion cost, and the cost of marginal losses (Feiyu [2004]).

First, we must determine the way the nodal price is calculated.

2.5.1 Power Systems Optimization

In power system optimization, we can mainly find three types of problems commonly referred to: power

flow (load flow), economic dispatch, and optimal power flow (Cain et al. [2012]):

• In the economic dispatch problem, the goal is to meet the demand (PD )with the cheapest genera-

tors that can supply it. If ci is the marginal cost of energy at a given generator i, and PGi is the power

generated by this generator, the economic dispatch problem can be formulated as (DTU):

minimize
∑

i
ci PGi

subject to P mi n
Gi

≤ PGi ≤ P max
Gi

,∑
i

PG i = PD

(2.1)

As we can see in the formulation, the economic dispatch does not consider the network flows or
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constraints. The network is assumed to be a copperplate, where all flows from any point A to any

point B is lossless.

Indeed, the economic dispatch problem can be solved by means of the merit-order curve, where we

assign demand to the cheapest (sorted) generators up to their limits and until the whole demand

is satisfied.

• In the load (power) flow problem, the voltage magnitudes constraints and the losses are consid-

ered, in order to obtain complete voltage angle and magnitude information for each bus in a power

system. In each bus i , the active and reactive power injections are calculated as follows (Seifi and

Sepasian [2011]):

Pi = PGi −PDi (2.2)

Qi =QGi −QDi (2.3)

If we also apply Kirchhoff’s law to each of these buses, being Gi k , Bi k the real and imaginary parts

of the bus admittance matrix YBU S , and θi k the voltage angle between the i th and the k th buses,

the power balance equations are:

Pi =
N∑

k=1
|Yi k ||Vi ||Vk |(Gi k cos(θi k )+Bi k si n(θi k )) (2.4)

Qi =
N∑

k=1
|Yi k ||Vi ||Vk |(Gi k si n(θi k )−Bi k cos(θi k )) (2.5)

The power flow problem formulation is not an optimization problem in itself, as it does not con-

sider generation costs, and only assigns flows in the network to supply the demand, by enforcing

power balance in the buses.

• The Optimal Power Flow (OPF), on the other hand, finds the objective value to an objective func-

tion, subject to the power flow and operational constraints expressed in the power flow problem

(generator capacity, transmission stability, switching mechanical equipment, etc.). Most OPF for-

mulations are based on the classical formulation of its creator (Carpentier, 1962) and Dommel and

Tinney [1968]. In this classical formulation, the objective is to minimize the total cost of electricity

generation while maintaining the system within safe operation conditions.
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If the system is composed of N buses connected by means of L branches, with G controllable gen-

erators located on a subset ob buses (G ⊆ N ). The cost of each of these generators is a function of

their output power, Ci (PG
i ). The mathematical formulation results as follows (Frank and Reben-

nack [2016]):

minimize
∑
i∈G

Ci (PG
i ) (2.6a)

subject to Pi =
N∑

k=1
|Yi k ||Vi ||Vk |(Gi k cos(θi k )+Bi k si n(θi k ))∀i ∈ N, (2.6b)

Qi =
N∑

k=1
|Yi k ||Vi ||Vk |(Gi k si n(θi k )−Bi k cos(θi k ))∀i ∈ N, (2.6c)

PG ,mi n
i ≤ PG

i ≤ PG ,max
i ∀i ∈ G, (2.6d)

QG ,mi n
i ≤QG

i ≤QG ,max
i ∀i ∈ G, (2.6e)

V mi n
i ≤Vi ≤V max

i ∀i ∈ N, (2.6f)

θmi n
i ≤ θi ≤ θmax

i ∀i ∈ N (2.6g)

We can identify the first two constraints as the power flow equations previously defined. Third

and fourth constraints correspond to the limits of the generators, and the last two, to the voltage

magnitude and angle limits to be respected in each bus.

It is clear that, to determine the actual cost of energy at every bus of a system, it is necessary to consider

flows and constraints of the network. Therefore, the economic dispatch optimization of the network

won’t be sufficient to calculate the nodal prices, and they are only obtained by means of the OPF formu-

lation.

The OPF, as a non-linear, non-convex problem, has thousands of variables and constraints for all buses

and lines of the system. It was first proposed in France (Carpentier, 1962) for the French transport net-

work. As of today, it is used in California (USA, CAISO) in intervals of 5 to 60 minutes, in the East Coast

of the United States (PJM) in intervals of 5 minutes, and in Europe in a day-ahead basis, to calculate

electricity prices across Europe. The 19 European Countries participating in this day-ahead price clear-

ance are the cluster defined as Price Coupling of Regions, which is an initiative of eight Power Exchanges,

incluiding the Nordic market NordPool.
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In the formulation of OPF, nodal prices, which is the actual cost of energy at each node of the system, are

calculated as the lagrangian multipliers of the equality constraints (2.6gb, 2.6gc). Therefore, if the solve

the optimal power flow for the system at issue, the nodal prices will be calculated as well.

2.5.2 Locational Marginal Pricing

At a market level, based on the nodal prices calculated for each node of the system, it is possible to charge

energy at a proportional price of its actual cost. This is the Locational Marginal Pricing or nodal pricing

scheme. According to IRENA [2019b], market designs in Europe can be fundamentally divided into two

types:

• Zonal Pricing: The nodes are grouped by pricing zones, which are the largest area within which

participants can trade energy without capacity allocation, which means that congestion within the

area must be low. This zones are defined by the regulator or the transmission system operator.

For most of European countries, pricing zones are its national borders, others have several bidding

zones within the country, like Norway (see figure 2.11).

• Nodal Pricing: All transmission constraints are considered when determining the optimal dispatch

of energy in the system and deriving marginal prices for all nodes in it. This design is already used

in Argentina, Chile, Ireland, New Zealand, Russia, Singapore and several US states (Holmberg and

Lazarczyk [2012a]).

Going back to the innovations landscape defined by IRENA [2019a] in figure 2.8, the market design is one

of the four main strategies to integrate renewable energies effectively. Under this set of strategies, we find

the need for increasing both space and time granularity in the market. While nodal pricing might entail a

more challenging implementation, it is deemed more efficient in reflecting the transmission constraints

in the system, fostering a more efficient operation.

2.5.3 Locational Marginal Pricing in the operation of EV charging

We have mentioned before the opportunities that LMP present in fostering a more efficient operation in

the system on the part of the agents, by pricing energy according to its actual cost at every node. LMP can

relocate demand in terms of time and space, as agents will avoid high prices at times of demand peaks

and at places where the energy cost is higher due to congestion and losses in the network.

The same principle applies to the energy demand originated in the charging of electric vehicles, and this
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Figure 2.11: Bidding zones in Europe. Source: Ofgem [2014]

is the matter of study in this thesis. By charging the energy proportionally to its actual cost at the stations,

agents are influenced towards relocating their demand when the energy is cheaper (higher generation

levels) and at the cheapest stations (where the network is less congested and has the least losses). There-

fore, by increasing granularity in time and space of the energy market, operation is optimized in time and

space as well.

Previous work has been done on this topics, showing very promising results. The main references col-

lected, as well as this very thesis contribution, are summarized in table 2.4.
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Table 2.4: Review of the previous work done on the application of LMP smart pricing to the charging operation of
EVs.

Reference Strategy Demand

simulation

Electric grid

simulation

Contribution

Canizes

et al.

[2019]

Decentralized

LMP

Smart City

mockup

model, in-

cluiding the

agent-based

demand

simulation

and the OPF

formula-

tion of the

electric grid

Agents charge in one of the available

parking lots provided with charging

infrastructure. The LMP of energy at

the lots is quite efficient in decreasing

the price paid for the energy, even if

does not count for different weekdays

variations.

Liu et al.

[2018]

Centralized

LMP

Danish EV

historical

data

OPF Maximizes social welfare, efficient by

relocating demand over time.

Luo et al.

[2018]

Decentralized

LMP

The de-

mand at

stations is

simulated

by means

of a linear

regression

model.

OPF +

Stochastic

Dynamic

Program-

ming

Focus on the profit maximization of

the charging infrastructure provider,

by relocating demand in time and

space (buying cheaper than the sell

price of energy).

Tang and

Wang

[2016]

Decentralized

LMP based

on 4 price

periods (

TOU)

Probabilistic

ABM

PF Inter-node movement of the EVs is

very effective in alleviating the load

peaks (space relocation). Establishes

a relationship between traffic and

power flows.
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Xydas

et al.

[2016]

Centralized

LMP

Multi-Agent

System

(Schedule

Queue)

Hardware-

in-the-loop

Both the network and the agents ben-

efit from the centralized control ar-

chitecture, decreasing the price of en-

ergy.

This the-

sis

Decentralized

LMP

Probabilisitc

agent-based

model

(Monte

Carlo sim-

ulation

method)

OPF (MAT-

POWER) • Real-time coordination be-

tween the electric grid and the

agents aggregator.

• Simulation over several days,

accounting on the variable cost

of energy in the system.

• Responsive: agents are defined

individually, each of them tak-

ing decisions in accordance to

their own charging preferences

and goals.

As can be seen from table 2.4, most of the previous studies that have implemented LMP to the charging

operation of EVs, use OPF to model the electric grid response, and most of them identify with a decentral-

ized control scheme. Nevertheless, none of them consider charging along the way, as they mostly focus

on choosing a charging station near the destination of the agent, or at home. Also, the modelling of the

agents is most of the times done through general tendencies (linear regression models or EV historical

data), but do not analyze the interaction and interdependence of the multiple agents in the system. Only

in Canizes et al. [2019] and Tang and Wang [2016] they do consider agents as individual entities that are

responsive and interact in the system.

The modelling of the agents in this thesis will be discussed in the next section.
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2.6 Agent-Based Modelling

With the purpose of assessing the responsiveness of agents to the economic signals sent by means of

smart pricing in the operation of charging EVs, we need a simulation environment where the behavior of

agents can be reflected. We are presented with three main methods in use (Maidstone [2012]):

• Discrete Event Simulation (DES)

In Operational Research, DES is probably the most common method of simulation. The model con-

sists of entities, events and resources. Entities are the objects moving through the system, events

are the processes through which the entities pass, and resources are the objects needed to trigger

these events.

Entities enter the system and take several states before leaving, so the system can be though as

a network of queues and servers. If we wanted to simulate the behavior of agents using DES , it

would be necessary to establish all possible states through which the agent can pass, and define

their behavior accordingly.

• System Dynamics (SD)

System Dynamic models are only slightly different from DES models, as they focus on the flows

around the network and not on each of the agents (entities). In SD models, three types of objects

are taken into account: stocks, flows and delays. Stocks are the stores of objects, flows define the

movement between stocks, and delays are the time between the system measuring a state and

acting on it.

If we were to model the behavior of agents under the premises of SD, we would focus on the num-

ber of agents charging at each station (stocks), the movement of agents between locations (flows),

and the delays of the system between the computation of the grid status and the clearing of the

locational marginal price. It would be convenient to use this model if we had realistic data on the

flows of the drivers in a given space, like for example the bike sharing systems in a city, for which

we know the number of bikes at every station, and all trips taken with them.

• Agent-Based Modeling (ABM)

ABM is a quite new method, and the main difference with the others is that agents are defined as
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autonomous (self-directed), with a series of predefined rules to achieve their objectives and while

interacting with the rest of agents in the system.

ABM has evolved from Cellular Automata (CA), which have been present since the beginning of

computing. CA were first mentioned by John Von Neumann in the 1950s, and they became popular

after the publication of The Game of Life by John Conway in the 1970s (Games [1970]). The com-

plexity of this cellular automaton came from the rules it uses to convert the knowledge of states

in the neighbouring entities to determine the next state. We could say ABM includes notions of

game theory, complex systems, computational sociology, multi-agents systems and evolutionary

programming.

The main potential of this type of models is the asynchronous interactions among agents and be-

tween agents and their environment, meaning they do not all change states at the same time but

interact in the longer time frame (Castiglione [2006]). Moreover, ABM allows a great richness of

detail in the behavior (predefined rules) of each agent in the system, which can shed light into

emerging phenomena, irreducible to simple trends.

For these reasons, ABM will be the model used in this thesis, allowing us to simulate a range of

different agents, each of them with varied treats personality features and with different charging

behaviors. ABM will show responsiveness phenomena that we wouldn’t be able to simulate other-

wise, by only considering general trends.

ABM models are not difficult to start coding, and very easily scalable, as we only have to define how the

features are distributed among the population to introduce the randomness of agents, and all of them will

share the same structure only with different rules to follow. This has become possible due to the rise of

Object Oriented Programming (OOP). Under OOP, we will be able to define types of objects (for instance,

agents, EVs, or charging stations) who have a predefined structure and a portion of code defining their

behavior in the system. For an agent, he will be assigned a home location, a working location, a car, and

behavioral parameters indicating its range anxiety or willingness to pay, among others. For a car, the

main features to define the object class, would be the battery, the consumption or the discharge profiles.

Object Oriented Programming can be coded in several of languages, such as JAVA, Python or C++. In

this thesis, JAVA language has been chosen for its good compatibility with Matlab, which we will use to

complement the agents model with the grid model, as explained in section 3.
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2.6.1 Monte Carlo Simulation Method

The features of the objects in the system can take a range of values, defining their properties and behav-

ioral rules. Defining how these features are distributed among the population is an important part of

creating a realistic model in ABM . For instance, take the home location of agents (EV drivers). The areas

of the city within which the agents live are known, and so are the density of population in each of them. If

we are to simulate a set of agents in the city, we would random rolls to assign a larger number of agents to

those more populated areas of the city, and vice versa. In other words, we are looking for a way of gener-

ating randomness across a set of agents, but intentionally creating a realistic model where some options

are more probable than others. The way to simulate such sets is the Monte Carlo Simulation method.

The Monte Carlo simulation model uses randomly-generated numbers to simulate the behavior of a situ-

ation (Fox and Burks [2019]). Assigning a probability disrtibution (theoretical or empirical) to the random

variables, the resulting model will be within a realistic range. Therefore, if we generate random numbers

to simulate behavior of the objects within the ABM at issue, they will later be assigned a range and a

consequence (event).

Random number −→ Assi g nment −→ Event

We can illustrate this with an example later used in this thesis, like assigning a minimum desired SOC

level for each agent. If X defines the random variable representing the minimum SOC desired by the

agent (%):

• Assign a probability distribution to the random variable at issue, X. If, among the population ob-

served, we see an uniform distribution of values between 40% and 100%:

X ∼U (0.4,1) (2.7)

For which the mean is µ= 1
2 (0.4+1) = 0.7 and the variance σ2 = 1

12 (1−0.4)2 = 0.03.

• Generate a random number between 0 and 1 (denoted Y, ), and assign intervals in which this num-

ber represents each of the possible events, according to the previously-defined distribution:

X = 0.4+Y (1−0.4) (2.8)
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• Produce a number of n trials (number of agents in this case), which corresponds to a series of

X1, X2, ..., Xn independent identically distributed random variables. For this set, let X =
∑N

i=1 Xi

N be

the average of the sample, then the CDF of the function Zn = X−µ
σ/

p
n

converges to the standard nor-

mal CDF at all points.

The Central Limit Theorem allows us to work with any distribution, stating that the mean of a sam-

ple is normally distributed independently of the type of distribution the data is taken from. Being

Φ the level of precision, s the standard deviation of the sample:

P

(
− Φ

s/
p

n
≤ x −µ

s/
p

n
≤ Φ

s/
p

n
)

)
= con f i dence l evel (2.9)

If the desired confidence level is 95%, from the table of the area under the normal curve, we can

obtain the bounds of equation 2.9, and these are -1.96 and 1.96 respectively. By these means, we

can calculate the minimum sample size to achieve a given precision and confidence level with the

formula:
Φ

s/
p

n
= 1.96 (2.10)

For the example at issue, if we want a precision in the sample average of 5% (indicating the average

of the sample will be wihin a 5% difference of the variable mean, µ= 0.7 and a confidence level of

95%:

Φ= 0.05 · (1−0.4) = 0.03 (2.11)

0.03
(1−0.4)2

12 /
p

n
= 1.96 (2.12)

Which gives a minimum sample size of n = 124.
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3 | Model

Local dynamic pricing of charging stations involves the coordination between the fleet of electric cars

and their drivers, the charging stations, and the electric grid to which the stations are connected. Most of

the literature focuses on the local distribution of charging to decrease waiting time or maximize its utility,

others discuss the benefits of having the charging managed locally at each station to shave the demand

peak or reduce losses. However, less literature has been published in the matter of coordinating the smart

grid of the city and the price of EV charging at the stations to maximize utility and reduce the social cost

of charging.

In order to study the feasibility and potential benefits of integrating a responsive interaction between the

charging stations and the grid, a cooperative model between the two has been built in this thesis. The

boundaries of the model lie on the limits of the distribution grid, and takes the price of energy from the

transmission grid as reference for the control of the operation ( LMP ). Therefore, the aggregator (control

unit) is placed between the transmission and the distribution grids.

Whereas solar panels and batteries are gaining great relevance in the smart grid, this model will not con-

sider local power generation or storage (other than the batteries of the vehicles). Nevertheless, they will

undoubtedly play a pivotal role in the optimized operation of the grid and should be the matter of future

research in this topic of local dynamic pricing.

The main components that this study will therefore involve are the residential consumption and the

charging stations for electric vehicles (see Figure 3.1). The subject of study is the price control and that is

why there will be bidirectional information flow between them and the controller. The controller, aware

of the price of energy from the transmission grid and the consumption in the distribution grid, has the

role of issuing economic signals with the purpose of optimizing operation at the scale of the city.
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Figure 3.1: Model

The price taken from the transmission grid can be more or less variable depending on the energetic mix

at issue. For instance, 98% of the electrical consumption in Norway comes from hydroelectric power (IEA

[2017]), and even if the price can vary throughout the year, it is normally stable within the day (AS [a]). On

the contrary, the Danish coal consumption has been drastically reduced (specially from 2006) to rely on

the growing wind power installed in the country. Wind power generation can be much more volatile and

so are the prices of energy in Denmark, significantly in the easter regions (Sealand and Capital regions,

DK2 in AS [b]). For this reason, the controller of the model will take the energy price as reference to

control and improve the local operation.

The second signal introduced in this control unit will be the local consumption within the distribution

grid. Its role is to reduce demand peaks and combine the demand flexibility with the fluctuations in

the energy supply price. With the deployment of smart grids, it is possible in this sense to actuate on a

specific bus of the local grid, which comes to the scale of a specific charging station in this study.

3.1 Computational overview

Computationally, there will be two models working in parallel (see Figure 3.2):
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Figure 3.2: Computational model

• On the one hand, there will be the Agent-Based model of the agents’ behavior. This model accounts

for the population of electric vehicles in the city and all the attributes of their drivers’ preferences

and journeys.

This model will be implemented in JAVA for the suitability of this language for object-oriented pro-

gramming. We can easily reproduce a population of different electric vehicles and drivers by inher-

iting the properties of a general definition of these classes.

The code of this ABM model is present in a public GitHub repository (?), and a brief description of

its use in Appendix A.

• On the other hand, we find the grid model containing all connections between the buses in the

distribution grid and the all their electrical information (consumption, voltage angle, losses, etc.).

AC optimal power flow (AC-OPF) is a non-linear, non-convex optimization problem of the flow

within the distribution grid. It can be done by means of very different optimization software that

implement the equations of OPF (see section about OPF). For the great synchronous compatibility

between JAVA and Matlab (MATLAB [2019]), we have chosen to use the MATPOWER package in
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Matlab to compute the OPF in the grid.

In order to make this model responsive, fast enough to account for the demand and supply of power,

a response time of 1 minute has been established. This update interval should be shorter in a real-life

control of the power demand, but has been set to 1 minute due to computational limitations.

In order to feed the model with realistic data of both the energy price (from the transmission state grid)

and the local consumption at each bus of the distribution system, two data sets are included:

• First, the electric hourly-consumption per bus in the grid, from a 2012 historical data repository

of the power company serving this city (Lillebo et al. [2019]). The 2nd of February 2012 was the

day with the highest consumption in record, and is therefore used in this thesis for a worst-case

scenario of the grid constraints.

• Second, the hourly energy price from the Nordpool Day-Ahead Market Price (Nordpool, 2020). In

this database there is no hourly record before January 2018, and for that reason the model considers

the prices for the period of the 8th to the 22nd of January 2020. The period has been chosen in winter

for its similarity in consumption and price tendency, but also intentionally for the volatility in the

energy prices (see Figure 3.3 at the DK2 zone: East Denmark. Nordpool, 2020). The purpose is to

illustrate the efficiency of the proposed control method when adjusting the power demand to the

supply prices.

Figure 3.3: Prices in the TRD and DK2 zones for the period of January 8th-22nd, 2020 (Nordpool, 2020)
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3.2 Geographical extension

In this work, we have taken Steinkjer, a middle-sized city in the county of Trøndelag (Norway) as the

case of study, because of the grid data availability. To illustrate the study, a data model in GIS has been

implemented to include and locate all stakeholders in the system.

Figure 3.4: Steinkjer in the map

The first would be to identify the bounds of the city and the use of each area within. To do so, we have used

the Arealbruk WMS map provided by GeoNorge, the national database site for geographically located

information in Norway (Geonorge [2019]). This map, updated in 2019, divides land use into 13 different

categories, such as residential buildings, green spaces or leisure buildings. For the city at issue, figure 3.5

shows the use of the different spaces in the territory considered.

In our computational model of the city, it is more convenient to divide geographical areas as rectangles, as

we can easily identify in which area a point is located by knowing its coordinates and the vertex (bounds)

coordinates of the areas. For this reason, the bounds of city form a square (see Figure 3.6.a).
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Figure 3.5: Land use in the city at issue (Geonorge [2019])

The same process has been followed to identify residential and working areas in the city. Working areas

have been divided into four rectangles in the city centre (Figure 3.6.b) according to the land use map.

Residential areas are three stripes where there is urbanization in the territory (Figure 3.6.c).
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(a) City bounds (b) Working areas

(c) Residential areas

Figure 3.6: City bounds and land use divisions
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3.3 Electrical grid

For this city, we have available not only the distribution grid layout for the medium and low voltage lines,

but also the consumption per bus during a whole year. This data will allow us to calculate the cost of

energy at the load for each bus of the system, and therefore obtain the price that charging incurs into at

each station located in the city.

The system consists of 974 buses, 1 slack bus (feeder to 66 kV, upstream network) and 1 PV bus (hy-

dropower station). The buses are connected to the distribution grid, either to the medium voltage of

22 kV or to the low voltage 400 V/230 V. A complete diagram of the system, based on electrical distance

metrics (Cuffe and Keane [2017]), can be appreciated in Figure 3.8.

Figure 3.7: Electrical grid diagram, based on electric distance metrics

For the sake of locating the MV/LV transformers in the city, and with the purpose of later connecting the

charging stations to the buses they represent, a map layer of these transformers 22 kV/ 0.4 kV has been

added to data model in GIS, as illustrated in Figure 3.8.
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Figure 3.8: Location of MV/LV transformers in the city, the 66 kV feeder (upstream network) and the hydropower
station

3.3.1 MATPOWER Model of the Grid

As mentioned before, the software used in this thesis to compute the OPF problem in the distribution grid

will be MATPOWER (Zimmerman and Murillo-Sánchez [2019]). By means of this package, we can modify

and augment the problem formulation by reusing the portions of interest (Zimmerman and Murillo-s

[2019]).

The input data for MATPOWER is given in a "MATPOWER Case", which is a file containing the matrices in

a Matlab structure. This structure is referred as mpc, and in the case of study, it mainly includes the con-

tent presented in table 3.1. The original data from the grid operator was converted into a MATPOWER
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case by the Electricity Markets and Energy System Planning (EMESP) 1 of the Norwegian University of

Science and Technology. The methods and outcomes of building this case were presented in their con-

ference paper (Zaferanlouei et al. [2017]) 2.

Table 3.1: Fields describing the distribution grid details in a MATPOWER case file

Field Description Value in the case of study

mpc.baseMVA

(Scalar)

System MVA base to convert all mag-

nitudes into per unit quantities.

25 MVA

mpc.bus

(Matrix)

Column Description Value

1 Bus number 1-974

2 Type 972 PQ buses + 1 PV bus (Hy-

dropower) + 1 Slack bus (up-

stream network)

3 Real power de-

mand in MW

Historical power demand data

+ charging stations demand

4 Reactive power de-

mand in MVAr

Historical power demand data

10 Base voltage (kV) 0.23/0.4 kV in low voltage, 4 kV

in the hydropower station bus,

and 66 kV in the upstream net-

work connection bus

1Electricity Markets and Energy System Planning (EMESP) https://www.ntnu.edu/iel/groups/emesp#/view/people
2In case of requiring the MATPOWER case data, non disclosed in this thesis, please contact the authors, or the author of this

thesis
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mpc.gen

(Matrix)

Column Description Value

1 Connection bus Buses to which the upstream

network and hydropower sta-

tion are connected.

2 Real power output

(MW)

0 (unlimited) for the upstream

network, 1 for the hydropower

station.

4-5 Maximum and

minimum reactive

power generated

(MVAr)

[-300,300] for both.

9-10 Maximum and

minimum real

power output

(MW)

[0,100] for both.

mpc.branch

(Matrix)

Column Description Value

1 "From" bus num-

ber

2 "To" bus number

3-4 Resistance of reac-

tance of the line

Taken from the grid data pro-

vided by the serving power

company.

6-8 MVA rating (long,

short and emer-

gency)

Depends on the cable type of

each branch. See Table 3.2 for

detail values of the cables used

in this grid and their MVA rat-

ing.
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mpc.gencost

(Matrix)

Column Description Value

1 Model Piecewise linear model

4 Number of data

points to define

price

2: The price of energy is linear

and proportional to the energy

price given by the transmission

state grid.

5 Cost Price introduced by the histori-

cal data of Nordpool.

Regarding the MVA rating of the branches (within the mpc.brach part of the structure), they are derived

from the type of cable used in each connection, which is given by the data provided by the power com-

pany. Using the Norwegian Electrotechnical Comittee standard (NEK 400:2018), we can obtain the rat-

ings from the cables’ isolation type, cross-sectional area and the conductor material. The formula to use

is hereby presented and so is the table summarizing the cables used in this grid and their MVA rating

(Lillebo et al. [2019]):

MV Ar ati ng =
p

3 · Icap ·VPhi

1000000
(3.1)

Where Icap is the current-carrying capacity of the cable, and VPhi the phase voltage.
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Table 3.2: Cable types used in the distribution grid and their MVA rating (Lillebo et al. [2019])

Cable code number Isolation type max A MVA Rating

PFSP 1X3X25 AL PVC 69 0.0275

PFSP 1X3X50 AL PVC 99 0.0394

PFSP 1X4X50 AL PVC 99 0.0394

TFSP 1X3X150 AL PEX 220 0.0876

TFSP 1X3X240 AL PEX 290 0.1155

TFSP 1X3X95 AL PEX 172 0.0685

TFSP 1X4X16 AL PEX 64 0.0255

TFSP 1X3X50 AL PEX 117 0.0466

TFSP 1X4X95 AL PEX 172 0.0685

PFSP 1X3X10 CU PVC 54 0.0215

PFSP 1X3X16 CU PVC 70 0.0279

PFSP 1X3X2.5 CU PVC 24 0.0096

PFSP 1X3X4 CU PVC 33 0.0131

PFXP 1X4X16 CU PVC 70 0.0279

3.4 Charging stations

In the model, the charging stations also have to be placed and specify which bus of the grid they are con-

nected to. In the city at issue, the actual total count of charging stations is 8 (NOBIL), which is not enough

to simulate a scenario where the penetration of EV is as predicted. In addition, all except for one of these

stations are placed outside the bounds of the electric grid we have available data of. Therefore, a new set

of stations has been created to simulate a more friendly environment for the charging of electric vehicles.

With a population inferior to 25.000 inhabitants, and according to the forecast of EV penetration, we have

placed 15 stations among the most probable places where they could be located, both in public facilities

and busy paths of the city (Lorentzen et al. [2017]).

Fast charging stations can sometimes be connected to existing MV/LV transformers if the transformer has

sufficient capacity and the voltage level is adequate (400 V TN network). However, most of the times they

are connected to the grid by means of a dedicated transformer (see Figure 3.9) without any additional

charge (Sørensen et al. [2018]), and since the model will grant a maximum charging power of 150 kW to
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the stations, they will all be placed after a dedicated transformer. For the case of study, we will only con-

sider stations that comply with the Mode 4 of the standard defined by the International Electrotechnical

Comission (IEC 61851) in Part 1. Under this standard, the connection of the EV to an AC or DC supply

network must utilize a DC EV supply equipment.

Figure 3.9: Grid connection of charging stations (Sørensen et al. [2018])

DC chargers can either be connected to a portion of the grid that is already in DC (common DC-bus

configuration, less common) or to the AC grid by means of a rectifier. In this model, only the second

configuration will be considered, where the conversion from AC to DC is done at each station. Under Part

23 of the same standard (IEC 61851), we can also find the typical configuration of DC charging systems

and their connection to the AC grid. As the most used DC-fast chargers have an efficiency of over 93%

(Ronanki et al. [2019], the model will be simplified by not adding an extra stage but simply introducing

the power demand at the specified bus of each station.

In order to simplify the allocation of the stations, we will consider the stations and their transformers are

placed next to one of the existing connection points to the 22 kV (MV) lines.

Therefore, 15 of the existing 22 kV connection points will be assigned a charging station with 2 connection

points each. The resulting layer of the data model in GIS is represented in Figure 3.10. In the coordinated

model that comprises both the stations and the grid buses, the consumption at each station will be as-
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signed to the bus corresponding its MV connection point.

Figure 3.10: Location of the 15 charging stations in the city, and their ID number in the model

3.5 Agents

The key of Agent Based Models is the singularity of each one of their agents. The model does not compute

overall tendencies, but simulates the actions of autonomous agents who make decisions on their own

preferences to accomplish goals. Agent Based Models can therefore shed light into emergent phenomena,

which is the objective of our study on local dynamic pricing of energy among the charging stations.

We can start by looking at the Agent class attributes and the values they take in this model. Then, we will

analyze in detail the behavioral parameters they are assigned in the simulations.
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3.5.1 Agent Class attributes

An agent in this context represents an EV driver with a number of attributes and behavioral parameters.

The way agents are modeled and how they interact with the rest of the model at issue are taken from

the preceding master thesis of Eilertsen [2013]. In his work of integrating the EV in the software of smart

grids, the agent is an object class included in the overall model as illustrated in Figure 3.11.

Figure 3.11: High-level overview of the agent class integration in the model developed by Eilertsen [2013].

We can see the agent class is within the Model package, and connected to the Navigation, Environment,

and Schedule packages. When looking in detail at the structure of an agent, it has a number of attributes,

and is connected to a Car object class (see Figure 3.12).
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Figure 3.12: Detail view of the Model package and the Agent class Eilertsen [2013].

Inherited from the Agent class, we have the Worker Agent class, which is an agent to which we assign

a work location and working hours. The Worker Agent class will define all the agents simulated in the

model of this thesis, controlled by the Agent Supervisory Manager that relates the actions of the agents

with the rest of the model (the global clock, the city properties, etc.).

In turn, the Car class has a number of attributes as well. A car is defined in the model from its type,

recharge rate, current SOC and maximum battery capacity. Three models of car will be used in this thesis,

taken from the three most common ones in Norway (Sørensen et al. [2018]).

With the purpose of describing how agents and their cars integrate the model, we can summarize their

attributes in Figure 3.13 and Tables 3.3 and 3.4.
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Figure 3.13: Main attributes of the Worker Agent and Car classes.

Table 3.3: Worker Agent attributes and their values.

Attribute Value

Car Randomly assigned car of the possible models (See Table 3.4)

City All agents belong to the city at issue

Home Location Randomly generated location within the residential areas

Work Location Randomly generated location within the working areas down-

town

Home-Work Route OSMR Route generated between the locations above (Luxen

and Vetter [2011])

Current location Either at home, at work, or at any intersection of the home-

work route

Working time schedule Randomly generated work start and end times. Start times

range from 7:00 to 8:00 AM, and the end times are calculated

8 hours later

As mentioned before, the worker agents can be assigned one of the three most common EV models in
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Norway (elbil.no), which are:

Model
Consumption Rate

[kWh/km]
Charge rate [kW]

Battery Capacity

[kWh]

Nissan Leaf (Nissan-Norge

[2019])
0.167 50 40

Tesla S (Tesla-Norge) 0.198 150 100

Volkswagen e-Golf

(Volkswagen-Norge [2018])
0.166 50 35.8

Table 3.4: EV models and their attributes.

In this study, agents make two trips per day (home to work and back), and the distance travelled per trip is

between 1.5 (imposed minimum route distance) and 4.5 km (maximum distance within the city bounds).

As it can be appreciated in Figure 3.14, the maximum distance travelled by agents from residential areas

(in red) to working areas (in green) in the city, is around 4.5 km. Therefore, agents in the simulation will

be travelling a distance between 3 to 9 km per day, which is not at all realistic according to the Norwegian

National Travel Survey 2013/14 (Hjorthol [2014]), where the average distance travelled per day and per

person is 47.2 km. Since we only have available grid data for the city bounds specified, the agents have

to be restricted within, but we can simulate a longer distance by means of a higher consumption in the

vehicles.

In order to solve this shortage in terms of geographical extension, the power consumption of vehicles

will be multiplied by 5 in this model, so that daily energy consumption is equivalent to a more realistic

travelled distance. Instead of a total daily travelled distance of 3 to 9 km, the consumption corresponds

to a distance between 15 and 45 km. The resulting consumption rate for each EV model is given in Table

Table 3.5: Modified EV models and their attributes.

Modified Model
Consumption Rate

[kWh/km]
Charge rate [kW]

Battery Capacity

[kWh]

Nissan Leaf 0.835 50 40

Tesla S 0.99 150 100

Volkswagen e-Golf 0.83 40 35.8

52



Figure 3.14: Example of the maximum distance travelled by agents between residential zones (red) and working
zones (green) in the city.
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Consequently, car ranges will be divided by 5 in our model, with the purpose of having a realistic charging

frequency, as shown in Table 3.6.

Table 3.6: Real and simulated charging parameters of the EV models

Model Nissan Leaf Tesla S Volkswagen e-Golf

Real Model Real Model Real Model

Battery capacity

[kWh]
40 40 100 100 35.8 35.8

Consumption Rate

[kWh/km]
0.167 0.835 0.198 0.99 0.166 0.83

Range [km] 240 47 505 101 215 43

Estimated charge

duration [days]
12 12 5 5 4 4

Now that the attributes of a worker agent have been defined, we move onto their behavioral parameters

and how they prioritize choices.

3.5.2 Agent behavioral parameters

Many studies that focus on modelling the behavior of the EV drivers from their preferences, use logit

models to characterize them (Yang et al. [2016],Wen et al. [2016]). Logistic regression analysis requires

collecting data from real users to induce the coefficients, and therefore constitute an accurate manner to

predict and simulate behavior. A logit model could predict the most suitable station within a set, as the

model takes into account a number of parameters such as the travel time increase, the cost of charging,

or the type of road among others.

However, logit models will not be used in this thesis, since they can only infer general coefficients by

adding the particular behavior of each agent. Reversing the general trends of behavior to infer the par-

ticularities of each agent is highly dependant of the distribution that these parameters follow (Flammini

et al. [2019]). Some advocate that assigning the correct parameter distribution to the coefficients of a log-

arithmic regression model, is particular to each application (Sun et al. [2016]). The distribution is often

freely specified by the researcher, and among the most used one can find the normal, log-normal and

uniform distributions. For this reason, as there is no logit model already developed that this thesis could
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relate to in particular, the results of the related work is only useful to identify the main variables that make

users choose a station over another.

The most cited variables over which agents decide where to charge are (Yang et al. [2016],Wen et al.

[2016],Ma et al. [2019]):

• Baterry state (SOC)

• Travel time (time added in order to include a given station in the way)

• Price of charging

Among the most commonly used methods to characterize agents, we also find the probabilistic models.

In this type of model,the probability of an agent taking an action is modelled by means of its preferences

and the fit of a situation to its goals. In this case, what has to be modelled for each agent is the strategies

they follow to charge their vehicle.

If we base the behavior of the agent on the three above-stated variables, we can build a probability func-

tion for each one of them, that will assign a probability of charging to each available station within range,

Pag ent ,st ati on = f (SOC ,di st ance, pr i ce). One of the variables characterizes the agent’s vehicle state

(SOC) and the two others, the station at issue (price and distance).

This probability function that will serve each agent to evaluate the whole set of stations available to

charge, has to take values between 0 and 1. To make these three variables produce a value within this

range, the proposed expression groups the two variables that are station-dependent in the first factor.

The second factor accounts for the battery SOC of the agent, that will determine the overall behavior,

as indicated in most of the above-mentioned studies. For a set of n agents and m charging stations, the

probability of an agent i charging at station j is:

P (i , j ) = P (iSOC ) ·P ( jD , jPr ), i = 1, ...,n, j = 1, ...,m (3.2)

To group both station-dependent variables under the same factor, they need to be weighted. Some stud-

ies suggest that the location of the station prevails (for instance, Wen et al. [2016]) and others put the

price first (Ma et al. [2019]). Both seem to have a comparable importance, therefore, the model hereby

proposed will assign a random weight to each of them between 40% and 60% in this first factor of the
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probability function. The assigned importance to distance and price (over 1), will be noted xD , xP re-

spectively.

The overall probability function for a given agent to charge in a specific station can be rewritten as follows:

P (i , j ) = P (iSOC ) · (P ( jD ) · xD +P ( jP r ) · xPr ), i = 1, ...,n, j = 1, ...,m (3.3)

By separating the probability function in several factors, we can study the influence of each variable in

the decisions the agents. It is worth emphasizing that each probability sub-function must also take values

between 0 and 1 for the overall function to be within range. Hereafter, there is a detail explanation of each

of them.

1. Battery state of charge (SOC)

Most of the charging events happen when the SOC of the vehicles of EV owners is between 20% and

80% (see Figure 3.16, Smart and Schey [2012]). Agents will not charge only when the battery level

drops below their preferred minimum. They will instead assign a higher probability to charging as

the SOC decreases (Harbo et al. [2018]).

Figure 3.15: Distribution of battery SOC at the start of charging events (Smart and Schey [2012])
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Each agent will be randomly assigned a minimum and a maximum thresholds of battery SOC and

he will always try to keep his battery level between those. To be realistic, these thresholds will range

from 20% to 80% and from 80% to 100% respectively. Agents who prefer depleting their batteries

before considering to charge again will have a low threshold of SOC (20-30%), and they will seldom

confer any utility to charging when their battery is above a certain level (80%). The opposite kind of

agent, the farsighted, will prefer to keep his battery above a high level of charge (50-80%) and will

always see some utility in charging (maximum threshold of 90-100%).

In this model, if we only account for the variable of the battery SOC, the probability of charging is

zero above the maximum threshold (no utility in charging) and the probability becomes 1 when

the SOC drops below the minimum preferred level. Between these two limits, the probability of

charging is assigned a linear function for the sake of simplicity. The probability function based on

the battery state of charge is as follows :

P (iSOC ) =


1, if SOC ≤ SOCmi n

1− SOCt−SOCmi n
SOCmax−SOC mi n , otherwise

0, if SOC ≥ SOCmax ,

An example is illustrated for an agent whose minimum and maximum thresholds are 30% and 70%

respectively:

Figure 3.16: Probability of charging in terms of battery SOC for an example agent with thresholds at 30% (min) and
70% (max)
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2. Price of charging at the station

In Norway, the private companies with the highest share of fast charging stations are Fortum ChargeDrive,

Grønn Kontakt and Tesla (Sorensen et al. [2018]). As of today, these companies provide fast charg-

ing in over 310, 240 and 60 stations all over Norway respectively. Except for the Tesla Supercharger,

the other charging stations are priced upon time and energy consumption altogether. An overview

of these prices (as of June, 2020) are summarized in the following Table 3.7 and Figure 3.17.

Table 3.7: Price of energy at the charging station: current situation in Norway. Source: NOBIL

Charging

rate
Fortum Grønn Kontakt Tesla

50 kW 2 kr
mi n +2.5 kr

kW h = 4.9 kr
kW h 1.25 kr

mi n +2.9 kr
kW h = 4.4 kr

kW h 1.7 kr
kW h

150 kW 2 kr
mi n +2.5 kr

kW h = 3.3 kr
kW h 1.25 kr

mi n +2.9 kr
kW h = 3.4 kr

kW h 1.7 kr
kW h

Figure 3.17: Price of energy at the charging station, in function of the charging speed: current situation in Norway .

We can see that the two biggest providers of fast charging for EVs tend to stabilize the price of

energy per kWh when the charging speed increases. In the model created in this thesis, as will be

presented later in greater detail (see section 4.1.3), the price of recharging will be determined by

the energy consumption (kWh) and not by the time of use. However, we will take this limit of 3.3

kr/kWh as reference price for the strategies where the price of charging is static (see section 4).
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With the purpose of simplifying the behavior of the agents as a function of the charging price, the

probability function of charging is given, once more, by means of a linear function. To do so, a

maximum price has to be established, and with the purpose of locally influencing the price, the

maximum is set at 10 kr
kW h . The agents will assign a probability to charging at a station according

to the following function:

P ( jPr ) = Pr i cemax−Pr i cest ati on j

Pr i cemax
= 10−Pr i cest ati on j

10

Figure 3.18: Probability of charging in terms of price, for a maximum price of 10 kr/kWh

3. Distance to the charging station

The work of Yang et al. [2016] sheds light on the importance of modeling the charging choice as

related to the route choice among EV drivers.The fact that EV cruising ranges are shorter than tra-

ditional vehicles makes their drivers worry about the battery and strongly influences their charging

station and route choices. Therefore, when an EV driver has the need to charge, the charging sta-

tion attributes such as charging time and location will determine which route to take. Findings

show that agents prefer those stations closer to the origin (where the battery level is still close to

the initial).

Whereas traditional route choice can be modeled from a number of basic level of service attributes
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(such as time, fare or road grade), the possibility of charging and the specifics of the stations play a

pivotal role in EV route choice (Yang et al. [2016]). Accordingly, drivers will evaluate jointly the level

of service of the possible routes and the charging opportunities they offer.

When modeling the choice of a driver among a set of available stations to charge, they will not

evaluate their utility by the distance to the stations from their origin or destination, but based on

the detour that these stations involve in their route to work or home. The detour can be measured

in time, distance, or any other set of attributes that measure the level of service of a route.

A concept already introduced by other authors in public transport route research (Yao et al. [2020],

Raveau et al. [2011]) and used again in the work of Yang et al. [2016] is the angular cost of a route,

where the level of service (and hence the probability of an agent choosing this route) decreases

as the angle formed by the detour increases (see Figure 3.19). In the study at issue, the triangle is

always the one formed by the Origin -Charging Station - Destination (henceforth O-CS-D).

Figure 3.19: Route angular cost. Source: (Yang et al. [2016])

In the model developed in this thesis, the approach is very similar. However, it is not based only

on the distance and the angle formed by the three locations, but on the total driving distance. This

model can more accurately account for the roads configuration and give a more realistic view of

the time and distance used in every charging detour. To this end, we use the OSRM engine (Luxen

and Vetter [2011]) to generate 3 routes for each combination of O-CS-D. If an agent has a set of 15

available stations, the model will compute 45 routes in order to assign a probability of charging

to each of them. These three routes are O-CS, CS-D and O-D, and the model will evaluate the

proportional distance increase in the sum of (O −C S)+ (C S −D) with respect to the original route

O −D .
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The range anxiety (as it is commonly described in the literature) has a stronger effect on some

agents than others. Those who do not regard depleting their batteries before charging can be more

prone to driving longer distances to charge when they need to. Others will preferably choose sta-

tions that do not involve a great detour from their original route, and will prioritize the ones closer

to their origin. To characterize agents in this range of behavior, the model proposed in this model

proposes a randomly-generated factor for each agent.

Studies suggest that agents will consider a maximum detour of 1750 m in trips where the distance

is within the range of 10 and 20 km (Sun et al. [2016]). The mean distance of travel per trip varies

widely among studies, since different countries have very different urban configurations. For in-

stance, the Norwegian Institute of Transport Economics estimates the daily travel at 3.26 trips per

day and a total distance of 47.2 km, which gives a distance of 14.48 km per trip (Hjorthol [2014]).

From this data, it is possible to assume a realistic range where most anxious agents will prefer routes

with a detour smaller than 10% and those willing to travel further to charge will consider stations

that require up to 60% of added distance to the route.

In a similar fashion of the SOC probability function, the probability of charging is only 1 when the

there is no detour to charge in a given station. On the other hand, probability will drop to 0 when

the added distance to charge is above the agent’s preference of maximum distance. In between

these thresholds, this model considers a linear function as illustrated in Figure 3.20.
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Figure 3.20: Probability of charging in terms of the detour added distance, for agents with low and high range
anxiety.

The mathematical formulation of this function is as follows:

P ( jD ) =


1, if there is no detour

1− Di stSt ati on j −Di stmi n

Di stmax−Di stmi n , otherwise

0, if detour ≥ Di stmax ,

In this formulation, the minimum distance is equivalent to the original distance between origin

and destination (home-work), without the need of including a charging station in the route.

Now that the effect of each variable has been modeled separately, it is possible to analyze how they inter-

act and condition the choices of the agents jointly.

In the overall, the state of charge of the battery will be dominant, as it multiplies the total probability of

charging in a specific station. If the SOC of the agent is above the maximum threshold, the total probabil-

ity of charging will be zero. On the other hand, if the SOC is below the agent’s desired minimum threshold,

the total probability increases quickly.

First, we can have a look at the station-dependent variables (distance and price). In Figure 3.21, we can
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appreciate how the probability of charging at a given station decreases with both the price and the detour

added distance. Nevertheless, this decrease is not as abrupt for agents with low range anxiety as it is for

agents with high range anxiety.

(a)

(b)

Figure 3.21: Probability distribution of charging in terms of the station-related variables. Cases of agents with high
and low range anxiety.
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We can see how agents with a higher range anxiety are less responsive to price, as they prioritize arriving

to the charging station as fast as possible and do not mind paying more for a closer station to their route

(see Figure 3.22). In the figures, at a 0% distance increase, the probability of charging at a price of 10

kr/kWh for an agent with high range anxiety drops only to 0.6. In contrast, the agent with a lower range

anxiety does not mind driving longer to charge at a lower price, and he is more sensitive to price. The

probability drop at 0% distance increase is to 0.4 when the price reaches 10 kr/kWh.

Figure 3.22: Sensitivity to price of agents with high and low range anxiety (at 0% distance increase).

Although these station-dependent variables have a great impact on the probability the agent assigns to

each station, the overall probability of charging is mainly determined by the battery state of charge, as

indicated before. Figure 3.23 supports this phenomenon, where we can clearly see how the SOC of the

agent is the more determinant factor to the probability of charging.
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(a)

(b)

Figure 3.23: Probability of charging in terms of 3 different SOC levels, distance and price of the stations.
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4 | Cases of implementation

The purpose of this thesis is to study the feasbility and potential benefits of introducing Locational Marginal

Pricing (or nodal pricing) as economic signals to control the charging demand of the EV fleet and opti-

mize their operation in the grid. Locally pricing the energy at stations is introduced as a new charging

strategy (Local Pricing), and in this section, it is compared to two other more common reference strate-

gies, the uncontrolled scenario, and the centralized control (see section 2.4).

At the same time, these three strategies will be simulated for two different sets of agents. One smaller

pre-defined set over a single day, and a larger randomly-generated set over several days.

4.1 Charging Strategies

The behavior of agents has been modelled in section 3.5.2, and in this one, the focus is on the implemen-

tation details of the strategies to affect the agents’ behavior. An overview of the three strategies is hereby

presented:

As mentioned in section 2.4, the central operation scheme for charging implies the bi-directional real-

time communication between a centralized control system and the fleet of EVs. In this case of applica-

tion, the objective function is the minimization of the cost of charging in terms of the price for the grid.

On the contrary, decentralized operation schemes for charging imply that decisions are taken by agents

in order to fulfill their own charging goals, and not by the CCU (Ma et al. [2011]). THe price is dynamic

(influenced upon) in the decentralized control, but static at the others, and the value is 3.3 kr/kWh as an

estimation of Norway’s current offer (see 3.5.2.

66



Table 4.1: Summary of the charging strategies

Strategy Description Price at station
Variables influ-
encing the station
choice

1. Uncontrolled charging
(Dumb)

Agents charge in the station
that implies the least detour
distance from their original
route.

Static 3.3
kr/kWh

Distance (detour)
from the agent’s
path

2. Centrally-controlled
charging

The agents are assigned a
charging station by the ag-
gregator (CCU): The one
with the cheapest price for
the grid.

Static 3.3
kr/kWh

Cost of energy for
the grid

3. Decentralized con-
trolled charging (Smart
pricing: Local Pricing)

The agents choose indepen-
dently upon their own pref-
erences. The control action
is on the price of energy at
the stations.

Dynamic
SOC, Distance and
Price

4.1.1 Uncontrolled charging

Uncontrolled or dumb charging (Galus [2012]) refers to the scenario where agents charge their vehicle

when the need arises, and they simply choose within the closest facilities to its current location. If the

agents had the habit to charge either at home or at work, the only variable upon which they make de-

cisions is the SOC of their vehicle after arrival. In our case of study, where agents only charge in fast

charging stations located in public facilities, an uncontrolled or dumb scenario would imply that agents

recharge their vehicle when the battery is below a minimum desired level of energy, wherever they find

themselves at the moment and with no consideration to other factors but the proximity of the stations

available. This would be equivalent to the most common behavior among drivers of conventional (ICE)

vehicles.

In the model at issue, the agents decide whether they need to charge the vehicle in their way before they

leave their current location, that is, if the vehicle has less remaining energy upon arrival than the desired

minimum. Once the agent has taken the decision to charge in its way, it will pick the station that fits best

its interests and reserves a spot. As mentioned in section 3.5.2, the agents will choose a station upon three

factors: their SOC upon arrival, the price of energy, and the detour to reach a station. If the price of energy

is static among all stations, and they have already chosen to charge, the stations are indeed assigned a

probability that is only dependent on the detour needed to reach them along the path. The probability
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function of an agent i charging at station j modelled in equation 3.2, is therefore reduced to:

Pr ob(i , j ) = P ( jD ) (4.1)

After all stations have been assigned a probability, the first will be chosen by the agent and included in

the driving path.

The algorithm would be as follows:

Algorithm 1: Dumb charging algorithm

The agent is about to leave its current location;

if SOCar r i val ≤ SOCmi n then
Assign probabilities of charging for all stations available, following the function:

Pr ob(i , j ) = P ( jD );

Reserve a spot in the one with the highest probability, which is the closest station (minimum

detour);

Drive to the chosen station along the route;

Charge;

Drive to final destination;

end

This charging strategy marks a reference scenario where agents assign the highest utility to charging since

they are only choosing the closest station without regards to the price of energy.

4.1.2 Centrally-controlled charging

As opposite to the dumb charging strategy, we find the centrally-controlled charging operation. Con-

trolled charging involves the option to actively schedule the place and time of recharges. The assignment

of stations to agents would be made by a Central Control Unit (CCU), also referred as aggregator. To make

decisions, this aggregator must have access to the state of the whole system, involving not only the power

grid but also the agents. The optimization of the coordinated system as a whole is only viable when the

complete state of the system is known as in this case, which represents its main benefit. However, it

requires real-time direct communication between the CCU and all the entities, agents and power grid.
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This strategy of charging presents two main drawbacks. Firstly, it involves voluntary participation and

lease of data from the agents, who may probably find intrusive to share the state of their vehicle and

route plans with an aggregator. Second, all scheduling responsibility lies on the CCU, and with a large

number of agents in the system, it may become computationally unfeasible to schedule the charging

with a response time low enough.

The objective of centrally-controlled charging is to reduce the total cost of charging (in kr /kW h) from

the perspective of the power grid. Different stations will have different nodal prices, due to congestion

and transmission losses in the grid (see section 2.5.2), and the CCU will therefore assign the agent where

the energy is cheapest (lowest nodal price). This is an optimization in space but not in time, as the CCU

is assigning the cheapest station at a given moment but the price of energy from the grid might be high

then.

If it were to be computed in retrospect, such as at the end of a day, the scheduling could be optimized not

only in space but also in time. The aggregator would be able to assign agents to stations at the time of day

when they would cost the least. Nevertheless, this is not possible in an scenario where the scheduling is

done upon request of the agents (real-time response). This strategy may therefore imply that agents have

to deviate or travel further in order to charge, and their utility of charging decreases as a consequence of

their preferences not being respected.

The algorithm of centrally-controlled strategy is:

Algorithm 2: Centrally-controlled charging algorithm

The agent is about to leave its current location;

if SOC (v,t) < SOCmi ndesi r ed then

The CCU computes the price of energy at every station of the set;

The agent is informed of the station to use along its way;

The agent drives to the station first;

Charge;

Drive to final destination;

end
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4.1.3 Decentralized controlled charging: Local Pricing

As mentioned before, the main benefit of decentral strategies is the lack of needing constant communi-

cation between stakeholders. Responsibility no longer lies on the aggregator but on each of the agents

involved when they make their own decisions towards their goals of charging. It is computationally more

simple, and less intrusive with the agents’ data.

The difference between this controlled strategy and the uncontrolled strategy is the actuation on one of

the parameters that has influence on the agents’ behavior: the price of charging. The price is no longer

static, but by changing it will influence the decisions of agents on whether to charge and where.

We account on the agents’ behavioral parameters to determine the fitness of a situation for their goal of

charging (SOC, distance and price). Before an agent leaves its current location (home or work), if the SOC

upon arrival is less than the desired minimum, it will check the status of the stations with open charging

points. From the information on these stations, the agent will decide whether or not to charge, and will

choose the station that best fulfills its preferences.

To quantify the fitness of each station to the agent’s goals, it is modelled by the probability function pre-

viously defined in equation 3.3, hereby reminded:

P (i , j ) = P (iSOC ) · (P ( jD ) · xD +P ( jP r ) · xPr ), i = 1, ...,n, j = 1, ...,m (4.2)

After the agent has checked prices and distances on all stations, and has assigned them a probability of

charging following this function, it will only charge if the one with the highest probability is fit enough.

For instance, if all stations have very high prices, or if the only available ones are far away, the agent might

decide not to charge at this moment. In order to model this decision, we will generate a random number

between 0 and 1 that will in a certain way represent the agent’s level of exigency to charge at the moment,

LEi . If the level of exigence is high, for instance LEi = 0.9, very few stations or none will be over this

level of probability (taken from function 3.2). On the contrary, if the level of exigence is low, for example

LEi = 0.2, a good part of the stations will be over this level of probability and the charging event will most

probably happen.
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Therefore, formally expressed, an agent i will only charge among a set of m stations if:

max(P (i , j )) > LEi , j = 1, ...,m (4.3)

The algorithm for an agent is as follows:

Algorithm 3: Decentral charging algorithm

The agent is about to leave its current location;

if SOCar r i val ) < SOCmi n then
The agent is assigned a charging level of exigence, which is a random number between 0 and 1

(LEi );

Check the stations available;

for i = 1: n do

The agent assigns a probability of using a charging station to each available station in the set;

P (i , j ) = P (iSOC ) · (P ( jD ) · xD +P ( jP r ) · xPr ), i = 1, ...,n, j = 1, ...,m, see equations 3.3

end

if max(Prob(Agenti ,St ati on j ) ≥ LE Ag enti f or j = 1, ...,nst ati ons then

The agent chooses the station with the highest probability of charging;

The agent includes the station in its route;

The agent drives to the station first;

Charge;

end

Drive to final destination;

end

In this strategy, the main advantage of this strategy is the possibility of influencing the agents’ choices

by changing the parameters to which they are sensible without the need of knowing the complete state

of the system. In this simplified model of agents’ behavior, we will act on the price of charging at the

stations to regulate and optimize operation, but acting on other parameters could be studied (parking,

pricing over time, etc.).

In order to make the actuation on the price effective in terms of agents’ behavioral shift, the clearing of

the price is key to this charging strategy.
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Clearing the local price of energy at the stations

The price of energy at different charging stations is becoming more dependent on the place and time of

charging. Price of energy from the transmission grid is already more volatile over time than before, due

to the introduction of renewable energies (for which the generation varies along the day). That is why

we see very strong fluctuations in the price of energy in zones with a high dependence on wind power

like DK2 (see Figure 3.3). Moreover, the price of energy is also becoming more volatile at a given time

and among different places in the distribution grid. With the introduction of DER and energy storage

at a local level, the price difference between stations will become more significant, added to the already

existing cost of transmission losses and congestion (Frontier Economics [2009]).

Nordic countries belong to the Nordpool Market (Nordpool, 2020) where the price of energy is cleared by

zone (bidding areas) and it is constant within this geographical extension (see section on Zonal Pricing,

2.5.2). Trondheim and Steinkjer both belong to the NO3 zone (see Figure 4.1), and the price of energy is

therefore the same within this whole area.

Figure 4.1: Bidding areas within the Nordpool Market (Nordpool, 2020)

Nevertheless, other countries have started pricing energy according to its real cost at each bus of the

system (nodal price, Holmberg and Lazarczyk [2012b]). In nodal pricing schemes, the price paid for

energy differs from one bus to the other. If we look at the equation defining Locational Marginal Pricing,

at a given time (for which the system cost of energy is the same in the whole area), different nodes will

have different costs of energy depending on transmission and losses:
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Figure 4.2: LMP components defining the difference between nodal prices at a given time.

We can take the distribution grid at issue to illustrate these differences in prices among the buses at a

given time. To do so, we run the ACOPF problem in the grid at a moment of high consumption, for

instance 8:00 AM, February 3rd, 2012 (for which we have data as the day with the highest consumption

of the year). At this time, the energy price given by Nordpool Market (considered as generation price in

this problem) was 400.13 kr/kWh (see section 3.3). The price of energy (kr/kWh) in the buses where the

charging stations are located are gathered for two cases of usage:

• First, we only include the consumption of households at this time, for which we have historical

record of the power demand.

Figure 4.3: Nodal prices of energy at the buses of the charging stations, when no cars at connected in kr/kWh
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• Second, adding the consumption of 2 cars charging at 150 kW in every station.

Figure 4.4: Nodal prices of energy at the buses of the charging stations, when 2 cars are connected at each station
and charging at 150 kW, in kr/kWh

From the two previous Figures 4.3 and 4.4, we can see how the nodal price of energy at the buses of the

charging stations differ from the energy price given by the Nordpool Market. The prices increase in a

maximum of 0.6% in the first case, and 1.4% in the second. After observating simulations at different

hours of the day, 1.5% has been found to be the highest price difference between nodal prices and the

system (Nordpool) price (generation price in the ACOPF model).

In this model, where there is no local production of energy or storage, and where both generators (trans-

mission grid and hydroelectrical power plant) take the Nordpool price, the differences in nodal prices are

only due to congestion and transmission losses (Frontier Economics [2009]). In a resilient electrical grid

as this one, the differences are very small, and for that reason there is the need to design a pricing scheme

where the differences are felt by the agents.

With the intention of making this model mock the scenario where nodal price differences are bigger,

these proportional increases in the price will be magnified. If we want the agents to be equally sensitive

to both the price given by the system (Nordpool) at a given time, but also to the difference in price among
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the local stations, we can divide the price range in two equally contributing parts. If the maximum price

the agents will be charged for energy is 10 kr/kWh (see section 3.5.2), each part can contribute up to 5

kr/kWh:

• The first 50% of the price will be given by the Nordpool price of energy at a given moment, with re-

spect to its maximum achievable value. Within the dates considered, the maximum price of energy

in zone DK2 of the Nordpool Market is 403.3 kr/kWh (see Figure 3.3), and this is established as the

maximum of a linear price function ranging from 0 to 5 kr/kWh:

Figure 4.5: First part of the price: Linear function of the Nordpool price of energy at a given time.

• The second 50% of the price will be determined by the proportional increase in the nodal price

with respect to the Nordpool price, due to congestion and transmission losses. We define the nodal

price difference as the proportional increase between the system price and the nodal price, due to

congestion and losses. Taken 1,5% as the maximum price increase between these two magnitudes,

again we define a linear price function ranging from 0 to 5 kr/kWh:
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Figure 4.6: Second part of the price: Linear function of the nodal price.

Putting these two contributions to the price together, we get a range of 0 to 10 kr/kWh for the price the

agents will pay at the charging station. In Figure 4.7, we can appreciate the contribution of the Nord-

pool price in the red line to the total price ranging from 0 to 10 kr/kWh. In the blue stripe, there is the

contribution to price from nodal price differences, at each possible Nordpool price.

Figure 4.7: Local pricing scheme based on both Nordpool and nodal prices of energy.
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In order to clarify Figure 4.7, we can represent the axis of nodal price difference (%) and three illustrative

points where the price is calculated:

Figure 4.8: Second part of the price: Linear function of the nodal price difference: Explanation aid.

Point 1 2 3

Nordpool Price (kr/MWh) 200 200 300

Nordpool Price contribution (kr/kWh) 2.5 2.5 3.75

Nodal price difference (%) 0.6 1.5 0

Nodal Price contribution (kr/kWh) 2 5 0

Total price at the station (kr/kWh) 4.5 7.5 3.75

Table 4.2: Price calculation for points in Figure 4.8

4.2 Simulation scenarios

We will now define the simulation scenarios that will be used to analyze and discuss the feasibility and

benefits of the proposed charging strategy.

If the set of agents is generated in a way that random characteristics are assigned to each one of them

(Monte Carlo simulation method, see section 2.5.2, comparing charging strategies will need the simula-

tion of large sets of agents and for long time, in order to avoid very distant scenarios in terms of energy
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demand. Each time an agent is generated, and each time an agent faces the decision of whether or not

to charge, random numbers are assigned in order to simulate their behavior. By the law of large numbers

(LLN), when repeating this random roll a greater number of times, we will generate a sample of agents

whose characteristics’ mean approaches the expected value. On the contrary, if few agents are simulated,

or if the time of simulation is short, randomness might incur in deviant sets of agents, and therefore

different demand scenarios.

To overcome this problem, the first case of implementation will be using a fixed set of agents for which

the energy demand is known. The second and more illustrative case of implementation will simulate a

randomly-generated larger set of agents over several days. A summary of the simulations can be appreci-

ated in Table 4.3.

Table 4.3: Simulation scenarios

Charging Strategy

Set of Agents Uncontrolled Centrally-controlled

Decentrally-

controlled ( LMP

)

Small fixed set, 20

agents
Simulation 1 Simulation 2 Simulation 3

Large randomly-

generated set, 100

agents

Simulation 4 Simulation 5 Simulation 6

Therefore, the first is to establish a number of agents to simulate. The set has to be large enough to pursue

an equal distribution of the agents’ characteristics among simulations, but it can’t be too large to manage

computationally. Simulations in this thesis are run on a computer with an Intel Core i7-7500U CPU pro-

cessor at 2.70 GHz, running Microsoft Windows 10 Home. With this computing power, the simulation of

100 agents over 1 day, takes about 15 minutes to complete. It is important to consider that most of the

time is used in synchronously running the Matlab® Engine from the JAVA simulation of the agents, and

from the Map server providing routes in real paths (OSMR, Luxen and Vetter [2011]). However, the only

way to avoid this consumption of computing time would be by not using the MATPOWER package on

Matlab® and implementing the ACOPF problem in JAVA, which is not the scope of this thesis. Consider-

ing this computational speed, if we want to simulate several days, for instance 15, sets of more than 100
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agents would take too long to simulate. Proof is given for the fact that 100 agents is enough to overcome

deviation of their characteristics in section 4.2.2.

Then, if we are going to start by simulating a fixed set over a day, it is important to estimate the number of

cars charging in a single day. If the agents are assigned either one of the three most common EV models

(see Table 3.4), around one third of the population will own the same model. The charging frequency of

the models considered are given in Table 3.6, and therefore the probability of an agent charging at a given

day is:

Table 4.4: Probability of charging in a given day for each EV model.

EV Model Charge duration [days] Probability of charging in a given day

Nissan Leaf 5 1/5

Tesla S 12 1/12

Volkswagen e-Golf 4 1/4

If the total set of agents has a size of 100, and the three EV models are equally present, the number of cars

charging in one day is given by Equation 4.4.

Ncar s,1d ay (Nag ent s) = N · 1

nmodel s
·

nmodel s∑
model1

Pr obchar g i ng (model ) (4.4)

Ncar s,1d ay (Nag ent s) = N · 1

3
·
(

1

5
+ 1

12
+ 1

4

)

Ncar s,1d ay (100 ag ent s) = 100 · 1

3
·
(

1

5
+ 1

12
+ 1

4

)
= 17.6 ag ent s

This means that in a single day, 17.6 agents will demand charging on average, when their SOC drops

below the desired minimum (SOCmi n).

4.2.1 Reduced fixed set of agents

In this first case of implementation, the set of agents is fixed and so are all their attributes and energy

demand. The purpose of this case is to study the short-term energy cost reduction induced by the Local

Pricing strategy based on economic signals to agents. This strategy intends to optimize operation in both

the short and the long terms, by relocating demand where and when the energy is cheaper. By means of

79



studying this case, we will only see the effect on the first dimension, since the energy demand is given for

the day and the only possible cost reduction is by avoiding congested stations where the nodal prices are

higher.

If we are going to simulate for a given day, for which the energy demand is known, the number of agents

has to be consistent with the number of agents that normally charge in a day. Equation 4.4 gives that, for

a set of 100 agents, around 17.6 will charge in a day. For simplicity, we will simulate a set of 20 agents, all

of them starting the day with a SOC of 15%, which will induce all of them to charge. The details of their

energy demand is gathered in Table 4.5:
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Table 4.5: Properties of the 20 simulated agents: energy demand overview

Agent EV model SOC0[kW h] Capacity [kWh] SOCmi n[kW h] Demand [kWh]

1 Tesla S 15 100 24 85

2 Tesla S 15 100 51 85

3 Tesla S 15 100 1 85

4 Volkswagen e-Golf 5.37 35.8 19 30.43

5 Volkswagen e-Golf 5.37 35.8 8 30.43

6 Volkswagen e-Golf 5.37 35.8 5 30.43

7 Nissan Leaf 6 40 12 34

8 Nissan Leaf 6 40 22 34

9 Tesla S 15 100 56 85

10 Volkswagen e-Golf 5.37 35.8 14 30.43

11 Nissan Leaf 6 40 9 34

12 Tesla S 15 100 78 85

13 Nissan Leaf 6 40 19 34

14 Nissan Leaf 6 40 23 34

15 Nissan Leaf 6 40 17 34

16 Nissan Leaf 6 40 7 34

17 Nissan Leaf 6 40 23 34

18 Nissan Leaf 6 40 24 34

19 Nissan Leaf 6 40 9 34

20 Tesla S 15 100 22 85

Total energy demand 971.72

The other attributes of the agents are also fixed, namely their home location, work location, home-work

route and working times schedule. As these details are less relevant for the energetic study at issue, they

are spared, and the geographical locations are summarized in Figure 4.9. In this figure we can see, in red,

the home locations of all agents within residential area (shaded red). With a map pin, their work locations

within working areas (shaded green). Both home and work locations are linked with dashed lines.
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Figure 4.9: Location of 20 agents’ home and work locations, together with the set of charging stations in the city

Over the morning of the simulated day, all 20 agents will choose (or be assigned) a charging station in

which they will make a stop on their way to work and charge their EVs. The different charging strategies

will induce different decisions among agents, as we will see in the results.

4.2.2 Large randomly-generated set of agents

In this second case of implementation, the complete set of agents (proposed size of 100) will be simulated

over several days. Simulation over a longer period of time allows the study of the demand optimization

over time and not only space: agents can delay or bring their charging forward, according to the energy

generation and its price at the moment. Therefore, the demand per day will be determined by the price

of energy, and will not be constant as in the previous case.

When the set of agent is large enough, different random rolls of their characteristics will give an average
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that stabilizes and defines the group. This eliminates the need of defining the group beforehand as in

the previous case. For that reason, a different set of agents will be generated for each simulation (one

simulation runs for every charging strategy). In order to verify that 100 agents is enough to avoid devi-

ations from the expected values of their features (Law of Large Numbers, LLN), a comparison is hereby

presented between the three sets of agents generated for the three charging strategies proposed.

Monte Carlo minimal sample size

The purpose of this brief section is to verify whether a set of 100 randomly-generated agents can properly

represent the group, without major deviations of their features from the expected values.

Agents are defined upon several features (attributes), among which, the the study of the agents’ behavior,

we highlight (see Figure 3.13 and Table 3.3):

Table 4.6: Agent features of relevance for the energetic study.

Agent parameter
Possible Values (Do-

main)
Probability Distribution Expected Value

Minimum desired

SOC (SOCmi n)
SOCmi n ∈ [0.3,0.6] SOCmi n ∼U (0.3,0.6) E [SOCmi n] = 0.45

Price relevance xPr xPr ∈ [0,0.6] xPr ∼U (0.3,0.6) E [xPr ] = 0.3

Distance relevance xD xD ∈ [0.4,1] xD ∼U (0.4,0.1) E [xPr ] = 0.7

The relationship between the sample size and the precision level for the Monte Carlo simulation method

used here, is given in equation 2.9. For a 95% level of confidence, the precision level given by a 100 agents

sample is:
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Table 4.7: Agent features of relevance for the energetic study.

Agent parameter Probability Distribution Mean and standard devia-

tion

Level of pre-

cision

Minimum desired SOC

(SOCmi n)

SOCmi n ∼U (0.3,0.6) µ= E [SOCmi n] = 0.45

σ=
√

(0.6−0.3)2

12 = 0.087

Φ= 0.017

xPr xPr ∼U (0.3,0.6) µ= E [xPr ] = 0.3

σ= 0.03

Φ= 0.006

xD xD ∼U (0.4,0.1) µ= E [xD ] = 0.7

σ= 0.03

Φ= 0.006

The level of precision of these sets are between 1% and 5% for the intervals given, which is more than

sufficient to conclude that our simulated sets will accurately have (in average) the features we have mod-

elled.

In order to study the three proposed charging strategies, three simulations will be run with a randomly-

generated set of 100 agents each (simulation scenarios 4-6, see table 4.3). We have gathered the agents’

properties cited in Table 4.6 over these three sets, to illustrate that average properties of agents corre-

spond to the expected values, as we have calculated in table 4.7.

Figure 4.10: Average SOCmi n in Simulation cases 4,5 and 6.
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Figure 4.11: Average price relevance xPr in Simulation cases 4,5 and 6.

Figure 4.12: Average distance relevance xD in Simulation cases 4,5 and 6.

We can also calculate the minimum size of the set for the average value of the set to tend to the expected

value. In other words, what is the minimum size of the Monte Carlo randomly-generated set if we want

to produce a representative one. With the aim of illustrating this, we take the Simulation 5 (Centrally-

85



controlled) as example in Figures 4.13, 4.14 and 4.15.

Figure 4.13: Average SOCmi n in Simulation cases 4,5 and 6.

Figure 4.14: Average price relevance xPr in Simulation cases 4,5 and 6.
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Figure 4.15: Average distance relevance xD in Simulation cases 4,5 and 6.

We can see that after a maximum of 60 agents (xPr ), the average of the set features are within a 5% range

of the expected value. Therefore, we can conclude that more than 60 agents, and in this case 100, can

accurately represent the features of the set even though they are generated randomly (see section on the

Monte Carlo method, 4.2.2).
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5 | Results and Analysis

In this section, the results of all simulations will be presented and accompanied by a discussion (see

Table 4.3). For the sake of cohesion, they will be divided in two. First, we will present the results of

simulations run with the small fixed set of agents (Simulations 1 to 3) over one single day. Then, a more

comprehensive analysis will be given for simulations using the randomly-generated set of 100 agents over

several days (Simulations 4 to 6).The purpose is to study separately the effects of decentrally-controlled

charging strategy of Local Pricing.

5.1 Comparative study of the cost of energy

With the first group of simulations, the goal is to study its effect on the energy cost at a given time and

demand. In other words, relocating the demand in the stations where energy is cheaper to obtain (lower

nodal prices). In the second group of simulations, by using the larger set of agents over several days, we

study the potential of relocating demand in time, when energy is cheaper to generate and the market

price is therefore lower.

5.1.1 Small fixed set of 20 agents. Simulations 1 to 3.

In order to present the differences in cost of energy for the three proposed charging strategies, we can

start by summarizing the results in table that will be analyzed hereafter.
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Table 5.1: Results summary for simulation scenarios 1-3.

Charging Strategy

Decentralized un-

controlled

Centrally-

controlled

Decentrally-

controlled (LP)

Total energy consumption

[kWh]
971.72 971.72 971.72

Average cost of energy for the

grid (nodal price) [kr/MWh]
146.01 145.85 145.87

Average cost for the agent

[kr/kWh]
3.3 3.3 6.19

In Table 5.1 we can see how the local pricing strategy can be a trade-off between the centrally-controlled

and the totally uncontrolled scenarios, in terms of costs of energy for the grid. By definition of the

centrally-controlled strategy, the aggregator always assigns to the agent the station with the lowest nodal

price (lowest cost for the grid). Therefore, it is consistent that it has the lowest average price of energy of

all three strategies. On the other hand, in the uncontrolled decentralized scenario, agents are the ones to

decide where to charge. Given that the price is static for all stations in the uncontrolled scenario, agents

will only choose a station over convenience and not the price of energy (see section 4). Under these con-

ditions, agents will choose the closest station to their path, most of the times within the city center and

where the congestion of the lines can be higher. That is why this strategy has the highest price of energy

of all.

Finally, we have the local pricing scheme, where the nodal price of energy (cost for the grid) is reflected

on the price the agents pay for the charging energy (see section 4.1.3), and they are therefore sensible

to over-cost due to congestion and losses. The mean price of energy is closer to the minimum (defined

by the centrally-controlled strategy), and the slight increase is due to some agents who decide to pay a

bit more for a closer station (this small price increase reflects the congestion and losses cost of the nodal

price).

If we refer to the price of energy for the agents, it is significantly higher than the cases where the price

is constant (first two strategies). We should start by considering the market price of energy for the given

day (February 8th, 2020). The price of energy for the morning of this day is 145.89 kr
MW h in the DK2 zone

89



of the Nordpool Market (AS [a]). Therefore, the price of energy for the agents will range from 1.82 kr
kW h in

the stations with 0% congestion and losses, to 6.82 kr
kW h in the stations where congestion and losses have

an effect on the nodal price. We can see in Figure 5.1 how most of the agents paid over 4 kr
kW h , due to the

costs of congestion and losses in the lines where the stations are connected.

Figure 5.1: Cost of energy for the agents in the local pricing scheme. Simulation 3.

This follow-up of the real cost of energy in the price the agents pay, can be reassessed by comparison with

the two other strategies in Figure 5.2.

(a) Uncontrolled
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(b) Centrally-controlled

(c) Decentrally-controlled, Local pricing

Figure 5.2: Price responsiveness for the different charging strategies.

These price differences influence the choice of station that the agents make. If we sort the stations by

nodal price of energy, and accumulate the use of each of them, we can compare the choices in the three

charging strategies.
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(a) Uncontrolled

(b) Centrally-controlled
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(c) Decentrally-controlled (Local Pricing)

Figure 5.3: Use of station sorted by increasing price of energy (nodal price)

It is possible to appreciate in Figure 5.3 how different charging strategies induce different choices in the

agents: In the centrally-controlled (5.3.b), agents are indeed always assigned the stations with the lowest

cost of energy (nodal price), and the demand is therefore concentrated to the left, among the cheapest

stations. The opposite is the case of uncontrolled decentral operation (5.3.a), where the demand is con-

centrated in the most transited stations. If we refer to Figure 3.10, we can verify that stations in the city

center, closer to the workplaces of the agents, are the most used regardless of the price of energy.

Finally, the local pricing scheme (5.3.c) seems to distribute the demand over a larger set of stations com-

paring to the centrally-controlled operation, and therefore avoiding the accumulation of agents in a sin-

gle station. The demand is however also concentrated to the left among the cheapest stations, doing a

trade-off between the agents’ interest in paying the least for the closest stations.

In view of the results presented for the simulations running a fixed set of 20 agents, it can be concluded

that the scheme of local pricing economic signals to the agents, can spatially-relocate the demand of EV

charging, and reduce costs of energy by sending the appropiate economic signals to the agents, who will

consequently avoid the stations with the most congestion and losses costs.

93



5.1.2 Large randomly-generated set of 100 agents(Simulations 4-6)

In this simulation set, using a larger number of agents and over several days, we intend to prove the

efficiency of local pricing when relocating energy over time, i.e., fostering charging when energy cost in

the system is lower, and preventing it when the cost is higher. This alligns with the purpose of integrating

a higher share of variable renewable energies in the network (see section 2.3.2).

To do so, we can start by looking at the market price of energy over the 15 days of simulation in Figure 3.3.

Nevertheless, prices in Nordpool zone DK2 are quite varying throughout the same day, therefore, instead

of taking a single average market price per day, we can take two prices that correspond to the market price

at the times of charging. All agents charge either on their way to work or back (3.5.2), which correspond to

the hours in the day between 7:00-9:00 (morning) and 14:00-16:00 (evening). In Figure 5.4 we can verify

that some days maintain quite a regular price, such as day 5. Others, on the contrary, have significant

variations such as day 6. For that reason, splitting the daily energy price into two time windows proves to

be more illustrative for later comparisons.

Figure 5.4: Morning and evening energy market prices over the 15 of simulation (February 8th to February 24, 2020)
(AS [a])

Now, we can compare how different strategies induce a relocation of the demand in terms of the market

price of energy, by overlaying the daily demand for each strategy.
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(a) Decentralized, uncontrolled

(b) Centrally-controlled
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(c) Decentrally-controlled, local pricing

Figure 5.5: Daily consumption over 15 days of simulation for each strategy.

We can see how the consumption (in charging events) does not respond to changes in the market price

of energy in strategies where the price for the agent is static (Figures 5.5.a and 5.5.b). Both consumption

profiles show increases when the price increases, and vice-versa.

On the contrary, we can see how the demand reacts to the changes in energy market price in the local

pricing scheme(5.5.c). Even if some days do not follow the rule, consumption increases when the price

goes lower with respect to the previous day, and decreases when the price goes higher than the previous

day. Agents willing to charge, will first check the price of the stations they can reach in their way and

then decide whether to charge and where (see section 3.5.2). By avoiding charging in the days where the

energy is higher, there is a long-term saving in the cost of charging energy for both the provider and the

consumer. In the smart integration of the EV fleet within the grid, this is the kind of responsive behavior

we are looking for.

As for the case of a reduced set of agents, we can see how the strategies influence the choice of stations in

Figure 5.6.
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(a) Decentralized, uncontrolled

(b) Centrally-controlled
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(c) Decentrally-controlled, local pricing

Figure 5.6: Accumulated use of the stations, ordered by increasing price.Simulations 4 to 6.

The differences between the charging strategies are even more flagrant in these simulations run with a

larger set of agents. For the case of uncontrolled decentral operation (5.6.a), the stations at use are only

those placed in the city center, nearby the agents’ work locations (Figure 3.10). On the contrary, the only

two stations used in the centrally-controlled scheme are those who always show the lowest cost of energy

in the grid, even though station 13 is quite far from all the location of all agents, as it is placed on the

highway right branch of the city (Figure 3.10).

Once more, the local pricing scheme (Figure 5.6.c) shows the most distributed consumption among the

stations, by sending economic signals on the price of energy that encourage agents to make a trade-off

between utility (distance to the station) and price of energy. The demand, as opposed to the uncontrolled

scenario, is shifted to the left, as trying to exploit the cheapest stations first and avoid those with higher

nodal prices and therefore cost of the energy (due to congestion and losses).

Finally, we can summarize the results and see if the local pricing strategy brings savings in terms of the

cost of energy over this period of time. By adding all demand over the 15 days, and the price paid for each

kWh charged in the fleet of EVs, we obtain the following average values:
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Table 5.2: Results summary for simulation scenarios 4-6

Charging Strategy

Decentralized un-

controlled

Centrally-

controlled

Decentrally-

controlled (LP)

Total energy consumption

[kWh]

4601 4876 5428

Average cost of energy for the

grid (nodal price) [kr/MWh]

200.59 172.82 131.35

Average cost for the agent

[kr/kWh]

3.3 3.3 2.70

The local pricing strategy has proven to decrease significantly the price of charging for both the provider

(nodal price of energy in the grid) and the consumer. In comparison with an uncontrolled decentral

operation, local pricing implies a decrease of 34.5% of the cost of energy for the provider. From the point

of the drivers, the mean price of energy is also reduced, even though they may sometimes pay higher

than the static 3.3 kr/kWh of the other two strategies.

We can at this point conclude that, local pricing at EV charging stations, by sending the agents propor-

tional economic signals of the actual nodal cost of energy, reduces the charging cost for both the provider

and the consumer, reducing losses and congestion costs in the network. In other words, it is capable of

relocating demand in the short term (spatially among the cheapest stations) and temporally (following

the system price fluctuations).

5.1.3 Summary

By combining all results aforementioned, we can summarize the effect of each charging strategy
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Table 5.3: Summary of the effect of the three proposed charging strategies

Charging Strategy

Decentralized un-

controlled

Centrally-

controlled

Decentrally-

controlled (LP)

Short term demand relocation

(in space, putting first the sta-

tions less congested and with

less losses)

NO NO YES

Long term demand relocation

(over time, fostering the coordi-

nation with the system fluctua-

tions)

NO NO YES

Which, in terms of savings, implies:

Table 5.4: Effect of the proposed strategies on the overall cost of energy

Charging Strategy

Decentralized un-

controlled

Centrally-

controlled

Decentrally-

controlled (LP)

Energy cost reduction for the

supplier
NO YES YES

Energy cost reduction for the

consumer
NO NO YES

5.2 Side benefits of local pricing

By means of this charging strategy, we have also achieved other two benefits in the charging operation of

the EV fleet:

5.2.1 Improving battery cycles

When the price at the stations is static, agents charge whenever they have the need to, so they will al-

ways drain their batteries before charging because there is no point in relocating the charging over time.
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Specifically, in these strategies where the price is static, agents will charge when their SOC is below their

minimum desired level of battery (SOCmi n).

On the contrary, when the price of energy varies though time, agents might consider to either charge

before they drain their batteries, or even wait longer to charge. By doing so, we are augmenting the SOC

range within which the agents charge. It has been proven that charging Li-Ion batteries by non-exhaustive

cycles, can extend their life

We can have a look at the SOC at which the agents charge by comparing the three strategies:

(a) Decentralized, uncontrolled
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(b) Centrally-controlled

(c) Decentrally-controlled, local pricing

Figure 5.7: SOC range at the time of charging.

Effectively, agents tend to drain less their batteries when the price of energy is variable over time, charging

their vehicles when their SOC level is in average 26% and not 15% as in the previous two strategies.
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5.2.2 Larger benefits for the infrastructure provider

One might think than by decreasing the social cost of energy, the charging infrastructure provider has less

profit margin, but the result is the complete opposite. By encouraging agents to charge when the energy

price is lower, and fostering the use of less congested stations, the infrastructure provider is also incurring

in smaller costs for bringing energy to the stations in use.

If we take the cost of energy (nodal prices) and the price paid by agents in each scenario from Table 5.2,

we can see that in average, the service of charging incurs in a cost 20 times higher than the original cost

of energy from the grid. However, the local pricing scheme is the one with the largest profit margin for

the infrastructure provider, as seen in Table 5.5:

Table 5.5: Charging station infrastructure provider profit margins with different charging strategies.

Charging Strategy

Decentralized un-

controlled

Centrally-

controlled

Decentrally-

controlled (LP)

Mean cost of energy for the grid

(nodal price) [kr/MWh]

200.59 172.82 131.35

Mean cost for the agent

[kr/kWh]

3.3 3.3 2.70

Profit margin in times paid the

cost of the energy

16.5 19.1 20.56

In conclusion, by avoiding extra costs of charging for higher prices of energy, we are not only reducing

costs for the grid and the consumers, but also increasing the profit margin for the charging infrastructure

provider.
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6 | Concluding remarks and future research

In this chapter, we discuss the findings from the work previously presented, and indicate some lines of

research to pursue development in this topic.

6.1 Assessing the potential benefits of LMP smart pricing strategies

This thesis studies the opportunities offered by LMP-based smart pricing strategies in order to optimize

EV charging operation, and by the comparative study developed in section 5, we can conclude:

• Locational Marginal Pricing is an effective scheme to reflect the actual cost of energy at every node

of the grid, where the charging stations are located. This market configuration, by increasing gran-

ularity in both time and space, gives real-time economic signals based on the energy generation

and local network constraints.

• On the temporal dimension, LMP can follow the generation variability of renewable sources (sys-

tem marginal price, first component, see figure 2.10), such as wind or solar energies. By doing so,

charging becomes more expensive at times of limited generation, and cheaper at times of surplus.

In response, agents relocate their charging over time, and they tend to avoid times of higher prices.

Considering their charging preferences (behavior), some agents will prefer to charger sooner even

if the price is high, based on their actual SOC and their range anxiety. Some other agents will try to

wait to lower prices and will react to price decreases by augmenting the demand.

By doing so, the EV demand of energy is improving the demand flexibility, and facilitating the intro-

duction of variable renewable energies, as suggested in the innovation landscape for market design

proposed by IRENA [2019a].
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• On the spatial dimension, LMP is also able to reflect congestion and transmission losses within the

local distribution grid (second and third components see figure 2.10).

Before leaving their current location, agents in our model will consider the possibility of charging if

their battery is below a certain level, and if the prices are within the agent’s willingness to pay. Then,

the agent will choose an itinerary incluiding the charging station that best fits its preferences. By

means of charging the energy upon LMP , the prices will vary from one station to another, depend-

ing on congestion and transmission losses. Agents will therefore try to incorporate to their itinerary

the stations with the least congestion and losses cost.

This entails a more stable and safe operation of the system, avoiding congestion in only some sta-

tions of the set, encouraging distributed use, and sparing costs for the agents and for the grid oper-

ator.

This way, the growing share of electric vehicles is better managed, and the grid will have a grater

hosting capacity in consequence (see section 2.3.3).

• Altogether, we can affirm that applying LMP schemes to the EV charging stations, can foster the

voluntary (decentralized) relocation of the demand, in both time and space, without the need of

gathering and computing the data of the agents like in a centralized control strategy. This requires a

less-demanding communication infrastructure and computational capacity, by delegating respon-

sibility in each agent and not in the central aggregator. It also prevents the agents from sharing

their route information, vehicle state or preferences, which may be seen as a privacy violation by

many.

• Reflecting the actual cost of energy fosters the efficient demand among users, and this brings two

main side benefits:

– The agents do not drain their batteries before planning to charge, since they can charge be-

forehand if the price of the system is low. This improves the life span of batteries, by not

discharging deeply.

– The agents’ interest of charging when the energy is cheaper aligns with that of the network

and the infrastructure provider. By decreasing costs for all parties involved, the infrastructure

provider has a grater profit margin too, even if both the grid and the agents have seen their
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costs reduced. Optimization methods should

6.2 Future research

This thesis presents very promising results regarding the introduction of dynamic local pricing schemes

for the charging of electric vehicles. However, the model and the simulation cases aforementioned are

limited. We can outline some of the limitations of this study, and propose future work on this topic that

could enlarge the assessment of this smart charging strategies:

• The price scheme that was built in this analysis was just one proposed example of how the system

price and the local network constraints can have an equal weight on the price paid at the stations.

However, the pricing scheme of the stations operator is key in optimizing costs and making the

charging energy affordable and just. Its optimization is subject of a further study that should in-

clude artificial intelligence to improve the identification of the agents’ behavior patterns, in order

to optimize operation based on a short-term forecast of both the demand and the market fluctua-

tions.

• The interface between the agent-based model of the drivers’ behavior (coded in JAVA) and the solv-

ing of the grid constraints formulated in an OPF problem (modelled as a case in Zimmerman and

Murillo-Sánchez [2019]) was the bottleneck of computational speed in the simulation tool used in

this thesis. Improvements could be made if the OPF problem could be formulated in JAVA without

the need of resorting the synchronous console running of two different software. The same com-

bination of models could be made in Python or any other language that is fit for object-oriented

programming. A faster interface could have allowed the simulation of a greater number of agents,

which is another limitation of this model.

• Energy storage (owned by either the grid or the consumers) and local generation (mainly solar

power) are gaining great relevance in the way towards optimizing the introduction of variable re-

newable sources in the grid. They were not considered in this work for the complexity they entail,

introducing more dynamics into the system to optimize. They have been the scope of a number of

preceding master thesis within this department (Lillebo et al. [2019], Sagosen and Molinas [2013]

and Harbo et al. [2018]), and combining the dynamic local pricing market with the opportunities

they offer, is a field to be explored undoubtedly.
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• This thesis only considered fast charging stations in the grid, with a power up to 150 kW. It was done

this way for the growth that public charging infrastructure is seeing, and for the higher charging

rates that vehicles now incorporate. This was intended to represent a worst-case scenario where

all EV owners charge at fast charging stations where the network is the most constraint. However, a

combination of slow charging (at home or work) and fast charging (along the city paths, or at public

facilities) is a more realistic scenario that could be modelled.

• The simulation tool used in this thesis was merely approachable by means of an on-screen console.

It would have been easier to visualize results if the real-time output of this model had been dumped

in a GIS software. A software of this kind was used indeed to visualize the city spaces and layout.

Open-source GIS software allow Python programming to integrate them with other applications

such as this model, which opens the door for building a more user-friendly interface that could

help assess the impact of charging strategies in the city dynamics and costs of energy.

• Finally, we can also acknowledge that the charging and discharging dynamics of the electric ve-

hicles were quite simple in the model presented. They were approximated to linear functions of

the distance travelled and the charging time. Much more accurate models of the discharging and

charging dynamics of EV batteries are nowadays available, and they could make this simulation

tool more realistic about the energy demand.
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A | Agent-based model: JAVA code

The code for the agent-based model developed in JAVA, whose structure and functioning is described in

section 3.5, is accessible from the GitHub public repository where it has been stored:

https://github.com/manuep/Master_Thesis.git

The files included in this repository are grouped as in Figure A.1.

A.1 Setting up the simulation tool

The ABM code developed in JAVA has to be downloaded and executed with a JAVA console. The integrated

environment used for this thesis was Eclipse IDE for Java Developers, version: 2020-03 (4.15.0). One can

freely download and use this environment from their website http://www.eclipse.org/platform.

The simulation tool is a coordination between this ABM model coded in JAVA and the grid model formula-

tion solved by means of the MATPOWER (Zimmerman and Murillo-Sánchez [2019]) package in Matlab®,

by adding the JAVA class com.mathworks.engine that uses Matlab® as a computational engine. The de-

tailed documentation on how to use this class in JAVA can be found following the direction : https://

www.mathworks.com/help/matlab/matlab_external/execute-matlab-functions-from-java.html.

As JAVA will call the Matlab® engine from the console, some set up steps are needed to define the start of

the Matlab® program from the system prompt. The documentation for Windows in under the direction :

https://www.mathworks.com/help/matlab/ref/matlabwindows.html.

Once we have the com.mathworks.engine JAVA Class running as a Matlab® console from which we can

execute functions, we need to define:

• mpc case of MATPOWER
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As described in section 3.3.1, the input data of the network has to be expressed in a mpc structure,

whose main components can be seen in table 3.1 and the full documentation of the package in the

direction: https://matpower.org/docs/MATPOWER-manual.pdf.

In the code hereby presented, the mpc case is referred as mpc-case-file (in the Coord-matlab.java

file within Model → Schedule.

• The mpc case only defines consumption for a given time step. If we want to simulate a time span, we will

need the historical consumption data in a separate file from which we can re-define the mpc case as many

times as wanted. This file containing the historical consumption data is referred as buses-consumption-data,

also within the Coord-matlab.java file.

• Other dimensions such as the number of buses (n-buses).

Then, we need to define the directory where the code files are placed, since the code will call other files

in the directory, and will write the outputs also within. Future users will have to re-define the directory

path in their own computer after downloading, in the following files:

• Model → Ag ent → Agent.java

• Model → Schedul e → GlobalClock.java

• Utils → Variables.java

• In every file of the directory: Utils →C har g i ng → Str ateg i es

After these steps, the console should be able to run the World.java (within Environment) as a JAVA

Application.
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Figure A.1: Structure of files available in the GitHub repository. ABM JAVA Code.

A.2 Input

When the console runs the World.java as a JAVA Application, the user will have to enter a series of

simulation parameters, among which we find:
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• Number of agents: enter a whole number of agents to simulate.

• Number of simulation days: enter a whole number of days to simulate.

• Charging strategy: Enter "1" for centrally-controlled charging operation, "2" for uncontrolled, and

"3" for decentralized control (local pricing). The charging strategies are described in section 4.

The user should see the following in the console:

Listing A.1: User input parameters for the simulation. Console view.

1 USER INPUT - Please enter the following

2 Number of agents:

3 100

4 Number of simulation days (2 or higher):

5 15

6 Charging Strategy? 1=Centrally-controlled, 2=Uncontrolled, 3=Decentralized control

,→ (Local Pricing)

7 3

After entering these parameters, the simulation should start automatically.

A.3 Output

After the simulation is finished, the code will have generated a number of files in the same folder where

the code is located. All these files will be .txt, and they will have the following structure:

1. agents-prop.txt In this file, the user will find all the information regarding the definition of

agents. Please refer to section 3.5.2 for information about the variables stored in each column:

Table A.1: Values of the columns stored in the file agents-prop.txt

Column 1 Column 2 Column 3 Column 4 Column 5

Agent ID
Maximum battery

capacity
Current SOC xPr xD

2. losses.txt
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In this file, the real and imaginary components of the total losses in the network are stored for every

simulation minute.

Table A.2: Values of the columns stored in the file losses.txt

Column 1 Column 2 Column 3

Date and time (dd-mm-

yyyy, hh:mm)
Real losses Imaginary losses

3. satisfaction.txt

In this file, the charging choices and consequent satisfaction level of the agents will be stored.

Table A.3: Values of the columns stored in the file satisfaction.txt

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7

Date and

time (dd-

mm-yyyy,

hh:mm)

Agent ID Station ID
Current

SOC

Maximum

battery

capacity

Price of

charging

[kr/kWh]

Nodal

price at

the station

[kr/kWh]

4. stations-file.txt

In the stations file, the user will find both the power consumption and the nodal price of energy at

each station, every minute of the simulation. If we have m stations in the set:

Table A.4: Values of the columns stored in the file stations-file.txt

Column 1 Column 2...(m+2) Column (m+3)...(2m+3)

Date and time (dd-mm-

yyyy, hh:mm)

Power withdrawal at

each station [kW]

Nodal price at each sta-

tion [kr/kWh]

5. voltages.txt

Within this voltages file, the voltage magnitudes (p.u.) are registered every simulation minute and

for every charging station. There, if we have a set of m stations:
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Table A.5: Values of the columns stored in the file voltages.txt

Column 1 Column 2...(m+2)

Date and time (dd-mm-

yyyy, hh:mm)

Voltage magnitude (p.u.)

at each station

Note Please feel free to contact the author using the email manperbra@outlook.es if there were

any questions regarding the code, if the GitHub access link was not working properly, or if the

reader wants the case data to try the results.
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