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Summary

The problem with an increasing share of renewable energy sources (RES) is that the
fluctuating nature of some of the most prominent RES, wind turbines and solar pho-
tovoltaic panels, can cause stability issues in the grid [1]. A solution to mitigate this
can be to install Energy Storage Systems (ESS). ESS can be used both to provide ancil-
lary services and improve RES integration. However, as Distribution System Operators
(DSOs) in the current EU legislation cannot own ESS, ESS investments must be prof-
itable [2]. The main objective of this thesis has, therefore, been to assess the profitabil-
ity and benefits that can be obtained with an ESS investment.

A review of previous studies and optimization techniques for ESS and wind farms was
conducted to shed light on potential research opportunities. The review showed that
most articles have focused on the economic aspects of ESS installment, and that par-
ticipation in reserve markets could provide profitable ESS investments.

A real case study of ESS investment for the wind farm owned by Midtfjellet Vindkraft
AS wind farm was conducted. The model for the case study system consisting of a load,
wind farm, Li-Ion battery energy storage system (BESS), and energy market structures
for the Nordic Day-Ahead, normal frequency containment reserves (FCR-N) and fast
frequency reserves (FFR). The model was made in PSS®DE, an optimization software
developed by Siemens AG. The FFR market was modeled by raising the SoC level of the
battery in PSS®DE to reserve capacity, and the revenue for this calculated using dis-
counted cash flow in Excel. For the case study, 44 scenarios with a ten-year horizon
were developed, using projections for the future price of Li-Ion BESS and power mar-
kets. Techno-economical optimization was performed for the scenarios with a project
lifetime of 20 years.

The results from the case study showed that it was possible to obtain a positive business
case for ESS coupled with Midtfjellet wind farm using revenue stacking. Concretely,
participation in the FCR-N and Day-Ahead market was sufficient to provide a positive
change in net present value (NPV) for the combined wind farm, load, and Li-Ion BESS
system already in 2020. For the 2030 scenarios, inclusion of any two markets yielded
an increase in NPV compared to the reference case.
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Sammendrag
Med en økende andel av fornybare energikilder som har en varierende produksjon-
sprofil, for eksempel vindturbiner og solcellepaneler, kan det oppstå problemer knyt-
tet til stabiliteten i nettet [1]. En løsning for å forbedre stabiliteten kan være å installere
energilagringssystemer. Energilagringsystemer kan brukes både for å anskaffe nettjen-
ester og forbedre tilkoblingen av fornybare energikilder. Nettselskaper kan ikke med
dagens regelverk i EU eie energilagringsystemer, og dermed må slike prosjekter være
lønnsomme [2]. Derfor har hovedmålet med denne masteroppgaven vært å se på lønn-
somheten og fordelene som en investering i ett energilagringsystem kan gi for en vin-
dpark.

Et litteraturstudie med oppsummering av tidligere studier og optimaliseringsteknikker
for energilagringssystemer og vindparker har blitt utført for å finne potensielle forskn-
ingsfelt. I litteraturstudiet kom det fram av de fleste tidligere studier har fokusert på
de økonomiske aspektene ved energilagringssystemer, og at reservemarkeder har gitt
positive resultater i forhold til lønnsomhet.

Det ble gjennomført en studie av et energilagringssystem for vindparken som eies av
Midtfjellet Vindkraft AS. Modellen besto av en last, vindpark, litium-ion batterilagringssys-
tem, og kraftmarkeder for Elspot, primærreserver (FCR-N) og hurtige primærreserver
(FFR). Modellen ble laget i PSS®DE, en optimaliseringsprogramvare for distribuerte
energisystemer utviklet av Siemens AG. FFR-markedet ble modellert ved å heve SoC-
nivået på batteriet i PSS®DE for å reservere kapasitet, og inntektene for dette bereg-
net ved å bruke diskontert kontantstrøm i Excel. Scenarioene ble laget med en tiår-
shorisont og inneholdt forskjellige fremtidige priser for litium-ionbatterier og kraft-
markeder. Tekno- økonomisk optimalisering ble utført for scenarioene med en pros-
jektlevetid på 20 år. Totalt ble 44 scenarier konstruert og simulert.

Resultatene fra studie viste at det var mulig å få en positiv investering for et litium-ion
batterilagringssystem kombinert med Midtfjellet vindpark ved å delta på flere markeder.
Konkret var deltagelse i FCR-N- og Elspot markedet tilstrekkelig til å gi en positiv en-
dring i nettonåverdi for systemet, allerede i 2020. For 2030 verdier ga alle scenarioer
som inneholdt to eller flere markeder en økning i nettonåverdi i forhold til referansen.
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Chapter 1
Introduction

As seen in recent investments and future projections, an increase of renewable energy
sources (RES) compared to conventional generation is imminent. This is mainly due to
two factors; a growing energy demand worldwide and environmental concerns. There
is also the fact that RES in recent years has become cost-competitive, even without in-
centives. For instance, in [24], RES proved a cheaper investment than coal plants for
many locations in the US.

With growing RES installment, investments into RES with a volatile production are also
increasing rapidly. In 2019, the largest investments into RES, excluding large-scale hy-
dropower, were investments into wind turbines and solar photovoltaic (PV) panels [25],
which have a fluctuating power production [26]. Hence, balancing demand and pro-
duction is increasingly difficult in areas where RES is prominent. This may lead to
stability issues in the grid. In particular, wind turbines are often decoupled from the
grid by power electronics, and hence do not contribute to ancillary services like inertia
provision (page 632, [27]). Ancillary services, are services the grid needs to tackle im-
balances and remain stable.

A solution to improve RES integration, explored in [24, 28], is to use Energy Storage
Systems (ESS) in combination with RES. As Distribution System Operators (DSOs) are
prohibited from owning ESS in the current EU legislation [2], the ESS investments must
be profitable. However, as found through both the literature review and proof of con-
cept study conducted in my specialization project [3], it is not easy to obtain a positive
investment for ESS. Hence, it becomes apparent that ways to increase the revenue ob-
tained by the ESS must be explored further so that ESS can increase RES integration.

In this master thesis, the aim has therefore been to asses the techno-economical bene-
fits of an ESS investment for a wind farm to help RES integration, with particular focus
on profitability. This is explored through a case study concerning the investment of
ESS for a real wind farm of 149.6 MW, owned by Midtfjellet Vindkraft AS. This wind
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Chapter 1. Introduction

farm is situated on the island of Fitjar in Norway. In the case study, different scenarios
are explored within a 10-year horizon, and revenue stacking through participation in
multiple power markets is explored as an option for profitability. It was also crucial that
the chosen ESS should be tailored to the Midtfjellet wind farm.

For the master thesis, the main research question is:
• Is there a positive business case for ESS coupled with Midtfjellet wind farm within

2030?

To achieve this, this master thesis aims to:

• Present an assessment of the relevant ESS technologies for application on trans-
mission level and coupled with a wind farm

• Asses previous literature in the field of study to find research gaps.
• Propose reasonable future scenarios with a 10-year horizon for relevant param-

eters with special focus on Norwegian markets and systems
• Present relevant optimization theory and the chosen method and program, PSS®DE,

for the case study
• Present a case study of Midtfjellet with and without ESS and include revenue

stacking
• Perform a techno-economical optimization of ESS for Midtfjellet wind farm us-

ing PSS®DE

The master thesis is a continuation of the work conducted in my specialization project
[3]. The relevant parts of the specialization project will, therefore, be included in the
thesis. A comprehensive theory chapter is found in Chapter 2, with special empha-
sis on the Norwegian power system and power markets, to give the theoretical insight
needed for assessing ESS suited for wind farm integration. An overview of previous
literature on ESS and optimization is found in Chapter 3, including a subsequent dis-
cussion and summary of the chosen direction for the master thesis based on the find-
ings. The method chapter in Chapter 4 gives the theoretical background for the opti-
mal operation of an ESS, load, and wind farm connected to an external grid, along with
the main aspects of the chosen optimization program, PSS®DE. The case study for the
Midtfjellet wind farm is presented in Chapter 5. The results from the conduction of
this case study are shown in Chapter 6. A brief conclusion on the project is found in
Chapter 7, while Chapter 8 outlines areas for future development.

2



Chapter 2
Theory

As wind turbines depend on weather conditions, their production is volatile and con-
stantly changing, which causes a fluctuating power output. Energy storage systems
(ESS) can help mitigate this by smoothing the power output from wind farms and also
provide ancillary services [12]. A brief introduction to ESS suited for wind farm in-
tegration is provided in this chapter. The chapter starts with an explanation of large
scale ESS, presented in Section 2.1. The ESS are then compared in Section 2.2, based
on the method in Appendix A.1. Possible applications for large scale ESS tailored for
wind power integration is presented in Section 2.3. A description of the chosen power
grid and associated power markets is needed to assess the types of services different
types of ESS is allowed to deliver. Therefore, a review of the Norwegian Power markets
is presented in Section 2.4. The chapter is concluded with a section describing the-
ory relevant to the scenarios conducted in the case study in Section 2.5. The theory
chapters Section 2.1 to Section 2.4 are based on chapter 3 of my specialisation project
[3], with minor modifications pertaining spelling and small additions. In particular,
Section 2.4, concerning the Norwegian Energy markets, has been expanded with the
inclusion of the fast frequency reserve (FFR) market. It has also been updated with the
new regulations for 2020. Section 2.5 is written for the master thesis exclusively.

2.1 Energy Storage Systems for large scale application

In this section, relevant ESS for large scale applications is presented. As demand and
production of electricity must be balanced, it is of high importance that the power sys-
tem is composed such that the load can be reliably met. With fluctuating renewable
sources, this can prove a real challenge. In general, there are four different solution pat-
terns to this challenge: Invest in ESS, acquire back-up generation, have geographical
diversity, or invest in different kinds of renewable resources [29]. It is often necessary
to combine several of these solutions to create a reliable and stable grid with renew-
able energy sources (RES). Currently, procuring ESS is quite expensive compared to

3



Chapter 2. Theory

the other solutions, but the nature of the ESS might make it an economical and tech-
nical desirable option. For instance, batteries are among the fastest at discharging /
charging, making them ideal for rapid compensation of volatile production. The suit-
able uses for different types of ESS are presented in Figure 2.1.

Energy Storage System

Emergency applicationTransport application Large scale application

• Batteries
• Flywheel
• Super/ultra-

capacitor

• BESS
• CAES
• FESS
• PHS
• Thermal Energy

Storage
• Super/ultra-

capacitor

• Batteries
• Compressed Air

in Vessels
• Flywheel
• Hybrid Systems
• Thermal Energy

Storage
• Super/ultra-

capacitor

Figure 2.1: Classification of ESS applications adapted from [12]

As Figure 2.1 shows, the suitable ESS for large scale applications today are BESS, CAES,
FESS, PHS, SMES, and ultracapacitors. In the transmission grid, the suitable ESS often
need high power to energy ratio. Figure 2.2 shows the power to energy ratio of the most
prominent types of ESS.

Figure 2.2: Power to Energy ratio of different storage solutions (figure 7.2 [12])
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2.1 Energy Storage Systems for large scale application

For this thesis, BESS, and in particular Li-Ion batteries, is the main focus. Therefore, the
reader is referred to the specialization project [3] for further details concerning other
ESS for large scale applications.

2.1.1 Battery Energy Storage Systems

Battery Energy Storage System (BESS) technology stores energy in the form of chemical
energy. There are two main types of BESS, secondary batteries and flow batteries. BESS
for large scale applications are divided into Lead Acid, NaS, Li-Ion, and flow batteries
[30]. A common denominator for BESS is their fast charge and discharge capabilities
[31]. The basic principle of how secondary batteries function is described in the follow-
ing paragraph and include Lead Acid (LA), Sodium Sulphur (NaS), and Li-Ion batteries.
A battery cell consists of a cathode and anode with either a solid, paste or liquid elec-
trolyte. Energy is stored in the battery by applying a potential to the electrodes, which
sparks an internal chemical reaction. This chemical reaction is reversible, allowing the
battery to release the stored energy as electricity during discharge. To achieve the de-
sired electrical characteristics, conventional secondary batteries often consist of low
voltage/power battery cells connected in series and parallel. Among the secondary
batteries, Li-Ion is unmatched in the current battery technology precisely because of
its excellent power and energy density capabilities [32]. Still, flow batteries show much
promise for large scale application [33]. An issue for all batteries is degradation, which
occurs naturally due to all battery actions (charging, storing, and discharging, for in-
stance). Degradation in batteries is defined as an irreversible chemical process that
causes a lowered capacity of the battery. In particular, processes that contribute to the
degradation of Li-Ion batteries are overcharging, high temperatures, a high DoD, and a
high cycling rate, according to [34]. A general problem for the battery types presented
is the high toxicity of their metal materials, which poses an ecological concern at the
end of life. Li-Ion batteries are given a further explanation below. Further details con-
cerning Lead-Acid, Sodium Sulphur or flow battery energy storage systems (FBESS),
can be found in [3], which is a summary of information collected from [31, 35, 36].

2.1.1.1 Lithium ion batteries

Li-Ion batteries operate by an electrochemical reaction between positive lithium ions
with different materials used for the anode and cathode. The cathode is usually made
up of lithium oxide, for instance, lithium cobalt, and the anode is made of graphite.
Sony produced the first commercial Li-Ion batteries in the 1990 [35], so compared to
the other storage technologies, it is relativity new. The main advantages of Li-Ion bat-
teries are high energy density and specific energy, as well as fast response time (≈ 200
ms [37]). These features make Li-Ion an excellent ESS candidate when weight and re-
sponse time are essential [31]. Disadvantages of the Li-Ion batteries include a high
cost, fragility since it needs to operate within certain limits of voltage and temperature
and lifetime dependant on cycle DoD.
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Chapter 2. Theory

2.2 Comparison of Energy Storage Systems

The ESS relevant for large scale application, as presented in Figure 2.1 is in this section
compared based on selected features. The features are chosen based on important
characteristics for large scale ESS application and are presented for each storage type
in Table 2.1 and Table 2.2.

Table 2.1: Technical features for the ESS in Section 2.1

Type Discharge
time

Response
time

Efficiency
[%]

Power rating
[MW]

Energy rating
[MWh]

Specific power
[W / kg]

Specific en-
ergy [Wh /
kg]

Num. of
Cycles

Lifetime
[years]

PHS 1-24h+ min 70-80 100 - 5000 500-8000 - - >15000 >50
FC s - 24 h + s - min 34-44 0-50 120 - 100-150, 400-

1000
103-104 10.0-30

FESS s -h <s 80-90 0-0.25 0.025-5 11900 5-100 104-107 15-20
LA s - h <s 75-90 0-20 0.01-40 180-200 30-50 250-

1500
3.0-15

Li-Ion min - h <s 65-75 0.1-100 [38] 0.0016-126[38] 245-2000 80-200 600-
1200

5-100

VRB s - 10 h s 60-75 0.03-3 1.2-120.0 166 20-35 >10000 5.0-20
SC ms - 1h <s 85-98 0-0.3 0.01 800-23600 2 - 30 104-105 4.0-12
SMES ms - 8s <s 75-80 0.1-100 0.015 - 10.0-75 - -
CAES 1-24h+ min 41-75 5 - 300 580-2860 - 3.2-5.5 >10000 >25
NaS s-h <s 70-85 0.05-8 0.4-244.8 90-230 100-175 2500-

4500
10.0-
15.0

Table 2.2: Additional features for the ESS in Section 2.1

Type Capital cost [USD / kWh] Self discharge [%/day] Geographical location Maturity of technology

PHS 5.0-100 Very small Limited Mature
FC 300-2000 0 Requires space and/or

gas infrastructure
Developing

FESS 1000-5000 100 Flexible Mature
LA 200-400 0.1-0.3 Temperature sensitive Mature
Li-Ion 600-2500 0.1-5 Temperature sensitive Developed
VRB 500 Small Requires space Developed
SC 300-2000 20-40 Flexible Developed
SMES 1000-10000 10.0-15 Flexible Developed
CAES 2.0-50 Small Limited Developed
NaS 300-500 -20 Flexible Developed

Table 2.1 and Table 2.2 are based on the most resent numbers from table 1 and 2 in [31],
table 1 in [35] and table 1 and 2 in [33]. In addition, the definition of the maturity of
technology is based on figure 1 in [35]. It should be mentioned that technologies close
to being mature, like the flywheel, have been moved from developed to mature, since
the article is from 2009.
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2.3 Applications for Energy Storage Systems

A method for comparing the different types of ESS based on the ESS features displayed
in Table 2.2 and Table 2.1 was developed. The description of the method along with
Table A.1 that was used to create Figure 2.3 can be found in Appendix A.1.

Discharge time

Response time

Efficiency

Power rating

Energy rating

Spesific power

Spesific energy

Num. Cy-
cles Lifetime

Capital cost

Self discharge

Geographical
location

Maturity

1
2

3
4

5

PHS
FC/HESS
FESS
LA
Li-Ion
VRB
SC
SMES
CAES
NaS

Figure 2.3: Graphical comparison between different types of ESS

As can be seen from Figure 2.3, the PHS and CAES storage has the highest score for a
range of features, like self-discharge and energy rating. The only potential drawback of
pumped storage is that it requires ample space and a sufficient height difference be-
tween the lower and upper reservoirs. For the CAES, a large cavern or facility in which
to compress the air is needed. In other words, the geographical location is vital for the
viability of PHS and CAES storage, and they are, therefore, unsuitable for many case
studies. Li-Ion BESS has a relatively high specific power and energy and a rapid re-
sponse time, making it suitable for fast acting reserves.

2.3 Applications for Energy Storage Systems

The use of ESS to provide ancillary services for the integration of wind turbines pre-
sented here. In Section 2.3.1, the definition of ancillary services is given, while section
Section 2.3.2 discusses the different ancillary services needed for integration of wind
power and which ESS is best suited for each of them.
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2.3.1 Ancillary services

Definition of ancillary services as defined by International Electrotechnical Commis-
sion (IEC) section 617-03-09:

Ancillary services: services necessary for the operation of an electric power system pro-
vided by the system operator and/or by power system users 1

As defined in the description above from IEC, ancillary services include a large number
of features and are necessary for the quality of the electricity supply. Ancillary services
can, for instance, be reactive power and voltage support, loss compensation, system
protection, fault ride-through capabilities, and frequency-active power control (Ch. 28
[40]). The quality of the electricity supply is tied to voltage, frequency, and security of
supply. As the quality of the electricity supply is a collective good, it cannot be left to the
market alone. It is, therefore, responsibility of the transmission system operator (TSO)
to provide it through ancillary services. The provision of ancillary services in Norway
through the balancing market is discussed further in Section 2.4.3.

2.3.2 Energy storage systems for wind power integration support

Ancillary services and other services that ESS can provide for wind power integration
support is presented in Table 2.3, based on table 3 in [33].

Table 2.3: Ancillary services and other implementations of ESS for wind power integration sup-
port

Application Time scale Suitable ESS

Energi arbitrage h-days PHS, NaS, CAES, VRB
Frequency regulation s-min Li Ion, NaS, FESS, VRB
Inertia emulation, oscillation
damping, LVRT

<1s LA, NaS, FESS, VRB

Primary reserves 10 min PHS, FESS,BESS
Secondary Reserves min-h PHS
Efficiency use of transmission
network

min -h Li Ion

Emergency power supply,
black start

min-h LA

The following parts of this section are based on section 3.2 in [33] and section 3 in [31].

2.3.2.1 Energy arbitrage / load leveling

ESS can be used to store energy during hours with excess production and release this
energy to the grid during peak periods. This can either be used to obtain maximal
profit for a wind farm owner or by the grid operator to reduce the market risk exposure
to volatile on-peak prices.

1IEC definition [39]
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2.3 Applications for Energy Storage Systems

2.3.2.2 Inertia emulation

A system with high inertia is slower to change than a system with low inertia. The
grid function in much the same way, thus higher grid inertia equals a grid that is less
sensitive to sudden changes in production or consumption. The inclusion of ESS can
artificially raise the apparent inertia to the grid, making it more robust to changes.

2.3.2.3 Frequency regulation

Wind farms are required to offer frequency regulation to the grid. By additional droop
control, the wind farm can achieve this, but not without risk of causing fatigue to the
turbines and instability problems. Therefore, ESS can be used instead, with local droop
control for primary reserves and active power command from the Automatic Genera-
tion Control (AGC) for secondary reserves.

2.3.2.4 Reserve application

Reserves are necessary for the power system to cope with imbalances in production
and load. The reserves are divided based on response time into primary, secondary,
and tertiary reserves. A broader description of the different types of reserves and the
Norwegian balancing market for procuring these reserves is given in Section 2.4.3.

2.3.2.5 Oscillation damping

Changes in power for interconnected systems might lead to unwanted oscillations that,
in the worst case, can result in loss of synchronism for connected units. For large
wind farms, the volatile production can be mitigated and additional system stability
obtained by the inclusion of ESS with a damping controller.

2.3.2.6 Voltage control support

ESS can provide reactive power to compensate for the local voltage. This is achieved
through the grid-connected converter and might be especially useful for compensating
fluctuating wind power production.

2.3.2.7 Low voltage ride through support

For severe grid faults, wind farms need Low Voltage Ride Through support (LVRT) ca-
pabilities to remain connected to the grid. If the grid demands reactive compensation
during a fault, the converter needs to draw real power to compensate for the switching
losses gained by the supply of reactive power. If the fault is severe enough, no power
may be drained from the grid; thus, the converter switches are blocked. In these in-
stances, the ESS can supply the required DC voltage so that the converter is compen-
sated for the real power loss and can supply the grid with the needed reactive power
and prevent further instabilities.
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Chapter 2. Theory

2.4 Norwegian Power Markets

The wholesale market for electricity in Norway consists of the following markets: day
ahead, intraday, and balancing. The balancing market is used to ensure that there are
sufficient reserves in the power system. Since ensuring the necessary reserves is a TSO
responsibility, Statnett manages the balancing market. Nordpool Exchange operates
the day ahead market and intraday market. The time frame for the different markets is
shown in Figure 2.4.

Financial
market

Day ahead
market

Intraday
market

Balancing
market

Imbalance
settlement

market

Time

TSO responsibility

Production hour

Regulated exchange

Physical settlementFinancial settlement

Commercial exchange

Figure 2.4: Time frame of Nordic Electricity Market (adapted from Norges vassdrags og -
energidirektorat (NVE) [13])

The financial market is placed under financial legislation and is regulated by the Fi-
nancial Supervisory Authority of Norway, and typically is used to secure positions for
market participants several months or even years ahead of delivery time. The financial
market will, therefore, not be discussed further here. The Nordic region is divided into
different price areas for intraday and day ahead markets. Statnett does this area divi-
sion according to provisions for system responsibility in the power system (FoS). The
division is done to be able to manage major and long-term congestion in the central
and regional grid or due to a possible lack of energy in defined geographical areas [41].
In Norway, there are currently 5 price areas: NO1, NO2, NO3, NO4 and NO5 [42].

2.4.1 Day ahead market

The day ahead market, named Elspot in Norway, is managed by Nordpool. A day ahead
market is a financial market where bids are placed for selling and buying of electricity
for the following day. In Elspot, the available capacities are given at 10:00, and the bids
must be placed by 12:00 for delivery the following day. The market is cleared to ob-
tain maximum social welfare with network constraints taken into consideration. The
hourly clearing prices are posted to the participants at 12:42 or later [43]. Constraints
concerning bids in the day ahead market are given in Table 2.4.

Note that trade lot here means both the minimum size of bid and the bid resolution.
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Table 2.4: Criteria for Elspot market [4]

Trade lot [MW] Price [Euro / MWh] Order types Block order volume limit [MW]

0.1 0.1-3000 Hourly, Flexible,
Block, Exclusive
groups

500

2.4.2 Intraday market

Nordpool also manages the intraday market. An intraday market is a continuous mar-
ket for electricity, where trading takes place around the clock every day. The TSOs sup-
ply the available capacity for the Nordpools intraday market based on a flow study done
on the result of the Elspot auction. The intraday market is open 24/7, 365 days a year,
with 15-min, 30-min, hourly, and block products. The intraday market opens at 14:00
(normally) each day after the Elspot prices are set. The trading is continuous through-
out the day, and trading closes 1 hour before delivery [44].

2.4.3 Balancing market

In Norway, Statnett is the responsible TSO, and acquires the primary, secondary and
tertiary reserves necessary through market solutions. In the following subsections, the
power systems response to a frequency change and the different balancing markets are
explained.

2.4.3.1 Frequency response and activation of reserves in the Norwegian Power Sys-
tem

The power grid is subject to constant changes in both production and consumption.
The immediate response to an imbalance (i.e., change of production/consumption)
in the grid is to convert the inertia of the system’s components into electrical energy.
This causes a drop/rise in the system frequency. This frequency change activates the
primary reserves, called Frequency Containment Reserves (FCR). The main task of the
FCRs is to stabilize the frequency (i.e., prevent further drop/raise in the frequency) [5].
After FCR has stabilized the frequency, the secondary reserves are activated to liber-
ate the FCR and bring the frequency back to 50.00 Hz, i.e., balance the system. Sec-
ondary reserves are called automatic Frequency Restoration Reserves (aFRR) or some-
times Load Frequency Control (LFC). aFFR are, as FCR, activated automatically by the
TSO [45]. If there is a need for permanent or additional frequency regulation, the ter-
tiary reserves are used. Tertiary reserves are often called regulating reserved and are
manually activated with an activation time of up to 15 minutes [46].

The grids’ response to an imbalance and the time frame of the activation of the differ-
ent reserve types is displayed in Figure 2.5.
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Figure 2.5: Frequency response of a system (Figure 1 [14])

In Figure 2.5 primary frequency control (droop) corresponds to activation of FCR, sec-
ondary frequency control to activation of aFRR and tertiary frequency control is equal
to activation of tertiary reserves. The different reserve types and how their markets are
built is given a brief explanation in the following subsections.

2.4.3.2 Primary reserves

Primary reserves are used as the main frequency regulator to compensate for the im-
balances that might occur. The FCR regulation is fully automated and is divided into
normal operating reserves, FCR-N, and disturbance reserves, FCR-D. To secure that the
system has sufficient FCR, a market has been defined for trading both weekly reserves
and D-1 reserves. The weekly market is run before the Elspot (day ahead market of
Nordpool), while the D-1 market is run after the Elspot to cover residual needs. The
bidding areas for FCR are the same as the current Elspot areas [42].

Table 2.5: Primary reserves as defined by Statnett [5]

Primary Reserve Type of reserve Activation markets

FCR-N Symmetric (both up and down) Automatic at ± 0.1 Hz Weekly and D-1
FCR-D Up Automatic at 49.9 Hz,

fully activated at 49.5 Hz
D-1

Submission of bids in the weekly market opens 6 days before the delivery periods. The
bids consist of period and bid area. There are six available bid periods for each Elspot
area, day (08-20), evening (20-00) and night (00-20) for weekdays (Mon-Fri) and day
(08-20), evening (20-00) and night (00-20) for weekends (Sat-Sun) [6]. Statnett gives
feedback on accepted bids in the market on the day of trade by 15:00. Producers must
submit errors in bids by 15.30 the day of trade [6]. Bidding in D-1 market is run in
hourly resolution and opens at midnight the day before delivery. The bids consist of:
type of reserve (FCR-N or FCR-D), per hour and per bid area. Statnett gives feedback
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2.4 Norwegian Power Markets

on accepted bids in the market on the day of trade by 18.00. Producers must submit
errors in bids by 20.00 on the day of trade [6].

Table 2.6: Criteria for bidding in D-1 primary market [6]

Bid for Submit bid by Period Min. size of bid

Next day Day before at 18.00 Hourly 1 MW

2.4.3.3 Fast frequency reserves

Fast frequency reserves, FFR, are a type of frequency reserves that are activated when
the system frequency dips below a predefined level and should be fully activated within
approximately a second. Statnett wishes to implement a market for the procurement
of FFR. A demo version for the FFR market is, therefore, to be tested in 2020. In this
demo version, it is proposed that the reserves can be activated for different values in
the interval between 49.5, 49.6, and 49.7 Hz, with a maximum activation time of 0.7,
1.0, and 1.3 s, respectively. In addition to these requirements presented, the reserves
must be available either as short support or long support FFR reserves. Short support
implies that the reserves are available for a minimum of 5 s, while long support entails
that the reserves are available for at least 30 s. Statnett does not foresee that these re-
serves are to be activated often, and predicts activation with a frequency of less than
once a year [47].

There are several different technologies that could participate with FFR reserves. Stat-
nett tested FFR response from different sources (industry, hydropower, and datacen-
ters) in a test project in 2018. The main results from this project were that hydropower
had a too-slow response, with activation times of 3 seconds or longer, while the data
center, switching from grid import to batteries, had a response time within the 2-second
response window, but did not deliver for the full 30 s period [48]. The fact that the un-
interruptible power supply (UPS) unit controlling the battery used a function for FCR
for activation, instead of one tailored for FFR, can have caused this.

In the demo version in 2020, Statnett wished to procure two types of reserves; FFR Pro-
fil and FFR Flex. FFR Profil is seasonal and is used to cover a limited volume of FFR
reserves during nights (22-07) and weekends from May 1 to September 31. The flexible
FFR is to be delivered based on short-term forecasts of demand. The price for FFR will,
for the demo version, be decided by the highest accepted bid. If the frequency in the
period that FFR is provided drops below the set-point, FFR reserves are activated. In
this instance, Statnett pays the producers for the power they deliver. The criteria for
bidding in the FFR profile market is given in Table 2.7.
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Table 2.7: Criteria for bidding in FFR profile market [6]

Bid for Submit bid by Period Min. size of bid

Season 16. March 1.May-30.Sept. 22-07 weekdays, 24 h weekends Not specified

The procured FFR for 2020 demo version was released on March 20. There, it was said
that Statnett would procure 27.2 MW FFR Profil at the price of 4.6 million NOK. This
yields a price of 169 117 NOK per MW, 17 623.33 EUR / MW, (conversion rate of 2018
[49]) that is available for FFR Profil reserves for the period (2037 h in total). Statnett did
not procure any FFR Flex in the 2020 demo version.

2.4.3.4 Secondary reserves

Secondary reserves, aFRR in Norway, are used to keep the frequency within the pre-
defined frequency band of operation, 49.9-50.10 Hz, and liberate the FCR. The aFRR
market includes both reserved capacity and activated energy. Statnett buys reserved
capacity for aFRR at weekly auctions. The activation of aFRR reserves is decided by
Statnetts LFC function. The LFC function makes decisions based on the measured fre-
quency, and the activation of aFRR is done pro-rata. This means that the activation of
aFRR is divided equally among all suppliers in the Nordic region [45].

Statnett sends the market definition to the pre-approved suppliers Monday at approx.
11:00. This signals the start of the bidding period. In the bidding period, all bids can be
altered/removed, but on Thursday at 10.00, all bids are binding. The bids are placed for
delivery from Saturday (the same week as the bid is placed) to, and including, Friday
the next week [50]. During holidays, other bid deadlines might be set by Statnett.

The bid must be made with criteria as shown in Table 2.8.

Table 2.8: Criteria for bidding in secondary reserve market [7]

Bid for Submit bid by Period Type of reserve Price Quantity

Saturday-Friday Thursday 10:00 1 Week Down or Up [NOK/MW/h] in
the contract pe-
riod

5-35 MW, bid
must be divid-
able by 5

Also, the bid of secondary reserve capacity, cannot be a part of other obligations. In
addition, a bid is bought in its entirety, i.e., parts of a bid volume cannot be traded [7].
As a part of increasing the aFRR reserves, the Nordic TSOs have decided to increase
the hourly use of aFRR following the introduction of a Nordic aFRR market. Statnett
has decided to increase the aFRR from 84 to 94 hours/week in Q2/2020. In addition,
the total volume in the morning hours is raised to approximately 400 MW. The total
volume in other hours is set to approx. 300 MW [50].
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2.4.3.5 Tertiary reserves

Tertiary reserves, called manual Frequency Restoration Reserves (mFRR), are defined
as reserves that have an activation time of up to 15 minutes. The size of the tertiary
reserve is decided to be equal to the dimension fault in the given system by the Nordisk
Systemdriftavtale. In Norway, this dimension fault is 1200 MW. Statnett has decided
to add 500 MW to this limit to control regional bottlenecks and imbalances. There
are two markets for tertiary reserves in Norway: Regulerkraftmarketed (RKM) and Reg-
ulerkraftopsjonsmarketet (RKOM). RKM is a market for the Nordic power system for
manual reserves with activation time up to 15 min. RKOM is a capacity market to en-
sure sufficient reserves in the Norwegian part of RKM and is available both as a sea-
sonal and weekly market. [46]

2.4.4 Norwegian power markets suited for energy storage systems

In this section, the Norwegian power markets have been presented and discussed.
Here, an attempt is made as to which are best suited for different ESS types. Of the bal-
ancing markets, the tertiary markets require long time storage (days) and a large energy
volume (MW) and hence are suitable for few types of ESS except the PHS. For ESS par-
ticipation in the secondary reserves, the large MW requirement demands a large ESS
size, which again rules out most ESS except PHS if economic viability is also consid-
ered. Another way to solve this could be that the ESS is a part of a virtual power plant
(VPP). In a VPP, the bids of several ESS or production units are aggregated and can be
used for secondary reserve participation. The primary energy markets are tailored to
several different ESS, as it requires a fast response time and ramp rate. In particular,
the FRR market seems especially tailored to fast-acting ESS, of which BESS, of course,
is an excellent example. The day ahead and intraday power markets are less suited for
ESS participation, but coupled with volatile production, like a wind farm, ESS can help
mitigate differences between bids and actual production. This difference could occur
due to an error between the forecasted values and actual production. Failing to meet a
set bid in either of these markets could lead to penalization or suspension [51]. Hence
ESS could here benefit the volatile production unit by keeping it on the market.

2.5 Prerequisites for forecasts and battery operation

This section presents the theory relevant to the 10-year projection scenarios for the
case study of Midtjfellet wind farm with ESS. This includes the prerequisites for the Li-
Ion BESS selected to participate in the different markets, definitions of revenue stack-
ing and data for producing forecasts of the price of electricity and Li-Ion BESS in the
future.
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2.5.1 Revenue stacking

A way to increase the revenue from installing ESS, and thus making a potentially posi-
tive business case, is to use stacked services or revenue stacking. As these terms imply,
the ESS can, in this scenario, contribute with several services, either simultaneously
or in different periods. The services depend on the market structure, but could for a
battery include balancing reserves, frequency regulation, and time-shifting of volatile
renewable production [52].

2.5.2 Price of electricity

To create valid scenarios for the electricity price in 2030, it is vital to include both histor-
ical price development, and tie this with recent trends that might influence the future
price of electricity. Hence, this section tries to predict, to a certain extent, the reason-
able price prognosis for the electricity price in 2030. It should, however, be noted that
prediction of the price of electricity is inherently difficult and that if accurate forecasts
existed, the owner of these could earn a fortune. It is hence vital to understand that
this is merely a suggestion of how the price could develop, based on historical rates
and new technologies.

It is plausible that with the increased building of power lines to other countries, the
prices in Norway to an increasing degree match the price in the rest of Europe. Hence,
it could be argued that the electricity prices could rise some in the coming years, as
Norway has one of the lowest prices of electricity in Europe per now, as shown by the
average price of electricity for households in 2017 in Figure 2.6, where Norway is found
under NO and marked with a red square.

Figure 2.6: Household electricity prices in 2017 (most representative consumption band) (Figure
2 in [15])

Different EU countries have also imposed a tax on CO2 emissions as a tool to reduce
the impact of global warming [53]. If a broader part of the EU countries sets CO2 taxes
on production units for electricity, this could increase the price of electricity.

2.5.2.1 Historic prices

Following the statistics from SSB, the electricity price for Elspot and regulating power
(in øre NOk/kWh) from 1998-2019 are presented with quarterly values in Figure 2.7.
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2.5 Prerequisites for forecasts and battery operation

The graph presented in Figure 2.7 is based on two statistics from SSB, one for the period
from 1998K1-2011K4 [16], and one for the period from 2012K1-2019K2 [17].
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Figure 2.7: Historic elspot/regulerkraft prices øre NOK / kWh 1998-2019 [16] [17]

As can be seen from Figure 2.7, the dotted green line represents the linear trend and
which was calculated using the graphical tools in Excel. The green trend line shows
an increase in the electricity price from 1998 to 2019. Considering natural inflation,
1 (one) NOK in 1998 would, according to Norges bank, be worth 1.55 NOK in 2019
[54]. Following this argument, the prices were adjusted for inflation, as shown by the
purple dash dotted line in Figure 2.7, with a corresponding linear red dashed trend line
calculated by diagram tools in Excel. Even when adjusting for inflation, there is still
a significant increase in electricity prices between 1998 and 2019, as shown by the red
trend line. In numbered values, the linear trend lines show an increase in the 20.5 years
of 115.18 %, with a 45.8 % increase when adjusting for inflation. The raw data for the
calculation of the linear trend lines based on the acquired data can be found attached
to the thesis in the excel file labeled "Appendix_B1_LE_Master_thesis_2020.xlxs"

2.5.3 Requirements for market participation

For producers or energy storage units to participate in electricity markets, they must
fulfill different requirements connected to grid codes, market regulations and owner-
ship. The relevant requirements for this thesis is briefly discussed in this section.
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2.5.3.1 Grid Codes

Grid codes are rules and regulations for how different power grid components can con-
nect to the grid. This could, for instance, be rules concerning reactive power, black
start capabilities, the harmonic content, as well as area-specific requirements. If, for
instance, a load is to be connected, the net in the area must be able to support it, or
improvements must be made. In Norway, the relevant grid codes for a wind farm of
Midtjfellets size (149.6 MW) can be found from Funksjonskrav i Kraftsystemet (FIKS).
FIKS is a reference framework developed by Statnett for units connected to the Norwe-
gian power system. FIKS was created to secure the development of a robust and secure
power system and is meant to be used as a reference framework for the functionality
that grid-connected units are required to have by the TSO. [55]

2.5.3.2 Compliance with market rules

As has been outlined in Section 2.4, there are several rules that bids must fulfill to par-
ticipate in the different Norwegian power markets. The most limiting for energy stor-
age units like Li-Ion batteries is the minimum bid size and the markets with longer time
horizons, like the tertiary reserves market in Norway.

2.5.3.3 Ownership of energy storage units in Norway

The electricity grid in Norway is run as a monopoly, and with the current legislation in
Norway, no grid company may own energy storage systems (ESS). A study performed
by DNV GL for NVE in 2017 concluded that DSOs should not be allowed ownership of
batteries in the future [56]. This means that a grid company cannot invest in ESS to
improve grid stability or to provide other grid-related ancillary services.

2.5.4 Price of Li-Ion battery energy storage systems

The current and future development of the price of energy storage is of interest when
matters of profitability are discussed. In the case study presented in Chapter 5, Li-
Ion BESS is the chosen ESS. It is therefore interesting to look at how the prices for Li-
Ion BESS is predicted to change in the future, and what this might entail in terms of
profitability. Different price schemes for the future price of Li-Ion BESS is therefore
depicted in Figure 2.8.
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2.5 Prerequisites for forecasts and battery operation
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Figure 2.8: Price forecast for Li-Ion BESS, adopted from figure 1 [11] with added values from [10]

Reference [11] made a cost projection of utility-scale 4-hours battery systems, to both
2030 and 2050 values. In this report, the 2030 values are used, as the projection is for
a 10-year horizon. The scenarios described in [11] indicate three different prices, low,
medium, and high estimates, at 124, 207, and 338 USD/kWh respectively [11].

Reference [11] based their prediction on 25 different sources, where one example is
found in [57]. In [57], the authors made their prediction of future Li-Ion prices based
on an assumed electricity price of 50 USD/MWh. With the mean conversion rate of
2019 at 1.12 (from EURO to USD), this roughly translates to 44.64 EUR/MWh [58]. The
mean spot price in NO5 in 2019 was 39.27 EUR/MWh [59]. Hence, it is clear that the
business value of Li-Ion batteries could have been overestimated in [57] compared to
the Norwegian market. Therefore, it could be argued that the medium and high esti-
mates might be more suitable and probable for the price of Li-Ion in Norway. This is
because the price of electricity is lower than in other countries, and hence the poten-
tial business value of Li-Ion batteries is reduced. In the report, the OM costs remain
the same, but the investment cost, replacement cost, and EoL costs are scaled linearly
according to the findings in [11].

NVE has also published a report regarding the prices of Li-Ion batteries, yielding an
estimate of the price for 2019 between 4000-6000 NOK/kWh [10]. Translated with the
mean conversion rate of 0.1137 from NOK to USD in 2018, this translates to 454.8-682.2
USD/kWh [60]. As can be seen, this is much higher than the number used in the [11]
predictions. This could be because NVE looks at all Li-Ion battery systems, while [11]
has focused primarily on Li-Ion batteries with a four-hour duration. It could also be
because the prices in Norway differ from the sources used in [11]. However, the authors
in [10] predict that the battery price of Li-Ion batteries is halved by 2030. Hence, a
halving of this amount would mean prices in 2030 at 227.4-341.1 USD/kWh. Following
this, the medium and high scenarios described in [11] are reasonable compared to the
estimates by NVE [10].
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Chapter 3
Literature Review

This master thesis aims to perform a case study of energy storage systems (ESS) cou-
pled with a wind farm to asses the potential for a positive business case within 2030.
A vital aspect related to answering this question is to evaluate relevant previous work
within this area. A literature review is necessary for identifying an appropriate course
of action and assessing potential research areas that this study can help expand. Be-
sides, a literature review can contribute to a thorough understanding of the chosen
area. In this thesis, it is important to asses the benefits of installing ESS with renewable
generation. To assess such benefits, it is often vital to perform optimization based on
minimizing or maximizing a selected objective. A comprehensive table of 20 articles
related to optimization of ESS for technical or economic benefit, often coupled with
a wind farm or other volatile production, as well as case studies within this field pub-
lished in the period 2003-2020, is therefore presented in Table 3.1. The following parts
of this chapter are based on chapter 2 in my specialization project [3], which has lain
the preliminary groundwork for the master thesis. However, the literature review has
been extended with seven articles. The additions have been made due to alterations
in the problem formulation and to include new articles published. An overview of the
articles studied in the literature review is presented in Table 3.1.

Table 3.1: Overview over articles studied in the literature review

Ref. Summary Model Objective Main findings

[61] Operation planning and
scheduling of Energy
storage

Scheduling
problem

Max profit Shown that ESS with wind
farm can take advantage of
volatile spot price
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[62] Hourly-discretized opti-
mization model for water
storage and wind farm
system

LP solved using
a predictor-
corrector
primal-dual
interior-point
method

Maximisation
of 24-h op-
erational
profit

Hydro storage increase the
economic profit of the wind
park. It also contributes to the
controllability of the genera-
tion output. It can be used
to install larger wind farms
as the water storage can mit-
igate network operation re-
strictions.

[63] Modelling and operating
of CAES coupled with a
wind farm as a baseload
plant

Spreadsheet of
desired output

Meet de-
mand

Combined CAES and wind
farm gave a significant reduc-
tion in GHG emissions and
a substantial increase in ef-
ficiency compared to fossil
baseload plants

[64] Operation planning of
hydrogen production
through electrolysis from
excess power from a wind
power plant.

MPC model Max profit Fuel cells too inefficient for
profitable electricity produc-
tion. The better the forecasts
and scheduling, the higher the
profit.

[65] Developed dynamic
model of a hybrid system
of a wind farm, PHS and
HES

Constrained
optimization
solved by Lingo
9.0

Satisfy
electric,
hydrogen
and water
demand

Hybrid system has increased
the flexibility compared to
wind farm

[66] Feasibility study for stor-
age control of large scale
ESS (Flow battery) to im-
prove wind farm output
predictability.

Four control
types: Simple,
fuzzy, simple-
and advanced
ANN

Min cost of
system

Power flow control strategies
have a significant impact
on the system’s energy and
power ratings. ANN control
strategies, in particular, gives
lower costs than simplified
controllers.

[67] How different factors af-
fect the size of the op-
timal storage. Optimal
storage investment prob-
lem for a renewable gen-
erator.

Discrete-time
average-cost
infinite hori-
zon stochastic
dynamic pro-
gramming.

Min cost of
ESS

For the energy storage to be
economically viable under the
given balancing policy, the ra-
tio of amortized storage cost
to the peak price should be
below 1

4
[68] Method for ESS (CAES)

design for the regulation
of wind power output and
to increase grid voltage
stability.

OPF, direct-
calculation
method and V-Q
modal analysis

Max profit
and SVS
improve-
ment

Case studies show that CAES
can be used to improve both
wind energy revenue and grid
voltage stability

[69] Market-based or tech-
nical planning and
operation of a wind farm
with Na-S batteries. Per-
formed an economic
feasibility analysis.

Technical/market-
based decision
algorithm and
NPV calculation

Follow
planned
schedule
and max
NPV

ESS permits better integration
of wind power through im-
proved market performance
and delivery schedule follow-
ing.
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[70] CAES used to manage the
power output of a wind
farm by de-coupling its
WEC

Sizing of CAES
from 1-8 MWh
(1 MWh steps)
with additional
revenue minus
costs of addi-
tional storage as
OF

Max profit The combined system (CAES
+ WEC) followed a TOD FIT
for feeding electricity to the
grid. 30 % gross revenue ob-
tained by peak-system given
the economic assumptions
taken in the report.

[71] Control scheme for BESS
with wind farm using
MPC to sell more en-
ergy at peak and store at
off-peak

QP solved by
MPC

Max profit The proposed control scheme
for BESS improve wind farm
dispatch

[72] MPC to maximize profits
from PV and ESS system
in realtime tested on PV
plant with the el-market
structure of Spain.

LP solved by
MPC

Max profit MPC introduce benefit for a
PV and ESS system by reduc-
tion of imbalance penalties
due to better prediction of PV
prod. Comp. effort of solv-
ing LP with MPC low enough
to be can be implemented for
a plant with a sampling time
of 4 min

[51] Creation of an EMS to
maximize profit but also
prolong BESS lifetime

MPC Max profit
and a max
lifetime of
BESS

Maximum revenue from en-
ergy arbitrage with minimal
cost during the lifetime of BSS
ensured by the proposed MPC
method.

[73] Perform techno-
economical analysis
of ESS with a wind farm
to reduce volatility in
the production with case
study from Australia

Generic techno-
economic model

Prevent
ramp-rate
violations

Found that regulatory frame-
works for ramp-rates can
significantly impact the eco-
nomic viability of ESS, making
them profitable.

[74] Proposes algorithm that
incorporates forecasting
information to determine
optimal power dispatch
strategy for the BESS.

Optimal frame-
work based
on MPC with
forecasting in-
formation

Max profit Framework developed can
be used to develop optimal
power dispatch strategy for
BESS-wind farm systems. The
result can be used in plan-
ning to select optimal BESS
capacity for a given power
rating.

[75] BESS installed with an
R&D wind farm. It oper-
ated to provide two ser-
vices, time-shifting, and
regulation, to provide ad-
ditional revenue

Logic rules for
charge/discharge
of BESS

Follow the
predefined
logic rules

Stacking services that resulted
in additional revenue com-
pared to just time-shifting.
However, regulation provided
98 %, so it would be most
beneficial financially to par-
ticipate only in the regulating
market.
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[29] Looked at RES and ESS
integration for a large
scale electrical grid (26
GW). Used Pakistan grid
as a case study.

Model similar
to HOMERs En-
ergy Micropower
Optimization
Model but for
large scale appli-
cation

Min cost Least cost combinations re-
quire the use of diverse re-
newable sources, installation
of excess generation capacity,
and ESS. Different combina-
tions of storage can: bring
the cost down, increase RES
share, and reduce spilled en-
ergy.

[76] Profitability of four bid-
ding strategies for Li-Ion
BESS coupled with wind
farm participating in
Iberian day ahead, intra-
day and tertiary reserve
market

Non-linear opti-
mization

Max profit Simplified prediction models
and non-linear optimization
improves the operation of the
wind farm with BESS sup-
port. The maximum theoreti-
cal benefit obtained with per-
fect information of forecasts

[77] Techno-economic opti-
mization of a large scale
battery for four different
cases

LP solved by
heuristic proce-
dure

Max profit Use case with both partic-
ipation in the spot market
and balancing market pro-
vided a feasible configura-
tion even with current battery
prices

[78] Find the optimal ESS rat-
ing to increase integra-
tion of wind farms by
smoothing the output ac-
cording to a power set
point

QP solved by
MPC

Optimal
size of ESS
to follow
dispatch
schedule

0.5 P/E ratio the best for wind
power smoothing

3.1 Modeling of components

It is vital to understand the limitations and benefits of the earlier proposed methods
to understand reasonable assumptions and models. Therefore, this section presents
aspects of modeling the different components. Modelling of ESS is discussed in Sec-
tion 3.1.1, wind farm modelling in Section 3.1.2 and market modelling in Section 3.1.3.
How forecasting of data is handled, and models for forecasting in the different articles
are presented in Section 3.1.4.

3.1.1 Energy Storage Systems

There have been several different ways to model ESS for renewable generation. The
modeling process is essential when measuring the potential benefit of installing ESS,
which is why previous approaches are discussed in this section.

Reference [63] studied the case where Compressed Air Energy Storage (CAES), coupled
with a wind farm, was used so that the combined system could function as a baseload
plant. To achieve this, [63] modeled the CAES as a fixed capacity where the combined
system was meant to meet the desired output given by transmission constraints. The
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model included the effects of transmission losses between the wind farm and CAES.
If the objective by installing ESS is to obtain the maximum profit, taking advantage of
volatile electricity prices is often crucial. Operation as a baseload plant, as proposed in
[63], can, therefore, be a poor choice. In [70], the operational characteristics included
in the CAES model was: Efficiency, Charge power, Discharge power, Operating pres-
sure range, Ramp rate, and Energy capacity. The lifetime/number of cycles was not
included directly into the modeling, and neither was the self-discharge. Nevertheless,
as the CAES system, in general, has a long lifetime, a high number of cycles, and low
self-discharge, these features are less important to include in the model than for other
types of storage.

In [75], a real 10MW R&D wind farm was used, with an installed BESS capacity of
1MW/2MWh, and a test period of one month. The BESS was operated with simple
static rules for charging/discharging of the battery to achieve both time-shifting of en-
ergy supply and Automated Generation Control (AGC) response. It should be noted
that although degradation was not included in the model for controlling the BESS in
[75], it is, of course, present in the physical batteries installed. Hence, omitting it from
the model might lead to unwanted battery operation, meaning that the static rules
used might be too simple an approach for actual implementation. However, [75] did
model the BESS with limitations for charge and discharge rates as a function of the SoC
level. In particular, the authors in [75] found that the charge rate, which decreased with
increasing SoC level, heavily limited the operation of the battery, and made it unable
to perform the actions required in some instances of the simulations. Reference [51]
modeled a Lead-Acid BESS using a simplified model developed by the authors in [79],
which only includes the BESS storage dynamics. The BESS is in this simplified version
modeled by a third-order linearized model. The chosen model was accurate enough
for the primary purpose of the article, namely, to create a supervisory energy manage-
ment control.

A generic ESS model coupled with a wind farm was proposed in [61], with a defined re-
lationship between storage level and charging/discharging. Since it was developed as
a generic ESS, it did not include features that, for some ESS might be prominent, such
as self-discharge. The model would not be valid if the proposed method were used
for a flywheel which has a very high self-discharge. However, as a case to show how
ESS coupled with a wind farm, can contribute to less unused energy and a potential
revenue stream, the simplified generic ESS model was satisfactory. Besides, although
commented in the discussion section in the article, the ESS model lacked investment
costs. This means that in the showcased revenue streams, showing a promising addi-
tional profit for installing ESS with a wind farm compared to only the wind farm, the
actual cost of the ESS was not accounted for. As the authors in [61] also mentioned,
at the price of ESS (in 2003), the comparison between additional grid investments and
installing ESS often favors grid investments. This is due to the high ESS price at the
time.

Reference [64] established a Linear Programming (LP) model of the hydrogen plant
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based on equations for electrical energy balance and flow of H2 that could be used in
the operation planning stage. In addition, excess production were sent to a dump load
in [61] and [64]. The use of a dump load is a simplification that effectively results in
loss of potential revenue. However, it is not a simplification that leads to a less realistic
system, as it is the same as wind farm curtailment. I.e., that the production is reduced
compared to what the wind farm can produce, as a result of agreements with the grid,
environmental concerns, or control issues. Reference [68] modeled the ESS as a regu-
lated power source. The regulated power source could absorb or supply power and was
implemented with a charge/discharge scheme. The ESS model included power rating,
energy rating, and efficiency. For a specific type of ESS, additional features like self -
discharge and ramp rate should be included to give a more realistic model of a specific
system.

Few of the earlier published work considers the response time or degradation of the
chosen ESS, as can be seen in Table 3.2 while an increasing focus on this is found in
the articles publicized in the more recent years. The common denominator for the
proposed methods is that the model parameters are limited to the article’s need. An
example is found in [76], where the authors used a simplified method for degradation
of the battery. In the article, degradation of the battery was modeled as a function of
the Depth of discharge (DoD). Inclusion of degradation, response time, self-discharge,
investment costs, and ramp rates for the storage types could potentially alter how each
ESS is used. The level of complexity needed from the storage model, i.e., which param-
eters to include, depends on how the results obtained should be used. This can, for
example, be as either an investment tool or to provide control moves for actual oper-
ation. Therefore, it is vital to include the parameters necessary for the use case of the
ESS for the results to be valid. An example is shown in [75], where the charge rate of
a BESS, which is a function of the chemical properties related to the SoC level, limited
the use of the battery compared to the desired set-point. Hence, had this feature been
omitted, the battery operation proposed could prove invalid for actual operation.

3.1.2 Wind farm

There are different ways to obtain the wind farm data used in the combined systems,
either by using actual data or simulating the production.

In [70], one year of average output power at the grid interconnection from a 0.8 MW
turbine with a time resolution of 10 minutes was used. Reference [75] also used real-
life data from a 10 MW R&D wind farm and a simulation period of one month. In other
studies, a generic wind farm model with identical wind turbines was used, [61, 69]. In
particular, [61] assumed that the wind farm consisted of wind turbines with the same
wind conditions where the production followed the characteristic input/output curve
of a given wind turbine. Reference [62] modeled the wind farm as a stochastic quantity,
represented as two hourly series: one for average wind speed and one for standard de-
viation. The algorithm then picks a random interval of these time series that represents
a wind power scenario. Reference [65] used a linear wind model for the wind turbines,
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where the power output was in linear relation to the wind speed at hub height. This was
then compared using Root Mean Square Error (RMSE) and chi-square with the power
output curve of an actual wind turbine, resulting in very small deviancies (range 10−2

to 10−3 ).

The main findings regarding wind power is that most of the articles use simplified mod-
els to predict wind power output. This is because the main focus of most of these ar-
ticles is how ESS behaves with a fluctuating production. The inclusion of complicated
production models would increase the computational effort required while not neces-
sarily adding any additional benefit.

3.1.3 Electricity markets

How the chosen ESS can participate in the electricity market is vital in assessing the
potential revenue which can be gained. It is, therefore, essential to know how the un-
derlying electricity market has been modeled and should be modeled to reap the high-
est potential benefit in installing ESS. In this regard, it is especially interesting to look at
the potential for revenue stacking, i.e., the potential for several revenue streams by, for
instance, participation in several energy markets. A section concerning this is therefore
included in Section 3.1.3.2.

3.1.3.1 Revenue stacking

Reference [75] used both the day-ahead and regulation market of PJM. The results
showed that even though the PJM regulation market showed the highest revenue po-
tential for ESS, it was insufficient to cover the cost of the chosen BESS for the 24-day
trial. In [76], four market participation schemes were tested, were three of the schemes
participated in the Iberian markets for day ahead, the first intraday and tertiary regu-
lation. The authors found that the theoretical maximum revenue for participation in
the three markets, obtained by perfect forecast information, showed an improvement
of 52 % with the inclusion of BESS support compared to the reference case with the
wind farm. In [64], the chosen ESS was hydrogen, where profit could both be earned
by selling electricity produced by fuel cells (FCs) on the Nordic Spot market, which is a
day ahead market, but where hydrogen was also used as a fuel. Unmet hydrogen de-
mand was penalized, and hence revenue stacking in this sense could be interpreted
as to maximize the combined revenue from selling electricity and meeting a hydrogen
load demand.

3.1.3.2 Market structures

In [70], the proposed electricity market included a Time of Day Feed-in Tariff (TOD
FIT) rate, i.e., a compensating scheme for both electricity consumption (TOD) and en-
ergy generation (FIT). This electricity market structure created higher price volatility
and was used to make a decision scheme for whether the electricity price was on or
off-peak. A charge/discharge scheme based on the electricity price was then created
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for the CAES, based on predictions of whether electricity would be worth more now or
later. The Nordic Spot market was the market structure in [61]. In the Nordic Spot mar-
ket, the bids are placed 12h (or more) before the actual delivery day, and discrepancies
between bids and delivery typically result in reduced income. Reference [69] proposed
a market model based on Italian regulation where correct hourly offers were rewarded
with additional revenue, and penalties were given for deviance from the hourly deliv-
ery plan. Incentives for wind turbine installment were also included in [69].

Reference [73] tailored the ESS used to specifically reduce the number of ramp-rate vi-
olations, which, when it occurs, incur a penalty cost for the wind farm owners. Hence,
ESS was not used to participate on a regular energy market, but rather to reduce the
costs of ramp-rate violations. However, the authors found that by aggregating wind
farms that are located far from each other, the need for ESS to mitigate ramp-rate vio-
lations decreases. This is because wind farms located far from each other have different
production patterns, as the weather is highly local. Hence, the output from the aggre-
gated farms is smoothed. However, the interesting find pertained to how regulatory
frameworks can be paramount for creating economically viable ESS investments. It
should also be mentioned that this study was conducted in an area in Australia with
an extensive penetration of wind power (30 %). It could, therefore, pinpoint how regu-
latory framework in the future in other areas with increasing wind power penetration
could provide opportunities for profitable ESS investments.

In [77], the battery modeled was used for different cases. In the first use case, the bat-
tery was used to reduce the peak of an industrial load since the battery paid a fixed
amount for each kW used. However, this required battery prices below 200 EUR/kWh,
which at present and in the near future is unrealistic according to prognosis found in
[11]. In the second use case, the battery was used to reduce the peak infeed power from
a PV system to 100 kW (infeed power above this incurs a cost for each kWh supplied
following prosumer legislation in Norway [80]). Hence, the market structure proposed
in the two first use cases did not result in a positive investment for batteries with the
prices schemes used. However, in the third use case, the battery was allowed to trade
in the balancing market for frequency containment reserves in Norway, FCR-N (nor-
mal operation), and FCR-D ( disturbed operation). In this use case, the battery became
profitable (positive NPV for the battery) for 1400 EUR/kWh, which means that it would
be profitable with the price of batteries today. However, there were some limitations;
fees required to participate in the FCR-N market were not included, and the battery
model did not allow for interruptions in operations needed to charge/discharge bat-
tery or the penalties incurred.

3.1.3.3 Summary of electricity markets

As seen from Section 3.1.3.2, few of the authors include more than one market struc-
ture in their models. Including more markets could provide the potential for revenue
stacking, i.e., increase the revenue from installing ESS. However, as shown in [75], it is
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not necessarily so, as the authors found out that for the highest economic benefit, the
BESS should, in that case, only trade on the regulation market. But, as participating in
both regulating activities and energy arbitrage provided additional technical benefits
for the grid in [75], participation in several markets is still an area that needs further
study. It is also worth noting that both in [77] and [51], ESS showed great potential
when allowed to provide balancing power, either in terms of reducing ramp rate viola-
tions or by participating directly on a primary reserve (FCR-N) market.

3.1.4 Prediction models

In [61], the bids and sales were made on the Nordic day ahead market, Elspot, 12h
ahead of time; thus, predictions for next days’ production data were needed. An aver-
age wind speed equal for all hours was predicted using a simple algorithm that picked
a random number from the normal distribution of wind speeds for the area. In [76],
the forecasts for prices and the demand in the tertiary reserve market was found by ex-
trapolation based on previous values for the same hour, within the most recent rolling
window. Reference [69] used both predictions of weather and electricity prices. The av-
erage daily price forecast was predicted from hourly price forecasts based on data from
the Italian day ahead market in 2009. Data sets for predicted wind farm production
were made using the randomization of wind speed measurements. The wind speed
measurements had a 5 minutes resolution and were collected from an existing wind
farm in Southern Italy. These ways to obtain forecast and prediction data in the earlier
part of this section are made by using average data or crude models. To obtain a more
sophisticated prediction model than randomly picking a number from a data set, [71]
and [65] assumed that reliable weather forecasts would be available. Hence, they chose
a data set from an existing wind farm for use in the optimization model. Reference [75]
used a rule-based system where there was no forecasting of price or production, hence
the BESS strategy was determined based only on the current SoC and wind farm pro-
duction.

As discussed in [69], even small deviations between actual and predicted production
might lead to a significant reduction in revenue. It is, therefore, vital to obtain useful
optimization tools for prediction models. Historical data of actual wind farm produc-
tion for a given wind speed could be used in these models to obtain accurate forecasts.

3.2 Optimization

This section goes through the models and methods for optimization used in different
stages of ESS and wind farm systems. In Section 3.2.1, the objective of adding ESS to a
system is discussed. Section 3.2.2 defines the models used in the articles in Table 3.1
for sizing ESS, while the operation and planning of the ESS systems is shown in Sec-
tion 3.2.3.
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3.2.1 Objective

The objective for including ESS to a system varies, but can roughly be divided into three
categories: economic, environmental or technical benefit. In [63], the main objective
was to prove that ESS, coupled with wind farms, could function as conventional (and
often fossil-based) baseload plants. This meant increasing the capacity factor of the
combined system from 25-40 % to 80 %. Also, to show that wind farms and ESS were a
better choice for the environment, a Life Cycle Analysis (LCA) was performed to show-
case the environmental benefits of this combined system. The research showed that
by operating as a baseload plant, the combined system was up to five times more effi-
cient than the most efficient combustion technology and emitted less than 20 % of the
least emitting fossil technology available [63] at the time. The objective in [61, 64] was
to find the operation scheduling for the next day that would result in the maximum
profit, given a set capacity and power of the proposed ESS and wind farm system. Max-
imum profit, but for optimization over a full year, was also the objective in [70]. In [69],
the objective of potential economic profit was assessed using the Net Present Value
(NPV) criterion. In [65], the objective was to gain as small deviancy as possible be-
tween the demand and supply of water, hydrogen, and electricity. Maximization of the
combined revenue from participation in three different energy markets (Iberian day
ahead, tertiary and intraday market) was the objective in [76], where the sum of the
offered energy in the three markets was set as the maximum forecasted production of
the wind farm.

As pointed out in [68] and shown in Table 3.1, previous studies focused mainly on either
control of ESS or economic scheduling, leaving out ESS-grid interrelation issues. To
remedy this, [68] proposed a method for optimal ESS design where the objective was
both regulations of wind power to improve wind energy integration and grid voltage
stability. In [68], Optimal Power Flow (OPF), which includes grid constraints in the
optimization, was used to gain a reference value for the generation. Consequently,
to assess more than just the economic benefit of ESS, a broader model that includes
technical aspects in the objective function, is needed.

3.2.2 Sizing of energy storage systems

The optimal size of ESS for a given objective and problem has been found using differ-
ent methods. The definition of ESS size/rating includes either the power rating in MW
or energy storage capability in MWh.

The approach in [61, 69, 70] does not solve an ESS sizing problem per se but consid-
ers different ratings of ESS. Reference [70] ran the model for different sizes in steps of
1 MWh ranging from 1 MWh to 8 MWh and found the one which yielded the highest
revenue. Reference [61] made a similar approach but also varied the power rating to
showcase how this affected the system. In [69], two case studies with different rated
ESS power were performed. Reference [65] and [75] used fixed sizes of both plants
and storage systems. Reference [68] proposed optimization based on maximizing the
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net benefit of an Objective Function (OF). The OF included four terms: net profit, rev-
enue obtained by selling energy from the ESS that would otherwise be lost, four benefit
factors, and annual financial requirement of the ESS. The four benefit factors include
revenue from environmental considerations, improved voltage stability, improved re-
liability, and wind capacity firming. These benefit factors can be challenging to quan-
tify, but the main advantage of introducing them is that their effects are introduced di-
rectly into the optimization process. The problem was solves using "direct calculation
method", which in broad terms can be explained as solving the problem by a discretiza-
tion of the OF and search of the function values.

Reference [76] used the net present value of the investment cost for a battery versus
the present profit of the yearly benefit to obtain the optimal size of the Li-Ion battery.
Reference [73] did not solve an optimization problem to find the optimal size of ESS,
but instead used quantitative analysis to define the variability of the wind farm, which
was then used to find the storage size necessary to prevent most ramp-rate violations.
In [78], the main objective was to find the optimal ESS size that mitigates fluctuation
for a wind farm, through the use of a double closed-loop control strategy. The ESS size
that is most economical for meeting a given average fluctuation rate is chosen as the
optimal in this instance.

The sizing problem of ESS can, as shown here, be solved using a range of different
methods. The common denominator is that the objective by installing ESS is vital when
deciding the ESS size. The difference between solving an optimization problem to find
the optimal ESS size, and using a predefined value should also be highlighted. Simula-
tions that are performed with an optimized size of ESS, which is tailored for a specific
need, yields more accurate results for the given objective than using a predefined ESS
size. Here again, it depends on the complexity of the system and the objective of the
optimization. It can also be mentioned that the control or operation planning algo-
rithms presented in a range of these articles well could be used on an existing system,
meaning that the ESS is set. In these cases, solving the problem for the optimal size of
ESS would have little value unless a further investment into ESS is planned.

3.2.3 Operation and control planning

Optimization of the operation of ESS in Table 3.1 is briefly presented and discussed in
this section.

Reference [61] defined a daily operation planning scheme for a 24h running period.
Reference [64] proposed a scheduling problem based on forecasts of the electricity
price, production, and load, where a simple algorithm solved the on-off switching pro-
cess of the electrolyzer and fuel cell. For the online operation, a variant of model pre-
dictive control (MPC) was used to obtain the control sequence for a specific time hori-
zon N, which maximized the profit. Reference [69] proposed two different operation
planning algorithms; technical and market. In the technical planning period, the al-
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gorithm used predicted the wind farm output and found which value the ESS should
have to keep the output as constant as possible. Due to ESS limitations (minimum
level of SOC, for instance), a Storage Fulfillment Index (SFI) was considered, and the
optimization was run for each hour until acceptable values of the SFI(h) were found.
The average daily price of the market-based planning stage was calculated from hourly
price forecasts based on prices from the Italian Day-Ahead Market from 2009. It was
assumed that the owner of the ESS/Wind farm system was a price taker. A delivery plan
based on the price was proposed; the SFI(h) calculated and Storage Surplus Index (SSI)
defined as another infeed ratio on the planned profile for each hour. These two differ-
ent planning methods were then compared by running the model with an hourly reso-
lution for a year to see which yielded the highest NPV. Reference [29] used an approach
similar to that of the Hybrid Optimization of Multiple Energy Resources (HOMER) mi-
crogrid optimization model. Hence, the model provided the optimal hourly dispatch
profile for load and generation. In [72], the objective was to find intraday operation for
a PV and ESS system. Hence, the control planning period was limited to 4-5 h, which
was solved using an MPC approach. The LP proved to have a solution which computa-
tional effort was low enough so that the MPC strategy could be used for the operation
of a real plant given 4 min sample time.

To find the desired generator dispatch profile in [68], OPF was used. The resulting de-
sired output profile was then used as the reference for the ESS operation. Reference [77]
used a set of heuristic rules on an LP model of the battery to determine the operation,
which yielded maximum revenue while minimizing the losses. In [70], the dispatching
scheme, and model for selling energy was done in MATLAB for one year of operation
using 10 minutes time-steps. Reference [65] had a minimization objective function,
which included a total of six terms. Four terms were used for penalizing deviancies
between acceptable water levels in the reservoirs and over-satisfaction/dissatisfaction
in hydrogen and energy demand. Two terms were then used for the variable costs re-
lated to electricity production from either the hydroelectric generator or the fuel cell.
The model then included constraints for storage capacities, plant capacities and acti-
vation, non-negativity constraints, and fuel cell constraints. The decision model is a
quadratic problem with both binary and continuous control variables.

Here, the large span in how each problem is solved reflects how each has adapted or
developed models that reflect the given objective they want to solve. For instance, [64]
had as a goal to find the operation that yielded maximum profit and used a scheduling
problem. At the same time, [68] wanted to show how ESS can contribute with static
voltage stability (SVS) and hence used OPF for a more accurate grid model and inclu-
sion of relevant grid constraints.

3.3 Summary

A brief overview of the methods and similarities between the reviewed articles and the
chosen approach is shown in Table 3.2. The proposed method in this study is labeled
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MT. The similarities between the proposed method and previous literature have been
highlighted in green, where a deeper green highlights a stronger resemblance. Addi-
tional revenue has been shortened to add.rev and scheduling to sched. It should be
noted that the self-discharge included in [75] was the amount of energy the battery
system as a whole lost for the one month test period, translated directly into a loss of
revenue. Hence, it was not included in the battery model but rather calculated based
on the results of the operation strategy. Also, revenue stacking is in Table 3.2 defined
as: "the use of more than one market or one way to obtain revenue to provide additional
benefit."

Table 3.2: Comparison and summary of the literature reviewed

Article Model Solver Category Forecasts Period Type of ESS Includes cost,
degradation and
self-discharge

Real-life
case data

Revenue
stacking 1

[61] Sched.
prob.

DP Add. rev. Deterministic 24h El. ESS No, No and No No No

[62] LP PCPD IP 2 Add. rev. Stochastic 48h HES No, No and No No No
[63] - Excel Red. emis. Deterministic 2 weeks CAES Yes, No and No Yes No
[64] Sched.

prob.
MPC Add. rev, H2

demand
Based on
WPPT tool 3

24/48h H2 w/FC No, No and No No Partly 4

[65] Constrained
OF

Lingo 9.0 Meet de-
mand

Deterministic 24h PHS and H2

w/FC
No, No and No Yes No

[66] SIMULINK MATLAB Opt. ESS Size
and Control

Deterministic 282 days FBESS Yes, No and No No No

[67] OSIP 5 - Opt. ESS Size - Inf.
horizion

Generic ESS Yes, No and No No No

[68] Size prob. DCM 6 Add. Rev and
SVS

OPF for load
profile

1 year CAES Yes, No and No Yes No

[69] - - Integration of
wind energy

Deterministic 1 year Na-S-BESS Yes, No and No No No

[70] SIMULINK MATLAB Add. rev. Deterministic 1 year CAES Yes, No and No Yes No
[71] QP MPC in

MATLAB

Add. rev. Deterministic 24h BESS Yes, Yes and Yes No No

[72] LP DD in
MATLAB

(MPC) 7

Add.rev. Deterministic 4-5 h generic ESS No, No and No Yes No

[51] Convex
prob.

MPC in
MATLAB

Add.rev. Deterministic 24 h Lead-Acid
BESS

Yes, Yes, and No Yes No

[73] - - Red. costs Deterministic 1 year FESS, Li-
Ion, NaS, VR
FBESS, SC

Yes, No and No Yes No

[74] OCP8 Dynamic
program-
ming

Add. rev. Deterministic 24h BESS Yes, No and No Yes No

[75] Static
rules

Logic
control

Add. rev. No forecast-
ing

1 month BESS Yes, No and Yes Yes Yes

[29] Similar to
HOMER9

- Meet energy
demand

Deterministic 1 year Li-Ion, H2

w/FC
Yes, Yes and Yes Yes No

[76] NLO 10 - Add. rev. Extrapolation
rolling win-
dow

1 year Li-Ion Yes, Yes and No Yes Yes

[77] LP Heuristic
rules

Add.rev. Deterministic 10 years BESS Yes, No and No No No

[78] QP HQPR 11 Opt. ESS Size
and control

Deterministic 40 min -
2h

Generic ESS Yes, No and No Yes No

Authors choice
MT MILP MGMS12 Add. rev. Deterministic 20 years Li-Ion Yes, Yes and Yes Yes Yes
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As Table 3.1 and Table 3.2 show, there have been numerous articles featuring case stud-
ies of different types of ESS coupled with wind farms or other volatile renewable pro-
duction. The main findings in these articles are that it is hard to find economically
viable options. There are exceptions to this, where the common denominator is that
profit can be obtained by participation with regulating power, as seen in [73, 75, 76, 77].
Of the reviewed articles, only one has done optimization for a period longer than one
year, i.e., that few take into consideration optimization for the lifetime of the project. It
should, however, be mentioned that several, has used the annualized cost of the ESS in
their calculations. It is also true that few take into account both costs, self-discharge,
and degradation. However, several of the articles reviewed different types of ESS than
the one chosen in this thesis. For instance, as PHS and CAES experience a very low
self-discharge, and PHS has virtually no degradation, these features were not essential
to include. However, as Li-Ion BESS is the chosen ESS in this thesis, it is vital to discuss
these features and, to the extent possible, include these features in the proposed case
study.

It should also be noted that most of the featured articles are concerned with economic
optimization and thus neglects technical benefits (e.q. ancillary services) and moral
concerns (like increase of renewable penetration or reduction of power shedding). Given
the current legislation in the EU, where DSOs are prohibited from owning ESS [2], this
is a natural choice, as the ESS proposed must be profitable for investors. In this re-
gard, this thesis also follows the precedence of the articles presented, i.e., focuses on
markets and features where the ESS is compensated economically for the services it
provides. Hence, the area of study for this thesis is to maximize the revenue that can
be obtained for a real case study of Midtfjellet wind farm with ESS. In this regard, the
literature reviewed has shown that there are some gaps concerning the optimization
period, ESS model, and revenue stacking. In the chosen optimization software for this
thesis, PSS®DE, optimization for the lifetime of the ESS is possible, as well as a linear
model for battery degradation; therefore, information on whether the system is prof-
itable for its entire duration can be obtained. Thus, the case study presented in this
thesis should aim to include revenue stacking by introducing several markets (primar-
ily regulating markets), use a sophisticated battery model, and performance optimiza-
tion for the lifetime of the project presented. This is seen Table 3.2, where the cho-
sen approach, MT, objective is additional revenue, optimization for the lifetime of the
project, inclusion of revenue stacking, and relevant parameters for Li-Ion BESS.

1PCPD IP: Predictor-Corrector Primal-Dual Interior Point method, see [62] for more details
2WPPT: Wind Power Prediction Tool, is explained in greater detail in [81]
3In a sense, as there was both a spot market and a penalty cost of unmet hydrogen demand
4OSIP: Optimal Storage Investment Problem, can be viewed in greater detail in [67]
5DCM : Direct calculation method [68]
6DD: Double Description algorithm based on [82], implemented in MATLAB
7OCP: Optimal Control Problem, DP: Dynamic Programming [74]
8Non-Linear Optimization, further explanation in [76]
9Hildreth’s Quadratic Programming Procedure explained briefly in [78], MPC inner loop control in MAT-

LAB
10MGMS uses a MPC approach [9]
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Method

This chapter details how the general optimization problem for the operation of a sys-
tem containing a wind farm, load, and energy storage system (ESS) connected to a grid
can be formulated mathematically. This is done to get an understanding of how the
chosen program, PSS®DE, considers the system and how optimization is done. In this
case, the optimization problem’s objective is to maximize the revenue obtained by the
system. The model of the system and the mathematical formulation of the optimiza-
tion problem is presented in Section 4.1. A brief explanation of the Model Predictive
Control (MPC) approach is also given in Section 4.2. This is done because the chosen
PSS®DE dispatcher, MGMS, for solving the case study presented in Chapter 5 uses a
method that is based on MPC principles. It is, therefore, vital to have a basic under-
standing of how the MPC algorithm works. The chapter is concluded with Section 4.3,
which is comprised of the different features of the chosen optimization tool PSS®DE.
The generic model for optimization is based on chapter 4 of my specialization project
[3], but have been modified to a great extent. The modifications include adding a load
to the model, including a multi-market structure and general improvements. Also, Sec-
tion 4.2, concerning the MPC method, has been adapted from chapter 4 of my special-
ization project [3]. Section 4.3 is taken from chapter 5 of the specialization project [3]
with minor modifications. An addition has also been made to the PSS®DE section to
include the sizing optimizer, found in Section 4.3.3, a new feature used in the master
thesis.

4.1 Optimization model

A generic optimization model for the operation of a wind farm, load, and ESS con-
nected to an external grid is derived in the following sections. The indexing, summa-
tion, and general notation for the mathematical formulation of the optimization model
follows the principles described in chapter 3 of [83].
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4.1.1 Notation

Here the sets, parameters, constants and variables for the optimization model is de-
clared.

4.1.1.1 Sets

T - Set of time period, indexed by t
N - Number of wind turbines, indexed by j

4.1.1.2 Constants

PLOSS - Loss [MW]
ηLOSS - Loss associated with transition from mech. to el. power for one wind turbine [%]
η - Converter losses for one wind turbine [%]
ηAC/DC - Efficiency of battery converter AC/DC [%]
ηDC/AC - Efficiency of battery converter DC/AC [%]
ηT - Internal losses in central wind park transformer [%]
ηC - Internal losses in central wind park converter [%]
Pout ,max - Maximum output power of battery [MW]
Pout ,mi n - Minimum output power of battery [MW]
Pi n,max - Maximum input power of battery [MW]
Pi n,mi n - Minimum input power of battery [MW]
PTC,max - Maximum transfer power of grid, both directions [MW]
PTC,mi n - Minimum transfer power of grid, both directions [MW]
PW,max - Maximum power from wind farm [MW]
PW,mi n - Minimum power from wind farm [MW]
PTR - Transmission losses from turbine to central converter [MW]
PTL - Transmission line losses from grid to node [MW]

4.1.1.3 Parameters

PM - Mechanical power of one wind turbine [MW]
PE - Electrical output power of one wind turbine [MW]
PW - Wind farm output power [MW]
PL - Load power [MW]
CIMP - Import price for power [EUR/MW]
CEXP - Export price for power [EUR/MW]
SOCmi n - Minimum SoC level [%]
SOCmax - Maximum SoC level [%]
PE,mi n - Minimum electric output power wind turbine [MW]
PE,max - Maximum electric output power wind turbine [MW]
PFFR - Activation power for FFR reserves required by the grid [MW]
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4.1.1.4 Variables

pout - Battery output power [MW]
p i n - Battery input power [MW]
pch - Battery charge power [MW]
pdi s - Battery discharge power [MW]
soc - State of Charge of battery [%]
p i mp - Imported power fromDay-Ahead market [MW]
pexp - Exported power to Day-Ahead market [MW]
pFi mp - Imported power from FCR-N market [MW]
pFexp - Exported power to FCR-N market [MW]

4.1.2 System

The system with ESS, load, grid, and wind farm is as presented in Figure 4.1. The ESS in
this model is a battery. The grid includes three different market models. The different
components’ investment cost is not included in this model but is considered an exter-
nal element.

Figure 4.1: Generic model for a wind farm, load, ESS, and grid model showing in and output
power flows. Grid icon by [18], ESS icon by [19] and wind farm icon by [20]. Load icon from
Office 365 stock.

The input and output streams of power from the different components are given in Fig-
ure 4.1. Here, p i mp +pFi mp and pexp +pFexp +PE are the imported and exported power
from/to the grid, respectivly. PL is the local load for the wind farm that is supplied by
the system. pch is the charging to the battery from the system. pdi s is the discharge
power from the battery to the system. PW is the output power from the wind farm to
the system.
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4.1.3 Energy Storage System - Battery

Figure 4.2: Model of battery with converter. Battery icon from Office 365 stock.

The chosen ESS for this model is a battery, which is connected to the node through
a converter. Conversion from AC to DC power is needed to store energy in the bat-
tery. Hence, the power flows for charging, pch , and discharging, pdi s , passes through
a converter before entering the battery, as seen in Figure 4.2. The relation between
the input and output power of the battery with the discharge and charge power is as
shown in Equation (4.1a) and Equation (4.1b). Here, ηAC/DC is the efficiency of the con-
verter during charging and ηDC/AC during discharging. In addition, the applied power
must lie within predefined upper and lower bounds in order to not damage the battery,
as specified in Equation (4.1d) and Equation (4.1c) by Pi n,mi n , Pi n,max , Pout ,mi n , and
Pout ,max .

p i n = ηAC/DC ·pch (4.1a)

pout = pdi s

ηDC/AC
(4.1b)

Pi n,mi n ≤ p i n ≤ Pi n,max (4.1c)

Pout ,mi n ≤ pout ≤ Pout ,max (4.1d)

The State of Charge (SoC) of the battery, i.e., how much power it contains at time t, is a
function of the SoC from the previous time step, soc(t−1), and the input/output power,
p i n and pout for the current time step. Also, losses in the battery affect the SoC, here
denoted as PLOSS and assumed constant. The SoC is important because it relates how
much power the battery can deliver and receive at a given time step. The losses, PLOSS ,
in Equation (4.2a) consist of the internal losses in the battery, and can consist of perma-
nent losses, temperature losses or cyclic losses. Temperature and concerns regarding
this can also limit the capacity. Lead Acid batteries are an example of a battery type that
has an operational range that requires the temperature to be above a certain thresh-
old temperature for a given SoC, as the battery might freeze and permanently damage
the battery otherwise [84]. It is also important to note that the SoC band, SOCmi n -
SOCmax , of the battery is altered with the lifetime and use of the battery, due to degra-
dation. I.e., the available capacity in the battery is lowered as a consequence of how
the battery is used, the surrounding temperature, storage time, etc. The SoC band can
also be set as a percentage chosen by the user, for instance, to stimulate a given battery
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use. The SoC as a function of input/output power, p i n/pout , to the battery minus the
losses, PLOSS , and the SoC band are presented in Equation (4.2a) and Equation (4.2b).

soct = soct−1 +p i n −pout −PLOSS t ∈ T \ {0} (4.2a)

SOCmi n
t ≤ soct ≤ SOCmax

t t ∈ T (4.2b)

4.1.4 Wind farm

A generic wind farm can be modeled as the sum of the turbines in it, as shown in Fig-
ure 4.3.

Figure 4.3: Wind farm model with converters. Wind turbine icon by [21].

A simplified mathematical formulation of the mechanical power of a wind turbine is
found in Equation (4.3), gathered from [85]. The parameters in the equations are the
tip speed ratio, λ, blade pitch angle, θ, rotor radius, R, wind speed, v(t ), mechanical
power PM, air density, ρ, and the power coefficient Cp (θ,λ).

PM = 1

2
ρπR2v(t )3 ·Cp (θ,λ) (4.3)

The electrical output from the turbine is a function of the mechanical power available
minus losses in the generator. These losses can, for instance, be Cu losses in the stator
and rotor windings [26]. In this model, the losses from conversion from mechanical to
electrical power are aggregated to an efficiency coefficient called ηLOSS . The electrical
output, PE, then is as shown in Equation (4.4a). A maximum and minimum restrict the
electrical output of each wind turbine, PE,mi n , and PE,max , as shown by Equation (4.4b).

PE = ηLOSS ·PM (4.4a)

PE,mi n ≤ PE ≤ PE,max (4.4b)

A converter scheme, as shown in Figure 4.3, can be used to control power output from
the turbine. The dedicated converter losses for each turbine are represented by a con-
verter efficiency loss, η. The output power from the entire wind farm is hence the aggre-
gated sum of the electric power from the turbines times the efficiency of the convert-
ers, η, minus the transmission losses, PTR, from the turbines to the central converter,
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as seen in Figure 4.3. It should be noted that for wind farms, the internal transmission
losses are often small and negligible.

If the power is to be transmitted to an external grid, a transformation of the voltage can
be necessary to gain the required output voltage or to reduce transmission losses. In
this model, this is represented as a single central transformer. The input to the trans-
former is the aggregated input from all the wind turbines. The output is the aggregated
input minus the internal losses in the transformer. This is in this model represented
as an efficiency, ηT, included in Equation (4.5a). Wind farms often have a central con-
verter to ensure that the power delivered is within the standard ranges, as specified
by grid codes. Hence, the efficiency, ηC of this central converter is included in Equa-
tion (4.5a).

The wind farm output, PW , is subject to limits regarding the maximum and minimum
allowed output. The minimum value of the wind farm output can, in simple models,
be set to zero. In more advanced models, the inclusion of how the wind farm can drain
from the grid to run the power electronics (namely the converter) to, for instance, start
up the wind farm, can be done. The maximum limit can be set according to the max-
imum production from the wind farm. The minimum limit hence becomes 0, as that
is the lowest output the wind farm can yield if it is not allowed to draw power from
the grid. The constraint with defined ranges with maximum, PW,max , and minimum,
PW,mi n , values for the output power of the wind farm are given in Equation (4.5b).

PW = ηCηT ·
n∑

j=1
η ·PE

j −PTR
j (4.5a)

PW,mi n ≤ PW ≤ PW,max (4.5b)

4.1.5 Grid

In this model, the grid contains three markets, each with its price and restrictions. The
markets in the model are based on the Nordic day ahead market, FFR, and FCR-N mar-
ket. Modeling a reserve market that complies with the FFR market’s specifications pre-
sented in Section 2.4.3.3 requires that a given amount of power is reserved for use when
needed. This can be modeled through raising the minimal SoC level, SOCmi n , of the
battery at the given instance. The required SoC level for a given FFR amount can be
calculated using Equation (4.6). Here, SOC is the SoC level required in [%], OFFR is the
power in [MW] offered as FFR, F is the required delivery time for FFR in [h], and C is
the capacity of the battery in [MWh].

SOC = OFFR ·F

C
(4.6)

Hence, the required amount is ensured available if needed. The owner of the battery
is compensated for reserving this capacity, and Equation (4.7) can be used to find the
revenue obtained from FFR. Here, OFFR is the FFR power that is offered in [MW], $FFR
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is the price of FFR reserves in [EUR/MWyear] for the given scenario and RFFR is the
revenue from FFR for each year in [EUR/year].

RFFR = $FFR ·OFFR (4.7)

If FFR is activated, the owner is compensated for the activated amount. Following the
rules of the FFR market, it can only export to the grid during activation, denoted by
PFFR. The day ahead market has import and export power denoted as p i mp and pexp ,
respectively. The FCR-N market has import and export power denoted as pFi mp and
pFexp , respectively. The capacity constraints for each individual market is not included,
but rather the transmission constraint for the combined import and export to the grid.
It is vital that the transfer capacity of the transmission line of the grid for import and
export is not violated. This is ensured by imposing a constraint on the combined flow
to and from the grid from the three markets. The minimum transfer capacity is denoted
by PTC,mi n (set to zero here) and the maximum transfer capacity as PTC,max .The import
and export power and the grid transfer limits, are described by Equation (4.8). Besides,
there are transmission losses on the transmission line between the grid and the other
components, here denoted by a constant loss, PTL. Transmission losses depend on
parameters such as length, material, voltage, and transferred power of each specific
line.

pexp = PW +pdi s −pch −PTL −PL −p i mp −pFi mp −pFexp −PFFR (4.8a)

PTC,mi n ≤ pexp +pFexp +PFFR ≤ PTC,max (4.8b)

PTC,mi n ≤ p i mp +pFi mp ≤ PTC,max (4.8c)

It should be noted that the bidding in the markets proposed has been simplified so that
no time is required between the bids and actual power transfers.

4.1.6 Load

A load component is added to the system to model the internal load of the wind farm.
The load is depicted in Figure 4.1. In this simple model, the load is assumed to draw
only active power; i.e., it is purely restive and is limited to consuming power. This
means that it at each time step has a given demand in this model. The load demand
must be met, and as the load is connected in the same node as the other components,
it is covered either through import from the external grid, ESS discharge, or wind farm
production.

4.1.7 Objective function

The objective function states what the goal of the optimization should be. In this in-
stance, the goal is to find the maximal revenue obtainable when operating a wind farm,
load and ESS connected to an external grid. The external grid here provides the pos-
sibility of interaction with two markets, the Nordic day ahead and FCR-N market. The
price of the exported and imported power for the day ahead market is denoted by CEXP

41



Chapter 4. Method

and CIMP, respectively. The price of the exported and imported power for the FCR-N
market is denoted CFEXP and CFIMP, respectively. The revenue obtained from reserving
capacity in the battery by raising the SoC-level for the FFR market is added as a con-
stant to the objective function, denoted as RFFR. The compensation if FFR is activated
is denoted as CFFR. It should be noted that RFFR is calculated externally; i.e., it is not
an explicit part of the optimization problem. The same is true for the compensation
term for FFR reserves, CFFR ·PFFR, which is determined by external factors for activa-
tion. However, the two terms are included in the objective for completeness. Hence,
the objective function is defined as the revenue from exported power minus the cost
from imported power plus the revenue from the reserved power for the FFR market, as
shown in Equation (4.10).

max z = RFFR+
T∑

t=0

(
CFFR

t ·PFFR
t +CEXP

t ·pexp
t +CFEXP

t ·pFexp
t −CIMP

t ·p i mp
t −CFIMP

t ·pFi mp
t

)
(4.9)

4.1.8 Mathematical formulation

The optimization problem can be viewed in its entirety in Equation (4.10).

max z = RFFR +
T∑

t=0

(
CEXP

t ·pexp
t +CFEXP

t ·pFexp
t +CFFR

t ·PFFR
t −CIMP

t ·p i mp
t −CFIMP

t ·pFi mp
t

)
(4.10a)

s.t

pexp
t = PW

t +pdi s
t −pch

t −PTL
t −PL

t −p i mp
t −pFi mp

t −pFexp
t −PFFR

t ∀t ∈ T (4.10b)

PW
t = ηCηT ·

N∑
j=1

η j ·PE
j t −PTR

j ∀t ∈ T (4.10c)

soct = soc(t−1) +p i n
t −pout

t −PLOSS
t ∀t ∈ T (4.10d)

p i n
t = ηAC/DC ·pch

t ∀t ∈ T (4.10e)

pout
t = pdi s

t

ηAC/DC
∀t ∈ T (4.10f)

42



4.2 Model predictive control

PTC,mi n ≤ p i mp
t +pFi mp

t ≤ PTC,max ∀t ∈ T (4.10g)

PTC,mi n ≤ pexp
t +pFexp

t +PFFR
t ≤ PTC,max ∀t ∈ T (4.10h)

PE,mi n
j ≤ PE

j t ≤ PE,max
j ∀t ∈ T, j ∈ N (4.10i)

PW,mi n ≤ PW
t ≤ PW,max ∀t ∈ T (4.10j)

SOCmi n
t ≤ soct ≤ SOCmax

t ∀t ∈ T (4.10k)

Pi n,mi n ≤ p i n
t ≤ Pi n,max ∀t ∈ T (4.10l)

Pout ,mi n ≤ pout
t ≤ Pout ,max ∀t ∈ T (4.10m)

The expected solution to this optimization problem is to find the import and export
power to the grid, pexp ,pFexp , p i mp and pFi mp , and the charge/discharge schedule,
pdi s , pch ,p i n , and pout for the battery, that yields the maximal revenue for the objective
function.

4.2 Model predictive control

In this section, the general principle of MPC is discussed, along with a brief presenta-
tion of advantages and disadvantages with the MPC method.

4.2.0.1 Description of Model Predictive Control principles

The optimization model in Equation (4.10) can be solved by using several algorithms.
In this section, the linear MPC with a receding horizon approach is explained, and its
benefits and disadvantages are discussed. In short terms, the MPC principle is to use
a model of the system to predict future states and find the optimal control input to the
system. The general MPC method is sensitive to unmodelled dynamics and process
disturbance [73]. One way to overcome the issues related to this is to use the receding
horizon policy [86]. The receding horizon MPC principle for an optimization problem
is shown in Figure 4.4.
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Figure 4.4: MPC principle (based on Figure 4.1 from [8])

As shown in Figure 4.4, only the first control move is implemented, thus ensuring that
the newest available information is used when calculating the next step of the con-
trol. The objective of control in this model is to obtain the highest possible value of the
objective function through charge/discharge of the battery and interaction with the
different markets. The MPC algorithm is explained in the pseudocode in Table 4.1.

Table 4.1: Linear receding horizon MPC algorithm (adapted from algorithm 4 [8])

MPC algorithm

for t = 0, 1, 2, ... do
Get the current state of the system xt

Solve an optimization problem on the prediction horizon from t to t + N
where xt is set as the initial condition of the system
Apply the first control move ut from the obtained solution on the system

end for

As shown in Table 4.1, the receding horizon means that the MPC uses the newest state
measurements in the system when solving the optimization problem. This yields more
accurate results for forecasting and control input compared to other controllers (for
instance, Proportional-Integral-Derivative (PID) controllers [87]).

4.2.1 Advantages and disadvantages with Model Predictive control

The advantages of MPC include that constraints can be put on both input and output
variables, that it is useable for both Single Input Single Output (SISO), and Multiple
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Output Multiple Input (MIMO) systems and that it finds the optimal solution (if it ex-
ists) [87].

The main disadvantage of MPC is that it requires an accurate prediction model of the
states that are to be controlled. The constrained optimization problem that must be
solved at each instance can result in a high computational effort, making the MPC a
slow method of control that might be unsuitable for fast process applications [72]. With
MPC, there is a trade-off between the control/prediction horizon and the accuracy of
the control, as an increase in the number of prediction steps can cause the prediction
error to proliferate. Once the receding horizon strategy is used, only the first of the
control move is implemented. Hence, it adjusts the control in each time step, making
it robust regarding disturbances.

4.3 PSS®DE

Power System Simulator for Distributed Energy (PSS®DE) is a tool that Siemens AG
has specifically developed for the sizing and evaluation of Distributed Energy Systems
(DES). PSS®DE takes user-defined configurations and then simulates a plant’s perfor-
mance over its designed lifetime. For the Midtfjellet case study presented in Chap-
ter 5, PSS®DE is the chosen optimization program. How the program models the dif-
ferent components and how the optimization is done is, therefore, aspects that must
be presented. The modeling of the relevant system components is presented in Sec-
tion 4.3.1, while the different dispatchers and the chosen dispatcher for the optimiza-
tion are shown in Section 4.3.2. A tool for finding the optimal size of different compo-
nents is then presented in Section 4.3.3. Also, how the results can be viewed and evalu-
ated using Key Performance Indicators (KPI’s) in PSS®DE is presented in Section 4.3.4.
A comparison between PSS®DE and a similar optimization tool, HOMER PRO (main),
is also done to highlight the disadvantages and advantages of PSS®DE. This compari-
son is presented in Section 4.3.5. Note that the content in this section is based on the
manual for PSS®DE [9].

4.3.1 Modelling of system components in PSS®DE

The different system components relevant for the model in Chapter 5 are presented in
this section.

4.3.1.1 Energy storage systems

In PSS®DE, an Energy Storage System (ESS) is modeled as a battery and a converter.
Optionally a container with Heating, Ventilation, and Air Condition (HVAC) can be
added to the ESS model.

4.3.1.1.1 Batteries
Li-Ion batteries are currently the only battery type supported in PSS®DE. Of the Li-Ion
battery, there are eight different types to chose from, each specified by a different price,
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efficiency, and C-rate. The battery model can be explained based on Figure 4.5.

Model of
the battery

Aging charts of
the manufacturer

Model parameter

Electric Power

Environmental temperature

Voltage of Cell

Temperature of Cell

State of Charge SoC

State of Lifetime SoL

Figure 4.5: PSS®DE model of battery [9]

Figure 4.5 shows how the battery gets the input of electric power and environmen-
tal temperature and calculates different battery states to be used in the simulations.
The converter of the storage system also restricts the power conversion, while the con-
tainer model simulates the performance of the heat, ventilation, and air condition sys-
tem. When the battery is discharging, the power set point in kW is positive, and thus
the power setpoint is negative when the battery is charged. Parameters that are in-
cluded in the battery model is; resistance (function of temperature), losses, initial val-
ues (SoC and temperature), aging calendric lifetime and aging cycling cycle-life, End of
Life (EoL) capacity, Aging costs, etc. For additional parameters and explanations, see
[3].

4.3.1.1.2 Converter
A converter is used to convert between AC and DC power. Among others, the param-
eters included in the converter model are power rating, efficiency, and failure fraction
for both AC/DC and DC/AC. It is important to note that different components cannot
share a converter. Also, the converter must be connected to another component to be
included in the modeling.

4.3.1.1.3 Container
The container encapsulates the converter and battery and includes an air condition,
ventilation, and heating system. The container is modeled with different parameters,
volume, lifetime, and economics, as well as relevant parameters for the HVAC system,
like temperature, inverter efficiency, and power consumption.

4.3.1.2 Wind farm

To model a wind farm, there are essentially two options in PSS®DE. Either, each tur-
bine can be modeled individually, or data showing the production data for a wind farm
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or turbine can be provided for the simulations. If the wind farm is modeled with indi-
vidual turbines, PSS®DE can consider the following technical parameters: Hub height,
Losses, lifetime, installation delay, replacement strategy, failure fraction, short circuit
current, operating reserve, ramp rate, rated power, and the number of turbines. If a
specific converter is used, this can also be included through the Dedicated Converter
alternative, where losses and limits of the converter can be defined. Also, economic
parameters can be defined for the wind park, such as O&M costs.

4.3.1.3 Grid

Energy exports from the grid are sent to an undefined anonymous external grid, while
the grid is modeled as an Independent Power Producer (IPP) with a grid-component
for imports. Each off-taker or IPP has an assigned tariff at which it sells to the grid.
Parameters both for import and export of power and the price of electricity can be de-
fined.

4.3.2 Dispatchers

PSS®DE offers different algorithms for power dispatch optimization, presented in Ta-
ble 4.2. In addition to this, different dispatcher parameters must be specified, for in-

Table 4.2: Power dispatch optimization algorithms in PSS®DE [9]

Algorithm Source Speed Description
MILP_Etb Native PSS®DE Medium Single step, economic optimiza-

tion
Greedy/Greedy2 Native PSS®DE Fast Single step, heuristic (rules) mir-

roring MILP_Etb
MGMS Spectrum Power 7 Slow Multi step, economic optimization
MGC SICAM Fast Single step, heuristic (rules)

Local control - Fast Single step, heuristic (rules)

stance, time step size, if blackouts are allowed, parameters that define generator re-
dundancy, the briding duration for batteries, smoothing of generator curves, incen-
tives, and costs related to the components of the project. The local control dispatcher
simulates a local control routine for each component in the system where there is no
common dispatcher or controller for the system. Therefore, it is unsuitable in this spe-
cific project and is not explained in greater detail here. Besides, Micro Grid Controller
(MGC) is not relevant for this project. MILP_Etb and Greedy/Greedy2 are single step
dispatchers, meaning that they have no sense of time and can only use the information
available at each time step. Micro Grid Management System (MGMS) offers multi-step
economic optimization based on the Model Predictive Control (MPC) principle and
hence yields an optimal solution. The main drawback of the MGMS dispatcher is that
it requires a high computational effort and has a long solving time. This can make it un-
suitable for large configurations or if a significant amount of simulations are needed.
The MGMS method is explained in more detail in Section 4.3.2.1.
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4.3.2.1 Micro Grid Management System

Micro Grid Management System (MGMS) uses an MPC approach for effective power
dispatching with a prediction horizon of 24 hours. The time step can be set by the user
and is by default set to 15 minutes. The triggering interval for MPC optimization can
also be set by the user but is initially set to happen after each 15 min interval. MGMS
support all the available dispatcher features in PSS®DE. Special features include a lin-
ear decrease in the MILP model’s cost by setting the discount factor to 0.99. This is
done to avoid symmetries in the MILP model. As the details of the specific MGMS al-
gorithm is not available for this thesis, the general principle of a receding horizon MPC
is explained in Section 4.2.

4.3.3 Sizing optimizer

The sizing optimizer in PSS®DE is a tool based on a prototype optimization algorithm
that can be used to determine a suitable initial configuration. The prototype algorithm
is based on the tool, Multi-modal energy system design (mm.esd). Mm.esd is a sizing
algorithm that both optimizes the design and dispatch of an energy system concerning
costs and emissions. In the solver, the user can adjust the weight of three different
weight factors to account for different objectives. The three different weight factors
are cost, primary energy, and CO2. An overview of how the solver treats the different
weight factors is shown in Table 4.3.

Table 4.3: Three weight factors in PSS®DE Sizing optimizer

Weighting factor Minimization objective Additional information
Cost TOTEX Replacement costs not considered

Primary Energy Primary energy consumation Consideres the efficiency of each technol-
ogy and seeks to minimize how much re-
sources are consumed to produce the re-
quired energy. Does not considerer renew-
able sources.

CO2 CO2 production User defines how much CO2 the different
units produces for each kWh

4.3.3.1 Solver Constraint Integer Programs

The sizing optimizer uses Solver Constraint Integer Programs (SCIP) 6.0 as the solver.
SCIP is a solver that can both solve mixed-integer programming and mixed integer
nonlinear programming problems. According to the developers, it can offer detailed
information into the solver and total control of the solution process [88].

4.3.4 Evaluation of the results

In this section, how evaluation of the obtained results can be done in PSS®DE is pre-
sented.
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4.3.4.1 Key Performance Indicators

To evaluate the results based on the users’ preference, PSS®DE has created a range
of key performance indicators (KPIs) for each system component that can be used to
compare different configurations. There exist different KPIs both for each component
and the combined system. For instance, there is a KPI for the expected lifetime of a
battery component and a KPI for the Net Present Cost (NPC) for the project lifetime.
The user selects relevant KPIs in the results tabular.

4.3.5 Comparison of PSS®DE with similar optimization tool

Table Table 4.4 was created to display how PSS®DE, compares to a similar optimization
tool for DES, HOMER PRO (main), for selected parameters.

Table 4.4: Comparison of optimization tools for DES, PSS®DE and HOMER PRO (main)

Parameter PSS®DE HOMER Pro (main)
Commercially available No Yes
Sizing Optimizer SCIP 6.0 1 Numerical optimization
Dispatcher types MGC, Local control, MGMS,

Greedy/Greedy2 and MILP_Etb
Two

Dispatch strategy Min. cost or min emission Lowest cost grid power demand limit
for each month

Sensitivity analysis Yes Yes
Optimal control dis-
patcher time horizion

24 h 48 h

Financial evaluation KPI’s NPC
Battery types 8 types Li-Ion Zinc, Vanadium, Generic Battery

model
Battery degradation Yes Additional module needed
Different power markets Demand charges, UK triads, User-

specified, Balancing, Contracted and
German Tariff

Grid power price. Need additional
module for inclusion of demand
charges

Simulation time step 1-60 min 1-60 min
Results Sensitivity, Optimization, Economics Sensitivity, Optimization, Economics
Results year-by-year Yes Additional module needed
Hydrogen equipment Load, Electrolyser, Tank, Valve, Com-

pressor, Turbine, Fuel cell, Export
Additional module needed, which in-
cludes: Tank, Reformer, Electrolyzer,
Load and Fuel cell

As can be seen from Table 4.4, one of the disadvantages of PSS®DE, is the lack of a
commercial version. Besides, it is still in development, meaning that the program oc-
casionally crashes and that different components are added and removed with new
updates. This also means that the equipment available is limited. For instance, there
are only 8 standard battery types, all of the type Li-Ion. As is clear from Table 4.4, one
main advantage by using the PSS®DE software is that the standard version includes all
packages, whereas the HOMER PRO requires additional packages for special features.
In addition, more features exist for modeling of hydrogen production, transportation,
electricity generation, and consumption. PSS®DE also offers numerous KPIs for the
user for which different configurations can be compared based on critical features for
a specific application, case study, or project. Also, it has a graphical tool to compare
different configurations, and the ability to run hundreds of variations of parameters on
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the same system at once, which can be used to showcase advantages with different de-
sign choices. Besides, the different dispatcher types can be used for different purposes,
where faster algorithms can be used to run a large number of simulations.

50



Chapter 5
Case Study

In this chapter, a case study is presented with a model in PSS®DE for the wind farm
owned by Midtfjellet Vindkraft AS, denoted as "Midtfjellet wind farm." Choices per-
taining to the case study presented, along with a description of the Midtfjellet wind
farm, are therefore shown in Section 5.1. The scenarios that are simulated are pre-
sented in Section 5.2. The defined models and relevant parameters are then presented
in Section 5.3, along with a discussion of key design choices and presentation of the
time series used and the chosen simulation parameters. To showcase how the cho-
sen program, PSS®DE, works, a verification is carried out as described in Section 5.4.
Modeling of the FFR market is shown in Section 5.5. The chapter is concluded with a
summary in Section 5.6, which also details how the simulation process is carried out.

5.1 Description of Midtfjellet wind farm

Midtfjellet wind farm is comprised of a total of 55 turbines, 34 turbines of type N90 and
size 2 MW, 10 turbines of type N100 and size 2, and 11 of type N117 and size 3.6 MW,
situated on Midtfjellet at Fitjar, Stord municipality, Norway. This means that it lies in
the NO5 price area for Elspot and regulating prices [42]. The production is 433.7 GWh
on average since the installation of building stage III. Stage III started production in
August of 2018 and consisted of the 11 3.6 MW [89]. The wind farm is connected to the
external grid through a 10 km 300 kV line to Børtveit, which has a rating of 800 MVA [89].
Assessing the possibility of a positive business case with ESS investment for this wind
farm is the main objective for this thesis; to do this, a techno-economic optimization
on a model of the wind farm, ESS, load, and grid is carried out. The reasoning behind
the specific model built for the case study (i.e., choice of revenue streams and technical
aspects) is explained in the following sections.
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5.1.1 Choice of energy storage system

As previously explained, with an increase in wind power integration, the need for an-
cillary services grow due to the intermittent wind power production. Therefore, it is
interesting to look at which ESS can be used to combat and mitigate the different is-
sues related to volatile production for the particular case study of Midtfjellet.

Wind farms are often decoupled from the grid by the use of power electronics, and
when decoupled, they do not participate with inertia when a frequency disturbance
occurs ([27], page 632). Hence, in areas dominated by wind farms, there might be an
increasing need for fast-acting frequency reserves. As shown in Table 2.3, Li-Ion bat-
tery energy storage systems (BESS) are particularly suited for frequency regulation and
were explored further in regards to ESS for the Midtfjellet wind farm. The benefits of
Li-Ion BESS are presented below. Firstly, Li-Ion BESS are tried and starting-to-be ma-
ture technology. Secondly, with the EV market driving the prices down, the costs of
Li-Ion batteries have decreased significantly, and it is likely that the prices in the fu-
ture decrease further. Thirdly, it is likely that the future grid codes can demand more
from the production units in terms of ancillary services, which require a fast response
time, which Li-Ion BESS can provide. Fourthly, Li-Ion (and other BESS) offer scalability
and portability that other forms of ESS, like CAES and PHS, lack. Li-Ion BESS were also
proven in [73] to outperformed other storage types (FES, VR FBESS, NaS, for instance)
in terms of having the fastest payback period for the reduction of ramp-rate violations
from wind farms. Besides, the FFR pilot of 2018, proved that batteries could provide
this service because of their fast response time [48].

Hence, based on the above reasoning, it has been decided to include small Li-Ion BESS
as the proposed ESS for the case study of the Midtfjellet wind farm.

5.1.2 Ancillary services

In this section, relevant ancillary services are discussed as to which is applicable for
the Midtfjellet wind farm. As DSOs cannot own the ESS in Norway, as explained in Sec-
tion 2.5.3, it is vital that ESS projects are economically viable. Therefore, the focus for
ancillary services, in this case, has been to find ancillary services suited for Li-Ion BESS
where there is a potential revenue stream. As shown in Table 2.3, Li-Ion BESS are par-
ticularly suited for frequency regulation. This is mostly because of the rapid response
time. In Norway, participation in balancing markets is the way to participate with fre-
quency regulation. Of the available balancing markets in Norway, Li-Ion is best suited
for the primary and FFR market, as these require faster response time and accept lower
bid sizes than the other balancing markets. As found in the specialization project, it is
difficult to achieve a positive net present value (NPV) for Li-Ion BESS integrated with
a wind farm when only participating in one market [3]. It was therefore considered
essential for obtaining a positive business case that revenue stacking through partici-
pation in several markets was attempted.
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5.1.2.1 Fast containment reserves

Based on the reasoning above, it has been decided that the market structure for normal
Frequency containment reserves (FCR-N), as explained in Section 2.4.3.2, is to be im-
plemented in the case study. There is, however, one modification on the bid volume in
the FCR-N market. In this case study, this is not restricted to 1 MW intervals as specified
in Section 2.4.3.2, but can have any number within the defined max/min range. This
is a simplification done because of restrictions in the program but can be explained in
a real case as if the system was part of a virtual power plant. In a virtual power plant,
bids are aggregated with other producers to comply with the bid requirements. This
simplification is similar to the approach for the FCR-N market in [77]. Li-Ion batteries
can, by participation in the FCR-N market, prevent frequency swings.

5.1.2.2 Fast frequency reserves

The market for fast frequency reserves (FFR) is a new market that is yet to be imple-
mented, but the rules in the demo version in 2020 can be used as a reference frame-
work. The FFR market in the demo version yields revenue to stand as a reserve, as
well as compensation for activated production. As it demands very fast-acting reserves
for short time intervals (0.7-1.3 s activation and activation times of 5-30 s [47]), it is
well suited for Li-Ion batteries and other battery types. It should here be noted that it
is assumed that FFR reserves cannot be part of another bid volume, which complies
with the rules in other electricity markets. The FFR market is implemented by Statnett
mainly to cope with decreasing inertia as a result of increasing wind farm production
[90].

5.1.3 Price of Li-Ion Battery Energy Storage System

It is decided that the high and low prices of Li-Ion BESS for 2020 would be taken from
[10], as these were higher than the ones in [11] and hence would yield a more conser-
vative result. The prices in 2020 was then decided to be 6000 NOK/kWh (high) and
4000 NOK/kWh (low). Converting this to EUR/kWh, the 2020 prices are set at 372.68
EUR/kWh and 474.4 EUR/kWh.

Following the reasoning in Section 2.5.4, it has been decided that two price scenar-
ios, high and low, should be created for the price of Li-Ion BESS in 2030. These prices
should be based on the mean price between the results found in [11] and estimates
from NVE in [10]. The high price scenarios for Li-Ion BESS are the mean between
the high estimates of [11] at 301.79 EUR/kWh and the high estimate of [10] at 304.55
EUR/kWh. The average of this, and thus the resulting price for the high price of Li-Ion
BESS in the 2030 scenario, is 303.17 EUR/kWh. The low price scenarios for Li-Ion BESS
are the mean between the medium estimates of [11] at 184.82 EUR/kWh and the low
estimate of [10] at 202.68 EUR/kWh, which is 193.93 EUR/kWh.

The prices for Li-Ion BESS used in the different scenarios are summarized in Table 5.1
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Table 5.1: Price of Li-Ion BESS for the different scenarios in the case study, based on [10] and [11]

Price scenario Short name Price [EUR/kWh]

Li-Ion High 2020 H20 474.4
Li-Ion Low 2020 L20 372.68
Li-Ion High 2030 H30 303.17
Li-Ion Low 2030 L30 193.93

5.1.4 Change in market prices

Based on the theory presented in Section 2.5.2, it was decided that an increase in the
electricity price in all the Norwegian energy markets could occur in the future. How
large this increase is can be uncertain; however, based on the historic trends presented,
an attempt has been made to predict future prices. It should be noted that the balanc-
ing power prices could decrease if large ESS investments are made [77]. However, the
balancing prices could also increase if there is a large investment in renewable energy
sources (RES) with volatile production without sufficient stabilizing power. Hence, the
future balancing prices could both increase and decrease, according to how the future
investments into RES and ESS are.

As argued, the future electricity price is uncertain. Therefore, it was decided that the
scenarios should include both a decrease and an increase in the electricity price. Based
on the historical trends, a 115 % increase in the Elspot and regulating power price has
occurred in the last 20.5 years. Assuming that the price projection from 2020 to 2030
follows the same historical trends, this would mean an increase of 56.01 %. Adjusting
for inflation, this increase would be 22.34 %. In the proposed price scenarios, these val-
ues are rounded to a 50 % (historic) and 25 % (inflation-adjusted). A scenario with a 25
% decrease is also included, as well as the same prices as for 2018. Hence, the resulting
price scenarios for this case study are 0.75, 1.0, 1.25, and 1.5 times the prices of 2018.

It is also decided that the prices should be decreased/increased flatly for all the mar-
kets (FCR-N, DA, and FFR), to minimize the number of scenarios required. It is unlikely
that the future price changes would be entirely symmetric across these markets. How-
ever, this simplification is seen as reasonable given that it minimizes the amount of
scenarios and the uncertainty of future electricity prices.

5.1.5 Revenue stacking

Revenue stacking is to be explored in the different scenarios to properly ascertain how
the different markets can be used to make ESS investment more profitable. This means
that different combinations of the chosen power markets are simulated, to find out
which combination that yields the highest potential revenue. All simulations can trade
at the day ahead (DA) market, and hence combinations including either the FCR-N or
FFR market or both are explored. This is further detailed in Section 5.2.
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5.2 Simulations

In this section, an overview of the simulations performed for the scenarios in the case
study is presented. Scenarios for both the current price of Li-Ion BESS, in 2020, and
future predictions for the price of Li-Ion BESS in 2030, as well as different energy prices,
are presented in Section 5.2.1 and Section 5.2.2 respectively.

5.2.1 Simulations for 2020 scenarios

The simulations that are performed for 2020 are summarized in Table 5.2.

Table 5.2: Simulations to be performed for 2020 scenarios

Case name Short name Values Unit

Price of Li-Ion H20 / L20 474.4/ 372.68 [EUR/kWh]
Day ahead market DA Elspot price 2018 NO5 [EUR/MWh]
Fast frequency re-
serves

FFR FFR price 2020 demo project [EUR/MW]

Fast containment re-
serves

FCR-N FCR-N price 2018 NO5 [EUR/MWh]

The simulations are shown, in order to clarify how they will be carried out, in Fig-
ure 5.1.

H20

DA

DA + FFR

DA + FCR-N

DA + FCR-N + FFR

Ref. DA

L20

DA

DA + FFR

DA + FCR-N

DA + FCR-N + FFR

Figure 5.1: Simulation tree depicting the different 2020 scenarios

As can be seen from studying Figure 5.1, there are a total of eight scenarios and one
reference case, denoted Ref., that are run for the 2020 case study of Midtfjellet.

5.2.2 Simulations for 2030 scenarios

The simulations that are performed for 2030 are summarized in Table 5.3.
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Table 5.3: Simulations to be performed for 2030 scenarios

Case name Short name Values Unit

Price of Li-Ion H30/L30 303.17 / 193.93 [EUR /kWh]
Day ahead market DA 0.75, 1, 1.25, 1.5 of Elspot price 2018 NO5 [EUR/MWh]
Fast frequency re-
serves

FFR 0.75, 1, 1.25, 1.5 of FFR price 2020 demo
project

[EUR/MW]

Fast containment re-
serves

FCR-N 0.75, 1, 1.25, 1.5 of FCR-N price 2018 NO5 [EUR/MWh]

The structure of how the simulations are performed is depicted in Figure 5.2.
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Figure 5.2: Simulation tree depicting the different 2030 scenarios
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As can be seen from Figure 5.2, there are a total of 32 scenarios and three reference
cases, denoted Ref., to be simulated for the future case study of Midtfjellet, as the ref-
erence case with 1.0 price in the DA market is the same as simulated for the 2020 refer-
ence case.

5.3 Definition of models in PSS®DE

In this section, the models of Midtfjellet wind farm and Li-Ion BESS configuration in
the chosen optimization program PSS®DE is presented. First, a model including the
wind farm, DA market (modeled as an external grid), and the internal load is presented
as a reference case study. This reference case can then be used to compare the benefits
of adding Li-Ion BESS and new markets. Then, a base case where the reference model
is expanded to including Li-Ion BESS is defined. The full model, including two markets,
FCR-N and DA, is shown, for use in the relevant scenarios.

5.3.1 Reference model

The reference model consists of an external electrical grid, labeled the DA market, to
which an electric load and wind park are connected, as shown in Figure 5.3.

Figure 5.3: Reference case model set-up in PSS®DE, icons from PSS®DE

The most important parameters for the grid and wind farm is given in Table 5.4. Note
that the reference model presented here was also used in verification of PSS®DE. The
parameters not listed here are kept at their default values.
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Table 5.4: Wind farm, load and DA market parameters for Midtfjellet wind farm case study

Component
Rated
power
[MW]

Lifetime [years] Max imp./exp.
power [MW]

Graph

Load - 20 0.6 -
Wind farm 149.6 20 - Figure A.1
DA Market 200 50 200 Figure A.2

The chosen limit for the DA market, at 200 MW, as can be seen from Table 5.4, is set
well within the boundaries of the line (rated at 800 MVA). This is done to ensure that
the transferred power stays well within these limitations, while it is still high enough to
transfer power from the wind farm even at peak capacity. This reference model is used
as the reference case in the simulations described in Section 5.2.

5.3.2 Li-Ion Battery Storage System model

The definition of the Li-Ion BESS model is that a Li-Ion BESS unit is included in the
reference model. This configuration is shown in Figure 5.4.

Figure 5.4: Li-Ion BESS included in model set-up in PSS®DE, icons from PSS®DE

The parameters for the Li-Ion BESS are given in Table 5.5.
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Table 5.5: Parameters of the Li-Ion BESS for Midtfjellet wind farm case study

Parameter ESS (with container)

Rated power [MW] 4.02
Energy [MWh] 1.668
Reference lifetime [years] 10
Converter efficiency [%] 95
SoC Min/Max [%] 0/100 or SoC to fit FFR req.
EoL capacity [%] 70
Initial state of charge [%] 80
Replacement strategy No replacement

This Li-Ion BESS model is used for the simulations that include the DA and FFR market
in Section 5.2. When the FFR market is modeled, the time series raising the SoC level
at the required times to the correct value are used as input for the Li-Ion BESS.

5.3.2.1 Choice of ESS size

As can be seen from Chapter 3, finding the optimal size of an ESS is a difficult task
and depends on the purpose of the ESS installment, as well as the type, cost, and other
parameters of the chosen ESS. In this thesis, the focus has been on the inclusion of ad-
ditional balancing markets, which could provide increased network stability through
frequency containment and new revenue streams for the owners of Midtfjellet Vind-
kraft AS. Hence, the size of ESS should be tailored to fit these needs while also adhere
to the goal of finding a positive business case.

As discussed in Section 4.3.3, there is a sizing tool available in PSS®DE, for the sizing of
new components. This sizing tool was used to see the recommended Li-Ion BESS size
for the given case study. However, as the sizing tool does not yet support wind farm
components, the wind farm had to be modeled as individual turbines. Wind speeds
with a resolution of 10 min from August 2018 to August 2019 provided by Midtfjellet
was used as input for the wind farm. Also, the load profile and Elspot prices for 2018
was used as input to the sizing optimizer. The objective of the sizing optimizer was set
to minimize the cost. As could be expected from the results found in the specialization
project [3], the resulting case showed that large Li-Ion BESS investments were not de-
sirable. The dispatcher recommended installing a Li-Ion BESS with an energy rating
of only 7 kWh. However, this did not take into account possible revenue from other
markets, of which the Li-Ion BESS was needed to participate. As found in [73], it was
possible to obtain revenue by installing ESS that relative to the wind farm size is small.
The authors in [73] found that a 3-4 MW battery would limit most ramp rate violation
for a 165 MW wind farm. Building on this argument, and adding that the internal load
of the wind farm is not higher than 1 MW, it was, therefore, decided that the Li-Ion
BESS unit should have a power rating of approximately 4.0 MW for the Midtfjellet wind
farm of 149.6 MW.

Following the conclusion of the power rating, the ESS power/energy ratio must also
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be decided. To participate in the FFR market, a large power/energy ratio is desirable.
This is because to participate in the FFR market, the duration is short (5-30 s [47]), but
the price is paid per kW available, and hence a larger power rating means increased
income from FFR. The largest ratio of the Li-Ion batteries available in PSS®DE is 2.4,
and this battery was therefore chosen for this project. Following the natural scaling of
the selected battery type, the resulting Li-Ion ESS has a 4.02 MW power rating, which
results in an energy rating of 1.668 MWh.

5.3.3 Market model for Frequency Containment Reserves

To model the FCR-N market, an extra grid is added to the Li-Ion BESS model. This con-
figuration is shown in Figure 5.5, where the FCR-N market has parameters, as described
in Table 5.6.

Figure 5.5: Full model set-up including FCR-N market in PSS®DE, icons from PSS®DE

Table 5.6: FCR-N market parameters

Component Rated power
[MW]

Lifetime
[years]

Max imp./exp.
power [MW]

Graph

FCR-N market 1.668 50 1.668 Figure A.3

The FCR-N market is modeled in the same fashion as in [77]. This means that the Li-
Ion BESS, or load, is paid per MWh for import and export of power. The import and
export prices are set according to the prices provided by Statnett for 2018 [23].

Modelling the FCR-N market as an extra external grid is not without limitations. It
both raises the computational effort required and is not an accurate representation of
the actual case. However, as the maximum limit of the FCR-N market combined with
the DA market is still well below the 800 MVA rating of the power line (even with a low
power factor), it is considered an acceptable simplification. As the balancing market
function in PSS®DE was limited at the time of simulation, the solution to include the
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FCR-N balancing market was to model it as a separate grid. The computational time
increased by 32 % with this extra grid added, but this increase was seen as acceptable
as it enabled inclusions of the FCR-N market. This FCR-N model is hence used when
the simulations that include the FCR-N market in Section 5.2.

As can be seen in Table 5.6, the FCR-N market has been modeled to fit the battery en-
ergy limit at 1.668 MWh. This is because it is improbable that a wind farm, with its
volatile production, would be allowed to bid on a reserve market. It is modeled both
as up- and down reserves, i.e., the internal load can use the FCR-N market to cover its
consumption, thus earning money by covering internal needs. From the data of the
available volume (in MW) in the FCR-N market of 2018, the volume requested was be-
low 1.668 MW in NO5 in just 4 hours. Hence, it was decided that a flat 1.668 MW limit
would be an appropriate way to model the available FCR-N reserves. This would both
spare computation time and provide results that mimic real-life demand to an accept-
able degree.

5.3.4 Time series

The wind farm was simulated with a wind farm chart with normalized output power
adapted from the real-life output of the Midtfjellet wind farm in 2018, which was pro-
vided by Midtfjellet Vindkraft AS. The normalization of output power means that the
table includes production values compared to the wind farm’s rated power. For the
Midtfjellet wind farm, which has a size of 149.6 MW, a production of 100 MW would
yield a normalized value of 0.668.

The price for power exported/imported from the wind farm/ESS/lead to the DA mar-
ket was given by the Elspot prices for NO5 from 2018, while the price for power Ex-
ported/imported from the wind farm/ESS/load from the FCR-N market was given by
the prices for FCR-N reserves in NO5 in 2018. These time series graph’s can be viewed in
Appendix A.2, with the DA price, FCR-N price, SoC-levels and normalized wind power
output power depicted in Figure A.1, Figure A.3, Figure A.4 and Figure A.2 respectively.

The time series and which component they are used for is presented for clarification in
Table 5.7. The names of the components are referred to Figure 5.5.
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Table 5.7: Time series and input sources for the different components in the case study of Midt-
fjellet wind farm

Component Parameter Input Source

DA market Import/Export price
[EUR/MW]

Elspot prices 2018 NO5 Nordpool [59]

FCR-N market Import/Export price
[EUR/MW]

FCR-N prices 2018 NO5 Statnett [23]

Li-Ion BESS SoC Level [%] FFR requirements Calc. in Section 5.5 based
on FFR req. [47]

Load Load demand [kW] Extrapolated from load
profile Aug. 2019

Midtfjellet Vindkraft AS

Wind farm Normed output profile Adapted from 2018 pro-
duction profile

Midtfjellet Vindkraft AS

It should be noted that the load profile for the wind farm is based on one month, Aug.
2019, as that was the data available. What this load is, have not been disclosed. Still, if it
is a load demand related to the daily operation (and not to provide a seasonal load such
as heating or related to extraordinary switching events), it is reasonable to assume that
the load would follow a similar pattern throughout the year. The load profile from Aug.
2019 has therefore been extrapolated to cover the entire year. In addition, it should be
noted that Midtfjellet wind farm was expanded from 110 MW to 149.6 MW capacity 10.
August 2018. This was a result of building stage III, as 11 NREL 3.6 MW turbines were
included in the wind farm. This can be viewed in Figure A.2, where there is a significant
increase in production after this date.

5.3.5 Simulation parameters

For this thesis, the simulation and dispatcher parameters in PSS®DE were chosen as
depicted in Table 5.8.

Table 5.8: Simulation and dispatcher parameters for PSS®DE and the case study of Midtfjellet
wind farm

Parameter Value

Project lifetime 20 years
Simulation Entire lifetime
Dispatcher MGMS
WACC 8 %
Time step size 3600 s

As shown in my specialization project [3], the reason for simulation over the entire life-
time is to get as accurate results as possible, even though it significantly increases the
simulation time compared to, for instance, extrapolation from year one values. Hence,
it was chosen to simulate for the entire lifetime, also in the thesis work, see [3] for fur-
ther details. Note that the input data was based on data from one year, 2018; this means
that wind power production and available energy have the same values for all years. As
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the thesis has as the main goal to see if there exists a positive business case for Midtf-
jellet Vindkraft AS, accuracy and economic optimization are the primary goals. Hence,
the MGMS algorithm is chosen, and, since the MGMS utilizes the MPC approach if a
solution to the given dispatch exists, it is optimal. The MGMS approach follows the
principles explained in Section 4.2, and solves the optimization problem of power dis-
patch for each hour of each day for the lifetime of the project, with MPC retriggering
intervals of 15 min.

The project lifetime of the project is set to 20 years, based on an approximate lifetime of
25 years the installed wind turbines installed in the different building stages (44 2MW
turbines installed in 2012 and 11 3.6 MW turbines installed in 2018). Note that the
salvage value of the Li-Ion battery is added at the end of the simulations. The time step
size is set to the default value of 3600 s. The difference between 3600s timesteps and
60 s timesteps is discussed further in Section 5.4. The WACC is set to the default value
of 8 %, and it should be noted that a change in WACC would influence the results. A
higher value of WACC often implies a greater risk of the project and results in a lower
net present value for the project of a firm [91]. Hence, a higher WACC could yield a
more conservative result.

5.4 Verification of program

To verify that the results obtained by PSS®DE reflect real-life data, a verification based
on actual revenue results provided by Midtfjellet for one month, August 2019, was con-
ducted. The verification method proposed is to use the real measured data from Midtf-
jellet for this month together with Elspot price data from Nordpool as input to the pro-
gram, and verify that the program’s output resembles the revenue obtained by Midtf-
jellet. The simulation parameters, inputs and reference base case modelled in PSS®DE
is as shown in Table 5.9, Table 5.10 and Figure 5.3 respectively.

Table 5.9: Simulation and dispatcher parameters for the verification

Parameter Value

Project lifetime 1 year
Simulation Entire lifetime
Dispatcher MGMS
WACC 8 %
Time step size 3600 s & 60 s

Table 5.10: Input data for the verification of PSS®DE

Component Input Source

DA market Elspot prices Aug.2019 NO5 Nordpool
Wind farm Normalized production data Aug.2019 Midtfjellet Vindkraft AS
Load Internal load demand for Aug. 2019 Midtfjellet Vindkraft AS
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Note that the verification is carried out both for the standard 3600 s time step, and with
60 s time step. This is to look at how increased accuracy in the optimization reflects in
the results versus the extra computational effort needed.

5.5 Modelling of fast frequency reserves

A method has been developed for simulation of participation in a future Nordic fast
frequency reserves (FFR) market. The FFR market is explained in greater detail in Sec-
tion 2.4.3.3. The method proposed to secure FFR is to raise the SoC level of the Li-Ion
BESS, hence reserving parts of the battery capacity for FFR reserves as needed, as dis-
cussed in Section 4.1.5. The price from the demo version conducted by Statnett for FFR
in 2020 is used. Hence, the price used for FFR reserves is 17 623.33 EUR / MW, see Sec-
tion 2.4.3.3. For the simulations explained in Section 5.2, this base price serves as the
reference value for FFR reserves. It was also decided that the calculations for the FFR
market should be discounted and by using monthly cash flows.

FFR profile reserves need in the demo version to be available in the hours 22-7 on week-
days and all hours on weekends from 1. May - 30. September. The level of SoC needed
for participation in the FFR market must be calculated. As the decided battery power
is 4.020 MW, and there are special requirements for delivery of only 5 s FFR (see [47]
for further details), it was decided that the minimum delivery time of 30 s should be
chosen. Hence, with a period of delivery of at least 30 s, the required SoC level was
calculated to 0.02008 MWh = 2%, using the equation in Equation (4.6). The SoC level
should be raised to 2 %, where the available power for FFR participation is the power
of the battery, 4.02 MW, at the time slots defined by Statnett. A time series raising the
required SoC for the specified hours was created in Excel as input for the Li-Ion BESS
in PSS®DE. The time series in graphical form for this SoC level is found in Figure A.4.
The calculation of additional revenue (cash flow) from the FFR market is found us-
ing Equation (4.7) to be 70845.79 EUR/year for the 4.02 MW Li-Ion BESS. As can be
seen by Equation (4.7), the revenue from FFR market participation both depends lin-
early on the price for offered availability, and the amount of power provided as FFR
reserves. The cash flow is thus the same for each year. This cash flow is then divided
by the number of months that FFR reserves are required. Here, the period is from May
to September, which yields 5. I.e., the cash flow in these months, CFm , is 14 169.16 EUR.

To find the discounted cash flow (DCF), the monthly WACC must also be calculated.
The chosen yearly WACC is 8% (see Table 5.8). The monthly WACC can be calculated,
as shown in Equation (5.1). Equation (5.1) is based on the equation for an effective
rate of interest found in [92]. Here WACCm is the monthly WACC, WACC is the annual
WACC, and n is the number of months in a year.

WACCm = (1+WACC)
1
n −1 = (1+0.08)

1
12 −1 = 0.006434 = 0.6434% (5.1)

To get the appropriate value of the FFR participation, the DCF is found, as shown in
Equation (5.2), which is based on the DCF equation found in [93]. Here, N is lifetime
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of the battery with the given SoC level in [months] (rounded) obtained from PSS®DE
simulations, WACCm is the monthly WACC, calculated by Equation (5.1) to be 0.6434
%, and CFm is the monthly cash flow in [EUR].

DCF = CFm

(1+WACCm)1 + CFm

(1+WACCm)2 + ...+ CFm

(1+WACCm)N
(5.2)

The reason for the monthly discounting, as opposed to yearly, is that it is assumed
that the FFR market price is paid each month, and hence the results would be less
accurate if the FFR was discounted for a year when they are paid each month. The DCF
is calculated for each scenario that includes FFR and added as a discounted revenue
stream obtained by the inclusion of the Li-Ion BESS.

5.6 Case study summary

In this chapter, the different models and simulations that are to be carried out have
been shown. To clarify how the simulation process is conducted, and specifically how
the FFR results are included, a summary is presented here. To clarify the simulation
process, i.e., which parts are done in PSS®DE and which are added later (FFR), a flow
diagram is found in Figure 5.6.

PSS®DE
MGMS

Dispatcher
WACC 8%

Model
If FFR

FFR price 2020 demo

FFR
WACCm
0.64 %

Wind farm production

Load profile

Elspot price NO5 2019

FCR-N price NO5 2018

If FCR-N

Lifetime BESS
DCF for FFR

Optimal dispatch, NPV

Statnett Nordpool Midtfjellet Vindkraft AS

Figure 5.6: Simulation process

As can be seen from Figure 5.6, the optimal dispatch is found through optimization in
PSS®DE. The results from PSS®DE yields the specific operation of the combined sys-
tem and overall NPC. By using the average expected lifetime of the battery from the
PSS®DE results, the revenue from the FFR market is calculated using Excel. Hence, the
aggregated results of the PSS®DE and FFR calculations show how the ESS model can
participate in the DA, DA + FFR, DA + FCR-N, or DA + FCR-N + FFR markets. These can
then be compared to the reference case with the wind farm, which is only allowed DA
market participation in this case study. The sources for the input data is also shown in
Figure 5.6.
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To summarize, a total of 44 scenarios are conducted in the case study, while the sep-
arate verification process requires one simulation. This translates to a total of 45 sim-
ulations in PSS®DE. The simulations are carried out using a HP zBook computer, that
has an Intel®Core™ i7-6820HQ CPU @ 2.70GHz 2.71GHz and 16 GB RAM and is run-
ning the PSS®DE version V3.1.0.3488. The results of the scenarios are presented and
discussed in Chapter 6.
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Chapter 6
Results

In this chapter, the simulation results from running the cases presented in Chapter 5
in PSS®DE are presented along with discussion. To gain an overview of how the results
can be interpreted, a brief explanation is given in Section 6.1. Then, the verification of
the program is displayed and discussed in Section 6.2.1. After this, graphs depicting the
optimal dispatch schedule for an arbitrary day from PSS®DE simulations are shown in
Section 6.2.2. Finally, the results and subsequent discussion from running the different
scenarios is presented in Section 6.2.3 and Section 6.2.4. It should be noted that the
import and export values given is the mean value over the 20 years of simulation. I.e.,
import/export might be different in different years, but the mean value of the 20 years is
used in the graphs presented here. The raw data for the results presented can be found
attached to the thesis in the excel file labeled "Appendix_B1_LE_Master_thesis_2020.xlxs"

6.1 Interpreting the results

For the reader to understand how the results from PSS®DE and the fast frequency re-
serves (FFR) calculations should be interpreted, the following section outlines how the
chosen Key Performance Indicators (KPI’s) should be viewed. What the different KPI’s
represents, and which values are desirable/undesirable from an economic or technical
perspective are described below.

6.1.1 Discounted Cash Flow

The discounted cash flow (DCF) is calculated for the FFR market using the method
specified in Section 5.5. The resulting DCF is the revenue obtained from the partici-
pation of the Li-Ion battery energy system (BESS) in the FFR market, discounted for
future cash flows with the chosen WACC. Hence, for a project where the investment
of the battery is accounted for in PSS®DE, DCF is here equivalent to net present value
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(NPV). It can, therefore, be added to the NPV calculated by PSS®DE, to obtain the com-
bined NPV.

6.1.2 Net Present Value

Net Present Cost (NPC) is the system cost in EUR for the entire lifetime of the project
and is the given output from calculations in PSS®DE. It outlines how much a given
project would cost, taking into account the Weighted Average Cost of Capital (WACC),
which is chosen to be 8 %. To simplify how the results can be read, and particularly
concerning the fact that the NPV is calculated for the FFR market, the NPC results from
PSS®DE are converted to NPV values by multiplication of minus one. It is desirable
to have a positive NPV, as this implies that the proposed project is profitable. When
comparing two results, the highest NPV thus belongs to the most profitable project.

6.1.3 Imported and exported energy

The imported and exported energy from the grid is given in kWh for each hour of the
simulations, aggregated to annual values in the tabular results. Each hour, import or
export of energy to the grid has a cost in EUR/kWh, where a negative cost implies a
revenue earned for either import or export of power.

6.1.4 Energy content

The energy content, in kWh, is given for the Li-Ion BESS and reflects the amount of
energy stored in kWh for each hour of the simulations.

6.1.5 Power set point

A negative power set point means that the component is importing power, while a pos-
itive power set point means that the component is exporting power. The power set
point of a component is given in kW for each hour of the simulations.

6.2 Results

In this section, the results from the verification , 2020 and 2030 scenarios is presented
and discussed in Section 6.2.1, Section 6.2.3 and Section 6.2.4 respectively. A small
demonstration of the operational output from the simulations is presented in Sec-
tion 6.2.2.

6.2.1 Results of verification of PSS®DE

To confirm that the software runs as intended, the reference case simulation results are
verified using real revenue data provided by the Midtfjellet wind farm for August 2019,
as described in Section 5.4. Due to secrecy clauses, the actual data is not published
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in their entirety here, only the relative difference in percent between the provided rev-
enue output from Midtfjellet and the revenue output calculated by using PSS®DE. The
results of this verification are presented in Table 6.1. Note that the results are rounded
to two decimals accuracy.

Table 6.1: Percentage change between PSS®DE simulations and data provided by Midtfjellet
Vindkraft AS

Time step Production Revenue Export energy price Load Import energy price
s>

s

[%] [%] [%] [%] [%]

3600 -1.65 -1.62 -0.18 1.92 1.15
60 -1.45 -1.42 -0.18 -1.90 -2.37

As can be seen, there are small discrepancies between the simulated values and the
production data for August 2019 provided by Midtfjellet Vindkraft AS. The results show
that the 60s time steps with 60s re-triggering of MGMS yield slightly better results re-
garding differences in production. However, this an almost negligible difference, and
considering the wast increase in computational time (1 min vs. 28 min for a one-year
simulation), it was decided that 3600 s time steps would yield accurate enough results
while keeping the computational effort to a reasonable level. The import price of en-
ergy is further from the data provided in the 60s time step scenario. This is probably
because a more accurate prediction of wind farm production results in less imported
energy from the grid since the wind farm then can provide the required load. It should
also be noted that the loads are overestimated slightly (increased compared to input),
and production is underestimated (lower than Midtfjellet results) for the case with 3600
s time steps. Hence, it could be argued that the results obtained from PSS®DE are more
conservative than the real-life results. As the errors are small, it should also be noted
that they could be due to round off errors in the program. Therefore, it is concluded
that the differences are small enough that their impact on the overall results of the case
study is negligible.

6.2.2 Operational output

To demonstrate how the operation data provided by the program looks the graphs from
a day in Figure 6.1 after a simulation of "L30 - DA + FCR-N + FFR" is presented. The
graphs show the power-set point of the load, wind farm, day ahead (DA) market, as
well as the battery’s energy content on an arbitrary day, 05.06.2028 (year 10 of the sim-
ulation).
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(b) Power set-point wind farm
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(c) Power set-point load
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(d) Power set-point DA market

Figure 6.1: Operational output on 05.06.2028 for the different components from PSS®DE for L30
- DA + FCR-N + FFR simulation

From Figure 6.1a, it is apparent that the battery has a stable energy content, set at
the 2 % = 33.36 kWh level required for FFR participation. Hence, the battery is not
charged/discharged notably this day, but rather stays at a flat rate required by the SoC
settings. As can be seen from Figure 6.1b and Figure 6.1d, the power-set point of the
wind farm and the DA market are almost completely complimentary. I.e., all of the
wind farms production is exported to the DA market, while the load is covered by im-
port from the market for normal frequency containment reserves (FCR-N). To further
show this, Figure 6.2 has been created, which has been made using the inverted power-
set point for the DA market to show how the two graphs coincide.
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Figure 6.2: Power-set point in kW on 05.06.2028 for the load, wind farm, DA market and FCR-N
market from PSS®DE for L30 - DA + FCR-N + FFR simulation

The power set point of the FCR-N market is included in Figure 6.2, and as can be seen,
it was at a flat 1.668 MW import through the entire day. Since imported power provides
a revenue, the dispatcher tries to import as much as possible from the FCR-N grid. The
imported power from the FCR-N market is used both to cover the load demand and
is transferred and sold at the DA market. This is especially apparent in Figure 6.2 in
the time from 10-12 h and 21-23 h, where the load demand is zero, and the DA market
minus the FCR-N import matches the wind farm production perfectly. In this regard,
the transfer happens directly at the node, meaning that the power is never stored in
the battery and then sold. This is natural, as storing the power would lead to losses and
degradation. The model used in this thesis has a limitation on the power flow equa-
tion, which enables this interaction to occur. However, if such transactions are legal,
it is beneficial for the battery to behave in this manner, as it would imply an increased
revenue without the degradation costs associated with storing power.

In addition, it is worth noting that the operational data obtained for this scenario had a
solving time of 50 min with the computer and PSS®DE version specified in Section 5.6.
Hence, the current model is not suitable for online operation.

6.2.3 Result of 2020 scenarios

In this section, the results from running the 2020 scenarios presented in Section 5.2.1
are displayed.

6.2.3.1 Net present value

Figure 6.3 displays the percentage change in NPV for the simulations performed com-
pared to the reference case of 2020. The aggregated NPV from PSS®DE and the DCF
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calculations for the FFR market in Excel is shortened to Agg. NPV.
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Figure 6.3: Percentage change in aggregated NPV from PSS®DE and FFR compared to the refer-
ence case for 2020 scenarios

As can be seen from Figure 6.3, the scenarios which include the FCR-N market all pro-
vide an increase in NPV compared to the reference case. The scenario containing the
low Li-Ion price with the FFR market also has a slight increase in NPV compared to the
other cases, while the other three cases; "H20 - DA + FFR," "H20 - DA" and, "L20 - DA"
all have a decrease in NPV compared to the reference case.

6.2.3.2 Frequency Containment Reserves

Here, the most important results from the FCR-N market is presented. As there is no ex-
port to the FCR-N market, only import, the results presented is limited to the imported
power, which can be viewed for the relevant configurations in Figure 6.4.
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Figure 6.4: FCR-N import power in GWh / year with DA, FFR and FCR-N prices of 2018
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As can be seen by Figure 6.4, there is virtually no change in the FCR-N import between
the different FCR-N scenarios, with a 0.0001 % increase when the FFR market is in-
cluded. Hence, the price of the Li-Ion BESS does not affect the import from the FCR-N
market.

6.2.3.3 Day ahead market

Here, the results from the DA market after running the 2020 scenarios are presented.
Both imported and exported energy is show.
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Figure 6.5: DA market import power in GWh / year with DA, FFR and FCR-N prices of 2018

It is apparent from Figure 6.5 that when the FCR-N market is included, the import from
the DA market drops to virtually zero. This is because importing from the FCR-N mar-
ket is paid, so it is more beneficial to import it from there than import it at a cost from
the DA market.
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Figure 6.6: DA market export power in GWh / year with DA, FFR and FCR-N prices of 2018

As can be seen from Figure 6.6, there is an increase of exported power to the DA market
when the FCR-N market is included in the simulations. This is because the import
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from the FCR-N market is traded on the DA market. It is also clear from Figure 6.5 and
Figure 6.6 that the price of the Li-Ion BESS does not affect the amount of imported or
exported power from the DA market.

6.2.3.4 Summary of 2020 scenarios

The main conclusion that can be drawn from the results of the 2020 simulations is that
for the model and simulation program used, it is possible to obtain a positive business
case with the current prices of Li-Ion BESS. This is both true for the inclusion of the
other markets for FCR-N, FCR-N and FFR, and only FFR (valid only for the low price of
Li-Ion BESS). However, note that the results are based on prices in 2018 for FCR-N/DA,
and the FFR prices from 2020. Hence, a different pricing regime could alter the results.
Besides, it is worth mentioning that the Li-Ion BESS is used very little in each instance,
and hence has an unrealistically long-anticipated lifetime, up to 28.89 years. If the Li-
Ion BESS had to be charged and discharged, for power transfer between the FCR-N and
DA market to occur, this would alter the lifetime of the Li-Ion BESS. It issues related to
the modeling of the FCR-N market are discussed further in Section 6.3.

6.2.4 Results of 2030 scenarios

In this section, the results from running the 2030 scenarios presented in Section 5.2.2
are shown.

6.2.4.1 Net present value

In this section, the results of NPV are presented for the 2030 scenarios. The NPV is ag-
gregated from PSS®DE and the FFR calculations in Excel. The resulting NPV for each
scenario, with a percentage increase compared to the reference case, is presented in-
Figure 6.7.
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Figure 6.7: Percentage change in aggregated NPV from PSS®DE and FFR compared to the refer-
ence case for 2030 scenarios
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As can be seen from Figure 6.7, there is a slight increase of NPV relative to the reference
case for the different electricity price scenario, except when all markets are included.
This can be attributed to the fact that for 0.75 times the electricity price scenario, the
revenue from the FFR market has a bigger impact on the NPV, as the NPV from PSS®DE
is lower. For the price scenarios of Li-Ion in 2030, both the high and low prices yield a
positive NPV for all market structures except for the DA market only scenarios. This
is expected based on the 2020 results, as the high price estimate for Li-Ion batteries in
2030 is lower than the low price in 2020, and the low-priced Li-Ion battery with 2020
electricity prices also provided a positive NPV.

6.2.4.2 Frequency containment reserves market

In this section, results from the FCR-N market for the 2030 scenarios are presented. The
imported energy in annual values for the different scenarios and price of electricity is
presented in Figure 6.8.
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Figure 6.8: FCR-N import power in GWh / year with DA, FFR and FCR-N prices as described in
2030 scenarios

As can be seen from Figure 6.8, there is not a big difference between the different price
scenarios concerning the amount of imported energy from the FCR-N market. Nei-
ther is there a large difference between the scenarios, including and excluding the FFR
market. The difference in the 1.5 electricity price scenario is a decrease of only 0.10
%. Hence, it can be argued that the FFR market’s inclusion does not impact the im-
port to the FCR-N market noticeably. This is similar to the results obtained for the 2020
scenarios.

6.2.4.3 Day ahead market

In Figure 6.9, the changes of export for the simulations containing the FCR-N market
versus the reference case are presented. The cases that include the DA market and the
FFR market are omitted from the graphs. This is because their change relative to the
reference case is in the range of -0.003 - -0.004 %, which is a negligible decrease.
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Figure 6.9: Percentage change in DA market export power compared to reference case for 2030
scenarios

As can be seen from Figure 6.9, the amount of exported power to the grid as a result
of adding the FCR-N market increases with a value between approximately 3.9-4.2 %
compared to the reference case for all the electricity price scenarios. This increase in
export is because the import from the FCR-N market is sent directly to the DA market
(when not used to cover the load demand). In Figure 6.8, there is a 0.1 % decrease in
FCR-N import when the FFR market is included, and this also results in a decrease in
the exported power to the DA market, as seen in Figure 6.9.

6.2.4.4 Summary of 2030 scenarios

There is not much difference in the simulation results when the electricity price is
changed. Compared to the reference case, almost all projects are still profitable; with
a slight increase in NPV relative to the reference case, the higher the price of electric-
ity is in the different markets, except when all markets are included. This follows the
same reasoning that was shown in the 2020 scenarios. The main trends for the 2030
scenarios are that the highest NPV is obtained when all the markets are included and
that the FCR-N market is more profitable than the FFR market. The main difference
between the 2020 and 2030 scenarios is the slight increase in NPV, mainly due to the
lower prices of Li-Ion batteries. It is also apparent that increasing or decreasing elec-
tricity prices would result in a small improvement in NPV for the scenarios where all
the markets (FCR-N, DA, and FFR) are included.

6.3 Discussion of the results

Following the main findings in the specialization project, it was important to include
new revenue streams to make a battery profitable for a wind farm [3], as changing dif-
ferent battery parameters (SoC, EoL) did not impact the resulting NPV to a great extent.
The results from the master thesis support this, showing that a Li-Ion BESS investment
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with only DA market participation yields a decrease in NPV. Hence, it is apparent that
revenue stacking is vital to gain profitable ESS projects within the 10-year limit in these
scenarios. The main results from the inclusion of two markets are that they both in-
crease the NPV, and when looking at projections for 2030, all electricity price scenarios
showed an increase in NPV when including the FCR-N or the FFR market. It is essential
to emphasize that the wind farm probably would not be allowed to participate in these
markets without the Li-Ion BESS. Hence, the extra revenue gained from these markets
would not be possible without the Li-Ion BESS.

Regarding a comparison between the 2020 and 2030 scenarios, it is apparent that the
main difference lies in the price of Li-Ion BESS. As the prices of Li-Ion BESS decreases
from 2020 to 2030, the scenario where DA and FFR participation is allowed changes
from a negative NPV to a positive NPV compared to the reference case. The results
show that even with 2020 prices, there exist positive business cases for a Li-Ion BESS
investment, given that participation in the FCR-N and DA market is allowed. When the
2030 scenarios are considered, all scenarios, including two or more markets, yield an
increase in NPV compared to the reference case. Hence, a 4.02 MW / 1.688 MWh Li-Ion
BESS unit can yield an increase in revenue for the case study presented, given the as-
sumptions taken.

As is seen from the 2030 scenarios in Section 6.2.4, the variable that impacted the NPV
value the most was changing the electricity price. The relative increase in NPV for the
different electricity price scenarios was around 0.1-0.4 %. The relative difference be-
tween the different prices for the Li-Ion BESS was around 0.1 % increase in NPV for
the low price scenarios. This could be explained by the fact that the electricity price
is a uniform increase in all three markets. Hence, the gain in NPV is aggregated from
the FCR-N, DA, and FFR market. It could be interesting to explore scenarios where
only one of the electricity prices changed compared to 2018 values and see how price
changes in different markets affect the NPV.

It should be noted that the dispatcher considers the input time series as perfect infor-
mation; hence real variables and forecasted values coincide (wind production, load
profile, DA price, and FCR-N price). This means that the battery operation in this
model might be unrealistically good at following the set rules.

The largest issue is the modeling of the FCR-N market. As all transfers happen at one
node, the power from the FCR-N market is directly traded to the DA market, which
might not be legal. This could have been solved if the FCR-N market had been incor-
porated in a different node than the DA market, meaning that it would have to trade
with the Li-Ion BESS/wind farm/load for any transfer of power to the DA market. How-
ever, as the program is limited to one such node, including this possible improvement
was not possible. The FCR-N market model also affects the results of the FFR market.
This is because the DCF is calculated using the anticipated lifetime of the battery from
PSS®DE. Hence, a constraint that states that the battery must be charged and then dis-
charged for transfer between FCR-N and the DA market could heavily alter this lifetime
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through degradation. Thus, the estimates for FFR revenue could, in this example, have
been unreasonably high. The simulations with the FFR market showed only a slight
improvement in NPV. Therefore, it is essential not to conclude that inclusion of FFR
would lead to a positive business case, but rather to look at it in terms of a potential
increase compared to only DA market participation.

Another thing that the model lack is taxes and feed-in prices related to import and ex-
port of energy. As these would have impacted the overall revenue obtained from selling
at the different markets, a lower NPV improvement than shown would have to be ex-
pected if these were included. However, the inclusion of taxes and feed-in prices would
significantly increase the model complexity. Hence, for this type of study, the compu-
tational effort would be unreasonable high compared to the additional insight gained.

The results show promising trends for ESS investments when they participate in bal-
ancing markets, with NPV improvements of 4-5 % when given perfect information.
As Li-Ion BESS provides access to these balancing markets, it is interesting for further
study to explore case studies using forecasted data. The main conclusion is, therefore,
that revenue stacking can help provide a positive business case for Li-Ion BESS, and
would be interesting to explore further.
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Conclusion

This thesis presented different benefits of installing an Energy Storage System (ESS)
with a wind farm (or other volatile production) through an extensive theory chapter, a
literature review, and a real case study of a proposed Li-Ion BESS for Midtfjellet wind
farm. Previous literature was found to have had a primary focus on economic benefits.
At the same time, the theory chapter concludes that there are several technical features
and ancillary services that ESS can provide.

The case study conducted used the data from Midtfjellet wind farm and future scenar-
ios for 2030 with both different electricity prices, and the development of the Li-Ion
BESS price was created. The scenarios included using a multi-market model, with par-
ticipation in one or more of the selected power markets. The power markets used was
the Norwegian day ahead, FCR-N, and FFR market. Optimization of 44 scenarios and
one verification was carried out in PSS®DE, an optimization program for distributed
energy systems (DES) developed by Siemens AG.

The main results from the case study show that a 4.02 MW / 1.688 MWh ESS unit can
provide additional revenue for the Midtfjellet wind farm of 149.6 MW in 2020, if it can
participate in several markets, i.e., through revenue stacking. For the 2030 scenarios,
the results show an even greater increase in NPV when Li-Ion BESS and revenue stack-
ing is included. The results from the case study hence support previous findings in the
regard that regulating power markets improve ESS profitability.

The future price of electricity did not alter the results to a great extent. Even with a de-
crease in the prices compared to 2018, the high price 2030 scenario for Li-Ion BESS with
multi-market participation was profitable. However, the multi-market model used in
the case study allowed for direct interaction between the different markets. This might
have yielded unrealistically high revenues, as the cost of losses and degradation in the
battery was not accounted for. Hence, the future development of the thesis should ex-
plore the possibility of a more accurate multi-market model.
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Chapter 8
Future work

This chapter presents areas in the master thesis, which could be expanded in future
work. Besides, the feasibility of the different areas is discussed. It should be noted that
some of these are case-specific, and hence is not relevant for other case studies than
the one presented, while others are broader and include improvements to the overall
method presented. Some of the topics presented coincide with those in Chapter 9 of
my specialization project [3].

8.1 Improvements to the case study

In this section, general improvements to the conducted case study is presented and
discussed.

8.1.1 Input

The accuracy and resolution of the given input could be improved in the future de-
velopment of this thesis. Regarding the input data for this particular case study, the
load profile data was extrapolated from one month of data. Therefore, an improve-
ment could be to collect a more accurate load profile for a whole year of operation.
This would effect both the reference case and the scenarios, and would thus not al-
ter the relative difference in net present value to a great extent. Another improvement
could be to gather data using a statistic pick from several years of input data. Using a
pick from different years could provide information as to how sensitive the results are.
Hence, it could provide valuable information as to whether the proposed ESS invest-
ment would be profitable given different demands and prices than seen in 2018. The
increase in resolution would also increase the computational effort required. Hence it
should be explored for options with lower time horizons or where long computation
times are not an issue. It should also be mentioned that the tool used, PSS®DE, is not
meant to be used for hourly operational control, but rather as an investment tool. This
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is supported by the fact that simulations have to be done for at least a year of operation.

8.1.2 Modeling

The simulations on the multi-market model introduce issues regarding the validity of
the results. The ESS in this case study is not used as the markets are allowed to trade
and interact with each other directly. This is because the use of the ESS would incur a
cost both because of losses and degradation. A possible way to remedy this could be to
include more nodes in the configuration, so that the two markets could not trade with-
out passing through the system containing the load, wind farm, and ESS, or to impose
constraints on import/export between the two grids. However, as these features are
not included in PSS®DE, it was considered out of scope for the thesis. Also, it could be
mentioned that adding more nodes could increase the complexity of the optimization
problem to such a degree that it becomes either unfeasible or has a too high computa-
tional effort required for it to be a useful tool. The accuracy of how the different com-
ponents are modeled could also be improved. For instance, the battery model could be
made more accurate, particularly concerning battery degradation. But, as degradation
of a battery is a highly nonlinear process, improvements in accuracy could here result
in a substantial increase in the computational time required and possible in-feasibility
of the optimization model. Forecasting models to predict both prices and demand
could have been developed or used to a greater extent in this thesis.

8.1.3 Scenarios

For the scenarios, more sophisticated models for predicting the future prices of elec-
tricity and Li-Ion BESS could have been developed or explored. In addition, the price
increase of electricity could have been tailored to each specific market, instead of using
a flat increase/decrease for all the markets.

8.2 Other aspects

In this section, other aspects that could be explored in further development of this
thesis is briefly presented.

8.2.1 Different type of energy storage system

Li-Ion BESS was chosen as the ESS in this master thesis. However, as seen in Chapter 2,
other types of ESS can be used for wind power integration. For the specific case study
of Midtfjellet, one ESS that could be explored further could be hydrogen. Hydrogen
could be suitable both since water is easily available for electrolysis, the wind farm is
situated on an island, and for use as a fuel in the ferry line that connects the island of
Fitjar to the shore.
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8.2.2 Transportation

As the case study of Midtfjellet lies on an Island with a connected ferry line, it would be
interesting to include how this ferry could be converted to either an electric or hydro-
gen ferry. Other forms of either hydrogen or electricity transportation could be also be
explored, for instance, for buses, trailers, or other vehicles.

8.2.3 Energy storage systems versus grid investments

In cases where a grid investment for an increase of capacity is needed, it can be inter-
esting to look at how this compares to an ESS investment. This could both be as an
investment deferral, postponing a necessary investment, or as an option to the grid
improvement. Although the authors in [61] found that grid investment was cheaper
than ESS investment in their case, the article is from 2003. Hence, ESS versus a grid
improvement could prove more profitable with the current prices of ESS. This would
be an especially interesting topic for case studies where grid improvements are partic-
ularly costly, for instance, on islands where underwater cables are necessary. As the
wind farm considered in this thesis is situated on an island, the topic of grid improve-
ments versus ESS investment is, therefore, particularly interesting.

8.2.4 Technical aspects and ancillary services

Technical aspects or ancillary services that could be provided by installing ESS could
be explored further in the case study presented. This could, for instance, be regarding
the static voltage stability or reactive power improvements. For this, another tool than
PSS®DE is needed, as it is not suited for these kinds of evaluations.

8.2.5 Grid codes

The relevant grid codes for ESS and a wind farm of Midtfjellet size could have been
discussed further. Particularly regarding how grid connection would be possible, and
the requirements of the joint operation of the ESS and wind farm for such a connection
to be possible.

8.3 Summary

As seen by the parts in this section, there are several ways this work presented in the
thesis could be developed further. The future development that is seen as yielding
the most considerable improvement would be to achieve an accurate multi-market
model. An accurate multi-market model could be used to find the real economic ben-
efit of ESS installment. Gaining this information could help find suitable ESS invest-
ments, which again could be used to improve RES integration, ultimately resulting in a
greener, smarter, and more agile grid.
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Appendix A
Appendix

A.1 Comparison method for different energy storage sys-
tems

The comparison method is based on the performance of the given ESS in each category.
The best performance, defined below, is given value 5, while the worst is given value 1.
If no information is found for a specific ESS type for a given parameter, the score is
set to zero. The other ESS is then weighted against the ESS with the worst and best
performance.

• Discharge time: long discharge time yields higher score
• Response time: low response time equals high score
• Efficiency, power rating, specific power, lifetime, number of cycles and specific

energy: The higher the value, the higher score
• Self discharge: lowest levels gets highest score
• Maturity: Mature technology yields a score of 5, developed a score of 3 and de-

veloping a score of 1.
• Geographical location: The more flexible the storage is, the higher score it yields.
• Capital cost: Lower cost equals higher score

A.1.1 Energy storage systems weight matrix

The weight matrix based on the method in Appendix A.1 is shown in Table A.1.
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Type Discharge
time

Response
time

Efficiency Power
rating

Energy
rating

Spesific
power

Spesific
energy

Num.
Cycles

Lifetime Capital
cost

Self dis-
charge

Location Maturity

PHS 5 1 4 5 5 0 0 5 5 5 5 1 5
FC 5 3 1 3 4 0 5 1 4 3 5 2 1
FESS 2 5 4 1 2 5 3 1 3 2 1 5 5
LA 2 5 4 3 2 3 2 2 3 4 4 3 5
Lit Ion 4 5 3 4 3 4 4 2 3 3 4 3 3
VRB 3 4 3 2 3 3 2 4 3 3 4 4 3
SC 1 5 5 1 1 5 2 1 2 3 2 5 3
SMES 1 5 4 4 1 0 2 0 1 1 3 5 3
CAES 5 1 2 4 5 0 1 4 4 5 4 1 3
NaS 2 5 4 2 4 3 4 3 3 3 3 5 3

Table A.1: Weighting matrice for different ESS types based on method in Appendix A.1

A.2 Time series

Figure A.1: Hourly 2018 Elspot prices for NO5 [22]
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Figure A.2: Hourly normed power vs. rated power for the wind farm

Figure A.3: SoC rules to secure FFR reserves
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Figure A.4: Hourly FCR-N prices NO5 2018 [23]
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