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Problem Description
There is an increasing focus to include more renewable energy sources in the global energy mix.
These renewable sources, like wind and solar power, are dependant on weather which make
them unregulated sources. This can cause challenges when it comes to securing the supply
of power and ensuring the continuous balance of production and consumption. By combining
these unregulated sources with energy storage, the production could be balanced. However,
with uncertainty in both the power production and the power markets, it can be difficult to op-
timise the scheduling strategy for such an energy system.

In this thesis, an optimisation model for energy system scheduling based on stochastic dynamic
programming has been created and analysed. This model uses concepts found generally in
hydropower optimisation and a previous version was originally created in a former master’s
thesis for energy scheduling of a single storage unit in a multi-market setup. The two main
contributions of this thesis are: implementing wind power as an unregulated power source in
the optimisation model and analysing the created model in a case study. The created model pro-
vide short-term scheduling for an energy system, consisting of a storage unit and wind turbine,
which participate in the energy market and reserve capacity market.

In the case study, both deterministic and stochastic setups will be tested. Various seasonal data
will be used to test the model in different scenarios based on wind production and prices in
the markets. The energy system will also be tested with various storage capacity and wind
power ratings. The motivation behind the case study is to investigate what impact the inclusion
of wind power have on the behaviour and results of the energy system. An interesting aspect
is to see how the storage unit and the wind turbine cooperate and how they participate in the
multi-market setup (i.e. how they participate in the energy market and reserve capacity market).
Another interesting perspective is to study the effects on the energy system behaviour and profit
results from the various seasonal input data and component sizes.
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This master’s thesis has been written during the spring semester in 2020 at the Department of
Electrical Power Engineering at the Norwegian University of Science and Technology (NTNU).
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Summary
With the increasing shares of unregulated renewable energy sources in today’s energy mix, bal-
ancing energy demand and energy supply over time becomes more challenging. Energy storage
is identified as a key technology to overcome this challenge and to ensure power stability. When
combining energy storage with unregulated power productions one must consider the schedul-
ing of energy storage operations and interactions with the surrounding systems. An optimal
energy scheduling is crucial to obtain a profitable energy system.

In this thesis, an optimisation model was created for an energy system consisting of an energy
storage unit and a wind turbine. The energy system is connected to the grid and operates in
a multi-market setup, where it participates in both the energy and regulating market with the
objective to maximise its profit. The model itself is a short-term model operating at a level that
is both multi-stage and multi-scenario stochastic and is based on concepts found in hydropower
optimisation. It consists of a two-step process with two phases. Firstly, in the strategy phase,
the model uses stochastic dynamic programming to obtain the storage values for the energy
system, which is the marginal value of stored energy. Secondly, these storage values are used
in the simulation phase to simulate the optimal scheduling strategy.

To analyse the results and behaviour of the optimisation model, a deterministic and stochastic
case study is included and seasonal data is used to showcase the model in different situations.
The deterministic case study focuses on wind power sizing and system behaviour under an ex-
treme scenario. The stochastic case study has a more thorough analysis of two very different
seasonal cases, winter and summer. The price and wind data used in the cases are based on
historical data obtained from 2018 and 2012. The model has been tested with different storage
capacities in the range of 1-15 MWh and various wind power ratings in the range of 0.5-2.0
MW. To analyse the multi-market feature, the energy system has been tested when only allowed
to operate in the energy market, compared to operating in both markets.

The results show that an increase in installed wind power leads to a significant increase in profit.
To limit the wind power shed and maximise the wind power utilisation, it is found that a 1.5
MW wind turbine suited this energy system. The model enhances its trade in the energy market
when there is an increase in ”free” wind power available. Thus, the multi-market operation
decreases as wind production increases. Only when the reserve capacity price is higher than
the energy price the capacity market is prioritised by shedding wind power. When wind power
production is low, the system operates in both markets due to more available transfer capacity.
The seasonal variations have a great impact on the energy system in terms of profit and its multi-
market operation. While the winter case with high wind production almost solely operates in
the energy market, the summer case benefit from the multi-market opportunity with 12-16 %
of total operating profit coming from the reserve capacity market. When participating in both
markets, the total operating profit in the winter case with high wind production was 34-38 %
higher than for the summer case depending on storage capacity. Note that an installed storage
capacity above 3 MWh does not give a significant additional profit in either market. When
wind production is high the storage does not contribute to a significantly higher profit, but it
provides a more stabilised power exchange. To conclude, the energy storage and wind turbine
complement each other in the multi-market setup due to seasonal variations in the wind and
would increase the overall yearly performance with different strategies throughout.
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Sammendrag
En økende andel av uregulerte fornybare energikilder i dagens energimiks fører til at balanserin-
gen av kraftproduksjon og -forbruk blir mer utfordrende. I den sammenheng identifiseres en-
ergilagring som en viktig teknologi for å løse denne utfordringen og bidra til kraftbalanse. Når
man kombinerer energilagring med uregulert kraftproduksjon, er det viktig å vurdere hvordan
man skal planlegge energilagringen og interaksjonen med de tilknyttede systemene. En optimal
energiplanlegging er derfor avgjørende for å få et fungerende og lønnsomt energisystem.

I denne masteroppgaven er det laget en optimaliseringsmodell for et energisystem bestående
av en energilagringsenhet og en vindturbin. Energisystemet er koblet sammen med kraftnettet
og opererer i både energi- og balansemarkedet med mål om å maksimere overskuddet. Selve
modellen er en korttidsmodell som opererer på et nivå som er både flerstegs og multi-scenario
stokastisk og er basert på konsepter som brukes i produksjonsplanlegging av vannkraft. Den har
to faser som utføres i to steg. Første fase er strategifasen som bruker stokastisk dynamisk pro-
grammering for å beregne lagringsverdiene til systemet, som kan defineres som den marginale
verdien av lagret energi. Deretter brukes disse lagringsverdiene i simuleringsfasen for å beregne
den optimale planleggingsstrategien.

En deterministisk og en stokastisk case-studie blitt brukt for å analysere resultatene og oppførselen
til optimaliseringsmodellen. Ulike situasjoner i disse casene ble simulert ved hjelp av data fra
ulike årstider. Det deterministiske case-studiet fokuserte på ulike vindkraftstørrelser og model-
loppførselen under en ekstrem situasjon. I den stokastiske casestudien ble det gjort en grundi-
gere analyse av to forskjellige årstider, nemlig vinter og sommer. Prisdata og vinddata som er
brukt i casene er basert på historiske data fra 2018 og 2012. Modellen er testet med lagringska-
pasitet på 1-15 MWh og forskjellige vindturbiner i størrelsene 0.5-2.0 MW. For å analysere
deltagelsen og oppførselen i markedene har energisystemet blitt testet når det bare opererer i
energimarkedet, sammenlignet med å få delta i begge markedene.

Resultatene viser at en økning i installert vindkraft fører til en betydelig økning i profitten. For
å begrense overflødig vindkraft og samtidig maksimere utnyttelsen av vindenergien, ble det
funnet at en 1,5 MW vindturbin passet dette systemet. Resultatene viser at modellen øker sin
prioritering av energimarkedet med mer ”gratis” vindkraft tilgjengelig. Så når vindproduksjo-
nen øker minsker deltagelsen i begge markedene. Først når prisen i balansemarkedet er høyere
enn energiprisen, blir balansemarkedet prioritert på bekostning av redusert vindkraft. Når det
er lite vindkraftproduksjon, deltar modellen mer i begge markedene. Resultatene viser altså at
årstidene har stor innvirkning på energisystemet med tanke på den totale profitten og deltagelsen
i de ulike markedene. Mens vinter-casen med mye vindkraft nesten utelukkende opererer i en-
ergimarkedet, drar sommer-casen fordel av muligheten av å operere i to markeder der 12-16 %
av det totale driftsresultatet kommer fra balansemarkedet. Ved deltagelse i begge markedene,
var den totale profitten i vinter-casen 34-38 % høyere enn for sommer-casen, avhengig av la-
gringskapasiteten. Merk at en installert lagringskapasitet over 3 MWh ikke gir en særlig økning
av profitt i noen av markedene. Merk også at når vindproduksjonen er høy fører ikke energi-
lagringen til en særlig høyere profitt, men det gir en mer stabil kraftutveksling. Til slutt kan
man konkludere med at energilagring i samspill med vindkraft utfyller hverandre når systemet
får operere i flere markeder. Systemet vil da kunne øke sin årlige fortjeneste og ytelse ved å ha
flere strategier å spille på ved for eksempel variasjoner i vind.
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Chapter 1
Introduction

1.1 Background and Motivation
To reach certain climate goals in the future the current energy system needs to go through a
transition by shifting from fossil fuels to renewable energy sources. For instance, the EU has
declared ambitious climate goals, which are summarised in Table 1.1, and to reach these goals
the energy system needs to become both smarter and include a higher share of renewable energy.
The future energy system will thus be characterised by a higher integration of renewable energy.

Goals 2020 2030
Cut in greenhouse gases (from 1990 levels) 20 % 40 %
Share of renewable production 20 % 32 %
Improved energy efficiency 20 % 32.5 %

Table 1.1: Overview of the EUs climate and energy goals for year 2020 and 2030 [1].

The future includes a transition from power being produced at large centralised power plants
and transported to the end-user, to a more decentralised energy structure with distributed gen-
eration in the form of renewable power production. However, including more renewable power
poses some challenges. Renewable energy sources, such as solar power and wind power, are
unregulated sources dependant on the weather. This implies that the sources cannot be turned
on and off by choice and have a highly variable power production which is difficult to predict.
Balancing energy demand and supply over time then becomes more challenging. Grid stability
issues such as inconsistent frequencies could also arise. Another challenge is that constrained
transmission and distribution grids could limit the increase in distributed renewable production.
To tackle these problems, the energy system needs to be smarter and include new technology
to make better use of the energy infrastructure. For instance, energy storage systems are recog-
nised as a key technology to overcome some of these challenges.

Energy storage in cooperation with unregulated power and in connection with the main grid has
many possible applications. One objective could be to balance the production from the unregu-
lated power sources, thus increasing the flexibility. If an unregulated power source is connected
to an energy storage system, excess power generated in periods with good production conditions

1



Chapter 1. Introduction

can be stored. This stored power could then be used in periods where there is a power deficit
or the production conditions are less good. Energy storage could also provide an alternative to
grid reinforcements in areas where the transmission grid is weak and constrained by levelling
the power output or storing excess energy for other use.

Other grid and market purposes for the integration of a storage system could be to ensure bal-
ance in the power system by participating in the regulating market or used for frequency stabili-
sation. The storage unit could also participate in the energy market and make a profit by buying
electricity when it is cheap and selling when it is expensive. An energy storage system is thus
capable of multi-market participation.

1.2 Scope and Problem Statement
The main contributions from this work are the following:

• Present a short-term optimisation model for energy system scheduling where it seeks to
maximise its profit in a multi-market setup while using a stochastic backwards dynamic
programming (SDP) framework.

• Investigate the integration of an unregulated power source, such as wind power, in an
energy storage system that operates in a multi-market setup.

• Compare and analyse the results and behaviour of the optimisation model in a case study
consisting of both a deterministic and stochastic setup involving two seasonal cases.

This thesis utilises an optimisation model formulated in Python. The whole energy system
which the model represents consists of a wind turbine, a converter and a storage unit, e.g. a
battery. This system is connected to the main grid and participates in both the energy market
and the reserve capacity market, making it a multi-market operation. Within these markets, the
model seeks to gain the maximum profit thus making it a model with an economical objective.
The motivation for studying a multi-market setup is to see in which market the system chooses
to participate and thus in which market it makes the greatest contribution and impact. The
model used in this thesis is based on a model from a previous master’s thesis from 2018 by
Kasper Emil Thorvaldsen [2].

1.3 Thesis Outline
The next following chapter in this thesis, Chapter 2, contains the theory and methodology which
are the basis when constructing the model. Chapter 3 gives a description of the model and its
elements, while Chapter 4 seeks to explain the setup of the case study analysed in this thesis.
In Chapter 5 and 6, the results of the case study are presented and discussed. At last, Chapter 7
formulates a conclusion and Chapter 8 discusses future work related to this thesis. An appendix
containing the optimisation model elements, historical data plots, and some of the stochastic
input data used in the case study is also included.
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Chapter 2
Theory, Background and Methodologies

This chapter includes relevant theory for the master’s thesis. The first section, Section 2.1, con-
tains a small overview of academic work and publications concerning energy storage system
scheduling. The purpose of this section is to get a general understanding of already investigated
areas on this subject and to find out where this thesis belongs in the already existing research
work.

The following sections in this chapter consist of relevant theory for this work. It should be
mentioned that this master’s thesis contains some similarities with previous work done by the
author. In 2019 the author analysed an energy system consisting of only a storage unit operat-
ing in multiple markets, for various seasons [3]. Since the model that is used in this thesis are
an extension of the model used in previous work done by the author, much of the theoretical
background is the same. Therefore, Section 2.2 to Section 2.7 are more or less the same as in
the previous report mentioned.

Section 2.8 covers distributed generation in the form of wind power, and present theory rele-
vant for the work regarding implementation of wind power in the optimisation model. At last,
Section 2.9 covers some of the assumptions made in the creation of the model, as well as some
uncertainties that exist in the work.
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2.1 Literature Review for Energy Storage System Scheduling
To obtain a sense of perspective of the role that this thesis plays in the already existing academic
literature, this section will seek to give an overview on the existing research and literature about
energy storage scheduling and management.

In 2018, a systematic literature review of energy management for stationary electric energy stor-
age systems was published [4]. This article reviewed literature that has been published about
optimal management of energy storage connected to the power grid or a microgrid. The goal
of this framework is to guide future researchers in positioning their work in the literature and
also by identifying future research opportunities. In total, 202 publications were reviewed in
this article [4].

Figure 2.1: The various system scope and objectives in the reviewed publications [4].

As seen in Figure 2.1, the various literature reviewed has different system scope and objectives.
The scope of the system refers to the number and type of participants, and the objective is the
proposed optimisation focus of the system. It can be seen from Figure 2.1 that most of the objec-
tives have an economic focus where the main intention is minimising costs or maximising prof-
its. Only a handful of the publications have an environmental, technical or consumption strategy
objective focus. An interesting aspect in Figure 2.1 is that relatively few publications have the
storage only scope or are producer oriented. If the scope is storage only, energy storage systems
are considered as independent systems interacting with the grid. When producer-oriented, the
case where energy production is combined with a storage system to deliver a combined and
improved output is considered. Most of the publications deal with microgrids, either with one
bus or several busses.

In the literature reviewed, the type of energy storage system consists primarily of a single unit.
The storage technology used can vary and is heavily based on the wanted outcome of the sys-
tem. However, battery energy storage systems are investigated in around 53 % of these single
unit cases [4]. Even though most of the publications feature a load in the system, either uncon-
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trollable or controllable, a significant number of publications did not have a load modelled into
the system at all.

When investigating the time horizon which the models in the publications operate within, it
could be found that around half of the publications focus on day-ahead scheduling, and then
often competing in day-ahead energy markets. The rest of the publications focus on intraday
scheduling or optimisation in retrospective form [4]. Few publications were found to be centred
around other markets, such as the regulating markets. However, a few publications investi-
gate these subjects and also a multi-market approach. For instance, Kim and Powell had a
multi-market approach where they considered a model of a combined wind turbine and battery
storage acting in the day-ahead and regulating markets [5].

Figure 2.2: The different use of uncertainty handling techniques in the reviewed publications [4].

Scheduling an energy system is a decision-making problem that includes planning for an un-
certain future. The uncertainty derives either from technical factors such as unregulated energy
production or economical parameters such as electricity price. Seen in Figure 2.2, around half
of the publications reviewed did not consider uncertainty at all. Within the deterministic mod-
elling, many of the publications used deterministic forecasts, but this does not include uncer-
tainty since all the data in the forecast is known. When modelling uncertainty, or stochasticity,
four policy categories were used to categorise the different approaches. These can be seen in
Figure 2.2 and are look-ahead policies, policy function approximations, value function approx-
imations, and myopic policies. When utilising look-ahead policies one makes decisions at the
present stage and optimise over a planning period by combining an estimate of future informa-
tion with an estimate of future actions. The policy function approximations directly return a
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policy in the current state. The value function approximations use an approach that replaces the
value function with an approximation which in turn makes it possible to solve stochastic prob-
lems by looking forward instead of a backward iteration. At last, myopic policies optimise for
the present time without considering future decisions, although uncertainties are acknowledged.

In the literature review article, it is stated that 19 of the 202 sampled publications applied a
Dynamic Programming (DP) approach [4]. In six of these 19 publications uncertainty was in-
cluded with stochastic modelling, as seen in Figure 2.2. This means that only six out of the
202 publications used Stochastic Dynamic Programming (SDP). The advantage of SDP is that
it is a good representation of the probabilistic characteristics. However, the downside is that it
often leads to high computational efforts and discretisation can lead to oversimplifications. An
example of SDP use in energy storage system scheduling is found in [6]. Here, it was inves-
tigated a production-oriented system with a wind power plant and battery participating in both
the day-ahead and intraday markets. It was assumed that day-ahead obligations have already
been scheduled and the aim was to obtain the intraday position. In this publication, wind power
production was the stochastic input. The problem was then solved through full value iteration
centred around the forecasted wind power production. Other examples are a paper which de-
scribes a stochastic, dynamic programming model that analyse and determine optimal operating
strategies for an energy system consisting of diesel sets with optional battery storage and un-
regulated wind or PV power [7]. Also, a customer-side energy storage system that operates to
minimise the electricity bill under a peak-load limitation constraint in demand and price uncer-
tainties [8].

The lack off publications that consider stochasticity in their problems with energy storage
scheduling is also discussed in [9]. In this article, energy storage scheduling is considered
with distributed generation uncertainties in the form of wind and solar power. The article state
that some of the references consider stochasticity in their problems, but none uses stochasticity
of wind and solar power in the optimal scheduling of energy storage taking into account the
power flow constraints in distribution systems [9].

The authors of the literature review article finish up with presenting propositions for future
research. In the bullet points below the propositions are more or less rendered from the article
[4]:

• Proposition 1. More publications in the classical management and decision science lit-
erature should transfer knowledge from well-known fields of research, such as inventory
control, to the discussed application of energy management.

The literature review points out that even though energy management for energy storage systems
has been studied frequently in the literature, the combination of known research could be put to
better use in the research within this field.

• Proposition 2. The application of a hybrid energy storage system should be investigated
further.

Combining different energy storage technology could improve both technical and economical
system performance. Thus, more research could be done on this subject.
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• Proposition 3. Future research should focus on industrial consumers with controllable
loads in energy planning tasks on a detailed level.

In the literature review, only one publication was found to be studying the load of industrial
consumers. Therefore, it is proposed more research around this subject.

• Proposition 4. Integrated planning systems should combine the different planning hori-
zons from day-ahead planning to real-time operations and include the possibility of acting
in different markets simultaneously.

Since it is acknowledged that most publications reviewed in the article focused on applications
for single time horizons acting in single markets only, the proposition is that future research
should include participation in different markets at the same time (e.g., regulating market and
spot market). It is also pointed out that too few publications address the problems arising from
interactions between markets with a different time horizon.

• Proposition 5. Future research should include usage-related model formulations in math-
ematical models when investigating economic objectives, such as usage-related cost fac-
tors.

The lifetime of a storage unit, and consequently the replacement cost, is strongly correlated
with the usage. Thus, it is strange that only a handful of publications considered these variable
and usage related costs.

• Proposition 6. Investigations on optimal solution properties and closed-form representa-
tions should be used more thoroughly in the development of policies for an electric energy
storage system.

• Proposition 7. Future research should apply some sort of uncertainty handling technique.

In the aspect concerning the uncertainty, it is found that 51 of the sampled papers focused
on day-ahead planning without considering the uncertainty of the input parameters. This is a
considerable high number of publications considering that the need for uncertainty to derive
realistic planning outcomes is very important. A proposition is therefore that future research
should apply some sort of uncertainty handling technique to avoid that the optimisation might
lead to unrealistic results.
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2.2 Generation Flexibility
With an increase in unregulated energy sources in the energy mix the power system can become
more unstable and experience more fluctuation. These problems need to be kept under control
so that the power grid and the power system can function well. The main solution to this prob-
lem is to have enough flexible power production. In this way, the production can be up- and
down-regulated to meet the demand rapidly. Historically, this part has been played by coal and
gas plants, but this can also be done by using energy storage units. The storage units can store
energy during periods with surplus or cheap energy, and discharge energy when the situation
has turned and power is needed.

These energy storage units can be implemented in different levels in the energy system. An
example is to help an unregulated power source, such as wind power, to deliver more stable
production output. In other words, when the wind blows the storage unit could be charged and
then be discharged when there are windless periods. Other usages for the storage unit could
be to help with challenges in the power system and power grid. It could improve the security
of electricity supply by providing an up- and down-regulation of power. The unit could charge
during low-cost periods and discharge under high-cost periods. In this way, high peak-load
would be covered by the storage unit, potentially cutting cost. This is called load-shaving and
Figure 2.3 illustrate this usage. Also, including a storage unit in the grid could potentially help
with congestion problems or if a line is disconnected. To sum up this section, there is plenty of
possible uses and benefits of including an energy storage system in the grid.

Figure 2.3: An illustration of how an energy storage system could perform load-shaving [10].
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2.3 The Power Markets
The power market is an important tool to ensure effective use of power resources and reasonable
prices on electricity. This is mainly done through the European power market Nord Pool. This
is an exchange for physical power trade, sales, and bids of power, for the Nordic and Baltic
countries. Nord Pool consists of both a financial and a physical market. Only the physical mar-
ket will be described in this thesis, due to the chosen focus.

The power market consists of several markets where bids are submitted and where prices are
determined. The Nord Pool exchange is responsible for the day-ahead market (DA) and the
intraday market (ID). The TSO in Norway, Statnett, runs the balancing market (BM) and the
capacity market (RKOM), also called the regulating market. These markets operate in different
time scopes and with different purposes. An illustration of these subjects is shown in Figure
2.4. In the following sections, each of these markets will be described. The information in these
sections is obtained from Nord Pool [11], Statnett [12] and a Norwegian energy fact site [13].

Figure 2.4: Overview of the different operations in the power markets. [14]

2.3.1 The Day-Ahead Market
The primary market for power trading is the day-ahead market, where large volumes of power
are traded in Nord Pool. The market consists of contracts for the delivery of physical power
hour-by-hour for the next day. Participants submit offers and bids to Nord Pool, specifying the
quantity of power they would like to sell or buy, and at what price. The day-ahead market will
close at 12:00 each day. Then, the gathered bids will be sorted and separated into supply and
demand bid curves. Prices hourly prices for the following day are calculated from the inter-
section between these two curves. This pricing method is shown in Figure 2.5. The volume of
power traded for each hour is also found with this calculation. Note that the market price is the
same for all the participants regardless of the bid they have issued.

In an ideal market, all participants would compete against each other and thus the same bidding
zone would apply for everyone. However, since the power system has physical transmission
constraints, the available transmission capacity must be taken into account. The solution is to
introduce several bidding areas with their individual area price. Each area is thus an individual
market zone with separate clearing prices. This price is based on the area’s supply and demand,
but also the transmission capacity to other areas. Therefore, different areas can experience
different prices at the same time. It can be noted that the area price and the system price
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Figure 2.5: Illustration showing how the market price is determined. [11].

also can differ from each other. The system price is calculated based on bids disregarding the
available transmission capacity between bidding areas. The system price function as the Nordic
reference price. In Norway today there is five bidding areas [11].

2.3.2 The Intraday Market

The day-ahead market tries to ensure a balance between supply and demand. However, there
can be events that disrupt this balance after the day-ahead market closes the day before. Such
events, like changes in weather or unexpected shutdowns, can influence the actual production or
consumption in a way that changes the position from the day before. The intraday market plays
an important role to supplement the day-ahead market to ensure balance in the power system.
In the intraday market buyers and sellers trade power quantities in the period between clearance
in the day-ahead market and up to one hour before the operation. With this market solution, the
aim is to achieve a balance through trading.

With more unregulated renewable power sources, like solar and wind, it can be difficult to
participate in the day-ahead market because of the uncertainties involving these sources. The
intraday market is more suited to handle power trade from these sources because the actual pro-
duction time is closer. Then, the imbalance between forecast production and actual production
decreases. Since it is predicted that the share of these unregulated renewable power sources
increases, the share of trading in the intraday market is also likely to increase.

2.3.3 The Balancing Market

Even though the day-ahead and intraday market seek to ensure a balance between production
and consumption, there are within a specific hour of operation bound to be some disturbance of
that balance. Some examples of possible disturbances could be end-user variations, outage of
lines or outage of large consumers or producers. When this imbalance occurs, there must be a
system or market that restores the balance in the power system, such that the frequency is kept
at 50 Hz. This is the purpose of the balancing market and it is the TSO’s responsibility to main-
tain this market. The balancing market function is to regulate production and/or consumption
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up or down depending on what is needed to maintain an instantaneous balance. The balanc-
ing market can be divided into three regulation reserves: primary reserves (FCR), secondary
reserves (FRR-A) and tertiary reserves (FRR-M). The primary and secondary reserves will au-
tomatically respond to changes in the frequency, while the TSO needs to manually activate the
tertiary reserves.

Figure 2.6: Illustration on how the different reserves cooperate to balance the power system [15]. Note
that the tertiary reserves is called minute reserve in the figure.

The different regulation reveres will have separate response time, as shown in Figure 2.6. If
an imbalance occurs, first the primary reserves automatically try to dampen or stabilise the
imbalance. After a few minutes, the secondary regulation is automatically activated. This
reserve will affect the power output from the producer, causing either a down- or up-regulation
of power to restore the frequency. This frees up the primary resources so it can deal with
new imbalances. If the imbalance still causes deviation to the frequency, the tertiary regulation
is activated, often called regulating power. This is manually activated by the TSO and the
activation can take around 15 minutes after the start of the incident. These reserves will secure
ideal frequency and release the secondary reserves. The reserves are traded in different ways.
Primary reserves are traded in separate hourly and weekly markets and secondary reserves are
traded in a separate weekly market. Tertiary reserves are purchased in the regulating power
market (RK). In the Norwegian part of the regulating power market, the TSO ensures enough
balancing capacity through the tertiary reserves options market (RKOM). This is discussed in
the next section.

2.3.4 The Norwegian Capacity Market
To ensure there exist enough balancing capacity in the Norwegian market, resources for up-
and down-regulation, there is a capacity market. This is managed by the TSO and is called
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”regulerkraftopsjonsmarkedet” (RKOM) in Norwegian. The bidders in this market get paid an
amount to guarantee that they have excess power available to contribute to the balancing power
market. This amount is paid in advance and regardless of the resources are actually used or
not. However, there will be a penalty to the producer if they cannot meet the demand that
has been paid for. Both power production and demand response can participate in RKOM. In
this market, there are two options: weekly or seasonal trading. In RKOM-season, options are
purchased with duration throughout the expected season, and the producers are required to have
their capacity on standby for the entire season. The trades in the RKOM-week are made based
on an assessment of the current power situation, such as forecasts of production, consumption,
exchange abroad and probable congestion. When traded, the RKOM-week is divided into time
sections throughout the week: weekday and weekend. It is also divided into two time segments
for each day: day (from 00:00 to 05:00) and night (from 05:00 to 00:00).
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2.4 The Norwegian Electricity Price and Load Pattern
The general load pattern for a Norwegian private consumer will vary over the day and year.
The typical trend for such a consumer is that there is a high load demand in the morning and
evening and these hours are called peak-hours. Even though the peak-hours are not considered
long for each day they still require a sufficient grid capacity. The load pattern is reflected in
the electricity price, as the price typically rises when the demand is high. Figure 2.7 shows the
Norwegian power consumption over the course of one week in the winter and summer season,
and the typical load pattern can be seen in this figure.

Figure 2.7: The electricity demand for one week in the winter and summer of 2018. The data is obtained
from Statnett [12].

Figure 2.7 also illustrate the seasonal differences, and it can be seen that there exist some vari-
ations throughout a year. The largest difference is the load quantity. The climate in Norway is
cold, especially in the winter, and the main source of heat in Norway is electricity. This adds
up to a generally higher load, and thus higher prices, in the winter. This can be seen in Figure
2.7. It can otherwise be assumed that the same pattern structure occurs in all seasons because
the consumer behaviour is primarily the same. Holidays and weekends can also affect the load
pattern. An example of that can be seen in Figure 2.7 where the peak-load is smaller and occur
in a slightly different time scope in the weekends than in the weekdays.

The Norwegian grid needs investment in the coming years because of factors such as an in-
crease of load demand, parts of the grid are old and worn out, an increase in security of supply
requirements and new unregulated production in the distribution grid. When upgrading the
grid, the grid dimension is decided by the peak-load. However, this peak-load may only occur
a few hours every year, so other alternatives may be more economical. One way to tackle this
problem is to adjust consumer behaviour to decrease the peak-load. Another way to solve this
is by installing storage units in the rural grid. These units can reduce the strain on the grid in
the peak-hours by charging when the load is low and discharge when the load is high. In this
way, the load pattern will become more levelled and the power transfer from the grid during
peak-hours will be decreased. This is called load-shaving or load-shifting and it is mentioned
in Section 2.2 and illustrated in Figure 2.3. By investing in a storage unit, the investment in the
grid itself can be smaller or it may be kept longer in its current state.
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2.5 Energy Storage System
An energy storage system unit capture energy produced at one point in time for future use.
For this thesis, the focus will be at energy storage units that operate with electrical energy.
Therefore, the function of an energy storage unit described in this report is that it can store and
release electricity back and forth depending on the situation and given demand. The applications
for such storage units are many, but in this report, there will be a focus on a storage unit that is
utilised in connection with the grid at some level. Examples of some large-scale applications
are: lowering the peak-demand in the grid, serving as a back-up unit for quick power changes
in the grid or storing excess power from unregulated power production such as wind power.
Storage units can also be used for small-scale applications, such as for households or small
micro-grids.

Figure 2.8: A Ragone plot over different energy storage technologies [16].

There are several types of storage units that can store and discharge electricity at request. The
different energy storage units have unique qualities in their technologies that make up both
advantages and disadvantages and must be chosen based on the wanted purpose. For example,
some technologies can provide short-term storage, while others can store energy for longer
times. Some storage devices can transfer high power while others must operate at lower power.
To help understand the diverse approaches currently of storage systems being used, many of
the common storage technologies are illustrated in the Ragone plot in Figure 2.8, which is
a plot used to compare the performance of various energy storing units. Even though many
vastly different technologies exist for storing energy, this section will focus on two examples of
storage technology that are commonly used in grid applications today, which are batteries and
flywheels. These two technologies are also used for separate purposes in the grid.

2.5.1 Batteries

This section will cover solid-state batteries or more commonly know as conventional batteries.
A battery is, on a basic level, a device that stores and converts chemical energy into electricity.
One battery consists of one or more electrochemical cells. Each cell consists of two electrodes
each with an electrolyte and separated by a separator. With a connection between the two
electrodes, a current will be produced. There are many types of these batteries, and these
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are primarily separated by the type of materials that are used in the cells. Many batteries are
rechargeable, and can thus be charged and discharge several times. Figure 2.9 shows a Ragone
plot over the different battery attributes based on the materials they are made from. Energy
density affects the storage capacity compared to size, while power density affects the power
output the storage can provide. It is worth mentioning that the cost of batteries is declining
at a quick rate, as they become very popular in electric vehicles and other application such as
in connection with the grid or distributed generation. NVE predicts that batteries will play an
important role as the world’s power system becomes more renewable, and estimates that the
costs will decrease further [17]. They point out that recent cost data in Norway shows costs
around 4 000 - 6 000 NOK/kWh for stationary batteries.

Figure 2.9: A Ragone plot over some of the different battery technology. [18].

Battery type Advantages Disadvantages
Lead Acid Battery • Cheap • Deficient in cold climate

• Proven technology • Not stable capacity
• Tolerant to overcharging • Heavy
• Can deliver high currents • Not suitable for fast charging
• Many suppliers • Possible overheating at charging

Lithium-Ion • High cell voltage • Flammable
• Low weight • Degrades at high temperatures
• Fast charging • Needs protective circuit
• Low self discharge • Does not tolerate overcharging
• No memory effect

Table 2.1: Some of the advantages and disadvantages for lead acid and Li-ion batteries.

Today, the major types of batteries used for power delivery in the grid are lead-acid and lithium-
ion (Li-ion) batteries. In lithium-ion batteries, lithium metallic oxide makes up the cathode, and
carbon the anode. Lithium-ion batteries provide a high energy density, as well as low memory
effect and low self-discharging effect. A battery’s memory effect is a reduction in the storage
level in a rechargeable battery, due to incomplete discharge in previous uses. Low memory
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effect and low self-discharging effect are of great importance to stationary use in the power
grid. Li-ion batteries also have a long lifetime and require little maintenance. The major down-
side to Li-ion batteries is their cost, as lithium is a scarce metal. Lead-acid battery cells are
much older technology. These batteries are cheaper, but at the cost of a lower energy density
which requires physically bigger batteries compared to Li-ion. They also have a shorter life-
time, higher maintenance costs, and more memory and self-discharging effect. Most of the
advantages and disadvantages of these two battery types are summed up and compared in Table
2.1. The information about these two battery types are obtained from [19].

2.5.2 Flywheel
A flywheel is a mechanical device which stores energy in a rotating mass. It stores kinetic
energy. The amount of energy stored is proportional to the rotating speed. The losses of the
device are mainly frictional. This storage is used for delivering very short-term energy and it
has a very fast response time. An application can be to balance the frequency in a power system.
The energy from a flywheel is generated from and to electricity by a motor/generator.

2.5.3 Energy Storage Terms
When dealing with energy storage, and especially batteries, some terms are useful to know. In
this section, some of those terms will be explained.

State of Charge (SOC)
The state of charge describes at which level (in present) the battery is charged. In other words,
how full the battery is. 0 % means that the battery is empty and 100 % means that the battery is
full.

Depth of Discharge (DOD)
The depth of discharge describes at which level (in present) the battery is discharged, i.e., how
empty. 100 % means that the battery is empty and 0 % means that the battery is full. It can be
noted that SOC and DOD are opposite terms of the same measure.

Maximum Depth of Discharge (MDOD)
For some batteries “deep discharge”, which is discharging the battery to 0 %, may be harmful.
An example is that lithium-ion batteries typically should only be discharged up to around 80
% before reaching a potentially damaging state [19]. To prevent deep discharge in these Li-ion
batteries a battery management system is often included. Unfortunately, some external factors
can limit the capacity of a storage unit, where the temperature is the most significant factor. For
batteries like lead-acid batteries, the maximum depth of discharge will decrease if temperatures
decrease. This means that the usable capacity of the battery is decreased. There is an ideal
operating temperature for batteries. This is where they are most efficient. For lead-acid this the
recommended operating temperature is 10-25°C. For Li-ion batteries this is the optimum op-
erating temperatures are typically 15-30°C [19]. It is the chemical reactions inside the battery
that has a great relationship with the temperature, and it is the chemical reactions that decide
the ratings of the battery. This is important to remember when deciding the size of the storage
unit. It may not be able to use all its nominal power because of an internal or external factor. It
is therefore important to distinguish between the nominal capacity of a battery and the usable

16



2.5 Energy Storage System

capacity of the battery. To cope with this problem the nominal capacity of the battery can be
increased.

Charge Cycle
A charge cycle is a process of completely charging and discharging a rechargeable battery. This
term is used to describe how many times a battery can charge and discharge, and is connected
to the lifetime of the battery. One cycle often means to drain the battery completely and then
charge it fully up, but this can be two half cycles.

Degradation
A battery will over the course of its lifetime degrade. This degradation could lead to lower
energy capacity, power output and efficiency. The implications of this degradation influence
the return on the investment or can represent a cost called degradation cost. The degradation
will vary according to how the battery is used, and factors that drive this includes temperature,
current- and power-rate, average state of charge and depth of discharge. Note that other storage
units could also have this degradation, but it is mostly common for batteries.

2.5.4 Converters
An important device in an energy storage system is the converter. This device is the link between
the storage unit and the outside system that can be the grid (AC system), a private household
or a DC system. The converter can provide the needed voltage, frequency and/or correct cur-
rent form, DC or AC, for each connected system. Both the storage unit and the outside system
will have requirements for these parameters. This could be as simple as changing the voltage
of AC power just like a transformer, but specialised converters can also handle more complex
scenarios. Since the converter is the link between the storage unit and the outside system and
has limitations for both power input and output, this device could potentially create a bottle-
neck. Usually, they are rated by their maximum output level. It is therefore important to use
a converter that is scaled for the wished outcome of the system. An additional problem is that
the efficiency of the converter also can vary and depend on the output power. This can create a
non-linear situation.

2.5.5 Storage Unit and Converter Sizing
When planning an energy storage system, two of the main components are the storage unit and
the converter. Choosing the right size for these two components are critical to achieving the
wanted function of the system. When discussing the size of these two components it is the
capacity of the storage unit and the power transfer capacity of the converter that is the focus.
This could be called the power:energy ratio and limits the flexibility in the system and the
duration of the output/input power flow. The dimension and ratio between these two limitations
must fit the wanted purpose of the energy storage system. To take an example, to contribute to
frequency regulation in the grid it is needed a high flow of power in short time periods. When
scaling a storage system for this purpose, the capacity of the storage unit can be small, but the
converter must have a high rated power. In the case of a storage unit that should be used in load
balancing, higher storage capacity is needed so it can store enough energy in off-peak-hours
and discharge energy throughout the duration of the peak-hours. Then, the converter needs to
be sized accordingly to cover the wanted parts of the peak-hour demand.
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2.5.6 Seasonal Impact on Storage Technology
As discussed in Section 2.5.3, the temperature has an effect on the storage units. The conse-
quence of this is that the units may behave differently in the winter compared to the summer.
Batteries function best at normal room temperature, around 20 °C. High temperatures negatively
affect a battery, often with a shorter lifetime, while cold temperatures will typically reduce the
capacity and performance of the battery. With this in mind, it can be important to ensure an
acceptable temperature range when installing a storage unit, such as a battery, in the grid. This
unit will often be affected by weather and climate, and its ratings may not be optimal if not the
right conditions are ensured. This could be done by protecting the storage unit from the weather
conditions and installing temperature sensors to keep track of the operating conditions.

2.5.7 Seasonal and Weekly Variation
All the electricity that goes through the storage unit originates from charging and discharging
the unit. When the unit is charged or discharged is based on prices and power availability from
the wind turbine. In conventional hydropower, which the model used in this thesis is built on,
it is the weather that causes the ”charging” of the reservoir. Therefore, strong seasonal varia-
tions are common and the reservoir usually experience ”charging” (filling) in the summer and
”discharging” (depletion) in the winter. For an energy storage unit in connection with the grid
and wind power, there are other criteria for when the storage unit should charge and discharge.
An example is that the storage unit should store energy when there is cheap electricity, and use
energy when the electricity price is high. Since the energy system modelled and described in
this thesis experience significant weekly and hourly price and wind variations, it makes sense to
do short-term scheduling. This section will explore these weekly variations and also point out
some of the seasonal variations that can occur.

From the Norwegian load pattern, discussed in Section 2.4, it was shown that the consumers
typically have peak-hours in the morning and the evening during weekdays. In the weekend,
the load pattern is flatter and the peak-hours have smaller amplitude. This ”weekend” pattern
is similar to the load pattern in holidays. In other words, there are strong variations over the
course of a week, from hour to hour and from night to day. The seasonal load variation will
in simple terms affect the amplitude and not behaviour. The same load curve shape is seen
in the summer and winter. The difference is that in the winter there is higher demand caused
by heating needs. To compare this to a hydropower model, the changes cannot be seen from
hour to hour, or day to day, so it makes more sense to do a scheduling model over a long pe-
riod such as a year. The load pattern is heavily reflected in energy prices. The energy price,
and to some degree the reserve capacity price, have thus strong weekly patterns. When creating
the price input data used in the model it is very important that this weekly pattern is represented.

If the energy storage is connected to an unregulated power source, seasonal weather changes
will have an impact on the behaviour of the system. An example could be in a wind power plant
in connection with a storage unit in Norway. In this energy system, the wind turbines will not
produce as much electricity in the summer because of seasonal variation in the wind speed. This
may cause the battery to buy more electricity from the grid if it should stay operational in this
season, and thus increase the operational cost in the summer season. In other words, if energy
storage and unregulated power sources are combined, the seasonal variations are intensified.
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2.6 Hydropower Scheduling
The optimisation model used in this thesis was created on the basic concepts of long-term hy-
dropower scheduling. Here, the water value concept is used, and this concept is also used in
the model for this thesis. Note that this is referred to as storage values (SV) because this model
operates with a storage unit, not a hydropower plant. This section is based on information from
the compendium in the course ”TET4135 - Energy Systems Planning and Operation” [20] and
literature given in an old course named ”ELK-15 - Hydro Power Scheduling” [21].

Ideally, the operational planning process for hydropower should have been a large integrated
optimisation model that issued the right approach for ongoing operational decisions. However,
because of the complexity and uncertainty of the planning problem, operational scheduling must
be divided into smaller segments. This is to get the right level of detail and at the same time
be able to limit the models so that they do not become too large. Keep in mind that the main
objective behind the hydropower operation scheduling is to maximise the profit. From Figure
2.10 it can be seen that the scheduling is divided into long-term scheduling, seasonal scheduling,
short-term scheduling, and detailed simulation. In this figure every planning segment has stated
its time horizon, the model applied and the output result. The time horizon and information flow
between the levels will vary from a power plant to another power plant. Note that, in relations
to the model described in this thesis, only the long-term scheduling will be described further.

Figure 2.10: The hydropower production scheduling hierarchy [21].

2.6.1 Long-Term Scheduling
The purpose of the long-term scheduling is to ensure a reasonable allocation of resources over
time, with a typical time horizon of 1-5 years. To ensure this, stochastic models for simulation
and optimisation are used. Long-term scheduling is based on meteorological and hydrological
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statistics and other forecasts of decision factors such as power demand, power prices, inflow,
and plans of new facilities that could influence the operation. The detailed picture is left out
since it is necessary to take into account uncertainty, aggregate and big picture descriptions of
the system. The long-term scheduling is divided into two phases: a strategy phase and a simula-
tion phase. Firstly, water values are calculated in the strategy phase. Next, the simulation phase
will simulate the operation scheduling for the system for a given set of years based heavily on
the water values.

Some assumptions are done in these sections discussing hydropower scheduling and water value
method. For practical reasons, only one hydropower plant is taken into consideration, with price
variables assumed known and not affected by the volume produced. The connections or impacts
from other areas or plants are not considered. With this in mind, the optimal water values created
in the strategy phase will only apply for this hydropower plant alone.

2.6.2 Water Value Method
Conceptual
In hydropower production, water is obviously an important resource. Water is often considered
”free”, but for a hydropower plant, the water itself has value since it could be used for power
production. With this value quantified the power plant could schedule their production since it
is possible with a reservoir to choose between producing now at the current prices or store the
water for later production at different prices. This water value is thus an important tool when
scheduling production over a period of time. By definition, the water value is an expression for
the expected marginal value of the energy stored in the reservoirs [21]. This value will become
small if there is much water in the reservoir and there is a risk of spilling. However, when the
water level is low the water value will be high. So, an operational strategy with water value
will minimise the risk of spillage and empty reservoirs. The water value can be considered as a
function of time and reservoir level.

Mathematical Derivation
Assuming a weekly planning period from week t to week T , the expected total operation de-
pendent revenue for this period is K(v, t). This revenue is a function of the reservoir level, v,
and time step t. This is illustrated in Figure 2.11, and the equation for this revenue is given in
Equation 2.1

K(v, t) =
T∑
i=t

R(v, q, i)−Kend(v) = R(v, q, t) +Kend(v, t+ 1) (2.1)

From Equation 2.1 it can be shown that R(v, q, i) is the operation dependant revenue when
moving from time step t to t + 1 and q is the energy of quantity drawn from the reservoir to
produce power. Kend(v) is the value of the remaining water as a function of the reservoir level,
v, at the end of the planning period T . As seen from the equation this is the same as operation
revenue the first week, R(v, q, t), plus the total operation revenue from time step t + 1 to the
end of the period, K(v, t+ 1).

There can be many different revenues from the operation for a given week, (R(v, q, t)). These
will depend on how much energy that is produced from the reservoir, q, in that given week. The
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Figure 2.11: Illustration of the mathematical explanation of the water value [20]. The reservoir level,
time period and the operation dependent revenue is represented on the different axis.

optimal operation is to maximise the total operation revenue K(v, t) regarding to the energy
produced, q, at time step t:

max
q
K(v, t) = max

q
[R(v, q, t) +Kend(v, t+ 1)] (2.2)

To find this optimal value for Equation 2.2, the equation is deviated with respect to the used
water for energy production, q, at time step t, and set to zero. This gives Equation 2.3.

dK
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dqt
+
dK

dqt
=
dR

qt
+

dK

dvt+1

· dvt+1

dqt
=
dR

qt
+

dK

dvt+1

· (−1) = 0 (2.3)

From this equation, the optimal operation for time step t is found:

dR

dqt
=

dK

dvt+1

(2.4)

Where
dR

dqt
is the marginal operation dependant revenue at time step t and

dK

dvt+1

is the marginal

total future operation dependant revenue depending on the reservoir level, v, at time step t+ 1.
This is called the water value at time step t+ 1, (or WV (t+ 1)).

Stochastic Inflow
In a real situation, it is very difficult to predict future inflow. However, the inflow can be repre-
sented in many scenarios with different probability of occurring. Then the inflow is represented
stochastic. The water value needs to reflect on all possible scenarios, and thus reflect uncer-
tainty. Assuming one week of operation and I inflow scenarios with an individual probability,
pi. First, all water values for each reservoir point given the inflow is calculated, (WV (i)).
Then the wanted water value is the sum of these water values multiplied with each weighted
probability, as shown in Equation 2.5.
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WV0 =
I∑
i=1

pi ·WV (i) (2.5)

Backward Dynamic Programming
The method used when doing water value calculations is called backwards dynamic program-
ming. This is a method used to find the initial optimal value and the optimal path to get there
when the end value is known. Thus, when water values are calculated above it is assumed that
the water value for week t+1 is known. In this way, the water value could be calculated at each
time step throughout the whole planning period by beginning at the end of the period and trail-
ing backwards. However, the value at the very end of the planning period must be estimated.
The water value at the beginning and end of the year should be equal and if there is a deviation
the iteration will continue until the wanted precision is reached. So, this is an iterative process
and it is done with stochastic inflows.

2.6.3 Defining Reservoir Segments
As stated in the previous section, the water value method is reliant on the reservoir level. This
value will, in reality, be continuous and can take any values between an empty reservoir and a
full one. However, when modelling this setup, some simplifications must be made. To solve
this, the reservoir is divided into a quantity of segments. Each segment will in this way represent
a given reservoir level. The total number of segments are not fixed and can be defined by the
user. A high number will give good accuracy, but rise the complexity and computation time.
Mathematically, the total number of segments is NR, where n is the given segment. The water
value model can then limit its computation to n ∈ NR points.
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2.7 Scheduling a Short-Term Storage Unit
The model used in this thesis uses short-term scheduling for a storage unit and a wind turbine
when operating in both the energy market and the capacity market. The basis of this model is
highly inspired by the long-term scheduling model described in Section 2.6 and many concepts
explained in that section are used. The model itself is described in detail in Chapter 3. However,
some concepts and notes about the model will be described in this section.

In terms of modelling the energy scheduling, it makes more sense to talk about short-term plan-
ning than long-term which is the planning period in the original long-term scheduling (LTS)
method. This is because of the appearance of short-term variations present in the input data. For
example, the storage unit will experience a variation in usage over the course of a week, mainly
due to demand and price variations discussed in Section 2.5.7. Furthermore, wind production
can experience a vast variation in output over the course of a week because of fluctuating wind
speed. For a hydropower plant that utilises the LTS method, this variation is seasonal, and the
use of a long-term period is therefore reasonable. The short-term planning period for the model
used in this thesis is one week. With this in mind, the method used in short-term scheduling for
this system is the same as for the LTS, only that the time horizon is shorter.

One other small difference from the LTS method is that this model schedule a energy storage
system and thus the marginal cost of stored energy will be referred to as ”Storage Value” (SV).
The reason for this is that there is no water present in this system, so it makes no sense of
describing the marginal value of stored energy as water value which is done in the original
method.

2.7.1 Modelling Optimal End Value of State of Charge
The model considers multiple sequential days or weeks, and must therefore also take into ac-
count the potential of storing energy for future use. In this model, a storage value curve has been
implemented to model the marginal value of stored energy. This method is commonly used in
hydropower modelling and may be an unusual choice when it comes to a short-term planning
period. There are also other ways to include this future potential. An example of deciding the
optimal endpoint is to simply set a required end value for the state of charge at the end of the
decision stage. The main problem with this method is to choose the right end value, which
should be close to the optimal end value.
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2.8 Distributed Generation (DG)
Distributed production is increasingly being implemented in the power system, especially since
the share of renewable energy sources must increase to meet future climate goals. Distributed
generation, hereby referred to as DG, is a collection of technology that enable electricity pro-
duction and storage close to the end-user, often in small-scale. One could say that distributed
generation is electric generation located in the distribution grid. There are multiple benefits with
DG. In many situations, this technology can produce electricity at both lower cost and fewer
environmental consequences than the traditional power supply. This is because the technology
often uses renewable power sources. The power production with these sources are unregulated
and can thus have low power security. This problem can be solved by combining these genera-
tion units with an energy storage system. In this way, higher power reliability can be ensured.
The trend is to shift from a few large-scale power plants located far from the costumers to DG
systems that consist of numerous small plants or generators. Figure 2.12 illustrate this power
system transition.

The individual technologies used for distributed generation is often referred to as a distributed
energy resource (DER). This includes both small-scale power generation and storage technolo-
gies. Examples of such technology can be a diesel generator, fuel cells, photovoltaics (solar)
power systems and wind power systems. The DG technologies typically have a power genera-
tion capacity that ranges from one kilowatt to about 100 MW [22]. To compare this to the utility
plants, they often have a power capacity above 1 000 MW. In this section, the focus will be on
wind power and how to model that renewable power source.

Figure 2.12: An illustration of the traditional power system and the smart power system with DG [22].

2.8.1 Wind Power

Wind power is harnessing the kinetic power in the wind into electricity. This is done by having
wind turbines that transform the kinetic wind energy into rotational energy. This rotational en-
ergy is furthermore converted into electrical energy by a generator. To produce enough energy,
it is often required a number of wind turbines. Their maximum possible efficiency based on the
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wind energy is 59.3 % (Betz limit), but the more common efficiency of a wind turbine is around
40 % [22]. Suitable places are often coastal areas, plains or on high ground such as mountains
with little obstruction of the wind. Thus, placement is one of the key challenges with wind
turbines. The downside of wind power is that it has some significant environmental problems
such as noise, aesthetics, and interactions with animals such as birds.

Wind power, which offers a stochastic, variable distributed generation is an unregulated power
source and therefore introduces some challenges. For example, there could be high power
production when there is a surplus in the market and low production when power is needed.
There could occur stability issues when introducing much wind power. Fluctuations in wind
power production also make it challenging for owners of wind power plants to compete in
electricity markets. Because of these challenges, the maximum implementation of wind power
in electricity networks could be limited. Flexible distributed energy resources, such as energy
storage systems, could offer levelling of wind power because of the ability to store energy over
time. This could provide the necessary flexibility and help to solve some of these challenges.
Both technical issues and market operation could be improved. Furthermore, many potential
wind power sites are located in areas with a weak electrical connection point. Hence, energy
storage could provide an alternative to grid reinforcements.

Wind Power Output

The theoretical power output from the wind energy by the wind turbine is given by:

Pwind =
1

2
· ρ · Aw · Cp · v3 (2.6)

As seen from Equation 2.6 the power output, Pwind, given in watt, for a wind turbine depends
on many parameters. Some of the parameters depends on natural conditions at the specific
site which make them uncertain and variable, such as the wind speed, v, in [m/s] and to some
degree, ρ, which is the air density given in [kg/m3]. Other parameters are defined by the man-
ufacturer and the given wind turbine. These include Aw which is the area swept by the rotor
blade [m2] and Cp which is the power coefficient of the given wind turbine. The power coef-
ficient is in turn decided by variables such as the tip speed ratio and the pitch angle of the turbine.

When considering the effects of all the influencing parameters to get the proper power output of
a wind turbine, the problem can become very complex. Hence, it could be difficult to calculate
the output power using the theoretical Equation 2.6. Another way to solve this is to use a power
curve which is given for a particular wind turbine. The power curve gives the output power
of the turbine at a specific wind speed. This provides a useful tool to model the performance
and power output of wind turbines. A typical power curve for a pitch regulated wind turbine is
shown in Figure 2.13.

In the first region in Figure 2.13 there is no power production. The wind speed is below the
minimum speed required to produce any energy. When the speed reaches the cut-in speed
the wind turbine start producing energy, this is the threshold minimum for the wind turbine.
Then, in region two there is a steep growth in power production. When the wind speed reaches
the rated wind speed value, the wind turbine could produce the rated maximum power. A
power production beyond this rated maximum cannot be achieved. Therefore, in region three
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a constant power output is produced until the cut-off speed is reached. When the cut-off wind
speed is attained in region four, the turbine is shut down to protect its components from the high
wind speeds. Thus, it produces zero power in region four.

Figure 2.13: Typical power curve of a pitch regulated wind turbine [23].

Typically, in normal operations, the objective of a wind turbine is to maximise its power pro-
duction. The wind turbine would then operate on the power curve slope based on the given
wind speed. However, wind turbines in a wind farm are often restricted or down-regulated to
stabilise the power grid or improve the efficiency of the wind farm [24]. This down-regulation
could be obtained by adjusting the turbine control input, namely the generator torque and the
blade pitch [24]. Therefore, the wind speed sets the limit for maximum power production, but
the real output power for the wind turbine could be controlled by an operator or control system.

Figure 2.14: Difference in frequency distributions of wind power production for the Nordic and Norway
in the four seasons [25].

In terms of production, wind power is also affected by the season. In Central and Northern
Europe, there is a distinct seasonal variation with most wind in winter, and least wind in summer.
The production during the summer months is around 60%–80% of the yearly average, while the
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production during the winter months can reach 110%–150% of the yearly average, according to
data for the years 2000–2002 [25]. During spring and autumn, the production is somewhere in
between. This is highly relevant for the Nordic countries and Norway as well and is illustrated
by the frequency distributions for the four seasons presented in Figure 2.14.

Wind Power Sizing

Wind power could be easy to implement as distributed generation since wind turbines can be
bought in multiple sizes after the specific need. However, in terms of wind power in combina-
tion with energy storage, these two components need to cooperate and complement each other.
Both the capacity size of the storage unit and wind turbine must be chosen to meet possible
challenges in the system, such as bottleneck. Various sizes can be tested to find the most ben-
eficial size given the limits in the system. However, when there is a high mismatch between
low installed storage capacity and a high power rating for the wind turbine it would mean that
the storage capacity is utilised very quickly when the wind turbine produces at maximum. On
the other hand, a high installed storage capacity versus a low power rating for the wind turbine
will suggest that not all the energy storage capacity is utilised. Both of these scenarios are not
economically beneficial.

When examining similar models in other publications, it could be found that in reference [26]
the storage capacity tested was significantly larger than the rated power of the wind turbine.
However, the power rating was more in line with the maximum charge/discharge capacity of
the storage unit and the maximum exchange with the grid. It should be noted that in this case
study a load had to be covered by the wind turbine and storage unit and a dump-load for excess
power was implemented. The size of the wind turbine was thus chosen to be in the same range
as the transfer capacity in the system so that the load is covered and the dump-load is used as
little as possible. In the model in this thesis, no load or dump-load are included. Therefore,
the power produced by the wind turbine must be exported to the grid or stored in the storage
unit. An excessively large wind turbine will thus create excess power since the bottlenecks
towards the storage unit and towards the grid do not have the capacity to transfer all the energy
generated. On the other hand, a too small wind turbine will not have a significant effect on the
system since it often does not produce at its maximum. To summarise, it makes the most sense
to have a wind turbine that corresponds to the size of the bottlenecks against the storage unit
and the grid. The size of the energy storage unit may well be considerably larger, but at one
point the bottleneck towards the storage unit makes sure that an increase in storage capacity is
redundant.

2.8.2 Wind Power Modelling
The main goal of the implementation of wind power in the model used in this thesis is not to
model wind power in a very technical manner, it is to study the impact from an unregulated
power source on the already existing storage model. The model has an economic objective as it
participates in two markets to obtain maximum profit. In that sense, the most important part of
the implementation of wind power is to model the power source such that it will contribute with
a stochastic and variable flow of power into the system. Therefore, the main implementation
focus is the uncertain power flow, which may have different values in separate time steps. An-
other way to look at the wind power implementation is that the wind turbine is a black box. This
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box then produces a variable and uncertain power flow based on wind speed and the physical
and technical elements inside the box are not considered. While not explicitly stated, this is the
approach done in similar publications such as [26] and [9].

In both [26] and [9] a wind turbine is included in the model with a power flow that is based on
the power curve output with an associated time series for wind speed. These publications have
an economic objective of energy storage scheduling and thus have implemented wind power
with a focus on the power flow it provides into the system. In [9], the stochasticity and uncer-
tainty of the wind speed plays a great role in modelling, while in [26] there are other focuses.
Power flow from a wind turbine based on various and continuous wind speeds is also modelled
into an energy storage system with connections to the grid in [6].

Based on solutions found in the literature and mentioned above, the wind power flow is mod-
elled with a power curve approach in this thesis. The power curve data is often given in power
output points given specific wind speeds. Then, a continuous power curve is created in a sim-
plified way by linearise between the points. In this way, the power curve becomes a piecewise
linear curve. This is a simple and common way to model a power curve [23]. The power curve
is divided into segments based on wind speeds and the coherent power output value is linearised
value between those segments. An example: if the power curve segments state that the power
output is 80 % with a wind speed of 12 m/s and 20 % with a wind speed of 8 m/s, the power
output at 10 m/s is 50 %.

The wind speed data itself could be the input data used in the model, however, to avoid making
the model too complicated the input data can be the wind power output. In that case, the wind
speed data must be converter to power output data, e.g. with the help of a power curve. In the
publication mentioned above the wind speed are the input data, but in this thesis, the use of wind
power output data in per unit as input data is the approach chosen. However, the approaches
are very much the same, only that using the power output data the wind speed data is converted
beforehand. It is still the wind speed data that is the foundation for this input data.

Furthermore, schematically the wind power should be integrated on the AC-side of the converter
in the storage system. This is because the output power for a wind turbine is AC. Also, this is
the methodology used in the literature found, e.g. [6]. The power from the wind turbine could
then be stored in the energy storage unit or sold to the grid. This could potentially happen in the
same timestep, with some of the wind power being stored while some are being sold. To avoid
that all the wind power is being sold in the model, there should be a transfer limit on the gird
connection. In this way, a weak grid connection is implemented into the model, which is a real
problem with wind power installations in rural areas as discussed in Section 2.8.1.
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2.9 Assumptions and Uncertainties
Even though this model of an energy storage system with wind power strives to simulate real-
istic behaviour, some assumptions must be made and some uncertainty is bound to arise. This
applies for close to all models, also the hydropower model, since perfect modelling is almost
impossible to achieve. However, the model can still be relevant and realistic as long as these
potential weaknesses are been made aware of. This section will thus cover some uncertainties
and assumptions that are made in this model.

2.9.1 Input Data, Wind Data and Price Data
To create reliable behaviour and realistic results it is important to have precise, decent, and
consistent input data for the whole scheduling process. If the model should produce accurate
reactions and decisions of what one could expect, it is very important with detailed data of what
the system is exposed to. To solve this in the best way possible, the stochastic input data is based
on historical data. This data could include both extreme scenarios and more likely scenarios,
but will depend on what historical data set that is used. In this way, the model could be tested in
many possible scenarios. Yet, it is not desirable to analyse too many scenarios, so to make this
comprehensible the data input is divided into a defined number of discrete stochastic variables
that represent the possible scenarios that can occur at the given stage. Some of these variables
could be extreme points, but their impact will be based on the given probability for that specific
scenario. In this way, all historically possible scenarios could be included and then weighted
after their probability.

Historical price data from the markets are used in this model. When using such price data, the
user is not aware of the time of bidding. This represents uncertainty. Furthermore, one must
assume that the participation of the wind and storage system will not influence the prices. In
other words, the prices are fixed, and the markets can be considered inelastic. The price data is
used in the model for every decision stage and is at that point known. However, the stages of
the future decision are still unknown, so if one is scheduling for Tuesday the prices and wind
production on Wednesday are still kept unknown. It can also be added that the price and wind
data must be extracted into multiple discrete stochastic variables. These are named wind and
price nodes in this model and thesis.

The wind input data is chosen to be presented in power production output given in per unit of the
wind turbine rating, but it is essentially given by the wind speed data. While the historical price
data is often presented in an hourly way because of the bidding process, the wind production
data is a more continuous data set in reality. This is because the wind speed which dictates the
power output is a continuous element and can vary within each hour. However, an hourly time
series is not uncommon for wind data either. Such hourly based data is used in this model and
simplifies the conversion into wind and price nodes since the standard way of scheduling in the
model is also on an hourly basis.

2.9.2 Wind and Price Node Probability
Each of the wind and price nodes in a decision stage, created with the historical data, has a
specific probability of occurring. This is the basis of the stochastic model. The challenge is to
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find solid and reliable probabilities for each wind and price node. The future nodes are usually
dependent on the decisions and previous nodes. This challenge is maybe even more difficult
for backward dynamic programming since the previous stage is never determined before the
current stages.

To solve this in a simple way, it is assumed that the historical data sets have a normal distribu-
tion. This will allow for the simple creation of nodes based on the mean value of the data set
and the standard deviation. When using this method, it can be assumed that 68 % of the data is
within one standard deviation of the mean, 95 % of the data is within two standard deviations of
the mean, and so on. This is illustrated in Figure 2.15. This approach simplifies the creation of
probability data since it can be modelled by using the probabilities in the normal distribution.

Figure 2.15: The normal distribution curve [27].

It should be mentioned that this is not a perfect setup, but adequate since the main focus of this
thesis is not to create a probability model, but to study the behaviour, performance and decision
making of the model. A better way of model this probability could be by using a Markov Chain,
which is a mathematical system that experiences transitions from one state to another according
to certain probabilistic rules [28]. This system allows future probability decisions to be made
regardless of the decisions made in the past.

2.9.3 Modelling Piecewise Linear Curves
When implementing the storage values in the optimisation model this is done with piecewise
linear curves and by using so called SOS2 variables to generate a piecewise linear approxima-
tion. The method involves taking the non-linear curve and divide it into discrete points where
each point has a specific performance. Then, there are drawn lines between the individual point
to create a curve. In this way, the non-linear curve becomes piecewise linear. It is the lines
between the discrete points that are modelled with SOS2 variables. These require that no more
than two neighbouring points have a non-zero value of their SOS2 variables and that they equal
1 when summed up. So, if the wanted point is between two discrete points, the value is found
by doing a linearisation of the adjacent discrete points. The benefit of such a method is that
a non-linear curve could be integrated into the model in a decent approximation. However,
this could potentially increase the computation time, especially when there is a high number of
discrete points.
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In this chapter, the model used in this thesis will be explained in detail. This includes the struc-
ture of the system and how the model works in whole, and in its two phases, to provide energy
storage scheduling with distributed generation included. The chapter includes an explanation
of the optimisation problem which is the underlying problem in both phases and the core of the
model. It will describe its structure, but also discuss the motivation behind some of the choices
made and some of the different options within. Also, an explanation of the algorithm in the two
phases could be found in Section 3.2 and Section 3.3.

The basis for the model used and studied in this thesis is an optimisation model made by Kasper
Emil Thorvaldsen for his master’s thesis at NTNU in 2018 [2]. The main difference in these two
models is that the original model did not include a form of distributed generation. The inspira-
tion for the original model is gathered from hydropower scheduling in the energy and reserve
markets. The inspiration for the extension with unregulated power generation is gathered from
literature found in similar literature. This theory is discussed in Section 2.8.

The model in this thesis is made to study the performance of an energy system consisting of a
storage unit and a wind turbine which operates in both the energy market and the reserve capac-
ity market. It is a short-term stochastic model that can be characterised as both multi-scenario
and multi-stage. Since the system scheduled contain uncertainty in energy prices and power
generation, stochasticity has been included in the model. This model is made with Pyomo in
Python.

The model is divided into two different phases. The motivation behind the two-phased ap-
proach is based on models used in long-term hydropower scheduling, which are described in
Section 2.6. The first phase is the strategy phase, where a strategy for storage unit scheduling
is conceived through the creation of the storage values. The storage value can be defined as
the marginal cost of storing one more kWh of energy in the storage unit, which means it is a
marginal opportunity value. It is these values that are the criteria used in the scheduling strat-
egy and they are created by using Stochastic Dynamic Programming (SDP). A storage value is
calculated for each possible scenario based on the energy prices and power production and then
weighed with a stochastic probability. When the SDP-phase is complete, and the storage values
are obtained, the second phases can begin. The second phase is the simulation phase. Here, the
storage values are included to simulate the performance of the storage unit for numerous possi-
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Figure 3.1: A general overview of the model as a whole and its two steps.

ble scenarios. By doing this, the system behaviour for various stochastic scenarios is simulated
with the optimal strategy given in these storage values. The general overview of the model and
the two phases are illustrated in Figure 3.1. It is important to note that the strategy phase needs
to be completed first to obtain the storage values since the simulation phase is dependant on
these values. In that sense, this is a process with two steps. Each phase uses the optimisation
problem described in Section 3.1 for computation.

As discussed in the paragraph above, the output values for the strategy phase is storage values
for a given model setup. The output values for the simulation phase, and hence when the entire
model has been operated, are the optimal values for the variables in the optimisation problem
for a given scenario. This includes, among other things, the optimal charging and discharging
of the storage unit in each time step and the optimal power flow to and from the grid in each
time step. In general, these output values illustrate the optimal power flow in the system as well
as the optimal trade in the two markets for each time step. Thus, the resulting profit values in
the markets are obtained in this phase.
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3.1 Optimisation Problem
The optimisation problem is the most central part of the model. The optimisation problem is
used in both phases, strategy phase and simulation phase. An abstract optimisation problem is
created in ”Model setup” in Figure 3.1. This abstract model goes into use in the next phases
when it creates multiple individual instances of the optimisation problem based on the input
data and different scenarios. In the strategy phase, the problem is used to find the storage values
and in the simulation phase, it is used to simulate a given set of situations with storage values.
Since the optimisation problem is the main part of the model itself, this section will focus on
explaining the problem and its functions. Section 3.1.1 will give a general overview of the
problem and clarify the system it should represent. Section 3.1.2 to Section 3.1.4 explain the
problem structure in its objective function and constraints.

Note that the whole overview of the model formulation is found in Appendix A. However, a
presentation of the main aspects of the optimisation problem is described here in this section.

3.1.1 General overview

Figure 3.2: A sketch of the layout of the storage system with wind production used in the optimisation
problem. Note that the storage unit does not need to be a battery.

Figure 3.2 illustrates the system represented by the optimisation problem. It is a single energy
storage unit in connection with a wind turbine and the grid via a converter. The storage unit does
not necessarily need to be a battery as shown in Figure 3.2, but are used for visual purposes.
However, a battery could be a good option for a grid connected storage unit, as discussed in
Section 2.5. A battery is also a viable option of energy storage in connection with unregulated
generation such as wind power.
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The energy system is considered placed in a rural area with limited transmission capacity to the
grid. This creates two potential bottlenecks in the system, in the converter and in the connection
to the grid. Both of these limitations will create constraints in the optimisation problem. Since
the storage unit is considered to store energy over potentially several hours, the power:energy
ratio of the storage system is regarded low. The power capacity of the chosen converter will
thus create a bottleneck to and from the storage unit because of this low power:energy ratio.
The power can flow in both directions through the converter as well as to and from the grid.
When power passes through the converter it charges or discharges the storage unit. When the
power flows through the converter, it will become affected by the converter efficiency. Thus,
the level of power going into the converter is not the same as the level of power coming out of
the converter. This can be explained from Figure 3.2 in the way that the orange power flows at
the power grid side will not have the same values as the green power flows at the storage unit
side.

The power flow from the wind turbine could either be stored, pwind,store, or be sold to the grid,
pwind,transf . Thus, the power sold to the grid, ps, is the sum of the sold wind power, pwind,transf ,
and the power from the storage unit affected by the converter, pout,conv. In the same way, the
power going into the converter, and then the storage unit, is the sum of the power bought from
the grid, pb, and the stored wind power, pwind,store. There is no limit on the wind power other
than set by the production premises and power rating of the turbine. Note that the power from
the wind turbine will vary and be unpredictable. When passing through the converter, the input
power, pin,conv, will be affected by the efficiency, ηcha, and become the power flow that charges
the storage unit, pin,batt. The same process happens when discharging. The output power from
the storage unit, pout,batt, gets influenced by the discharging efficiency, ηdcha, and become the
output power which is being sold, pout,conv. This can be summed up in these equations:

pin,batt = ηcha · pin,conv

pout,conv = ηdcha · pout,batt

The main purpose of the optimisation problem is that it will determine the optimal power flow,
i.e. how much power flowing in and out of the storage unit and how much power bought and
sold to the market. This is calculated in time steps that are defined by the user. In this way, there
is calculated an optimal power flow for each time step, t, in the total number of time steps, TS,
i.e. for t ∈ TS. It is assumed hourly time steps in this thesis.

3.1.2 Objective Function
The objective of the optimisation problem is to try to maximise its total profit from the storage
system and wind turbine. This is achieved when the system operates in the markets, and simul-
taneous utilise the accessible wind power, in an ideal way. In the model, this is accomplished
by maximising the objective function, which can be found in the Equations A.1 to A.5 in the
Appendix A. Also, the objective function is repeated on the next page.
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OBJ =
∑
t∈TS

Eprice,t · pft · Tt (A.1)

+
∑
t∈TS

Cprice,t · capt · Tt (A.2)

−
∑
t∈TS

Aprice,t · partt · Tt (A.3)

+
∑
t∈TS

Shedvalue,t · pwind,shedt · Tt (A.4)

+SV +DV al (A.5)

Equation A.1 is the total profit from the energy market. Here the energy price in time step t
is multiplied with the net power traded in t and the length of time step t. The same goes for
Equation A.2 which refers to the total profit from the capacity market. Therefore, it is the price
of reserve capacity multiplied with the capacity traded and the length of the time step, all in
time step t. Note that the energy profit in Equation A.1 can be negative in some time steps. This
is because when the system participates in the energy market it exploits the price difference that
occurs over the planning period. Therefore, the profit can in some time steps become negative if
purchasing power for later stages. Equation A.2 can never be negative because the power traded
in the reserve capacity market, capt, is never negative. The variable operates with only positive
values since the system either sells reserve capacity, or it does not.

The only negative part of the objective function is Equation A.3. This represents the penalty
cost of storing power in the storage unit that can be considered artificial. Since this part of the
objective function reduces its maximum potential, the artificial power bought in a given time
step, partt , is only utilised when absolutely necessary. It should not normally occur and is used
more as a fail-safe in the model. There has been added a small value for shedding wind power.
This is shown in Equation A.4. The power shedded in time step t is represented in pwind,shedt ,
and the parameter Shedvalue,t is the value or reward for that shedded power. This is included to
prevent the model from discarding excess power in the converter and instead reduce the wind
power going into the system, pwindt . Therefore, to give the model an incentive to shed the excess
power a small reward was introduced. Note that the value for shedding is set so low that it
will not have an impact on the results. Equation A.5 includes the value of the remaining stored
energy in the storage unit and therefore the future profit. In total, all these equations represent
the total net profit of the energy storage system.

3.1.3 Variables

All the variables in the model can be found in appendix A, but since they are frequently used in
the optimisation problem explanation in this section, they are also presented here. Note that it
is only the continuous variables that are included in this section, not the other variables.
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pin,battt =
The power charged into the storage unit on the storage unit side of the
converter in time step t (energy stored in unit) [MW].

pout,battt =
The power discharged from the storage unit on the storage unit side
of the converter in time step t (energy released from unit) [MW].

pin,convt =
Power flow into the converter on the grid side in time step t
(energy intended to be stored) [MW]

pout,convt =
Power flow out of the converter on the grid side in time step t
(energy to be sold from the storage) [MW]

pbt =
The power bought from the grid on the grid side in time step t
(Power going into the system from the grid) [MW].

pst =
The power sold to the grid on the grid side in time step t
(Power going into the grid from the system) [MW].

pft = The net power exchange to the grid in time step t [MW].
capt = The reserve capacity sold in time step t [MW].
partt = The artificial power bought in time step t [MW]

SV =
The energy storage value in the storage unit at the end of the decision
stage [NOK].

pwindt = The total power flow from the wind turbine going into the system in time step t [MW]
pwind,storet = The power flow from the wind turbine which is stored in time step t [MW]

pwind,transft =
The power flow from the wind turbine which is transferred to the grid in
time step t [MW]

pwind,shedt = The power shed from the wind turbine in time step t [MW]
soct = The state of charge for the storage unit at the end of time step t [p.u.].

3.1.4 Constraints
To get a realistic behaviour and accurate decision making in the storage and wind system, it is
important that relevant constraints are implemented in the model and that they are expressed
correctly. This section will explore the different constraints that exist in the model.

Constraints for the Energy Storage Unit

The energy storage unit considered in this model is ideal. This means that the storage unit has
no losses and it does not have an efficiency related to storing and discharging electricity. Thus,
no constraints to express the power loss in the storage unit have been included. However, when
modelling this storage unit other constraints are needed.

The storage unit needs an initial balance in the first time step. This is created in Equation A.6
which ensures that the storage level at the end of the first time step is equal to the initial storage
level and the energy stored and discharged during that time step. In this equation, the parameter
T is the length of the given time step and the parameter BMAX is the maximum capacity of the
storage unit.

soc0 ·BMAX − pin,batt0 · T0 + pout,batt0 · T0 − part0 · T0 = SOCStart ·BMAX (A.6)

Equation A.7 ensures the energy balance in the storage unit for the rest of the time steps. It
makes sure that the storage level the start of the time step plus the energy stored and minus the
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energy discharged during the time step, must be equal to the energy at the end of the time step.

soct−1 ·BMAX+pin,battt ·Tt−pout,battt ·Tt+partt ·Tt = soct ·BMAX , t ∈ TS\[ord(t) > 0] (A.7)

The variable for artificial power, partt , is included in Equation A.6 and A.7. As mentioned ear-
lier, this artificial power source is not used if not utterly needed, because it is implemented in a
costly way in the objective function.

As discussed in Section 2.5.3 some storage units have a maximum depth of dispatch. This is
also implemented into this model with the use of the parameter MDOD in Equation A.8. This
constraint sets the state of charge in a given time step to be less or equal to the maximum depth
of dispatch of the storage unit.

(1−MDOD) ≤ soct ≤ 1 , t ∈ TS (A.8)

Constraints for the Converter

The converter’s purpose is to be the link between the DC power side and the AC power side.
The storage unit is connected to the DC side and the power grid and wind turbine are connected
on the AC side. All power flowing in and out of the storage unit must go through the converter.
However, the converter has a rating for maximum power transfer. This capacity value can be
different for charging and discharging, or it can be the same values. Equation A.16 and A.18
shows these constraints. Here, the parameter Pmax

dch is the maximum power transfer through the
converter during discharge of the storage unit. In the same way, Pmax

ch is the maximum power
transfer through the converter during charging. Note that there is no limit on the amount of
power going out of the storage unit or power that comes into the converter from the grid side.
The reason for this is that these power flows has not interacted with the converter yet and thus
not affected by the transfer limit. The constraints for this can be seen in the equations A.15 and
A.17 in the appendix.

0 ≤ pout,convt ≤ Pmax
dch (A.16)

0 ≤ pin,battt ≤ Pmax
ch (A.18)

In contrast to the storage unit, the converter has an efficiency that represents losses. The quantity
of power going into the convert is not the same as the quantity of power going out. In this
model, the converter efficiency can either be represented by non-linear efficiency curves with
varying efficiency output affected by the given power level or it can be constant. A constant
efficiency has been chosen in this thesis because it reduces complexity. However, the non-
linear representation can be found in the appendix. The constant converter efficiency has been
included in the model through Constraint A.19 and A.22. These equations show how the power
flows between the converter and storage unit are affected by this constant efficiency.

pin,battt · Tt = ηch · pin,convt · Tt , t ∈ TS (A.19)

pout,convt · Tt = ηdch · pout,battt · Tt , t ∈ TS (A.22)
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Constraints for the Power Grid

Through the connection with the grid, the wind and storage system can buy and sell power. To
simplify power traded with the grid, one constraint has been made to collect the power sold
and bought into one variable, pft . This is the net power transfer to the grid. The constraint in
Equation A.9 ensures this net balance in the given time step t.

pft · Tt = pst · Tt − pbt · Tt , t ∈ TS (A.9)

There is a transfer capacity in the connection with the grid. This is a situation that could occur
in rural places with wind power, as discussed in 2.8.1. When implementing this in the optimi-
sation problem, the net power flow to and from the grid needs to be within the transfer limit,
P transf,MAX . This net power flow is defined by the sold and bought power in Equation A.9.
The constraint that limits the net power transfer is illustrated in Equation A.12. Note that the
variables for bought and sold power also must be within the limits of the transfer capacity as
shown in Equation A.13 and A.14.

− P transf,MAX ≤ pft ≤ P transf,MAX (A.12)

0 ≤ pst ≤ P transf,MAX (A.13)

0 ≤ pbt ≤ P transf,MAX (A.14)

Constraints for Power Flows in the System

In the system containing both a storage unit and a wind turbine, there are a handful of power
flows. It is important that these power flows are balanced to each other and interact deliberately.
The power that is sold can either come from the wind turbine and/or the storage unit. Thus,
Equation A.10 is a constraint that defines the variable for net power sold, pst , by the variables
for power from the wind turbine and power from the storage unit. In a similar way, the power
flow into the converter can come from the wind turbine and/or the grid. Equation A.11 is
therefore a constraint that define the variable for net power going into the converter on the grid
side, pin,convt . This power flow is made up by the power from the wind turbine and the bought
power from the grid.

pst · Tt = pout,convt · Tt + pwind,transft · Tt , t ∈ TS (A.10)

pin,convt · Tt = pbt · Tt + pwind,storet · Tt , t ∈ TS (A.11)

Constraints for the Reserve Capacity

When selling reserve capacity, it includes flexibility in both directions, up-regulation as well as
down-regulation. In other words, if selling a reserve capacity of 1 MW, the unit must be able to
provide both 1 MW increase and 1 MW decrease in the power output. There are mainly three
limiting factors to the quantity of reserve capacity that can be provided: the converter, the power
grid connection and the storage unit.
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One limitation to the reserve capacity that can be provided is the converter. This is one of two
bottlenecks in the system that limits the reserve capacity. The power flow through the converter
must be restricted to its maximum limit at any time. The sold reserve capacity is therefore
restricted to the available capacity in the converter. In the model this is implemented in the
constraints in Equations A.25 and A.26. This shows the limits of down- and up-regulation of
reserve capacity based on available power decrease/increase in the converter. Note that the ex-
pression inside the parenthesis determines the direction of the power flow through the converter.
Only one of the variables inside the parenthesis should be active in a given time step.

−(pout,convt − pin,convt ) ≥ capt − Pmax
dch (A.25)

−(pout,convt − pin,convt ) ≤ −capt +
Pmax
ch

ηmaxch

(A.26)

In this setup, the parameters Pmax
ch and Pmax

dch is the maximum power output for the converter
during charging and discharging. When charging, the efficiency for the maximum power output,
ηmaxch , must be included, as seen in Constraint A.26. This is because the power must pass through
the converter and thus introduce losses, while in Constraint A.25 this efficiency is already con-
sidered. Since this efficiency is included in the charging constraint, the down-regulation limit
can be slightly higher when seen from the grid side because there will be losses in the converter.

As seen from the Constraints A.26 and A.25 the reserve capacity sold is limited by the power
flow through the converter in time step t. If this is low, the reserve capacity potential is higher
and vice versa. For instance, if it is assumed 1 MW maximum power output from the converter
with an efficiency of 1, and a power flow of 0.4 MW going out of the converter at the given time
step, the potential reserve capacity in that time step is limited to 0.6 MW. The down-regulation
potential is 1.4 MW, but the up-regulation potential is only 0.6 MW, and therefore the up-
regulation potential becomes the dominant constraint for the reserve capacity. The calculations
for this example are shown below:

−0.4 ≥ capt − 1⇒ capt ≤ 0.6 and − 0.4 ≤ −capt +
1

1
⇒ capt ≤ 1.4

The other bottleneck in the system that limits the available reserve capacity is the power transfer
capacity to the grid. This limits the available reserve capacity in the same way as the converter.
The constraints for this limit are shown in Equations A.27 and Equation A.28.

−pft ≥ capt − P transf,MAX (A.27)

−pft ≤ −capt + P transf,MAX (A.28)

The reserve capacity will also be limited by the storage unit. The remaining storage capacity in
a given time step must be large enough to offer both the up- or down-regulation throughout
the entire time step. In simple terms, the storage unit must have energy stored to provide
up-regulation and available storage capacity to provide down-regulation. This is implemented
in two constraints shown in Equations A.29 and A.30. The parameters in these constraints
concerning the storage unit are BMAX which is the maximum capacity and MDOD which is
the maximum depth of dispatch. Also, the parameter for maximum efficiency for charging in
the converter, ηmaxch , and the parameter for minimum efficiency for discharging, ηmindch , are used.
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Both efficiencies are included since the power must pass through the converter when charging
and discharging the storage unit. The minimum power efficiency is taken into account to avoid
the possibility of selling more reserve capacity than the storage unit can deliver to the grid
side. Note that the reserve capacity potential in Constraint A.29 will increase because of the
efficiency losses in the converter.

capt · Tt ≤ (1− soct) ·
BMAX

ηmaxch

, t ∈ TS (A.29)

capt · Tt ≤ (soct − (1−MDOD)) ·BMAX · ηmindch , t ∈ TS (A.30)

Constraints for the Power Markets

For trade in the energy market, the only constraint is the power transfer limit. This restriction is
implemented in Constraint A.12. When within the limits, the profit that can be gained from this
market is exemplified by Equation 3.1. Here, the energy price for a given time step is Eprice,t,
while pft is the net power transfer that was established by Constraint A.9. Note that the profit
can be negative for a given time step if the power transfer is negative. Then power is bought
from the energy market. The optimisation problem will try to maximise this profit from storing
or buying energy when prices are low (low Eprice,t) and selling energy when prices are high
(high Eprice,t).

Eprofit,t = Eprice,t · pft (3.1)

The profit from the reserve capacity market can be calculated in a similar way. This is presented
in Equation 3.2. Here the reserve capacity price for a given time step is Cprice,t, while capt is
the reserve capacity sold in this time step. In contrast to the profit from the energy market, this
value will always be zero or larger. This is because reserve capacity is either sold or not, and
there does not exist an option to buy reserve capacity from other participants.

Cprofit,t = Cprice,t · capt (3.2)

It can be mentioned that the participation in the reserve capacity market will limit the participa-
tion in the energy market because storage capacity in the storage unit must be reserved for up-
and down-regulating and not used. This is also true the other way around. When participating
in the energy market, storage unit capacity is used to store energy and thus cannot be reserved
for use in the reserve capacity market. The model will try to optimise the participation in both
markets so that the total profit is maximised.

When participating in the reserve capacity market the capacity is sold in blocks, as mentioned
in Section 2.3.4. Therefore, the same reserve capacity has to be sold throughout the entire
block period. The length of the period could be one hour or several consecutive hours. This is
implemented in the model with the constraint shown in Equation A.31.

capt = capt−1, t ∈ TS \ [ord(t) > 1, t 6= Rlist
c for c ∈ C] (A.31)

The capacity sold in time step t must be the same as the capacity sold in time step t − 1, as
Constraint A.31 shows. This holds true for all time steps not included in Rlist

c , which is a list
with C inputs and where each input is the start of the next equalised reserve capacity period.
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Constraints for the Storage Value

The optimisation problem will strive to maximise the participation in both the energy market
and the reserve capacity market, but it will also need to consider the value of storing energy
from one decision stage to another. In other words, storing energy in the storage unit for use at
a future decision stage that is not known at this point. This is ensured through the constraint in
Equation A.33. The implementation of this storage value at the end of the decision stage has
been done with piecewise linear approximation.

SV =
NR∑
n=1

δn · SVpts[n, socTS] (A.33)

Constraint A.33 sets the total value of the remaining energy in the storage unit at the end of the
decision stage, which is SV . In this constraint SVpts is a list containing piecewise linear points
of storage values. These values are dependent on the storage level, n. This list of storage values
is created based on possible future scenarios which have been simulated by a stochastic dynamic
programming method. Note that socTS is the storage level at the end of the decision stage and
that the storage level n is a specified storage value contained in the set NR, i.e. n ∈ NR.

NR∑
n=1

δn = 1 , δn ∈ [0, 1] (A.32)

The variable δn is the SOS2-variable related to the end value of stored power at the end of the
decision stage. The constraint in Equation A.32 ensures that the sum of all the SOS2-variables
has the value of 1 in the entire set of storage levels, NR.

Constraints for the Wind Turbine

The power flow from the wind turbine can flow in two different directions in the system. It can
be stored in the storage unit or it can be sold to the grid right away. These two power flows need
to be connected to the total wind power going into the energy system from the wind turbine.
Therefore, it is created a constraint that connects the variable for total utilised wind power from
the wind turbine, pwindt , with the variables for stored wind power and transferred wind power
from the wind turbine. This constraint is showcased in Equation A.34.

pwindt · Tt = pwind,storet · Tt + pwind,transft · Tt , t ∈ TS (A.34)

The maximum produced power from the wind turbine in a given time step is defined by the
power rating of that specific turbine, Pwind,rated, and the power output in that time step. Fur-
thermore, the power output is based on the wind speed in that time step and the turbine’s power
curve. This power output is given in p.u. and are illustrated in the parameter, Pwind,output

t . The
power output takes a value between 0 and 1, where 0 is no power production and 1 is production
at the rated power level.

The wind turbine can either produce at this maximum power output, or it can choose to produce
at a lower production level. Thus, the turbine can be throttled to produce at a wanted power
level as long as it does not exceed the maximum possible power production at that time. This
was briefly discussed in 2.8.1. It can, for instance, be beneficial to produce a smaller amount
of wind power if the reserve capacity market is very profitable in a certain time step and the
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transfer capacity must be reserved for that purpose. The wind power production must also be
contained within the limits of the bottlenecks in the system. If the utilised wind power going
into the system is less than the total available wind power, some of the wind power is shedded.
To represent this power shed, a variable, pwind,shedt , is introduced. In the optimisation problem a
constraint that limits the variable for total wind power going into the energy system, pwindt , and
the wind power shed, pwind,shedt , to the maximum available power output from the wind turbine
has been included in Equation A.35.

pwindt · Tt + pwind,shedt · Tt = Pwind,rated · Pwind,output
t , t ∈ TS (A.35)
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3.2 Strategy Phase

The strategy phase is the first phase that must be simulated in this two-phased model. This
phase develops the scheduling strategy in the system. The strategy is based on finding the
storage values or the marginal values of stored energy. Thus, the main purpose of this phase is
to obtain these storage values. This is done through stochastic backward dynamic programming,
which is very similar to how it is done in some models in hydropower scheduling. This was
discussed in Section 2.6. This section will include an explanation of the strategy phase and the
SDP method used in this phase.

1: j ←− 0,∆←−∞, SV j ←− 0
2: while ∆ > ε do
3: j ←− j + 1
4: for d = Days− 1..0 do
5: for n = 1..NR do
6: for pr = 1..PR do
7: {Eprice, Cprice,Windpower} ← StochV ar(d, pr)
8: SV (n) = SV j(n, pr, d+ 1) , for n = 1..NR
9: BStart = SOC(n)

10: α(pr, n)← Optimise
11: end for
12: for pr = 1..PR do
13: αw(pr, n) =

∑
pr′∈PR probpr(pr, pr

′, n) · α(pr′, n)
14: if n = 0 then
15: DV al = αw(pr, d)
16: else
17: SV j(d, n− 1, pr) = αw(pr,n)−αw(pr,n−1)

SOC(n)−SOC(n−1)
18: end if
19: end for
20: end for
21: end for
22: ∆←

∑
d∈Days

∑
n∈NR

∑
pr∈PR SV

j(pr, n, d)− SV j−1(pr, n, d)

23: SV j+1(Days, n, pr)← SV j(0, n, pr) , ∀n, ∀pr
24: end while

Figure 3.3: SDP algorithm

In general terms, the SDP approach is basically to start calculations in the future and then step
by step compute your way back towards the present. One of the key aspects of solving the
optimisation problem and determining the optimal power schedule for the system is the values
of future profit or storage value, SV . The SDP algorithm comes in handy for this storage value
computation. To do this the continuous storage level need to be made discrete and defined by
a number of potential storage level segments NR. For instance, discrete values which corre-
sponds to storage levels such as 100%, 75%, and down to 0%. For the very last period, or
in this case the last day, the future value function is specified. This will be set to zero. Then
operational profits for each storage level in the last period is calculated. Furthermore, when
standing in the second last period the future storage value profit, SV , is now known. Since
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prices and wind power output are stochastic, different scenarios are calculated. Each scenario
has a specific probability. Therefore, the expected future profit for the given storage is weighted
by its probability. With this reasoning, the results from the second last period are then used as
the future profit in the third last and so on calculating backwards towards the present.

Figure 3.3 illustrates the algorithm for the strategy phase in detail. In line 1 in this figure, the
initial values are defined. Here the iteration number (j) is set to 0 and the deviation (∆) is set to
infinity. The initial storage value is set to 0 here. This is the expected future profit value for day
8 since the model operates with 7 days and the start of day 8 is the same as the end of day 7.

Line 2 describes that the iteration will continue until the deviation is smaller than the user de-
fined convergence limit (ε). Then for each iteration, the model will calculate a given number
of scenarios. This number is based on the size of the parameters which are user defined. The
parameters in question are the price and wind production nodes (pr ∈ PR), storage level seg-
ments (n ∈ NR) and days (d ∈ Days). The price and wind production nodes, pr, represent a
possible combination of energy price, reserve capacity price and wind production given a spe-
cific day. When combining a random day, a storage level segment and a price and wind node
it provides you with a storage value scenario. Thus, when going through every day, SLS and
price and wind node in question it results in a total ofDays·NR·PR storage value calculations.

The calculations of the storage values begin in line 7, as seen in Figure 3.3. Here, the model
defines specific parameters for the specific scenario instance in question. The parameters de-
fined are the energy price, the capacity price, and the wind power output. These parameters are
stochastic and are given by the specific price and wind node in this scenario. Then, line 8 de-
scribes the piecewise linear setup for the storage value, and line 9 sets the starting storage level
for the battery. Further, in line 10 the objective function for the given price node, α, is defined.
This is then the solution to the optimisation problem described in Section 3.1 for this specific
scenario. This process is done for each instance creating each an objective function calculation.
The weighted objective function, αw, is then calculated in line 13. This includes probpr which
is the probability of moving from price and wind node pr to pr′. Then, the weighted objective
function, αw, is stored as the offset in value function, DV al, if and only if the current storage
level is the first. In this case, the storage unit can be considered empty. DV al can also be re-
ferred to as the expected profit for the future. When the storage level is not the first, the storage
value is calculated with this found weighted objective function, αw. This is shown in line 17 of
Figure 3.3.

After the storage values are calculated for all the given scenarios in an iteration, the deviation
must be calculated. This is shown in line 22 in the SDP algorithm in Figure 3.3. Here the storage
values from the current iteration will be checked against the storage values from the previous
iteration. This deviation decides if the model should carry out another iteration, and this is
done if the value is larger than the user defined convergence criteria, ε. Ideally, this deviation
should be as close to zero as possible, i.e. the storage values at the end are close or equal to
the starting storage values. If the deviation is too large and another iteration is necessary, the
storage value from day 1 of the previous iteration will be the new initial storage value for day
8 for the next iteration. This can be seen in line 23 in the SPD algorithm. This adjustment of
the initial condition is crucial to reach convergence since the starting values should be close or
equal to the ending values.
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3.3 Simulation Phase
As described earlier in this chapter and in Figure 3.1, the strategy phase must have been run be-
fore beginning the simulation phase. This is because the storage values obtained in the strategy
phase are necessary for the simulation phase. There are storage values for each possible sce-
nario in the model, and these are used to find the optimal scheduling for the scheduling period.
Since the storage values represent uncertainty there should be computed multiple scenario sim-
ulations with different scenarios in the simulation phase. In that case, many potential scenarios
will be analysed, and the average behaviour and result will represent the reality in the best way
possible. In other words, the result of this simulation phase will represent the behaviour of the
storage unit in the scheduling period. For instance, this includes the profits gained and storage
levels throughout the period.

1: BStart(0)← BInitial

2: while i < Iterations do
3: for d ∈ Days do
4: s← Rand(pr ∈ PR)
5: {Eprice, Cprice,Windpower,SV } ← StochV ar(d, s)
6: OBJ ← Optimise
7: BStart(d+ 1) = BEnd(d)
8: end for
9: BStart(i+ 1) = BStart(Days+ 1)

10: end while

Figure 3.4: SIM algorithm

Figure 3.4 illustrates the algorithm for the simulation phase in detail. In line 1 in this figure, the
initial storage level for the first iteration is set. The iteration process will go on until a user de-
fined number of iterations (could also be called ”scenarios” or ”periods”) has been completed.
This is shown in the while-loop in line 2.

For every iteration, the optimal energy schedule is calculated for every day (d ∈ Days) in se-
quence. For each day a random scenario consisting of energy price, reserve capacity price, and
wind production output will be chosen. This is represented by line 4 and 5 in the algorithm
figure. In line 6, we compute the performance of the system for the given day and scenario,
in which the results are stored for analysis. The end result of the optimisation in line 6 for
the battery state of charge is stored in line 7 to be the start-value in the next scheduling day, to
couple the days together. Thus, the algorithm make sure that the days are simulated sequentially.

If the optimal scheduling is calculated for all the wanted iterations, the simulation phase is fin-
ished and the performance acquired from this phase is stored. If not finished, the next iteration
is simulated. Then, the starting storage value must be set for the next iteration. This time, the
storage level at the end of the previous iteration is set to be the starting level for the next, as
illustrated in line 9. This means that the simulation is kept sequential. Note that every iteration
has a randomised scenario based on the stochastic data of prices and wind production. This
ensures that uncertainty is included in the simulation phase and that average performance can
be analysed to show how the scenarios play a role.
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3.4 This Thesis in Light of the Literature Review
After the methodology of this model and thesis has been outlined in Chapter 2 and 3, this section
will try to put the work done here in perspective to other literature within this field of research
which is described in Section 2.1.

There are some common aspects between this thesis work and relevant literature. For instance,
the objective of this thesis is economical since it is basically to maximise the energy storage
system’s profit. This is an objective that has been thoroughly researched in previous literature,
as described in Figure 2.2 in Section 2.1. Furthermore, a battery storage system will be used
in this thesis, even though the model in this thesis does not rule out any energy storage type
that fulfils the requirements of the model. This is mainly because it may be simpler to envision
a battery in the system and it is reasonable to use a battery in combination with both the grid
and wind turbine. Also, the model operates with day-ahead scheduling. These two elements
concerning the usage of a battery as a storage unit and the day-ahead time horizon are some
common features between this thesis and other relevant publications.

However, some aspects of this thesis make it stand out. One aspect is that the energy storage
system consists of a storage unit and a wind turbine connected to the grid. Previous work done
with an earlier version of this model has been focused around storage only perspective [3] [2],
while this thesis aims to widen the scope to a more producer-oriented scope by including a wind
turbine. Even though storage only and producer-oriented scopes are slightly less discovered ar-
eas in the literature, wind and battery setups has been investigated previously as mentioned in
the literature review. However, producer-oriented scope combined with the uncertainty han-
dling makes this thesis stand more out.

Furthermore, the model is a multi-market model which means that it operates within two mar-
kets to gain profit (i.e. the energy market and the reserve capacity market). This means that
proposition 4 from Section 2.1 is covered by this thesis. Another significant feature is that the
model used SDP to deal with uncertainty. This means that it also covers proposition 7 and it is
an uncertainty approach that is less used in previous energy storage system scheduling litera-
ture. Consequently, two of the propositions suggested in Section 2.1 are reflected in this thesis.
In that way, this master’s thesis has some key advantages compared to other literature on the
energy storage system scheduling concerning time horizon, addressed markets and uncertainty
handling.
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The objective of the energy system model is to plan an optimal strategy with uncertainty for an
energy storage unit and a wind turbine connected to the grid and where the system operates in
multiple markets. One of the main motivations behind this thesis is to analyse the behaviour and
result of the model in various cases depending on prices and wind production. Also, various
sizes of wind power and storage will be tested. Two deterministic tests have been included.
One to test the model using a range of wind turbine sizes in combination with various storage
sizes and a deterministic test to investigate an extreme scenario. In the stochastic case study,
two seasonal cases will be examined. There, the focus is to see what impact seasonal variations
have on the model’s behaviour, result and multi-market operation. Several storage capacities
will be investigated in the stochastic case study, but only one wind power rating since that is
examined in the deterministic case study. Seasonal data is chosen because of the natural varia-
tions in energy prices, capacity prices and wind production throughout the year. An overview
of the case study is given in Figure 4.1

For all the cases, it is assumed that the storage unit and wind turbine are located in Trøndelag,
Norway. This means that the energy system is within the bidding area NO3. Both the price data
and the wind data will be referenced to this area. There is a transfer limit to and from the grid in
the system. In this thesis, the energy system is meant to contribute with a load-shifting service
and thus a relatively low power:energy ratio is used. If, for instance, the storage system was
participating in frequency control, a larger converter would be needed. Each case will check
the performance of the energy system over the duration of a week. To test the multi-market
operation, every instance tested in the case study will be tested when only allowed to participate
in the energy market and when allowed to participate in both the energy and reserve capacity
market. Thus, every instance is tested in single-market versus multi-market operation.

In this chapter, the general input data for all cases will be discussed in Section 4.1. Furthermore,
each case study will be discussed more detailed in Section 4.2.
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Figure 4.1: A general overview of the case study
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4.1 Input Data
All the cases contain various input data which consist of price data, wind data, energy storage
system specifications, wind turbine power rating and data about the simulation period. It can
be noted that many of the input data will be the same for all cases. The input data used will
be acknowledged and described in this section. There will also be a discussion around the
motivation behind this setup.

4.1.1 Scheduling Period and Time Step
Each case will have a scheduling period of one week. The scheduled week will not have an
affiliation to a specific year since the historical price data is gathered from 2018 and the histor-
ical wind speed data is from 2012. However, the weeks scheduled will represent an individual
season since it uses seasonal input data. The deterministic case study uses autumn data in test
one and in the other test it uses a data set not related to a specific season to test an extreme
scenario. The stochastic case study uses winter and summer data to create two cases. Thus,
there are two tests in the deterministic case study and two different seasonal stochastic cases in
the stochastic case study.

The historical data is gathered for each individual season. The price data used in the model are
composed of data from around the middle of the respective season, while the wind data is as-
sembled from the whole respective season. Hopefully, this will give a fairly good interpretation
of the seasonal variations. For all cases, the decision stages are set to every day and the stage
consist of 24 time steps, i.e. 7 stages with 24 steps. This is a natural setup since it will reflect
the hourly price change and the hourly wind production change. It is also convenient that both
the price data and wind data are stored with hourly resolution.

4.1.2 Price Data
Historical price data has been used to create stochastic data which is used in the stochastic dy-
namic programming model. The price data consist of both energy price data and the reserve
capacity price data. Python scripts were used to create price nodes from specific historical price
data obtained from Nord Pool [29] and Statnett [12]. The price data used for this project is from
2018. The reason for using data from 2018 is that this year includes some unusual price patterns
and it is interesting to study the model under these circumcises. Information and discussion on
how the different stochastic scenarios are made from the historical price data can be found in
Section 4.1.6. The historical source data used to construct these price scenarios is plotted in
Appendix B.

The year 2018 had some unusual energy price patterns in Norway. For example, it can be
seen from Figure 4.2 and Figure B.1 in the appendix that the prices in the summer weeks are
abnormally high. This is irregular since the prices in the winter tend to be higher than the
summer prices. This can be explained by the Norwegian weather situation in 2018 and by a
higher CO2 price [30]. From Figure B.2, it can also be seen that the prices for reserve capacity
are abnormally high for both the spring, summer, and autumn period. The mean capacity price
for the winter period is low and this price level is more commonly found in other years. The
reserve capacity prices are heavily dependent on the weather situation, just like the energy
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prices. This is especially true for Norway since the reserve capacity is mainly made up from
hydropower plants with reservoirs. It can also be seen by the peaks that the capacity price can
have a significant high variance with some very high price spikes.

Figure 4.2: The historical energy price for NO3 (Trondheim) in 2018. The red squares are approximately
in the middle of each respective season. The data within each red square has been used to make price
nodes for the stochastic input data. The data is collected from Nord Pool [29].

4.1.3 Reserve Capacity Sale Blocks

In Section 2.3.4 about the capacity market, it is described that the reserve capacity is sold in
blocks. To simulate this realistic behaviour of how the reserve capacity is sold, some parts of
the day need to sell the equal amount of reserve capacity. These periods are the morning, day,
and night. This is implemented in the model by creating reserve capacity sale blocks. These
blocks require the same reserve capacity sales for each time step. The time steps that must have
the same amount of reserve capacity traded are k1-k8, k9-20 and k21-24. This represents the
morning, the day and the evening.

4.1.4 Wind Turbine Specifications

The power rating of the wind turbine should be adjustable in the model. This raises a challenge
since each wind turbine model has its own characteristics such as power curve and hub height.
However, this is simplified so that the only thing adjustable in the model is the rated power of
the wind turbine and the power curve and the height of the turbine are fixed at a general level.
Note that this will not provide a physically accurate simulation of the wind power production
when altering the power rating, but it is sufficient for the integration of a wind turbine in this
model.

The hub height of the wind turbine is of importance because the wind speed increases with the
increase in height above ground level. Thus, the wind data must be adjusted to the chosen hub
height of the wind turbine. A particular wind turbine could be produced at different hub heights
by the manufacturer. For the scope of this thesis, the interesting set of wind turbines are in the
range of 500 kW to 2000 kW. Within this power range, many turbines can be delivered with a
hub height of 60 meters, as shown by two wind turbines in Table 4.1. Thus, the wind turbine
for this study has been given a hub height of 60 meters.
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Enercon E-53 Enercon E-82 E4
Rated power: 800 kW 2 350kW
Hub height: 50 / 60 / 73 m 59 / 69 / 78 / 84 m

Table 4.1: Two examples of wind turbines in the power range that is interesting for this thesis [31].

Each wind turbine model also has a specific power curve. However, for simplicity in this thesis,
one power curve has been used in simulation impartial of the power rating chosen. The power
curve used is from an Enercon E-53 with a rated power of 800 kW [31]. The curve is illustrated
in Figure 4.3.

Figure 4.3: The power curve for an Enercon E-53 wind turbine [31]. The curve are presented in per unit
based on the original power rating of 800 kW.

As seen from the power curve figure above the cut-in wind speed is around 2-3 m/s which is
relatively low. This is where the wind turbine starts producing power. The cut-out wind speed
is 25 m/s. If the wind speed exceeds this threshold, the wind turbine will stop producing power.
The curve is constructed by linearisation between power output points which have a resolution
of 1 m/s.

4.1.5 Wind Speed Data and Wind Power Output Data
The wind speed time series used to simulate the integration of a wind turbine in this thesis is
based on measured data from 2012 for an actual wind farm at Hundhammerfjellet in Trøndelag
in Norway. The data is gathered from a master’s thesis written in 2013 where the measurements
were provided by NTE [32]. The wind speed time series has an hourly resolution and are illus-
trated in Figure B.3. In this figure, the seasonal differences can be seen and are most plainly
demonstrated in the mean value. The average wind speed is highest in the winter months and
lowest in the summer months. These seasonal differences are also discussed in Section 2.8.1.

The wind data is originally measured at an altitude of 82.6 meters, but in this thesis, a wind
turbine with a hub height of 60 meters is studied. In order to simulate the wind turbine with wind
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speeds at 60 meters height, the wind speed data were extrapolated using the wind power law
given in Equation 4.1. Here, the reference wind speed vr is measured at height hr and the wanted
wind speed v is the wind speed at height h. Note that α is the wind shear coefficient or Hellman
exponent. This coefficient is a site specific factor because it depends on the atmosphere, wind
speed and terrain. A more precise estimation of the coefficient is usually made by wind speed
measurements at two or three heights for at least a period of one year. However, in this case
study, the Hellman exponent is set to be 1/7 (0.143) which characterise a flat terrain. This is a
rough estimate, but a commonly used value in the literature [33]. When this value is used in the
wind power law it can generally be referred to as the one-seventh power law.

v = vr ·
(
h

hr

)α
= vr ·

(
60

82.6

)1/7

(4.1)

It is important to note that it is not the wind speed data that are the input data for the model.
The input data is the power output given in p.u. for each time step. After extrapolating the wind
speed data, it is used in combination with the power curve described in Section 4.1.4 to give an
hourly power output for the wind turbine. It is this power production output that is part of the
stochastic data used in the optimisation model. The creation of this stochastic data is discussed
further in Section 4.1.6.

4.1.6 Stochastic Scenarios of Prices and Wind Production

The historical price data, consisting of both energy prices and reserve capacity prices, and his-
torical wind data are used to create scenarios for the stochastic dynamic programming model.
Each scenario consists of individual prices and wind production output, and this individual data
can be called price nodes and wind nodes. By using historical data this gives the scenarios a
sense of realistic behaviour. Ideally, the price data and wind data should have been created with
the use of time series modelling. This means that historical data for several years would be
applied to create the wanted number of nodes. In this way, both extreme scenarios and expected
scenarios will be included, and there would exist a valid probability factor between each sce-
nario. However, since the focus of this thesis is to study the performance of the model and not
to create realistic price and wind nodes, the price data and wind data used as an input will be
created in a bit more simplified way.

To limit the possible scenarios for each stochastic category (i.e. energy price, capacity price
and wind production), it is created a low, average, and high scenario. The average scenario is
created by calculating the average value for every hour for a specific day in the data set. In other
words, the value for the first hour on Monday in the average scenario is found by calculating
the average value over the first hour in all Mondays in the data set. This is then done for all
hours in each day of the week. To create low and high scenarios, the same approach has been
used in addition to either subtract or add the standard deviation of the values in question. Table
4.2 summarised this method of creating three different scenarios for each category of stochastic
data.
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Low scenario = The average value minus the standard deviation
Average scenario = The average value
High scenario = The average value plus the standard deviation

Table 4.2: Examples of how the different scenarios for energy price, reserve capacity price and wind
production are created.

It is assumed that there is no correlation between the reserve capacity prices, the energy prices
and wind production. Considering three different scenarios for each category, the model will
have 27 different price and wind nodes or scenarios for each day. It can be noted that the price
data and wind data for each day is given on an hourly basis.

When having a low, average, and high scenario for each stochastic category, the probability of
going between nodes can be set based on a normal distribution. When doing this it is assumed
that the data sets have a normal distribution. The probability of being in a low or high scenario
is 15.9 % and the probability of being in an average scenario is 68.2 %. This is summarised in
Table 4.3. Thus, for example the probability for a scenario consisting of low energy price, low
capacity price and low wind production is 15.9% · 15.9% · 15.9% ≈ 0.4%. Note that the sum of
all the probabilities for one day always must add up to be 100 %.

Scenario Probability
Low 15.9 %
Average 68.2 %
High 15.9 %

Table 4.3: The probability of a scenario within either energy price, reserve capacity price or wind pro-
duction based on normal distribution.

Keep in mind that this method of creating the price nodes and wind nodes is not very realis-
tic and therefore should not be used in real decision making. This method used is motivated
by simplifying the complexity of stochasticity and thus hopefully also the computation time.
However, it should give a solid foundation for studying the behaviour of the model.

4.1.7 Energy Storage Unit
There is no specific energy storage unit type that must be used in this model. Many different
types could be used depending on the wanted performance of the system, as described in Section
2.5. The only requirements for the model itself are that it could store energy and have sufficient
capacity to participate in the energy market and capacity market. However, a common type of
energy storage used in connection with wind power and the grid is a battery. This may also be
the easiest type of unit to visualise in an energy system. Thus, a battery is chosen to represent
the storage unit in the various cases.

When an energy storage unit operates in real life there will be losses, and it will often depend on
the usage. However, for the purpose of this thesis, the storage unit will be assumed ideal. This
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means that the unit has no losses when charging and discharging. In this setup, the only losses
in the energy system are within the converter. Furthermore, it is not assumed any changes in the
storage unit’s rating over the different seasons, even though this may be realistic as discussed in
Section 2.5.6. To justify this, it can be assumed that the storage unit is kept at normal and stable
temperature and without any direct contact with the elements.

4.1.8 Converter
Since a battery was chosen as the storage unit, there needs to be a converter between the storage
unit and the grid side. This is to convert the AC power from the wind turbine and grid to the
needed DC power in the battery while charging, and from DC power from the battery to AC
power when discharging. Because of this, the convert must be a bi-directional converter. In
this thesis, the inverter chosen is the ”Satcon PowerGate Plus PV” from Satcon [34]. This is an
inverter originally meant for PV systems with a rated power of 1 MW. The efficiency of such
converters tends to be non-linear. This means that the efficiency depends on the power level it
operates with. However, in this study, a constant efficiency will be used. The chosen efficiency
for both charging and discharging will be set to 0.95. This efficiency value represent the lowest
efficiency the converter could provide and is based on extrapolation of the lowest value found
in the converter datasheet [34].

4.1.9 Grid Transfer Limit
Since the energy system consisting of the storage unit and wind turbine is connected to the main
grid, it is interesting to study how this energy system behaves when the grid connection has a
transfer limit. A weak grid connection is not unusual for wind power plant as they are often
placed in rural areas. This can be a reason for including energy storage and are briefly discussed
in Section 2.8.1.

When there is a transfer limit to the grid the model needs to choose carefully what this trans-
fer capacity should be used for, i.e. buying power, selling power, or reserved for up/down-
regulating in the reserve capacity market. If there were no limit the wind turbine would not
have an incentive to cooperate with the storage unit. In that case, the wind turbine would sell its
power to the grid, while the battery would operate more or less independent. In this case study,
a transfer limit of 1 MW is used. This limit is chosen to be in line with the already existing bot-
tleneck in the system, which is the converter. Thus, there are two bottlenecks with the capacity
of 1 MW in the system, the converter and the grid connection point.

4.1.10 Storage Level Segments (SLS)
The storage unit is divided into storage level segments (SLS). An example of one segment could
be 0.5 p.u., which means that the storage unit is at half capacity. These segments are then trans-
formed into state variables to be used in both the strategy and simulation phase. The number
of segments is a highly significant factor in the model. A high number of SLS will mean that
the accuracy goes up, but this will also include a higher computation time. Thus, there exists a
trade-off between accuracy and computation time when deciding the number of SLS. In work
done with previous versions of this model, it is proposed that 22 is a satisfactory number of
SLS, in which it gives an acceptable accuracy and computation time [2]. Based on this, the
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number of SLS used for the cases in this thesis will be 22.

Convergence is obtained in the strategy phase when the different SLS have a sufficient low de-
viation between each iteration. The convergence criterion is set to be 100. This may seem large,
but is done as an attempt to ease the computation time, since there may not be a need for doing
iterations if the deviation already is relatively small. Furthermore, the maximum iteration limit
is set to be 10. This is done mainly to save computation time, but from experience, it could be
stated that if the model does not converge within 10 iterations it probably will not converge at
all. Therefore, 10 iterations are an acceptable limit.

The initial storage capacity used in the simulation phase is set to SOCstart = 0.5 [p.u.]. This
is the storage capacity at the start of the simulation. However, this value will have little impact
since there is often a high number of periods or weeks simulated in the cases.

4.1.11 Computer Power and Time Limit
When considering the data input into this model, it could potentially have high computational
time. Some of the factors have a greater impact on time usage, such as SLS and the number
of probability scenarios. In this thesis, there has been a focus to lower the computational time
while not compromising too much on the accuracy and the integrity of the model. If referred to
time usage in the report, it could be beneficial to know that the simulations were done with an
Intel i5-6200 processor with 2.40 GHz and 8 GB ram installed.

There exists a time limit in the model to prevent an extremely high use of time for each simu-
lation step. This limit is set to 20 seconds. This time limit value is decided with the intention
to decrease the total computation time and time needed in the decision stage. Determining this
time limit is a trade-off between computation time and time needed to find an optimal value.
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4.2 The Cases

In this case study, two different setups will be explored, a deterministic setup and a stochastic
setup. The stochastic setup will contain various stochastic data input that will make up two sea-
sonal cases. A deterministic case study has been included to investigate the impact of including
wind turbines in different sizes more rapidly. This is because the computation time for the
stochastic setup is high and it would be very time consuming to test a high number of instances
with this setup. The deterministic case study and its input data is explained in Section 4.2.1
below, while the stochastic case study and the seasonal cases are discussed in Section 4.2.2.
The range of sizes tested for wind power and energy storage is specified in these sections.

4.2.1 Deterministic cases

A deterministic setup is used to quickly analyse the behaviour and decision making of the model
under specific conditions. This will allow for a more rapid analysis since the computation time
for the deterministic setup is considerably lower than for the stochastic setup. This deterministic
case study will focus on finding an ideal wind turbine size given the setup and limitations in the
system, in addition to studying the model under an extreme scenario.

Two tests with different input data will be performed in this deterministic study and each test
setup is explained briefly below. Beside the input data described in Section 4.1, other input
data used in this deterministic case study is summarised in Table 4.4. These parameters are
used in both tests. From this table, it could be noted that many of the input data is the same
as for the stochastic setup. However, one key difference is that it is only one scenario because
it is a deterministic setup. Furthermore, a low number of periods (10) have been chosen in the
simulation phase due to a deterministic nature where the periods are same and thus less periods
are needed.

Wind Power and Energy Storage Sizes

Different wind turbine ratings and with different energy storage capacity will be tested in the
deterministic case study, with a focus on analysing the effects of various sizes of wind power in
the system. The wind power ratings that are tested are within the range of 500 kW to 2 000 kW,
because the wind turbine rating needs to be in line with the other components in the system. A
too small wind turbine will not influence the system since it produces an insignificant amount
of power most of the time. In the other way, a too large wind turbine would propose problems
regarding the disposal of all the produced power since there is a grid transfer limit. When it
comes to the storage capacity, four different capacities will be tested in the deterministic test
1, and only one size will be investigated in test 2. Several storage capacities are chosen in test
1 because it is interesting to analyse the cooperation between different storage capacities and
different wind power ratings. In test 2, the analysis focuses on the effects from an extreme
scenario and thus only one storage capacity is tested since the effects in question are general.
The various power ratings and storage capacities used in the deterministic tests are summarised
in Table 4.5.
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Test 1: Deterministic average autumn data

The deterministic price and wind production input data in this test have been obtained from the
average scenario in the autumn season from the stochastic lists and is shown in Figure 4.4. This
can thus be considered a seasonal test. The reason for choosing autumn data as input data for
this deterministic test is that the reserve capacity price is high compared to the winter season and
therefore participation in both markets could be expected. If the reserve capacity price is low,
the model may choose to not participate in this market at all. In addition, the wind production is
at a midpoint in the autumn which makes this data set good for testing various wind sizes under
a ”typical” condition.

(a) The deterministic price data used for test 1. (b) The deterministic wind data used for test 1.

Figure 4.4: The deterministic input data used for test 1.

Test 2: Deterministic data for high wind production

This test is included to study what happens in the system when the conditions for wind power
production is very high, in addition to low energy prices and high capacity prices. This is
because it could be interesting to see if the model sheds wind power to participate in the capacity
market. The data set used in this deterministic test is gathered from various seasons from the
stochastic data sets to fit the wanted premises and is shown below in Figure 4.5. The wind data
is gathered from the high scenario in the winter case and the energy price is gathered from the
low winter scenario. To test the capability of the model when reserve capacity prices are high,
the test uses data from the high autumn case with a x1.5 multiplier for reserve capacity prices.

(a) The deterministic price data used for test 2. (b) The deterministic wind data used for test 2.

Figure 4.5: The deterministic input data used for test 2.
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Strategy Phase Simulation Phase
Parameter Value Parameter Value
Convergence criteria, ∆SV 100 SOCStart 0.5 p.u.
Max iterations 10 Number of periods 10
Number of days 7 Number of days 7
Number of scenarios 1 Number of scenarios 1
Number of storage level segments 22 Number of storage level segments 22
Number of discrete states 154 Time limit 20 s
Time limit 20 s

Table 4.4: List of the parameters for both tests in the deterministic case study.

Energy storage capacities tested,
Bmax [MWh]

Wind turbine ratings tested,
Pwind,rated [MW]

Test 1 1 — 5 — 10 — 15 0.5 — 1.0 — 1.5 — 2.0
Test 2 5 0.5 — 1.0 — 1.5 — 2.0

Table 4.5: List of the different storage capacities and wind turbine ratings that are simulated in the
deterministic case study.

4.2.2 Stochastic cases

It is within the stochastic case study where the seasonal cases are analysed more thoroughly with
two cases that represent the winter and summer season. These cases have been chosen since the
summer and winter season differ quite significantly in both prices and wind production. The
cases are solved when only allowed to participate in the energy market, and when participating
in both the energy market and the capacity market. In both market cases, the energy system will
try to maximise its profit. When participating in only the energy market it does so by taking
advantage of the hourly price difference. When participating in both markets the unit must find
the preferable strategy in both markets while operating within the system limits. The system
could potentially choose to just participate in one market if that gives the highest total profit.
The scheduling period is one week in the respective season. Table 4.8 give an overview of some
of the parameters used.

Seasonal Stochastic Input Data

The cases reflect their respective season using historical data to create stochastic scenarios. The
historical data is from 2018 and 2012. It can be mentioned that this is not a perfect setup since
both prices and wind production can vary within the season, which is seen in the figures in
Appendix B. When constructing the wind scenarios used in the case study, data from the whole
season has been used. While the historical price data used to create price scenarios are more
or less from the middle of their respective season. The creation of these scenarios or nodes is
described in Section 4.1.6. Table 4.6 summarise which time period of the historical data is used
to create the stochastic data.
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Historical price data used Historical wind data used

Winter case From 8. January to 4. February,
2018 (4 weeks)

January, February
and December of 2012

Summer case From 9. July to 5. August,
2018 (4 weeks)

June, July
and August of 2012

Table 4.6: Overview of the historical data that has been used to create the stochastic data.

The stochastic input data consists of three possible scenarios for energy price, reserve capacity
price and wind power production, which make up the possible price and wind nodes. In total,
the stochastic input data consists of 27 different stochastic options or nodes for each day. The
data which make up these nodes are illustrated in Figure C.1, C.2, and C.3 in Appendix C.

The seasonal differences can clearly be seen from the stochastic input data in Appendix C. For
instance, the low scenario for wind production in the summer case is almost constantly on zero
production output, while the high scenario for the winter case is most of the time producing at
100 %. Figure C.1 shows the energy price scenarios and it can be noted that the prices are high
during the day and low during the night. This is expected since the prices reflect the current
power situation and thus the load pattern, as discussed in Section 2.4. To keep this pattern in the
stochastic data the approach of taking the average over each individual weekday to create the
different scenarios was crucial. Note that from Figure C.2, the capacity prices tend to be higher
at the start of the day.

Wind Power and Energy Storage Sizes

Different energy storage capacities will be tested in the stochastic case study while the wind
power rating is set to be 1.5 MW. This wind power size is set based on the experiences gathered
from the deterministic case study. This power rating may be large when it produces at max-
imum, but keep in mind that the wind turbine only produces power equal to the rated power
output in some time steps when the wind conditions are very good.

The focus for the stochastic seasonal case study is to investigate the interaction between battery
and wind turbine under various conditions, and how the energy system participates in the two
markets. To accomplish this, different storage capacities have been tested within the range of
1 MWh to 10 MWh. This storage range is suitable for the wanted output of the energy system
with a low power:energy ratio. An increase in storage capacity increases the possibility of stor-
ing more cheap energy to be sold at a higher price is present. This would also imply that profit
increases. However, there are still some limitations in the converter which especially limits
the capacity market participation. In theory, the profit increases with additional storage capac-
ity until the capacity reaches an ideal peak capacity for the system. Then, the marginal profit
from increasing the storage capacity even further will become zero because of the converter’s
charge/discharge restriction. The various wind power ratings and storage capacities used in the
stochastic case study are summarised in Table 4.7.

Note that it is slightly different from the storage sizes tested in the deterministic study. A 15
MWh battery may be considered too large for this system, but it suited the purpose of analysing
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the various wind power ratings in cooperation with a very large storage capacity as tested in
deterministic test 1. Therefore, the largest storage size tested in this stochastic case study is 10
MWh. Also, a few more capacities are tested in this stochastic study in an attempt to highlight
the effects of small changes in the storage capacity. However, the deterministic and stochastic
studies are not directly compared and the differences do not pose a problem to the analysis.
studies are not directly compared.

Energy storage capacities tested,
Bmax [MWh]

Wind turbine ratings tested,
Pwind,rated [MW]

Winter 1 — 3 — 5 — 7 — 10 1.5
Summer 1 — 3 — 5 — 7 — 10 1.5

Table 4.7: List of the different storage capacities and wind turbine ratings that are simulated in the
stochastic case study.

Strategy Phase Simulation Phase
Parameter Value Parameter Value
Convergence criteria, ∆SV 100 SOCStart 0.5 p.u.
Max iterations 10 Number of periods 100
Number of days 7 Number of days 7
Number of scenarios 27 Number of scenarios 27
Number of storage level segments 22 Number of storage level segments 22
Number of discrete states 4158 Time limit 20 s
Time limit 20 s

Table 4.8: List of the parameters that for the stochastic cases.
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Chapter 5
Results

5.1 Deterministic Cases
The results from the deterministic case study will be presented separately for each test in Sec-
tion 5.1.2 and 5.1.3. Information regarding the presentation and setup of these results will be
shortly discussed below in Section 5.1.1. Note that the results presented are selected based on
the analysis focus in the given case. All strategy phase simulations in the deterministic study
converged, usually even within 2-3 iterations and with a low computation time.

5.1.1 Result Setup

Figure 5.1: An overview of the figures and tables presenting the deterministic results.

The deterministic cases are tested when the model is allowed to participating in both the energy
market and the reserve capacity market, and when only allowed to participate in the energy
market. In the further chapters, when multi-market operation is possible the results will be la-
belled with EC, and the results from when the model is tested in only the energy market will
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be labelled with E. Thus, this is a way to compare single-market operation (E) to multi-market
operation (EC).

To analyse the simulation phase, Figure 5.2 displays the storage values for the various wind
power ratings tested in deterministic test 1. These plots represent the storage values for each
of the 22 state of charge segments used in the model. Since this is a deterministic setup, the
data containing the storage values only have one probability for each SoC segment in each day.
To present these results, day one of the scheduling week has been chosen. The storage unit
capacity in these plots is 1 MWh and 5 MWh to illustrate a small and medium/large battery.
Note that the storage value behaviour is similar for battery sizes of 5-15 MWh.

In test 1, the profits for various wind power ratings are shown for each storage capacity in Fig-
ure 5.3. The various profits are obtained from one of the periods tested in the simulation phase
when the battery level change is converged and does not change between the periods. Due to the
deterministic setup, the output result will be the same for each period after this convergence. In
the profit graphs, both the energy market profit and the reserve capacity market profit is included
separately, as well as the total energy profit. The total energy profit is the combined profit from
both markets. The storage value at the end of the period is not included in the total profit. The
presented result is thus the real value of the profit throughout the week.

For the deterministic test 1, the wind power usage is shown in Figure 5.4 and 5.5. Both these
graphs illustrate the wind production throughout the scheduling week and how much of that
available power that is actually used by the energy system. The difference between the maxi-
mum wind power output and the wind power used is the wind power shed. Figure 5.4 showcase
a system with a 5 MWh storage capacity and 1.5 MW wind power installed, while Figure 5.5
also show a 5 MWh battery but with 2.0 MW wind power. Note that since the purpose of
these plots is to highlight the difference in behaviour from installing a high and very high wind
power rating, only one storage capacity is shown. In both figures the state of charge for the bat-
tery throughout the week is plotted together with the wind production, showcasing the possible
connection between battery and storage unit. The two different market participation is plotted
separately. In the same way as the profit plots, the various results are obtained from one of the
converged periods in the simulation phase.

In test 2, only the wind power plots are displayed. Figure 5.6 showcase a system with a 5 MWh
storage capacity and 1.0 MW wind power installed and Figure 5.7 represent a system with 5
MWh storage and 1.5 MW wind power. In the same fashion as for the figures for wind power
in test 1, these graphs include the wind power potential, the wind power used and the state of
charge. However, the two different market participations (i.e. E and EC) are plotted together.
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5.1.2 Test 1: Deterministic average autumn data

(a) (b)

(c) (d)

Figure 5.2: Plot of the storage values with respect to the SoC for all wind power ratings when participat-
ing in different markets in deterministic test 1. The storage capacity is 1 MWh and 5 MWh. The results
are from day one of the scheduling week.
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(a) (b)

(c) (d)

Figure 5.3: Plots of the weekly profit for the different wind power ratings tested for all storage capacities.
Includes the energy profit, the reserve capacity profit and the total profit when participating in both
markets and only the energy market.
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(a) Operating in only the energy market.

(b) Operating in both markets.

Figure 5.4: Plots of the maximum wind power production and how much of that power that are utilised
in the energy system, together with the battery state of charge, throughout the scheduling week. The
plots show results for both market participation instances and with 1.5 MW of wind power installed.

65



Chapter 5. Results

(a) Operating in only the energy market.

(b) Operating in both markets.

Figure 5.5: Plots of the maximum wind power production and how much of that power that are utilised
in the energy system, together with the battery state of charge, throughout the scheduling week. The
plots show results for both market participation instances and with 2.0 MW of wind power installed.
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5.1.3 Test 2: Deterministic data for high wind production

Figure 5.6: Plot of the maximum wind power production and how much of that power that are utilised in
the energy system, together with the battery state of charge, throughout the scheduling week. The plots
show results for both market participation instances and with 1.0 MW of wind power installed.

Figure 5.7: Plot of the maximum wind power production and how much of that power that are utilised in
the energy system, together with the battery state of charge, throughout the scheduling week. The plots
show results for both market participation instances and with 1.5 MW of wind power installed.
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5.2 Stochastic Cases
The main profit results from the case study will be presented in Section 5.2.2. Thereafter, the
individual results for the winter and summer case will be presented separately in Section 5.2.3
and 5.2.4. Information regarding the presentation and setup of the results will be discussed
below in Section 5.2.1. Note that the results presented are selected based on the analysis focus
in the given case.

5.2.1 Result Setup

Figure 5.8: An overview of the figures and tables presenting the stochastic results.

As for the deterministic cases, the stochastic cases are presented with the label EC when multi-
market participation is allowed and tested in both the energy market and the reserve capacity
market, and when the model is tested in only the energy market it is labelled with E. In other
words, label E means single-market operation and EC means multi-market operation.

Table 5.1 in Section 5.2.2 contains the profit results for both season cases. The various profits
are obtained through the average result value of the 100 periods tested in the simulation phase.
In the table, both the energy market profit and the reserve capacity market profit is included
separately, as well as the total energy profit. The total energy profit is the combined profit from
both markets. The storage value at the end of the period is not included in the total profit. In
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addition, the profits per MWh capacity installed have been plotted in Figure 5.9.

In each section containing the individual results, there is a table with technical data about the
performance in the strategy phase. This includes Table 5.2 and 5.3. The information in these
tables specifies if there was convergence in the simulation, the deviation result between the last
iteration, the total number of iterations and the total computation time for that phase.

To analyse the simulation phase, Figure 5.10 and 5.17 present the storage values for some of the
storage capacities tested in the winter and summer case. Note that the results for 3 and 7 MWh
are excluded from this plot to present it more orderly. However, the storage values for these
capacities are similar to the storage values for capacity 5 and 10 MWh. The plots represent
the storage values for each of the 22 state of charge segments used in the model. Note that the
data output from the simulation phase contains storage values for the 27 probabilities for each
storage segment in each day. Therefore, these results are presented using the average storage
value from all probabilities for day one of the scheduling week.

Percentile plots are used to present the individual results from the winter and summer case. This
is because the stochastic cases are simulated with 100 periods and the results consist thus of 100
individual results for each of these periods. Percentile plots is thus an orderly way to present all
these results. The different percentile curves represent the relative standing of a distinct value
within the data set containing the value for all 100 periods in every hour. To limit the number
of plots, the results presented in percentile plots and described below are obtained with 1 and
5 MWh of storage capacity to represent a small and medium/large battery. Note that the be-
haviour from a battery size of 3, 7 or 10 MWh strongly resembles the behaviour of a 5 MWh
battery.

The battery use is illustrated with percentiles plots for the state of charge for the storage unit
throughout the whole operation week. Figure 5.11 and 5.16 present this for the winter case,
while Figure 5.18 and 5.19 present the SoC for the summer case. In each figure it is two graphs;
one when participating in both markets (EC) and one when only participating in the energy
market (E).

The wind power usage for the winter and summer case is shown in Figure 5.13, 5.14 and 5.20.
In all these figures there is one graph illustrating the relative utilisation of the available wind
power and one graph showcasing the wind power that is going into the energy system. Both
are percentile plots. Note that the wind power shed is the difference between the available wind
power and the utilised wind power. For the winter case, storage capacities of 1 MWh and 5
MWh have been presented in 5.13 and 5.14. In the summer case, only 1 MWh have been in-
cluded in 5.20 since the result does not change significantly with other storage capacities. Note
also that only the multi-market operation is presented in these wind power figures since the
results from only participating in the energy market is very similar.

The power exchange with the grid, and thus with the energy market, is showcased in Figure
5.15, 5.16, 5.21 and 5.22. This is percentile plots over the power exchange trough the scheduling
week for both market participation instances. The results presented in these plots are also gained
with 1 and 5 MWh of storage capacity.
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5.2.2 Profit Results for Winter and Summer Case

Season
Case

Storage Capacity
[MWh]

Energy Profit
[NOK/Week]

Reserve Capacity Profit
[NOK/Week]

Total Profit
[NOK/Week]

Winter

1 (E) 46 716 0 46 716
3 (E) 47 443 0 47 443
5 (E) 47 737 0 47 737
7 (E) 48 142 0 48 142

10 (E) 48 148 0 48 148
1 (EC) 46 614 195 46 809
3 (EC) 47 343 191 47 534
5 (EC) 47 693 162 47 855
7 (EC) 47 907 131 48 038

10 (EC) 47 992 120 48 112

Summer

1 (E) 30 120 0 30 120
3 (E) 30 392 0 30 392
5 (E) 30 473 0 30 473
7 (E) 30 501 0 30 501

10 (E) 30 531 0 30 531
1 (EC) 29 840 3 979 33 819
3 (EC) 29 986 5 618 35 604
5 (EC) 30 000 5 682 35 682
7 (EC) 30 005 5 704 35 709

10 (EC) 29 987 5 938 35 925

Table 5.1: The different profits in the winter and summer case.

(a) Winter case (b) Summer case

Figure 5.9: Plot of the weekly profit per MWh of storage capacity installed for the winter and summer
case. Includes the energy profit, the reserve capacity profit and the total profit when participating in both
markets and only the energy market.
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5.2.3 Winter Case

Storage capacity [MWh],
Market participation

Convergence,
Last Deviation

Number of
iterations

Total time
usage [s]

1 (E) True, ∆SV = 0.1 2 765
3 (E) True, ∆SV = 1.9 5 1 919
5 (E) True, ∆SV = 0.3 3 1 149
7 (E) True, ∆SV = 7.1 4 1 546

10 (E) False, ∆SV = 13 314.6 10 3 832
1 (EC) True, ∆SV = 54.5 2 771
3 (EC) True, ∆SV = 1.7 3 1 178
5 (EC) True, ∆SV = 2.6 4 1 558
7 (EC) True, ∆SV = 1.2 4 1 588

10 (EC) True, ∆SV = 6.3 4 1 562

Table 5.2: The strategy phase performance for the winter case.

Figure 5.10: Plot of the storage values with respect to the SoC for storage units with all the capacities
when participating in different markets in winter case. The results are from day one of the scheduling
week.
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(a) Only the energy market. (b) Both markets.

Figure 5.11: Percentile plot of the state of charge throughout the scheduling week in winter case. The
presented result are obtained with a 1 MWh storage capacity.

(a) Only the energy market. (b) Both markets.

Figure 5.12: Percentile plot of the state of charge throughout the scheduling week in winter case. The
presented result are obtained with a 5 MWh storage capacity.

(a) Percentile plot of how much of the available wind
power that is utilised.

(b) Percentile plot of the wind power going into the en-
ergy system.

Figure 5.13: Two plots illustrating the wind power use throughout the scheduling week in winter case.
The presented result are obtained with participation in both markets and with a 1 MWh storage capacity.
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(a) Percentile plot of how much of the available wind
power that is utilised.

(b) Percentile plot of the wind power going into the en-
ergy system.

Figure 5.14: Two plots illustrating the wind power use throughout the scheduling week in winter case.
The presented result are obtained with participation in both markets and with a 5 MWh storage capacity.

(a) Only energy market. (b) Both markets.

Figure 5.15: Percentile plot of the power exchange with the grid the scheduling week in winter case.
The presented result are obtained with a 1 MWh storage capacity.

(a) Only energy market. (b) Both markets.

Figure 5.16: Percentile plot of the power exchange with the grid the scheduling week in winter case.
The presented result are obtained with a 5 MWh storage capacity.
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5.2.4 Summer Case

Storage capacity [MWh],
Market participation

Convergence,
Last Deviation

Number of
iterations

Total time
usage [s]

1 (E) True, ∆SV = 50.1 3 1 142
3 (E) True, ∆SV = 70.3 3 1 156
5 (E) True, ∆SV = 4.2 3 1 125
7 (E) True, ∆SV = 2.6 3 1 150

10 (E) True, ∆SV = 90.7 3 1 132
1 (EC) True, ∆SV = 11.4 4 1 522
3 (EC) True, ∆SV = 6.5 3 1 162
5 (EC) True, ∆SV = 4.0 3 1 170
7 (EC) True, ∆SV = 2.9 3 1 202

10 (EC) True, ∆SV = 4.7 3 1 168

Table 5.3: The strategy phase performance for the summer case.

Figure 5.17: Plot of the storage values with respect to the SoC for storage units with all the capacities
when participating in different markets in summer case. The results are from day one of the scheduling
week.
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(a) Only the energy market. (b) Both markets.

Figure 5.18: Percentile plot of the state of charge throughout the scheduling week in summer case. The
presented result are obtained with a 1 MWh storage capacity.

(a) Only the energy market. (b) Both markets.

Figure 5.19: Percentile plot of the state of charge throughout the scheduling week in summer case. The
presented result are obtained with a 5 MWh storage capacity.

(a) Percentile plot of how much of the available wind
power that is utilised.

(b) Percentile plot of the wind power going into the en-
ergy system.

Figure 5.20: Two plots illustrating the wind power use throughout the scheduling week in summer case.
The presented result are obtained with participation in both markets and with a 1 MWh storage capacity.
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(a) Only energy market. (b) Both markets.

Figure 5.21: Percentile plot of the power exchange with the grid the scheduling week in summer case.
The presented result are obtained with a 1 MWh storage capacity.

(a) Only energy market. (b) Both markets.

Figure 5.22: Percentile plot of the power exchange with the grid the scheduling week in summer case.
The presented result are obtained with a 5 MWh storage capacity.
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Chapter 6
Analysis of the Results

In this chapter, the results from both the strategy phase and simulation phase presented in Chap-
ter 5 will be discussed. The deterministic case study will firstly be discussed individually for
test 1 and test 2 in Section 6.1 and 6.2. Thereafter, an overall discussion about the deterministic
results will take place in Section 6.3. The individual results from each stochastic seasonal case
will be examined in Section 6.4 and 6.5, followed by an overall discussion in Section 6.6.

6.1 Deterministic Case Study: Test 1
The focus in this deterministic test is the behaviour and profit impact the different wind turbine
sizes and storage capacity sizes have under in a relatively normal autumn conditions.

Figure 5.2 shows a clear difference in storage value when having a 1 MWh storage unit com-
pared to a large one at 5 MWh. When the storage capacity is only 1 MWh and the system is only
operating in the energy market, the storage value for all wind power ratings except 2.0 MW is
around 270 NOK/MWh. This is slightly over the minimum value for the energy price the first
day in the data set used in this deterministic value. It seems like the model sets the storage
value to around the minimum profit it could obtain in the energy market that day regardless of
the state of charge. In the Plot 5.2c, where the storage capacity is 5 MWh, it could also be seen
a linear storage value curve going from around 300 NOK/MWh and decreasing to around the
same value as for the 1 MWh capacity. A steeper decrease in the storage value when the storage
level fills up was expected since the known pattern from hydropower optimisation is that the
storage value is high when the storage unit is nearly empty and when the storage unit is close to
full it is low. However, in this deterministic setup, the state of charge has a low impact on the
storage level when only operating in the energy market.

When introducing both markets, plotted in Figure 5.2b and 5.2d, another pattern emerges. Here,
the storage value starts off high before decreasing around a state of charge of 20 %. It finds a
more stable value between a state of charge of 20 % and 80 %, before dropping towards zero
around 80 % SoC. This is due to there being less capacity to participate in the reserve capacity
market with when the battery is nearly full and thus causes a low storage value. One could
expect the storage unit to not operate much within this state of charge range because of the low
storage value.

77



Chapter 6. Analysis of the Results

Another very interesting aspect is the negative storage value obtained in Figure 5.2d. Here,
the storage value becomes negative when the battery is nearly full. This only happens when
the wind power rating is 0.5 MW, meaning a small wind turbine is installed. In this case, the
model deems it very unprofitable to store energy when the state of charge is above 80 % - 90 %.
This is because filling the battery up completely ruin the possibility to participate in the reserve
capacity market since the battery must contribute with both up- and down-regulating. Hence, it
undermines the possibility to earn a profit in that market without making up for the lost profit
in the energy market.

Note that the wind power rating has little or no impact on the storage value when operating
in just the energy market. When operating in both markets, a high wind power rating seems
to give a lower storage value. This is because when the wind power rating increases the wind
production also increases, causing the energy system to make less use of the storage unit. Since
energy is abundant in high wind situations the system focuses on getting rid of all the energy by
selling it. Furthermore, note that the storage value is zero when the installed wind power is 2.0
MW. The reason for this is that the wind production is very high in this situation and causes the
system to sell all possible energy and shed the rest. When much power is shedded, the storage
value is of no use to the model causing the value to be zero.

When analysing Figure 5.3, it can clearly be seen that the installed wind power size has a huge
effect on the profit. The profit seems to increase with around 12 000 - 13 000 NOK per every 0.5
MW of wind power installed. One could see that the profit increase becomes a bit lower when
the wind power rating reaches 2.0 MW. This is because the wind turbine becomes so large that
it produces excess power in some time steps and thus must shed power or potentially store it in
the battery if there is enough capacity. Since there is a limit on the power transfer to the grid,
there exists a trade-off between installing a large wind turbine which utilise the wind potential
better in gaining more power output and thus increase the need of power shed when the wind
production becomes too high, or installing a smaller wind turbine that never produces so much
power that it needs to shed. An ideal wind turbine size would utilise the wind potential to an
optimum while reducing the wind power shed throughout the year to a minimum. Seen from
the results in Figure 5.3, a 2.0 MW wind turbine may be a bit large considering the limits the
energy system face. Especially, when wind production is high, such as in the winter, the power
shed would become very high.

It could also be seen from Figure 5.3 that the profit does not change notably with higher storage
capacity, at least not relative to the profit increase by installing a larger wind turbine. A small
profit increase in the reserve capacity market can be seen when increasing the storage from 1
MWh to 3 MWh. Note also that with a larger wind turbine the energy system participates less in
the reserve capacity market. The reason for this is that the transfer capacity is used to sell more
wind power as the wind turbine size increases and thus the capacity available for the reserve
capacity market decreases.

In Figure 5.4 the available wind power and the utilised wind power are plotted with a wind
power rating of 1.5 MW. Here, it could be seen that the wind power going into the system al-
ways match the available wind power. This means that in this case, the energy system utilises all
the wind power production, i.e. there is no wind power shed. This is true for both the instance
when participating in only the energy market and when participating in both markets, seen in
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Figure 5.4a and 5.4b. Considering the state of charge in these figures, it is clear that they follow
a cyclic pattern. The battery charges in the nighttime and discharges in the day. This is because
of the price variation. Since the energy prices are higher at the daytime, the model will try to
save as much power for that time as possible and sell less in cheaper periods. In both figures,
and especially Figure 5.4a, it can be seen that slightly less power is going into the battery in time
periods when there is less wind power available. The battery is also charged to a higher state of
charge when the system only participates in the energy market. This is due to the low storage
value when reaching a high state of charge when participating in both markets as explained in
the paragraph about storage values above.

When investigating a system with a large wind turbine on 2.0 MW, shown in Figure 5.5, it
becomes clear that the battery operates less cyclic. There is a less obvious cyclic pattern of when
the battery charges and discharges, as seen in the state of charge. When the wind production
decreases a bit between hour 75 and hour 125, the cyclic pattern becomes more visible. This
gives the idea of the model being less interested in using the battery when energy is abundant.
Note also, that at the beginning of the scheduling week the model sheds wind power. The
maximum wind power that can go into the system is around 1 MW, but this could be higher than
1 MW in small sequences because the energy could be used to charge the battery. However, the
model will not use the storage possibility if it does not see it as profitable.

6.2 Deterministic Case Study: Test 2

In this deterministic test, a data set with high wind production and high peak values for reserve
capacity has been used. This is done because it is interesting to study the model under certain
extreme scenarios.

From Figure 5.6 it could be seen that the utilised wind power closely match the total available
wind power when the installed wind power is 1 MW even though the wind production is very
high. The energy system uses all available wind power when only participating in the energy
market. The state of charge for this instance does also resemble some of the patterns seen in
Figure 5.4 when the wind input is high and around 1 MW. The battery is not used very actively,
with a low degree of charging and discharging. It is more or less on standby with a more stable
energy level. When participating in both markets in Figure 5.6, it could be seen that in some
periods the model choose to shed power. The reason for this is the high reserve capacity prices.
In Figure 4.5, which illustrate the wind and price data used in deterministic test 2, one could
see that the periods with higher capacity price than energy price match the time steps which the
model chooses to shed power in Figure 5.6. This causes the assumption that the model sheds
power to participate in the capacity market when this price exceeds the energy price. Since the
energy system has access to ”free” energy from the wind turbine, the profit is not made from the
surplus when buying in cheap periods and selling in more expensive periods. The profit equals
the given energy price in the time step which the wind power is produced and sold, unless it
is stored for later purposes. Therefore, to outperform the energy profit and actively using the
available transfer capacity in the reserve capacity market instead, the prices must exceed those
in the energy market. One could also see that the state of charge is at a generally lower level
when participating in both markets and around 30-40 % in the time steps where the capacity
market is prioritised. When the storage is used for up- and down-regulating, the state of charge
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should ideally not be too high or too low.

Many of the same aspects discussed in the paragraph above could also be seen in Figure 5.7.
One key difference is that even though the available wind power is constantly higher than 1 MW,
the utilised wind power is generally at 1 MW. In some very short moments when operating
in only the energy market, the utilised wind power exceeds 1 MW. In those time steps the
storage unit is charged, as could be seen by the state of charge increase around those time steps.
However, when operating in both markets this rarely occurs.

6.3 Overall Deterministic Case Study Analysis
Key findings in the deterministic case study:

• An increase in wind turbine size leads to a significant increase in profit.

• To minimise power shed and maximise profit a 1.5 MW turbine is considered ideal for
this system.

• An increase in wind power size and thus wind power production decreases the multi-
market operation. In other words, the model prioritises the transfer capacity for the energy
market when there is much wind power available.

• The model will only prioritise the reserve capacity market over the energy market when
the reserve capacity price is higher than the energy price.

After analysing the deterministic case results it could be stated that the wind power rating has
a huge effect on the total profit. This makes sense since a wind turbine is a source for ”free”
power, which can be sold at market price for a profit. A larger wind turbine would give better
utilisation of the wind potential and thus more wind power to sell. However, since the system
defined in this thesis have transfer limitation, the increase in wind power installed reaches a
point where wind power is shedded and thus reduces the marginal revenue by increasing the
size further. The maximum wind power input to the system is 1 MW, apart from a few time
steps it can be higher due to energy being stored in the battery. If installing a wind turbine at
2.0 MW, one produces 1 MW power when the wind production output is 0.5 p.u. From Figure
C.3, which illustrates a few wind scenarios for the different seasons, it could be stated that there
would be power shedding in at least the winter, spring and autumn season when having a wind
power rating of 2.0 MW. If the installed wind turbine is 1.5 MW, the turbine would produce 1
MW at 0.67 p.u. power output. This would cause some power shed in the winter season, but
likely avoid it most of the time in the other seasons. Keep in mind that it is very few moments
throughout the year where the wind turbine produces at 1 p.u.

Based on this discussion the wind power rating tested in the stochastic case study is 1.5 MW.
Then, some wind power shedding is expected, but a high utilisation of the potential is also ful-
filled. When sizing a wind turbine in real life, investment and maintenance cost must be taken
into consideration. However, for the scope of this thesis, the focus is on potential profits and
not the costs.
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When considering the multi-market performance, the operation in the markets depends heavily
on the installed wind power size. It can be seen from Figure 5.3 that when a small wind turbine
is installed the energy system participate more equal in the two markets. Although, an increase
in wind power rating decreases the participation in the reserve capacity market. A small wind
turbine of 0.5 MW will not produce enough power to cover all of the transfer capacity and
thus some could be used in the reserve capacity market. If a large wind turbine of 2.0 MW is
installed, the energy system prioritises almost solely the energy market. A larger turbine leads
to more wind power being sold to the energy market and thus less transfer capacity is available
to be used in the reserve capacity market. This verifies the fact that it is more profitable to sell
wind power in the energy market instead of using the transfer capacity in the capacity market
as long as the energy prices are higher than the reserve capacity prices. If the reserve capacity
prices are higher than the energy prices, it can be seen from test 2 that the system sheds wind
power because the transfer capacity is rather used in the regulating market.
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6.4 Stochastic Case Study: Winter Case

In Section 5.2.2, it is clearly shown that the winter case chooses to operate in the energy mar-
ket even though it has the opportunity to also participate in the reserve capacity market. This
result was expected due to the high wind production and relatively low reserve capacity prices,
but the difference in profit is so large that the reserve capacity profit basically is insignificant
in this case. Another interesting aspect is that the profit does not increase significantly when
increasing storage capacity. When increasing the storage capacity from 1 MWh to 10 MWh the
profit increases with only 3 %. This means that it is not very beneficial to install a large battery
in this energy system when it mainly operates in the energy market. The converter capacity has
probably limited the benefit of installing a large battery.

One instance failed to converge in the winter case, as illustrated in Table 5.2. This was the
instance with a 10 MWh storage capacity and only operating in the energy market. The last
deviation was considerably high and with a detailed look at the results, it can be seen that the
iteration deviation loops with this deviation value for almost all iterations. Such an incident
could sometimes occur because the model cannot find a better solution and each iteration will
thus have the same deviation, creating a loop. All other instances converged in a fairly low
number of iterations for all the various capacities. The computation time was therefore kept
fairly low. It should be mentioned that when convergence is not obtained, the results for this
instance become more invalid, especially when the deviation is so large as in the 10 MWh (E)
instance. The effects a non-convergence have on the results can be seen in Figure 5.10, as this
instance has a peculiar peak at a high state of charge that does not make much sense.

Analysing Figure 5.10 it could be seen that the storage value for operating in only the energy
market and for operating in both markets are very similar for each storage capacity. However,
this is to be expected since the model almost only operate in the energy market, as seen in
Section 5.2.2. The general pattern is that the storage value start of high and slowly decreases
before it suddenly drops to a much lower value when reaching a high state of charge. It could
be seen that the storage value drops earlier when a large storage capacity is installed. With a
10 MWh battery, the storage value drops around 50 % SoC, while with a 5 MWh battery the
storage value does not drop until 80 %. This means that the model deems it less valuable to use
all of the capacity of a large battery. It could also be seen that the storage value for the 1 MWh
capacity behaves differently. It drops very quickly, making the value of storing energy low for
almost all state of charge.

In Figure 5.11, the state of charge of a 1 MWh storage unit is plotted in a percentile plot. Figure
5.11a illustrates the instance when the energy system only operates in the energy market. Here,
it can be seen that the 50th and 75th percentile curve behave cyclically going from around an
empty battery to a full battery. This means that many of the scenarios cyclically charge and
discharge the battery. An interesting aspect is that the battery seems to charge and discharge
based on wind production, and not strongly depend on the price variations. For instance, in all
plots in Figure 5.11 and 5.12 a drop in state of charge can be seen from hour 50 to 75. In these
hours, there is also a significant wind production and some power shedding, as seen in Figure
5.13 and 5.14. This means that when the wind production gets high the battery is used less.
A possible reason for this is that the model prepares itself for high wind production by having
sufficient storage capacity available. It should also be mentioned that the charge-peaks tend to
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appear in the hours that make up the start of the day, which contribute to the fact that the energy
price influences the charge/discharge cycle.

When introducing a large battery, such as a 5 MWh unit in Figure 5.12, it becomes clear that
the full battery capacity is rarely used. In 50 percent of the periods, seen by the 50th percentile
curve, the state of charge seldom reaches 50 %. This point in the direction of not having an
increased profit in the system when having additional storage capacity. It can also be noted that
the is a high similarity in state of charge between operating in only the energy market and in
both markets when large storage capacity is installed. This is due to the model operating almost
exclusively in the energy market even though it could trade in the reserve capacity market. In
both Figure 5.12a and 5.12b, a more stable charge/discharge pattern can be seen. There are less
charge/discharge peaks, meaning the battery is used less actively in market competition, but
more for long term storage in case of lower wind production.

The wind production and wind power utilisation is illustrated in Figure 5.13 and 5.14. The plots
include only the instances with multi-market participation since the model heavily priorities the
energy market and thus the plots for only energy market participation is almost the same. In
Figure 5.13a and 5.14a, the wind power used in the system are almost always all of the available
wind power from the turbine. When the 25th percentile curve lies at a utilisation rate of 1, this
means that at least 75 of 100 periods used the maximum available wind power. Note that in
approximately 10 % of the periods there is power shed. This may be in scenarios where wind
production is extra high. Note also that in Figure 5.13a, there is power shed between hour 50
and 75 which do not occur in Figure 5.14a. In this period it is very high wind production in
many scenarios, but when only a 1 MWh storage unit is installed as in Figure 5.13a, some of
the power cannot be sold or stored due to limited capacity. With a larger storage capacity, as in
Figure 5.14, more wind power is used in the system due to the possibility to store more energy.
Note that some scenarios shed all available wind power in Figure 5.14a between hour 50 and
75, because the model empty out the battery also seen in this period in Figure 5.12b. The reason
is that the battery wants to have available storage capacity for a potentially long period of high
wind production.

Many of the already discussed aspects are also showcased in Figure 5.15 and 5.16. These plots
show the net exchange with the grid and thus the energy market. From both these figures, a
general trend can be seen; when the energy price is low there is less power sold to the market.
These time periods tend to be at the start of the day. In the periods simulated, it can be seen that
drops in exported energy means that the battery is charged. The energy system even buys power
from the grid to fill up the storage capacity in some time steps. Note that the drops in exported
power are longer in Figure 5.16 since a large battery is installed. The drops in exported power is
slightly less frequent and significant when operating in both markets, seen in Figure 5.15b and
5.16b. This may suggest a less use of the battery in the energy market. Despite the exception
of a few drops in exported power, the model prefers to maximise its power export by selling 1
MWh in most of the time steps in a very high percentage of the periods.
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6.5 Stochastic Case Study: Summer Case

Table 5.1 in Section 5.2.2 gives a overview of the profits gained in the summer case. It can
be seen that the energy system clearly increases profit in participating in both markets. The
profit increase by operating in both markets is 12-18 % depending on the storage capacity. The
profit benefit by installing a large storage unit versus a small is very insignificant when only
participating in the energy market. This was also pointed out in the discussion about the winter
results in Section 6.4. However, when participating in both markets the profit rises with 5 %
by increasing the storage capacity from 1 MWh to 3 MWh. Thereafter, the profit benefit by
increasing the capacity further is very small. Note that the gain in profit solely comes from the
reserve capacity market.

All the instances tested in the summer case converged, as shown in Table 5.2. Furthermore, all
instances converged within four iterations or less. This made sure that the computation time
was relatively low. Since all instances converged at such few iterations and the deviation in
these instances is low, a stricter converge criterion could be beneficial without increasing the
computing time or making convergence more unlikely.

Some of the results from the strategy phase are showcased in the storage value plot in Figure
5.17 and from this a distinct pattern can be seen for both market operations cases. When par-
ticipating in both markets the storage value starts at a high value before dropping to a lower
value when the state of charge reaches around 10 %. However, this is less evident for the 1
MWh capacity. The value then drops even further when the state of charge is in the area of
50 to 90 % depending on the storage capacity. A large storage capacity will have the steady
middle storage value for a longer state of charge range. The reason for the step-wise drops in
storage value when engaging in both markets is because the storage system deems it valuable
to store some energy in the battery which it can use in the capacity market. When the battery
is empty, it is very valuable to store some energy so it can contribute with both up- and down-
regulating and also contribute with regulation at the start of the next day. When the battery gets
to full, the opportunity to participate in the capacity market decreases and thus also the storage
value. When only participating in the energy market the storage value is stable and decrease
very slowly before it has a small drop at the last state of charge. The storage value for these
instances is approximately 500 NOK/Week most of the states. This is also the average energy
price for the data set used.

Figure 5.18 and 5.19 shows the state of charge plotted in a percentile plot for 1 MWh and 5
MWh storage units. When trading in the energy market alone the state of charge have a pre-
dictable charge/discharge cycle, which can be seen in both Figure 5.18a and 5.19a. It charges
in the nighttime and discharges in the day, which makes it charge when the price is low and dis-
charge when the price is high. This makes the state of charge heavily dependant on the energy
price variations. Note that close to all the periods simulated take more or less the same deci-
sions. When having a battery of 1 MWh, which is expressed with the 0th and 100th percentile
curves. With a battery of 5 MWh, it can be seen that the full storage capacity is less frequently
used. Note also the disarray at the end of the scheduling week. This could be due to a sudden
increase in wind production seen in Figure 5.20.

Trading in both markets, as showcased in Figure 5.18b and 5.19b, the state of charge is more
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even and behave less cyclic for nearly all scenarios. This is because the battery capacity is
used in the reserve capacity market. Having a 1 MWh capacity installed, the state of charge
tend to centre around 50 % for most of the scenarios. This is the optimal value for up- and
down-regulating when having such capacity size. The state of charge tends to fluctuate around
20-30 % when having a 5 MWh battery. This means it can contribute with 1 MW up- and
down-regulating which is the maximum capacity it could sell due to other limitations.

To showcase the wind production and utilisation, only the instance with 1 MWh storage capac-
ity and multi-market participation is shown in Figure 5.20. This is because wind power utilised
is basically independent of the storage capacity and market participation in this case. As seen in
Figure 5.20a, the utilisation degree is almost always at 1 (i.e. full utilisation). However, some
drops to zero utilisation can be seen. This is due to the low wind production scenario in the
summer case where close to no wind power is produced. This could be seen in the data set used
for this case in Figure C.3. One could see from Figure 5.20b that the wind power going into
the system very seldom venture over 1 MW. The model wants to use all of the available wind
power since there is not an abundance of this resource in this season.

In Figure 5.21a and 5.22a the usage of the energy price variation is showcased through the net
exchange with the grid. When the energy price is low there is less power sold to the market
and in many scenarios power is even bought from the market in these periods. Then the energy
system could export more power in the expensive periods. When participating in both markets,
the exchange with the grid is different. In Figure 5.21b where 1 MWh capacity is installed, the
net power exchange tend to follow the wind production very closely. The reason for this is that
the available wind power is just sold immediately and the rest of transmission capacity is used
in the reserve capacity market. Since the battery is relatively small, nearly all of the battery
capacity is used in the capacity market. When larger storage capacity is installed, such as in
Figure 5.22b, the energy price utilisation appears slightly. This means that the battery is large
enough to participate in the reserve capacity market and at the same time used to exploit the
energy price variations. Note that this makes the net exchange less fluctuating since the curves
are more smooth.

6.6 Overall Stochastic Case Study Analysis
Key findings in the stochastic case study:

• Most or all of the profit in both seasonal cases are earned by selling wind power in the
energy market.

• High wind production leads to high or solely participation in the energy market and thus
strengthening the fact that an increase in wind power production decreases the multi-
market operation.

• Low wind production leads to participation in both markets.

• A storage capacity above 1 MWh does not lead to a significant profit increase in the
energy market.

• A storage capacity of 3 MWh is considered ideal when participating in the reserve capac-
ity market.
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A clear difference between the winter and summer case can be seen in both profit and behaviour.
In the winter case, the wind production is high and the reserve capacity price is low. This lead
to a close to zero participation in the reserve capacity market, while the high profits are solely
obtained in the energy market. In the summer case, wind production is low, and the capacity
price is relatively high. This leads to participation in both markets, even though the highest
profit is gained in the energy market. The multi-market operation is thus heavily dependant on
the wind production. An increase in wind power production, either by installing a larger turbine
or experiencing high wind periods, decreases the multi-market operation.

When mainly participating in the energy market, it could be noted that the storage capacity does
not have a significant effect on the profits. However, this is not due to the fact that the battery is
not used. The battery is still used to balance the wind power based on the price variations, but
the profit benefit comes from the difference between low price and high price and this difference
may not be that large. This leads to a small profit increase, but the battery contributes to a more
steady power exchange.

While participating in the reserve capacity market one could see that a storage capacity around 3
MWh appears to be most beneficial. With this capacity, the battery could provide maximum up-
and down-regulating at 1 MW, or it could be used in combination in the two markets more easily.

The combination of a storage unit and wind power indicates better yearly performance in total
since they complement each other. The wind power potential is high during wintertime, but
struggles to make much impact during summer in which the battery provides an alternative
market operation in the reserve capacity market. Note that this multi-market operation is more
often used when the wind production is low. With this multi-market setup, the battery can
provide support for the whole year and in different seasonal situations. For instance, from
balancing the energy export in high wind periods, to participate in the regulating market in low
wind period.
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Conclusion

This thesis seeks to include an unregulated power source such as wind power in an already ex-
isting optimisation model and test this in deterministic and stochastic cases based on data from
different seasons. The optimising model provides energy system scheduling and the model
seeks to maximise the profit from the energy market and reserve capacity market based on
methods from long-term scheduling for hydropower. Stochastic dynamic programming is thus
used to find the storage values, which is the marginal value of stored energy, in the strategy
phase. These values are then used in the simulation phase to obtain the optimal production
schedule for the energy system. In this section, the main conclusion from the case study is
derived. Note that the key findings are summarised at the end of this section.

When sizing the wind turbine for this energy system, both the wind energy utilisation and po-
tential power shed must be considered. In this thesis, costs are not considered and thus it was
found that a 1.5 MW wind turbine suited this system. This power rating would utilise the wind
potential so that it produced 1 MW in many time steps, but at the same time, the power shed
would become small and just occur in certain seasons.

With the introduction of an unregulated power source in wind power, a clear increase in profit
could be seen. The wind turbine offers ”free” energy that could be sold to the market and po-
tentially making a high profit. The model will favour the market in which it can gain the highest
profit and this strongly affects the multi-market operation. When the wind power production is
high, the reserve capacity market participation decreases. Therefore, it could be concluded that
an increase in wind power production, either by installing a larger turbine or experiencing high
wind periods, decreases the multi-market operation. To make the model shed wind power to
participate in the capacity market the capacity price must be higher than the energy price. If not,
the model will mainly operate in the energy market and supply with selling reserve capacity in
time step where the wind production is low. An installed storage capacity above 3 MWh did
not give a significant additional profit in either market.

The motivation of including a storage unit in an energy system with wind power, must not be
based solely on the profit benefit. This is because the profit gain of including a battery is small
compared to the profits gained from selling the wind power directly and this is also true for an
increase in storage capacity. For instance, the rise in profit from increasing the storage capacity
from 1 MWh to 10 MWh in the winter case is only 3 %. The reason for this is that the turnover
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which the storage unit gain from utilising price variations is relatively small compared to the full
price the wind power gets. Nonetheless, the storage contributes to a more steady and balanced
power exchange which is beneficial in itself.

From the results in the seasonal analysis, it becomes clear that the seasonal variations have a
great impact on the energy system. A strong variation of prices and wind production between
the seasons causes different behaviour and resulting profit. Considering the stochastic case
study, the difference between weekly profit from the highest profitable season which was the
winter and the lowest profitable season which was the summer is large because of the high wind
production in the winter season. When participating in both markets with 1 MWh installed
capacity the lowest total profit is 30 120 NOK/week and come from the summer case, while
the highest total profit comes from the winter case and is 46 809 NOK/Week. With 10 MWh
installed capacity the total profit range from 35 925 NOK/Week in the summer case to 48 148
NOK/week in the winter case. The combination of a storage unit and wind power indicates
better yearly performance in total since they complement each other. For instance, in low wind
periods, the storage unit offers capacity market participation, while in high wind periods it could
balance the power output. With this multi-market setup, the battery can provide support for the
whole year and in different seasonal situations.

Key findings from the case study:

• Most or all of the total profit is earned by selling wind power in the energy market.

• An increase in wind power production, either by installing a larger turbine or experiencing
high wind periods, decreases the multi-market operation.

• High wind production leads to high or solely participation in the energy market and low
wind production leads to participation in both markets which is characterised as a contri-
bution from the storage unit.

• The model will only prioritise the reserve capacity market over the energy market when
the reserve capacity price is higher than the energy price.

• To minimise power shed and maximise profit a 1.5 MW wind turbine is considered ideal
for this system.

• A storage capacity above 1 MWh does not lead to a significant profit increase in the
energy market.

• A storage capacity above 3 MWh does not lead to a significant profit increase in the
reserve capacity market.
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Chapter 8
Future Work

This thesis focused on implementing and analysing an unregulated power source in a stochastic
optimisation model for energy storage scheduling. However, the possibilities for further devel-
opment or extension of the model are immense and some of the possibilities for future work
will be discussed in this section.

A suggestion for future work which extends the work done in this thesis is to include a varying
efficiency in the converter. This was tried in this thesis, but a problem of overlapping charging
and discharging of the storage unit arose. This could possibly be solved by introducing binary
variables. Also, losses in the storage unit and/or transmission lines could be investigated. Other
aspects of the model could also be expanded. For instance, in this thesis, it was three scenarios
for each stochastic category (i.e. prices and wind production). More scenarios could be stud-
ied to give a more nuanced picture. Furthermore, this short-term scheduling model could be
extended to schedule for several weeks or several months. Note that these suggestions could
make the model more complicated and thus also increase the computation time. The complexity
could derive a problem for future work with the model.

An interesting aspect to investigate is some of the costs of such a system and the possible profits
in light of that. For instance, the cost of using the battery, which is known as degradation cost,
could be investigated. This includes usage-related cost factors for the elements in the energy
system and thus covering proposition 5 in Section 2.1. With this approach, the battery utilisa-
tion and multi-market operation could be different since the cost of how the battery is used must
be considered. Also, this could potentially shed a better light of the ideal size of the storage unit
within this system.

One possible extension to the model could be to include loads or other energy dependent object
in the system. In this way, the model has an obligation to cover the load with either energy
from the wind turbine, storage unit or purchased from the grid. The model must thus deal with
both covering the load while maximising its profits from the energy market and reserve capacity
market. By including a load, the model evolves to consider a single bus microgrid. Even though
many studies have investigated this setup, as seen in Figure 2.1 in the literature review, it could
be interesting to analyse such a microgrid with the SDP approach used in this thesis. Within
this proposal, it could be possible to include industrial consumers with controllable loads, and
thus involve proposition 3 in Section 2.1.
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Appendix A
Mathematical Model Description

A.1 Model functions

Sets

TS
Time steps in decision stage for both energy sale and sale of
reserve capacity

NR Steps for storage values (a piecewise linear approximation)

K
Steps for power production (a piecewise linear approxima-
tion)

C
All the reserve blocks (The given time steps in TS will split
the blocks)

Indices

t
Time steps in decision stage for both energy sale and sale of
reserve capacity

n Step for storage values (a piecewise linear approximation)

k
Step for power production (a piecewise linear approxima-
tion)

c Reserve block
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Parameters

Eprice,t Energy price in time step t [NOK/MWh]

Cprice,t Price for reserve capacity in time step t [NOK/MW]

Aprice Price for artificial energy [NOK/MWh]

Shedvalue An artificial price or value for shedding wind power [NOK/MW]

DV al Offset or shift in value function [NOK]

Tt Duration of time step t [h]

BMAX The energy storage unit capacity [MWh]

MDOD Maximum depth of discharge for the storage unit [p.u.]

BStart Capacity for the storage unit at the start of the decision stage [p.u.]

Cmax Maximum sale of reserve capacity [MW]

Pmax
ch Maximum power output from the converter while charging [MW]

Pmax
dch Maximum power output from the converter while [p.u.]

discharging

Pmax
ch,in Maximum power input into the converter while charging [MW]

Pmax
dch,in Maximum power input into the converter while [p.u.]

discharging

ηmaxch Maximum efficiency for the converter while [p.u.]
charging

ηmindch Minimum efficiency for the converter while [p.u.]
charging

Pmax
ch,t Maximum power output from the converter while [MW]

charging at time step t

Pmax
dch,t Maximum power output from the converter while [MW]

discharging at time step t

Pmax
ch,in,t Maximum power output into the converter while [MW]

charging at time step t
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Pwind,rated The maximum rated power output for the wind turbine [MW]

P transf,MAX Maximum power transfer to and from the grid [MW]

Pwind,output
t

The maximum power output for the wind turbine in time
step t

[p.u.]

SOCpts List of points for SOC [p.u.]
(piecewise linear points) (1-Dimensional list)

SVpts List of Storage Values based on SOC [NOK]
(piecewise linear points) (1-Dimensional list)

P pts
k

Output power from converter for each power production
point k, for both charging and discharging

[MW]

P cha
k List of the input power to the converter while charging [MW]

for each power production point k (a piecewise-linear list)

P dis
k List of the input power to the converter while [MW]

discharging for each power production point k
(a piecewise-linear list)

P list
c List of the reserve sales blocks for each time step c [-]
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Variables
Continuous variables

soct State of charge for the storage unit at the end of time step t [p.u.]

pin,battt Power charged into the storage unit in time step t [MW]
(energy stored in unit)

pout,battt Power discharged from the storage unit in time step t [MW]
(energy discarded from unit)

pin,convt Power flow into the converter on the grid side in time step t [MW]
(energy intended to be stored)

pout,convt Power flow out of the converter on the grid side in time step t [MW]
(energy to be sold from the storage)

pbt Power bought from the grid in time step t [MW]

pst Power sold to the grid in time step t [MW]
(Power going into the grid from the converter)

pft Net power exchange with the grid in time step t [MW]

capt Reserve capacity sold in time step t [MW]

partt Artificial power bought in time step t [MW]

pwindt The total power flow from the wind turbine going into the [MW]
system in time step t

pwind,storet The power from the wind turbine which is stored in time step t [MW]

pwind,transft

The power from the wind turbine which is transferred to the
grid in time step t

[MW]

pwind,shedt The power shed from the wind turbine in time step t [MW]

SV Energy storage value in the storage unit at the end of the [NOK]
decision stage
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Other variables

δ1t,k
SOS2-variable for power flow through converter during charging
for each time step t and each power production point point k

δ2t,k
SOS2-variable for power flow through converter during discharg-
ing for each time step t and each power production point k

δn
SOS2-variable for value of stored power in the storage unit at the
end of the decision stage for each storage value point n

A.2 Objective function
The objective function that are maximised in the optimisation problem.

OBJ =
∑
t∈TS

Eprice,t · pft · Tt (A.1)

+
∑
t∈TS

Cprice,t · capt · Tt (A.2)

−
∑
t∈TS

Aprice,t · partt · Tt (A.3)

+
∑
t∈TS

Shedvalue,t · pwind,shedt · Tt (A.4)

+ SV +DV al (A.5)
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A.3 Constraints
The initial storage balance
The balance of storage level at the end of first time step, which is the initial storage level plus
energy stored or discharged during the first time step.

soc0 ·BMAX − pin,batt0 · T0 + pout,batt0 · T0 − part0 · T0 = SOCStart ·BMAX (A.6)

The general storage balance
The energy stored or discharged during a time step must equal the change in storage level from
the beginning to the end of the time step. Ensures the energy balance throughout the time steps.

soct−1 ·BMAX+pin,battt ·Tt−pout,battt ·Tt+partt ·Tt = soct ·BMAX , t ∈ TS\[ord(t) > 0] (A.7)

The boundaries for the state of charge
Limits the state of charge to be between the value of the maximum depth of discharge (MDOD)
and the value one. This is a parameter connected to the specific storage unit and is set by the
user.

(1−MDOD) ≤ soct ≤ 1 t ∈ TS (A.8)

The net power flow
A constraint that define the net power flow variable, pft , by the variables of sold and bought
power, pst and pbt .

pft · Tt = pst · Tt − pbt · Tt , t ∈ TS (A.9)

The sold power flow
A constraint that define the variable for net power sold, pst , by the variables for power from the
wind turbine and battery, pwind,transft and pout,convt .

pst · Tt = pout,convt · Tt + pwind,transft · Tt , t ∈ TS (A.10)

The stored power flow
A constraint that define the variable for net power stored, pin,convt , by the variables for power
from the wind turbine and the bought power, pwind,storedt and pbt .

pin,convt · Tt = pbt · Tt + pwind,storet · Tt , t ∈ TS (A.11)

The limit for power transfer to/from the grid
Sets the limit for power transferred to/from the grid to the maximum transfer limit. The trans-
ferred power in a time step are defined by the power sold and power bought in that time step.
Also, two constraints that sets the boundaries for bought and sold power.

− ptransf,MAX ≤ pft ≤ ptransf,MAX (A.12)

0 ≤ pst ≤ P transf,MAX (A.13)

0 ≤ pbt ≤ P transf,MAX (A.14)

The limit for input power to the converter
Sets the limit for the amount of power that can go into the converter on the grid side. This is not
limited by the converter.

0 ≤ pin,convt ≤ ∞ (A.15)
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The limit for output power from converter
Sets the limit for the amount of power that can go out of the converter on the grid side. This
quantity is limited by the converter capacity.

0 ≤ pout,convt ≤ Pmax
dch (A.16)

The limit for output power from storage unit
Sets the limit for the amount of power that can go out of the storage unit. This is not limited by
the converter.

0 ≤ pout,battt ≤ ∞ (A.17)

The limit for input power to storage unit
Sets the limit for the amount of power that can go into the storage unit. This quantity is limited
by the converter.

0 ≤ pin,battt ≤ Pmax
ch (A.18)

The power flow when charging
These constraints include the efficiency of the converter, i.e. create the relation between the
energy stored in the storage unit and the energy going into the converter from the grid side.
Constraint A.19 include the power flow when charging with fixed efficiency for the converter
which is used in the thesis.

pin,battt · Tt = ηch · pin,convt · Tt , t ∈ TS (A.19)

Constraint A.20 and A.21 showcase the possibility for a piecewise linear efficiency curve for
the converter that is based on the given power level.

K∑
k=1

δ1k,t = 1 , δk,t ∈ [0, 1] , t ∈ TS, SOS2 (A.20)

pin,battt =
K∑
k=1

δ1k,t · P cha
k (pin,convt ) , t ∈ TS (A.21)

The power flow when discharging
These constraints include the efficiency of the converter, i.e. create the relation between the
power going out of the converter on the grid side and the energy discharge from the storage
unit. Constraint A.22 include the power flow when discharging with fixed efficiency for the
converter which is used in the thesis.

pout,convt · Tt = ηdch · pout,battt · Tt , t ∈ TS (A.22)

Constraint A.23 and A.24 showcase the possibility for a piecewise linear efficiency curve for
the converter that is based on the given power level.

K∑
k=1

δ2k,t = 1 , δk,t ∈ [0, 1] , t ∈ TS, SOS2 (A.23)

pout,battt =
K∑
k=1

δ2k,t · P dis
k (pout,convt ) , t ∈ TS (A.24)
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The upper capacity limit from power flow through converter
This constraint limits the the possible up-regulation of the reserve capacity by the maximum
power transfer through the converter and the current power flow. The reserve capacity is re-
stricted to the available capacity resource of the converter.

− (pout,convt − pin,convt ) ≥ capt − Pmax
dch (A.25)

The lower capacity limit from power flow through converter
This constraint limits the the possible down-regulation of the reserve capacity by the maxi-
mum power transfer and the efficiency through the converter and the current power flow in the
converter. The reserve capacity is restricted to the available capacity resource of the converter.

− (pout,convt − pin,convt ) ≤ −capt +
Pmax
ch

ηmaxch

(A.26)

The upper capacity limit from power transfer with the grid
This constraint limits the the possible down-regulation of the reserve capacity by the maximum
power transfer with the grid and the current power flow to/from the grid. The reserve capacity
is restricted to the available capacity resource of the grid transfer connection.

− pft ≥ capt − P transf,MAX (A.27)

The lower capacity limit from power transfer with the grid
This constraint limits the the possible down-regulation of the reserve capacity by the maximum
power transfer with the grid and the current power flow to/from the grid. The reserve capacity
is restricted to the available capacity resource of the grid transfer connection.

− pft ≤ −capt + P transf,MAX (A.28)

The higher capacity limit from the storage unit
This constraint limits the the possible down-regulation of the reserve capacity by the current
energy that is stored in the storage unit. The maximum power efficiency is included since the
power go through the converter.

capt · Tt ≤ (1− soct) ·
BMAX

ηmaxch

, t ∈ TS (A.29)

The lower capacity limit from the storage unit
This constraint limits the the possible up-regulation of the reserve capacity by the current energy
that is stored in the storage unit. The minimum power efficiency is taken into account to avoid
the possibility of selling more capacity than the storage unit can deliver to the output side.

capt · Tt ≤ (soct − (1−MDOD)) ·BMAX · ηmindch , t ∈ TS (A.30)

Equality in the reserve blocks
A constraint that ensures that the reserve capacity sold within the same reserve block have the
same values.

capt = capt−1, t ∈ TS \ [ord(t) > 1, t 6= Rlist
c for c ∈ C] (A.31)
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End value of stored energy
These constraints sets the value for the remaining energy in the storage unit at the end of the
given decision stage. This is done with piecewise linear approximation.

NR∑
n=1

δn = 1 , δn ∈ [0, 1] (A.32)

SV =
NR∑
n=1

δn · SVpts[n, socTS] (A.33)

The wind power flow
A constraint that connects the variable for total produced power from the wind turbine, pwindt ,
with the variables for stored power from the wind turbine and transferred power from the wind
turbine, pwind,storedt and pwind,transft .

pwindt · Tt = pwind,storet · Tt + pwind,transft · Tt , t ∈ TS (A.34)

Limit for wind power production
A constraint that limit the variable for total produced power from the wind turbine, pwindt , to
the maximum power output from the turbine based on the turbine’s power rating, Pwind,rated,
and the power output based on the natural energy resources (wind) at that time, Pwind,output

t .
Constraint A.35 gives the wind turbine freedom to adjust the production below the maximum
power output by introducing the variable pwind,shedt . This variable define the wind power shed
in each time step.

pwindt · Tt + pwind,shedt · Tt = Pwind,rated · Pwind,output
t , t ∈ TS (A.35)
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Appendix B
Input data for case study: Source Price and
Wind Data

(a) Prices in the winter months (b) Prices in the spring months

(c) Prices in the summer months (d) Prices in the autumn months

Figure B.1: The historical energy price for the NO3 price area in 2018. Data obtained from [29]

107



(a) Prices in the winter months (b) Prices in the spring months

(c) Prices in the summer months (d) Prices in the autumn months

Figure B.2: The historical reserve capacity price for the NO3 price area in 2018. Data obtained from
[12].
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(a) Wind speed in the winter months (b) Wind speed in the spring months

(c) Wind speed in the summer months (d) Wind speed in the autumn months

Figure B.3: The historical wind speed at 60 meters at Hundhammerfjellet in Trøndelag in 2012. Original
source data obtained from [32].
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Appendix C
Input data for case study: Stochastic Price
and Wind Data

(a) Winter (b) Spring

(c) Summer (d) Autumn

Figure C.1: The different energy price scenarios used to create different price and wind nodes for the
stochastic simulation.
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(a) Winter (b) Spring

(c) Summer (d) Autumn

Figure C.2: The different reserve capacity price scenarios used to create different price and wind nodes
for the stochastic simulation.
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(a) Winter (b) Spring

(c) Summer (d) Autumn

Figure C.3: The different wind power output scenarios used to create different price and wind nodes for
the stochastic simulation.
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