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Abstract

The worldwide rollout of advanced metering systems (AMS) seen today makes large
amounts of AMS-data available. The AMS-data is suitable for Big-Data techniques, and
clustering is one technique commonly used. Clustering is a technique to divide a dataset
without external labelling information into groups with different characteristics. This mas-
ter thesis investigates clustering on AMS-data, and presents a solid foundation of cluster-
ing theory, AMS and useful background information to use the clustering results most
efficiently. The thesis presents a comprehensive clustering analysis on four datasets using
6 different clustering algorithms and 5 data representation techniques. Validation of the
results is done with three cluster validation indexes (CVIs) and manual inspection to insure
robustness of the results. A comparison with the practice used today and an analysis of
capacity in the grid based on AMS-data are also performed.

The results show that the partitional algorithms are the preferred choice. The old,
simple and robust K-Means performs well and has a low computational cost. The K-
Shape got similar CVI scores as K-Means, despite the CVI scores calculated being biased
towards algorithms using the euclidean distance (ED) measure. The hierarchical algorithm
using single linkage shows interesting results, being able to isolate outliers. The data
representation techniques show potential for a considerable reduction in time, and also
clustering with different characteristics.
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Sammendrag

Utrullingen av AMS (smarte strømmålere) man ser i dag, både i Norge og globalt, gjør
store mengder strømdata (AMS-data) tilgjengelig. På disse AMS-dataene kan man bruke
Big-Data teknikker, og clustering er en teknikk mye brukt. Clustering er en teknikk som
deler et datasett uten ekstern gruppering av dataene inn i forskjellige clustre (grupper) med
ulike egenskaper. Denne masteroppgaven undersøker clustering av AMS-data, og presen-
terer clustering teori, AMS og nyttig tilleggsinformasjon for å kunne bruke resultatene fra
clusteringen på en best mulig måte. Masteroppgaven presenterer en grundig analyse av 6
clustering algoritmer og 5 data representasjonsteknikker på fire ulike datasett. Validering
av resultatene er gjennomført ved hjelp av tre clustering validerings indekser (CVIs) og
manuell analyse for å sikre robuste resultater. En sammenligning med dagens praksis og
en analyse av kapasitet i nettet basert på AMS-data er også gjennomført.

Resultatene viser at oppdelingsalgoritmer (engelsk: partitional algorithms) er det beste
valget. Den gamle, enkle og robuste algoritmen K-Means presterer bra, og er den raskeste
algoritmen. K-Shape presterte omtrent likt som K-Means på CVI’ene, selv om CVI bereg-
ningene favoriserer algoritmer som bruker en distansemåler kalt euclidean distance (ED),
noe K-Means gjør. Den hierarkiske algoritmen som bruker singel lenke kriterium viser
interessante resultater ved at den klarer å isolere data med avvikende verdier. De ulike
teknikkene for å representere AMS-dataene viser at det er et potensiale for en betydelig
reduksjon i beregningstiden for algoritmene, i tillegg til at man kan endre egenskapene til
clusteringen.
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Chapter 1
Introduction

The introduction of advanced metering systems (AMS) is a part of the digitization of the
power system. In Norway, 98.5% of the customers had AMS installed by the end of 2018.
With AMS installed, the power market can be more efficient and the operation of the grid
can be improved from the AMS-data. Until now, the main focus for the Norwegian distri-
bution system operators (DSOs) has been to get the AMS up and running, and in the years
to come it is expected that more analyses will be done with AMS-data. The AMS make
large quantities of data available, which are suitable for Big-Data techniques. Clustering
is a Big-Data technique which divides a dataset without external labelling information into
clusters with different characteristics. These clusters might be valuable, as they provide
information about patterns in the dataset analysed.

Clustering is a well known Big-Data technique and it is commonly used on AMS-data.
There are many clustering methods and algorithms being used today, and improvements to
the algorithms are constantly proposed. Transformation of the input data is also a common
way to change the characteristics of the clustering. There are a lot of literature available on
clustering of AMS-data, and some of the motivations for doing the clustering are demand
side management (DSM), specialized network tariffs and as a pre-stage before prediction
models.

This master thesis starts by presenting a solid fundament of clustering theory and AMS
in chapter 2. This chapter also includes background information to use the clustering re-
sults most efficient. The methods and experimental setup in the clustering study performed
in this master thesis are presented in chapter 3. The results are shown in chapter 4 and dis-
cussed in chapter 5. Chapter 6 draws some conclusions of the work done, and chapter 7
proposes further work.
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Chapter 2
Theory

This chapter presents the theory which the analyses in this master thesis are based on.
The chapter starts by a presentation of electric systems in section 2.1, included to explain
the smart meters’ position in the modern electricity systems we have today. Section 2.2
presents AMS and their requirements, which is important information to understand the
possibilities as well as limitations regarding Big-Data analysis on AMS-data. Section 2.3
presents network tariffs, both the ones being used today as well as the ones proposed by the
regulating authorities, which is important information to understand the changes of con-
sumption in the future. Section 2.4 explains clustering as well as important techniques in
clustering, before section 2.5 explains the different clustering algorithms used in this mas-
ter thesis. Section 2.6 presents three cluster validation indexes (CVIs), which are being
used to quantify the quality of the clustering, before section 2.7 and 2.8 present practical
techniques used in clustering approaches. Section 2.9 presents how the average load pro-
files used today are calculated. The chapter ends by looking at temperature corrections of
electric consumption in section 2.10, which are used in analyses of capacity in the grid.

2.1 Electricity system

This section presents the building blocks of a modern electricity system. This section
is important background information to understand how AMS can contribute to a more
efficient operation of the power grids and power markets. Readers with good insight in
electricity systems might therefore skip this section.

2.1.1 History of electric systems

In 1831, Michael Faraday discovered how to produce electric energy from mechanical en-
ergy [2]. However, it took many decades before the electricity could be used for lightning
purposes. In 1878, the inventor Thomas Edison managed to make the first functioning
light bulb, and the first public presentation found place in 1879 [3]. The following decade

3



Chapter 2. Theory

many cities installed electric street lights and since then the electric systems have increased
to the large interconnected systems we see today [4].

Many things have changed since the discovery of electricity, but the physical laws still
apply today the same way as they did 200 year ago. Therefore, some of the problems they
struggled with in the late 19th century, we are still facing today [5]. Two of the problems are
frequency and voltage quality. In AC systems, an increase in the active power consumed
will contribute to reduce the frequency in the grid. This means that in order to keep the
frequency stable, the production and consumption need to be synchronized. The electrical
engineer also knows that that there is a close link between the voltage magnitude and the
reactive power. Therefore, changing the reactive power consumed or produced might be
an easy way to change the voltage magnitudes in the grid. Safety is another big problem,
both for humans and buildings.

The electricity to power the first street light came from coal, and fossil fuels have
always been an important source to make electricity [6], [7]. However, the last decades the
electricity mix in Europe has been changing towards renewable energies. The renewable
sources are growing fast, and in 2018, 26% of the electricity in the European Union came
from renewable sources (including hydropower), an increase from 20% in 2009 and 12 %
in 1990 [7], [8]. It has also been a decrease in the electricity from fossil fuels, from 56 %
in 1990 to 51 % in 2009 and 46 % in 2018 [7], [8].

It is likely that the share of renewables will be even higher in the future, and therefore
it is important to understand the different characteristics between fossil fuels and renew-
ables. One of the differences is that generators using fossil fuel have inertia and renewable
sources do not [9]. Loosely speaking, inertia means the energy necessary to change a mo-
tion, and systems with higher inertia are more stable. The higher inertia an electric system
has, the lower the change in frequency will be if the load is increased or decreased. This
makes a system with more renewables more susceptible to load changes, both increasing
and decreasing load. The other difference is the planning of the generation. While fossil
fuel plants are dependent on the fossil fuel, the renewables are dependent on its renewable
sources. The fossil fuels can be extracted and stored for a long time, but that is not always
the case for renewables. For solar and wind, the two most increasing renewables today,
the energy from the sun and in the wind has to be used immediately [8].

2.1.2 History of electricity markets
An electric market is a system where selling and buying of electricity find place [10].
Most high-developed countries have today deregulated their electrical markets [10]. This
deregulation means separating production of electricity, buying of electricity and building
and maintenance of the electrical infrastructure [10]. These three parts are separated to
allow competition in the market [10].

The three parts in the electricity markets have different aims and tasks, presented in
the following. The distribution network operator (DSO) has the responsibility for building
and maintaining the electrical infrastructure, which make it a natural monopoly (as it is not
socioeconomic to have parallel transmission lines from different companies). The DSOs
get their income from the network tariffs, which are explained in section 2.3. The electrical
production companies produce electricity and get their income from selling electricity
on the electricity market. The electricity producers are free to produce whenever they

4



2.2 Advanced Metering Systems

want, and they try to maximize their profit by producing when the electricity prices are
the highest. The electricity suppliers provide electricity to its customers, who pay the
electricity supplier. The electricity supplier buys the electricity on the electricity market.

The leading power market in Europe is Nordpool [11]. This market consist of offers
and bids which can be formulated under certain conditions [12]. The prices are calculated
based on these offers and bids, and if there are not sufficient capacity between bidding ar-
eas, there might be different area prices. Norway is for example divided into five different
areas, which might get different prices. Nordpool offers trading in a ”day-ahead” market
and a ”intraday” market. The day-ahead market set the prices for the following day, and is
the main arena for trading electrical power [13]. The deadline for the offers and bids for
a given day in the day-ahead market is at 12:00 the previous day, and the prices get pub-
lished at 12:42 or later [13]. The intraday market offers flexibility if there is a difference
between the sell order or the purchase order and the actual consumption or generation. The
intraday market secures the balance between the generation and consumption (plus losses)
and helps to keep the power grid stable.

In average, the prices in the day-ahead market follow the demand [14]. However, the
prices are set from the offers and bids in the market, and they might therefore not reflect
the actual demand in the network. One of the reasons for this is the marginal prices for
producing electricity, and the renewable energies have a marginal cost close to zero [15].
Another reason is the costly starting and stopping of production from the power plants. As
the price of electricity does not follow the demand in the network, the price of electricity
does not reflect the available capacity in the grid either. This is important to keep in mind
when discussing network tariffs (section 2.3).

The increased digitization creates new possibilities. With the introduction of AMS, it
is possible to bill customers according to their hourly (or even finer) consumption. Previ-
ously, customers were billed based on their energy use, typically over 1 month, but hourly
billing is already in use today [16], [17]. AMS gives the customers the possibility to adapt
to the prices in the market, by using energy when the electricity is at its cheapest. For
most customers it probably feels overwhelming to check the electricity prices every day
and use electricity when it is on its cheapest. Therefore automatic solutions seem to be the
future, with a popular example of charging of electric cars [18]. Room and water heating,
which contributes with a large share of the electricity consumption in Norway, might also
be moved without affecting the customers life and habits, due to large thermal constants
(the temperature in the room or the water stay stable after heating) [19].

2.2 Advanced Metering Systems
Advanced Metering Systems (AMS), also called smart meters, are devices with advanced
metering abilities connected to a two-way communication network. The main contribution
of AMS is to provide a more efficient power market and improve the operation of the grid
[20]. The requirements of the AMS in Norway are stated in the Norwegian regulation no.
301 of 11 March 1999 [21]. For this master thesis, the most relevant requirements are the
following:

• Metering with a minimum frequency of 60 minutes and possibility to increase the
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frequency to 15 minutes.

• Metering of active and reactive power in both directions.

The last couple of years is has been a big rollout of AMS in Norway. The rollout
came as a demand from the regulating authority, NVE (Norwegian water and Resources
and Energy Directorate) in Norway [21]. The rollout should be finished by the end of
2018, but a few percent still missed AMS by the beginning of 2019 [22]. NVE is now
aiming for 100% implementation by the beginning of 2021 [22]. In a proposal published
by NVE in May 2020, an increase of the metering frequency to 15 by the second quarter
of 2023 [23] is presented. The electric consumptions from all customers in Norway are
gathered in a hub called Elhub, which became operational in the beginning of 2019 [24].
The customers can access their consumption data in this hub, and the hub also makes
switching of electricity suppliers easier [16].

The AMS provide many improvements compared to the old meters [20]. One of these
is, as mentioned in section 2.1.2, the opportunity of hourly billing (or even finer), compared
to the monthly billing which was the practice in Norway before [25]. This is possible due
to the two-way communication and the increased metering frequency. The AMS have also
an increased accuracy compared to older electricity meters, which make the billing more
accurate [26]. AMS can also cut or limit the maximum consumption of a customer and
send out signals of faults in the grid [21]. Beneficial for the customer, AMS can receive
information about electricity prices and tariffs [21]. In addition, the smart meters installed
in Norway have the opportunity to meter the voltage [16].

There are, however, also challenges and consequences regarding the rollout of AMS.
One consequence is the cost associated to the installation, which is 10 000 MNOK for Nor-
way, and in average 3500 NOK for each household [27]. The installation cost will be paid
through the grid fee, which for households will increase with around 300 NOK per year
[27]. An Official Norwegian report published in 2015 looks at some vulnerabilities with
AMS [28]. This report expresses a concern about the dependency of commercial commu-
nication infrastructure, the privacy policy and the security aspects of remote disconnection
of customers [28]. The report also concludes that no risk or vulnerability analysis was con-
ducted before it was decided to install AMS in Norway. More information about security
aspects regarding the rollout in Norway can be found at [29], [30] and [20].

2.2.1 Research on AMS-data
The introduction of AMS provide many opportunities, and there is a lot of research which
use AMS-data. The expected usage of AMS-data for up to five years ahead of time for
Norwegian DSOs was presented in [20], published in 2019. This paper expects usage of
clustering mainly to be from 1-4 year ahead of time by the writing of this thesis. ENER-
GYTICS is a project in SINTEF which has demonstrated Big Data technologies and data
science on AMS-data [31]. This project looked among other things on prediction of faults,
automatized investment decisions and analyses of voltage quality and consumption data.
In Norway, ENOVA supports seven projects exploring opportunities with AMS carried out
by DSOs [32]. These pilots look at technologies, services and business models to moti-
vate customers to use less electricity. FME CINELDI aims to develop flexible, robust and
intelligent electrical networks and uses AMS-data in many of their research areas [20].
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Overview of research done, both in Norway and worldwide, with AMS can be found
in [16] and [20].

2.3 Network tariffs
With the introduction of AMS comes, as described in the previous section, many oppor-
tunities, both to customers, companies and DSOs. As seen in the previous section, the
technical qualities of AMS provide opportunities to utilize the grid more efficiently. One
of the instruments for using the grid most efficient is through network tariffs. A network
tariff is the price a customer must pay to the network utility for the electric infrastructure.
Traditionally, the network tariffs for households in Norway have been based on a fixed
amount for being connected to the grid plus a cost proportional to the amount of energy
used [14]. Other customer groups, for example customers with a high power or energy
consumption, have had a cost based on their maximum power consumed [14].

Even though the old tariffs are easy to understand for the customers, they do not reflect
the cost in the electric grid [33]. Most of the cost associated to the electrical infrastructure
is related to available capacity in the grid, not to how much energy is being consumed [33].
The change proposed by NVE is to include a cost related to the power consumed, as well
as changing the cost for the energy consumed to the marginal cost of energy-consumption,
so that it does not cover fixed costs [33]. This will make the network tariffs reflect the costs
in the grid. The cost related to the power consumption is proposed to be calculated based
on the highest peak consumption each day. The proposed changes will give incentives for
customers to reduce their peaks [33].

However, not everyone agrees on how the network tariffs should look like [34]. There
are many reasons why tariffs are difficult to set and agree on, discussed briefly in the
following [33]. One is that the tariffs should be easy to understand. The concept of paying
for the energy needed is natural for most people, while the reason behind paying more for
using more power at the same time is harder to understand. Another reason is the division
of costs. With changed network tariffs, the costs for the same load consumption patterns
will inevitably change. This has led to people feeling that the authority (NVE) is aiming
to target certain customers in the grid, like this article shows [35].

It is also important to remember that the new network tariffs are not the only incen-
tives to change the consumption patterns for customers. The introduction of AMS gives
electricity suppliers hourly data from the customers, and billing based on the hourly con-
sumption is therefore increasingly popular [36]. This means that customers changing their
consumption pattern can lower their electricity bill. A survey answered by 1200 Norwe-
gian household customers showed that more than half of the customers were willing to
change their consumption pattern to reduce their electricity bill [37]. As mentioned in
section 2.1.2, the average spot-price follows the demand, so it is expected that the intro-
duction of hourly billing will in average give lower peaks in the grid. However, hourly
billing also can increase the peaks if the electricity price is low in a period with already
high consumption. This is the reason why, as explained in [33], the network tariffs do not
follow the spot-price.

The effect of network tariffs and hourly billing are important inputs when discussing
changes in future load profiles. A presentation of the average load profiles the DSOs
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use today for their customers, as well as a discussion of future load profiles, are given in
section 2.9.

In literature, a common motivation for performing clustering is to make specialized
and dedicated network tariffs [38], [39]. The customers in the different clusters are then
given specialized tariffs, as these tariffs can be more specialized to the characteristics of
the clusters [38].

2.4 Clustering theory

This section presents clustering theory necessary to understand the clustering algorithms
and approaches used in this master thesis. Cluster analysis is in [40] defined as the ”the
formal study of methods and algorithms for grouping”. The motivation behind clustering
is to understand and learn about the data analysed [40]. Clustering groups similar object
together, which gives a better base for understanding the different characteristics that exists
in the dataset [40]. Clustering is also used to organize data and represent the data by
prototypes. There are many clustering algorithms today, and they differ both in complexity
and methodology [40].

Inspired by [41], the presentation of clustering is divided into 4 components, shown
in figure 2.1. In the other chapters, the combination of one clustering algorithm and one
distance measure is called an algorithm, in order to keep in line with the expressions
commonly used in the literature of clustering of AMS-data. In this master thesis, the
combination of the four components is called one clustering approach. The input of a
clustering approach is the data that is to be clustered, and the output contains cluster labels
(which groups the data belongs to) and cluster centroids (representations of the groups).

Figure 2.1: Four main components in clustering

In literature it is often emphasised that clustering is an exploratory tool [40], [42], [43].
These articles say that there is no way to find an optimal clustering approach in general,
and therefore multiple clustering approaches should be tested for a problem. The literature
also says that there is no single best cluster validation index (CVI) to evaluate the quality
of cluster partition either [43], [39], [44].
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Clustering is a big data technique used in many domains where a lot of data is available
[41]. Some of the domains are biology, medicine, finance, voice recognition and energy
[41], [45]. This means that the datasets, the objectives and the preferred algorithms can be
different in the different domains [41]. This master thesis will focus on clustering theory
and algorithms suitable for AMS-data.

To formalize the discussion of clustering, some terms are now presented. The dataset
analysed, X , contains n samples which are divided into k clusters. A sample ~x is a vector
~x = [x1, x2, x3, . . . , xm] consisting of m elements (scalars). Sample i is written as ~xi,
and element a in a sample ~xi is written xia, or just xa, depending on the context. A cluster
is defined as cj with the corresponding cluster centroid ~cj . The total number of samples
in a cluster is |cj |, and the total number of samples in the dataset is N . A sample is also
called a time-series or a load profile, and the words are used interchangeably in this thesis
depending on the common practice in literature. All of the terms mentioned are commonly
used in literature.

The rest of this subsection presents the three first components from figure 2.1, while
section 2.5 is devoted to the clustering algorithms.

2.4.1 Time-series representation

The first step in a clustering approach is the representation of the data. The data is called
time-series if it has values as a function of time, which is the case for AMS-data [41].
In the literature for clustering of AMS-data, three time-series representations have been
found, presented in the following:

Reduction techniques

The time-series are transformed from the original m dimensional space to a lower di-
mensional space. The motivation behind dimensionality reduction is to reduce memory
requirements, increase the computational speed on the clustering algorithm and reduce the
noise [41]. Two commonly used reduction techniques on time-series clustering, discrete
wavelet transformation and principal component analysis (PCA), are used in this master
thesis [41].

PCA is a technique commonly used in AMS-data analyses, which compared to other
reduction techniques have achieved good results [46], [47]. The PCA is a linear reduction
method that uses eigenvalues of the covariance matrix to reduce the dimensionality of the
dataset. The details of the PCA computation is out of the scope of this master thesis, and
details can be found in [47].

Practical implementations of discrete wavelet transformation use filters to get repre-
sentations of the input data [48]. The input data goes through a low pass and a high pass
filter, and the output from the filters are approximation and detail coefficients. The low
pass filter gives the approximation coefficients, which represent an averaging of the input
data. For each time the data goes through the low pass filter, the size is halved, and the
”level” is increased by one. By running the data one time through the low pass filter (level
1), the data is halved, and for level 2 the data is one quarter of the original size and so on.
This way the desired size of the dataset can be obtained.
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Feature extraction

Feature extraction can be done by representing a time-series with some features. Some
features used in [49] and [50] to represent load profiles are average values and peak values.
In [49], the feature extraction is claimed to improve the clustering. However, the CVI
scores (described in section 2.7.1) are calculated based on different data representations,
which do not make them a fair comparison.

Transformations

In many analyses, the shape of the time-series is more important than the actual values
[41], [51]. The traditional clustering algorithms mainly cluster based on absolute values
and most clustering on time-series use traditional algorithms [41], [38]. The most common
way to cluster based on the shape of the time-series instead of their absolute values is to
transform the data before doing the clustering. Some of the modifications proposed are:

• Min-max normalization defined as ([1]): ~x−xmin

xmax−xmin
, where ~x is a sample and xmax

and xmin are the highest and lowest elements in the sample. This normalizes each
element in the sample to lie in the range [0, 1].

• Z-transformation defined as ([51]): ~x−µ
σ where µ and σ are the average and the

standard deviation. The transformed samples can be both negative and positive and
has no limits, but an average of 0.

Average load profiles

With average load profiles, each customer is represented by only one sample in the dataset.
For hourly readings, this sample contains 24 elements, which are the average consumption
for that customer that hour. This is represented mathematically as:

~x =

24∑
i=1

K∑
j=1

x(i, j) (2.1)

where x(i, j) is the consumption hour i on day j, and K is the number of days in the
dataset.

2.4.2 Distance measure
The distance measure is the second component in a clustering approach and it provides a
quantification of the similarity or dissimilarity between two samples. In literature, distance
measures are also commonly called similarity measures. As clustering try to group similar
samples together, it is crucial to quantify similarities between samples [51], [42].

First, time-series invariances will be presented before the three different distance mea-
sures used in this thesis will be described. For the reader not familiar with distance mea-
sures and their computation, examples with graphs are included for each distance measure.
This is done to make it easier for the reader to gain more intuitive insight in the charac-
teristics of each distance measure, as the mathematical expressions might look complex at
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first sight. If the reader is comfortable with the mathematical expressions, or have previous
knowledge about distance measures, the examples may be skipped.

time-series invariance

A good distance measure should be invariant to important distortions for the domain it is
intended for [51], [52]. This means that one sample’s similarity to other samples should
not be affected by distortions considered irrelevant for that domain. Important time-series
distortions for clustering on AMS-data are ([1], [53]):

• Scaling and translation invariance: One sample’s similarity to other samples should
not be affected by its amplitude (scaling) or offset (translation). A transformation of
the sample ~x to ~x′ = a~x+ b should have the same similarity to other samples.

• Shift invariance: Samples that are similar in shape but shifted in time should be
treated as similar.

Other time-series invariances can be found in [51], [52]. Both transformations shown
in the previous subsection incorporate scaling and translation invariance. The following
presents the three distance measures used in this master thesis.

Euclidean distance

This is the most used distance measure, and it is used in the popular K-Means and many
other algorithms [40], [42]. The euclidean distance measure is fast and simple, but does
not incorporate shift invariance. The euclidean distance (ED) of two samples, ~x and ~y, is
given as:

ED(~x, ~y) =

√√√√ m∑
k=1

(xk − yk)2 (2.2)

Written out by words, the euclidean distance is the square root of the sum of element-
wise differences squared. A lower ED-value means more similar load profiles. A value of
0 means two identical load profiles, while the there is no upper limit of the ED.

Euclidean distance example

This example will illustrate the characteristics of the euclidean distance measure. We look
at three load profiles and calculate the euclidean distance between them. The three load
profiles can be seen in figure 2.2. The orange and green are load profiles made by SINTEF
used for calculating the electric consumption not delivered to households during outages
(explained in section 2.9.1), so they can be seen as household consumptions. The last one
has constant power during the whole period.

First, we calculate the euclidean distance (ED) between load profile 1 and load profile
2 using equation (2.2), and we get an ED of 2.43. This is illustrated in figure 2.3a, where
we see the distance between each element for the two load profiles.
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Figure 2.2: The three load profiles used in the euclidean distance example

Then we calculate the euclidean distance between load profile 1 (orange) and the load
profile with constant power, and we get an ED of 1.45. This is a reduction of 40 percent,
compared with the ED for load profile 1 and 2. We can see this difference by comparing
figure 2.3a and 2.3b, which both have the same scale.

(a) Load profile 1 and 2 (b) load profile 1 and constant power

Figure 2.3: Comparison of load profiles

A way to incorporate scaling and translation invariance is by transforming the time-
series. A comparison of the same load profiles normalized using the Min-Max technique
(section 2.4.1) are shown in figure 2.4. We see that the distances between the first and
second load profile are almost gone, while the distances between the constant and the first
load profile (orange) stay roughly the same.

The results are summarized in table 2.1. With the raw data, the load profile 1 and con-
stant power are most similar using the ED. However, when normalizing the load profiles,
load profile 1 and 2 are by far the most similar.

As the two load profiles representing households share many characteristics, this ex-
ample shows that it might be advantageous to transform the time-series before performing
the clustering. This way the scaling and translation invariance is incorporated.
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(a) Load profile 1 and 2 normalized (b) load profile 1 and constant power normalized

Figure 2.4: Comparison of normalized load profiles

Load profile 1 and constant power Load profile 1 and 2
Raw data 1.45 2.43

Normalized 1.60 0.15

Table 2.1: Results from the Euclidean distance example

Dynamic Time Warping

The dynamic time warping (DTW) is known as the best distance measure for time-series
that incorporates shift invariance [51]. The DTW is a quite old distance measure, presented
by Sakoe and Chiba in 1978, for the purpose of voice recognition [54]. The DTW com-
putes the distance between two time-series by stretching and compressing the time-series.
This way the distance measure can detect similarity between two time-series even if their
patterns are slightly shifted in time.

The DTW algorithm calculates a m by m similarity matrix containing all the square
distances between any two points of the samples, ~x and ~y. Then the algorithm calculates
a warping path W = [w1, w2, ..., wk], where each element wi contain a pair of elements,
(a, b), one from each sample (~x and ~y). One pair can for example be the third element of
~x and the fourth element of ~y, represented as wi = (3, 4). The warping path is contiguous,
which means that for each step of the warping path, from wi to wi+1, there are three
possibilities:

1. The x-value increases by one and the y-value stays the same

2. The y-value increases by one and the x-value stays the same

3. Both the x-value and the y-value increase by one

This means that if element i in the warping path is wi = (a, b), then wi+1 will be
either:

• wi+1 = (a+ 1, b)

• wi+1 = (a, b+ 1)
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• wi+1 = (a+ 1, b+ 1)

This warping path gets calculated to minimize the sum of the distances between the
pairwise elements in the warping path, as shown in equation (2.3). The distance d(wi) is
the square distance between the two elements, xa and yb, represented by wi.

DTW (~x, ~y) = min
√∑

d(wi) (2.3)

The warping path can be recursively calculated by minimizing the following equation:

γ(i, j) = ED(i, j) +min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)} (2.4)

Normally the warping path gets constricted to a subset of the similarity matrix M [51],
[54]. One restriction is the radius of the DTW ”band”, explained in the following example:

Example 1 DTW

In this example we compare two time-series, ~x and ~y, and the radius of the DTW band
is r. Then one element in ~x, say xa, can be compared with all the elements in the range
[ya−r, ya+r]. This means that one element can be compared with a maximum of 2r + 1
elements in the other time-series. It is important to also remember that the DTW path
needs to be continuous.

An example with r = 2 and two different warping paths is shown in figure 2.5. The
green path is comparing elements x1 with y1, x2 with y2, x3 with y3 and so on. However,
the orange warping path compares different elements in the two time-series. For the orange
warping path, the elements that get compared are shown in table 2.2.

Elements in time-series 1 1 2 2 2 3 4 4 5
Elements in time-series 2 1 1 2 3 4 4 5 5

Table 2.2: Elements compared in the orange warping path from figure 2.5

Figure 2.5: The DTW paths from example 1 DTW
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In [55] the radius of the warping path for clustering of AMS-data with hourly resolu-
tion is set to 1. This means that the consumption in one hour can be compared with the
previous hour, the same hour and one hour ahead in the other load profile.

Example 2 DTW

This example shows the DTW’s ability to align two time-series with slightly different
times on the spikes. Two load profiles with two identical spikes, but slightly shifted in
time, are shown in figure 2.6. We compare these two load profiles using ED and DTW.

Figure 2.6: The two load profiles analysed in DTW example 2

Figure 2.7 shows the graphs and the distances for ED and DTW. The distances between
the time-series are the black lines, but be aware that the distances are only calculated in the
y-axis. The DTW algorithm can therefore achieve lower distances than the ED algorithm,
by comparing elements slightly shifted in time. The ED of the load profiles is 6.63, but
the DTW is 0. The DTW obtains a perfect match because the elements in the time-series
are the same, but slightly shifted in time. This shows that the DTW incorporates shift
invariance.

This example is quite trivial, and in most cases a perfect fit is not obtained. The
interested reader is encouraged to look for and do examples of computations to get more
insight and hands-on experience with the dynamic time warping computations. Examples
can be found online at [56] and [57].

Example 3 DTW

This example shows the importance of choosing the right restrictions on the DTW path.
The DTW is a distance measure made for voice recognition, which means that uncritical
implementation of the algorithm in other domains might not work so well.

This example uses the two load profiles from the example with ED and calculates the
DTW score with no restrictions on the path, and a restriction of the radius of the DTW
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(a) Euclidean distances (b) DTW distances

Figure 2.7: Comparison of normalized load profiles

band on 2.
The two computations are visualised in figure 2.8, where the black lines connect the

elements that are compared in the computation. Without any restrictions of the dynamic
warping path, we get the computation as in figure 2.8a, and with a restriction of the band on
2, we get the computation shown in figure 2.8b. The figures show the ”one to many” and
”many to one” principle that DTW is based on, that one element in one of the time-series
can be compared to more than one element in the other time-series.

(a) DTW with no restriction (b) DTW with restriction r = 2

Figure 2.8: Comparison of DTW computation with two different restrictions

The impact of the ”one to many” and ”many to one” effect can, as suggested in the
literature, be minimized by adding restrictions to the warping path. By adding restrictions,
single elements get less compared with elements of the other time-series, which reduces
the effect of single elements. However, it can be still be seen in some degree that peak
values get compared more to the other time-series.

If the data gets normalized before the DTW gets computed, the results gets very dif-
ferent. By maintaining no restrictions, we get the result as in figure 2.9. Here, only one
element in each time-series gets compared with two elements in the other time-series. As
the maximum ”shift” is only 1, the result with restrictions, even a bandwidth of 1, will be
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the same as without any restrictions.

Figure 2.9: Comparison of normalized load profiles

Shape-Based Distance

This distance measure incorporates shift invariance and is computationally much less ex-
pensive than DTW [51], 2.4.2 .

The shape-based distance (SBD) uses the cross-correlation between two samples to
incorporate the shift invariance. The cross-correlation is calculated by sliding one sample
over the other and calculating the inner product for each shift. A shift of a sample is given
as:

~x(s) =

{
(0, 0, ..., 0, x1, x2, ..., xm−s), s ≥ 0

(x1−s, ..., xm−s, 0, ..., 0), s < 0
(2.5)

where s is the number of zeros in the beginning or end of the vector. The cross-
correlation CC is calculated for all possible shifts s ∈ [−m,m] as:

CCw(~x, ~y) = Rw−m(~x, ~y), w ∈ [1, 2..., 2m− 1] (2.6)

where

Rk(~x, ~y) =


m−k∑
l=1

xl+k · yl, k ≥ 0

R−k(~y, ~x) k < 0

(2.7)

The coefficient normalization is calculated as:

NCCc =
CCw(~x, ~y)√

R0(~x, ~x) ·R0(~y, ~y)
(2.8)

and takes values between −1 and 1. The SBD is calculated as:
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SBD(~x, ~y) = 1−max
w

NCCc (2.9)

where maxwNCCc is the NCCw calculated with the w that gives the largest CCw.
Since NCCc lies between −1 and 1, SBD will lie between 0 and 2. The lower the value
is, the more similar the time-series are. An efficient computation of SBD is given in [51].

SBD example

This example shows the computation of the SBD. Two load profiles, shown in figure 2.10a,
are analysed. The values of the two load profiles are shown in table 2.3.

Hour 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Load profile 1 4 2 2 2 3 4 5 7 8 8 5 2 2 2
Load profile 2 2 2 3 4 5 7 8 8 5 2 1 1 2 1

Table 2.3: Values of the load profile used in the SBD example

(a) Load profile 1 and 2 without any shifts (b) Load profile 1 with a shift of s = -2 and load profile
2 with no shift

Figure 2.10: Load profiles used in the SBD example with different shifts

Now we start the computation of the shape-based distance. Load profile 1, called LP1,
is shifted for values [−3, 3] in equation (2.10). (In the computation of SBD, all possible
shifts are calculated, but it is sufficient to look at only a subset of the possible shifts to
illustrate the computation). We calculate the shifts using using equation (2.5) and we get
the shifts shown in equation (2.10).
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Shift (on LP1) s = 3 s = 2 s = 1 s = 0 s = -1 s = -2 s = -3
cross-correlation value (CC) 146 167 195 234 259 268 253

Table 2.4: cross-correlation values for different shifts

LP1 =



(0, 0, 0, 1, 4, 2, 2, 2, 3, 4, 5, 7, 8, 8, 5), s = 3

(0, 0, 1, 4, 2, 2, 2, 3, 4, 5, 7, 8, 8, 5, 2), s = 2

(0, 1, 4, 2, 2, 2, 3, 4, 5, 7, 8, 8, 5, 2, 2), s = 1

(1, 4, 2, 2, 2, 3, 4, 5, 7, 8, 8, 5, 2, 2, 2), s = 0

(4, 2, 2, 2, 3, 4, 5, 7, 8, 8, 5, 2, 2, 2, 0), s = −1
(2, 2, 2, 3, 4, 5, 7, 8, 8, 5, 2, 2, 2, 0, 0), s = −2
(2, 2, 3, 4, 5, 7, 8, 8, 5, 2, 2, 2, 0, 0, 0), s = −3

(2.10)

Then the cross-correlation CC is calculated for each shift according to equation (2.6)
and (2.7). The computation of the cross-correlation for s = 0 is shown in equation (2.11),
where LP1 is load profile 1 and LP2 is load profile 2.

CC = R0( ~LP1, ~LP2) =

13∑
l=0

xl · yl = 1 · 2 + 4 · 2 + 2 · 2 + 2 · 3 + 2 · 4 + 3 · 5 ...

+ 4 · 7 + 5 · 8 + 7 · 8 + 8 · 5 + 8 · 2 + 5 · 1 + 2 · 2 + 2 · 1 + 2 · 1 = 234

(2.11)

Table 2.4 shows the cross-correlation value for all the shifts calculated in this example.
It shows the highest value for s = -2. Figure 2.10b shows load profile 1 with a shift of
s = −2 and load profile 2 with no shift.

The next step is to calculate the coefficient normalization. To do that we need the inner
product for each of the samples, LP1 and LP2. By using equation (2.7), we calculate
the inner products, R0( ~LP1, ~LP1) = 292 and R0( ~LP2, ~LP2) = 271. The coefficient
normalization is then calculated using equation (2.12)

NCCc =
CC(~x, ~y)√

R0(~x, ~x) ·R0(~y, ~y)
=

268√
292 · 271

= 0.95 (2.12)

Then the value of the shape-based distance is calculated by using equation (2.9):

SBD( ~LP1, ~LP2) = 1−max
w

NCCc = 1− 0.95 = 0.05 (2.13)

A value of 0.05 indicates a high similarity between the load profiles. This can be
confirmed from figure 2.10b, where the values for hour 0-8 are identical.

Comparison DTW and SBD

While both SBD and DTW incorporate shift invariance, there are some differences. As the
DTW can be both compressed and stretched it can incorporate multiple shifts, while SBD
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can only incorporate discrete shifts of the whole time-series. The SBD might ignore some
elements in the time-series, but it compares every element in one time-series with only
one element in the other time-series. On the other hand, the DTW uses all the elements,
but might compare one element in one time-series to more elements in the other time-
series. This might put more emphasis on single elements in DTW computation than SBD
computation.

2.4.3 Centroid extraction
The third component of the clustering is the centroid extraction, which is often closely
related to the distance measure.

A central question in cluster analysis is how to extract the cluster centroid. The most
common objective function to minimize in a cluster partition is ([51]):

P = min

k∑
j=1

∑
~xi∈cj

dist(~xi, ~cj)
2 (2.14)

Recall that k is the number of clusters, ~xi is a sample, cj is cluster j with the cor-
responding centroid ~cj . For each distance measure, the optimal centroids are found by
inserting the distance measure in equation (2.14).

Euclidean distance

The euclidean distance is given by equation (2.2). By inserting this distance in equation
(2.14), the optimal centroid is found to be the arithmetic mean of all the samples in the
cluster, given by equation (2.15). This is proven mathematically in the appendix of the
specialization project leading up to this master thesis [58].

~cj =

∑
~xi∈cj

~xi

|cj |
(2.15)

Recall that |cj | is the total number of samples in cluster j.

Dynamic time warping

In theory, by inserting the DTW distance (equation (2.3)) into equation (2.14) and mini-
mize the equation, we get the optimal cluster centroids. However, due to the characteris-
tics of the DTW, this minimization is not a trivial task [51], [59]. Many approaches to this
minimization are proposed, and the most efficient and accurate seems to be the DBA com-
putation [51], [59]. This technique is presented in [59], and is a heuristic method which
iteratively refines the cluster centroid, initially picked as one sample in the cluster.

Shape-based distance

The cluster centroid extraction is a bit different for the SBD approach. As the SBD com-
putation maximize the similarity, the centroid computation of SBD also aims to maximize
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similarity. Each cluster centroid is maximized according to equation (2.16). An efficient
computation of the cluster centroids is given in [51].

~cj = max
∑
~xi∈cj

NCCC(~xi, ~cj)
2 (2.16)

2.5 Clustering algorithms
This section presents clustering algorithms, the last clustering component from the struc-
ture presented figure 2.1. Clustering algorithms are divided into methods, which describe
the general structure to solve a problem [40]. The most tested clustering methods on time-
series are [41], [38]:

• Partitional clustering

• Hierarchical clustering

• Other clustering approaches

The main focus of this thesis has been on partitional algorithms, because of their high
computational speed and accuracy [51], [39]. However, the clustering literature emphasise
that clustering is an exploratory tool and recommend testing multiple algorithms [40], [42],
[43]. Therefore, some more algorithms have been tested and are described in the following
subsections.

2.5.1 Partitional methods
A partitional method partitions the data in multiple clusters, usually by optimizing a cri-
terion function. The criterion function is based on the distance measure, and the most
common objective function was given in equation (2.14). Some distance measures are
presented in section 2.4.2.

The literature shows that partitional methods are commonly used with clustering on
time-series and AMS-data. Partitional methods got the best results in [39] and [51], and
other articles ([46], [53], [47]) only use partitional methods. An advantage of partitional
methods are the lower computational cost compared to other methods [51], [42].

The simplest partitional algorithm is the K-Means algorithm [40]. This is the most used
clustering algorithm and despite being a very old algorithm, it is performing surprisingly
well compared to newer algorithms [40], [42]. It is also among the fastest clustering
algorithms [51], [42].

The following presents the partitional algorithm used in this master thesis:

K-Means

The algorithm starts with a random assignment of all the samples in the dataset to k-
clusters and then reassign the samples to different clusters in an iterative process until
convergence is achieved [42]. The reassignment process is based on the distance between
the samples and the cluster centroids. Convergence is achieved when a certain number
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of iterations is reached or when no samples are reassigned during one full iteration. The
distance measure used in the original K-Means algorithm is the euclidean distance and the
way to calculate the cluster centroid is to take the average of the samples in the cluster.

The algorithm can be summarized in four steps:

• Randomly assigning the samples to the clusters and calculating the cluster centroids.

• For each sample in the dataset, calculate the distance to all of the centroids and put
the sample in the cluster with the least distance.

• Update the clusters centroids

• Repeat the two previous steps until convergence.

Note that the algorithm needs a prespecified number of cluster, k, as input. Ways to
find the optimal number of clusters are given in chapter 2.7.

Many improvements to the old K-Means approach have been proposed [40]. The al-
gorithm is frequently proposed with other distance measures, for example DTW and SBD
(used in K-Shape). The K-Means algorithm is also proposed with a new centroid compu-
tation in K-medoid, where the clusters centroids are calculated as the median of the cluster
instead of the average [40]. Other extensions of K-Means can be found in [40].

2.5.2 Hierarchical clustering
This clustering method creates a hierarchical structure of the data, either with a bottom-up
approach or a top-down approach [42]. The bottom-up approach starts by assigning all the
samples in their own clusters and merge clusters together based on their distance to other
samples to make bigger clusters. The top-down approach does the opposite, it starts with
all samples in one cluster and then divide the clusters into sub-clusters. The most common
approach, and the fastest, is the bottom-up approach [42], [39].

The results of a hierarchical algorithm depend on the distance measure (section 2.4.2)
as well as the linkage criterion [42]. The linkage criterion decides how clusters are merged.
The result of the clustering partition is closely linked to the linkage criterion, where more
complex criteria tend to make average size groups, while simple criteria tend to isolate
outliers [42], [39], [38]. A simple linkage criterion, yet commonly used, is the single
linkage criterion [42]. This criterion merges the clusters with the least distance between
any pair of samples (one sample from one cluster and the other sample from the other
cluster). A more complex criterion is the ward criterion [39]. This criterion uses something
called within-cluster distance. This is the sum of all distances between the cluster centroid
and all of the samples in that cluster. The criterion for each merging is to minimize the
increase of the sum of the within-cluster distances.

A major drawback for hierarchical algorithms, compared to partitional algorithms, is
the high computational time [51], [42]. The most promising results for hierarchical algo-
rithms on time-series of AMS-data is for detecting outliers [39], [38]. In [39], the single
linkage criterion clustered together streetlights, which were wrongly categorized as house-
holds. As wrong categorization is a problem for DSOs [39], hierarchical algorithms are
interesting despite the high computational cost.
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2.5.3 Different clustering approaches

Many clustering approaches have been tested on time-series and AMS-data [41], [38]. Al-
though the most common approaches are partitional and hierarchical methods, most clus-
tering approaches have also been tested on time-series and AMS-data [38], [41]. One of
the most popular algorithms on electric load profiles which is not partitional or hierarchi-
cal is the self-organising maps algorithm (SOM), which is presented next. For a overview
of other algorithms used on time-series and AMS-data, [41], [38] and [16] can be useful
sources.

Self-organising maps

The self-organizing maps algorithm was presented by Kohonen in 1982 [60]. The foun-
dation of the algorithm is the physical structure of memory in living organisms. The algo-
rithm uses a neural structure to map the input data onto a map, often of two dimensions
[61]. The aim of the algorithm is to fit the neural structure into the input data, which is
done by assigning each neuron in the neural map a weight. The weight of each neuron is
updated in an iterative training process, and the more training the better fit.

As the cluster centroids are closely linked to the SOM-algorithm, the cluster centroid
representation is presented here. The centroids of the self-organizing maps are made based
on the neurons made from the clustering [62]. The K-Means algorithm is used on the
neurons, making neural centroids. Then, each sample is given a cluster label based on the
nearest neural centroid.

The details of the computation of the algorithm is out of the scope for this master thesis.
The interested reader can find details in the originally paper from 1982 ([60]), or newer
publications on the topic, like the Springer series from 2012, also written by Kohonen
[63].

2.6 Cluster validation indexes
An important question in clustering is how to evaluate the quality of a clustering partition.
This can be done through clustering validation indexes (CVIs). In the literature, it is often
distinguished between internal and external validation techniques [43], [39]. The exter-
nal techniques compare external grouping information of the dataset with the clustering
labels from the clustering to quantify the clustering quality. Internal techniques quantify
the quality of the clustering based on the distances between the samples and clusters in
the dataset. This master thesis will focus on internal CVIs, as customers from different
customer groups might have same characteristics and therefore desired to be put in the
same cluster. If the goal, however, is to see how well clustering manages to categorize the
customers in the dataset compared to the already existing groups, external CVIs would be
the preferred choice.

Most of the internal CVIs, and the three presented in the following, express the quality
of the clustering as a combination of cohesion and separation of the clusters [43]. With co-
hesion means the tightness of a cluster, in other words the distance between the samples in
the cluster. With separation means the distance between the clusters. In literature cohesion
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is also called intra-variance or within-variance and separation is also called inter-variance
or between-variance [43]. A good clustering should have the cohesion as low as possible
and the separation as high as possible.

As explained in chapter 2.4, there is no best clustering algorithm for all situations. A
consequence of this is that there is no best clustering validation technique for all situations
either [43], [44]. In literature, a solution to this is to use multiple CVIs [39], [44]. The
three indexes explained in the following subsections are all well-established [44].

Some general criteria or guidelines for validating a cluster partition by manual inspec-
tion can be found. In [39], the criteria that a cluster partition should fulfil are:

• Compactness: Clusters should be compact, which means consist of similar samples.

• Differentiable: Clusters should be possible to distinguish from each other. Clusters
with indistinguishable characteristics should have been merged.

• Substantial: Clusters should be large enough to gain benefits from. This means to be
able to use the cluster in later analyses or to gain knowledge of the group of samples
in that cluster. A cluster containing very few samples might not fulfil this criterion.

• Stable: The clustering partition should be stable over time. This means that running
the algorithm multiple times should give similar results.

These criteria might be helpful when analysing the clusters. Some of the criteria can
be quantified through CVIs, for example the compactness and differentiable. But in the
literature, papers show that the cluster partitions on AMS-data with the best CVI scores
might not fulfil the differentiable or the substantial criteria [39], [38]. These papers rec-
ommend to also analyse the final cluster partition manually. Therefore, it can be important
to have the criteria listed in mind when analysing the clusters.

Worth noting is also that the distance measure is included in the CVIs. This means
that cluster partitions with different distance measures are not comparable. However, for
algorithms using the same distance measure, a CVI quantify the quality of the partition,
and the partitions with the best score should be the best partition. It is also worth not-
ing that the CVI scores are calculated on a dataset using one (or no) transformation of
the dataset. Therefore, the results using one transformation will not comparable to other
transformations, as the differences between the elements in the transformed spaces are
different.

In the following the three CVIs will be explained:

2.6.1 Silhoutte index
This CVI got the best results out of 30 CVIs in [43] when testing on a synthetic dataset
and it was the CVI used in ENERGTYICS [64].

The CVI was presented in [65], and the formula for the silhouette index is:

Sil(C) =
1

N

∑
cj∈X

∑
~xi∈cj

b(~xi, cj)− a(~xi, cj)
max{a(~xi, cj), b(~xi, cj)}

(2.17)

Where
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a(~xi, cj) =
1

|cj |
∑
~xj∈cj

de(~xi, ~xj)

b(~xi, cj) = min
cl∈C\cj

{
1

|cl|
∑
~xj∈cl

de(~xi, ~xj)

}
where cl ∈ C \ cj means for all clusters except for cluster j and N is the number of

samples in the dataset. In equation (2.17), a is the average distance between all samples
in cluster cj , and b is the average distance to all samples in the closest cluster to ~xi. The
cohesion is based on the average distance between all samples in the cluster and the dis-
persion is based on the average distance to the nearest cluster. The SI score is maximum 1
and minimum -1. The higher SI score, the better prediction.

2.6.2 Calinski-Harabasz
This index got the best results in [66] and the second-best result in [43] for synthetic
datasets. The formula for the Calinski-Harabasz (CH) index is [43]:

CH(C) =
N − k
k − 1

·

∑
cj∈C

|cj |de(~cj , ~X)

∑
cj∈C

de(~xi, ~cj)
(2.18)

where

~X =
1

N

∑
~xi∈X

~xi

where N is the number of samples in the dataset, k is the number of clusters, |cj | is the
number of samples in cluster j and ~X is the average sample in the dataset.

The cohesion is based on the distance from all samples in a cluster to its cluster cen-
troid. The separation is based on the distance from the cluster centroids to the global
cluster ( ~X). The higher the CH score is, the better quality on the clustering.

2.6.3 Davies-Bouldin
This is one of the most used CVIs ([43]) and is used in [39], [44] and [38]. The formula
for the Davies-Bouldin (DB) index is [43]:

DB(C) =
1

k

∑
cj∈C

max
cl∈C\cj

{
S(cj) + S(cl)

de(~cj , ~cl)

}
(2.19)

Where

S(cj) =
1

|cj |
∑
xi∈cj

de(xi, ~cj)
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The cohesion is based on the distance from all the samples in a cluster to its centroid
and the separation is based on the distance between two cluster centroids. The lower the
DB score is, the better the quality is.

2.7 Estimating the number of clusters

A central problem in cluster partitions is how many clusters is the optimal number in a
partition [40]. Most clustering algorithms require a prespecified number of clusters before
starting the clustering. Two options will be presented in the following:

2.7.1 CVI scores

This option is based on the CVI indexes presented in the previous section. The optimal
cluster number is found by running the clustering algorithm multiple times with different
number of clusters, calculate the CVI score each time and choose the clustering with the
highest CVI score. This procedure is commonly done in literature, for example in [64],
[49] and [47].

2.7.2 Gap statistics

The Gap Statistics is a method to estimate the number of clusters in a dataset and was
proposed by Tibshirani in year 2001 [67]. The method calculates the average distance
between all samples within the clusters in the whole dataset for different values of k, the
number of clusters. Mathematically, this is represented as:

Wk =

k∑
j=1

1

|cj |
∑
i,l∈cj

d(~xi, ~xl) (2.20)

where cj is cluster number j and |cj | the number of samples in cluster j. The gap is
then calculated as the difference between the expectation of log(Wk) from an reference
distribution and the actual log(Wk) observed. This is represented mathematically as:

Gapn(k) = E∗n{log(Wk)} − log(Wk) (2.21)

where E∗n{log(Wk)} is the expectation of log(Wk) from the reference distribution.
For the calculation of the reference distribution it is referred to [67].

The principle of the gap statistic is that for data well separated with K clusters, log(Wk)
will decrease faster than its expectation (E∗n{log(Wk)}) for k ≤ K and it will decrease
slower than its expectation for k > K. From equation (2.21) we can then draw the conclu-
sion that the gap is the biggest for k = K. For more details about the reference distribution
as well as the exact computation of the optimal cluster number k, see [67].
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Figure 2.11: Example of a two-step model. Figure taken from [1]

2.8 Multiple step approaches

Cluster analysis on load profiles differ not only in the algorithms used, but also in the
number of clustering steps used. The literature reveals both one-step approaches ([44],
[39], [53]) as well two-step approaches ([1], [68], [47]). By a one-step approach only one
clustering is performed on the dataset, while in a two-stage approach, the second clustering
step uses the centroids from the first clustering step.

A two-step approach for clustering of AMS-data is normally done by first finding the
typical load patterns for each customer and then cluster these to global clusters. This is
shown in figure 2.11.

The two-step clustering approach have some advantages over the single step approach,
listed in the following ([1], [68], [47]):

• Computational speed: The first stage can be carried out in parallel, which can be
significantly faster on large datasets. And if the first step is already done, the sec-
ond step will be considerable faster than doing the whole clustering in a one-step
approach.

• Size reduction: Performing two steps instead of one significantly decreases the size
of the datasets used in the clustering steps.

• Analysis of individual customers: By doing the clustering in two steps, it is possible
to stop after one step to analyse individual customers.

2.9 Prediction of load profiles

This section presents the average load profiles being used today as well as a discussion of
future load profiles.
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2.9.1 Prediction of load profiles today
The current approach to estimate load profiles in Norway during outages is described in
[69]. This method based on average load profiles was developed in the 90’s, and is being
used by Norwegian DSOs today [70]. The method divides customers into categories, and
each category has four different load profiles. Two of the load profiles for each category
are assigned for a high consumption period (from December to February) and the two other
load profiles are assigned for a low consumption period (from March to November). For
each consumption period, one load profile represents weekdays and the other represents
weekends. Each load profile has two parameters, A and B. Parameter A is a temperature
dependent variable and parameterB is temperature independent. For each load profile, the
following equation is used to calculate the consumption for each hour h:

Ph = (Ah · T +Bh) ·
W

WN
(2.22)

where T is the average temperature the given day, W is energy consumed the last
measuring period for the customer and WN is the calculated energy consumption the last
measuring period corrected by temperature for the given customer. The procedure for
calculating W

WN
is given in [69].

2.9.2 Future load profiles
There are of course many factors that influence customers electricity consumption. Some
of these factors were mentioned in section 2.3, where network tariffs and hourly billing
were discussed. The new network tariffs proposed in Norway gives incentives for the
customer to reduce its peaks. However, new electrical appliances, with electrical cars
as a common example, is expected to increase the peaks in the grid [33]. Examples of
other factors analysed are the building’s energy efficiency and the rebound effect [71] and
electricity reduction due to greater insight in own consumption [72].

In literature, demand side management (DSM) is a common motivation for clustering.
DSM means actions designed to reduce the cost associated to electric consumption [73].
In [50], determinants for the sensitivity of DSM is analysed. This means how likely peo-
ple are to change their consumption due to incentives. This is crucial to design demand
response programs most efficiently [50]. By incorporating the sensitivity in the cluster
analysis, the effects of the demand response programs can more accurately be analysed
[50].

2.10 Temperature corrections
This sections presents the approach used by Norwegian DSOs to temperature correct en-
ergy and power consumption.

2.10.1 Temperature corrections
The temperature has in Norway a large impact on the electricity consumption in house-
holds [19]. This is because Norwegian households’ main source for room heating is elec-
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tricity [19]. In order to see trends on consumption affected by the temperature, it is impor-
tant to do temperature corrections [74].

Common practice among the Norwegian DSOs today is to correct the energy as well as
the maximum power for temperature [75]. The energy is corrected for by a method called
”graddagsmetoden” in Norwegian, which compares the temperature in a period, normally
a year, by the normal temperature for that period [74]. The method is translated as ”degree
method”, which will be used in the following. A value called ”degree days” is calculated
as the the number of days where the temperature is lower than 17 degrees multiplied by
the difference between the average temperature the given day and 17 degrees. If a day has
an average temperature of 12.5 degrees, then that day will contribute with 17 - 12.5 = 4.5
”degree days”. Then each day of the year is summarized, and we get the ”degree days” for
a given year. This value is compared to the normal ”degree days” for a given area, found
for the period 1981-2010 [75]. The values for the ”degree days” for different areas from
2010 - 2019, as well as the normal degree days can be found on ENOVA’s home page [76].

The ”degree day” method assumes a temperature dependent and a temperature inde-
pendent electricity consumption. Different building categories have different temperature
dependent coefficients, and Enova publishes estimated coefficients, which can be found at
[77]. The most common temperature dependent coefficient is 0.5, but different DSOs use
different coefficients [78], [79], [80], [75]. The formula for correcting for temperature is:

Ecorrected = Emeasured

{
(1− k) + k

DDnormal

DDyear

}
(2.23)

where k is the temperature coefficient, DDnormal is the normal degree days and
DDyear is the degree days for a given year.

The common practice is to correct the maximum power also, which is done in a simpler
way than the energy [75], [78], [79]. The power is multiplied by a factor, which depends
on the temperature measured compared to a reference temperature. The temperature mea-
sured is the average temperature over three days, the two previous days as well as the given
day. The reference temperature is the minimal average temperature over three days the last
10 years, which is called the extreme minimum temperature. The factors used for some big
electric utilities in Norway varies from 1 to 1.7 % for each degree in difference [78], [79],
[80]. The following equation is used for calculating the power corrected by temperature:

Pcorrected = Pmeasured + k · diff · Pmeasured (2.24)

where k is the factor and diff is the difference between the extreme minimum tem-
perature and the temperature measured.

Be aware that the normal practice only is to temperature correct the maximum power
measured [79]. Therefore, other times might have a higher temperature corrected con-
sumption than the maximum power measured temperature corrected [79].

There are large uncertainties about the values of the temperature sensitivities [81].
Especially the last years the uncertainty has grown, due to new appliances and customer
habits [81]. One of the biggest DSOs in Norway is using a temperature coefficient based on
analyses performed in 1991 [80]. By analysing AMS-data, these temperature coefficients
can be updated to better reflect the temperature sensitivities in the grid today.
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Chapter 3
Methods

This chapter presents the methods used and the experimental settings in this master thesis.
The methods are based on the theory presented in chapter 2, and the results are shown in
chapter 4 and discussed in chapter 5. Section 3.1 starts the chapter by summarizing the
techniques used in this thesis and section 3.2 describe the experimental settings. A descrip-
tion of the clustering approaches tested is given in section 3.3, and section 3.4 presents the
comparison of the cluster results with the practice used today. The last section, section
3.5, presents the analyses of capacity in the grid, included to show other possibilities with
AMS-data than clustering.

3.1 Clustering components
This section summarizes the four clustering components presented section 2.4 and 2.5.

3.1.1 Time-Series representation
The first component is the representation of the data, called time-series representation.
The analyses in the master thesis are based on different time-series representations, which
can be divided into three categories, with a total of 5 techniques.

• Dimentionality reduction: Transformation techniques to reduce the dimension of
the dataset. Used to reduce the size of the dataset, thus reducing the computation
time in the clustering algorithms. Two techniques are used in this thesis, Principal
Component Analysis (PCA) and discrete wavelet transformations.

• Transformations: Transforming the data without reducing the dimensionality. Done
to make a meaningful comparison of samples with different offset and amplitude.
Two techniques are used in this thesis, the first one called Z-transformation and is
defined as ~x−µ

σ where µ and σ are the average and the standard deviation. The
second one is called Min-Max (MM) normalization and is defined as: ~x−xmin

xmax−xmin
.
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The second transformation technique transform each element in the range [0,1],
while the first technique has no positive or negative limits.

• Average load profile representation: Each costumer is represented by one average
load profile, which is the average consumption each hour for that customer. Equa-
tion (2.1) is used to get the average load profiles.

3.1.2 Distance measures

The second component is the distance measure, which quantify the similarity or dissim-
ilarity between two samples. The analyses in the master thesis has been done with three
different distance measures (described in detail in section 2.4.2):

• Euclidean Distance (ED): Defined as ED(~x, ~y) =

√√√√ m∑
k=1

(xk − yk)2

• Dynamic time Warping (DTW): Defined as DTW (~x, ~y) = min
√∑

wi

• Shape-Based Distance (SBD): Defined as SBD(~x, ~y) = 1−maxwNCCc

3.1.3 Cluster centroids

The third component is the cluster centroids. The cluster centroid computation is ex-
plained for the three distance measures in section 2.4.3 and for SOM in section 2.5.3. As
centroid computation is closely linked to the distance measure and algorithm, they are not
summarized more in this section.

3.1.4 Clustering algorithms

The last component is the algorithm used in the clustering approach. The analyses in the
master thesis are based on different clustering algorithms and different techniques. The
algorithms are:

• K-Means: The classic and robust clustering algorithm. This algorithm will be tested
with the distance measures ED, DTW and SBD (called K-Shape).

• Self-Organising Maps (SOM): Clustering approach which constructs an internal
neural network which is self-organizing.

• Hierarchical clustering: Clustering approaches using a linkage criterion to merge
clusters together. The hierarchical approaches tested are bottom-up algorithms with
single and ward linkage criterion.
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3.1.5 Cluster centroid representation
A central question with clustering is the centroid representations after the final clustering.
As some of the techniques includes transformations, it could be easier to draw conclusions
from a representation of the cluster centroids without the transformation. Therefore, in
some cases, an additional representation of the centroids based on the ED centroid compu-
tation with the original dataset (not transformed) is provided. Recall that the ED centroid
computation takes the average of all the samples in the cluster.

3.2 Experimental settings
This section describes the datasets, CVI computations and the software packages used in
the analyses.

The analyses have been carried out on a shared SINTEF server with 24 physical cores,
512GB RAM and a NVIDIA Tesla K40c processor.

3.2.1 Datasets
The clustering analyses have been done on four different datasets. Three of the datasets
contain the same customers, but have readings from different months. All the datasets
contain hourly readings connected to a customer through a customer ID and a time stamp
for the reading. The four datasets are presented in the following:

• Dataset 1: Contains 1227 customers and have readings over 2 months in the winter
(December + January). Contain the same customers as dataset 3 and 4. The dataset
contains 9 different tariff groups, and each customer is labeled with a tariff group.
The two most frequent tariff groups are: Households, with around 60 % of the
customers and holiday houses and cabins with around 20%.

• Dataset 2: Same dataset as dataset 1, for the summer (July + August).

• Dataset 3: Same dataset as dataset 1, for the fall (September, October and Novem-
ber).

• Dataset 4: Contain 4681 customers and have readings over 3 months (March - May).
All customers are households.

Each reading is the consumption of the last 60 minutes. This means that a reading at
14:00 is the consumption between 13:00 and 13:59.

3.2.2 Time-series samples
As explained in section 2.4, clustering takes a dataset containing n samples and divide the
samples into k clusters. For all the clustering in this master thesis, each sample consist
of 24 elements, where each element in the sample represent the electric consumption (in
kWh) for the corresponding hour. For all the approaches except for average load profiles,
one customer has the number of samples equal to the number of days in the dataset. This
means that one sample is the electric consumption over one day for one customer.
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3.2.3 CVI scores
The CVI scores in this thesis are calculated using the Z-transformed datasets. This is
chosen as 9 out of the 11 approaches presented in section 3.3 perform the clustering on
the Z-transformed datasets. In the results, the silhouette index is abbreviated SI, Calinski-
Harabasz abbreviated CH and Davies-Bouldin abbreviated DB. To make the comparison
between the CVI scores easier, all scores will be divided by the corresponding CVI score
for K-Means. This means that a DB score below 1 and a SI and CH above 1 indicate higher
clustering quality, and a DB score above 1 and SI and CH score below 1 indicate lower
quality.

3.2.4 Software packages used
The clustering performed in this thesis has been using publicly available software pack-
ages. The K-Means, hierarchical algorithms and PCA algorithms are imported from
sklearn [82], K-Shape from tslearn [83], SOM from Sompy [62], and discrete wavelet
transformation from pyWavelets [84].

3.3 Tested clustering approaches
This section presents the tested clustering approaches in this master thesis. Section 3.1
summarizes the clustering components presented in the theory. In the following of the
thesis, the combination of a clustering algorithm and a distance measure will be called one
clustering algorithm. This is done to keep in line with the expressions commonly used in
the literature of clustering on AMS-data as well as make it easier to follow the results and
discussions. One clustering approach is defined as the combination of a data representation
technique and a clustering algorithm.

To overcome the large amount of clustering approaches possible, this master thesis
follows an approach inspired by [41]. This article suggests to test every new approach
against the well-known K-Means algorithm. Therefore, the K-Means algorithm using
the Z-transformation is used as a base throughout the testing, and results are compared
against the K-Means algorithm. The Z-transformation is chosen as a base time-series
representation as it is more used in the literature than the MM-transformation.

In this master thesis the 11 approaches shown in table 3.1 are analysed. The table also
shows the way the approach is written in the table in the results, as the descriptions get
long for some approaches. All of the approaches use the Z-transformed datasets, except
for the K-Means + Min-Max approach, which uses the Min-Max normalized datasets. All
the approaches will be running on all of the datasets with the optimal cluster numbers
found (explained in section 3.3.2). The average computation time will be noted, and the
average CVI scores calculated for all approaches. There will also be a manual inspection
of the cluster centroids for each approach.

3.3.1 Parameters
All the algorithms tested in this master thesis need input parameters. As this thesis focus
mainly on the application and usefulness of the clustering approaches, the default parame-
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Clustering approach Shortened name in results
K-Means K-Means
K-Shape K-Shape

K-Means with Dynamic time warping K-Means + DTW
Self-organising maps SOM

Hierarchical clustering with single linkage criterion Hierarchical + single
Hierarchical clustering with ward linkage criterion Hierarchical + ward

K-Means with principal component analysis K-Means + PCA
K-Means with discrete wavelet transformation K-Means + wavelets

K-Means with Min-Max normalization K-Means + Min-Max
K-Means with average load profiles K-Means + AVG LP

Hierarchical clustering with single linkage criterion and HI + single + AVG LP
average load profiles

Table 3.1: Clustering approaches tested. All approaches use the Z-transformed datasets, except for
the approach with Min-Max normalization.

ters have been used for the algorithms. The default parameters for K-Means can be found
at [85], K-Shape at [86], hierarchical algorithms at [87], SOM at [62], PCA at [88] and dis-
crete wavelet transformation at [89]. However, some of the algorithms require additional,
non-default parameters. These algorithms are presented in the following:

• DTW: The K-Means algorithm with DTW uses a DTW band. Inspired by [1], the
radius of the DTW band is set to 1. This is done to include dynamic time warping,
as well as not making the time differences too big when comparing two elements in
the load profiles.

• PCA: The PCA algorithm requires a number of components. The more components,
the more accurate the representation gets, and the bigger the transformed dataset
gets. The right number of components is therefore a trade-off between size (and
thus computation time) and accuracy. For the computation of the CVI scores on all
the datasets, the number of components for each sample is chosen as 6, which is a
75% reduction. In addition, an analysis with 3, 6 and 12 components on dataset 1
will be performed.

• Wavelet: The discrete wavelet transformation goes through a low pass and a high
pass filter for each level of the algorithm. For each level, the size of the output is half
of the input size. For the CVI computations on all datasets, level 2 is chosen to get
6 elements. As for PCA, the discrete wavelet transformation is also analysed having
3 and 12 elements on dataset 1. The wavelet used in the computation is chosen as
the Haar wavelet, inspired by [1].

3.3.2 Optimal number of clusters
The CVI scores in this thesis are calculated with the optimal number of clusters, found
by the approach described in section 2.7.1. The maximum number of clusters is set to be
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11 in this thesis, chosen to not get way too many clusters. In literature, optimal cluster
numbers are sometimes found to be very high, in some cases over 100 [38]. This is likely
to not make the clusters differentiable, and much harder to visualise in a good way [38].
The clustering approach used to calculate the number optimal number of clusters is the
K-Means with Z-transformation, as this is used as a basis in this thesis. The literature
emphases that clustering is an exploratory tool and suggests using multiple CVIs to obtain
a more robust result. Therefore, the optimal cluster number is found for all of the three
CVIs presented in section 2.6.

3.3.3 Presentation of results
The results from the clustering analyses in this master thesis are evaluated based on the
CVI scores, computation time and manual inspection of the clusters. The CVIs provide a
quantification of the cluster quality, but as explained in section 2.6, they have some short-
comings. As the CVIs include the distance measure in their formula, a fair comparison of
CVI scores from approaches using different distance measures is not possible. As the K-
Means is used as a base, the CVI scores use the ED distance measure in their computation.
The computation time is an objective measure of the clustering approaches, and is added
as the computation time is a crucial factor when choosing clustering approaches [41].

The manual inspection is included because of the shortcomings of the CVI scores. The
manual inspection is based on the criteria listed in section 2.6. The manual inspection
makes it possible to compare the approaches with different distance measures. As some
of the clustering algorithms have different distance measures, more emphasis has been put
on the manual inspection of these approaches.

Some of the approaches have been studied a bit more deeply, due to their characteris-
tics, and are explained in the following:

Reduction techniques

The CVI scores for both reduction techniques are calculated with 50%, 75% and 87.5%
reduction, respectively 12, 6 and 3 elements for each sample (originally 24), on dataset 1.
The reduction techniques reduce the dimension of the dataset, and therefore it is interesting
to see how the CVI scores changes depending on how much the dataset is reduced. The
characteristics of the reduction techniques will also be illustrated by showing the clustering
centroids for different reduction sizes.

New optimal cluster numbers

Optimal cluster numbers are also found using the Min-Max normalization and average
load profiles. As these transformed datasets give different CVI scores, different optimal
cluster numbers might be obtained.

3.3.4 Practical application
A practical application of the clustering will be performed to show an example of how to
use clustering on AMS-data. The practical application will be performed on streetlights
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from dataset 1 for January. As streetlights are expected to have a similar max consumption
day after day, the Min-Max normalization is chosen to best see when the maximum and
minimum consumption find place. The practical application will look for outliers in the
streetlight category, to see if there are any customers with an abnormal consumption pat-
tern. By looking only at outliers, the manual inspection looking for wrongly categorized
customers might be improved.

3.4 Comparison with FASIT

A comparison of clustering results with a current prediction technique for load profiles
will also be done. A current practice among DSOs is to use FASIT, which is explained in
section 2.9.1. As FASIT divides the load profiles for customers in weekdays and weekends
(including public holidays), the data for January is divided into weekdays and weekends
(all public holidays in January 2019 came on weekends in Norway). The variables, A and
B from equation (2.22) are found in [69], and the average temperature for the weekdays
and weekends in January for the given area analysed were found extracting data from the
API provided by The Norwegian Meteorological Institute [90]. The 806 household cus-
tomers in dataset 1 for January are used in the comparison. As FASIT represents average
load profiles, the average values in the dataset will also be shown. The comparison will be
by manual inspection, as it is not possible to make a CVI score from a single sample (the
FASIT load profile).

3.5 Analyses of capacity in the grid

This section presents analyses of the capacity used in the grid, seen from the transformer
side. As AMS contain large amounts of data about electric consumption, more analyses
can be done than only clustering of AMS-data. This section shows one of the many pos-
sibilities with AMS-data. If the connections between a transformer and the customers are
known, aggregated values can be calculated from the AMS-data. This can reveal informa-
tion that is not available for the DSO today.

The 806 households in dataset 1 for January are used in the analyses, and an addi-
tional file containing which transformer each customer is connected to is used to divide
the dataset into subgroups of transformers. The temperature data used is extracted from
the API provided by The Norwegian Meteorological Institute [90].

The coefficients for temperature correction of the energy and power consumption are
found using the data from ENOVA’s home page ([76]) as well as the information from
the DSO providing the data. The equations for temperature correction of the energy and
power are replicated in this section for convenience. The k in equation (3.1) is found to
be 0.5 and the DDnormal

DDyear
to be 0.94 for the given year. The k in equation (3.2) is found

to be 0.0195. The differences between the extreme minimum temperature and the three
day rolling mean temperatures, called diff in equation (3.2), are found using temperature
data for the nearest weather station extracted from [90].
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Ecorrected = Emeasured

{
(1− k) + k

DDnormal

DDyear

}
(3.1)

Pcorrected = Pmeasured + k · diff · Pmeasured (3.2)

The following presents the values calculated in the analyses:

• Energy consumption: Total energy consumption for the transformer in the period
analysed. Found by summarizing all the consumptions for the customers below the
transformer.

• Energy consumption corrected by temperature: Total energy consumption tempera-
ture corrected. Found by using equation (3.1).

• Max power: The maximum consumption in the transformer. Found by summarizing
the consumption each hour for all consumers and taking the highest consumption.

• Time of use: Energy consumption / (max power * time). Gives a relation between
the energy consumption and the maximum power. The energy consumption is given
in kWh, the max power in kW and the time in h, so the time of use will get a value
in the range [0,1].

• Max power corrected by temperature: As explained in section 2.10, there are two
ways to calculate the max power corrected by temperature. The one being used by
the DSOs today is to temperature corrected the maximum power measured. This
is called PMT in this thesis. The other way is to temperature correct every con-
sumption, and then choose the highest value. This is called PT in the thesis. By
calculating the PT instead of PMT, a better value of the maximum temperature cor-
rected consumption is obtained. The PT and PMT are found by using equation (3.2).

• Aggregated max values: Found by summarizing the maximum values for all the
customers below the transformer. The aggregated max power, aggregated PMT and
PT are found.
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This chapter presents the results from the analyses done in this master thesis. The meth-
ods are explained in chapter 3, which are based on the theory in chapter 2, and the results
are discussed in chapter 5. The first section presents the results for the 11 clustering ap-
proaches analysed as well as the optimal cluster numbers for the different datasets. Section
4.2 to section 4.6 present the manual analyses of the approaches and additional analyses
for some of the approaches. Section 4.7 presents the comparison with FASIT, before the
chapter ends by presenting the results from the analyses of capacity in the grid.

4.1 Clustering approaches

The CVI scores and the computation time for the 11 clustering approaches analysed are
shown in table 4.1. (The full description of the approaches is given in table 3.1.). All
the values in table 4.1 are divided by the corresponding value for K-Means. The average
computation time on all the datasets for K-Means was 11 seconds, so the computation
time using the different approaches can be found by multiplying with the factor for that
approach. Recall that DB scores lower than 1 and SI and CH scores above 1 indicate
better clustering quality than the K-Means algorithm. The hierarchical algorithms did not
have the required storage capacity to run on dataset 4, so the values for the hierarchical
algorithms are only for dataset 1 to 3.

The optimal cluster numbers found are shown in table 4.2.

4.2 Clustering algorithms

This section presents the manual inspection of the clustering algorithms. The manual
inspection criteria are given in section 2.6.
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Clustering approach DB SI CH Computation time
K-Means 1 1 1 11s
K-Shape 1,008 1,017 1,000 x57

K-Means + DTW 1,131 0,811 0,899 x1012
SOM 2,003 -0,559 0,123 x5

Hierarchical + single 1,109 -2,744 0,012 x52
Hierarchical + ward 1,277 0,444 0,581 x273

K-Means + PCA 1,027 0,962 0,989 x0,61
K-Means + wavelets 1,079 0,897 0,949 x0,56
K-Means + Min-Max – – – x0,93
K-Means + AVG LP – – – x0,05

HI + Single + AVG LP – – – x0,03

Table 4.1: Results from clustering analyses

CVIs D1 D2 D3 D4
DB 3 10 11 11
SI 2 2 2 2

CH 2 2 2 2

Table 4.2: The optimal cluster numbers

4.2.1 K-Means

Some selected results from the K-Means algorithm are shown in figure 4.1 to figure 4.3.
Figure 4.1 shows the results from dataset 1, where three distinct and substantial cluster
centroids are shown. As the clustering of dataset 2, 3 and 4 got quite similar, only the
results from dataset 1 and 4 are included.

Figure 4.2 shows the results from dataset 4 with 11 clusters. The results on dataset 2,
3 and 4 with 10 and 11 clusters showed 7 to 8 clusters with low transferred values and one
steep peak, as figure 4.2a shows. The 2 to 3 other clusters have different shapes, where
one has a Z-value close to 0 for all the hours (green load profile in figure 4.2a). Although
many clusters, all of clusters from all the datasets fulfil the distinguishable and substantial
criteria. In figure 4.2 all the clusters sizes lie between 22 967 and 64 317.

Figure 4.3 shows the results from the clustering on dataset 4 with 2 clusters. By com-
paring this figure with figure 4.2, it seems like clusters with peaks to the left are merged
and the clusters with peaks on the right are merged. The clustering with 2 clusters also
manages to make distinguishable and substantial clusters.

4.2.2 K-Shape

The results from the K-shape algorithm are very similar to the results from K-Means. This
means that K-Shape also made distinguishable and substantial clusters. Figure 4.4 shows
the results from K-Shape on dataset 1, which is almost identical to the results from K-
Means. As the K-Shape got so similar results to K-Means, more results are not included.
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(a) Z-transformation representation (b) Original data representation

Figure 4.1: K-Means on dataset 1 with 3 clusters. Two different cluster representations.

(a) Z-transformation representation (b) Original data representation

Figure 4.2: K-Means on dataset 4 with 11 clusters. Two different cluster representations.

(a) Z-transformation representation (b) Original data representation

Figure 4.3: K-Means on dataset 4 with 2 clusters. Two different cluster representations.
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(a) Z-transformation representation (b) Original data representation

Figure 4.4: K-Shape on dataset 1 with 3 clusters. Two different cluster representations.

(a) Z-transformation representation (b) Original data representation

Figure 4.5: K-Means with DTW on dataset 1 with 3 clusters. Two different cluster representations.

4.2.3 K-Means with DTW

The clustering results from K-Means with DTW were different from the results from the
original K-Means algorithm. The most different results are the shapes of the Z-transformed
centroids, which are very fuzzy. The shapes of the transformed centroids do not represent
the average values of the clusters. This is shown in figure 4.5. The cluster sizes and cluster
centroids are in general different from the clusters from K-Means. This can be seen by
comparing figure 4.5b and 4.1b. The cluster have different sizes, and the centroids have
similar shapes, but with a different offset. Based on the manual inspection, the clustering
with K-Means with DTW gives distinguishable and substantial clusters, but they might be
a little bit less compact compared to K-Means, as they are less smooth.

4.2.4 Self Organizing Maps

This approach shows more different results than the previous approaches. The cluster
centroids seem to be less distinguishable and less compact. This can be seen from the
results on dataset 4 with 11 clusters, shown in figure 4.6. The SOM algorithm also has a
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(a) Z-transformation representation (b) Original data representation

Figure 4.6: SOM on dataset 4 with 11 clusters. Two different cluster representations.

tendency in making some of the clusters smaller, exemplified for dataset 4 with 11 clusters
where the SOM approach has the smallest cluster as 7631, compared to 22 967 for K-
Means.

4.2.5 Hierarchical clustering

This subsection presents the results from the two hierarchical clustering algorithms. Both
of the hierarchical clustering algorithms did not have enough space requirements to run
the algorithm on the biggest dataset, dataset 4.

Single linkage criteria

The results from the hierarchical clustering with single linkage criteria are quite different
from the results from the other clustering algorithms. On dataset 1, 2 and 3 with 2 clusters,
the hierarchical clustering with single linkage divides the samples in one cluster with Z-
values equal zero, and the rest of the samples in the other cluster. The clustering results
from dataset 3 with 2 clusters are shown in figure 4.7. None of the other algorithms got
similar results.

The results on dataset 1, 2 and 3 with higher number of clusters (respectively 3, 10 and
11), show two relatively big clusters and the rest of the clusters contain only one sample.
The results from hierarchical clustering with single linkage on dataset 3 with 11 clusters
are shown in figure 4.8. By studying figure 4.7 and 4.8, we see that the two clusters
from the clustering with only two clusters are still there with 11 clusters, but in addition 9
clusters containing only one sample.

Ward criteria

The results from the hierarchical clustering with ward linkage on dataset 1 with 3 clusters
is shown in figure 4.9. The results from the manual analysis is that this approach seems
to give less smooth curves and the clusters are not as clearly defined as with the K-Means
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(a) Z-transformation representation (b) Original data representation

Figure 4.7: Hierarchical clustering with single linkage criteria on dataset 3 with 2 clusters. Two
different cluster representations.

(a) Z-transformation representation (b) Original data representation

Figure 4.8: Hierarchical clustering with single linkage criteria on dataset 3 with 11 clusters. Two
different cluster representations. The clusters not labelled contain only one sample.
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(a) Z-transformation representation (b) Original data representation

Figure 4.9: Hierarchical clustering with ward linkage criteria on dataset 1 with 11 clusters. Two
different cluster representations.

approach. This suggests less distinguishable clusters, which is also confirmed by the CVI
scores in table 4.1.

4.3 Reduction techniques
This section presents the results from the additional analysis with the reduction techniques,
PCA and wavelets. As explained in section 3.3.3, the PCA and wavelets were tested with
three different reductions, 50%, 75% and 87.5%, on dataset 1. The chosen number of
clusters is 3, as this illustrates differences better than two clusters, the other optimal cluster
number on dataset 1.

Figure 4.10 shows CVI scores on dataset 1 when reducing the dataset with 50%, 75%
and 87.5%. In this figure, the dashed lines represent the clustering with wavelets while the
full lines represent the PCA. The reductions correspond with 12, 6 and 3 elements, as the
original size of the samples are 24 elements. The red line is one and represents the KM-
scores. The figure shows that the wavelet scores get worse the more reduction, while the
PCA score is not affected much of the size of the reduction on this dataset. The silhouette
score is actually higher with 75% and 87.5% reduction, compared to 50% reduction of the
dataset for PCA.

In the following subsections, visualisations for each reduction technique are presented
to illustrate the characteristics of each reduction technique.

4.3.1 PCA

Figure 4.11 shows the results from the K-Means algorithm using PCA transformation with
6 principal components. By looking at the two first components (figure 4.11a), the clusters
centroids are clearly distinguishable from each other. For component three to six, the com-
ponents are almost 0, which indicate that 2 components would be enough to distinguish
the clusters from each other. This is confirmed by the results from 3 and 12 components,
shown in figure 4.10, where similar CVI scores are achieved.
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Figure 4.10: CVI-score for the reduction techniques

(a) PCA representation (b) Original data representation

Figure 4.11: K-Means clustering with a PCA and Z-transformation of data on dataset 1. Two
different cluster representations.
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(a) Wavelet representation (b) Original data representation

Figure 4.12: K-Means clustering with a wavelet transformation of dataset 1 with 3 clusters. Two
different cluster representations.

(a) Wavelet level 3 (b) Wavelet level 1

Figure 4.13: K-Means clustering with a wavelet transformation on dataset 1 with 3 clusters. Two
different levels in the wavelet algorithm.

4.3.2 Wavelets

Figure 4.12 and 4.13 show the results from the K-Means algorithm using wavelet transfor-
mation. Figure 4.12 shows the cluster centroids using the data after the wavelet transform
(figure 4.12a) as well as the representation using the ED representation on the original data
(figure 4.12b). To show how the wavelet transformation changes by changing the number
of levels (each level halves the number of elements), figure 4.13 is added. In figure 4.12,
the level of the wavelet transformation is 2, to get the desired number of 6 components.

In figure 4.12, the cluster centroids are similar in shape, but the cluster sizes are a bit
different, compared to K-Means. When decreasing the levels used in the wavelet algo-
rithm (which means less reduction), the cluster sizes become more similar to K-Means.
This can be seen in figure 4.13b. The figures show that the wavelet transformation try to
approximate the shape of the original data, and the higher the level is (which means fewer
elements), the worse the approximation gets. By comparing figure 4.12b and figure 4.13b,
the shapes are quite similar, while figure 4.13a is less similar due to fewer elements.
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(a) Min-Max normalization (b) Z-transformation

Figure 4.14: K-Means clustering with two different transformation techniques on dataset 3 with 11
clusters

CVIs D1+Z D1+MM D2+Z D2+MM D3+Z D3+MM D4+Z D4+MM
DB 3 6 10 3 11 5 11 5
SI 2 2 2 2 2 2 2 2

CH 2 2 2 2 2 2 2 2

Table 4.3: Optimal cluster number using MM-normalization and Z-transformation

4.4 Transformation techniques

This section presents the other transformation technique used in this master thesis, the
Min-Max normalization. Combined with the Z-transformation, these transformation tech-
niques do not reduce the size of the dataset.

The results show that the Min-Max (MM) normalization tend to cluster more based
on the consumption relative to the maximum and minimum consumption. This is well
illustrated for dataset 3 with 11 clusters, shown in figure 4.14a for the MM-normalization
and in figure 4.14b for the Z-transformation. While the Z-transformation only have one
load profile with stable load during the day (the dark blue line around 0 in figure 4.14b),
the MM-normalization has three load profiles with stable load (the yellow line and the two
blue lines in figure 4.14a).

A trend is that with the MM-normalization the clustering is less affected by the peaks.
This can be seen for dataset 4 with 11 clusters, shown in figure 4.15. Figure 4.15a shows
the clustering with the MM-normalization, and figure 4.15b shows the clustering with Z-
transformation. The cluster centroids using the MM-normalization do not have so distinct
peaks, compared to the Z-transformation.

The optimal number of clusters using Z-transformation and MM-normalization are
shown in table 4.3. The results are identical for the SI and CH index, while for the DB
index, it is different for all the datasets.
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(a) Min-Max normalization (b) Z-transformation

Figure 4.15: K-Means clustering with two different transformation techniques on dataset 2 with 10
clusters.

Figure 4.16: Clustering with all samples (dashed lines) and with average load profiles (full lines)
for dataset 1 with 3 clusters.

4.5 Average load profiles

This section presents the results using the average load profiles as the input data for the
clustering algorithm. As explained in section 2.9.1, with average load profiles one cus-
tomer has one load profile, and each hour in this load profile is the average consumption
this hour in the whole period.

Figure 4.16 shows the results of the clustering with all samples and with average load
profiles on dataset 1 with 3 clusters. The clustering with average load profiles are the full
lines, while the clustering with all samples are the dashed lines. The cluster centroids from
the clustering with average load profiles have similar shapes, but more extreme values. The
centroids from clustering with all samples seem like smoothings of the centroids from the
clustering with average load profiles.

The results of hierarchical clustering with single linkage and average load profiles are
shown in figure 4.17. These results show one large cluster and two clusters including only
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(a) Z-transformation representation (b) Original data representation

Figure 4.17: Hierarchical clustering with single linkage criteria and average load profiles on dataset
1 with 3 clusters. Two different cluster representations.

CVIs D1 D1+A D2 D2+A D3 D3+A D4 D4+A
DB 3 3 10 3 11 3 11 2
SI 2 2 2 2 2 2 2 2

CH 2 2 2 2 2 2 2 2

Table 4.4: Optimal cluster number with all load profiles and the load profiles averaged (A) and
Z-transformation (no extra label).

one customer. These two outliers have quite fuzzy consumption (shown in figure 4.17a),
but they have a very low consumption (shown in figure 4.17b).

The results of the optimal cluster number computation using average load profiles and
Z-transformation are shown in table 4.4. The results are identical for SI and CH, but lower
with the DB index.

4.6 Practical application

This section presents the results from the practical application explained in section 3.3.4.
The average profiles of the customers with categorization streetlights are taken as input
to the K-Means algorithm with Min-Max normalization using 4 clusters. The number of
clusters were chosen such that both outliers got isolated, while the other, and seemingly
normal customers, got clustered together. The results are shown in figure 4.18, where we
see two load profiles having a different shape of what we think of typical load profiles
for streetlights. However, as shown in figure 4.18b, the average consumption of these two
customers are quite low, below 1 kWh in average.

We analyse the red load profile a bit more, and its consumption is shown in figure 4.19.
By analysing more we find that this customer has a minimum consumption this month of
0.212 kWh and maximum consumption of 0.470 kWh. From figure 4.18b we see that
cluster 0 and cluster 1 go almost to zero when the lights are not turned on. This is not the
case for cluster 2 and 3.
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(a) Z-transformation representation (b) Original data representation

Figure 4.18: Clustering in the practical application on streetlights.

Figure 4.19: Average consumption for one of the abnormal load profiles

51



Chapter 4. Results

(a) Z-transformation representation (b) Original data representation

Figure 4.20: Comparison of clustering and FASIT load profiles on households for weekdays. Two
different cluster representations.

(a) Z-transformation representation (b) Original data representation

Figure 4.21: Comparison of clustering and FASIT load profiles on households for weekends. Two
different cluster representations.

4.7 Comparison with FASIT

This section presents the comparison of clustering results on dataset 1 and FASIT load
profiles. As explained in section 3.4, the households in dataset 1 are extracted and divided
into weekends and weekdays. Figure 4.20 shows the clustering results on dataset 1 with
weekdays and the corresponding FASIT load profile. The transformed values of the FASIT
profile and the average value differ quite much (shown in figure 4.20a), while with active
power (figure 4.20b) they almost align. The same can be seen in figure 4.21, which shows
the same results for the weekends. For both of the transformed FASIT load profiles, it
seems like a scaling factor could make them quite similar to the average value profile.

While the average values and FASIT load profiles are quite similar in the active power
representation, the datasets contain load profiles with shapes very different from the aver-
age. This is captured by the three clusters, which all have different shapes than the average
load profile for both weekdays and weekends.
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4.8 Transformer analyses
This section presents the results from the methods explained in section 3.5.

4.8.1 Energy transformed

The energy transformed for January is shown in figure 4.22, both with and without tem-
perature corrections.

Figure 4.22: Energy consumed, with and without temperature correction, below transformers

4.8.2 Max power

The maximum power for the transformers in January, both with and without temperature
corrections, are shown in figure 4.23. As the transformers have a high difference in the
maximum power, it is hard to see the differences accurately between the maximum power
with and without temperature correction.

Figure 4.23: Maximum power below transformers
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Figure 4.24 shows the maximum power corrected by temperature, both PMT and PT,
divided by the maximum power measured. A value of, for example 1.2, means that the
maximum power corrected by temperature is 20% higher than the maximum power mea-
sured. Recall from section 3.5 that PMT is an abbreviation for maximum power measured
corrected by temperature and PT for maximum power corrected by temperature. The dif-
ference between PMT and PT is shown in figure 4.25, where the values are normalized by
dividing by the maximum power measured for the transformer. In a bit more than half of
the cases they coincide, and in other cases it is a big deviation, up to 20 %. Some values
are summarized in table 4.5. The table shows a difference of 3.7 % in average between
the PMT and PT. The table also shows that the PMT and PT coincide for 47 % of the
transformers.

Figure 4.24: Maximum power below transformer normalized

Variables Increase PT Increase PMT Coinciding peaks
Values 35.8 % 32.1 % 47 %

Table 4.5: Some key values from temperature corrections on max power

4.8.3 Time of use
The time of use for each transformer, is shown in figure 4.26. The figure shows that some
transformers have a low time of use, and that most of the transformers lie between 0.4 and
0.7.

4.8.4 Max power aggregated by consumers
The transformers have max consumption when the sum of the consumption of the cus-
tomers below the transformer is the highest. However, an interesting value is the aggre-
gated maximum for each of the customers below a transformer. This value is given for
each transformer in figure 4.27a. The figure shows peak values for the transformers, both
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Figure 4.25: Difference between PMT and PT

Figure 4.26: Time of use for transformers

the measured peak value in the transformer and the aggregated peak values for all cus-
tomers below the transformer. Figure 4.27b shows the same values normalized (divided
by the peak value measured in the transformer). The average increase for the aggregated
peak values is found to be 37%.

Figure 4.28a shows the aggregated maximum consumption measured and aggregated
PMT. Figure 4.28b shows PMT and PT normalized by diving by the aggregated maximum
consumption measured. The average increases for the normalized PMT and PT are found
to be 36.3% and 39.8%. The normalized difference between PMT and PT is shown in
4.29. The average difference between PMT and PT is 3.5%.

The average increase between the measured maximum consumption in the transform-
ers compared to the aggregated PT is 106%. This means that the average increase in the
maximum value would be 106% higher if all the customers would have their maximum
consumption at the same time and the temperature would be at the extreme minimum.
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(a) Transformer and aggregated peaks (b) Normalized peaks

Figure 4.27: Measured peak and aggregated peaks for transformers

(a) Transformer max and MPT (b) Normalized peaks

Figure 4.28: Measured peak and aggregated peaks for transformers

Figure 4.29: Differences between the aggregated PMT and PT
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Discussion

This chapter presents the discussion of the analyses performed in the master thesis, de-
scribed in chapter 3 and presented in chapter 4. The discussion is based on the theory,
presented in chapter 2, and the combination of the results and discussion will be summa-
rized in the conclusion, chapter 6.

The discussion will take a similar structure as the results presented in chapter 4. The
clustering approaches will be discussed first, followed by a discussion of the analyses
of capacity in the grid. Then, a broader discussion including assumptions usefulness of
clustering is presented. The chapter ends by a short description of the working process and
challenges along the way. The discussion about the clustering approaches starts by looking
at the clustering algorithms before the data representation techniques are discussed. Then,
the practical application and the comparison with FASIT load profiles will be discussed.

5.1 Clustering approaches
As suggested in the literature, multiple clustering approaches have been tested in this mas-
ter thesis. The clustering algorithms have been tested with multiple CVIs, also suggested
in literature, to make the results more robust. However, as discussed in this section, there
are some shortcomings of the CVIs.

This section begins with a short discussion of the CVIs and computation times before
the clustering algorithms are discussed. Then the data representation techniques are dis-
cussed before the practical application and the comparison with the FASIT load profiles
end the section.

CVIs

The CVIs are used to test the quality of the clustering, but as pointed out in the theory, the
CVIs include a distance measure. This means that a comparison of two clustering methods
using different distance measures is not a fair comparison. The CVIs scores calculated in
this master thesis all use the ED, which favours the algorithms using the ED as distance
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measure. For the algorithms that use the ED distance measure, the CVIs seem to be a good
indicator of the quality. This gives us, combined with the execution time and the manual
analyses, a basis to conclude that some of the approaches are not preferred.

5.1.1 Clustering algorithms
This master thesis tested 6 different clustering algorithms. Two of the algorithms use a
different distance measure (K-Shape and DTW), which make a bigger emphasis on manual
analyses. This is an obvious disadvantage, as subjectivity is influencing the results in a
higher degree. In the following, all the algorithms will be discussed.

K-Means

This is the base approach in this master thesis. It performs pretty good compared to the
other approaches, even though it is worth to keep in mind that the CVIs favours the ED
distance measure. However, it achieves surprisingly similar results as the K-Shape, which
suggest good quality, even though K-Means does not incorporate shift invariance. It is
the fastest of the clustering algorithms, and the results show that by using a reduction
technique the computation time can be lowered without lowering the clustering quality
significantly. The results suggest that the simple K-Means with Z-transformation is a
good choice for clustering load profiles, especially if the computation time is of important
character.

K-Shape

The K-shape algorithm performs surprisingly similar to the K-Means algorithm, both in
cluster sizes, centroid shapes and cluster quality measured from the CVIs. It should any-
way be pointed out that the CVIs use the ED, which favours the K-Means algorithm. The
similar results with CVIs favouring algorithms using ED might suggest an increased clus-
tering quality using K-Shape, as the ED does not incorporate shift invariance. By deciding
whether to use K-Shape or K-Means, one should evaluate the trade-off between increased
computation time and a possible increase in clustering quality.

DTW

The results of the K-Means using the DTW distance measure are different from K-Means
and K-Shape. The cluster centroids from the DTW computation are very fuzzy, and the
centroids are not representative for the average shape of the samples in the cluster. This is
probably because the centroids incorporate dynamic time warping, which lets each sample
have local shifts to align the best way possible with the centroid. This give us additional
information which indicates that the individual samples are quite fuzzy and chaotic, even
though the average values are smooth. This is in line with other findings in literature ([49],
[50]). The long trends of the DTW centroids, found by taking the rolling mean, seems to
give similar shapes as the centroids from K-Means.

The clustering quality is a bit hard to make conclusions from. The CVI scores show
a significant lower quality than K-Means and K-Shape, but as mentioned before, the CVI
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scores are calculated using the ED distance measure. The sizes of the clusters are also
somewhat different, except for with 2 clusters, where they are quite similar. The results in-
dicate that using the DTW distance measure instead of ED give a quite different clustering.
The computation time is a big disadvantage, and the DTW clustering has a computation
time over 1000 times higher than K-Means, a factor which increases with the size of the
dataset and the number of clusters. Based on the findings in this thesis, the K-Means
with DTW cluster differently than K-Means and K-Shape, but the results raise a question
whether or not the increased computation time is worth the possible increase in clustering
quality.

Different results might be achieved when the frequency of the readings is increased to
15min (proposed to start in 2023 in Norway), as local time shifts might be more important
with increased metering frequency.

SOM

The SOM algorithm seems to perform badly compared to the K-Means algorithm. The
CVI scores are considerably worse than the K-Means, and the manual analyses seem to
reveal less compact and differentiable clusters and the computation time is higher than K-
Means. By running the algorithm multiple times, the results differ considerably more than
the K-Means, which indicate a less stable method. The SOM-algorithm is quite complex
compared to the other algorithms tested in this master thesis. Therefore, more insight in
the algorithm and better setup of parameters and training might increase the performance
of the algorithm. However, based on the bad results, it is unlikely that increased insight
can make obtain similar CVI scores as the K-Means. More training will also increase the
computation time of the algorithm. Therefore, based on the results in this master thesis,
the SOM algorithm does not seem like a preferred choice for clustering on AMS-data.

Hierarchical clustering with single linkage

The hierarchical clustering with single linkage gives some interesting results, even though
it has among the worst CVI scores. The results show a tendency to make a cluster which
have constant power during the day (their values Z-transformed are 0). None of the other
clustering approaches extracted this cluster, which tells us that the algorithm can detect
clusters the others fail to detect. However, the algorithm tends to make clusters containing
only one sample. This might in many cases not be desired, as the clusters might not fulfil
the substantial criteria. The hierarchical algorithm with single linkage is considered good
if the goal is to get additional information about outliers in the dataset.

Hierarchical clustering with ward linkage

The results with hierarchical clustering with ward linkage show higher CVI scores com-
pared to the single linkage, but the results from ward linkage are not so interesting. The
CVI scores are significantly worse than the K-Means, K-Shape and K-Means with DTW,
even though the ward linkage uses the ED distance measure. By manual inspection the
clusters seem to be less distinguishable. The computational time is also relatively high,
around 270 times higher than K-Means on dataset 1 with 3 clusters.

59



Chapter 5. Discussion

Both of the hierarchical algorithms did not manage to run the biggest dataset, due to in-
sufficient memory. From the theory we know that the computational time (and thus mem-
ory requirements) increases more than partitional algorithms, which especially favours the
partitional algorithms on large datasets.

Stability criterion

The stability criterion was the fourth manual inspection criterion mentioned in the theory.
This was not tested systematically in this thesis, but some tendencies were found when
running the algorithms. Three of the algorithms showed a tendency to be pretty stable,
while the other three showed more differences in cluster sizes on different runs. In general,
the most stable algorithms got higher CVI scores, except for hierarchical clustering with
single linkage. The stable algorithms seemed to be K-Means, K-Shape and hierarchical
clustering with single linkage. The less stable algorithms seemed to be SOM, K-Means
with DTW and hierarchical clustering with ward linkage.

5.1.2 Data representation techniques
This subsection discusses the results from the data representation techniques used in this
master thesis. The data representation techniques can be divided to reduction techniques,
which reduce size of the dataset, transformation techniques, which transform the dataset
while keeping the size constant and the average load profile representation, which repre-
sent each customer with only one sample.

Reduction techniques

The PCA achieves good results on the CVI scores and a considerable reduction in the
computation time. By reducing the size of the dataset with 75%, the computational time
decreases with 39%, and reducing the CVI scores with 2.5%. On dataset 1 with 3 clusters,
similar CVI scores were achieved with only 3 elements (87.5% reduction), so the reduction
technique might perform well using few elements. The clustering with PCA uses a little
bit more time than the with wavelets, but as the CVI scores are significantly higher, the
PCA seems to be the preferred reduction technique.

The wavelet reduction technique also achieves relatively good CVI scores. At least
compared with the SOM algorithm and the hierarchical algorithms. One point of interest
is that the CVI scores with wavelets drops considerably with the increased reduction. The
computation time is a bit lower than for PCA, but not enough to weight up for the lower
CVI scores.

These reduction techniques were tested on load profiles with hourly readings, but as
pointed out in the theory, 15-min readings are proposed in Norway from 2023. Therefore,
reduction techniques might be even more important in the future, as the reduction in quality
might be relatively lower compared to the increased computational speed. The results on
clustering of time-series with higher resolution for the two reduction techniques might be
different than the results found in this master thesis. It should also be pointed out that
other reduction techniques might perform as good or better than the PCA, but that PCA
anyways seems like a good choice.
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Transformation techniques

There are multiple transformation techniques which incorporate scaling and translation
invariance. The Z-transformation was chosen as the base transformation in this thesis be-
cause it is most used in the literature. As can be seen in the results in this master thesis, the
two different transformation techniques used give clusters with different characteristics.
This is reasonable, as they provide a different transformation in the same space. With the
MM normalization, we saw a tendency of clustering based on their relative consumption
compared to the maximum and minimum daily consumption. While the Z-transformation
typically clustered maximum one cluster with constant consumption, the MM normaliza-
tion gave multiple clusters with constant consumption. The clusters in the MM normaliza-
tion had a different relative consumption, some low and some higher.

In the context of demand response, the clusters from the MM-normalization could be
valuable information. The customers with a low consumption relative to their maximum
consumption might be able to shift their consumption if desired, while customers with high
relative consumption, might not have this opportunity. Customers with medium constant
consumption might also be valuable, if they are able to switch their consumption both up
and down. However, customer’s possibilities and willingness to change their consumption
might differ greatly even within clusters with similar characteristics. But clustering with
MM-normalized data might be a first step to reveal customers with constant consumption.

The optimal cluster number is also tested with the MM-normalization. For the DB
index, different optimal cluster numbers were achieved for all datasets, while the cluster
numbers were the same for the SI and CH index. It is hard to draw conclusions from the
results, but they show that different optimal cluster number can be achieved with different
transformation techniques.

Average load profiles

This data representation technique is a combination of reduction techniques and transfor-
mation techniques. It reduces the dataset that is being clustered, and it makes new samples
to be clustered, with the same length. The intention behind average load profiles was to
see if this reduction could maintain the characteristics of all the samples in the dataset,
while drastically reduce the computation time. The computation time on K-Means is only
5% of the computation time with all the samples.

The result on the first dataset shows that the average load profile makes clusters with
similar shape, but actually more extreme values. This was not expected, as the average
load profile method averages the hourly consumption for each customer before the clus-
tering is performed. This shows that clustering with average load profiles could work as
a good approximation for early analyses on big datasets. Using the average load profile
representation might make other and more time consuming algorithms, like K-Means with
DTW, possible to carry out in early analyses of the dataset.

The results from the optimal cluster number calculations with average load profiles
show that in general a lower clustering number is found. This might suggest that find-
ing the optimal cluster number using the average load profile approach might be a good
first approach to find the optimal cluster number in a large dataset, as the computation of
optimal cluster numbers using all the samples in the dataset was quite time consuming.
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Stability criterion

There were seen some tendencies for the different data representation techniques regard-
ing the stability. The MM-normalization showed similar stability as Z-transformation and
the reduction techniques showed an increasing stability with increasing CVI scores. The
average load profiles showed a high degree of stability, but this clustering included signif-
icantly lower samples to cluster than the other clustering approaches.

5.1.3 Practical applications
The practical application shown in this master thesis presents an example of how clus-
tering can be used to analyse a group of customers. The practical application carried out
exemplifies one way to look for outliers. As the clustering can group customers, having
a small dataset of customers or using an approach which naturally cluster outliers (for
example hierarchical clustering with single linkage), some possible customers can be de-
tected. By only inspecting these candidates, the detection of outliers, possibly with wrong
categorization, can be much more efficient than inspecting all the customers.

5.1.4 FASIT
The results from this thesis seem to confirm that the common practice today for predicting
load profiles is a good approximation of the average consumption. The second peak of the
FASIT profiles is however a bit later, around 2 hours, than the peak found in the dataset for
both weekdays and weekends. The comparison with FASIT is only done for one month,
so one should be careful to draw too strong conclusions. The intention behind testing
the clustering against the FASIT load profiles was to show that the current approach only
consider average values, and not the variety in the dataset. This is an advantage with
clustering, as the different characteristics in the dataset can be found. The next step to
improve the common practice today is to find out how clustering, or other techniques, can
be used to improve the predictions.

5.2 Analyses of capacity in the grid
The usage of clustering on AMS-data in Norway is expected to mainly find place from 1
year and head (section 2.2.1). Therefore, having analyses that are closer to the calculations
and analyses performed today can be a bridge towards familiarizing oneself with analyses
on AMS-data, and especially AMS-consumption data (active or reactive power) as used
in this thesis. By being familiarised with analyses on AMS-data, clustering on AMS-data
might be a reasonable next step in the analyses of AMS-data. The analyses of the capacity
in the grid do also give additional and useful information which can be used immediately
in the operation and planning of the grid. This is compared to the clustering, which is a
great technique for grouping, but maybe a bit hard to see exactly how it can be used in the
operation and planning of the grid.

The results from the analyses of capacity in the grid show many interesting and useful
results, discussed in the following:
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5.2.1 Temperature corrections
As mentioned in the theory, the difference between the maximum power measured tem-
perature corrected (PMT) and the maximum power temperature corrected (PT) might not
be the same. Using the sensitivity provided by the DSO in the area analysed, only 47%
of the transformers have coinciding peaks for the PMT and PT. This means that in 53%
of the transformers, the current approach does not represent the maximum consumption
with temperature correction sufficiently. The average difference between PMT and PT is
found to be 3.7% in the dataset analysed. For some transformers the difference between
the PMT and the PT can be up to 20%. Using the PT instead of PMT might therefore be a
big improvement for the DSOs.

5.2.2 Aggregation
The results using the aggregated PMT and PT show similar results to the non-aggregated
PMT and PT, but the number of coinciding peaks is lower. The lower number of coinciding
peaks is probably because a much higher number of consumption points are analysed. The
aggregated PMT and PT use the consumption of all the customers below each transformer,
while the non-aggregated PMT and PT only use the consumption in the transformer.

5.2.3 Usefulness of aggregation
The results from the aggregated maximum power is included to focus a bit on what could
happen if customers change their consumption patterns. The last months with the corona
virus have shown a shift in the consumption patterns in Norway ([91]), which tells us that
previous consumption might not always reflect future consumption. This is important to
keep in mind when using the results from AMS-data, and it is important to reflect about
the consequences of a wrong prediction. When installing electrical infrastructure, the cost
of predicting too low electric consumption might be very high, due to later upgrades of the
lines or cables. On the other hand, the consequences of predicting too high or low losses
in the grid might not have so big consequences.

The average increase of the aggregated peaks compared to the transformer peaks shows
an increase of 37% in the dataset analysed. The results are ranging from zero 0% to 100%
increase in consumption with aggregated peaks. These values could be quite different
using different datasets, but the results show a big difference in the aggregated peaks and
transformer peaks.

The average increase of the measured peak in the transformer compared to the aggre-
gated PT is found to be 106% in the dataset analysed. This is a high increase, but a high
increase is also expected due to aggregation of customer peaks and as well as temperature
correction. It shows however the effect of extreme minimum temperature and aggregation,
which is worth considering in some degree in the planning phase.

5.2.4 Assumptions and uncertainties
The temperature sensitivity used for this area by the DSO is quite high compared to com-
monly used temperature sensitivities. This might give a higher impact to the temperature
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corrections than using a smaller temperature sensitivity. The analyses were first performed
with a 1% temperature sensitivity (as this was the value used by the DSO in 2018), which
also revealed a high percentage (42%) of transformers with non-coinciding PMT and PT
peaks. As mentioned in the theory, there are uncertainties around the temperature sensi-
tivities. By using AMS-data, these temperature coefficients can be updated to reflect the
actual temperature sensitivities today. The temperature sensitivities can also be different
during the year, for example each month or seasons in the year, which might reflect the
true temperature sensitivities even better.

The values found in the analyses of capacity do not contain the losses in the grid, nei-
ther in the lines from the transformer to the customers nor the losses in the transformer.
The values are simply aggregated values from the customers. However, if the characteris-
tics and the topology of the grid were known, this could be included in the analyses.

5.3 Broader discussion

This section will discuss things that do not naturally fit under the discussion of the results.

5.3.1 Applications of clustering

This subsection presents a discussion of the applications and usefulness of clustering. As
mentioned in the theory, clustering is the study of methods and algorithms for grouping.
We have seen for the results in this master thesis that clustering provide a grouping of the
data, and the results from the clustering depend on the components chosen in the clustering
approach. When doing clustering, it is important to know what clustering can do, but it
might be equally important to know the limitations and shortcomings of clustering. If
clustering is an unfamiliar technique, it might be hard to see these limitations.

Additional information

During the work with this master thesis, conversations with employees in Norwegian
DSOs have revealed a desire to have more information about the customers, and to have
improved load profiles on these customers. Some examples are customers with electric
cars, solar panels, heating technology used, number of persons at home and working time.
This is useful for DSOs, as more accurate load profiles can be made, and more accurate
predictions about the customers consumption can be made. Many people see clustering
as a technique which can solve this. However, as mentioned in the theory, clustering is
mainly used in practical applications without external labeling information. If we already
have a good grouping, why bother to use clustering? The external information can be
valuable when using clustering, but it is mainly used as a validation technique, as it shows
how well the clustering is performing.

A common question that employees in the Norwegian DSO encounter is whether it is
available capacity in the grid for connecting one or multiple customers a given place in the
grid. Although clustering can show and visualise characteristics of the dataset analysed, it
seems not to be the best technique to answer the question above. Clustering is mainly a tool
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for grouping, organizing and visualisation of characteristics in a dataset, not a prediction
technique.

Visualisation

One of the strengths with clustering is the possibility to organize and visualise the data
by centroids. An example became clear during a conversation with an electric supplier,
where guidance of customers that wanted solar panels or batteries was discussed. When
approaching and talking to customers, it is important to represent the findings in an un-
derstandable way for the customer. By visualising the customers consumption, the effect
of including batteries can be added. An example is shown in figure 5.1, a customer from
dataset 4. This customer has an average consumption relatively constant from 5:00 to
20:00, and the average consumption never goes above 6 kWh. As the network tariffs pro-
posed (section 2.3) include a cost associated to the daily peak consumption, the average
consumption is not the only interesting value. The clusters show that the consumption for
all the clusters goes above 6 kWh, and most of the days up to 7 kWh, which means an
increased cost. If the customer could install a battery, the maximum consumption in aver-
age consumption for each cluster could be decreased. An example of a decrease is shown
in figure 5.1b, where the maximum consumption for each cluster centroid is around 5.7
kWh. In this figure, the dashed lines represent the previous consumption, while the filled
areas show the new consumption. The actual figures shown to customers would be made
nicer, but these simple figures show one way to visualise a customer’s consumption.

(a) Clustering of customer (b) Customer clusters with battery

Figure 5.1: Example of visualisation for customer introducing a battery

Centroid representation

The clustering centroids shown are the centroids which minimize the objective functions,
and in many cases they are close to the average values of samples in the cluster. As many
samples are gathered in a cluster, the centroids show the typical consumption pattern in that
cluster. The samples in the clusters differ therefore probably significantly from the cluster
centroids, at least the DTW algorithms give some indications of this. This is important
to keep in mind when using the clustering results, that individual samples differ from the
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cluster centroid. The usage of the results from AMS-data is briefly discussed in section
5.2.3.

Temperature independence

A strength with clustering is that temperature data might be irrelevant, as the consumption
can be transformed to incorporate scaling and translation invariance. From the theory we
know that the electric consumption is tightly related to the temperature. But if the relation
is to multiply the consumption with a factor and add an offset, this will be cancelled with
a transformation which incorporates scaling and translation invariance.

The two FASIT load profiles used in the ED example (shown in figure 2.4a) are the
estimated consumption for households on weekdays in a high load period for two days
with a temperature difference of 10 ◦C. By normalizing these load profiles they almost
align, which indicate that these load profiles are almost temperature independent (that they
align when they are transformed). However, it is not known if transformed load profiles
are temperature independent in general. If the consumption is temperature independent,
there is no reason to include temperature correction before the clustering. This makes the
analyses simpler, which make them easier to understand.

Prediction models

Clustering as a first step before performing prediction algorithms might increase the ac-
curacy of the predictions. This is because clustering can group customers with different
characteristics, and the different characteristics might make them more sensible to some
factors. A common approach in literature is to input the different clusters separately to the
prediction models, which in most cases are shown to increase the accuracy of the predic-
tions [44], [53], [92].

Clustering on other datasets

Performing clustering on other datasets might reveal different characteristics. The datasets
in addition can be divided based on the seasons during the year, as chosen in this thesis, or
based on the days in the week, as with the comparison with FASIT. Other divisions on the
datasets, as for example customer groups, might also be done.

Clustering on reactive data

As mentioned in the specialization thesis leading up to this master thesis, clustering on
reactive power consumption could give interesting results. The reactive power consump-
tion is known to fluctuate in a higher degree than active power consumption, which could
make it hard to see patterns. These patterns might be visible after clustering. Reactive
power consumption is much less researched than active power consumption, so clustering
could reveal useful information about the reactive power consumption. Especially inter-
esting could be analyses of the reactive power from customers with solar panels, as these
customers are known to have more voltage problems.
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DSM and network tariffs

The clustering can give information about the characteristics of the customers in the grid.
As clustering divide the dataset into groups, which have different characteristics, special-
ized programs can be performed on the different clusters. Two programs mentioned in
the theory are demand side management (DSM) and network tariffs. The clustering might
contribute with useful information for deciding these specific programs, but it is important
to be aware that much work still lies ahead with specifying the programs after receiving the
clustering results. The clustering results should be seen as additional useful information,
and not as a solution to how to make the programs proposed.

Clustering as a toolbox

Clustering is a technique used in many fields where a lot of information is available, and
it is commonly used today. With the introduction of AMS in the power system, there is
also a lot of information available. This data can contribute to improve the operation of
the grid as well as provide a more efficient power market. Clustering can be one of the
tools to improve the operation of the grid, as the technique can give us information about
the customers in the grid. It might be hard sometimes to see exactly what clustering can
be used to, but it is advised that the clustering technique can be added to the toolbox of the
electrical power engineer having access to or working with AMS-data. By understanding
the methods and algorithms, when the engineer encounters a problem, clustering might be
one way to solve the problem.

5.3.2 Assumptions and approaches
This subsection discusses the assumptions and approaches taken in this master thesis, and
their consequences.

Accuracy of AMS-data

This master thesis analyses datasets of AMS-data, which might include errors. The AMS-
data for the months from February to June 2019 for the customers in dataset 1, 2 and 3
contained errors, according to the DSO providing the AMS-data for these datasets. This
shows that AMS-data do contain errors, even though the transfer and data apparently look
fine. According to the DSO, the values for these months were three times as high as they
should have been. Therefore, it could be beneficial to do some basic analyses to look for
errors in the datasets. For dataset 4, the daily consumption was plotted against temperature,
which showed high correlation. This suggests that the scaling and amplitude of the dataset
was constant in the period analysed.

Loss of data

Another source of error in the AMS-data might be loss of data. The samples used as
input to the clustering algorithms in this thesis were hourly readings over 1 day. Each
sample containing at least one ”Not a Number” (NaN) were discarded before performing
the clustering. Another approach could be to fill in the NaN values with 0 or another
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number, if the sample contains one or few NaN values. By knowing the reasons behind
the loss of data, it would be possible to fill the elements with reasonable values. This
has not been the main focus in the thesis, so all samples containing NaN elements were
discarded before the clustering.

Clustering algorithms

The clustering algorithms used in this master are provided from software packages avail-
able on the internet. The parameters used by each algorithm is chosen as the default values,
unless otherwise stated in the text. By changing some of the parameters, different results
might be obtained. For most of the algorithms, it is assumed that changing the parameters
would only give slightly different results, as most of the parameters deal with things like
initialization, tolerances and number of runs. These parameters do not change the way
the algorithm works, but rather the how close the local minimum of the objective function
in average gets is to the global minimum. It takes longer time to get closer to the global
minimum, so there is a trade-off between computational time and accuracy.

Feature extraction, as mentioned in theory, is another data representation technique.
By extracting features instead of using the raw data, the computation time and the noise
might be reduced. The feature extraction technique can work in the same way as the
average load profiles representation, as a fast first analysis. These results might be an aid
to decide the next step to solve a given problem.

Optimal cluster numbers

In the theory, two methods to calculate the optimal cluster number were presented. In
the analyses, only the method with CVI scores was performed. This was chosen due to
the complexity of the Gap statistics compared to the CVI scores. Further research can
find optimal cluster numbers using ”Gap Statistics”, and these cluster numbers can be
compared with optimal cluster numbers found using the CVI scores.

Computation time

The analyses are performed on a shared server, as described in section 3.2. This is however
assumed to have little importance in the computation times found, as multiple runs on the
same same algorithms on the same dataset give roughly the same computation time. In
addition, the starting point of the algorithms differs each time the algorithm runs, which
leads to a different computation, and in many cases a different computation time.

5.3.3 Metering frequency

The clustering performed in this master thesis is done on hourly readings, while the regu-
lating authorities in Norway proposes to increase the metering frequency to 15-min from
2023. Clustering with 4 times higher time resolution might give a bit different results.
The reduction techniques might be important to keep the computational time low on large
datasets, and the reduction techniques might decrease the clustering quality less since the
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resolution already is high. The DTW distance measure might do better, as multiple local
shifts might be more desired with increased metering frequency.

5.4 The working process
When I started the work with the specialization project ([58]) leading up to this master
thesis in the fall of 2019, I was thinking clustering had many obvious applications in the
power system. However, when diving into the vast sea of literature, I found no direct
usage of clustering. Specialized programs could be made for the different clusters, but a
lot of work making and testing the specialized programs still lies ahead after performing
the clustering. The specialization project included cluster analyses using K-Means and
K-Shape, but without any applications of the results. The last chapter, ”Further work”, in
the specialization project explained what would be the focus of this master thesis.

I started the master thesis following the plan described in the specialization project
and used the first period to read and implement CVIs and more algorithms. I was still
looking for more direct usage of the clustering results than the specialized programs, but
I did not find much. Therefore, I changed the focus from the plan proposed, and started
working with something which was closer to the operation of the grid today, the analyses
of capacity in the grid. The biggest problem of the thesis has without doubt been to see
the applications of clustering on AMS-data.
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Chapter 6
Conclusion

This section presents the conclusions from this master thesis. The conclusions are based
on the results in chapter 4, discussions in chapter 5 and the theory in chapter 2.

The theory gives the reader good insight in clustering, as well as other background
information useful when analysing and using clustering results. The theory makes the
reader able to understand the clustering performed in this master thesis, as well as a basis
to read scientific articles about clustering.

In this master thesis, 6 different clustering algorithms and 5 data representation tech-
niques on four different datasets have been tested and analysed. The datasets are from
four different seasons and contain from 1227 to 4681 customers. Representations of clus-
ter centroids from the approaches tested are shown, both with the dataset transformed as
well as on the raw data. As suggested in the literature, the different clustering approaches
have been tested against the commonly used K-Means algorithm. The performance of
the clustering is evaluated using the CVI indexes Davies-Bouldin (DB), Silhoutte (SI) and
Calinsky-Harabasz (CH). Recall that lower DB-score and higher SI and CH-score means
better clustering quality. The results are summarized in table 6.1, and all the CVI scores
are divided by the CVI scores from K-Means. The computation time for each approach is
the average computation time compared to K-Means.

Clustering approach DB SI CH Computation time
K-Means 1 1 1 11s
K-Shape 1,008 1,017 1,000 x57

K-Means + DTW 1,131 0,811 0,899 x1012
SOM 2,003 -0,559 0,123 x5

Hierarchical + single 1,109 -2,744 0,012 x52
Hierarchical + ward 1,277 0,444 0,581 x273

K-Means + PCA 1,027 0,962 0,989 x0,61
K-Means + wavelets 1,079 0,897 0,949 x0,56

Table 6.1: Summary of results
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The results show that the partitional algorithms are superior. The hierarchical and SOM
algorithms have a higher computational time than K-Means, and the clustering quality is
lower. The hierarchical algorithm using single linkage shows some interesting results, as
it detects outliers in a much higher degree than all the other clustering algorithms tested.

The three partitional algorithms tested are K-Means, K-Shape and K-Means with
DTW. The clusters from the K-Shape algorithm are quite similar to the clusters from the
K-Means algorithm, both in size, shape and CVI scores. The computation time is around
60 times higher than the K-Means algorithm on the datasets tested. As the CVI indexes
are biased towards K-Means, the performance of K-Shape is considered slightly better. If
increased accuracy is preferred, K-Shape might be better than K-Means, with the draw-
back of increased computation time. The K-Means with DTW provide a clustering with
different sizes, shapes and CVI scores than the K-Means and K-Shape. The CVI scores
are considerably worse, but it is hard to draw conclusion based on the CVI scores, as the
algorithm is punished for its local time shifts. The computation time is much higher for
K-Means with DTW than K-Means, a factor of around 1000, and increasing with the size
of the dataset. The K-Means with DTW is commonly highlighted as the best algorithm
incorporating shift invariance, but the results from this thesis raise the question whether
the shift invariance incorporated weights up for the highly increased computational time.

The master thesis analyses 5 different data representation techniques. The Z-transfor-
mation is used as a base representation as this is the most common in literature. The results
show that the PCA is the preferred reduction technique compared to discrete wavelet trans-
formation. By reducing the dataset with 75%, the clustering quality drops by 3% using
PCA, compared to 8% using discrete wavelet transformation. Reduction techniques might
be more important as the metering frequency increases. The Min-Max normalization pro-
vides a different clustering than the Z-transformation, and the algorithm tends to cluster
more based on the consumption relative to the maximum and minimum consumption. The
representation using average load profiles is a fast approach, reducing the computation
time with 95% in the datasets analysed. Although fast, the representation managed to
keep the characteristics of the dataset analysed.

The comparison with FASIT shows that the current practice of predicting load pro-
files for households gives a good approximation to the average consumption of the dataset
analysed. The results also show that while it is a good approximation to the average con-
sumption, there are large differences within the dataset, which could be exploited further.

The results from the analyses of capacity in the grid can be used by grid operators to
improve the planning and operation of the grid. The most interesting result was the differ-
ence on 3.7% between the peak consumption temperature corrected and the highest tem-
perature corrected consumption. As the common practice is only to temperature correct
the peak consumption, that value might not be representative for the highest temperature
corrected consumption.

Clustering on AMS-data divides the dataset into clusters with different characteristics,
which can be beneficial for visualisation or applications. Some applications of clustering
on AMS-data are DSM, network tariffs and as a pre-stage before prediction models. By
understanding the principles and components used in clustering, other applications for
clustering on AMS-data might be found.
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Chapter 7
Further work

This master thesis showed a comprehensive study of clustering algorithms and data repre-
sentation techniques on datasets from four different seasons. The thesis showed important
results from the clustering, but more research can of course be done to make the results
even more robust. This especially applies for K-Shape and K-Means with DTW, as the
CVI indexes used are biased towards the ED distance measure. One way to test the perfor-
mance of these algorithms is using external labelling information, for example customer
groups. If using customer groups as the external labelling information, one should keep
in mind that customers from different groups might have similar consumption patterns,
which the algorithms try to cluster together.

This master thesis presents two ways to calculate the optimal cluster number, but only
one technique is used in the analyses. Further research can use the ”Gap Statistics” to find
the optimal cluster numbers, which can be compared with optimal cluster numbers found
using CVI scores, as done in this thesis.

Another interesting study area is clustering on reactive power data. The reactive power
consumption is much less studied than active power consumption and is known to be quite
fuzzy. Clustering might reveal some unknown patterns, which might improve the grid
operation, especially in areas with voltage problems.

As much research lies ahead before finding the optimal clustering algorithms on AMS-
data, maybe the most interesting and useful further work is to see what practical applica-
tions clustering can contribute in. Some applications are mentioned in the thesis: DSM,
specialized network tariffs and as a pre-stage to prediction models. However, there might
be many more areas where clustering can improve today’s practice. The ones that are
working daily with AMS-data related problems are the ones best suited to see what im-
provements clustering can give. In order to see these improvements, insight in clustering
principles as well as the clustering components is necessary.
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