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Comparison of iron loss calculation models including rotational loss

Siri Faremo Haukvik

Abstract— This thesis aims to investigate iron loss prediction
models for electrical machines, with a desire to identify fast
and simple models with acceptable accuracy for industrial use.
A thorough literature review is presented to provide overview
of loss calculation methods, where particular focus is given to
the loss separation concept. Methods for coefficient determi-
nation is studied, both for constant and variable coefficients.
Further expansions for including rotational losses through
use of orthogonal components and expressions for rotational
loss density is explored and selected for implementation. The
Modified Steinmetz Equation (MSE) and Generalized Steinmetz
Equation (GSE) are also implemented and compared. All
calculations are based on publicly available material data and
generic information. MATLAB is used for coefficient extraction,
and all loss analyses are run solely using COMSOL.

A variable coefficient method including rotational loss is
shown to be most accurate for the two COMSOL models,
being a synchronous hydro generator and a MW high speed
permanent magnet machine. Accounting for rotational flux
loci through calculation over orthogonal axes is seen to be
crucial to achieve accuracy in the studied machines. Including
rotational loss density allows further improvement, where an
average 7% deviation from measured results is found for the
hydro generator over a wide range of excitation level, for a
method using variable coefficients. For nominal operation, 1-
2% deviation for both the hydro generator and the high speed
machine is obtained, without the use of correction factors.

I. INTRODUCTION

Calculation of core losses in electric machines has been
a topic of research for over hundred years. Still, there is
no standard method that is fit for all purposes. Optimal
choice of method can be geometry-, material- and application
dependent. However the method selection is often limited by
available material data provided by the material manufacturer
[1]. Common methods for evaluating iron losses can need
corrections to measured results by a factor as high as 3 [2].
Thus, there is a need for sufficiently simple, nevertheless
acceptably accurate, methods for use in machine design.

Losses in electrical machines originate from mechanical
aspects (friction and windage), resistance in conductors
(copper losses) and electromagnetic losses. Electromagnetic
losses can refer to losses in the stator and rotor iron, or losses
induced in other conductive materials, like in the magnets
of a permanent magnet machine. Whereas mechanical and
copper losses can be calculated with high precision, elec-
tromagnetic losses are still challenging [1]. Iron losses are
particularly complex to predict due to the many phenom-
ena impacting the losses, and the interdependence between
physical factors. Calculations are also difficult to validate,
as iron losses cannot be measured directly [1]. Eddy current
losses in stator windings due to slot leakage flux and rotor
surface losses from eddy currents and slotting harmonics

are examples of electromagnetic losses usually excluded in
loss calculations, but not withdrawn from measurements,
therefore not separated from stator iron measurements [3].

A common simplification when calculating iron losses is
assuming the flux is unidirectional and purely sinusoidal.
However, in rotating machinery, it is neither. Rotating ma-
chinery has a two-dimensional flux, meaning the flux density
vector rotates within the lamination plane[4]. This effect
appears most prominently in the inner and outer corners of
the teeth, and in the transition area from teeth to yoke [2].
The rotational flux can be observed by a 2D representation
of the flux loci, where loci can form the shape of an
ellipse, rectangle or lemniscape, depending on the geometry
influence on flux flow in the relevant point [2].

However, as the alternating flux has standardized mea-
surement techniques and requirements for how material
manufacturers should provide loss density information, no
standards exist for rotational flux. Rotational flux is generally
challenging to measure and it can be difficult for machine
designers to obtain sufficient data for loss calculations [4].

Including rotational losses in the calculation can be im-
portant not only for determining the level of overall losses,
but also to identify potential hot spots in the iron [3].

Temperature has been seen to impact permeability and
resistivity, thus impacting several aspects of iron losses [5].
Methods to couple thermal analysis with iron loss calcu-
lations have been developed to incorporate this effect and
provide accurate thermal analysis [6].

Some iron loss calculation methods are based on the
assumption that the flux density is sinusoidal. However,
low-frequency harmonics can occur due to slotting effects
and winding configuration [7]. Moreover, higher harmonics
induced by drive systems can also drastically increase losses.
Inverter fed machines can experience supply currents that
are far from sinusoidal, where local maxima and minima in
the supply current can induce minor hysteresis loops[8][9].
The loss increase is particularly high for systems with low
switching frequency, due to a high degree of waveform
distortion [8], and for PWM waveforms with the combination
of bipolar switching and low modulation index [10].

At higher frequency operation, losses may also be im-
pacted by skin effect causing a redistribution of flux in the
lamination[11].

Degradation of magnetic properties occur during machine
manufacture processes, leading to increased losses [1]. The
cutting of laminations induce mechanical stresses that affect
the hysteresis curve. Shearing stresses influence several mi-
croscopic phenomena in the material [12][13], leading to a
reduction of permeability near the cut edge [14][15][16]. In
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addition to the direct impact of the wider hysteresis loop,
the tooth center losses are also increased due to the extra
polarization needed to magnetise the edges [13]. The loss
increase at the cut edge is larger for higher frequencies
[15][16]. Moreover, the stacking and housing assembly in-
troduce mechanical and thermal stresses that can damage
the lamination insulation [2]. As the loss data supplied by
material manufacturers is measured on unprocessed material,
it might not be an accurate representation of the magnetic
properties found in the final assembled machine [17].

The data supplied by material manufacturers is often found
using standardised test procedures such as Epstein frame,
where a flat material sheet is magnetised from a purely
sinusoidal and unidirectional flux [18]. From this, iron losses
are measured for a specific frequency and flux density. It
is clear that a test under such simple conditions does not
incorporate all the above described phenomena. This leads
to questions regarding the limitations of the material data
applicability, and whether material data can be applied in
particular ways that provide more accurate estimations than
others.

This thesis will focus on iron loss models forming a
foundation for loss calculations using finite-element analysis,
with expansions for including low-frequency harmonics and
rotational losses. It is assumed no minor loops are present,
and all calculations are performed for laminated cores. Sec-
tion II will define underlying theory for iron losses. Section
III will present a literature review on the traditional iron loss
calculation methods, where two main concepts and variations
of these are selected for further study. Section IV will
describe commonly used methods for including rotational
losses, and two methods are selected for implementation.
Section VI and VII will present the method and results for
implementation of the selected models in a prototype hydro
generator model made in COMSOL Multiphysics 5.5. The
methods were also implemented in a model of a high speed
permanent magnet motor developed in the project preceding
this thesis [19], where explicit methods for this model and
the results are presented in section VIII. The project [19] also
included an identification of relevant background material for
the iron loss literature review. Sections II and III are based
on this work and supplied with more extensive research.

II. PROPERTIES OF FERROMAGNETIC MATERIALS

Two main concepts form the basis of iron loss theory:
The hysteresis loop and eddy currents. Although viewed as
separate phenomena, they are closely related, which will be
explained through the existence of magnetic domains.

A. Hysteresis loss

The history-dependent relation between field intensity H
and flux density B is known as hysteresis. This history-
dependence can be observed in the hysteresis loop, generated
by applying an external field with alternating polarity to
a ferromagnetic material. It is seen that when the external
field changes polarity, the relation between B and H will
not follow the same magnetisation curve as during initial

magnetisation, resulting in a gap in the magnetisation curve.
This area represents the energy used to change flux polarity
in the material, and is called the hysteresis loss. When
ac current is applied, this hysteresis loss occurs for each
electrical period, due to the continuous change of direction
in magnetic field [20]. A typical representation of a hysteresis
loop is illustrated in figure 1.

H

B

Fig. 1. Typical representation of a hysteresis loop, where the red area
indicates the loss per ac cycle

B. Eddy currents

From Faraday’s law it is known that a material exposed to
an external magnetic field will produce a current generating
an opposing magnetic field. This is the origin of the well
known eddy currents, inducing losses in the material due to
resistivity in the iron. The losses are dissipated as heat. The
eddy current losses are greatly limited in electric machine
cores by the use of laminations, as eddy current losses are
proportional to the size of the current flow loop [20]. It can be
assumed all losses in ferromagnetic materials originate from
eddy currents, however it is the distribution /localisation of
the current loop that determines how the losses are observed.
[21]

C. The nature of magnetic domains

A ferromagnetic material consists of many small regions
called magnetic domains. Within a magnetic domain, the
magnetic field from each atom points in the same direction.
When a ferromagnetic material is not magnetized, the fields
from the domains point in random directions, making the
piece of material appear to have no flux. Applying an external
field to the material, the domains pointing in the direction
of the external field will grow by shifting the domain
walls, which are the boundaries separating the domains. This
creates a positive feedback leading to increased magnetic
field strength. With the increasing external field strength,
whole domains reorganize and align with the field, until all
atoms are aligned and the material is saturated [20].

The moving of domain walls is referred to as the
Barkhausen effect, and an occurrence of this is called a
Barkhausen jump. The energy released during a Barkhausen
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jump is irreversibly transformed to heat by the occurrence of
very localized eddy currents. The structure of the magnetic
domains is determined by a combination of external and
internal forces, where the external is the applied field, and
the internal is a balance between several competing energy
terms. These internal energy terms will not be further de-
scribed in this thesis, but are described in detail in [21]. At a
temperature above zero and the existence of an external field
(however low the rate of change), the energy balance within
the domains become unstable, making the walls shift. During
very low rate of change of the external field, a Barkhausen
jump occurs during such a short time relative to the change
in the external field, that it can be viewed as independent
of the frequency. This is in some theories referred to as
rate-independent hysteresis (quasi-static hysteresis). How-
ever, it must be stressed that this is an approximation. The
Barkhausen jumps are also related to rate of energy dissi-
pation and thermal fluctuations, therefore never completely
independent of time. During rate-independent hysteresis the
occurrence of the Barkhausen jumps is stochastic, due to the
complexity of domain structures and the structural disorder
of the internal forces [21].

However, as the rate of change of the external field
increases, the stochastic behaviour ceases and a clear depen-
dence of the rate of change can be observed. This is due to
the duration of the Barkhausen jump relative to the variation
of the external field no longer being so small that it can be
viewed as independent. A widening of the hysteresis loop
can be observed when the frequency is increased, which is
related to the increased amount of eddy currents circulating
in the material. The distribution of eddy currents is seen to
be dependent both on the shape of the material (lamination),
and on the moving domain walls, where currents seem to
circulate around the moving domain walls [21].

III. IRON LOSS CALCULATION METHODS

An extensive literature review has been conducted to
provide an overview of relevant loss calculation methods and
to characterise their advantages and disadvantages.

A. Classical iron loss calculation methods

There are several methodologies for calculating iron
losses. Roughly, they can be divided into three main groups.
The first group is methods based on the original Steinmetz
equation, which was a very early loss calculation model. The
second are loss separation methodologies, aiming to separate
the iron losses by dependencies of flux density and frequency
into static and dynamic parts. Lastly, there is hysteresis
models describing the hysteresis behaviour mathematically
or empirically, finding the loss as the area of the dynamic
hysteresis loop [1].

1) The Steinmetz equation: The original Steinmetz equa-
tion (1) was proposed in 1884, and alterations and improve-
ments have been suggested many times since then. The
method is based on empirical observations and assumes a
specific iron loss density p [W/kg], and three coefficients
Cse, α, β that are dependent on material data, and fitted

to measurements. The original equation is only valid for
sinusoidal excitation.

p = Cse · fα · B̂β (1)

Generally, the Steinmetz based methods are quick and re-
quire little knowledge about the material. However, the Stein-
metz coefficients have been shown to vary with frequency
[1].

Improved versions of the Steinmetz equations accounting
for arbitrary waveform, DC-bias and major and minor hys-
teresis loops have been developed. A thorough review of
these methods can be found in [1].

The modified Steinmetz equation (MSE) has been given
much attention, and is based on the concept of introducing
an equivalent frequency accounting for harmonics. It was
introduced in [22], and originally intended for use in power
electronic components. The MSE is given in equation 2,
where 2b is the calculation of the equivalent frequency. ∆B
is the peak-peak value of B, and Cse, α, β are the coefficients
fitted from the original Steinmetz equation (1).

p = Cse · feqα−1 · B̂β · f (2a)

feq =
2

∆B2π2

∫ T

0

(
dB

dT

)2

dt (2b)

Some advocates for the Modified Steinmetz Equation
argue there is no physical basis for separating dynamic and
static losses, and iron losses should therefore be calculated
in collected form [23].

The Generalized Steinmetz equation (eq.3) is a bit newer
than the MSE, and is based on instantaneous power loss.
It includes DC-bias sensitivity, which is an advantage com-
pared to the MSE. A disadvantage is that it can have reduced
accuracy if the third or another close harmonic becomes
significant[1]. The Steinmetz coeffient CSE must be altered
by equation 3b for GSE, which works so that equation 3a
solves back into the original Steinmetz equation (1) for
sinusoidal flux.

p =
1

T

∫ T

0

CGSE

∣∣∣∣dBdT
∣∣∣∣α · |B(t)|β−αdt (3a)

CGSE =
CSE

2πα−1
∫ 2π

0
|cos(x)|α · |sin(x)|β−αdx

(3b)

Another advancement is the improved Generalised Stein-
metz equation (iGSE) which includes minor hysteresis loops
[24].

2) Loss separation: Loss separation is very commonly
used for calculations in rotating machinery, being founded
on relatively simple post processing.

The first loss separation theory was proposed by Jordan
in 1924, and was based on the concept of separating the
losses to a static and a dynamic part, as presented in
equation 4. The static losses were the hysteresis energy
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loss when the frequency approaches zero, and the dynamic
losses were generated by the eddy currents circulating in the
lamination[1].

p = Kh · B̂2 · f +Ke · B̂2 · f2 (4)

The eddy currents were assumed to distribute homoge-
neously, and could therefore be calculated analytically by
dependencies of material specifications, as in equation 5.

Ke =
σπ2t2

6δ
(5)

where σ is the material electrical conductivity, t is the lam-
ination thickness and δ is the material density in kg

m3 . Eddy
current losses calculated using the coefficient in equation 5
are often referred to as classical eddy current losses.

Using Jordan’s equation today, both coefficients Kh and
Ke are often fitted to material data based on a least-square-
method [5].

An expansion of this method was proposed by Bertotti
in 1988, introducing a third term to the loss separation
theory: The anomalous(excess) loss component [25] [26].
This component was introduced to account for inhomgenous
distribution of eddy currents. Bertotti argued that iron losses
are so complex due to the dependence of geometry and
material properties in both space and time, that it can
only be treated statistically. Therefore, breaking down the
losses into three components would allow calculating the
separate contributions over different scale. The microscopic
phenomena inducing losses independent of time (Barkhausen
jumps) would be represented by the quasi-static hystere-
sis losses, the geometry-dependence would be represented
through the homogeneous distribution of eddy currents in
the lamination, and the eddy currents induced around moving
domain walls were represented by the anomalous component
through expressing the statistical behaviour of the domain
wall movement [21]. It should be remarked that the three
components are treated as statistically independent based on
empirical data and to ease calculation, which does not mean
the losses are physically independent of each other. A full
derivation of Bertotti’s loss separation theory can be found
in [21].

The Bertotti model is presented in equation 6, where P
is the total iron losses, Ph is the quasi-static hysteresis
losses, Pe is the classical eddy current losses and Pa is the
anomalous losses.

p = ph + pe + pa

p = Kh · B̂α · f +Ke · B̂2 · f2 +Ka · B̂1.5 · f1.5 (6)

Ke,Kh,Ka and α are constants depending on material. α
is usually between 1.6 and 2.2 for ferromagnetic materials
and alloys [1].

A generalised version of Bertotti’s equation was proposed
by Fiorillo and Novikov [27], allowing calculation for ar-
bitrary flux waveform by time-domain or frequency-domain

models. The coupling of equation (6) and a Fourier transform
to sum up the contributions from each harmonic in the
magnetic field is a popular approach [28].

Advantages of Bertotti’s method is simplicity, stability, and
giving quite good results within some ranges of frequency
and voltage [29]. It has been shown that the Bertotti-method
is quite accurate for lower flux densities, but deviates from
measurements at higher flux densities [29]. In [29], this is
explained by the neglect of skin effect, minor loops and
rotational losses.

The Bertotti method has many similarities to the Steinmetz
methods, and might be viewed as a Steinmetz derivation.
Loss separation is, like Steinmetz, based on evaluating loss
using frequency, induction level, and curve fitted constants
to represent material properties. Like the Steinmetz equation,
Bertotti’s method has been extended and modified in innu-
merable ways and works, and the modifications show many
overlapping concepts to Steinmetz derivations. Therefore, to
clarify, any method based on separating loss components will
in this thesis be referred to as a loss separation method,
although it might include ideas originating from a Steinmetz
derivation.

3) Hysteresis models: The last main group of models are
the hysteresis models. These aim to describe the hysteresis
loop, and generally give more accurate results [1]. However,
they also require more information about the material and the
flux density wave forms. Thus, Finite Element Method(FEM)
implementation is more complicated [1].

Thoroughly studied hysteresis models are the Preisach
model and the Jiles Atherton model[30], which have been
modified several times after their original publication.
Derivations of the Preisach model into generalized and vec-
torial form is extensively described in [31]. Jiles Atherton’s
model extended for anisotropic material was proposed in
[32] and a vector generalisation of the Jiles-Atherton model
allowing three dimensions was proposed in [33]. A review
of hysteresis models can be found in [1].

In [34] a hysteresis method calculating instantaneous
loss is presented, thereby being able to evaluate arbitrary
waveforms. The method requires input data from a measured
hysteresis loop, and is concluded to be simple and give
accurate results. In [35], a dynamic hysteresis model is
introduced, including minor loop compensation. The model
is based on an inverse Preisach model, but transformed to a
dynamic form.

B. Enhancement of Field Solutions in FEM

The need for accurate field solutions incorporating 3D
effects and including losses can be discussed. Fratila et.al
[36] compared using a 2D and a 3D model to compare the
effect of neglecting end-ring and damper bar losses, where
no significant difference was found between the 2D and 3D
simulation. Representing 3D-effects in the laminations can
be done using homogenisation, where a laminated core can
be replaced by a bulk material with the same geometry and
similar electromagnetic behaviour [37]. In [38], a homoge-
nization method for modelling laminated iron cores by 3D
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finite-element time-stepping is proposed, and validated for
a 3D-axisymmetric case. The model makes it possible to
include the skin effect and fill factors.

In [29], a method incorporating the losses into the mag-
netic field solutions is developed through a hybrid model of
the statistical loss separation and the mathematical hysteresis
loops. This was concluded to be relatively accurate, stable
and efficient for loss estimations in a 37 kW induction
machine. A continuation of this work is presented in [39],
where the effect of neglecting iron losses in the field solution
is investigated. It is found that such neglect could induce up
to 15% discrepancies from the measured results.

C. Scope selection

As the aim of this thesis was to investigate methods
providing quick analysis for industrial use, hysteresis models
and advanced field solutions were considered to be too com-
plex. Based on the literature review where loss separation
models seem to be the most popular selection for rotating
machinery, loss separation is selected as a main concept fit
for further investigation of alterations and adaptions.

D. Determination of coefficients for loss separation

Loss separation methods require certain coefficients to
be set using experimental data. The quality and amount of
this data can be determinative for the accuracy of the loss
calculation [28] [1].

1) Selection of frequency range: For coefficients deter-
mined by curve fitting, the frequency range on the input
data can have impact on the coefficient accuracy. It has
been seen that the loss estimation deviates more from the
measured results outside of the range of frequency and flux
density used for finding the coefficients [36]. This can apply
particularly for high speed machines, as material data is often
given in the range from 50 Hz - 400 Hz or similar. [40]
found that using a frequency range close to the intended
operating area might be more accurate than having a very
wide range, even though the data points are fewer. This is
explained by high frequency data tending to dominate the
solution and make the constants less accurate for operation
at lower frequencies

In [36], it is recommended using at least three sets
of frequencies: low frequency for quasi-static evaluations,
and data for the fundamental frequency and a prominent
harmonic to fit Ke and Ka.

2) Hysteresis loss by quasi-static conditions: To evaluate
the hysteresis losses by quasi-static conditions according
to Bertotti’s theory, the frequency must be so low that all
dynamic losses can be assumed negligible. When this data
is obtained, coefficients Kh and α can be fitted from equation
7, where w is the energy loss density [J/kg].

lim
f→0

w = Kh · B̂α (7)

Use of this approach is seen in amongst others [36] and
[41], where measurements at respectively 5 Hz and 2 Hz are
used.

However, many works using Bertotti’s equation (6) does
not specifically mention whether coefficients are fitted at
quasi-static conditions (eg. [42]), and others use pure curve
fitting [28]. There are also several works where α is set to
2, and not found from loss data [43].

3) The anomalous loss component: In the original re-
search published by Bertotti [25], the anomalous loss com-
ponent is estimated by a number of statistical variables. The
statistical analysis is based on the knowledge that when
a Barkhausen jump has occurred in a given region, there
is increased probability that a new Barkhausen jump will
occur in a neighbouring region. This can be described by
the term correlation regions, where n is the number of active
correlation regions [21]. Regions of high interaction between
magnetic domain walls are often in literature referred to as
magnetic objects. Statistical theory regarding the magnetic
objects can be derived, and the parameters n and V define
how several microstructural features influence the losses [21].
n0 is the number of simultaneously active magnetic objects
when the frequency goes to zero. V0 represents the statistical
behaviour of the magnetic objects and has the unit of a
magnetic field.

In its simplest form, the anomalous loss component can
be expressed as in equation 8. This method is seen used in
[42].

pa = 8.76
√
σSGV0 · B̂1.5 · f1.5 (8)

where σ is the conductivity, S is the lamination cross
section and G is a dimensionless constant of 0.1356. Equa-
tion 8 is valid for sinusoidal excitation and only for par-
ticular materials, where many materials frequently used for
electrotechnical applications apply, for example Si-Fe [21].
Equation 8 is also derived by finding the averaged losses over
the hysteresis loop. When the anomalous losses are expressed
as in equation 8 and hysteresis coefficients are fitted at quasi-
static conditions, V0 is the only unknown needing to be curve
fitted to material data.

In [41], more generalized models for the anomalous loss
component is investigated. The hysteresis loss components
is evaluated at quasi-static conditions, the eddy current coef-
ficient is found classically (equation 5), and the anomalous
losses are calculated using 9 and 10, and then results are
compared. Both equations 9 and 10 assume sinusoidal flux.
Unidirectional flux is assumed for all derivations in this
work.

paKowal1
= 2B̂f

(√
n02V0

2 + 2π2σGSV0B̂f − n0V0
)
(9)

where n0 and V0 are functions of B̂ fitted to loss mea-
surements.

paKowal2
= cB̂f

(√
1 + eB̂f − 1

)
(10)

where c and e are constants curve fitted through least-
square method. The results show large deviations in accuracy
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for the constant coefficient method, as presented in figure 2,
where simulation is performed on a fully processed non-
oriented steel with lamination thickness 0.3 mm at 50 Hz.
Similar tendencies were seen at 400 Hz, however lower error
at low and high induction level and higher errors at medium
induction level.

Fig. 2. Comparison of error induced when using the two equations above
for measurements at 50 Hz and sinusoidal flux waveform [41]. Model 3 is
a time domain model, which will be discussed later in this thesis

However, in many works, none of these statistical values
are mentioned. Commonly, the anomalous loss term is simply
found using the simple relation in equation 6, where Ka is
a constant.This is seen in [28], [42], [36]. In other analyses,
this term is set to zero based on material properties [43].

4) Variable coefficients: Much research on introducing
variable coefficients in the Bertotti equation has been per-
formed, in early phase lead by Ionel et.al [44]. The investiga-
tion of several steel samples, as well as FEA on two example
machines was seen to give very accurate loss evaluations
when using variable coefficients as in equation 11 [44].
This model is called the VARCO-model. The anomalous loss
term was set to zero, justified by the separation of classical
eddy currents and anomalous losses being "questionable".
It was stressed by the authors that this does not mean the
anomalous loss term does not exist, just that it might not be
proportional to the power coefficient of 1.5. To separarate
this eddy current loss term from the classical eddy current
loss term, it will be referred to as Kd, for dynamic. Kd, Kh

and α were set to third-order polynomials fitted to measured
curves in a frequency range from 20Hz -2kHz, varying with
frequency and flux density.

The effect of setting α to 2, while still representing Kd

and Kh as polynomials was also studied. When α was set
to a constant, Kh was expanded to also vary with flux
density. This method showed acceptable accuracy and much
better computational efficiency. Additionally, it was also
validated through measurements, thus being the choice of
recommendation by Ionel et al. This method is referred to as
the CAL2-method (equation 12). Interestingly, it was found

in [44] that the average value of Kd has a maximum of
14% deviation from the value found using (5) for the three
measured materials (for CAL2).

pV ARCO = Kh(f) · B̂α(f,B) · f +Kd(f,B) · B̂2 · f2 (11)

pCAL2 = Kh(f,B) · B̂2 · f +Kd(f,B) · B̂2 · f2 (12)

In the CAL2 model, a linear relation for the specific core
loss ratio is used to demonstrate the coefficient dependency
on flux density. By transforming equation 12 to the equation
given in 13, an approximate linear relation can be seen. This
relation is shown for three levels of flux density in figure 3,
and shows a clear variation with flux density.

p

f · B̂2
= Kh(f,B) +Kd(f,B) · f (13)

Fig. 3. Linear fit of specific core loss ratio per flux density presented in
[44]. The figure shows a clear dependency of flux density for the coefficients

The authors admit to the fact that the VARCO and CAL2
models are "best-fit" models, and thus their physical interpre-
tation is limited. The exact separation of losses can not be
guaranteed by this model, however the authors claim this
is a problem for constant coefficients as well. It is also
pointed out that the contributions from the anomalous loss
component might not only be represented by the eddy current
component, but possibly also somewhat in the hysteresis
component. It should also be noted that no quasi-static
analysis is performed in this method.

The CAL2-model was further explored by Dlala et.al
[45], where the physical basis for variable coefficients is
investigated. In this work, it is stressed that finding correct
coefficients is key for accurate core loss analysis, however
the method for identifying coefficients must be chosen with
care. It is claimed that the power loss is not appropriate to
use for identifying coefficients, but the energy loss should
be used:

w =
p

f
= Kh · B̂2 +Kd · f · B̂2 (14)
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From the energy equation (14) it is seen that the hysteresis
energy loss is independent of frequency, and the hysteresis
coefficient should thereby not be allowed to vary with
frequency. The dynamic loss coefficient Kd, on the other
hand, can be allowed to vary with both flux density and
frequency, as the classical energy loss is dependent on both of
these. It is therefore concluded that Kh should only vary with
peak flux density, and Kd should vary with peak flux density
and frequency. This supports the quasi-static theory used in
Bertotti. The method further argues that as the frequency
approaches zero, the static energy loss can be read out of
equation 14. The quasi-static condition is modelled using
a linear fit similar to the one presented by Ionel et.al. in
figure 3. Thus Kh(B̂) is determined for each level of flux
density, and then Kd(B̂, f) can be determined for every B̂
and f by reverting equation 14 and inserting Kh(B̂), thus
finding a table of values for Kh and Kd. Coefficients are
then interpolated using cubic spline algorithm. The analysis
is then performed using Fourier analysis, and loss is found
per harmonic. Similar method (eq. 12, Kh(B̂), Kd(B̂, f))
with Fourier analysis and coefficients varying with harmonics
is seen used in research on a MW high speed permanent
magnet machine by Zhang et.al.[43]. However, no method
for identifying coefficients is described in this work.

5) Comparison of methods for coefficient determination:
In [5], several variations of the loss separation methods were
compared to measurements on a lamination ring specimen
under alternating sinusoidal flux:

1) The Bertotti equation (6) combined with coefficients
determined from the classical eddy current coefficient
Ke (equation 5) and curve fitting α, Kh and Ka over
a range of flux densities and frequencies.

2) The Bertotti equation (6) with coefficients Kh and α
fitted to measurements from a DC hysteresis test and
calculating Ke by (5), thereafter fitting Ka to material
data

3) The Jordan model (4) where Ke is replaced by Kd, a
coefficient curve fitted to measured values to represent
the total sum of dynamic losses (classical eddy current
and anomalous)

4) The CAL2-model (12) with variable coefficients as
introduced in [44]. The variation with frequency is
considered by defining a low- and high-frequency set
of polynomials, where the low frequency range used
data for 50, 200 and 400 Hz, and the high frequency
used data for 600, 800 and 1000 Hz.

It was found that the CAL2-model was much more accu-
rate than the others. Whereas the accuracy of all the three
other models varies significantly with frequency and flux
density, whereas the CAL2 model showed good accuracy
over a wide range of frequency and flux density (50-1000
Hz, 0.6-1.173 T). The average prediction relative errors were
respectively, 11.3 % , 10.3 %, 10.7% and 2.4%. It is seen that
the improvement in accuracy of fitting hysteresis coefficients
using static conditions is very small compared to the simple
curve fit method. Moreover, the accuracy is the nearly same

for as for the Jordan model with only two coefficients, both
fitted.

However it should be remarked that measurements are
performed on a very simple geometry (ring specimen), not
an electrical machine.

E. Calculation in the time domain for loss separation

To include harmonics in the loss calculation, an alternative
to the Fourier transform is calculation in the time domain.
As FEA is built on time-stepping, equations that calculate
over continuous or discrete time can be more efficient, re-
ducing the need for post-processing by removing the Fourier
transform step [28].

1) Constant coefficients: In [28], a simple version of the
Bertotti equation in the time domain is used (equation 15).
The eddy current and anomalous losses are calculated from
a time derivative of the flux, as they are induced due to
the changing flux density in the material. The hysteresis
losses are dependent on peak flux density magnitude. The
extension of the original Bertotti equation (6) into the version
for generalized flux waveform as seen in equation 15 was
first proposed by Fiorillo and Novikov [27] in 1990.

P = ph + pe + pa

ph = Kh ·
1

T
· B̂α (15a)

pe = Ke ·
1

2π2

1

T

∫ T

0

∣∣∣∣dBdT
∣∣∣∣2dt (15b)

pa = Ka ·
1

8.76

1

T

∫ T

0

∣∣∣∣dBdT
∣∣∣∣1.5dt (15c)

The same methodology (equation 15) is seen in [36],
where the method is validated through measurements.

2) Comparison between time- and frequency-domain
model: In [46], iron loss calculation using FEM for a 2.1
MW permanent magnet synchronous generator is made with
two different methodologies, comparing a frequency- and
a time-domain methodology. Both models find hysteresis
loss by quasi-static conditions and classical eddy current
losses (equation 15b for time domain). A large difference
is in the anomalous loss term, where the frequency domain
model uses equation 10, whereas the time-domain model
uses equation 16. A difference between these is that the time
domain model uses n0, V0 dependent on B̂, whereas they
are constant in the frequency domain model. Both models
are further expanded to include rotational losses, and the
time domain model also to include PWM harmonics. It is
concluded that the frequency-domain model underestimates
the losses.

pa =
1

2T

∫ T

0

(√
n02V0

2 + 4σGSV0

∣∣∣∣dBdT
∣∣∣∣− n0V0

)∣∣∣∣dBdT
∣∣∣∣ dt

(16)
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As the frequency domain model uses constant coefficients
whereas the time-domain model uses n0, V0 dependent on
B̂, it is difficult to evaluate whether the increase in accuracy
is owning to the use of time domain approach or the use of
varying coefficients. However, it is seen in more extensive
research by the same authors that the coefficients is the main
reason for loss of accuracy [41]. Comparing the frequency
domain model presented in equation 9 to the time domain
model in equation 16, the accuracy is very similar. These two
models are equivalent in parameter input and measured both
using sinusoidal flux and non-sinusoidal, for the latter case
evaluating (9) using Fourier analysis to ensure comparability.
It thereby seems that frequency-domain and time-domain
models are equally suitable based on these works, however
the time-domain-model might be advantageous based on the
readiness to include PWM current and minor loop losses
using the methodology presented in [46].

3) Variable coefficients in combination with time domain
calculation: Ionel et.al also performed a time domain-
extension of their variable-coefficient models in [44], to
include non-sinusoidal waveforms. In the time domain, the
coefficients are dependent only on the flux density at fun-
damental frequency to simplify. The eddy current loss term
is shown in equation 17. As described earlier, the work in
[44] studied the effect of setting α to two (CAL2-model),
compared to expressing it as a polynomial (VARCO-model).
Therefore, the hysteresis loss equation is somewhat different
in these two models, as shown in equations 18 and 19. It
should be noted that these hysteresis formulas are only valid
for variable coefficients, and information about the hysteresis
loops shape is required.

pd =
1

2π2

1

T

∫ T

0

kd(f1, B) ·
[
dB(t)

dT

]2
dt (17)

phV ARCO
=
kh(f1)

π

1

T

∫ T

0

B(t)α(f1,B)−1 ·
[
dB

dT

]
dt (18)

phCAL2
=

1

π

1

T

∫ T

0

kh(f1, B) ·B(t) ·
[
dB

dT

]
dt (19)

The results in [44] yields the VARCO-model in the fre-
quency domain to be most accurate. The accuracy of the
time-domain models seem to be lower for analyses where a
higher degree of harmonics is present. This is explained by
the simplification of letting the coefficients vary only with B
at fundamental frequency, while the frequency-domain model
finds new coefficients for each harmonic. This tendency is
the same for both VARCO and CAL2.

The CAL2-model is further investigated in [47]. Seven
variations are compared: The traditional Bertotti (eq. 6, α =
2), CAL2 in frequency domain, including only fundamental
(eq.12), CAL2 in time domain (eq. 19 and 17), CAL2 in
the frequency domain including up to 11th harmonic (eq.
12 with Fourier analysis) and three extensions including
PWM losses. Due to operating only under 400 Hz, it is
concluded coefficients Kh, Kc need only vary with B̂. The

time domain version of CAL2 performs best, and the basic
Bertotti method performs poorest, for measurements made
on an inverter-driven brushless DC-motor.

4) Using coefficients extracted by frequency-domain for-
mula in time-domain simulations: As the input data given by
manufacturers is given per frequency, coefficients are usually
curve fitted to frequency domain formulae. The validity of
using these coefficients in time domain approaches can be
questioned.

In the research by Ionel [44],the use of coefficients curve-
fitted from measurements on sinusoidal flux density into non-
sinusoidal fields is questioned, but not further discussed.

In [41], using coefficients derived from sinusoidal mea-
surements in the time-domain approach is concluded to be
a valid approach. However, care should be taken to which
equation the coefficients are fitted to, where using discrete
values of B̂ is accurate, whereas assuming a piecewise linear
B(t) can induce errors as much as 16% higher than when
using discrete values.

Dlala [45] claimed that as standard core loss material
data is found at sinusoidal frequency, frequency domain
models are best fit to represent the experimental behaviour
(compared to time-domain models). No calculations or mea-
surements were performed to support the statement.

To the authors knowledge, little other research has been
published on this.

5) Comparison of methods: Due to the large variation
of methodologies regarding coefficient fitting, number of
components, use of statistical expressions or special effects
occurring in the machine studied, it is difficult to find
common ground for comparing the methods and conclude
on a overall superior method.

However, as mentioned in section III-D.5, [5] found
the CAL2-model to be advantageous compared to constant
coefficient-models for measurements under sinusoidal flux.
Using a completely different approach, focusing on excess
losses, [41] also concluded coefficients should include vari-
ability for flux density, however in a much more mathemat-
ically heavy statistical form. Thereby, it seems that using
variable coefficients might be advantageous. The improve-
ment by implementing this should be weighted against the
complication it induces in the calculation.

A summary of the literature review is presented in table
I. It is seen that both variable and constant coefficients are
commonly used. It seems to be most common to include
the anomalous loss component when constant coefficients
are used, where [41] is the only one using three terms and
variable coefficients. Moreover, no pattern is found between
the inclusion of rotational loss and the choice of including
anomalous loss component or using variable coefficients.
However it should be mentioned that the extensive amount
of research on iron losses might not be fully reflected in this
table.
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TABLE I
SUMMARY OF LITERATURE REVIEW

Article No.of Time/ Constant/ Rotational
comp- frequency Variable loss
onents plane coefficients included

Hargreaves [28] 3 Time Constant Yes
Zhang [43] 2 Frequency Variable Yes
Ionel [44] 2 Both Variable No
Dlala [45] 2 Frequency Variable No
Kowal [41] 3 Both Variable No
Kowal [46] 3 Both Both Yes
Zhu [5] 2 Frequency Variable Yes
Huang [42] 3 Frequency Constant Yes
Fratila [36] 3 Time Constant Yes

Some differences between time- and frequency-domain
models have been seen. Frequency domain models allow
separating the loss contribution from the harmonic [29]. This
is more challenging in time-domain models. Moreover, for
variable coefficient methods, harmonic variations of coef-
ficients can be taken into account if frequency domain is
used [29][44]. However, in frequency domain models, the
phase shift between harmonics is neglected, which can result
in lower loss calculations compared to using time-domain
models [11].

F. Methods selected for further study

Based on the literature review, the impact of chang-
ing from constant coefficients to variable coefficients was
selected for further study. Moreover, the effect of using
time-domain models compared to a fundamental frequency
domain model was investigated. Additionally, two variations
of the Steinmetz equation were implemented to see the dif-
ference between loss separation and calculation in collected
form.

Moreover, the selection of methods for further study was
based on the following criteria:
• The availability of data. Due to the unavailability of

quasi-static data (specific loss measurements at suffi-
ciently low frequency), the methods largely based on
this concept was ruled out (all models in section III-
D.3).

• Possibility of implementation directly in COMSOL
• Fast calculation
1) Jordan model: This model is a two-term loss separa-

tion model with constant coefficients. The frequency domain
model is presented in equation 4, and the time domain
model is found by replacing the eddy current loss term by
the expression in 15b. The coefficient Ke is replaced by a
coefficient Kd, as curve fitting is used to obtain the eddy
current coefficient.

2) Bertotti model: The Bertotti method with constant
coefficients is also selected for further study. Due to un-
availability of quasi-static data, the α coefficient was set to
2 to limit the amount of free variables. The eddy current
coefficient Ke is found by the analytical equation 5. The

frequency domain formula is given in equation 6, and the
time domain version is given in equation 15.

3) CAL2 method: The CAL2 method is an extension
of the Jordan method, using variable loss coefficients. The
equation in the frequency plane is given in equation 12 and
the equation for eddy current loss in the time domain is
given in equations 17. The coefficients Kh and Kd are ap-
proximated as third-degree polynomials using the relations in
equations 20. The hysteresis model used in the time-domain
calculations in the original work by Ionel [44] and presented
in equation 19 was not used as the required hysteresis loop
information was not available. This also assures the method
is comparable to the Jordan and Bertotti models as described
above, thereby isolating the impact of the coefficients.

Kh(f,B) = kh0 + kh1B̂ + kh2B̂
2 + kh3B̂

3 (20a)

Kd(f,B) = kd0 + kd1B̂ + kd2B̂
2 + kd3B̂

3 (20b)

The coefficients in 20 are made variable by frequency
by approximating a polynomial per frequency range. In the
original work by Ionel et.al. [44], this was done by finding
three sets of polynomials: for low(25-400Hz), medium(400-
950), and high (1050-2100) frequency range.

4) Dlala method: The method used by Dlala et al in [45]
is based on the CAL2-method, but calculations are found in a
point-wise form. Using equation 13, a linear approximation is
found per flux density. As Kh is concluded to be independent
of frequency, the values for Kh(B) can be read out of the
linear approximations, by setting the frequency in equation
14 to zero. Thereby, the values for Kh can be found using
equation 21, and tabulated per flux density. Thus, the values
for Kc(f,B) can be found from reverting equation 13 and
calculating per B̂ and f as in equation 22. The tabulated
values are then interpolated using cubic spline interpolation
(in the work by Dlala).

Kh(B̂)

∣∣∣∣
f=0

=
w

B̂2
(21)

Kc(B̂, f) =
w −Kh(B̂) · B̂2

f · B̂2
(22)

The work by Dlala has not been investigated in the
time domain, and the time domain version of the eddy
current losses given for the CAL2 model (equation 17)
is therefore used, replacing the CAL2-coefficient by the
Dlala-coefficient. Therefore, only the fundamental frequency
coefficient can be used, which is a disadvantage as one of
the advantages by the Dlala model is neglected.

5) Dlala_sep method: Furthermore, to obtain a dataset
better fit for further expansion, the Dlala-method was at-
tempted extended to three components, as in Bertotti’s loss
separation. This was done by defining a curve fit per flux
density using equation 23, and reading out the Kh-values
using equation 21.
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p

f · B̂2
= Kh +Ke · f +Ka ·

√(
f

B̂

)
(23)

Ka(B̂, f) was thus found by altering equation 22 to
include the classical eddy current losses, as given in equation
24. The coefficient for classical eddy current losses Ke

was found from the analytical expression in equation 5.
Thereby, the eddy current coefficient was no longer variable,
but the anomalous coefficient was. Assuming skin effect is
negligible, is is likely the eddy current does not need to vary.

Ka(B̂, f) =
w −Kh(B̂) · B̂2 −Ke · f · B̂2

√
f · B̂1.5

(24)

This method will be referred to as the Dlala_sep-method,
short for "Dlala separated", as it is the same as the Dlala
method, but separated into three components.

6) Steinmetz implementations: The modified Steinmetz
equation (equation 2) and the Generalized Steinmetz equa-
tion (equation 3) were implemented. These both have the
advantage of being simple to implement, only being one
component. However, it is difficult to further process this
result, and no alterations are performed to include rotational
losses in these implementations.

IV. INCLUDING ROTATIONAL LOSSES

As traditional loss separation methods assume alternating
flux in the iron loss calculation, advancements to the original
methods must be made for rotating machinery.

A review conducted by Guo et.al. in 2008 concluded
that "due to the complicated mechanisms (of rotational core
losses), it is not practical to develop a model on strong
physical background". Therefore, the loss separation method
is recommended also for rotational loss, representing each
component by factors and dependencies of flux density and
frequency[4]. To the author’s knowledge, no major advance-
ments have been made after this publication making other
methods superior to the loss separation method for practical
engineering use.

A. Choice of coordinate system

It is common practise to include rotational losses by using
superposition and summing up losses along two orthogonal
axes, as in equation 25. Let a and b be two orthogonal
components in a 2D plane perpendicular to the machine axis
(crossection of machine). Then the losses can be found as

Ptot = Pa + Pb (25)

Axes a and b can be be in either x- and y-direction
(Cartesian coordinates), radial and tangential direction or
major and minor direction, where the major axis is selected
through the point of of maximum amplitude in a flux density
locus for a full period of time. The minor axis is then
perpendicular to the major. This is represented in figure 4.
The radial and tangential components, as well as the major
and minor components can be found using the mathematical

relation stated in equation 26, where φ is the angle relative
to the x-axis [28].

Fig. 4. Representation of different methods for axis decomposition for
including rotational losses [28]. The rotating flux is represented as the blue
line.

[
Ba
Bb

]
=

[
cos(φ) sin(φ)
sin(φ) −cos(φ)

] [
Bx
By

]
(26)

Finite-element software can often give output in x- and y-
direction. However, using the B-field in x-and y-direction has
been shown to introduce geometry-dependent inconsistencies
[28]. This is related to the anomalous loss component being
calculated by the power of 1.5 per axis before summation,
thus making the axis contribution significant for the final
result. As the eddy current term is calculated to the power
of 2, the rotation of axis is not significant, as is the hysteresis
term , which is axis independent due to only depending on
peak induction [28]. More preferred is using the major/minor
method, which has been seen to be more accurate than
Cartesian coordinates in several works [28], [36], [5].

Huang et.al. [42] used a three term Bertotti-equation in the
frequency domain(eq.6), and decomposed the B-field in ma-
jor and minor directions. Harmonic analysis was performed,
summing opp the losses for each harmonic, each FEM-
element, and in major and minor direction. The calculation
is performed for a high-speed PM motor with concentrated
windings, showing improved accuracy compared to standard
FEA calculation(ANSYS built-in) accounting only for alter-
nating loss. However, there is still some discrepancy from
measured results, with a maximum error of 15%, however
below 10% for rotational speeds below 12 000 rpm. Other
examples of losses summed in major and minor direction
can be found in [36] [46].

However, the radial/tangential coordinate system has been
shown to give quite similar accuracy as the major/minor
system. With an average difference of 1 % for calculations in
a synchronous generator, and elemental maximum difference
of 4 %, the radial/tangential system was recommended as
a good engineering compromise in [28], providing over 6
times faster calculation than the major/minor. This is because
the major/minor method requires extracting a full loop of
data for each element to identify the maximum, followed
by post-processing, whereas the radial/tangential method can
be applied directly. The similarity in accuracy is explained
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by the radial and tangential components often being aligned
with radial and tangential axes. In the teeth, the major axis is
expected to align with the radial, and in the yoke, the major
axis lies along the tangential. The largest discrepancies are
thus found in the back corners of the teeth, where the major
axis shifts from radial to tangential [28]

B. Rotational loss density

Appino et.al. performed measurements of rotational loss
for a Fe-Si steel sheet for the frequency range 2 Hz -
1kHz [48]. It was verified that the rotational losses can
be estimated knowing a limited number of measurements
for alternating flux, due to a general relationship between
rotational and alternating losses. The relation supports the
loss separation theory, where different behaviour can be
attributed to the the separate loss components, also for
rotational loss. This typical relationship is presented in figure
5, which is based on measurements on the Fe-Si steel. The
measurements were performed by applying a purely circular
flux loci to find Wrot, and purely alternating flux to find
Walt. It is seen that the rotational losses are expected to be
highest at about 75% saturation level, and that the hysteresis
component is expected to be clearly dominant. The hysteresis
and anomalous (excess) loss component disappear for high
polarisation, while the eddy current component has a steady
increase. This is explained by the authors to be due to the
disappearance of domain walls when purely circular flux loci
is applied at saturation level, and claimed to be the first
experimental verification of this theory.

Fig. 5. Rotational loss at 50 Hz [48]. Jp represents the level of polarisation
and Js is the maximum saturation at 2.01 T.

The relation between the alternating and the rotational
losses can be represented by a curve R(Jp), which is the
ratio Wrot

Whyst
. Jp is the peak polarisation. Such curves are

presented for quasi-static hysteresis loss and anomalous loss
for the Fe-Si steel in figure 6. This relation is found to be
fairly general for non-oriented steels when the skin effect is

neglected, which is assumed to valid for frequencies lower
than 300 Hz [48].

Fig. 6. Rotational loss versus alternating loss presented in [48], measured
at frequencies between 20 and 300 Hz.

From the above described results, Appino et. al.[48] con-
cluded that the rotational iron losses can be described by
equation 27.

WROT (Jp, f) = Rhyst(Jp) ·Whyst
ALT (Jp)

+ 2 ·Weddy
ALT (Jp, f) +Ranom(Jp) ·Wanom

ALT (Jp, f)
(27)

Similar results as presented in figure 5 was found in [49]
for investigation of 35 mm lamination non-oriented silicon-
iron (SiFe) steel up to 2 kHz. However, in this work the
losses were not decomposed by loss separation, but are
presented in total.

C. Calculation by use of aspect ratio

To evaluate the degree of rotational flux in the machine, the
aspect ratio can be used. This is a way to express the relation
between pulsating and circular flux in a specific point in the
machine. The aspect ratio can be expressed as in equation
28, where Bmin and Bmax are respectively the smallest and
largest flux density magnitudes during an electrical period,
using the fundamental components of the flux density loci
[3]. Figure 4 can be used for illustration of this, where Bmax
corresponds to the maximum amplitude along the major axis
and Bmin to the maximum amplitude along the minor axis.

Γ =
Bmin
Bmax

(28)
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For purely pulsating flux, Bmin goes to zero and Γ = 0.
For purely circular flux, Γ = 1 [3].

Ranlof et.al used the aspect ratio to include rotational
losses in studies of twelve large hydro generators [50] .
Three methods were compared, where a traditional Bertotti-
equation (eq. 6, α = 2) was used as a base, and further
expanded to include rotational losses by the use of aspect
ratio, resulting in equation 29. These two methods were
not used with Fourier analysis, i.e. only the fundamental
component is included. The increase in loss density due to
rotational flux is expressed by the weight factor δ. This could
be expressed as a function of B̂, but is set to 0.6 in this
research due to lack of data.

Ptotfreq
= (1+δΓ)·(Kh ·B̂2 ·f+Ke ·B̂2 ·f2+Ka ·B̂1.5 ·f1.5)

(29)
The third expansion calculates in the time domain, thereby

including harmonics. This version uses functions Rh(B̂) and
Ra(B̂) to express the rotational loss density relative to the
alternating, and are corresponding to the curves presented in
figure 6. This model thereby has the ability to address the
rotational loss increase per loss component. The model is
presented in equation 30.

Ptottime
=

((1− Γ) + Γ ·Rh(B̂)) ·Kh · B̂2 · f

+Ke ·
1

2π2

1

T

∫ T

0

∣∣∣∣dB(t)

dt

∣∣∣∣2dt
+ ((1− Γ) + Γ ·Ra(B̂)) ·Ka ·

1

8.76

1

T

∫ T

0

∣∣∣∣dB(t)

dt

∣∣∣∣1.5dt
(30)

It was found that the time domain model (equation 30)
predicts 38% higher losses than the traditional Bertotti-
model (only alternating), whereas the frequency domain
model (equation 29) predicts 13% higher loss than the
traditional Bertotti. However, it should be pointed out that
the investigation is performed on old machines, complicating
the process of finding relevant material data. Therefore,
many approximations and assumptions are made to find the
correction factors δ,Rh(B̂) and Ra(B̂). Another interesting
indication from this work is that there seems to be more
rotational loss for geometries with short stator teeth for
generators with large stators, ie. low flux densities at no
load. This finding is supported by [3], who found machines
with larger yokes, smaller air gaps and operation point close
to saturation to be likely to have a higher percentage of
rotational flux, and thereby a higher loss density.

Similar methods to equation 29 is seen in [43], where δ
is set to 0.96 due to "iron core manufacture", and in [51],
where δ is set to one due to difficulty of determining this
value. In [51], Fourier analysis is used and Γ is found per
harmonic.

Akiror calculated losses accounting for rotational flux
and non-sinusoidal waveforms by use of a rotating loss to

pulsating loss ratio r, axis decomposition and time dependent
expressions for the dynamic losses [3]. The ratio r is a
function of the aspect ratio and the flux density, and is based
on rotational loss measurements. The expression is given in
equation 31.

PROT = r(B̂,Γ))[KhxfB̂
αx +Kdx

1

T

∫ T

0

(
dBx
dt

)2

dt

+KhyfB̂
αy +Kdy

1

T

∫ T

0

(
dBy
dt

)2

dt]

(31)

The coefficients α, Kh and Kd are corresponding to the
constant Jordan/Bertotti coefficients for quasi-static hystere-
sis and dynamic losses. They are additionally uniquely ex-
tracted for x and y-direction. This method produced core loss
estimations that were 12-40% higher than losses estimated
assuming pulsating sinusoidal flux.

D. Extending the selected methods to include rotational
losses

The selected methods described in section III-F were
extended to include rotational losses in three steps.

1) Axis decomposition: All methods were extended for or-
thogonal axes. Radial and tangential components, as well as
major and minor components were attempted implemented.

Expressions for the axis decomposition were derived using
equation 26 and trigonometric relations. The expression for
the radial and tangential components is given in equation 32,
where where X and Y are the evaluation point coordinates.
The major and minor-expressions are directly derived from
equation 26, where the angle φ is found using equation
33 evaluated at the time instant t1 where the flux density
magnitude reaches its maximum.

Bradial =
Bx ·X +By · Y√

X2 + Y 2

Btangential =
Bx · Y −By ·X√

X2 + Y 2

(32)

where X and Y are the evaluation coordinates.

φ = arctan

(
By

Bx

)∣∣∣∣
t=t1

(33)

2) Aspect ratio and rotational loss density: The model
presented in equation 30 was selected for implementation.
Implementations using this formula will be referred to with
aspect ratio in the name. This extension was only possible
to perform for the time-dependent models with three com-
ponents, i.e Bertotti time and Dlala_sep time.

3) Combination of aspect ratio and radial and tangential
components: Equation 30 was combined with using radial
and tangential components by replacing the part representing
the magnitude of losses per component by the sum of the
radial and tangential losses per loss component, as presented
in equation 34.
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Ptottime =

((1− Γ) + Γ ·Rh(B̂)) ·Kh · (B̂r
2

+ B̂t
2
) · f

+Ke ·
1

2π2

1

T

(∫ T

0

∣∣∣∣dBr(t)dt

∣∣∣∣2dt+

∫ T

0

∣∣∣∣dBt(t)dt

∣∣∣∣2dt
)

+ ((1− Γ) + Γ ·Ra(B̂)) ·Ka ·
1

8.76

1

T(∫ T

0

∣∣∣∣dBr(t)dt

∣∣∣∣1.5 +

∫ T

0

∣∣∣∣dBt(t)dt

∣∣∣∣1.5dt
)

(34)

This implementation is recognised by using the names
aspect ratio and rad/tan appended to the model name. The
extension was performed for the same models as above, i.e
Bertotti time and Dlala_sep time.

V. DEVELOPING A BENCHMARK MODEL

To evaluate the accuracy of the loss calculation methods
on common ground, a FEM model was developed. As
comparison towards measured results was desired, a machine
studied and tested in the doctoral thesis of Erlend Engevik
[52] was selected, due to a large amount of measured data
both for stator iron loss and machine operating conditions.
The machine is a test setup for large hydro power generators
built and tested at Uppsala University in Sweden.

A. Machine input data

The machine input data is given in table II. Additionally,
the Ansys Maxwell model used by Engevik was made
available to further secure exact measurement comparability.

TABLE II
MACHINE INPUT DATA GIVEN IN [52]

Power [kVA] 75
Power factor 0.9
Speed [rpm] 500
Number of poles 12
Number of slots 108
Number of slots per pole and phase 3
Stator outer diameter [m] 0.876
Air gap diameter [m] 0.725
Machine length[m] 0.303.

Measurements of BH curve in the stator and rotor iron
where also given. These can be found in appendix A1 and
A2.

The winding layout was read of the Ansys Maxwell model
and is presented in table III. It is a distributed single layer
winding with coil pitch 9. This winding layout is confirmed
by Emetor winding calculator [53] to be the layout producing
the highest winding factor for a machine with the selected
number of poles and slots. The winding factor is 0.96, and
there are two turns per slot.

TABLE III
WINDING LAYOUT

A+ A+ A+ C- C- C- B+ B+ B+ A- A- A- C+ C+ C+ B- B- B-

B. Building the model

A 2D model was made using Comsol Multiphysics 5.4,
where rotating magnetic machinery physics was was se-
lected. As the basic winding can be found after 18 slots,
a sixth of the machine was modelled. The air gap was split
in two domains, where a rotating mesh was applied to two
the inner air gap layer and the rotor. A continuous sector
symmetry condition was applied at the boundary in the air
gap. Continuity boundary conditions were also applied for
the sides of the geometry. A force calculation was applied
to the rotor. The finalized geometry can be seen in figure 7,
where the winding layout is represented by colours.

Fig. 7. The geometry built in Comsol with winding implementation
represented by colouring

1) Material implementation: The COMSOL built-in ma-
terials for air, copper and soft iron (without losses) was
loaded and implemented at their respective domains. Copper
was laid at the stator windings and the field winding. Two
soft-iron materials were defined, one for stator iron and one
for rotor iron. The default BH-curves were replaced by the
BH curves measured at the test rig at Uppsala University,
which can be found in appendix A1 and A2. The default
electrical conductivity of zero was used. This is due to the
thin laminations largely limiting the eddy currents. As the
eddy currents are assumed to create very little opposing field
compared to the main field generated by the field windings,
the conductivity is not needed for accurate field solution.
This is to simplify the model due to high complexity of
implementing laminations in 2D geometry. The BH-burve
for the stator iron is presented in figure 8.
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Fig. 8. BH curve implemented in material for stator iron

2) Mesh selection and solution performance: The mesh
was designed to provide sufficiently accurate, but quick
solution. The final mesh is shown in figure 9, where a closeup
of the meshing in the air gap is given in the upper right
corner. The model solves in approximately 2 minutes. The
function "copy edge" is used both for copying source to
destination in the air gap, and on the outer sides of rotor
and stator due to the use of symmetry conditions.

Fig. 9. Mesh used for FEM simulations of the hydro generator

C. Model verification

To verify the validity of the model, voltage and air gap
flux was compared the measured values. Figure 10 presents
the flux density distribution in the machine, where the plot
is made on a 2D data surface repeating the simulated sector.
It is seen that the field lines run as expected and the field
looks smooth and continuous, indicating good meshing in
the edges and correct use of symmetry conditions. Taking a
closer look at the modelled sector in figure 11, it is clear that
the overall flux density is low, except some small points in
the corners of the poles. The field lines run radially through
the poles, as expected.

Fig. 10. Flux density distribution in the machine plotted on a 2D grid

Fig. 11. Flux density distribution on the modelled sector

The phase voltages for nominal field current 12 A are pre-
sented in figure 12, verifying the phase voltages are balanced.
Furthermore, a comparison of measured and simulated phase
voltages for varying field current is presented in figure 13.
The phase voltages show very accurate correlation with the
measured values. This is a bit surprising as Engevik found
the measured voltages to be too low in his Ansys Maxwell-
model, and thereby concluded the air gap should be reduced
by 0.9 mm to ensure model validity [52]. Engevik modelled
the windings as coupled to an external circuit, which might
be an explanation for the difference.
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Fig. 12. Phase voltages at field current 12 A (nominal)
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Fig. 13. Phase voltages at field current 12 A (nominal)

The radial air gap flux is presented in figure 14 and
compared to the values found by Engevik presented in
figure 15 . The simulated values in the COMSOL model are
similar to the values found by Engevik using Ansys Maxwell,
and correspond well with the measured values. However,
the simulated values in the COMSOL model (figure 14)
has somewhat higher peak value than the measured values
presented in figure 15, with a little under 0.05 T difference.

From these evaluations, the model seems comparable to
the measured results. As the flux density has direct impact on
the loss calculations, and the voltage is proportional to flux
density, these properties are the most important the ensure the
model can be used for loss evaluations. However, the slightly
high flux density might lead to a small overestimation of
losses.

Fig. 14. Air gap flux in radial direction simulated at a point in the middle
of a stator tooth at 9 A field current

Fig. 15. Air gap flux found by Engevik in [52] at 9 A field current and
no-load

D. Investigation of machine characteristics

A quick investigation of some machine characteristics
was performed to evaluate need for advanced loss model
extensions. Cut points where set in the geometry to represent
the flux variation throughout the stator. The selected points
are presented in figure 16.

Plotting of the flux densities in radial and tangential
direction is presented in figure 17. The radial components are
recognized by the solid lines and the tangential components
by the dotted lines. The colours represent the corresponding
cut point in the geometry marked in figure 16. It can be seen
that the points of highest magnitude in the radial direction
are the points in the tooth (points 1,2,3), while the largest
tangential components originate from the point just above the
slot (point 6). The point furthest out in the yoke (point 7) has
a large tangential component and small radial component.
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Fig. 16. Measuring points selected in COMSOL to evaluate flux density
variations

Fig. 17. Radial and tangential flux density components plotted for the
selected points marked in figure 16. The tangential components are marked
by dotted lines

Figure 18 shows the existence of flux density harmonics in
the machine. The plot is generated using the built in function
Transformation and selecting Frequency spectrum in the plot
settings. The Fourier transform shows the fundamental (50
Hz) is clearly dominant for all the points. However, third
harmonics (150 Hz) are also apparent, particularly in the
teeth. A small degree of seventh (350 Hz) and ninth (450
Hz) harmonics can also be seen.

In figure 19, the flux loci in the evaluated points are
presented, showing very clear existence of rotational flux.
The plot is generated by evaluating the radial and tangential
components in the selected points and plotting them against
each other. As expected from theory, the degree of rotation is
highest in the inner parts of the yoke, which is a zone where

the flux transitions from flowing close to purely radially to
purely tangentially.

Fig. 18. Fourier transformed flux densities in the measuring points.
Tangential components are marked by the dotted lines

Fig. 19. Flux locus in the measuring points. A high degree of rotation is
observed, particularly for the points in the yoke.

From the quick above estimations, it is concluded that the
fundamental frequency is expected to be the main source
of loss. However, harmonics should be accounted for. Rota-
tional loss must be included.

VI. IMPLEMENTATION OF LOSS CALCULATION METHODS
IN COMSOL

A. Coefficient determination

The coefficients were determined using MATLAB and
imported to COMSOL to the parameters list, which can be
found in appendix B3.

Due to the material in the test setup machine being un-
known, a material was selected in the doctorate by Engevik to
be the best fit compared to his measurements of specific loss
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at 50 Hz. This material is SURA M530-50A, and is given in
appendix A4. Not knowing exact material specifications is a
known problem for older hydro generators.

1) Constant coefficients: The constant coefficients used in
Jordan’s equation, Bertotti’s equation and Steinmetz’ equa-
tion were determined using "custom equation" in MATLAB
Curve fitting tool. The material data from the data sheet
was imported to MATLAB as column vectors and thus made
available to the curve fitting tool. By studying the coefficients
generated by the built in core loss function in Ansys Maxwell
for the model by Engevik, it was concluded that these were
found using only the 50 Hz frequencies. As using only the
50Hz values seemed to give the most probable coefficients
for this case as well, these were selected for the Bertotti-
coefficient. However, for the Jordan coefficients, this was
not sufficient data, as coefficients were completely dependent
on the bounds that were adjusted manually. Therefore, loss
data from 50 Hz to 400 Hz was used to find the Jordan
coefficients, which gave a much more robust fit. This data
was also used for the Steinmetz fit. The classical eddy current
coefficient for the Bertotti method was calculated analytically
using equation 5. The resulting coefficients are presented in
IV.

TABLE IV
CONSTANT COEFFICIENTS FOUND BY MATLAB CURVE FITTING TOOL

Method Coefficent Value

Jordan Kh 0,03197
Jordan Kd 1,96E-04
Bertotti Kh 0,03278
Bertotti Ke 1,61E-05
Bertotti Ka 0,00205
Steinmetz Cse 0,00302
Steinmetz α 1,592
Steinmetz β 2,213

2) CAL2: The coefficients for the CAL2-polynomials
were found by inserting the polynomial equations (20) into
the linear loss ratio formula (13), and inserting this expres-
sion into the MATLAB Curve fitting tool. As the material
data provided specific loss for 50 Hz, 100 Hz, 200 Hz and
400 Hz, which are closely related to the observed harmonics
at 150 Hz, 350 Hz and 450 Hz, all frequencies were used for
the polynomial fitting. Thereby, the polynomial fit is based
on similar input as the to the low-frequency-fit found by Ionel
et.al.[44], which is the only fit needed for this application (as
converter harmonics are not included and higher harmonics
have not been observed). The hysteresis coefficient kh0 was
limited by a lower bound of zero, as negative values would
indicate negative static energy losses which has no physical
basis.

The polynomial coefficients were loaded to the parameters
list in COMSOL and an analytical function was defined
under the component section for each polynomial Kf (f, B̂)
and Kc(f, B̂) (using equations 20a, 20b). The input data to
the polynomial was set to be of unit T and the output of
unit J/T 2. The input range of B was limited to [0, 2]. An

example implementation is given in appendix B5.
3) Dlala: The coefficients for the Dlala method were

found by the scripting the methodology described in section
III-F.4 in MATLAB. The input data was divided into column
vectors per flux density and a linear curve fit was made
for each vector, as presented in figure 20. Frequencies 50
Hz, 100 Hz, 200 Hz and 400 Hz were used, but only flux
densities from 0.2T to 1.5 T could be used, as equal amount
of frequency levels per flux density was needed for the linear
fit. Thereby, flux densities 1.6 T and 1.8 T at 50 Hz is left
out, which was included in the CAL2-fit.

The Kh(B̂) coefficients were then read out of the linear fit
by setting the frequency to zero (eq. 21) and tabulated. Then
Kc(f, B̂) was found using formula 22. The scripts write the
tabulated coefficients to files, which can be directly imported
to COMSOL. An interpolation entry was defined for each
set of coefficients (Kh(B̂), Kc(50Hz, B̂), Kc(100Hz, B̂),
Kc(200Hz, B̂), Kc(400Hz, B̂)), and the corresponding file
was imported to each interpolation. The interpolation settings
were set to Cubic spline and the extrapolation to Constant.
An example of the COMSOL implementation can be found
in appendix B6.

It is seen in the linear fittings presented in figure 20
that the fit is less accurate for the lower flux densities.
Knowing that the flux densities are generally low in the
intended machine, this is a source of inaccuracy. Moreover
it is seen that particularly the low frequencies (50 Hz and
100 Hz) are far from the linear fit for these flux densities.
As the lower frequencies are dominant in this machine, this
is another disadvantage of this coefficient estimation. Using
weight factors to weigh the 50 Hz values more than the others
might have been an interesting option. However, due to time
limitation and the lack of documentation for such methods,
this was not prioritized.

Fig. 20. Linear fit of loss density ratio using method presented in [45].
The linear fit is more accurate for higher flux densities

The resulting fittings of Kd(f, B̂) are presented in figure
21. The 50 Hz-fit of Kd(f, B̂) is negative for low flux
densities, indicating an overestimation of Kh(B̂) for these
flux densities. This result could be expected from studying
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the linear fit in figure 20, where the linear fit lies above the
measured value at low flux densities for 50 Hz. Moreover,
the high values for Kd(100 Hz) at low flux densities fits
with the linear fit lying low below the measured values. For
higher frequencies the fits seem to converge more in value.
However, it is interesting that the higher frequencies seem
to have higher eddy current coefficients than the 50-Hz fit.

Fig. 21. Plot of variable coefficients using method presented in [45]

As it was found in the literature review that higher fre-
quencies might dominate the solution, the effect of reducing
the input data to three frequency levels (50 Hz, 100 Hz,
200 Hz) was compared. The new linear fit can be found in
appendix B7. Figure 22 shows a comparison of the Kh(B̂)
and Kd(B̂, 50Hz) for the two different fits. The hysteresis
coefficient is slightly reduced, and the classical loss coeffi-
cient thereby increased. For the new fit, only Kd(0.1T ) and
Kd(0.2 T ) were slightly negative, whereas for the first fit,
also Kd(0.3 T ) was negative. As the negative values have
no physical meaning, the fit with the least negative values
was selected. It was considered to set the negative values to
zero, but this was not done as manual alterations reduce the
transparency of the method.

Fig. 22. Comparison of using three versus four levels of frequency for the
coefficient approximation for the Dlala method

4) Dlala_sep method: For the Dlala_sep method, similar
methodology was used as described for the Dlala-method.
However, as linear fitting could no longer be used, the
fittings per flux density were performed using MATLAB
Curve Fitting Tool by inserting equation 23 into the "custom
equation"-field. An example of the resulting fit is presented
in figure 23. Reading off the values for Kh(B̂) at zero
frequency and tabulating these, Ka(B̂, f) was found by
inserting the tabulated Kh(B̂) and the analytically calculated
Ke (equation 5) into equation 24, using a modified version of
the original Dlala-script. The tabulated values were written
to files and imported to COMSOL interpolation entries.
Frequencies 50 Hz - 400 Hz was used for this fit. No negative
values were obtained.

Fig. 23. Fit at 0.3 T using the Dlala_sep method

5) Comparison of methods: A comparison of the resulting
coefficients are presented in figures 24, 25 and 26. It is seen
that for the hysteresis coefficients (figure 24), the CAL2-
coefficient is generally much higher than the others. The
coefficient fitted using the Dlala method is much higher than
the constant coefficient for low flux densities, but converges
towards the constant value for higher flux densities. The
Dlala_sep coefficient is somewhat lower than the Dlala coef-
ficent, and drops below the constant hysteresis coefficient for
higher flux densities. This seems to be the variable coefficient
where the average is closest to the constant coefficient. The
Jordan and the Bertotti hysteresis coefficients were so similar
they are only represented by one line. It is interesting to note
that the CAL2-coefficient and the Dlala-coefficient have very
similar value for the first point of flux density (0.2 T), but
then develops in completely different manner for increasing
flux.

Figure 25 shows the dynamic loss coefficients and the
classical eddy current coefficient, determined analytically
by equation 5. The constant Jordan-coefficient seems to be
close to an averaged value of the CAL2 coefficient. The
Dlala coefficient is slightly negative for low flux densities,
but increases quickly and reaches the value of the Jordan
coefficient at about 0.5 T, thereafter fluctuating around a
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value slightly lower than the constant Jordan-coefficient. This
correlates with the Dlala-method taking higher values than
the Jordan-method for the hysteresis coefficient at low flux
densities, and lower values for the dynamic coefficient at low
flux densities. This is related to the method used, as dynamic
losses are found by subtracting the hysteresis losses (equation
22). However, this trend is also seen in the CAL2-model
for low flux densities, whereas for the high flux densities,
both hysteresis and dynamic coefficients shoots off to very
high values, indicating very large increase in loss prediction
relative to the Jordan method for high flux densities. The
classical eddy current coefficient Ke is much lower than the
others, but of the same order of magnitude.

Fig. 24. Comparison of the hysteresis loss coefficients obtained using the
selected methods

Fig. 25. Comparison of the dynamic loss coefficients obtained using the
selected methods

Comparing the anomalous coefficients in figure 26, it
is seen that the Dlala_sep-method generates a coefficient
increasing quickly from zero to a value about three times
higher than the constant Bertotti-coefficient. This correlates
to the trend seen for the dynamic loss coefficients, which also

seem to increase for increasing flux densities, compensating
for the decrease in hysteresis coefficient seen in figure 24.
The magnitude of the Dlala_sep anomalous loss-coefficient
is much larger than the the eddy current coefficient and the
Dlala dynamic loss coefficient in figure 25.

Fig. 26. Comparison of anomalous loss coefficients obtained using
Bertotti’s method and the Dlala_sep method

B. Implementation by surface integration

All methods are implemented using the Surface integra-
tion-function in COMSOL. This is found under Results ->
Dervied values -> Integrations, and is a method for post
processing the field solutions. This means the model only
needs to be solved once before results can be extracted. The
general expressions for much used functionalities are pre-
sented in table V. An example implemtation of evaluations
in the surface integration entry can be found in appendix
B8. The expressions for evaluation were learned from the
COMSOL User Guide [54] and the COMSOL Reference
Manual [55] . Much used expressions, like for example to
find the peak value of B, was defined as a local variable
to ease implementation. A list of the local variables can be
found in appendix B4.

The built in size rmm.normB was used to represent the
flux density. This is the magnitude of the flux density (not a
vector) and is found as

√
Bx

2 +By
2 [55].

TABLE V
EVALUATIONS MUCH USED IN COMSOL

Evaluation form Expression Example of use

Time derivative d(exp, inc.) Finding dB
dt

Max.over time timemax(t1,t2,exp) Finding B̂
Time integral timeint(t1,t2,exp) Integrating dB

dt

It was learned that when using expressions for evaluating
over time (timemax, timemin, timeint), the evaluation is
performed for every timestep. As each evaluation needs
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evaluation of a full time period of data, this seemed to
result in outputting the same evaluation for every timestep,
as seen in figure 27. This was very slow. To avoid this, the
Time selection under Surface integration was set to only one
arbitrary time step. For all evaluations in this thesis, this
was set to first. The validity of this method was checked
for several loss calculations, and output can be found in
appendix B9. The time saved by doing this was extreme. For
advanced inputs with a large degree of expressions (like for
example CAL2 time dependent formula implementation), the
time evaluation of a single surface integration was reduced
from approximately 15 hours to 3 minutes.

Fig. 27. Example of COMSOL outputting the same result for all time
steps inducing extremely high computational time

C. Implementation of rotational loss models

1) Axes decomposition: The expressions for radial, tan-
gential, major and minor flux density components were
defined as local variables in COMSOL, and the explicit
expressions can be found in the appendix B4.

The time instant t1 used for finding the angle φ in equation
33 is at the point where normB reaches its max. The angle
φ was found using the built in attimemax() function, and the
full expression is found in the variables-list in appendix B4.

The losses were calculated relative to the separate axes
according to equation 25 by using the already implemented
methods and replacing the rmm.normB with the relevant B-
vector. However, COMSOL would not evaluate the Bmajor
and Bminor expressions using timemax(),timeint() functions.
The reason for this is unknown to this author, as plotting
over time was possible, likewise differentiation. As it was
thereby not possible to use the implemented methods with the
major and minor axes, no more work was performed on this
area. However, it might have been interesting to perform such
analysis to compare with the results for radial and tangential
components.

To evaluate the expected discrepancy of using radial and
tangential components compared to using major and minor,
the flux loci using major and minor axes is presented in figure
28. Comparing this to figure 19 showing flux loci using radial
and tangential components, some differences can be noted.
The flux loci in the teeth (points 1,2,3) are very similar, as

the major axis lies along the radial axis. For the points further
out in the yoke (points 5 and 7), the loci has been shifted
90 degrees, aligning the tangential axis with the major axis.
The largest difference is seen in the points just behind the
tooth (point 4) and just behind the slot (point 6). Point 4
seems to have been rotated 45 degrees, as the major axis
lies between the radial and tangential. The flux loci in point
6 has been rotated about 65 degrees in negative direction, so
that the corner points lie along the major axis. This shows
the axis decomposition is in line with what was found in
[28], where major and minor axes aligns with radial and
tangential axes for most parts of the machine. The points
expected to induce largest discrepancies are the points just
behind the teeth, here exemplified by point 4 and 6. As this
was shown to have little overall impact in [28], using radial
and tangential components is expected to provide acceptable
accuracy for this analysis.

Fig. 28. Flux loci decomposed in major and minor axes

2) Aspect ratio and rotational loss density: The data
for the R-curves (ratio of rotational loss density relative to
alternating loss) needed for equation 30 was extracted from
the work presented by Appino et.al. [48] using MATLAB
GRABIT[56]. This data was selected as it was claimed to be
generic for non-oriented steels when skin effect is neglected
[48]. The extracted data was imported to COMSOL as
an interpolation-entry with linear interpolation and constant
extrapolation, as shown in appendix B10. For running the
model in COMSOL, the flux density B is used as input to the
model in stead of the polarisation P. This might be a source
of inaccuracy, but is expected to be a valid simplification,
knowing flux densities are low.

The aspect ratio plotted over the surface of the machine
is presented in figure 29. This shows the level of rotation is
indeed existent, as expected from the results in the model
investigation (section V-D).
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Fig. 29. Aspect ratio Bmin/Bmax for 12 A field current. 0 indicates purely
alternating, 1 indicates purely circular flux loci

VII. MODELLING RESULTS

The losses were calculated varying the field current be-
tween 3 A and 16 A and compared to the values measured
by Engevik in [52].

A. Comparison of methods excluding rotation

The losses calculated using normB to represent the flux
density are presented in figure 30. It is seen that the CAL2-
model, both fundamental and time domain, lies close to the
measured value until the field current reaches 12 A, where it
shoots into an overestimation. The GSE, on the other hand,
generally grossly underestimates losses, and is therefore not
further discussed in this section. Overall, the frequency-
domain models seem to be more accurate than their cor-
responding time-domain method. This is surprising, as the
time domain extension was indented to include harmonics.
However, the difference is small, much due to the hysteresis
component using the fundamental frequency in both methods
and generally being the dominant component. The MSE is
also surprisingly accurate, considering its simplicity. For field
current higher than 11 A, this is the most accurate method
except from CAL2. The two Dlala-implementations and the
Bertotti-methods are overlapping and will be further inves-
tigated. The Two Jordan-implementations are least accurate,
apart from the GSE.

To better evaluate the accuracy of the calculations, a
correction factor is defined in equation 35. This factor is the
relation between the measured loss and the calculated loss.
This kind of factor is often used in loss calculation literature,
often to make the values fit to the measured value. In this
discussion, k will be referred to as the needed correction
factor. If k is close to one, the estimation is very accurate.
A k higher than one means losses are underestimated, a k
lower than one means losses are overestimated.

k =
Pmeasured
Pcalculated

(35)

Figure 31 presents this correction factor for the different
methods per field current. In this plot the difference betweeen

time- and frequency domain models is even more apparent.
It is also seen that the accuracy drastically decreases for all
methods for low field winding current.
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Fig. 30. Loss calculations per variation of field current for the different
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B. Effect of decomposition to radial and tangential compo-
nents

The resulting loss calculations when radial and tangential
components are used is presented in figure 32. It is seen that
the CAL2-methods are very accurate for 9-11 A field current,
then shoots into overestimation. This could be expected from
the loss coefficient fittings, where both Kh and Kc increase
for higher flux densities (figures 24 and 25).

The increase in loss prediction when using radial and
tangential components relative to using normB is presented
in figure 33, showing all results increased significantly.
The time-dependent models are more impacted than the
fundamental ones, with 11-48% increase compared to 6-17%
increase. Particularly the Bertotti-model in the time domain
was extremely affected by this, with 37-48 % increase.
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Fig. 32. Loss calculations per variation of field current for the different
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The new needed correction factors are presented in figure
34. The difference between the time-dependent and the
fundamental models is altered, where the time-dependent
models are now slightly more accurate. The general accuracy
is also overall increased, where the fundamental models
seem to have reduced the needed correction factors by
approximately 0.2. Radial and tangential components are
not used for the MSE, and it is noted that this method is
no longer superior. It can also be noted that the two Dlala-
implementations have very similar accuracy, indicating that
the change from two components to three components has
little impact. However, the trend of increasing accuracy for
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higher field current is the same, and overall all methods
except the CAL2 generally underestimate the losses.
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C. Effect of using the aspect ratio and the rotational loss
density

The effect of extending the Bertotti and the Dlala_sep
methods to include rotational loss density by the use of
aspect ratio is presented in figure 35. The calculations using
only radial and tangential components are more accurate
than using the aspect ratio and the rotational loss density in
combination with normB. However, the clearly most accurate
method is the combination of the two, which shows good
correlation with the measured results for both Bertotti and
Dlala_sep. The latter is however slightly more accurate. The
accuracy is lowest for the low values of field current.
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Figures 36 and 37 show the separated components for
the Bertotti and the Dlala_sep methods calculated using
both orthogonal components and aspect ratio. Both methods
have a share of rotational losses close to 50%. Moreover,
the overall component contributions are similar for the two
methods. However, differences can be noted for increased
field current (increased flux density in the material). At low
field current, the hysteresis losses are completely dominant
for the Dlala_sep method, whereas the separation between
hysteresis and anomalous components are more even for
the Bertotti method, somewhat dominated by the anoma-
lous component. Further, as the field current increases, the
hysteresis losses in the Dlala_sep methods show a tendency
towards flattening out, whereas the hysteresis losses in the
Bertotti-method seems to continue increasing drastically.
Likewise, the anomalous component in the Dlala_sep method
increases as the hysteresis decreases, thereby leaving the
total sum of losses fairly similar for the two methods. The

implementation of variable coefficients therefore seems to
have little effect for evaluating the sum of losses looking at
these graphs, however might be important if separation of
components is wanted. It is difficult to conclude from this
if the variability of the coefficients would have impacted the
total sum differently for higher levels of flux density in the
material and for a higher degree of harmonics.
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Fig. 36. Components per field current for alternating and rotational field
for the Bertotti method
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D. Overall comparison of methods

The relative error was calculated as Pcalculated−Pmeasured

Pmeasured
.

The average relative error for calculations using radial and
tangential components (except for MSE and GSE) is pre-
sented in table VI, showing the CAL2-model had lowest
average error. It is also the only model where this value is
positive (overestimation). The Dlala_sep model including the
aspect ratio also has low relative error with 7% underestima-
tion. Overall the relative error for time domain models are
1-2% lower than the corresponding fundamental frequency-
model. If the losses calculated at 3 and 5 A field current are
excluded from the averaging, the Dlala_sep method using
aspect ratio has an average error of -2% and the Bertotti
using aspect ratio has an average error -7%.

TABLE VI
AVERAGE RELATIVE ERROR FOR METHODS USING RADIAL AND

TANGENTIAL COMPONENTS

Method Fund. Time Aspect ratio

Jordan -53 % -52 %
Bertotti -33 % -31 % -11 %
CAL2 4 % 5 %
Dlala -28 % -27 %
Dlala_sep -29 % -28 % -7 %
MSE -38 %
GSE -81 %

The equivalent frequency used in the MSE was also
evaluated separately to verify the method, and was found
to be 221,31 Hz at 11 A field winding current and 224.83
Hz for 13 A current.

To estimate the contribution of losses originating from
harmonics, the relative difference between the time domain
models and the corresponding frequency domain model was
investigated. This is presented in figure 38. I can be seen that
the contribution from the harmonics lies between 0-3.2% for
all methods.

For the variable coefficient-methods, an increase in the
contribution from harmonics can be seen for increasing field
current in figure 38. This can be related to the separation of
components, where a higher degree of dynamic components
are seen for increasing field current (related to the increasing
dynamic coefficients in figures 25 and 26). Thus, a higher
degree of dynamic components can also lead to higher degree
of harmonics.
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E. Comparison of methods for 12 A field winding current

To better understand the loss estimations, a more thorough
study is performed for one selected field current. In this
section, the properties calculated for 12 A field current is
presented. Figure 39 presents the calculated losses for all
method variations.
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Fig. 39. Comparison of methods for 12 A field current

It is seen in figure 39 that all variations of the CAL2-
method are close to the measured value. However, based
on the tendency seen in figure 32 it is known that the
CAL2 overestimates for higher flux densities (comparable
to higher field current). Moreover it is seen that the Dlala
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and the Dlala_sep methods are extremely similar in their
predictions for all variations except the time domain version
based on normB. This supports the previous indications that
there is little change in accuracy when decomposing to three
components instead of two. Comparing the Bertotti-method
and the Dlala_sep method to the others, the large drop
in estimated loss from fundamental to time domain when
normB is used, seems to be characteristic for the three term
methods. However, when replacing the normB by radial and
tangential components, this trait seems to vanish completely,
leaving all methods with a slightly higher estimation for
time domain calculation compared to fundamental frequency
calculation.

The percent-wise separation of loss components at 12
A field current is presented in figure 40. All numbers are
calculated using radial and tangential components. It can be
seen that the sum of classical eddy current components and
anomalous losses for the three term methods do not at all
correlate to the "dynamic losses" in the two term methods.
Conversely, it seems that the anomalous loss components
"draw " from both the dynamic and the hysteresis losses.
This is not surprising as the models are just fitted by the
least sum of error, and it is natural to pose the question of
how much the separation of components can be related to
their physical origin, as was acknowledged by Ionel [44] .
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Fig. 40. Percentage contribution from the loss components for the
methods evaluated at 12 A field winding current when radial and tangential
compoenets are used

F. Loss density distribution

The loss density distribution for rotational and alternating
losses are presented in figures 41 and 42 calculated by the
Dlala_sep method including radial and tangential compo-
nents and the aspect ratio. The rotational losses are highest
behind the teeth, as expected from the distribution of the

aspect ratio (figure 29). The alternating losses (figure 42)
are highest in the teeth, and quite evenly distributed in the
yoke. The zoomed picture of the teeth in the upper left corner
of figure 42 shows the edges and corners of the teeth have
highest alternating loss density, due to high flux density in
these corners.

Fig. 41. Rotational losses for Dlala_sep with aspect ratio and ra-
dial/tangential components at 12 A field current, given in W

m2

Fig. 42. Alternating losses for Dlala_sep with aspect ratio and ra-
dial/tangential components at 12 A field current, given in W

m2

Figure 43 show the loss density distribution for radial and
tangential components calculated by the Bertotti method.
The radial losses are highest in the teeth, as expected,
whereas the tangential losses are highest in the yoke. A high
concentration of radial losses are seen in the tooth corners
and high concentration of tangential losses is seen just behind
the teeth. This correspons to the high degree of alternating
losses in these areas seen in figure 42 However, compared
to the rotational losses is figure 41, the "belt" of high loss
density in the inner yoke is not observed in the tangential loss
density, where the yoke losses are quite evenly distributed.
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Fig. 43. Radial and tangential components of losses calculated by the
Bertotti method in the time domain, given in W

m2 . A zoomed picture is
given in the lower left corner, where higher loss densities are seen in the
tooth back corners and behind the slots

G. Impact of mesh refinement

The effect of using a finer mesh and smaller time steps
was investigated. A mesh of size extremely fine was selected
for stator iron, and the number of time steps was increased
to 1300 (10 times the original). Thus, the losses were
recalculated for the 12 A field current case. The result was an
average reduction of the loss prediction with 0.24 %, where
no method showed a larger deviation than 0.37%. The coarse
meshing is thereby concluded to have little impact on the
accuracy of the calculation.

VIII. IMPLEMENTATION OF METHODS FOR A
HIGH-SPEED COMPACT PM MOTOR

A COMSOL model for a high speed PM motor was
developed for the project preceding this thesis [19]. The loss
evaluation methods were also implemented for this model to
evaluate behaviour for a different machine. This is to evaluate
the general applicability of the models.

A. Machine data

The machine is a high speed permanent magnet syn-
chronous machine with internal rotor analysed in [43]. It
has a rated speed of 18 000 rpm and 4 poles. The input
parameters used to create the model are given in table VII.

TABLE VII
INPUT PARAMETERS AS GIVEN IN ARTICLE BY ZHANG ET AL. [43]

Item Parameter Item Parameter
Rated power 1 MW Rated speed 18 000 rpm
Current amplitude 355 A Rated frequency 600 Hz
Stator outer diameter 550 mm Stator core diameter 190 mm
Rotor outer diameter 184 mm Air gap length 3 mm
Iron core length 400 mm Slot number 27
Pole number 4 PM material NdFeB
PM thickness 17 mm PM conductivity 625000 S/m
Winding layers 2 Conductors per slot 6

The material used is named B20AT1500, for which mate-
rial data was not publicly available. A corresponding material
was therefore used for the analysis, named SURA Hi-Lite
NO20. The material data can be found in appendix A11.

The stator iron losses predicted in [43] were 6116.8 W
during full load at nominal speed. 91.8% of the losses were
found to be caused by the fundamental frequency component,
and 20 % of the losses from rotational loss. No specific iron
loss measurements were performed, but the predicted values
were verified through temperature measurements.

B. Model properties

1) Building the model: The model was made in 2D with
rotating magnetic machinery physics. The geometry and the
winding layout is presented in figure 44. The BH curve
for the stator and rotor iron in the model was replaced
by the data provided in the data sheet for Hi-Lite NO20
(appendix A11) at 400 Hz, which was the available data
closest to nominal frequency. The model is excited with
purely sinusoidal current. More in-depth information about
the definitions in the COMSOL model can be found in the
project report [19].

Fig. 44. Geometry and winding implementation for high speed machine.
The darker colours indicate negative current direction

2) Model characteristics: The flux density for the ma-
chine at full load is seen in figure 45. Areas close to
saturation are observed in the inner parts of the teeth.
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Fig. 45. Flux density distribution in the high speed machine

Cut points were set in the geometry to investigate some
general properties. Figure 46 shows the selected cut points,
where one is set in the center of a stator tooth, and one is
set in the yoke.

Fig. 46. Cut points in the geometry

Evaluating the radial and tangential flux density com-
ponents in the cut points and using the built-in frequency
spectrum transformation, figure 47 shows the degree of
harmonics in the points. The fundamental component at 600
Hz is clearly dominant, however, contributions are seen for
the third harmonic (1800 Hz), 5th harmonic (3000 Hz) and
7th harmonic (4200 Hz).

Fig. 47. Fourier transform of radial and tangential flux density components
in the cut points

The aspect ratio was plotted to evaluate the degree of
rotation in the machine, as seen in figure 48. It is seen that
the highest degree of rotation is found above the stator teeth,
as expected. However, no points in the machine seem to have
any higher degree of circularity than 50%.

Fig. 48. Aspect ratio plotted over the surface of the high speed machine

C. Implementation of methods

Methods were implemented as described in section VI.
As the closest available frequency in the data sheet is 400
Hz, this was used for the constant coefficient-fittings. For
the Dlala coefficients, data for 50 Hz, 400 Hz and 2500 Hz
was used. For this material, these are the lowest available
frequencies. For the Dlala_sep method, only data for 50 Hz
and 400 Hz was used, as the inclusion of the 2500 Hz data
resulted in unrealistic numbers. Using only two frequency
levels might be a source of inaccuracy.

The linear fitting for the Dlala-model is presented in figure
49. Surprisingly, the linear fit seems more accurate for this
material than for the Cogent M530-50A used in the hydro
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generator, even though data is drawn from a wide frequency
range.

Fig. 49. Linear fit of loss density ratio for the Dlala-method

The resulting coefficients are presented in table VIII and
figures 50, 51. For the hysteresis coefficients (figure 50), the
constant Bertotti-coefficient is close to an averaged value of
the variable coefficients. However, comparing the constant
eddy current and anomalous loss coefficients in table VIII to
the variable coefficients in figure 51, the constant coefficients
are significantly lower for almost the entire range of flux
densities. This is different than the results obtained for
the hydro generator, where figure 26 showed the variable
anomalous loss coefficient exceeded the constant one at
approximately 0.5 T.

TABLE VIII
COEFFICIENTS FOR THE HIGH SPEED MACHINE

Method Coefficient Value
Bertotti Kh 0.02497
Bertotti Ke 1.6540e-05
Bertotti Ka 2.831e-05
Steinmetz Cse 0.3697
Steinmetz α 0.6003
Steinmetz β 1.781

The CAL2 and the Jordan model was not investigated
due to difficulty finding appropriate coefficients based on
the limited data.

The same R-curves used for the hydro generators are
implemented in this model. This might be questionable due
to the high operating frequency (600 Hz), as they are only
valid when skin effect can be neglected. However, negligible
skin effect is an assumption for loss separation overall.

Fig. 50. Comparison of hysteresis coefficients fitted for the different
methods

Fig. 51. Comparison of dynamic and anomalous coefficient fitted for the
Dlala, the Dlala_sep and the Bertotti method

D. Results

The resulting loss evaluations for the high speed machine
are presented in figure 52. A larger difference between
the Bertotti and the Dlala results is seen for this machine
compared to the hydro generator results. For this machine,
the GSE is more accurate than the MSE, however both are
far from the measured value. The Steinmetz-methods thereby
seem to be very unpredictable in accuracy.

By dividing the losses found by the fundamental frequency
by the respective time domain extension (for the evaluations
including radial and tangential component), it was found that
the share of losses generated by the fundamental component
was 98%, 97% and 96 % respectively for the Bertotti, the
Dlala_sep and the Dlala-methods. This is higher than what
was found in the reference article (91.8%). The share of
rotational losses was was 19% for both the Bertotti model
and the Dlala_sep method (using for rad/tan components
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combined with aspect ratio), corresponding well to the 20%
found in [43].
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Fig. 52. Results of implemented methods for the high speed machine at
full load and nominal speed

Table IX shows the increase by introducing radial and
tangential components for the calcualtions in the high speed
machine. It is seen that all methods have increased losses
when radial and tangential components are used (relative to
using normB), and the increase is two to three times as high
for the time domain models compared to their corresponding
fundamental implementation. However, the increase is lower
than for the hydro generator (figure 33), where the increase
for the time domain models was between 15%-50 %.

TABLE IX
INCREASE BY INTRODUCING RADIAL AND TANGENTIAL COMPONENTS

RELATIVE TO NORMB

Method Fund Time

Bertotti 4 % 9 %
Dlala_sep 5 % 15 %
Dlala 5 % 14 %

Table X shows the relative error for the calculations using
radial and tangential components. The Dlala_sep method has
the lowest relative error for the time domain evaluations.
A 1% overestimation is seen when including aspect ratio.
The Bertotti method including aspect ratio resulted in 10 %
underestimation.
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TABLE X
RELATIVE ERROR FOR METHODS USING RADIAL AND TANGENTIAL

COMPONENTS

Method Fund. Time Aspect ratio

Bertotti -12.85 % -10.73 % -10.27 %
Dlala -2.40 % 1.16%
Dlala_sep -3.50 % -0.71 % 1.03 %
MSE -60.34 %
GSE -29.90 %

Figure 53 presents the contributions from the different
loss components for the Bertotti and the Dlala_sep methods
using radial and tangential components and aspect ratio. It
is seen that the main difference between the two methods
is the contribution from the anomalous loss component.
Moreover, the hysteresis component is larger for Bertotti than
for Dlala_sep.

IX. EVALUATION OF MODELLING RESULTS

A. The use of norm B

Judging by the large improvement in accuracy when
including radial and tangential components, it is concluded
that using normB is not appropriate for machines with a high
degree of rotational flux.

Figure 33 and table IX showed the increase when in-
cluding radial and tangential components was largest for the
time domain models. The reason for this might be observed
in figures 54 and 55. Figure 54 shows a comparison of
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normB and the absolute value of the radial and tangential
components for two selected points in the hydro generator.
The two points are located behind a tooth (point 4) and a bit
further out in the yoke (point 5). It has already been shown
that these are points where the flux has a high degree of
rotation (see figures 19 and 28). Figure 54 shows that the
norm B does not vary very much in magnitude when the
radial and tangential components are large (circular flux).
This is particularly apparent for point 4.

Fig. 54. Comparison of radial and tangential components and the normB
for two points in the stator yoke

Further studying this aspect, figure 55 can be investigated.
Figure 55 shows the squared time derivatives of the radial
component, the tangential component and the normB. It is
clear that the sum of the areas under the radial and tangential
component curves is not equal to the area under the norm B
curve. This indicates that

∫ T

0

∣∣∣∣dBnormdt

∣∣∣∣2 6= ∫ T

0

∣∣∣∣dBrdt
∣∣∣∣2 +

∫ T

0

∣∣∣∣dBtdt
∣∣∣∣2

for the points with a high degree of rotation. The same
applies for the anomalous loss component, where the expo-
nent 2 is replaced by 1.5. This might explain why the time
domain solutions perform so poorly when normB is used.

Fig. 55. Comparison of the square of the time derivative of flux vectors

B. Impact of flux loci circularity

The increase in loss prediction when introducing radial and
tangential components for is much lower for the high speed
machine (table IX) than for the hydro generator (figure 33).
This might be related to the degree of flux loci circularity
observed in the machine. Comparing the aspect ratio plots for
the hydro generator (figure 29) and the high speed machine
(figure 48), it seen that there is a much higher degree of
rotation in the hydro generator. The high speed machine has
spots just behind the teeth where the aspect ratio reaches
0.45-0.5 (45-50 % circular loci) in some of the spots. For
the hydro generator, the spots behind every tooth reaches
0.7-0.8. Moreover, the hydro generator has a "belt" in the
inner yoke, where the aspect ratio is around 0.5, whereas the
high speed machine has aspect ratio about 0.25 around the
concentrated points. This indicates that the hydro generator
has a much larger percentage area of the machine where the
rotational flux is highly significant, which might explain why
the inclusion of radial and tangential components has more
drastic results for the hydro generator.

C. Impact of flux density on rotational losses

The same tendency can be seen for the inclusion of aspect
ratio and rotational loss density. Whereas the reduction
in average relative error for the Dlala_sep method when
including aspect ratio (both orthogonal components) is 21
%, the same difference in relative error is only 1.7% for the
high speed machine. This is, as just described, related to
the degree of circularity in the machine. However, it is also
largely affected by the level of flux density in the machine.
The R-curves in figure 6 show that the ratio of rotational loss
versus alternating loss decrease for increasing flux densities.
Studying the flux density plot for the hydro generator (figure
11) compared to the high speed machine (figure 45), it is seen
that the flux density in the hydro generator yoke is overall
much lower than in the high speed machine. The impact this
has on rotational loss density can be seen by plotting the
R-curves over the surface of the machines. Figure 56 shows
the rotational hysteresis loss density for the hydro generator.
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It is seen that the density is overall high, and at about 1.6 in
"belt" where it is known the degree of rotation is about 50%.
Comparing to figure 57 where the same R-curve is plotted
over the surface of the high speed machine, it is seen that the
spots with high degree of rotation coincide with spots of low
rotational loss density due to higher induction levels. The
same was found for the anomalous rotational loss density.
This might explain why the increase in loss calculation is so
much larger for the hydro generator than in the high speed
machine when including aspect ratio. Moreover, it proves the
R-curves as a flexible tool for loss calculation, adjusting to
the conditions in the relevant machine.

Fig. 56. Rotational hysteresis loss density for the hydro generator

Fig. 57. Rotational hysteresis loss density for the high speed machine

D. Impact of component separation

Studying the contributions from the different loss com-
ponents in the two machines, some tendencies can be seen.
Figures 36 and 37 shows the contributions from the loss
components for the Bertotti and the Dlala_sep methods
respectively, for the hydro generator. A tendency was noted,
where the contribution from the anomalous losses was much

lower for Dlala_sep than for Bertotti at low field currents, but
much higher for Dlala_sep than for Bertotti at higher field
currents. This lead to overall similar total losses. However for
the high speed machine, figure 53 shows the same tendency
where Dlala_sep has larger anomalous loss component and
lower hysteresis component than the Bertotti. However, the
total sum is not equal in this case. This might be due to
operation at higher frequency, where the contribution from
the anomalous losses become far more significant. This
might indicate that the separation of loss components has
more impact for higher frequencies. However, it is difficult to
evaluate too many tendencies for the high speed machine, as
loss calculations have only been performed for one rotational
speed. Moreover, the coefficients for the Dlala_sep method
were fitted using only two frequency levels (50 and 400 Hz),
which might be inaccurate. It should also be mentioned that
the difference between the Dlala_sep anomalous coefficient
and the Bertotti-coefficient is larger for the high speed
machine than for the hydro generator (refer to figures 51
and 26), however it does not alone explain the difference.

The component separation is also seen to have impact on
contribution from harmonics, as seen in figure 38 showing
increased harmonic contribution for the variable coefficient
methods when the field winding current increases. As a
higher degree of dynamic components are seen for increasing
field current (related to the increasing dynamic coefficients
in figures 25 and 26), a higher degree of harmonics can
exist. This also explains figure 33, where the increase by
introducing radial and tangential components to the time
domain models with variable coefficient was larger at higher
field winding current. Thus, it is seen that the variable
coefficients has impact on many aspects in the analysis.

E. Method for fitting of variable coefficients

Comparing the accuracy of the CAL2 method and the
Dlala and Dlala_sep methods, it seems the point-wise method
is more accurate over a wide range than the surface fit used
in CAL2. Figure 32 shows that both Dlala methods follow
the rate of increase for the measured losses, however with
a steady underestimation, which is later corrected by the
rotational loss density method (figure 35). The CAL2 has
a much steeper rate of increase than the measured losses,
indicating even larger over prediction for higher levels of
induction than simulated in this work.

F. Data used for coefficient fitting

A source of inaccuracy for the high speed machine is
that no data was available for the nominal frequency (600
Hz), leading to all coefficients being fitted to 400 Hz data.
This seems to have little effect based on the accuracy of
the calculations, but it is difficult to say how fitting to
600 Hz would have impacted coefficients. An observation
is that the Dlala_sep method including rotational loss lead
so a slight overestimation for the high speed machine, while
an underestimation for the hydro generator. This might be
due to the data used for coefficient fitting. It should also
be investigated whether skin effect is negligible at this
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level of frequency, which might have changed the separate
contributions from the components.

However, another inaccuracy that is for all time domain
models, is that the coefficient corresponding to fundamental
frequency was used for all loss evaluations. This is an
inaccuracy compared to using frequency domain models,
as stated in section III-E.5. As harmonics seem to have
small contributions in both analyses, this seems to not
have affected the estimations greatly. However, this might
have been interesting to compare, particularly in high speed
machines where high fundamental frequency can generate
high frequency harmonics.

Moreover, it is difficult to say how the accuracy for the
implemented models had been affected if the fundamental
was not so dominant, as all methods are largely fitted to data
for the fundamental. As found in the literature review, using
high frequencies in the coefficient fittings might dominate the
solution [40]. This might be a reason for the large difference
seen in Jordan and Bertotti models, and it is difficult to say
whether the difference in accuracy is owning to the use of
the anomalous loss term of the input data. However, use of
the anomalous loss term allowed robust fit using only 50 Hz
input, which was not possible for the two term expression
(Jordan).

It should be discussed that the data used for coefficient
fittings are not the actual material data for either of the
analyses. Particularly for the hydro generator, where the
material is unknown, the data sheet selected by Engevik [52]
was selected based on similarity to measured specific losses.
Thereby, the possible discrepancies caused by machining
might be excluded from this analysis, as the input data might
not accurately reflect the relation between supplier data and
the assembled machine. However, it is difficult to say how
using original data would affect the analysis. For the high
speed machine, less insecurity is tied to this aspect, as the
data was selected based on knowledge of the actual material
used. It is uncertain how good the material data fits the
actual machines, and whether errors induced by this could
overshadow other tendencies in the results. However it is
certain that the analysis largely relies on good material data
for the iron, particularly the magnetisation curve and the
specific losses.

G. The decreasing accuracy for low field current in the hydro
generator

Figures 34 and 35 showed the accuracy of all models
seemed to be significantly lower for low field winding
current. This might be due to phenomena neglected in the
analysis becoming more dominating when the stator iron
losses are so low. Examples of this can be rotor losses and
eddy currents due to leakage flux, as mention in section
I. Engevik obtained similar discrepancy, and explained it
by inaccuracies when separating very small iron losses
from many times larger mechanical losses [52]. Another
theory could be that the Dlala_sep-coefficients have a too
steep increase for the increasing flux densities (thereby for
increasing field winding current), so that if measurements

were performed for higher flux densities in the machine, an
overestimation would be seen. This is difficult to evaluate
based on the presented results, but should be acknowledged.

H. The Steinmetz models

The Steinmetz implementations were seen to be unpre-
dictable in accuracy. For the hydro generator, the MSE was
the most accurate model when normB was used, with an
average relative error of 38%, however increasing accuracy at
nominal operation (figure 34). The GSE in the same machine
was far less accurate, with an average error of 81%. The
reason for this has not been clarified. The GSE is known to
be less accurate when a third harmonic is significant [1], and
third harmonics have been observed (figure 18). However, it
is unclear in [1] what is meant by "significant", and whether
the third harmonic observed in figure 18 can be considered a
such, where the maximum magnitude of the third harmonic
component is seen to be about 14% of the fundamental
magnitude in the measuring points. The separate evaluation
of equivalent frequency used in the MSE was found to be
221,31 Hz at 11 A field winding current and 224.83 Hz
for 13 A current, which corresponds well to the findings
in the Fourier transform (figure 18), and can be used as an
indication of correct implementation. No such validation was
performed for the GSE, and it cannot be ruled out that there
is an error in the implementation. It might also be that the
results had been better if coefficients were fitted to only 50
Hz data, but this cannot be concluded.

However for the high speed machine, the GSE was more
accurate than the MSE, with respectively 29.90 % and
60.34% relative error. It should be mentioned this coefficient
fitting was less accurate due to the limited amount of data,
which might me a reason for the unexpected behaviour of
the MSE. It is uncertain why the GSE performs so much
better for this model.

I. Other sources of inaccuracy

The R-curve-extraction using MATLAB Grabit might be
inaccurate. Ideally, these numbers should have been available
in exact numbers. A last source of inaccuracy in the hydro
generator model is that the air gap flux is found to be
somewhat larger than the measured value (figures 14 and
15). This might have lead to higher loss predictions if flux
densities are overall too high, and might therefore falsely
make the methods seem overly accurate.

X. FURTHER WORK

For validation of the developed method using variable co-
efficients and rotational loss density (Dlala_sep), the method
should be tested for more machines and variation of oper-
ating range. Further interesting work could be to extend the
model for including minor loops.

XI. CONCLUSION

This thesis aimed to investigate iron loss calculation
models for use in electrical machines, with focus on includ-
ing low-frequency harmonics and rotational losses through
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time-domain analysis. An extensive literature review has
been conducted to obtain overview of existing methods,
with focus on post-processing methods mainly within the
concept of loss separation. A broad variation of practice
has been discovered, where decisions regarding method are
often based on application-specific requirements. This results
in difficulty finding common ground for comparison of
methods. Therefore, a benchmark FEM model was developed
in COMSOL Multiphysics, where five variations of loss
separation methods were implemented, focusing on method
for coefficient determination and the use of the anomalous
loss term.

The methods were further expanded to include rotational
flux by calculation in radial and tangential direction, where
a large improvement was seen. Moreover, by evaluating
the degree of rotational flux per FEM element, the models
using three loss terms were expanded to include rotational
loss density by coupling generalized functions expressing
the ratio of rotational loss relative to alternating loss per
polarisation. This resulted in close agreement with measured
losses, however slightly more accurate for the variable co-
efficient method. For comparison, three of the loss separa-
tion variations were implemented in a high speed perma-
nent magnet machine model, where the variable coefficient
method including anomalous component was superior. The
Modified Steinmetz Equation (MSE) and the Generalized
Steinmetz Equation (GSE) were also implemented in both
cases, and showed fluctuating accuracy, overall lower than
the previously described methods. These were not expanded
to include rotation.

Main findings are listed below :
1) Variable coefficients seem to be more accurate than

using constant coefficients, however might have more
impact for machines operating at higher frequency,
due to the separation of loss components having larger
impact on the total sum of losses.

2) The point-wise methods for determining variable coef-
ficients (Dlala, Dlala_sep) are more stable in accuracy
than the direct surface fit (CAL2)

3) For machines with a high degree of rotational flux, the
COMSOL built-in normB should not be used. This
is particularly inaccurate in combination with time-
domain analysis.

4) Including rotational losses through aspect ratio (degree
of rotation) combined with rotational loss density
curves seems to drastically increase accuracy, with 20-
21% reduction in relative error for the hydro generator.
Providing good overall accuracy for both hydro gener-
ator and high speed machine, this seems to be a flexible
tool.

It should be remarked that the investigated methods are
dependent on accurate material data, particularly the specific
losses and the magnetization curve.
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APPENDIX

A. Input data for hydro generator simulations

TABLE A1
BH CURVE FOR STATOR IRON IN HYDRO GENERATOR MEASURED AT UPPSALA UNIVERISTY

"H (A_per_meter)" "B (tesla)"
0 0
73 0.80000000000000004
80 0.84999999999999998
89 0.90000000000000002
100 0.94999999999999996
113 1
130 1.05
149 1.1000000000000001
173 1.1499999999999999
205 1.2
257 1.25
336 1.3
410 1.3500000000000001
536 1.3999999999999999
752 1.45
1368 1.5
2234 1.55
3363 1.6000000000000001
4332 1.6499999999999999
6042 1.7
8892 1.75
13338 1.8
18354 1.8500000000000001
24054 1.8999999999999999
34181 1.95
50739 2

TABLE A2
BH CURVE FOR ROTOR IRON IN HYDRO GENERATOR MEASURED AT UPPSALA UNIVERISTY

"H (A_per_meter)" "B (tesla)"
0 0
144.321 0.83999999999999997
159.40700000000001 0.89249999999999996
178.41300000000001 0.94499999999999995
202.55699999999999 0.99750000000000005
235.46100000000001 1.05
286.91800000000001 1.1025
346.77300000000002 1.155
442.95499999999998 1.2075
604.87900000000002 1.26
892.43600000000004 1.3125
1492.97 1.365
2416.96 1.4175
3596.0599999999999 1.47
5278.9499999999998 1.5225
7480.7299999999996 1.575
10259.799999999999 1.6274999999999999
14032.6 1.6799999999999999
19565.599999999999 1.7324999999999999
31427.700000000001 1.7849999999999999
58221.400000000001 1.8374999999999999
92283.899900000004 1.8899999999999999
125601 1.9424999999999999

i



Typical data for SURA®  M530-50A

RD represents the rolling direction
TD represents the transverse direction
Values for yield strength (0.2 % proof strength)
and tensile strength are given for the rolling direction
Values for the transverse direction are approximately 5% higher June 2008

Loss at 1.5 T , 50 Hz, W/kg 4,46
Loss at 1.0 T , 50 Hz, W/kg 2,07
Anisotropy of loss, % 6

Magnetic polarization at 50 Hz
H = 2500 A/m, T 1,63
H = 5000 A/m, T 1,71
H = 10000 A/m, T 1,83

Coercivity (DC), A/m 85
Relative permeability at 1.5 T 1600
Resistivity, μΩcm 31

Yield strength, N/mm² 245
Tensile strength, N/mm² 385
Young’s modulus, RD, N/mm² 210000
Young’s modulus, TD, N/mm² 220000
Hardness HV5 (VPN) 120

T W/kg 
at 50 Hz

VA/kg
at 50 Hz

A/m
at 50 Hz

W/kg 
at 100 Hz

W/kg
at 200 Hz

W/kg 
at 400 Hz

0,1 0,04 0,11 56,1 0,14 0,23 0,56

0,2 0,14 0,31 74,1 0,42 0,82 2,07

0,3 0,30 0,54 85,8 0,81 1,70 4,29

0,4 0,48 0,81 95,6 1,24 2,80 7,09

0,5 0,69 1,10 105 1,58 4,09 10,5

0,6 0,92 1,43 114 2,14 5,56 14,6

0,7 1,17 1,80 123 2,83 7,20 19,5

0,8 1,44 2,20 133 3,49 9,09 25,5

0,9 1,74 2,65 145 4,28 11,3 32,6

1,0 2,07 3,15 158 5,52 13,8 40,8

1,1 2,43 3,75 174 6,46 16,7 50,4

1,2 2,84 4,48 200 7,38 20,0 61,5

1,3 3,30 5,48 243 8,73 23,8 74,1

1,4 3,84 7,06 333 10,2 28,2 89,1

1,5 4,46 10,8 573 12,0 32,8 105

1,6 5,16 23,6 1345

1,7 5,81 62,3 3367

1,8 6,30 144 6964

Fig. A4. Material data used for loss evaluations in hydro generator
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B. Implementation in COMSOL

TABLE B3
GLOBAL PARAMETERS DEFINED IN COMSOL

Do "876 [mm]" "Stator outer diameter"
Di 725[mm] "Stator inner diameter"
delta0 "8.4 [mm]" "Airgap width"
lm "303 [mm]" "Machine length"
hpb "134 [mm]" "Pole body height"
wpb "74 [mm]" "Pole body width"
hps "20 [mm]" "Pole shoe height"
ht "15 [mm]" "Tooth height"
Dri "231.8 [mm]" "Rotor inner diameter"
Dpi "391 [mm]" "Pole inner diameter"
wps "131.36 [mm]" "Pole shoe width"
fwh "122 [mm]" "Field winding coil height"
fww "2.8 [mm]" "Field winding coil width"
ws 8.5[mm] "Slot width"
cw "6.5 [mm]" "Coil width"
w "50*pi/3 [rad/s]" "Angular velocity"
ia "0 [A]" "Phase A current"
ib "0 [A]" "Phase B current"
ic "0 [A]" "Phase C current"
fw 16[A] "Field winding current"
nt 162 "Number of turns"
f "50 [Hz]" "Rated frequency"
kh_CAL2_0 0.11 "polynomial coefficient for CAL2 function"
kh_CAL2_1 -0.1747 ""
kh_CAL2_2 0.1322 ""
kh_CAL2_3 -0.03402 ""
kc_CAL2_0 0.0001218 "polynomial coefficient for CAL2 function"
kc_CAL2_1 6.541e-06 ""
kc_CAL2_2 5.849e-05 ""
kc_CAL2_3 -1.47e-05 ""
rho "7650 [kg/m^3]" "Material density "
KhJ 0.03197 "Kh Jordan (50-400 Hz as input)"
KcJ 0.0001964 "Kc Jordan (50-400 Hz as input)"
Ke_an 1.6128e-5 "Ke analytical"
T 1/f "Electrical period"
Kh_B 0.03278 "Kh Bertotti"
Ka_B 0.002046 "Ka Bertotti"
C_se 0.003022 "Steinmetz coefficient C"
a_se 1.592 "Steinmetz coefficient alpha"
b_se 2.213 "Steinmetz coefficient beta"

TABLE B4
LOCAL VARIABLES DEFINED IN COMSOL UNDER COMPONENT->DEFINITIONS->VARIABLES

phi2 attimemax(0, T, rmm.normB, atan(rmm.By/rmm.Bx)) "angle for major axis relative to x axis"
B_min rmm.Bx*cos(phi2)+rmm.By*sin(phi2) B_minor
B_maj rmm.Bx*sin(phi2)-rmm.By*cos(phi2) B_major
B_r_p timemax(0, T, B_r , ’nointerp’) "B_radial peak value"
B_t_p timemax(0, T , B_t, ’nointerp’) "B_tangential peak value"
B_n_p timemax(0, T , rmm.normB, ’nointerp’) "B_norm peak"
rot_ratio timemin(0,T, rmm.normB, ’nointerp’)/timemax(0, T , rmm.normB , ’nointerp’) "Degree of rotation (Bmin/Bmax)"
eddyInt_n timeint(0, T , abs(d(rmm.normB , TIME))
textasciicircum2) "Integral in eddy current loss evaluation using normB"
deltaB timemax(0, T , rmm.normB, ’nointerp’)-timemin(0 ,T , rmm.normB , ’nointerp’) "peak-peak value of normB"
dB_n d(rmm.normB, TIME) "Time derivative of normB"
B_r (rmm.Bx*X+rmm.By*Y)/sqrt(X^2+Y^2) B_radial
B_t (rmm.Bx*Y-rmm.By*X)/sqrt(X^2+Y^2) B_tangential
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Fig. B5. CAL2 hysteresis coefficients implementation for hydro generator
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Fig. B6. Dlala hysteresis coefficients implementation for hydro generator

Fig. B7. Linear fit of loss density ratio when frequency range 50 Hz-200 Hz is used
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Fig. B8. Example of evaluation implemented in the surface integration. Here for the Dlala_sep method including rad/tan comopenents and aspect ratio
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Fig. B9. Example of COMSOL outputting the same result for all time steps inducing extremely high computational time

vii



Fig. B10. R-curve for rotational hysteresis loss density implementation
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C. Input data for high speed machine simulations

TM

RD represents the rolling direction

TD represents the transverse direction

Values for yield strength (0.2 % proof strength)

and tensile strength are given for the rolling direction

Values for the transverse direction are approximately 5% higher

Ap
r 2

01
5

NO20
 TYPICAL VALUES

POLARISATION SPECIFIC TOTAL LOSS

Jpeak at 50 Hz at 400 Hz at 2500 Hz at 5000 Hz at 10000 Hz
T W/kg W/kg W/kg W/kg W/kg

0.1 0.02 0.17 2.79 9.01 27.0

0.2 0.07 0.72 10.6 31.8 95.6

0.3 0.14 1.49 24.4 65.6 191

0.4 0.23 2.50 40.4 108 315

0.5 0.32 3.80 58.4 159

0.6 0.42 5.17 78.4 219

0.7 0.54 6.70 103 290

0.8 0.66 8.36 133 375

0.9 0.80 10.3 166 477

1.0 0.95 12.3 200

1.1 1.14 14.8 248

1.2 1.36 17.9

1.3 1.65 21.4

1.4 2.00 25.3

1.5 2.40 29.7

1.6 2.75

1.7 3.06

1.8 3.32

GUARANTEED VALUES TYPICAL VALUES

Loss at 1.0 T and 50 Hz,  W/kg - 0.95

Loss at 1.0 T and 400 Hz,  W/kg 15.0 12.3

Loss at 1.0 T and 2500 Hz,  W/kg 215 200

Nominal thickness, mm 0.20

Resistivity, µΩcm 52

Density, g/cm³ 7.65

Yield strength, N/mm² 370

Tensile strength, N/mm² 450

Young’s modulus, RD, N/mm² 185 000

Young’s modulus, TD, N/mm² 200 000

Hardness HV5 180

Fig. A11. Material data used for loss evaluations in high speed machine
ix
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