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Abstract

The aim of this thesis is to develop a passivity-based control design of DC/DC converters
for stability-preserving microgrids with plug-and-play features, for the purpose of a stable
DC-microgrid operation in the case of any future topology change in the microgrid.

The electric power grid is going through a major shift from being dominated by a few
large-scale power plants and unidirectional power flow, towards a more local and small-
scale power generation. This includes a bidirectional distribution-infrastructure using in-
formation and communication technology (ICT) to optimize the power flow, and imple-
menting renewable energy sources (RES) and energy storage (ES) units as a part of the
grid. An essential part of this smart grid transition is the implementation of microgrids,
i.e. small controllable power systems which contain both loads and generation. Since the
dynamics of such a small power system is very sensitive to the changes in the loads and
generation, the control is very complex, especially when facilitating for plug-and-play fea-
tures. This is implying a higher share of power electronics in the grid.

The nonlinear tool of passivity is typically useful when designing the controllers in a
microgrid consisting of converters, since their dynamical behavior is often described by
nonlinear relationships. Passivity has a very advantageous property related to intercon-
nections, and is, therefore, a powerful tool for the development of microgrids with many
interconnections. This thesis will focus on DC/DC bidirectional converters that operate
exclusively under the so-called compensated modulation strategy; i.e., where the current
dynamics have been linearized by means of feedback. This allows for creating a time
scale separation (TSS) between the linearized current dynamics and the remaining non-
linear voltage dynamics, which will be ensured by a design criterion. Under this TSS,
the analysis of the remaining nonlinear voltage dynamics through passivity and Lyapunov
theory is greatly simplified. Furthermore, it allowed for designing decentralized passivity-
based outer loops for each converter. Finally, by exploiting the interconnection property
of passivity, i.e. plug-and-play features, a stability preserving DC microgrid can be poten-
tially implemented, even for the case of future interconnections.

Mathematical derivations have been conducted, and simulations through computer-programs
have been done to verify the derivations. It is proven that TSS can be guaranteed as long
as the inner-loop proportional-term is greater than the integral term, by a factor deter-
mined by the relationship of the inductance and capacitance. The result is extended by
adding a voltage-regulating outer-loop based on passivity-theory. For this converter sys-
tem, a new PI control design is derived. It was found that the outer-loop integral term is
the most critical parameter, and that it must be small compared to the inner-loop tuning
parameters to guarantee TSS. At last, the DC/DC converter power transfer bidirectional-
ity is investigated, such that power can be both received and transferred, while preserving
the plug-and-play features. Bidirectional power transfer was achieved. Although good re-
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sults were obtained for the positive power transfer direction, it was found that the negative
power transfer direction did not allow a straightforward and precise regulation of current
or voltage. Instead it was suggested to settle for a droop-type of behavior for the control
in the case of a negative power flow. The mathematical tool of the Gershgorin circle theo-
rem has been applied for deriving the TSS design criteria. The theorem gave an analytical
insight into the convergence rate of the voltage and current variables and their dependence
on the system and control parameters, which was instrumental for enforcing the desired
TSS.
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Sammendrag

Målet med denne masteroppgaven er å utvikle et passivitets-basert kontrolldesign for en
DC/DC omformer. Det overliggende formålet er at dette kontrolldesignet skal kunne bidra
til å oppnå et stabilitetsbevarende DC-mikronett med “plug-and-play” funksjoner, slik at
driften er stabil om det skulle oppstå fremtidige endringer i nett-topologien.

Strømnettet gjennomgår store endringer og går fra å være dominert av få men store kraft-
stasjoner og effektoverføring i en retning, mot mer lokal kraftproduksjon i mindre skala.
Dette inkluderer toveis effektoverføring som utnytter informasjons- og kommunikasjon-
steknologi til å optimalisere kraftoverføringen, i tillegg til innfasing av fornybare energik-
ilder og energilagring i nettet. En essensiell del av overgangen til et smartere nett er im-
plementeringen av mikronett, dvs. små, kontrollerbare kraftsystemer som inneholder både
laster og kraftproduksjon. Siden dynamikken i et så lite kraftsystem er veldig sensitivt
med tanke på endringer i last og produksjon, er kontrollen veldig kompleks. Dette gjelder
spesielt med tanke på “plug-and-play” funksjonene, noe som medfører store mengder med
kraftelektronikk i nettet.

Et ikke-lineært verktøy som passivitet kan typisk være en god løsning for å designe kon-
trollerne i et mikronett bestående av omformere, siden den dynamiske oppførselen ofte
beskrives av ikke-lineære sammenhenger. Passivitet innehar også en veldig fordelaktig
egenskap relatert til sammenkoblinger, og kan derfor fungere som et nyttig verktøy for
kontroll av mikronett. Denne avhandlingen vil fokusere på DC/DC omformere med toveis
effektflyt, som utelukkende opererer under en såkalt kompensert moduleringsstrategi; altså
hvor strømdynamikken har blitt linearisert gjennom en tilbakekobling. Dette gir mu-
ligheten for en tidsskala-separasjon (TSS) mellom den lineariserte strømdynamikken og
den ulineære spenningsdynamikken, noe som vil bli sikret ved å lage et designkriterium.
Mens TSS er tilstedeværende, vil analysen av den ulineære spenningsdynamikken bli
veldig forenklet ved å benytte passivitets- og Lyapunov-teori. Videre gjorde dette at man
kunne designe desentraliserte og passivitetsbaserte ytre kontrollsløyfer for hver enkelt om-
former. Til slutt, ved å utnytte sammenkoblings-egenskapen til passivitet, altså “plug-
and-play” egenskapen, kan potensielt et stabilitetsbevarende DC mikronett implementeres.
Dette vil også gjelde for fremtidige tilkoblinger til mikronettet.

I denne masteroppgaven har matematiske utledninger blitt gjennomført, og simuleringer i
dataprogrammer har blitt utført for å verifisere utledningene. Det har blitt bevist at TSS
kan garanteres så lenge proporsjonal-leddet er større enn integral-leddet i den indre kon-
trollsløyfen, med en faktor som avhenger av induktansen og kapasitansen. Deretter har
resultatet blitt utvidet ved å legge til en spenningsregulerende ytre sløyfe som er basert
på passivitetsteori, hvorav ett nytt PI-kontroll-design har blitt utledet. Integral-leddet i
den ytre kontrollsløyfen viser seg å være den mest kritiske parameteren, og resultatet er
at denne parameteren må være liten sammenlignet med kontrollparameterne i den indre
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sløyfa, for å kunne garantere TSS. Til slutt utforskes omformeren sine muligheter til å
transportere effekt i begge regninger, slik at den fortsatt bevarer “plug-and-play” funksjon-
alitetene. Toveis effektflyt i omformeren ble oppnådd. Gode resultater ble oppnådd for
positiv effektflyt, mens for negativ effektflyt var det ikke den samme muligheten for enkel
og presis regulering av strøm og spenning. Som en erstatning ble det anbefalt å benytte en
“droop”-type oppførsel for regulering for negativ kraftretning. Gershgorins sirkel-teorem
ble benyttet for å utlede design kriteriene for å sikre TSS. Dette teoremet ledet til en ana-
lytisk innsikt i konvergenshastigheten til spenningen og strømmen, samt deres avhengighet
av system- og kontrollparameterne som var essensielle for å sikre den ønskede TSS.
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Chapter 1

Introduction

In this chapter the background of this project will be presented. The main motivation and
the key developments creating the need for the topic in this project will be introduced.
Further on the relation to the specialization project will be explained, before the research
proposal for this thesis will be presented, i.e. the objectives, limitations, outline, and
methodology.

1.1 Background
During the last decade, the focus on global warming and the measures to reduce it has
increased rapidly. A great majority of the countries in the world have committed to in-
ternational environmental agreements, of which the Paris Agreement from 2016 [2] is the
most comprehensive. This has led to both international and national goals, with the com-
mon aim of reducing the CO2 emissions. At the same time, the global population and
power demand is increasing [3]. This has led to a vast focus on electricity-based energy
carriers and renewable energy generation, to reduce the amount of fossil fuel-based energy
sources in the energy system.

To reach these goals, development within technology is essential. This includes de-
velopment within the whole domain of the energy system, ranging from big renewable
generation systems to the smallest components within the power system. A central part to-
wards decarbonization of the power sector is to implement more renewable energy sources
to the electric power grid. Solar energy, wind energy, and hydro energy are among the most
important renewable energy sources (RES). These RESs are already well established for
generation, and the future goal is to implement a higher share of these energy sources to
the power-mix, both in big and small scale. This invokes changes in all parts of the electric
power system, from generation, to transmission, to distribution [4].

The ongoing smart grid transition of the power grid is including the implementation of
RES, as well as other technologies. The goal is to achieve maximal efficiency of such im-
plementations, to optimize the operation of the electric grid. A central part for achieving
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Chapter 1. Introduction

this is to implement microgrids, i.e. small-scale individual power systems. These micro-
grids can be either of DC-type or AC-type, depending on the dominating voltage-type. A
recent trend is that DC-power becomes more and more popular. Some of the reasons are
because a high share of residential loads demands DC-power, energy storage and batteries
are DC-based and will be essential for the future, and since PV-systems generate DC-
power [5]. As mentioned, the implementation of smaller-scale RES is essential towards
achieving a low-carbon society. Rooftop solar panels, small-scale wind power, etc. have
become efficient distributed energy resources (DERs), but they lead to some challenges
when connecting to the grid. A solution is to apply controllable power electronics to con-
nect the generation and loads to a microgrid. The microgrid can control the generated
power, the stored energy, and the demand by the loads, in such a way that the microgrid
can function by itself in an optimal way. For several reasons, this type of converter-control
is very complex [6].

A possible solution, and a recent popular research objective, is to base this type of
converter-control on the nonlinear concept of passivity [7]. This could simplify the con-
trol of such complex and nonlinear systems, and be simpler understood due to the direct
relationship to energy. Additionally, the passivity-concept has many properties that are
favorable related to microgrids, where the well-known plug-and-play feature is the crucial
one. But, for the passivity property to be present, some requirements related to the system
must be fulfilled [8]. The objective hence becomes to design the controller, such that these
requirements are also obtained for the operating point of interest.

If such a control design can be derived and implemented, it would contribute towards
the goal of a low-carbon society. In general, if one converter which for instance is con-
necting a PV-plant to a microgrid can be designed to be passive, the converter has stability-
preserving plug-and-play features. In other words, the PV-plant can connect and discon-
nect to the microgrid as needed and guarantee stability, without any additional control
requirements. An even greater potential of passivity-based control design is to expand
from one single converter to multiple interconnected converters. A microgrid can be seen
as an interconnection of many units, i.e. loads and generations, connected through indi-
vidual converters. If for instance every unit connected to a microgrid has a passivity-based
control, it would be possible to construct a passivity-based microgrid. This is implying a
stability-preserving microgrid, which has plug-and-play features for all interconnections.
In the case of any future topology changes the stability would still be ensured, as long as
the new interconnection is passive.

The establishment of DC-microgrids with stability-preserving plug-and-play features
could ensure that the electric power grid could safely scale and therefore implement more
renewables, as a contribution in the fight against global warming.

1.2 Relation to Specialization Project
This thesis has a high relation to, and is partly based on, the specialization project named
“Development of a Computational Tool for Assessing Uninterrupted Microgrid Operation”
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[1], written by the same author as this thesis during the fall of 2019. The specialization
project will be important for the thesis in several ways.

First of all, the created computational tool from the specialization project will be ap-
plied to some of the dynamical systems. This is necessary in order to see if the TSS
is present for large-signal analysis and additionally, in general, to observe if the nonlin-
ear systems are stable. Secondly, the system in focus is similar to one of the systems in
the specialization project. One of the systems that were investigated in the specialization
project was the DC/DC converter with a PI-controller for the inner loop and with a com-
pensated modulation. This exact system is the starting point for this thesis, but further
expansions will be done, including adding a passivity-based outer-loop for the voltage and
investigating the possibility for bidirectional power flow. Thirdly, a very big part of this
master thesis is based on the Lyapunov theory, or an expansion of it for open systems called
passivity, as a tool to analyze nonlinear dynamics and design stable controllers. From the
specialization project, one of the main findings while investigating the compensated mod-
ulation of the P-controlled inner loop was the TSS that occurred between the current and
voltage dynamics. Because of the TSS, it was possible to create a Lyapunov function to
analyze the system stability of the slower voltage dynamics. For this thesis, finding design
conditions that ensure the TSS between current and voltage dynamics and designing a pas-
sivity based outer loop control for stabilizing the nonlinear and slower voltage dynamics
will be the main focus. This should be contrasted with the specialization project, where
the TSS occurred by chance and not by design.

Hence, some parts of this thesis are heavily based on material from the specialization
project. This is both done as a time-saving measure, but additionally as a consequence
of the reader not necessarily having access to the specialization project. The following
sections are highly inspired by or obtained directly with smaller adjustments, from the
specialization project: Chapter 2.1, Chapter 2.2 (only the introduction-part), Chapter 2.3.1,
Chapter 3.1.1, Chapter 3.2.1, and Appendix B.1. As a consequence, also some parts of the
limitations of this thesis are similar to the ones in the specialization project. The chosen
parameter values for the simulations, validations, and examples are also based on the same
papers as the values in the specialization project were. As a consequence, the parameter
values are similar.

1.3 Objectives

The general objectives for this thesis are listed below.

• Examine the theory of passivity and its potential for operating a stabilizing DC-
microgrid consisting of DC/DC converters.

• Derive design criteria using tools from system theory, including limitations and re-
strictions for both the converter and the control system parameters, in such a way
that TSS is ensured by design and not by chance.
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• Examine if it is possible to obtain analytical insight related to the different tuning
parameters such that the design criteria for ensuring TSS described above can be
further generalized.

• Design the outer loop of a single DC/DC converter with positive power transfer
direction based on passivity-theory to ensure stability. First, this will be done as-
suming that the TSS is present, i.e. that the inner-loop current has converged to a
desired reference. Next, the obtained outer loop will be tested in a more realistic
system which does not include such an assumption. It will be of interest to verify if
the outer-loop is able to stabilize the system while preserving the TSS.

• Investigate if it is possible to apply the design criteria detailed above to the more
challenging case of a converter with a negative power transfer direction, without
destroying the TSS.

• Create a time-domain simulation model to validate the control proposal.

All of the bullet-points are contributing towards the overall objective of creating plug-and-
play microgrids that can guarantee stability for any future topology change.

1.4 Scope of Work and Limitations
The scope of this work is to use passivity to design decentralized outer loop controllers
with a large-signal stability certificate and plug-and-play features for DC/DC converters
operating under so-called compensated modulation, while providing some design crite-
ria for the system and control parameters to ensure that the TSS is maintained. Due to
among others restricted time, some limitations for the scope of work must be sat in order
to achieve the objectives. Below these limitations are listed.

• The bidirectional DC/DC converter will be the converter in focus, for simplicity
reasons. Since this was the relevant converter also for the specialization project, it
is time-saving to exploit the obtained knowledge from that project.

• Since the area of interest is related to stability and proper operation of the converter,
optimization with respect to losses and set-points will not be considered.

• As the stability and stabilization is the main area of interest, hence the component it-
self not so much, the averaged switching model is applied. This model is neglecting
the switches in the converter.

• Compensated modulation is the focus; i.e., the case where current dynamics have
been linearized via feedback. Hence other modulation methods will not be men-
tioned.

• Throughout this thesis, simplifications and linearizations must be done to reduce
the inherent complexity of the relevant nonlinear systems. Therefore, some of the
results related to the TSS conditions have been based on small-signal analysis.
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• Availability of data is restricted. It is hard to obtain the values of the parameters for
the converters used by the industry. Hence, the values of the parameters are mainly
based on values from other papers and research.

• Finally, it must be mentioned that a big part of this master thesis should have been
to validate and test the mathematical derivations and control designs in the labora-
tory. But due to the outbreak of the COVID-19 virus, NTNU decided to close the
university and not allow anyone to do laboratory research as a measure to stop the
spread of the pandemic. Hence, it has not been possible to do research and validation
through experimental tests in the laboratory.

1.5 Methodology and Thesis Outline

The methodology applied in this thesis in order to achieve the previously mentioned ob-
jectives will be as follows:

First, a profound literature review will be conducted to obtain a strong theoretical
foundation, in such a way that qualified theoretical justifications will be taken. Secondly,
analytical research will be completed. Mathematical deductions and derivations will be
carried out and justified. Further on, implementation of the analytical results in computer
software such as SIMULINK and MATLAB will be done, to simulate the models. Then
validation and testing through the software will be completed before the results will be
evaluated. The evaluation and interpreting of the mathematical derivations, the resulting
analytical expressions, the obtained converter control design criteria, and the simulation-
results, are a great part of the final result.

The process to obtain the goals of this thesis consists of many steps. The approach is
logical, starting with the fundamental and essential parts for the total result. Since the TSS
is a demand for all of the derivations, this is the natural starting point. Further on a step-
wise approach towards the final goal will be carried out, focusing only on one problem
at the time. For each problem, derivations will be conducted, and simulations and tests
will show if the result is consistent with the derivation. When the result is satisfactory and
trustworthy, the next problem will be considered. If the obtained result for some reason
is not acceptable, it might be necessary to review some of the earlier problems, hence the
process is somehow iterative. Only the most important steps which actually led to some
sort of essential information will be mentioned in the thesis. But there were many dead-
ends in the process, which will not be discussed.

The outline of this thesis is now shortly described.

• Chapter 2 describes the system in focus.

• Chapter 3 presents the relevant mathematical theory and control theory that is ap-
plied in order to fulfill the objectives.
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• Chapter 4 presents the analyses and results related to the TSS of the inner-loop
dynamics. A design criterion on how to ensure the TSS is developed, before the
findings will be discussed.

• Chapter 5 presents the derivation of the PI passivity-based control (PBC) for the
unidirectional converter, along with analyses and discussion of the relevant design
criteria on how to still ensure the TSS.

• Chapter 6 is analyzing the bidirectional converter and the PI-PBC of it, such that the
TSS still is ensured.

• Chapter 7 is summing up the thesis and comes with a conclusion before suggestions
for further work are presented.

• The Appendix contains information essential for obtaining the results, including
some derivations and computer-scripts, which has been omitted from the main text
for compactness.
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Chapter 2

The DC Microgrid and the
DC/DC Converter

In this chapter relevant theory about the DC microgrid and the converter system later to
be analyzed will be presented. Theory about the grid will first be presented in order to put
the objectives of this thesis in context, and to obtain an understanding of why this project
is of great scientific interest. Then the DC/DC converter will shortly be explained, before
a more specific description of the converter-model to be analyzed is given. The model and
any eventual simplifications will be explained, along with the modulation technique and
the relevant controlling technique.

2.1 The Smart Grid
The electric power grid is going through a major transition towards a smarter grid, shaped
by the evolution of the power demand, the power generation, and the technology. The
smart grid is a necessary evolution for the electric power transmission system. During
the 2007 Energy Independence and Security Act, some key features defining a smart grid
were noted. These points can be found in [4], but in general, they define a paradigm
shift in the electric power grid. The main drivers for the development of the smart grid
are many [9]. First of all, there are the economic reasons. Smart grids can increase the
reliability of power supply and reduce the downtime of the grid. Also by exploiting the
existing infrastructure more efficiently and optimally, new investments can be avoided.
Secondly, there are environmental motivations. A constant increase in renewable energy
production creates new challenges for the grid. By implementing new components and
new technology into the grid, these problems can be solved. A third and very important
driver towards the smart grid is the society. Ever since the electricity was commercialized
at the end of the 19th century it has been more and more essential in people’s life. Today,
the society, both citizens and industry, depend on it for the daily life to function. This
trend will continue in the future [10]. For instance digitization in companies and electric
vehicles (EVs) among the private residential are two trends predicting this. Therefore,
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continuous and safe power delivery is getting more and more important. The structure of
the power transmission and distribution has changed a lot since the infrastructure first was
built. Figure 2.1.1 below is illustrating how the grid has gone from a uni-directional grid
to a more complex and multi-directional system [11].

Figure 2.1.1: Evolution of the power grid, comparing the old and the new power grid
system. The old system is more centralized, large-scale, and unidirectional, while the
new system is more bidirectional, small-scale, and distributed.

Additionally, the expectations of society force development. For instance, when buy-
ing an EV, it is expected that it will be able to charge and extract power from the grid. For
this to apply also in the future and for future technological developments, the electric grid
must adapt. So, technological development in the society is also a key factor for the move
towards a smarter grid.

But, many challenges appear when implementing the smart grid. First of all, it is hard
to determine which technologies will give the best result, and how these technologies can
cooperate to give the best solution. Research and development is the best way of solving
this challenge. Also, security [12] is a challenge related to the smart grid. Cybersecurity
against hacking or similar digital attacks is required to provide a safe power grid. The
smarter grid will also collect and store huge amounts of data, and these need to be stored
safely and treated ethically. Another issue concerning this amount of data is to determine
who should have access to it. Further on, a very important challenge is related to the stabil-
ity. Bidirectional power flow, a plurality of different frequencies, and nonlinear behavior
introduced by some power electronics, such as the constant power loads [13], are some of
the major elements which make the stability of the grid complex. In [12] a more consistent
analysis of the challenges can be found.
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2.2 The DC Microgrid and its Applications
One of the pillars in the process of establishing the future grid is the microgrid. As defined
by L. Fusheng, L. Ruisheng, and Z. Fengquan in [14] a microgrid is: “a single, control-
lable, independent power system consisting of distributed generation (DG), loads, ES, and
control devices, in which DG and ES are directly connected to the user side in parallel.”
It can be explained as a small and independent power system, which can transmit, gener-
ate, and distribute power all within an area, and therefore can function isolated from the
main grid. A microgrid has the possibility to be connected to the main utility grid, and
to disconnect from it, running in island mode. This implies a higher local reliability. For
instance, in the case of a fault in the transmission network, the microgrid can disconnect
and run in island mode, providing for itself. A basic sketch of a microgrid can be seen in
Figure 2.2.1 [15].

Figure 2.2.1: Sketch of a microgrid, showing some of the units that it can contain
and the possible directions of the power. Distributed storage, loads, and distributed
generation are typical units, and the microgrid is connected directly to the main grid
through a point of common coupling.

It can be seen from Figure 2.2.1 that the power flow in the grid is bidirectional and that
new technologies such as distributed energy storage (DES) and DG through renewables
are implemented.

Typically, a microgrid can be classified by function demand, capacity, or by bus-
voltage type [16]. The latter is used in this thesis and is further elaborated in the following
lines. This kind of classification is distinguishing between AC-microgrids, DC-microgrids,
and hybrid microgrids which is a combination of the two first-mentioned ones. Both the
AC-microgrid and the hybrid microgrid are important for the previously mentioned devel-
opment of the smart grid, but for reasons that will be mentioned later the DC-microgrid is
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getting more and more important and will further on be the focus in this project.

2.2.1 The DC Microgrid

One definition of a DC microgrid is a microgrid in which the DERs, the loads, and the
utility grid, are connected to a DC-bus [17]. The DC-link is connected to the utility
grid through a point of common coupling such that it has the possibility to both be grid-
connected and run in island mode, i.e. without connection to the main grid. The DC-link
is also connected to the loads. The loads can be either DC, and can thereof be directly
connected to the bus-bar though a DC/DC converter, or they can be AC and hence need an
inverter to transform the power from DC to AC. The different DERs are connected to the
DC-bus either through a DC/DC converter if they generate/demand DC voltage, or through
inverters/rectifiers, if AC is generated/demanded. The operation of this system, i.e. the
DC-link with the connections, is controlled by a DC-microgrid overall control. This con-
trol is managing the data from the DC-link and controlling the loads and DERs. In other
words, depending on the state of the system, the overall controller might connect or dis-
connect generations depending on the need. So the difference between an AC-microgrid
and a DC-microgrid is basically the voltage-type at the link that is interconnecting the
loads and the DERs. A typical DC-microgrid configuration can be seen in Figure 2.2.2
below [17].

Figure 2.2.2: Overview of configurations in a DC-microgrid. The DC bus is connecting
the units in the grid, and the microgrid control is managing the control of the units in
the grid by receiving and processing data in real-time.

The DC-microgrid is essential for many reasons. In general, the main reasons are due
to an increase in DC-loads, for simplicity reasons, because of low costs, and a higher
demand for the quality of the delivered power [18]. A DC-distribution system has high
efficiency for distribution and makes it easy to integrate DG and RES. In this way the en-
ergy supply can easily get more independent from fossil fuels, which is a good measure
in the battle against global warming [19]. More specifically, a DC-system might be a bet-
ter solution than an AC-system for a couple of reasons that will be mentioned in the next
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paragraphs.

A big share of the microgrid-technologies, i.e. the DERs [20], such as batteries
in energy storage systems, and photovoltaic (PV)-systems for renewable DG, and fuel
cells (FC) for non-renewable DG, are based on DC. Additionally, it is a steadily in-
creasing implementation of EVs in the car-park, which all are based on batteries. In to-
tal, approximately 50 % of residential loads are DC-based [5]. By directly connecting
these loads and/or generations to a DC-microgrid, a huge amount of unnecessary voltage-
transformation can be avoided. Hence, for such interconnections fewer converters are
needed and fewer steps of conversion. This implies lower costs and lower losses. Hence
for a low-voltage DC-microgrid the potential for energy saving is big [21]. This concept
is also illustrated in Figure 2.2.3 [5].

Figure 2.2.3: AC distribution system vs DC distribution system, illustrating less con-
verters and power electronics, hence lower costs and losses, for the DC system.

The control objective for a DC-microgrid is to keep the required voltage values at the
different supply points or other essential points in the microgrid [22]. Since the voltage
type is DC, only the voltage level must be controlled to be at the required value. The con-
trol is hence less complex than for an AC-system, which in addition to voltage level, must
control the frequency and the shape of the voltage. Compared to Figure 2.2.2, the DC-
microgrid control is doing the data processing and communicates with the different nodes
in the grid, while for each unit a local controller is regulating the voltage in case of dy-
namics changes or a required change. The main challenge with the control of a microgrid,
regardless of type, is that the conditions in the system are variable and often unknown,
and therefore must adapt in real-time [6]. The control-layers in a microgrid will not be
explained in detail, but is further explained in [1] and [23].
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Additionally, the DC-distribution is in general more efficient and less characterized by
interference, leading to high power quality. This involves that phenomena such as skin-
effect and reactive power losses are avoided. Additional advantages of DC over AC, in
general, are also applying [24]. Of course the DC-microgrid also provides challenges and
disadvantages compared to an AC-microgrid. This will be enlightened in the next section.

2.2.2 Challenges

The main challenge with DC-microgrids is related to the lack of protection technology and
devices. The two main disadvantages with DC-voltage related to protection is related to
the lack of natural zero-crossing of the current and challenges with the grounding [25].
Because of these challenges technologies for protection is complex, in order to provide a
safe and solid grid. One example is regarding circuit breakers for DC-currents. The circuit
breakers are essential in the protection scheme of an electric grid. But the fundamental
theory behind the circuit breakers is related to the natural zero-crossing of the current.
Since the DC currents are, generally, only positive and not are crossing the zero-axis, an-
other approach for the circuit breakers must be taken. Many solutions have been presented
in order to solve the mentioned challenges with the lack of protection devices [26, 27].

Additionally the lack of standards and regulation is a challenge for the DC-microgrid
[5, 24]. The lack of standards are partial linked to the points in the previous paragraph.
Since AC-grids have been so dominating for many years, the standards for them are devel-
oped. For DC-grids on the contrary, standards are lacking. Actively, several organizations
such as the Institute of Electrical and Electronics Engineers (IEEE) and the International
Electrotechnical Commission (IEC) are working on developing such standards. Both IEEE
and IEC standards will create the foundation to develop and establish a safe and profound
DC-microgrid.

It is not only the DC-microgrids that have issues with protection. Independent on
the type of microgrid, some challenges with protection occurs. In general, microgrid
protection includes dealing with bidirectional power flows, plenty of cooperating power
electronic devices, dynamic changes of generation and loads, and changing operating con-
ditions. These are complex phenomena, and the protection of such systems is hence trou-
bling. One of the major issues is related to the fault currents in the case of grid-connected
mode and island mode. An adaptive protection is one way of solving this type of issue
[25], and additionally other solutions are being researched.

2.2.3 Plug-and-Play Features

A microgrid-system is a complex and dynamically evolving system. Scalability, or the
ability to change in size, is one of the benefits with microgrids. If the total load for a
microgrid-area is increasing, it is possible to connect for instance a RES to it, providing
for the lack of generated power. Of course this scalability has its limitations, for instance
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the control technology. Hence, the concept of plug-and-play features in microgrid has re-
cently been more and more researched. From computer science the term plug-and-play is
related to the ability of a component/device to connect to a system, i.e. be plugged in, and
then automatically be recognized by the system and start to function with the system, i.e.
starts to play. For microgrid applications, the definition is similar. It includes the possi-
bility of the microgrid-system to integrate a component or device into the system, only by
connecting it/plugging it in [28].

This involves that the connected component or device finds its natural operating condi-
tions in the system automatically, such that it configures properly and operates efficiently.
The main idea is that the units that are plugged in contribute to stabilizing the voltage (or
other states) in the microgrid without any further communication [29]. From a practical
point of view this means that DGs, ES-systems, and loads can be connected to the micro-
grid when necessary, and disconnected when that’s favorable, only by “plugging” it in or
out, and that the DC-voltage at the DC-link will stabilize, thus guaranteeing a safe opera-
tion. In order for this to properly work, a decentralized local controller is essential for the
connected units. For instance, a local PI controller can be used [6].

A future goal, and a popular research topic, is to construct a full microgrid where every
connection has the plug-and-play capability. This implies a fully autonomous microgrid-
system. This objective has many challenges, and the main one is related to the control of
the power electronic converters. A suggestion, and the research topic in this project, is to
base the control on the property of passivity. Passivity will later be shown to have many
of the wanted characteristics for such a purpose.

2.3 The DC/DC Converter

Some of the most essential components in a microgrid are the power electronic converters.
Every unit and every connection needs some sort of power electronic equipment in order
to provide the correct signal types. Depending on the type of connection, different types of
converters are needed. For some connections, the objective is to convert the voltage-type
from AC to DC or vice versa, for others it is to change the frequency of the input signal,
while for others it is to change the voltage level. Based on this, there are four main types of
power converters; AC/DC converter (rectifier), DC/AC converter (inverter), AC/AC con-
verter, and DC/DC converter.

Since the focus in this project is the DC-microgrids, the DC/DC converter is the con-
verter in focus. This is because this often is the most common converter for DC-microgrid
applications. Two examples on the use of the DC/DC converter is to convert the generated
PV-voltage to a suitable voltage for the DC-microgrid bus-bar, and to convert the voltage
on the DC-link to a suitable format for the charging of the batteries in an EV. Since the
chosen converter type and model will be explained more in detail in the next chapter, i.e.
Chapter 2.4, the rest of this chapter will only give a short overview of the essentials related
to the DC/DC converter.
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2.3.1 Topology and Functioning

A DC/DC converter has in general only one objective, to change the voltage level from
one level at the input, to another at the output. The voltage level can either be increased or
decreased, i.e. the converter is either a step-up converter, or a step-down converter. Many
topologies for the DC/DC converter exists, and each has advantages and disadvantages.
In [30] the most important DC/DC converter topologies are explained and compared. For
this thesis, as for the specialization project [1], a topology with an origin in the bidirec-
tional Buck-Boost converter is in focus. The circuit can be seen in Figure 2.3.1, and its
functioning is described below.

Figure 2.3.1: Topology of a non-insulated Buck-Boost converter. S1 and S2 are con-
trolled switches, D1 and D2 are diodes, C1 and C2 are parallel capacitors, L is the
inductor, and V1 and V2 are the voltage sources.

The Buck-Boost converter has the ability to both step-up (boost) and step-down (buck)
the voltage level. Furthermore, as it is bidirectional, it can transfer power in both direc-
tions. This is an interesting characteristic related to the microgrid and ES-systems. The
batteries must be able to both be charged, i.e. receive power, and to discharge, i.e. deliver
power to the grid. Regarding Figure 2.3.1, the operational modes are described in [31], but
the most important operational aspects are summarized in Table 2.3.1 below.

Table 2.3.1: Operational modes of the bidirectional Buck-Boost converter.

Boost Mode 1 Boost Mode 2 Buck Mode 1 Buck Mode 2
S1 OFF OFF ON OFF
S2 ON OFF OFF OFF
D1 OFF ON OFF OFF
D2 OFF OFF OFF ON

The commands written in bold are the fixed commands for the Buck and Boost mode,
while the commands written in normal letters are distinguishing between the different op-
erational modes. The modes (mode 1 and 2) are separating between power transferred in
both directions. The topology consists of a buck converter and a boost converter and is
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controlled by an IGBT or MOSFET with freewheeling antiparallel diodes. The switch can
be controlled with a pulse width modulation (PWM) technique. The modulation technique
will not be considered in this project because the model in focus will be state-space aver-
aged. Nonetheless, an important parameter coming from the PWM is the duty cycle, m.
The duty cycle is defined as the time the PWM is giving VDC over the load, divided by
the switching period. VDC is a reference value set by the PWM. A practical description;
if the VDC of the PWM is 100 V, and the input is 100 V, while the output is wanted to be
50 V, the duty cycle must be 50%. The relationship is described in Equation (2.1).

m =
ton
T

=
Vout
VDC

(2.1)

A deeper analysis of the PWM technique can be found in [32].

In Chapter 2.4 the converter-model will be explained more in a mathematical way.
The origin is the topology in Figure 2.3.1, but simplifications will be done in order for the
mathematical analysis to be more efficient. In order to start analyzing the converter-model,
an overview of some controlling techniques must be presented.

2.3.2 Control Design of the DC/DC Converter
Numerous controlling techniques for the DC/DC converter and different varieties of these
techniques have been proposed and implemented. The control design is depending on the
controlling objective, which is individual for different situations. The main controlling
objective for every converter is to obtain a reference value for voltage, current, or a com-
promise between both. Some situations are characterized for instance by huge/nonlinear
load variations, others connect critical components that need a fast response, while others
have big voltage level differences between the input and output. So individual converter-
situations needs individual controllers.

For a DC/DC converter there are mainly three types of control modes [32]. The first
mode is voltage-mode. A converter in the voltage-mode conditions aims to regulate the
voltage of the output, to achieve the desired output voltage. This is done by drawing the
level of current needed to provide the given voltage. For current-mode the situation is
identical but reversed, meaning that a desired current-level is wanted at the output, and the
voltage must change to obtain this current-level. The third controlling mode is the droop-
control, often applied for larger systems including power-sharing. The droop-control is
well established and many designs related to the DC/DC converters exist. In [33] and [34]
two specific cases of the implementation of droop-control can be seen.

When modeling the DC/DC converter, and describing the system dynamics as a func-
tion of its control inputs and states, the resulting model is in open-loop. The open-loop
model is very useful in order to obtain information about the physical system itself. This
set of dynamical equations maps a desired output with a control input. But, since it is es-
sential and necessary to regulate the output in order to get the desired operating condition
of the converter even in the presence of unmodelled system dynamics, a controller based
on feedback measurement must be added. When adding a control-loop, using the states
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of the converter to control the output, the system is in closed-loop. Depending on the ob-
jective of the converter and the requirements previously mentioned, the type of control is
chosen. For this project, the PI-controller will be applied. The PI-control is well estab-
lished within the discipline, and it has several advantages such as the ability to obtain zero
steady-state error and a simple construction [35].

The general PI control-loop can be seen in Figure 2.3.2 below.

Figure 2.3.2: PI control-loop. The difference between the reference value and the
output value is the input to the PI block. This is used to regulate the output-state of the
converter system, to achieve the correct output value.

The converter system-block contains the equations describing the dynamics of the con-
verter, for instance in terms of voltage and current. Depending on the control mode of the
converter, the output state x, i.e. voltage or current, becomes equal to the reference value
in steady-state. A requirement is that the tuning parametersKi andKp are tuned correctly.
The function of the control is that the xout state is going into a feedback loop, where it is
compared to the reference value, i.e. the desired value. The error between the two is multi-
plied with the proportional-gain (P-gain) Kp and in parallel integrated and multiplied with
an integral-gain (I-gain) Ki. These two values are the tuning variables for a PI-controller.
The proportional-term is reducing the response time, and the integral-term is eliminating
the steady-state error. But they also may lead to overshooting of the signal, so the tuning
must be done carefully to have a satisfactory response. Additionally, a second PI-controller
can be added to the outer-loop. Often the current is controlled in the inner-loop, and the
voltage in the outer-loop. In this way, the full dynamics of the converter can be controlled
[36].

A decision that must be taken, in addition to choosing the tuning parameters, is the
choice of modulation technique. In general, there are two schools of thought within the
power electronics community; compensated modulation and uncompensated modulation
[37]. A compensated modulation is having a feedback-term to compensate for a non-
linearity appearing in the converter current-dynamics, resulting in linear current dynamics.
The consequence of such a compensated modulation is that the model might suffer from
robustness issues. By contrast, the uncompensated modulation avoids any feedback lin-
earization, and is typically used along with standard linear current control methods despite
the current dynamics remaining nonlinear. This project will limit its scope exclusively to
DC/DC converters under the compensated modulation technique.

There are many challenges related to the control design of converters. One of the
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main challenges is associated with the changes in the electric power grid and technology
related to the grid. As the power grid is in the middle of a transition where it is somehow
unknown what the future will bring, the research on control techniques must continue. The
main changes the future grid will bring are related to more power electronics in the grid,
more renewable and decentralized distributed generation, and plug-and-play features. This
enforces more autonomous control, in addition to a fast and accurate response.

2.4 System Description: The DC/DC Converter with Com-
pensated Modulation and PI-control

In this chapter the converter-model which is the starting point for the research in this
project will be presented. Throughout Chapter 5 some other elements will be added to the
model, but the starting point is the same model as for the specialization-project [1].

The open-loop system consists of a state-space averaged Buck-Boost converter [31],
with the possibility of bidirectional current, as seen in Figure 2.4.1.

Figure 2.4.1: Converter topology of the relevant converter-system, representing a state-
space averaged Buck-Boost converter.

The topology consists of a DC-voltage source and a corresponding source-side resis-
tance, and an inductor controlling the current i though it. On the load-side a constant
current-source is representing the current required at the load, and a parallel capacitor
with the voltage v over it. Two switches are present, for instance PWM-controlled, which
is regulated to change the output voltage v seen in Figure 2.4.1. The switches have a given
duty-cycle m, described in Equation (2.1), such that the average output voltage is equal to
v ·m. The equations describing the current through the inductor and the voltage over the
capacitor can be seen in Equation (2.2) and (2.3) below.

L
di

dt
= −Rs · i+ Vs − v ·m (2.2)

C
dv

dt
= −Is + i ·m (2.3)

Since this is an open-loop system, which is not of interest for any practical purposes,
a control-loop is added. The controller is a PI-controller in current mode, with a compen-
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sated modulation; formally referred to as partial feedback linearization [38]. First of all,
the term of the internal voltage is now introduced, defined as in Equation (2.4).

e = Vs −Kp · (iref − i)−Ki · ζ (2.4)

The integral term also adds a new state to the system, ζ defined in Equation (2.8) below.
The internal voltage contains a feed-forward signal of the voltage source Vs, and is hence
eliminated from the current-equation such that the current-equation becomes as simplified
as possible. In addition, the internal voltage e contains the terms coming from the PI-
controller. This includes the reference current, iref , and the two tuning gains Kp and Ki.
The compensated modulation/partial feedback linearization is obtained by defining m as
in Equation (2.5) below.

m =
e

v
(2.5)

This will eliminate the nonlinearities in the current-equation, and consequently making
it independent from the voltage, such that it is easy to investigate and analyze. By inserting
Equation (2.4) into Equation (2.5), and further into Equation (2.2) and (2.3), the system
description of the model is obtained. The resulting system description is seen in Equation
(2.6)-(2.8) below.

L
di

dt
= −Rs · i+Kp · (iref − i) +Ki · ζ (2.6)

C
dv

dt
= −Is + i · Vs −Kp · (iref − i)−Ki · ζ

v
(2.7)

dζ

dt
= iref − i (2.8)

Summed up, the model described in Equation (2.6)-(2.8) above is a state-space aver-
aged DC/DC converter with a PI-control of the current, and a partial feedback linearization
with respect to current-dynamics, such that the current equation becomes linear. The rea-
son why it is called partial feedback linearization is that the system can be divided into two
subsystems, one linear and one nonlinear. The consequence of this is that the capacitor-
voltage equation gets even “more nonlinear” than originally.
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Chapter 3

Stability and Control Theory for
Dynamic Systems

As a consequence of the increasing complexity in the electric power system due to new
interconnections of DERs, more nonlinear loads, and a higher share of power electronics,
the importance of a proper control design providing stability increases. In this chapter,
the necessary and relevant control theory and theory related to dynamic system analysis
will be presented. To fulfill the control objectives of this thesis, some simplifications and
approximations had to be done, and the relevant ones will be thoroughly explained. This
theory will be supportive of the derivation of the TSS for the relevant DC/DC converter.
The presented theory about the control and stability for electric systems will be the foun-
dation for the derivation and analysis of the control design of the converters, especially
with respect to the outer loop.

This chapter contains the preliminaries in control theory that is used in the thesis. A
series of definitions in control are reviewed such as stability in the Lyapunov sense and
passivity. This chapter has the objective to self-contain the necessary information, and
can be overpassed for advanced readers in control theory.

3.1 Analysis of Nonlinear Dynamic Systems
The relevant DC/DC converter is a nonlinear dynamic system, where only the voltage
equation is nonlinear due to the compensated modulation. Even though only one of the
equations are nonlinear, this nonlinear relationship is making the stability and system anal-
ysis more complex. To extract any relevant information, simplifications must be done.
There are many ways of doing this, and most methods can be applied interchangeably.

3.1.1 General System Theory
For both linear and non-linear systems, the equilibrium point is an important property. For
a set of differential equations describing the dynamics of a system such as in Equation
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(3.1), the equilibrium point can be described as in Equation (3.2). As a consequence of
the neglect of the PWM mentioned in the previous chapter, the presented theory will be
limited to only consider autonomous systems, i.e., systems where the time variable not
explicitly is appearing in the differential equations.

dx
dt

= f(x) (3.1)

0 = f(xeq) (3.2)

It can be noted that all the derivatives are zero for the equilibrium point, meaning that
the system is not changing over time. This means that the system has stabilized, or reached
its steady state, for the values xeq . For a stable converter that has experienced some sort
of disturbance, the equilibrium point contains the values that current and voltage stabilizes
towards after a given time of the response.

This type of representation of the equations through matrices and vectors is called the
state-space representation. The vector x consists of the different states of the system. The
state variables are the variables used to describe the state of the system. Some examples
of state variables are physical quantities such as voltage, current, velocity, but also fictive
variables such as the ζ for the DC/DC system description.

Another important property of a system is the eigenvalues. For linear systems, the
eigenvalues can solely determine if the system is stable or not. A description as in Equation
(3.1) can be represented in matrix form, as in Equation (3.3) [39].

ẋ = Ax (3.3)

Here, A is an n·n matrix, and the equations are linear. Then the system can be written
as

Ax = λA (3.4)

where x is the eigenvector and λ is the eigenvalue. By rearranging Equation (3.4),
Equation (3.5) can be obtained.

0 = (λI− A)x (3.5)

Here I is the identity matrix. For a solution of the system to exist, the determinant
needs to be zero, as described in Equation (3.6).

0 = |A− λI| (3.6)

The eigenvalues can be calculated by solving for Equation (3.6), and then the charac-
teristic equation can be found. By solving for λ, the eigenvalues can be obtained.

The eigenvalues can either be real or complex numbers. By investigating the eigenval-
ues, some conclusions regarding the system stability might be taken. For real eigenvalues,
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if both values are negative, the system is stable. If one or both of the real eigenvalues
are positive, the system is unstable. If the eigenvalues are complex, the real part of the
complex numbers needs to be negative for the system to be stable. If not, the system is
unstable [40].

The eigenvectors are also important in system theory. An eigenvector, or a characteris-
tic vector, is defined as the n-column vector which when multiplied with the system matrix
A, is equal to the eigenvalue λ times the same vector [41]. This relationship is explained
in Equation (3.7) below, where φi is the eigenvector corresponding to the i-th eigenvalue.

A · φi = λi · φi for i=1,2,..,n (3.7)

The eigenvector must be nonzero, if not, the zero-vector would be an eigenvector for
all spaces. φi is on the form

φi =


φ1i
φ2i

...
φni


As a part of the modal analysis which will be explained later, the difference between

the left and the right eigenvectors is important. Equation (3.7) above is the right eigenvec-
tor. The n-row vector Ψi, known as the left eigenvector, can be as defined as in Equation
(3.8) below [39].

Ψi · A = λi ·Ψi for i=1,2,..,n (3.8)

The eigenvalues and eigenvectors are linked to a linear transformation, hence they have
a different meaning for a nonlinear system. But, by linearizing the system-matrix, hence
making it constant, a lot of information about the system can be retrieved. This informa-
tion will be valid close to the point of interest, hence it is an efficient way to analyze the
small-signal stability for nonlinear systems.

One way to linearize the system is to calculate the Jacobian matrix. The formula for the
Jacobian matrix can be seen in Equation (3.9), for a 3x3 system representing the DC/DC
converter system with inner-loop current control evaluated in the equilibrium point xeq .

A =
∂f(x)

∂x

∣∣∣∣
xeq

=


∂f1
∂i

∂f1
∂ζ

∂f1
∂v

∂f2
∂i

∂f2
∂ζ

∂f2
∂v

∂f3
∂i

∂f3
∂ζ

∂f3
∂v


∣∣∣∣∣∣∣
xeq

(3.9)

Now, by analyzing the matrix around the equilibrium point, the nonlinear system can
be written in the same form as in Equation (3.3). This linear system can be analyzed
through well-established linear system theory. It must be mentioned that even for systems
with very nonlinear terms, the Jacobian matrix gives a pretty accurate impression of the
system near the equilibrium point.
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3.1.2 Modal Transformation
In order to obtain information about systems such as the linearized DC/DC converter sys-
tem, multiple techniques have been established, all depending on what information is
wanted about the system. For eigenvalue-analysis investigating the stability, the modal
transformation is a very fundamental technique. The concept of the modal transformation
is to transform the states into a domain of modes. Hence the equations representing the
states will be represented as a linear combination of the modes of the system [42]. The
resulting modal matrix is very practical in the analysis of the eigenvectors and eigenvalues
of the modes of the system. The modes of the system, z(t), are defined as in Equation
(3.10) or (3.11).

z(t) = Ψ ·∆x(t) (3.10)

∆x(t) = φ · z(t) (3.11)

Where x(t) is the states, z(t) is the modes which are directly associated to one of the
variables, and Ψ and φ are defined in Equation (3.7) and (3.8) above.

By utilizing the relationship from Equation (3.11), Equation (3.3) can be expressed as
in Equation (3.12) below.

φ · ż = A · φ · z =⇒ ż = φ−1 ·A · φ · z (3.12)

As a consequence, the description becomes like in Equation (3.13) below.

ż = D · z (3.13)

For an 3x3 matrix the result would be as in Equation (3.14).

d

dt

z1z2
z3

 =

λ1 0 0
0 λ2 0
0 0 λ3

 ·
z1z2
z3

 (3.14)

The system in Equation (3.14) has the generic solution shown below.

z(t) =


z1(t) = z1(0) · eλ1t

z2(t) = z2(0) · eλ2t

z3(t) = z3(0) · eλ3t

Hence, the solution and dynamics of the modes can easily be found. But, the main
purpose of analyzing a dynamic system, is to relate the dynamics of the system to the
state variables of the system. The modes are hence of no interest, and for practical and
analytical reasons, the relationship between the modes and the states must be found [43].
This relationship is found through the participation matrix, which is expressing how much
each of the state variables is related to each of the eigenvalues of the modes. The generic
participation matrix is seen in Equation (3.15) below.
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P =
[
p1 p2 . . . pn

]
(3.15)

Here, each of the pi’s have the relationship from Equation (3.16).

pi =


p1i
p2i
...
pni

 =


φ1iΨi1

φ2iΨi2

...
φniΨin

 (3.16)

By calculating the participation matrix, it is hence possible to obtain information about
the eigenvalues of the state-system and thereof also information about the dynamics of the
system [44].

3.1.3 Block-triangular Matrices
A particular type of linear matrices that will be useful for our purposes, is one with a
block-triangular structure [45]. The block triangular matrix can either be lower or upper
triangular, as shown in respectively Equation (3.17) and (3.18).

AL =

[
A11 0
A21 A22

]
(3.17)

AU =

[
A11 A12

0 A22

]
(3.18)

Each Aij is representing a sub-matrix of the original matrix, and have the dimensions
of A11 ∈ Cn×n and A22 ∈ Cm×m. One example of upper block triangular matrix, is seen
below.

A =

3 2 4
1 5 2
0 0 1

 =


3 2

... 4

1 5
... 2

. . . . . .
... . . .

0 0
... 1

 =

[
A11 A12

0 A22

]
= AU

which can be divided into sub-matrices as demonstrated above, hence becoming as in
Equation (3.18).

If the original matrix A can be divided into sub-matrices as described, with a null ma-
trix either on the upper or lower triangle, it can be formulated as a block triangular matrix,
and it holds the properties that now will be explained.

The main advantage of the block triangular matrices is that the eigenvalues of the sub-
matrices are also eigenvalues of the original matrix, A. In other words, if a matrix can
be divided into a block triangular one, it is possible to determine the eigenvalues of the
original matrix only by calculating the eigenvalues of the diagonal sub-matrices. This is a
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very useful property that can simplify the analysis and calculations of the eigenvalues of a
big system [45].

3.1.4 Gershgorin Circle Theorem
Sometimes, when the eigenvalues are too complex and hard to calculate, a possible way
to obtain information about the eigenvalues is by calculating some bounds for them [46].
Gershgorin circle theorem is one way of bounding the eigenvalues for a square matrix.
The theorem returns circles in the complex plane which contain the eigenvalues of the sys-
tem. Hence it is not possible to determine the exact value of the eigenvalues. But if some
criteria are fulfilled, it is possible to determine the location or scale of the eigenvalues.

The theorem can easily be mathematically proven, as in [46], and the result can be seen
in Equation (3.19).

|λ−Aii| ≤
∑
c6=i

|Aic| (3.19)

Here, λ is the eigenvalue, Aii is the diagonal element of row i, and the sum over Aic is
representing the summation of the absolute value of all the other elements on that specific
row, i.

The more important part is the understanding of the theorem and its practical applica-
tions. The theorem states that, for an arbitrary matrix, it can be created circles for all of the
n rows in the matrix. The circle representing each row should have its center in akk and
a radius equal to the sum of the absolute values of the other elements in that row. Then,
the resulting circles are representing the domain of the eigenvalues of the modes. In other
words, the eigenvalues of the modes of the system will be within the created circles.

The issue with this theorem is that it is unknown where within the circles the eigen-
values are. Hence, a further extension of the theorem will be explained. First, if one
Gershgorin circle is by itself, meaning not overlapping or including any other circles or
points, exactly one eigenvalue will be within that circle. Secondly, if two circles are inter-
secting, or overlapping, there must be exactly two eigenvalues in the union of the circles.
As a consequence, if n circles are overlapping, there must be exactly n eigenvalues within
the union of the circles.

As a consequence of this extension, it would be possible to distinguish the different
eigenvalues into different places in the complex plane, if the Gershgorin circles are not
overlapping.

3.2 Control Design and Stability
When designing the control and topology of a converter, there are many challenges. For
the DC/DC converter in focus, the nonlinear contributions are demanding to handle. From
the specialization project, it is known that a Lyapunov analysis can be carried out for some
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criteria. The most critical criterion is the TSS between current and voltage, also described
in the specialization project. To sum it up, the TSS is making sure that the current-state is
reaching its steady-state much faster than the voltage-state is. Hence it is possible to only
focus on the dynamics from the voltage equation. In Chapter 4 the TSS is taken more into
account, and some derivations and calculations regarding how to ensure it is presented.
Further on some theory that is essential for reaching the objectives of the control design
for a stability-preserving converter with plug-and-play features will be presented. In order
to be able to analyze the nonlinear system, the Lyapunov theory will first be presented,
then the passivity theory that can ensure stability for interconnections will be explained.

3.2.1 Lyapunov
To determine the stability for a nonlinear system, a couple of methods have been sug-
gested. Both Vidiasagar (1993) and Khalil (1996) have created a work frame for analyzing
nonlinear stability [47, 48]. Some of the most acknowledged theories are Lyapunov sta-
bility and input-output stability, and a plurality of theorems based on these to prove or
disprove stability for nonlinear systems. Since Lyapunov stability was investigated in [1]
and proved itself to be very useful, it will be of great interest for this project as well.

Lyapunov stability is a theory for describing and determining equilibrium stability for
nonlinear systems. A stable equilibrium point is a point in which solutions starting close
to this point, stay near to this point. By “close to” the point is it meant that when time goes
towards infinity, the solution is equal to or nearby the equilibrium point, and not increas-
ing or decreasing towards ±∞. If the solution after some time is equal to the equilibrium
values, the system is said to be asymptotically stable.

Assume an autonomous system as described in Equation (3.1). x(t) is assumed contin-
uous, and to have a different solution for every starting conditions. This can, for instance,
be the case if f is Lipschitz continuous, as defined in Equation (3.20),

||f(t, x)− f(t, y)|| < k||x− y|| (3.20)

where x and y are defined for all values within a ball of a given radius from the starting
conditions. k is defined as a Lipschitz constant. Further on in the analysis of the equilib-
rium point, the point will be assumed to be in the origin for simplicity reasons. This will
not cause any kind of loss of generality. A definition of the stability of the equilibrium is
needed, as the one mentioned by Khalil [48] (p.112).

Definition 1. The equilibrium point at x = 0 of Equation (3.1) is:
stable if, for every ε > 0, there is a δ = δ(ε) > 0, s.t

||x(0)|| < δ =⇒ ||x(t)|| < ε,∀ 0 ≤ t

and asymptotically stable if, defined as stable, and in addition a δ can be chosen s.t.

||x(0)|| < δ =⇒ lim
t→∞

x(t) = 0
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and unstable if not defined as stable.

With this ε-δ way of analyzing the stability of an equilibrium point, the Lyapunov the-
orem can be stated as in [48](p.114).

Lyapunov’s Stability Theorem. If x = 0 is an equilibrium point of Equation (3.1), and
D ⊂ Rn is a domain including x = 0. Now, V : D −→ R is a continuous and differentiable
function s.t.

V (0) = 0, and V (x) > 0 in D - {0} (3.21)

V̇ (x) ≤ 0 in D (3.22)

Then x = 0 is a stable equilibrium. Further on, if in addition

V̇ (x) < 0 in D - {0} (3.23)

Then x = 0 is an asymptotically stable equilibrium point.

The Lyapunov theorem has through history been proven to be an essential part of non-
linear analysis and will be so in this thesis as well. Lyapunov’s indirect method is another
well established nonlinear theorem. The theorem generally states that by linearizing a con-
tinuous and differentiable function, ẋ = f(x), in the equilibrium point, some conclusions
regarding the stability can be drawn. If the real parts of all eigenvalues are negative, the
equilibrium point is asymptotically stable [48] (p.139). In Appendix B.1 the requirements
of a Lyapunov function are explained and derived mathematically for the inner-loop dy-
namics of the relevant converter-system. An extension of Lyapunov theory called passivity,
that will be very central for the later control-design, will further on be explained.

3.2.2 Passivity
Some specialists are proposing a new way to treat the control of physical systems [49, 8].
The idea is for some systems to move away from the signal-processing viewpoint, which
is by far the standard way to do it today, and to do the controller design based on more
physical concepts. The main reason why this traditional control theory for some electri-
cal power systems must be renewed is that numerous of the assumptions for model-based
signal theory will not be valid for future applications. Some of the most common ones
are the linearity of the dynamics and interconnections of subsystems. Another concern
is that through the signal-processing analysis there is only a focus on the stability, and
not very much on the physical background of the system. Of course, the most important
element is to determine if the system is stable or not, but for industrial applications, the
actual performance is important as well. By integrating physical properties such as energy
into the system-models, more physical information about the system could be obtained [7].

In general, the control of a system can be seen as multiple interconnections between
passive elements. Analyzing the “energy” of these passive elements is then a way of inter-
preting the stability and stabilization of the system. The one fundamental property for this
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way of analyzing stability is called passivity. Passivity is highly related to another impor-
tant term, namely energy-shaping. The general idea of the passivity based control (PBC)
is to consider the system from an energy processing viewpoint. A dynamic complex and
nonlinear system can be analyzed in terms of the energy of its subsystem and through the
physical energy laws as energy-transformation, and then by interconnecting and adding up
the energies of the sub-systems to determine the performance of the total system. Most
physical systems often have a relationship describing the energy-conservation of the sys-
tems, including supplied energy and dissipation. For PBC the control objective is to pre-
serve these energy-conservation laws, but with some new functions for dissipated energy
and supplied energy. Summed up the idea is to shape the energy to be considered at the
controller by creating a new energy function and to change the dissipation structure. A
huge advantage is that it not only can analyze stability but also the dynamic performances
while stabilizing [49, 7]. Additionally, the need for nonlinear cancellation with high gain
and feed-back and feed-forward terms are not needed. One third and very prominent ad-
vantage is that energy is a concept understood by professionals within control, power, and
mechanics, etc. and can hence work as a “lingua franca”, i.e. a common language, for
different disciplines [7].

More specifically, the system is seen as dynamic sub-port-systems, interconnected
with each other through ports that have the unit of power. For the converter system or
a DC-microgrid bus-bar, the power is a result of the multiplication of current and volt-
age. The first actual control objective is regarding the steady-state behavior, i.e. con-
trolling the equilibrium-values. These values are mainly determined by the shape of an
energy-function. It is assumed that the system fulfills the energy-balancing relationship,
as described in Equation (3.24).

H[x(t)]−H[x(0)] ≤
∫ t

0

u>(s)y(s)ds− d(t) (3.24)

The left-hand-side of the equation is the stored energy within the system, while the
term d(t) is representing the non-negative dissipated energy. The integral-term is repre-
senting the energy that is supplied to the system, where u and y is representing the power
variables, for instance the voltage and current, or the output-variable and the control-
variable. This equation implies two essential points; first that the energy of an uncon-
trolled system is non-increasing. Secondly, if the energy storage function H(x) is positive
the total possible energy that can be extracted from the passive system is bounded.

A definition for a passive system is a system in which there can’t be extracted more
energy from the system than what it was supplied with [50]. This relationship can be
described for electric power applications through a mathematical expression, as seen in
Equation (3.25) [51]. ∫ τ

−∞
Pin(t)dt =

∫ τ

−∞
u(t)>y(t)dt ≥ 0 (3.25)

In general, passivity and stability are highly related, since they both are related to
poles and zeroes in the left-hand-side of the complex plane [51]. The reason why the
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theory of passivity is of great interest related to the control of converters is, hence, be-
cause it can ensure stability for the converter. This is only if an energy-function such as
a Lyapunov-function candidate and the input/output variables fulfill the previously men-
tioned demands.

One type of system that automatically will fulfill the mentioned demands, is a port-
Hamiltonian (pH) system. A formulation of such a system is defined as seen in Equation
(3.26) and (3.27) below [52].

ẋ = [J(x)−R(x)]∇H +G(x) · u (3.26)

y = G>(x)∇H (3.27)

The vector x is the system states and u is the control mechanism. J is defined as−J>,
which is the structure/interconnection matrix and R is the dissipation/damping matrix. G
is the system input matrix and H is the Hamiltonian energy storage function. Typically,
the (shifted) Hamiltonian function is a natural candidate for a Lyapunov function of the
system, which is based on the physical quantity of energy. As presented in [52], it follows
that the equilibrium hence can be stabilized with a PI-controller, and that stability can be
achieved even in the case of an uncontrolled system [53], even for the shifted, ie. incre-
mental, system.

The procedure for applying passivity to the converter-system in order to ensure the
stability of it will now be described. First, the passivity of the system must be provided.
By this is it meant to find an energy storage function that follows Equation (3.24), and
hence makes sure that the mapping of u→ y is passive. This can be done by showing that
the output is greater or equal to the change of the energy in the system. When passivity
is proven, the system can be shifted in such a way that the minimum energy of the sys-
tem will be at the steady-state, i.e., equilibrium value. In [53] it has been proven that for
nonlinear RLC-circuits, such as the DC/DC converter, the system can be stabilized glob-
ally with a straightforward PI controller, as long as the electric energy storage function is
convex. Hence stability for a passive system is obtained, with operating conditions at the
wanted operating point.

3.2.3 Properties of Passive Systems
A commonly applied property of passive systems is related to interconnection [54]. There
are plenty of theorems stating the fact that the interconnection of two passive systems H1

and H2, is also passive. The different theorems all depend on the way the two systems
are connected. Say that a system is obtained by the feedback interconnection, then it can
easily be proven that the new system is passive. Say that

S(x) = S1(x1) + S2(x2)

where S1 and S2 are representing the energy functions of the two passive systems H1 and
H2, and S(x) hence is the total system. Then the energy of the feedback interconnection

28



3.2 Control Design and Stability

can be expressed as

S(x(T ))− S(x(0)) ≤
∫ T

0

(u>1 y1 + u>2 y2)ds

For an interconnected feedback-system y1=u2 and u1 = Uref − y2 which simplifies to

S(x(T ))− S(x(0)) ≤
∫ T

0

U>refy1ds

which proves that the feedback interconnection is also passive [55].

A natural question is what happens if a system does not mathematically fulfill the
passivity-demands. This can be the case for instance if the definition of the system, as in
Equation (3.26), has a negative dissipation matrix R. This leads to a lack of passivity. It
is possible to compensate for this lack of passivity, by enforcing it via an output feedback.
This is demonstrated for a shifted system in [56] Proposition 7. For the case of interest
in this thesis, it will be shown that by changing the power direction of the converter, the
dissipation matrix of the system becomes positive, and thus the system will have a lack of
passivity. By taking this into account and compensate for it through output feedback, i.e.
for instance an outer loop controller, it is possible to compensate for the lack of passivity
and stabilize the system.

The lack of passivity might arise due to many different reasons. In [57] shortage and
excess of passivity are formulated as a mathematical problem. By letting Equation (3.24)
be the base, it can be reformulated as in Equation (3.28).

H[x(t)]−H[x(0)] ≤
∫ t

0

u>(s)y(s)ds− (γ − k) ·
∫ t

0

u>(s)u(s)ds (3.28)

By definition, this system is passive as long as γ is greater or equal than k.
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Chapter 4

Time-Scale Separation of
Inner-Loop Dynamics

This chapter is analyzing the TSS of the inner-loop system. It is of great interest that the
TSS is ensured by design and not by chance, which was the case in the specialization
project [1]. By designing the converter-system and the control-system in such a way that
the TSS is ensured, the derived Lyapunov function in Appendix B.1 is valid, and the non-
linear voltage-dynamics can be analyzed. A direct eigenvalue-method will first be applied,
before the theory from Chapter 3.1 will be utilized to develop a control design for the
inner-loop.

For some dynamic systems, the system itself can be divided into subsystems, each
with different time-scales of the dynamics. For a generic converter-system, this can imply
different order of magnitude on the rate of convergence of the dynamics for the current
and the voltage. For the relevant DC/DC converter-system, the system parameters and the
control parameters can be chosen and designed to ensure this time-scale separation (TSS)
between the dynamics of the current and the dynamics of the voltage.

The DC/DC converter model with the PI-regulator with feed-forward term and under
compensated modulation and in current-control mode has been presented in Chapter 2.4,
and the descriptive equations are repeated in Equation (4.1)-(4.3) for convenience.

L
di

dt
= −Rs · i+Kp(iref − i) +Ki · ζ (4.1)

dζ

dt
= iref − i (4.2)

C
dv

dt
= −Is + i · Vs −Kp(iref − i)−Ki · ζ

v
(4.3)

If the dynamics of the current is approximately 10 times faster than the dynamics of
the voltage, the TSS between the voltage and current is a reality. This is implying that the
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current dynamics are significantly faster than the voltage dynamics, hence it is possible
to consider the current equation at first, and subsequently assume that the current has sta-
bilized and only consider the voltage dynamics. This second step is instrumental for this
thesis and is equivalent to restricting the Lyapunov analysis to the so-called zero-dynamics
manifold; i.e., Equation (4.3) with i = iref . This will significantly simplify both the sta-
bility analysis and the outer loop control design methodology. However, the validity of
the results will depend on whether the TSS exists between current and voltage dynamics.
Thus, it is key to ensure via parametric tuning of the controllers that the TSS is always
achieved.

The third-order dynamical system of interest consists of two linear equations, (4.1) and
(4.2), and one nonlinear equation, (4.3), it has 8 parameters and 3 unknown variables or
states. The goal is to determine some limitations or restrictions for the parameters in such
a way that the current dynamics have a faster response than the voltage dynamics. For a
linear system, an eigenvalue analysis of the system would be useful to obtain information
about the dynamics. Even though the system is partly nonlinear, an eigenvalues analysis
will be completed for the system. But, the approach is not as straight-forward as for a
linear system.

The objective is to find some restrictions or relationships between the parameters, in
such a way that it is possible to obtain the TSS by design, i.e. by changing the system
parameters. In other words, to be able to design the converter and tune the controller in
a way that the TSS always is present. The approach is to apply the theory presented in
Chapter 3.1 and step-wise obtain some mathematical relationships for how the TSS can be
achieved.

4.1 Eigenvalue Analysis
For nonlinear systems, there are some different approaches for the purpose of analyzing
the system dynamics and stability. As commonly known, nonlinear system analysis is of-
ten very complex and it is hard to obtain any relevant information about the system. It is
hence necessary to do linearizations and to approach the problem in a simplified, yet effi-
cient, way. In [58] different methods and approaches for solving such nonlinear systems
are suggested and presented. The main methods are by Lyapunov theory, orbital stability
such as Poincaré, the method of successive approximations, and the point transformation
method. One possible approach, and the one chosen in this thesis, is to simplify the system
by linearization and analyze the eigenvalues of the system in a small-signal manner. By
analyzing the eigenvalues of the simplified system, some conclusions can be drawn about
the rate of convergence for the different variables. Since the objective is to ensure a TSS
between the fast current dynamics and the slower voltage dynamics, the ζ variable will be
of the least interest.

The system from Equation (4.1)-(4.3) can be formulated in matrix-form as in Equation
(4.4)
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~̇x =

 i̇ζ̇
v̇

 =

 f1(i, ζ)
f2(i)

f3(i, ζ, v)

 (4.4)

where f1, f2 and f3 represents respectively Equation (4.1), (4.2) and (4.3). It is essential to
notice that only the differential voltage-equation is dependent on the voltage-state, while
all three equations are dependent on the current-state.

To linearize the system the Jacobian matrix A (explained in Chapter 3.1.1) is calcu-
lated, in order to present the system as

~̇x = A · ~x

For the DC/DC converter, when the relevant equations are inserted and calculated, the
linearized system is evaluated around the equilibrium point

~x∗ =

irefζ∗
v∗


and becomes as in equation (4.5).

A =


−Rs−Kp

L
Ki

L 0
−1 0 0

VS+Kp·iref−Ki·ζ∗
C·v∗ − iref ·Ki

C·v∗
iref ·(Ki·ζ∗−Vs)

C·v∗2

 (4.5)

Since this is a PI-controller in current-mode it can be noted that the current is reaching
its reference value in the equilibrium.

When starting the eigenvalue analysis, the characteristic equation is important. The
matrix in Equation (4.5) has the following general characteristic equation

0 = aλ3 + bλ2 + cλ+ d (4.6)

where

a = −1

b =

(
iref
C · v∗2

)
· (Ki · ζ∗ − Vs)−

Rs +Kp

L

c =

(
Rs +Kp

L

)
·
(

iref
C · v∗2

)
· (Ki · ζ∗ − Vs)−

Ki

L

d =

(
Ki · iref
L · C · v∗2

)
· (Ki · ζ∗ − Vs)

It can be noted that it is a very complex equation with very many parameters that affect
the solution. By doing the modal transformation of this system, explained in Chapter 3.1.2,
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the resulting solution can give much information about the rate of convergence of the lin-
earized system. This means that the value of the eigenvalue is directly saying something
about the rate of convergence for the different variables. The generic solution of Equation
(3.14) from Chapter 3.1 is justifying this. Of course, all of them must be negative, to obtain
a stable system. But a negative yet high amplitude value for one of the eigenvalues would
mean that this state variable has a fast rate of convergence and is reaching its “solution” or
steady-state value very quickly.

By solving Equation (4.6) for λi, the different eigenvalues can be found. These are
important for the modal transformation, hence for the final goal of obtaining information
about the rate of convergence. It was attempted to analytically obtain any information
about the correlation between the parameters. But due to a very complex solution where
the relationship is arduous to conclude with, this was not possible. A MATLAB-script
was created with the purpose of solving Equation (4.6). Both the MATLAB-script and
the resulting solution can be found in Appendix B.2.

Since it is hard to obtain any information from the solution in Appendix B.2, another
approach is to solve and analyze the eigenvalues numerically. By numerically testing for
different parameter values in MATLAB it is possible by trial-and-error to obtain a much
larger negative eigenvalue for the current than for the voltage, hence the TSS. A MAT-
LAB script was created for this purpose, and it can be found in Appendix A.1.

A numerical approach is great for the purpose of validating or observing the system
dynamics, but it is a poor tool when the goal is to obtain analytical insight in the system
such that design criteria can be decided. To obtain a more analytical relationship between
the parameters, first, some interesting properties of block-triangular matrices were used in
order to simplify the mathematical expressions.

It can be observed that matrix A from Equation (4.5) has the form

A =

A1,1 A1,2 0
A2,1 0 0
A3,1 A3,2 A3,3


where the matrix can be rewritten and modified to become as in Equation (4.7).

A =

[
~A11

~0
~A21

~A22

]
(4.7)

In this case,

~A11 =

[
A1,1 A1,2

A2,1 0

]
,~0 =

[
0
0

]
, ~A21 =

[
A3,1 A3,2

]
, ~A22 = A3,3

By applying theory from Chapter 3.1 it is known that the eigenvalues of the sub-matrix
~A11 will be eigenvalues to the matrix A. The eigenvalue of the other sub-matrix, ~A22, will
also be an eigenvalue of A. In other words, the eigenvalues of A will be the union of the
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4.1 Eigenvalue Analysis

eigenvalues of ~A11 with those of ~A22. This is justified by the theory of block-triangular
matrices. This leads to the following three eigenvalues:

λ1 = −RS +KP

2 · L
−

√(
RS +KP

2 · L

)2

− Ki

L
(4.8)

λ2 = −RS +KP

2 · L
+

√(
RS +KP

2 · L

)2

− Ki

L
(4.9)

λ3 =
iref

C · V ∗2
(Ki · ζ∗ − Vs) (4.10)

In Equation (4.8)-(4.10) a direct relationship between the parameters and the eigenval-
ues is obtained, and some trends and relations between the parameters can be concluded.
But still, it is unknown which eigenvalues are related to which states, and additionally, the
expressions are complex and not very easy to analyze.

The problem with these eigenvalues is that they are representing the rate of conver-
gence of the different modes. For the purpose of this project, it is interesting to know the
relationship between each of the eigenvalues and the different states, because it says some-
thing about the rate of convergence of the current and voltage. As a consequence of the
block-triangular property, the eigenvalue λ3 in Equation (4.10) is corresponding directly
to the voltage-state. Consequently, the participation factors of the eigenvalues must be
calculated to relate the two remaining eigenvalues to the current-state and the ζ-state.

A MATLAB script was created for the purpose of calculating the participation matrix
and the eigenvalues. This MATLAB script can be found in Appendix A.1. It was tested
for different, yet realistic, values of the parameters. The values applied for this case, and
for some of the coming physical representations and tests of the converter which is being
presented below, the parameter values are as in Table 4.1.1. The values are highly inspired
by [59, 60, 61], and are similar to the values from [1].

Table 4.1.1: Values applied for the analysis of the TSS of the inner-loop.

Parameter Value
Vs, voltage source 700 V
Rs, resistance 1.1 Ω
C, capacitance 0.001 F
L, inductance 0.01 H
Is, current source 20 A
Kp, inner loop P-gain 30
Ki, inner loop I-gain 10
iref , reference current 40 A

The resulting normalized participation matrix can be seen in Equation (4.11) below.
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P =

0 0.0010 0.9990
0 0.9990 0.0010
1 0 0

 (4.11)

The resulting vector consisting of the eigenvalues of the modes can be seen below.

~λ =

 −15.2439
−0.3216
−3109.678


It can be observed that all eigenvalues are real and negative, hence providing stability.

The most interesting part is to compare the eigenvalues to the participation matrix. It can
be concluded that the first eigenvalue from ~λ is belonging to the voltage-state, the second
eigenvalue mainly to the ζ-state, and the third one mainly to the current-state. This basi-
cally means that all of the eigenvalues of the modes are belonging to each one state. As a
consequence of MATLAB rearranging the order of the eigenvalues, each of the eigenval-
ues from ~λ have to correspond to one of the equations above. From Equation (4.8)-(4.10),
this connects λ1 to the current, λ2 to the ζ-state, and λ3 to the voltage.

It can be seen that the eigenvalue of the current is more than a hundred times as big
in amplitude as the eigenvalue of the voltage. This means that for our case the rate of
convergence, or in other words the response-time of the current, is way faster than for the
voltage. The two solutions can be plotted to state this, and the two different functions are
visualized in Figure 4.1.1.
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Figure 4.1.1: The solutions of the differential equations for current in red and voltage
in blue for a given set of parameters, to emphasize the significant difference between
the two eigenvalues and the corresponding rate of convergence.

This is visualized in order to truly understand that the time-scale of the current re-
sponse is much faster than the voltage response, in the converter. But in order to find some
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4.2 Gershgorin Circles Analysis

heuristic restrictions of the parameter values, the eigenvalue-expressions from Equation
(4.8)-(4.10) must be evaluated. Through analysis of the participation matrix and the cor-
responding MATLAB-script, it has been concluded that Equation (4.8) is the eigenvalue
dominated by the current-state, Equation (4.9) by the ζ-state, and Equation (4.10) by the
state of voltage. Since the goal is to obtain a TSS between the current and the voltage,
the eigenvalue dominated by the current-state must be “much bigger” than the eigenvalues
dominated by the voltage. By “much bigger”, a relationship where the current-eigenvalue
is at least 10 times more negative than the voltage-eigenvalue is approved.

Assuming that both eigenvalues are negative, this basically means that

|λcurrent| ≥ 10 · |λvoltage|

where λcurrent corresponds to λ1 from Equation (4.8) and λvoltage to λ3 from Equation
(4.10). When the expressions are inserted this gives the relationship in Equation (4.12).

− RS +KP

2 · L
−

√(
RS +KP

2 · L

)2

− Ki

L
≤ 10 · iref
C · V ∗2

(Ki · ζ∗ − Vs) (4.12)

By making some justified assumptions, the inequality can be rewritten. The assump-
tions are as following:

RS +KP

2 · L
> 0(

RS +KP

2 · L

)2

>
Ki

L

10 · i∗

C · V ∗2
> 0

All of these assumptions will be fulfilled for any carefully chosen values of Kp and Ki.
If the assumptions are all fulfilled the following relationship, that is a rewrite of Equation
(4.12), would ensure a TSS.

Vs ≤

√(
RS+KP

2·L
)2 − Ki

L + RS+KP

2·L + 10·i∗·(Ki·ζ∗)
C·V ∗2

10·i∗
C·V ∗2

This is a pretty perplexing inequality that is containing many parameter-relationships
and can still be considered as complicated to base the design criteria on. Without any more
assumptions, this is the best that can be done with this direct eigenvalue method. For a
more simple expression, another approach must be taken.

4.2 Gershgorin Circles Analysis
In order to view the problem from a different angle, the theory of Gershgorin circles is
applied. This theory was explained in Chapter 3.1.4 and is essential for simplifying the
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parameter-relationship and being able to interpret the relationship between the parameters.
A MATLAB-script that visualizes the three Gershgorin circles from the equations in (4.5)
was created. The script can be found in Appendix A.2. The resulting plot can be seen in
Figure 4.2.1 below. The black circle is representing the current-row, the red circle is the
voltage-row, and the blue one is the ζ circle. The ζ-circle is actually just a dot (radius =
0) and additionally very close to the red center, hence it is hard to see. The values for this
plot are the same as the ones from Table 4.1.1.
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Figure 4.2.1: Gershgorin circles for the matrix A, showing TSS. The black circle is
representing the domain of the location of the current-eigenvalue, and the red circle is
representing the same for the voltage-eigenvalue.

From Figure 4.2.1 is it possible to conclude that there is in fact a TSS between the
current and the voltage. This is true since the circles are separated, and the highly current-
dominated circle is to the left of the voltage-dominated circle. Therefore, the eigenvalue
has to be more negative for the current than for the voltage.

In order to obtain an analytical relationship between the parameters to ensure the TSS,
the theory explained in Chapter 3.1.3 about block triangular properties was utilized. By
exploiting the block-triangular structure shown in Equation (4.7), ~A11 and ~A22 can be
analyzed separately. A direct consequence of this is that ~A22 has one single element (A3,3),
and therefore the radius of the voltage circle is zero and the eigenvalue representing the
voltage-state is shown as a single point in the Gershgorin analysis. This can be seen in
Figure 4.2.2. The values from Table 4.1.1 were applied, but the inductance was increased
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to be 0.1 H in order to decrease the distance between the circles. Hence, for lower values
of the inductance, the TSS is even greater.
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Figure 4.2.2: Gershgorin circles of the matrix A, when utilizing the block triangular
properties. The red dot is the voltage-eigenvalue, the blue dot is the ζ-eigenvalue, and
the black circle is representing the domain of the location of the current-eigenvalue.

Now, the objective is to separate the current-circle from the voltage-dot, and that the
current-circle is located to the left of the voltage-dot. This demand is given by Equation
(4.13) below, which forces the current circle center plus its radius to be less than the voltage
eigenvalue.

− Rs +Kp

L
+
Ki

L
<

iref
C · V ∗2

(Ki · ζ∗ − VS) (4.13)

The terms to the left are representing the right-most point of the current-circle, and the
term to the right is representing the voltage-dot. It can be seen that the parameters with the
major influence on the center and radius of the circles are the inductance, the capacitance,
and the tuning constants Ki and Kp. To further simplify the expression, some practical
assumptions can be done. It is assumed that Rs is neglected, that Kiζ

∗ − VS ≈ −VS ,
and that the inductance is greater than the capacitance by a generic constant, i.e. that
L = αC. These are relatively accurate assumptions, since both Rs and Kiζ

∗ often are
small. A direct consequence of neglecting Rs is that Kiζ

∗ is zero as well, since Kiζ
∗ is

representing the voltage drop onRs. Then the mathematical expression in Equation (4.13)
simplifies to the expression in Equation (4.14).

−Kp

α
+
Ki

α
<
−Vs · iref
V ∗2

(4.14)
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This gives the relationship between the two tuning parameters, as can be seen in Equa-
tion (4.15).

Kp > Ki + α · Vs · iref
V ∗2

(4.15)

The first interesting finding from this is that in order to guarantee through Gershgorins
theorem that the system has a TSS between its current and voltage dynamics, the Kp must
be greater than Ki plus a term dependent on the operating conditions and the design of
the converter. It must be bared in mind that the resulting Equation (4.15) is based on
some simplifications. But yet, the main result is somehow valid due to the assumptions
being realistic. The second interesting finding is that by increasing the proportional tuning
parameter, Kp, the center of the current-disk will be moved to the left. This basically
allows us to separate the discs by increasing Kp. The question is how big the tuning
parameter must be. As seen in Equation (4.15) Kp must be greater than Ki plus a term
dependent on the converter-design and the operating conditions. The fraction in the last
term is the reference current multiplied with the voltage source, divided by the obtained
steady-state voltage squared. In general, this term will be small in magnitude, and for
the values in Table 4.1.1 in the order of 10−2. This small term is multiplied with the
relationship factor α. It can hence be concluded that for very big inductance relatively to
the capacitance, Kp needs to be very big relative to the Ki in order to separate the circles.
It can be noted that as long as

L ≤ 100 · C

the last term of Equation (4.15) is in the same order of magnitude as the values of the
tuning parameters. So for any greater relationship, i.e. bigger inductance’s, the TSS might
be destroyed.

4.3 Analysis and Discussion
By adding a safety margin to the expression in Equation (4.13) the TSS between current
and voltage can be assured. The first term on the left-hand side of Equation (4.13) is
representing the center of the Gershgorin circle, while the second term is representing the
radius of the circle. On the right-hand side the equilibrium point of the voltage-state is
represented. This equation can be interpreted in a logical way to explain the relationship
between the parameter values and the TSS of current and voltage.

• First of all, it can be noted that the biggerKP is, the better it is for the TSS. It forces
the center of the Gershgorin disk of the current to the left, while it doesn’t affect the
voltage disk in any way, neither the radius of the current disk. So a high KP is good
in order to ensure a TSS.

• The RS is also only affecting the center of the current-disk, and it is pushing it to
the left. Hence an increasing RS is also good for the TSS. However, in practical
applications it is expected that this value is negligible.
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• The inductance, L, is both affecting the radius and the center of the current-disk.
A lower inductance will force the disk to the left, but at the same time increase the
radius of the disk. In order for it not to overlap with the voltage-equilibrium point,
the relationship between the other parameters is essential, in order to determine what
has the most influence on the dimensions of the disk.

• It is wanted to not have a too big radius of the current-disk, and it is hence of interest
that Ki is not too big. Ki is also affecting the voltage-equilibrium, and it is of
interest that this equilibrium point is not too negative, to stay out of the current-
disk. It can be seen that an increase in the Ki is good for the TSS because it moves
the voltage-equilibrium to the right. But at the same time, since ζ∗ is (normally)
pretty small, the main wish is to keep Ki small in order to keep the radius of the
current-disk small.

• The capacitance, C, is preferred to be big, to move the equilibrium of the voltage
to the right. It is also wanted that the C is not many times lower than L because
than the equilibrium of the voltage would be greater than the current-equilibrium.
The most essential part in determining the value of the capacitance is to determine
it in correlation with the inductance. The goal is not to get a too big α, i.e. L/C,
because this would need to be compensated for with a great increase in Kp. A value
of the capacitance approximately 10 times lower than the inductance is a good rule
of thumb. This is adding a safety margin to the above derived expression of an
inductance less or equal to 100 times the capacitance.

It is clear that it is a trade-off between the different parameters. Some of the most
important relationships are highlighted above, but in the physical world, the design of
converters is a battle between price, space, and operation among others. A very high C
and L would be expensive to implement. So the cheapest and preferable solution is to be
able to set the tuning parameters for the inner-loop, KP and Ki, to obtain the TSS. But
it is also clear that it is a good option to keep these findings/relationships in mind when
designing the converter itself as well.

First, an approach with the direct eigenvalue-method was tested. The resulting equa-
tions and expressions were really hard to interpret, so no analytical insight was obtained
from this approach. Then an approach with the Gershgorin theorem was tested, and gave
a much more straight-forward result. Analytical insight was obtained, and therefore a de-
sign criterion could be derived. But this approach, exploiting the Gershgorins theorem, has
some limitations/disadvantages. First of all, since the theorem is based on a linear system
theory, the converter-dynamics had to be linearized around the equilibrium point. This is
very precise around the equilibrium point, but for large signal-analysis it might not be that
precise. Additionally, some assumptions were done while deriving the final relationship
in Equation (4.15). It was mentioned that the assumptions were realistic, and that the re-
sult wasn’t affected too much by them. The neglect of the resistance, RS , was the first
assumption. RS is in reality small in value. The issue is that even though RS is small, it is
divided by an even smaller value, the inductance L. So the overall impact might actually
be big. But, it can be seen from Equation (4.13) that an increasing RS actually is good for
the TSS, since it is pushing the center of the current-circle to the left. The neglect of the
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the term Kiζ
∗ immediately seems more unrealistic, due to the relatively high value of it.

It must be emphasized that Kiζ
∗ is representing the voltage drop on RS , so by neglecting

the resistance, Kiζ
∗ becomes zero as a consequence. For the parameter values from Table

4.1.1 the term Kiζ
∗ becomes equal to 44 V. But seen in relation to the term it is subtracted

from, it is only 6 % of the voltage from the voltage source. So relatively speaking, this
assumption is also precise. It can from Equation (4.13) be seen that the termKiζ

∗ actually
is pushing the voltage-circle to the right, hence that it is good for the TSS. This means that
if the result from Equation (4.15) which is neglecting the resistance and the term Kiζ

∗ is
giving a TSS, then the system without these assumptions would definitely give a TSS.

Since simplifications have been carried out in the process of determining the restric-
tions of the parameters in order to obtain a TSS, validation that the conclusions are correct
must be carried out. This has been done by comparing the results with plots created by
the computational tool from the specialization project [1] that was calculated numerically
using phase portraits. The phase portrait will give an insight in the large-signal dynamics
of the converter. For the values in Table 4.1.1 the resulting phase portrait of the converter
dynamics is clearly showing a TSS between the current and the voltage. This can be seen
in figure 4.3.1.
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Figure 4.3.1: Phase portrait of a single DC/DC converter, clearly showing stability and
a TSS in the case of large-signal disturbances. Current is on the x-axis and voltage on
the y-axis, and the two streamlines represents two starting conditions.

It can be seen that in a large-signal analysis the zero-dynamics manifold of current
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is present, i.e. the vertical “wall” appearing when the current is equal to the reference
current. The streamlines for the two starting conditions are both reaching the steady state
value of 40 A and 1310 V. Hence, the system is stable and the TSS is ensured.
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Chapter 5

Passivity-Based Design of
Unidirectional DC/DC Converter

The goal of this chapter is to add an outer-loop to the converter system, where the design
is based on passivity. First, the mathematical derivations related to the passivity-based
control-loop will be done. The reason why it is of great interest that the control is passivity-
based, is because it then supports the plug-and-play features, i.e. it has the interconnection
property. Then the system will be simulated and validated, to see if the findings match the
reality. The converter, previously in current-control mode, will now be voltage-controlled
via the implementation of an outer loop. The implementation of the outer-loop may be in
conflict with the findings from the previous chapter, hence, if possible, some new design
criteria for the system to obtain the TSS will be analyzed.

5.1 Derivation of PI-PBC
Assuming that the TSS between current and voltage is present, and hence that the current
due to the PI-control already has reached the steady-state (reference) value, the inner-loop
system dynamics can be represented by Equation (5.1).

C
dv

dt
= −Is +

i∗ · (VS −Ki · ζ∗)
v

= −Is +
e∗

v
· Iref (5.1)

The internal voltage, e, is described in Chapter 2.4, and e∗ = Vs − Ki · ζ∗. The
proportional-gain term is equal to zero because the current is equal to the reference-current
due to the PI-control. Further on, by introducing the reference control-current

Ĩref = Iref − Iref∗

and inserting it into Equation (5.1), Equation (5.2) below shows the new behavior of the
dynamics.

C
dv

dt
= −Is +

e∗ · Iref∗
v

+
e∗ · Ĩref

v
(5.2)
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Referred to Chapter 3.2, it is wanted to present the system in terms of energy. Accord-
ingly, by exploiting that the charge in a capacitor (which is directly related to the energy
stored in the capacitor) can be expressed as the product of the voltage and the capacitance,
i.e., q = C · v. Then the system-description in terms of charge can be presented as in
Equation (5.3).

q̇ = −Is +
e∗ · Iref∗

v
+
e∗ · Ĩref

v
(5.3)

Further on, by introducing the incremental model, and exploiting the fact that

Is =
e∗ · Iref∗
v∗

in steady-state, the relevant equation becomes as Equation (5.4).

˙̃q = e∗ · Iref∗ ·
(

1

v
− 1

v∗

)
+
e∗

v
· Ĩref (5.4)

By applying the Lyapunov function from the specialization project, which can be found
derived and proven in Appendix B.1, the equation can be rewritten in a pH-way [62] as
seen in Equation (5.5).

˙̃q = −e∗ · Iref∗ · ∇V (v) +
e∗

v
· Ĩref (5.5)

Here, the negative gradient of the shifted Hamiltonian, which will also serve as the
Lyapunov-function, is inserted with V (v) equal to

V (v) =
( v
v∗
− ln(v)

)
+ (ln(v∗)− 1)

and hence the gradient is

∇V (v) =
1

v∗
− 1

v

The second partial derivative of V (v) is then equal to

∇2V (v) =
1

v2

which always is greater than zero, and therefore fulfilling the requirement to be global
stable.

The time derivative of the system, expressed by the total derivative, is expressed in
Equation (5.6).

V̇ = −∇V > · e∗Iref∗ · ∇V +∇V > · e
∗

v
· Ĩref (5.6)
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From Equation (5.6) it is possible to obtain information about the passivity of the
system, hence also the control which can contribute to this passivity. Equation (5.6) can
be divided into different parts to clarify the terms.

V̇ = −∇V > · e∗Iref∗︸ ︷︷ ︸
K

·∇V +∇V > · e
∗

v︸ ︷︷ ︸
y(v)>

· Ĩref︸︷︷︸
ũ

V̇ must be negative for it to fulfill the Lyapunov criterion mentioned in Chapter 3.2.1.
From the expression above, K is a constant that needs to be positive to make the first
term negative. This is done by selecting a reference direction for the current and then
chose the current in that direction. This will always be the case as long as the converter
is unidirectional, i.e. the reference current only is positive. In Chapter 6, the bidirectional
converter will also be investigated. In that case, some other criteria need to be fulfilled, in
order to provide the asymptotically stable Lyapunov function. From the above expression,
y(v) is the passive output equal to

y(v) =
e∗

v
·
(

1

v∗
− 1

v

)
(5.7)

and ũ is the control signal. For a simple P-control, the ũ can easily be set to −Kpy and be
shown to be negative, hence that the system is passive. The system is passive if Equation
(5.8) is fulfilled.

V̇ ≤ y> · ũ (5.8)

A solution more realistic and relevant from an industry point of view is the PI-control.
By designing u correctly as a PI-controller, the control loop can assure global asymptotic
stability. For PI-control, the terms added to the system is as in Equation (5.9) below.

u = −Kpo · y −Kio · ζ2
ζ̇2 = y

(5.9)

Kpo is the outer-loop P-gain, and Kio is the outer-loop I-gain. At the equilibrium of
the system, the states have the following values

u∗ = −Kio · ζ∗2
y∗ = 0

(5.10)

It is still assumed thatK is greater than 0 thus the system fulfills Equation (5.8), where
ũ = u − u∗. V is only considering the proportional part of the control, so by applying
a PI-control, the ζ-state of the system must also be included in the Lyapunov-function.
This is done by adding the energy of the integrator state. The resulting proposal for a
Lyapunov-function of the new system is seen in Equation (5.11)

W (v, ζ) = V (v) +
1

2
(ζ2 − ζ∗2 )>Kio(ζ2 − ζ∗2 ) (5.11)
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where Ẇ ≤ 0 is the criteria to be verified to use W as the new Lyapunov function. Now,
it must be shown that this new energy-function W (v, ζ), is negative semi-definite, hence
fulfilling this criterion. By calculating the total derivative and exploiting Equation (5.8)-
(5.10), the following can be proven

Ẇ = V̇ + [Kio(ζ2 − ζ∗2 )]> · ζ̇2
= V̇ + [Kioζ2 −Kioζ

∗
2 ]> · y

= V̇ + [−Kpoy − u−Kioζ
∗
2 ]> · y

= V̇ − y>Kpoy − u>y − (Kioζ
∗
2 )>y

≤ y>ũ− y>Kpoy − y>u+ y>u∗

= −y>Kpoy ≤ 0

(5.12)

which always is less than zero. In the last transition it is exploited that ũ = u−u∗. For the
relevant system y is just a scalar, hence the last line of the derivation consists of y squared,
which always is greater than zero, and Kpo which is chosen to be a positive value. The
last step is to show that the system is detectable, since it until now only has been proven
global stability. This is done by analyzing the last term of the derivation in Equation (5.12),
and to show that this expression only is zero when y is zero. y can be zero in two cases;
first if v=v∗, and second if v is equal to infinity. However, since v equal to infinity imply
an unstable system, it is proven that the system is stable and the only possibility is when
v=v∗. This is proving asymptotic convergence, and consequently global asymptotic stabil-
ity. Hence, the system is globally stable and the Lyapunov function is proper and fulfilling
all the demands.

When designing this PI-PBC the determination of the control tuning-parameters Kpo

and Kio for the outer loop, is the essential choice. Positive values are a must, with respect
to the above stability proof. One problem that remains to be solved is to obtain the correct
parameter values to achieve a good performance of the converter.

The complete model considering the dynamics of the whole system and with a PI-PBC
can be seen in Equation (5.13)-(5.16) below.

L
di

dt
= −Rs · i+Kp(iref − i) +Ki · ζ1 (5.13)

C
dv

dt
= −Is +

(Vs −Kp(iref − i)−Ki · ζ1) · iref
v

(5.14)

dζ1
dt

= iref − i (5.15)

dζ2
dt

= y =
Vs
v
·
(

1

v∗
− 1

v

)
(5.16)

From Equation (5.13) the inner loop control signal, earlier expressed as e, is equal to
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5.1 Derivation of PI-PBC

e = Vs −Kp(iref − i)−Ki · ζ1

and the term iref , or the reference current control signal, is equal to

iref = −Kpoy −Kioζ2

where y is the passive output signal, expressed as in Equation (5.7), with one small adjust-
ment. From Equation (5.7) the term e∗ was a part of the output, but for the chosen control
system this term is modified to VS . This is done mainly because this is a constant value
that is independent in the system description, unlike the e∗-term. Additionally, the two
values are pretty similar by definition, and the substitution will not influence the dynamics
in a significant way, given that this change will only scale the control parameters Kpo and
Kio, without compromising the stability proof.

5.1.1 Outer Loop Dynamics

A SIMULINK model was created for the converter, assuming that the TSS is present, for
the purpose of visualizing and verifying the above result about the passive outer loop. This
was done in order to see if the outer loop is stabilizing with the same assumptions as the
derivation is based on, and that the result is as concluded above. The values from Table
5.1.1 below were used. The converter-values, i.e. not the control parameters, are similar
to the once chosen in [1], and highly inspired by [59, 60, 61].

Table 5.1.1: Values for the voltage outer-loop model.

Parameter Value
Vs, voltage source 700 V
C, capacitance 500 µ F
L, inductance 5 mH
Kp, inner loop P-gain 15
Ki, inner loop I-gain 10
Is, current source 20 A
Vref , voltage reference 800 V
ζ∗1 , inner loop ζ1-steady-state 2.6
Kpo, outer loop P-gain 24/12
Kio, outer loop I-gain 10000/5000

In Figure 5.1.1 the resulting dynamics of the voltage from the model and script in
Appendix A.4 is shown for two different sets of outer-loop tuning parameters. In the
derivation of the passive output above, the e∗ appeared, but for the control of the converter,
this term is substituted with Vs, for reasons earlier explained. The chosen values of Kio

and Kpo are not tuned, but only randomly chosen. This is because the main purpose of
this simulation is to show that the system is stable. Kp and Ki are chosen such that the
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Chapter 5. Passivity-Based Design of Unidirectional DC/DC Converter

findings from the previous chapter related to the TSS for the inner-loop holds. The inner-
loop parameters must be chosen in order to determine the steady-state of the ζ1, since that
term is appearing in the outer loop voltage equation.
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Kp,o = 24 , Ki,o = 10 000

Kp,o = 12, Ki,o = 5 000

Figure 5.1.1: Voltage evolution with respect to time for two different values ofKpo and
Kio for the voltage outer-loop. TSS is assumed for this model and the resulting plot.

The tuning parameters must be very large to stabilize within the magnitude of seconds,
and not minutes. As seen from Figure 5.1.1 the voltage is reaching its reference value and
is hence stable. This complies with the above deviation of the PI-PBC. In the figure, the
voltage dynamics are shown for two sets of tuning parameters. The parameters for the
red graph are lower than for the blue graph, and as expected the blue graph is reaching its
steady-state value faster than the red. Another thing that must be noted is that the response
time is relatively slow, especially compared to the response time of the current. From the
specialization project [1], a response time in the scale of milliseconds for the current was
often present. This is also as expected due to the assumption of TSS between the current
and voltage. But the model which only includes the outer loop and the voltage dynamics
is simplified. A concern is that the design of the outer loop, even though it has a much
slower response time, will break or destroy the assumption of the TSS. Even though the
current in the inner loop has really fast dynamics, and the voltage dynamics are really slow
as seen in the figure above, the concern is regarding the reference current. For the inner
loop considered alone, the reference value is a constant current. But, when adding the PI-
PBC for the outer loop, the reference current becomes dependent on the voltage dynamics.
Hence it might not be correct to represent the voltage and current dynamics separately,
because the influence of the new reference current on the current dynamics is unknown.
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5.1 Derivation of PI-PBC

5.1.2 Dynamics of the Full System
Therefore, to make sure that the additional outer-loop doesn’t destroy the TSS, another
model that is showing both the current and the voltage dynamics has been created, in
such a way that the overall dynamics can be analyzed. The SIMULINK model and the
corresponding MATLAB code can be seen in Appendix A.5. The values chosen for the
simulations can be seen in Table 5.1.2.

Table 5.1.2: Values for the full model.

Parameter Value
VS , voltage source 700 V
C, capacitance 500 µF
L, inductance 5 mH
Rs, resistance 1.1 Ω
Kp, inner loop P-gain 15
Ki, inner loop I-gain 10
Is, current source 20 A
Vref , voltage reference 800 V
Kpo, outer loop P-gain 24
Kio, outer loop I-gain 10 000

The resulting current and voltage rate of change, i.e. derivatives, of the full converter
can be seen in Figure 5.1.2 below, and the current and voltage evolution with respect to
time can be seen in Figure 5.1.3.

It can be observed from Figure 5.1.2 that the current rate of change is very fast, com-
pared to the voltage rate of change, which is slower. This is relevant since the dynamics are
faster for the current compared to the voltage. The tuning parameters have to be very large
in this case as well, in order to stabilize the system within seconds and not minutes. Also
for smaller values of the outer loop tuning parameters the rate of change is way faster for
the current compared to the voltage. From Figure 5.1.3 it can be seen that both voltage and
current are reaching steady-state at approximately the same time. So it can be concluded
that the dynamics of the current are faster than for the voltage, but due to the PI-PBC-loop
the current is dependent on the voltage and they are reaching steady-state approximately
at the same time.

One concern regarding the development of the outer loop is that it destroys, or com-
plicates, the expressions to ensure the TSS that was found in Chapter 4. So, an analysis of
the new system using the Gershgorin circle theorem will now be completed.
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Figure 5.1.2: Voltage and current rate of change for the respectively outer-loop and
inner-loop converter system. The rate of change for the voltage is shown in blue and is
corresponding to the left y-axis, while the rate of change for the current is shown in red
and is corresponding to the right y-axis.
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Figure 5.1.3: Voltage and current evolution with respect to time for the outer-loop and
inner-loop converter system. The voltage is shown in blue and corresponds to the left
y-axis, and the current is shown in red and corresponds to the right y-axis.
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5.2 Design Criteria and Gershgorin Analysis
The first step of the Gershgorin analysis is to simplify the nonlinear and complex converter-
system described in Equation (5.13)-(5.16) above. This is done by calculating the Jacobian
matrix through a created MATLAB-scrip found in Appendix A.3. Then the Jacobian
matrix is evaluated near the equilibrium point

~x∗ =


i∗

Vref
ζ∗1
ζ∗2


and the resulting A-matrix is seen in Equation (5.17) below.

A =


−Rs+Kp

L −Kp·Kpo·Vs

L·V 3
ref

Kp·Kio·ζ∗2
C·Vref

Kpo·Kp·Vs·Kio·ζ∗2
C·V 4

ref
+

Ki·ζ∗1−VS−Kp·i∗+Kp·Kio·ζ∗2
C·V 2

ref
·
(
Kpo·Vs

V 2
ref

+Kio · ζ∗2
)

−1 −Kpo·Vs

V 3
ref

0 − Vs

V 3
ref

(5.17)

Ki

L
Kio·Kp

L

−Ki·Kio·ζ∗2
C·Vref

−K
2
io·Kp·ζ∗2−Kio·(Vs−Ki·ζ∗1+Kp·(i∗−Kio·ζ∗2 ))

C·Vref

0 Kio

0 0


Further on some relationships will be exploited to simplify the expressions. First of all,

i∗ = Kio · ζ∗2 , and secondly, e∗ = Vs −Ki · ζ∗1 . In steady-state, both of these relationships
are valid. Then, the A matrix from Equation (5.17) can be rewritten as the A1 matrix seen
in Equation (5.18) below.

A1 =


−Rs+Kp

L −Kp·Kpo·Vs

L·V 3
ref

Ki
L

Kio·Kp
L

Kp·i∗

C·Vref

Kpo·Kp·Vs·i∗

C·V 4
ref

− e∗
C·V 2

ref

·
(

Kpo·Vs

V 2
ref

+i∗
)
− Ki·i

∗
C·Vref

−Kio·Kp·i∗−Kio·e
∗

C·Vref

−1 −Kpo·Vs

V 3
ref

0 Kio

0 − Vs
V 3
ref

0 0

 (5.18)

This is the matrix describing the linearized dynamics that will be used for this analysis.
Further on, the constant e∗ will be replaced by Vs to further simplify the expressions. This
is considered a good approximation for practical applications with low Rs, which result in
voltages which are very similar in magnitude.

First, a mathematical analysis of the A1 matrix will be done. The Gershgorin theory,
presented in Chapter 3.1.4 is essential. The main goal, is to ensure the TSS. This can be
done if the current-circle is to the left of the voltage-circle, and additionally, that the two
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circles are not overlapping. The worst-case scenario with respect to the TSS is for the
current eigenvalue to be the point most to the right within the current-circle. Likewise, the
worst case for the voltage-eigenvalue is to be the point most to the left within the voltage-
circle. These two points are expressed in respectively Equation (5.19) and (5.20), where
the sub-indexes i and v represents the current and voltage, and the sub-indexes r and l
represents the most right and most left point within the circles.

λi,r = −Rs +Kp

L
+
Kp ·Kpo · Vs
L · V 3

ref

+
Ki

L
+
Kio ·Kp

L
(5.19)

λv,l =
Kpo ·Kp · Vs · i∗

C · V 4
ref

− Vs
C · V 2

ref

·

(
Kpo · Vs
V 2
ref

+ i∗

)
− Kp · i∗

C · Vref

− Ki · i∗

C · Vref
− abs

(
Kio · (V s−Kp · i∗)

C · Vref

) (5.20)

Since both eigenvalues are negative, the goal is to obtain the relationship in Equation
(5.21).

λi,r < λv,l (5.21)

If that is the case, it is through the Gershorins theorem proved that the eigenvalue of the
current is more negative than the eigenvalue of the voltage. Later, after this mathematical
analysis, the participation factors will be calculated and analyzed in order to prove that the
eigenvalues of the modes, i.e. the eigenvalues in this Gershorin analysis, can be correlated
to the eigenvalues of the states. The expression is Equation (5.21), can be simplified, by
neglecting the terms with the lowest order of magnitude. Assuming a voltage, inductance,
and capacitance in the same order as in Table 5.1.2, then all the terms that are proportional
to the inverse of the reference-voltage cubed, mathematically expressed

t(Vref ) ∝ 1

V 3
ref

or higher order of the reference voltage, can be neglected. Additionally, to get rid of the
absolute sign, it is assumed that Vs is greater than Kp · i∗. Then Equation (5.19) and
Equation (5.20) can be simplified to respectively Equation (5.22) and (5.23).

λi,r = −Rs +Kp

L︸ ︷︷ ︸
center

+
Ki +Kio ·Kp

L︸ ︷︷ ︸
radius

(5.22)

λv,l = − Vs · i∗

C · V 2
ref︸ ︷︷ ︸

center

− i∗ · (Ki +Kp)

C · Vref
− Kio · (V s−Kp · i∗)

C · Vref︸ ︷︷ ︸
radius

(5.23)

Assuming that the conclusions from Chapter 4 holds, i.e. that the inductance is ap-
proximately ten times the capacitance, and that Kp is bigger than Ki, some interesting
analytical relationships can be observed. First of all, it can be seen that the center of the
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current-circle in Equation (5.22) is greater in order of magnitude than the voltage-circle
center in Equation (5.23), and that both are negative. Further on, the Kp is pushing the
current-circle to the left, and at the same time it is increasing the radius of the current-
circle, as seen in Equation (5.22). But, if the Kio is chosen to be small, the effect of the
increasing Kp with respect to the radius can be canceled out. This also counts for the last
term of Equation (5.23) from above. Additionally, the Kp is increasing the radius of the
voltage circle, seen in the second term of Equation (5.23), so the inner-loop tuning param-
eter can not be chosen to be as big as possible because it will lead to an overlap of the
Gershgorin circles. This means that the Kp has an upper limit before it is destroying the
possibility to ensure TSS by analytical design.

Ki must still be lower than the Kp, but the question is by how much. By analyzing the
order of magnitude of the terms in the expressions of the circles, it can be seen that for very
big values of the inner-loop parameters, the radius of the circles gets very big. So, if the
parameters Kp and Ki are in the order of tens, and not hundreds, and at the same time Kp

is approximately 3 times bigger than Ki, this will not be a problem. It was mentioned that
Kio must be small in magnitude. Assuming that the earlier mentioned criteria are valid,
then by small is it meant in the order of 10−1, in order to cancel out the effect of Kp. This
can be observed in the radius term of Equation (5.22).

It can be observed that the outer-loop parameter of Kpo is not of great interest since it
only appears in the terms with the smallest order of magnitude. But this finding is actually
really important as well, since this implies that Kpo has a high degree of freedom (DOF).
Kpo can be a really high value before it is affecting the result, and even then, it can be fixed
by increasing Kp. This is of great interest for later, when investigating the bidirectional
converter.

5.2.1 Analytical Interpretation
Since an analytical expression has been obtained, it is possible to obtain a deeper under-
standing of the impact of the parameter values with respect to the voltage and the current
in the converter. The different terms in the analytical expressions and the parameters in
these terms all have a different effect on the total result, where the goal is to achieve a
design leading to a stable converter with the presence of TSS such that the mathematical
derivations are guaranteed to apply.

The first topic is regarding the design of the converter itself, i.e. the resistance, induc-
tance, and capacitance. The resistance is in most cases small and doesn’t have too much
influence in the analysis. But as seen in Equation (5.18), a higher Rs will lead to a more
negative eigenvalue for the current, implying faster dynamics. The more interesting part is
regarding the inductance and the capacitance. When analyzing the previously mentioned
equation, it can be observed that the inductance is appearing in the denominator of all the
current-related terms, while the capacitance is doing the same for all the voltage-related
terms. It is not that surprising that the capacitance is related to the voltage dynamics and
inductance related to the current dynamics, but what’s interesting is the effect the two pa-
rameters have on the location and development of the Gershgorin circles. Since the goal
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is to ensure the TSS, it can be seen that by designing L and C respectively low and high,
the center of the circles can be separated in order of magnitude. A concern is to not exag-
gerate the low value of the inductance, leading to a very big radius of the current-circle,
hence an overlap of the circles. So to sum it up, even though it is not always physically
possible to do this, a low value of the inductance compared to the capacitance is helpful
in obtaining the TSS. As mention in Chapter 4, an appropriate relationship between the
two is an inductance approximately ten times the capacitance. This is a realistic physical
relationship as well. But, to ensure that the Gershgorin circles are separated, a smaller
difference between the L and C would be preferred. It can also be mentioned that the
higher Vref is, the smaller and more to the right is the voltage-circle. But by changing the
reference voltage, other parameters such as the equilibrium current, i∗ will change as well.
So the net effect of an increasing reference-voltage is complex and depends on the change
of the steady-state value for the current.

For instance, by setting the value of the inductance equal to the value of the capaci-
tance, the Kpo has an even higher DOF than earlier, meaning that it can be even higher
in value. Additionally, the Kio, Ki and Kp can be increased more, and still obtaining
the TSS. If on the contrary the inductance is lower than the capacitance, the parameters
would have an even higher freedom still ensuring the TSS. So by changing the relationship
between the L and C the total DOF for the design of the control-loops can be rapidly in-
creased. This might be practical for some situations, for instance if the converter has very
fluctuating and different operating conditions. But the concern is related to the practical
consequences this has for the converter.

Further on, the control-parameters will be inspected analytically. Equation (5.22) and
(5.23) will be the foundation when looking further into what terms the different param-
eters affect. For the mentioned terms all the current-relevant terms are divided by the
inductance, while the voltage-related equations are divided by the capacitance times the
reference voltage, possibly squared.

The first tuning variable is the P-gain for the inner loop, Kp. Kp is appearing in all
terms, except for the term determining the voltage-circle center. This implies that Kp is
both contributing to the TSS by moving the current-circle to the left, and counteracting
it by increasing the radius of both circles; which might lead to an overlap of the circles.
The next variable is the I-gain for the inner-loop, Ki. Ki is appearing in the voltage-radius
term, scaled with a factor equal to the steady-state current. It is also appearing in the radius
of the current-circle. Hence, the Ki is contributing to an increase in the radius of the cir-
cles. Further on the P-gain of the outer-loop, Kpo, is up. Kpo is not appearing in Equation
(5.22) or (5.23), for reasons earlier explained. Hence, the A1 matrix in Equation (5.18)
must be investigated to obtain more information about it. From A1 it can be observed that
Kpo is affecting the voltage-circle center. Since VS in most cases is greater than the prod-
uct of Kp and i∗, an increase in Kpo is moving the voltage-circle to the left. But as can be
seen, Kpo must be really big in magnitude in order to actually affect the center. Kpo also
appears in the current-circle radius term, but yet again it must be really big to influence it.
The last tuning parameter is the I-gain for the outer-loop, Kio. Kio is appearing in both
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the radius of the voltage-circle and the current-circle. For the current-circle it is multiplied
with Kp, while for the voltage-circle it is multiplied with the difference between VS and
Kpi

∗.

By applying some approximations to Equation (5.22) and (5.23), an even more sim-
plified expression will now be gone through. For simplicity reasons, it is assumed that L
= αC, where α is the relationship between the inductance and capacitance with the units
of [H/F]. Additionally Kio and RS are assumed to be very small in value, so they can
be neglected. Since VS is in the same order as Vref , the two quantities will be chosen to
be equal. Then the expression in Equation (5.24) will guarantee TSS and consequently
stability.

−Kp +Ki

α
< − i∗

Vref
− i∗(Ki +Kp)

Vref
(5.24)

Since the relationship between the reference voltage and the steady-state current is a
number in the order of 10−2, it will be neglected, and the expression in Equation (5.24)
can be further simplified to the below expression.

Kp

α
>
i∗(Ki +Kp)

Vref
+
Ki

α

This basically means that the TSS can be guaranteed for this example as long as

Kp > Ki ·

(
1 + i∗α

Vref

1− i∗α
Vref

)
or even shorter as

Kp > Ki ·
(

1 + β

1− β

)
= Ki · κ (5.25)

where β is defined as i∗α
Vref

. Of course this relationship is influenced by a lot of assumptions
and will not be a hundred percent correct, but it catches the essence of the different control
parameters. That is that the most important relationship is the relationship between Kp

and Ki to achieve TSS, which is arguably not an intuitive one.

5.2.2 Visualization and Verification
In order to visualize and validate these findings, a MATLAB-script was created for the
purpose of plotting the Gershgorin disks for different parameter values. The script can be
found in Appendix A.6. The values chosen for these visualizations are all based on the
findings mentioned in the previous section. For the plots, the values in Table 5.2.1 will be
the base, and it will then be observed what the consequences of changing the parameter
values are.

It can be seen that the relationship between the inductance and capacitance is 10, which
referred to the example above implies that α = 10. When calculating the reference current
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Table 5.2.1: Values applied for the Gershgorin analysis of the full model.

Parameter Value
VS , voltage source 700 V
C, capacitance 500 µF
L, inductance 5 mH
Rs, resistance 1.1 Ω
KP , inner loop P-gain 15
Ki, inner loop I-gain 5
Is, current source 20 A
Vref , voltage reference 800 V
KPo, outer loop P-gain 10
Kio, outer loop I-gain 0.2

a β ≈ 0.3 is obtain from Equation (5.25) , and a factor κ ≈ 2. In the table the relationship
betweenKp andKi is sat a bit higher, i.e. to 3 as a safety margin. For the parameter values
in Table 5.2.1, where all of the findings are taken into account, the resulting Gershgorin
circles can be seen in Figure 5.2.1 below.
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Figure 5.2.1: Gershgorin circles for the parameter values fulfilling the derived TSS
design criteria. The domain of the current-eigenvalue is within the black circle, and the
domain of the voltage-eigenvalue is within the red circle.

The black circle and dot are representing the current circle and center. The red circle
and dot are representing the voltage circle and center. The green dot is representing the
Gershgorin circle for the ζ1 and ζ2 states. These circles are centered around (0,0), and
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5.2 Design Criteria and Gershgorin Analysis

have a very small radius compared to the voltage and current circles. Hence, they are only
represented as a small dot. As expected with the chosen parameter values, designed by
the Gershgorin disk theorem, it resulted in two separate disks. From the expansion of the
Gershgorins theorem, it can hence be concluded that the current-eigenvalue (given that the
participation-factor, later to be investigated, confirms that the state and modes are related)
is within the black circle. In the same way, the voltage-eigenvalue is within the red circle.
It can then be observed that the eigenvalue of the current is many times more negative than
the voltage eigenvalue, hence the TSS is present. Even though it looks from the figure that
the circles are pretty close, the difference between them is in the order of hundreds. This is
actually a big difference when it comes to the eigenvalue, and as described, the difference
between the actual eigenvalues is probably much greater, since the distance between the
disks is representing the worst-case scenario when it comes to the eigenvalues positioning
within the circles. Since the voltage circle spans both the positive and negative domain
of the real axis, and it is known that only negative eigenvalues are stable, it is of great
interest that the actual eigenvalue of the voltage is in the negative part of the circle. This
is a decent assumption to make since it from the simulations earlier was shown that the
voltage is stabilizing towards its reference value. The eigenvalues will also be investigated
in a bit when the participation matrix is analyzed.

The eigenvalues and the corresponding participation matrix for this system will now
be analyzed in order to obtain more information about the system. As written earlier, the
participation factor for the eigenvalues is really essential in this analysis, since they are
connecting the eigenvalues of the modes, to the states of the system. This means that
for the Gershgorin analysis the eigenvalues obtained can be connected to the states, i.e.
voltage and current, in such a way that the result gets a practical meaning. A MATLAB
script was created for this purpose. The resulting script can be seen in Appendix A.7.
When the script is run with the parameters from Table 5.2.1, representing the Gershgorin
circles in Figure 5.2.1 above, the following eigenvalues are obtained

~λ =


−3219.7
−51.96
−0.3106
−8.86 · 10−6


It can be observed that all eigenvalues are negative, which implies that the system is

stable. Further on, it is clear that the first eigenvalue is much bigger in magnitude than the
second, the second bigger than the third, and the third bigger than the fourth. It is wanted
that the first eigenvalue can be correlated to the current-state, in order to ensure the TSS.
Compared to the Gershgorin circles in Figure 5.2.1, it seems like the center of the black
circles is very close to the first eigenvalue of the vector, and that the red center is very
close to the second eigenvalue. Up to now it has been assumed that the black circle can be
correlated to the current-state, and that the red circle can be correlated to the voltage-state.
The participation factor will be useful for the purpose of determining if this assumption is
correct. Further on the script calculated the normalized participation matrix, which is seen
in Equation (5.26) below.
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P =


0.9999 0 0.0001 0

0 1 0 0
0.0001 0 0.9999 0

0 0 0 1

 (5.26)

This means that the first eigenvalue above is almost completely described by the current-
state. Additionally, the second eigenvalue is described by the voltage-state. This is very
good for the analysis made this far because it confirms that the findings and conclusions
regarding the TSS described through Gershgorin circles were correct.

In Figure 5.2.2 it is shown what happens with the Gershgorin circles in the case of
violations of the design criteria mentioned above. In Figure 5.2.2a, Ki is changed from
5 to 10. This is rapidly increasing the radius of both of the circles, leading to an overlap
of the Gershgorin disks. In this case, it can not through Gershgorins theorem be stated
that the TSS is present, since it is unknown where the eigenvalues are located. It is only
known that all of the eigenvalues have to be located within the union of the circles. It was
mentioned that this problem could be solved by increasing Kp to about 3 times the values
of Ki. By doing this, the circles are again totally separated.

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

Re

-3000

-2000

-1000

0

1000

2000

3000

I
m

(a) Ki increased to 10.
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(b) Kio increased to 1.

Figure 5.2.2: Gershgorin circles for two cases that are violating the design criteria. The
circles are overlapping, and consequently it is not possible to ensure the TSS.

In Figure 5.2.2b, the outer-loop integral gain is increased from 0.2 to 1. Since Kio is
counteracting the inner-loop gains to reduce the radius of the circles, increasing it would
also increase the radii rapidly. This is leading to an overlap of the circles, and the conclu-
sion from the previous paragraph applies here as well. The only way to separate the circles
again is by increasing the capacitance and lowering the inductance, hence designing the
converter all over again. So arguably the most important design criterion is to keep the
Kio as low as possible.
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The system with the modifications in parameter values from Figure 5.2.2 that were in
conflict with the design criteria, was tested in the script calculating the eigenvalues and
the participation-matrix from Appendix A.7. For both cases, the conclusion was the same.
The eigenvalue representing the current was much larger than the eigenvalue representing
the voltage. So even though it was not possible to ensure TSS through the Gershgorin
analysis, the TSS was still present. The reason for this is that the result of the Gershgorin
circles always is based on the worst-case scenario, further discussed below.

5.3 Analysis and Discussion
By designing the control of the converter based on passivity, it has been shown that the
operation is stable and that the voltage is reaching the reference value, and additionally
that TSS could be ensured by design.

The models that were created in SIMULINK had some simplifications involved since
they were numerically calculated, and based on the Eulers method. The result can hence
be influenced by the step length. For the simulations the SIMULINK standard step-length
was chosen, and by varying it the result did not change much. It is known that for non-
linear systems these types of tools are relatively precise, and it is to be believed that the
findings still are valid. First of all, the PI-PBC outer loop is stabilizing towards the refer-
ence voltage, as wanted. Secondly, regarding the full converter model, the rate of change
for the current is of greater magnitude than for the voltage, even though they reach steady-
state approximately at the same time. This means that the current is reaching its reference
value way faster than the voltage is. This may be potentially confusing to understand, but
one way to interpret it is to say that while the voltage is changing, the current is reaching
many temporary equilibrium points. But since the current reference is dependent on the
voltage, the current can’t reach the final equilibrium point that is matching the reference
voltage before the voltage has reached its equilibrium point. It is shown that they do that
approximately at the same time, or actually the current some milliseconds after the voltage.

When actually designing the control-loop parameters based on passivity, the Gersh-
gorin theorem was the foundation for doing the eigenvalue-analysis. For the derivation of
the PBC to definitely hold, or to be proven mathematically, the TSS needs to be present.
In other words this means that if the TSS is present, the system is stable. This implies that
the Gershgorin circle for the current must be to the left of the Gershgorin voltage circle,
and also that the two circles don’t overlap. In order to do the Gershgorin analysis, the
Jacobian A-matrix must be calculated. This matrix is based on linearizations around the
equilibrium point. Since the relevant converter system has some very nonlinear terms, this
kind of linearization will not give a precise image of the converter in the whole domain,
but for a small-signal analysis the result is pretty accurate.

Since the analytical insight and the design criteria are derived based on the Gershgorin
theorem, a concern related to microgrids occurs. To find the Jacobian matrix, the equi-
librium point must be available. For one converter with a given operating condition, this
might be fine. But for a microgrid, the operating conditions might be dynamic and chang-
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ing, implying trouble for the Jacobian matrix. One possibility is to analyze the system for
the two most extreme values, i.e. the highest and lowest voltage equilibrium value, and
do the control design based on this. Another possibility is to create some sort of adapting
control design that is changing for different modes/operations of the converter. At last, a
possibility is that the change of the steady-state value of the voltage actually doesn’t in-
fluence the control design that much. Either way, this must be considered for the control
design of a stability-preserving microgrid with plug-and-play features.

A drawback with the use of the Gershgorin theorem to predict the eigenvalues is re-
garding the condition of necessity and sufficiency. The Gershgorin theorem can only state
a sufficient solution to the problem, i.e. if the circles are separated the TSS is present, while
on the contrary if TSS is present it doesn’t necessarily mean that the circles are separated.
This can in theory lead to a big difference between the Gershgorin eigenvalue-circles and
the actual eigenvalues that are necessary to get the TSS. But as shown in Chapter 4, it
was very difficult to extract any kind of information from the eigenvalue-expressions that
were obtained when analyzing the system by actually calculating the eigenvalues. Hence,
in order to obtain some insight into the system and being able to relate both converter-
parameters and control-parameters to the stability-analysis, a perspective such as Gersh-
gorin is a great tool. By analyzing the equations of the Gershgorin circles it was possible to
find some relationship between the parameter values, such that the previously mentioned
relationship between the Gershgorin circle holds. These findings were also verified by
plotting the Gershgorin circles for different parameter values. The main control design
findings were:

• The conclusions from Chapter 4 holds. This means that Kp must be bigger than
Ki, and that the inductance is approximately 10 times higher than the capacitance.
It was developed a simplified expression, describing the relationship between L, C,
Ki and Kp. From this expression, i.e. Equation (5.25), the design of the converter
and inner-loop control can be inspired.

• Kp must be within the order of 10, and not bigger. This will lead to an overlap of
the circles. If this is the case, then the Ki must be no higher than one-third of the
Kp. Additionally, the sum of Kp and Ki must not be big, such that the radius of the
voltage-circle is controlled. This is achieved if the previously mentioned demands
are fulfilled.

• Kio must be small. This is in order to compensate for the bigger Kp, such that the
circles don’t overlap. Kio must be in the order of 10−1 and approximately 1/100 of
the value of Kp.

• Kpo is only appearing in the terms with a small order of magnitude, hence not
affecting the result. This high DOF for this tuning variable is something that will be
useful in the coming section. But for these results, as long as Kpo does not have an
order of magnitude in the range of 104-105 or higher, it will not affect the results.

Additionally, the findings were also verified by calculating the eigenvalues and the partic-
ipation factors for the different sets of parameter values.
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Equation (5.25) is very useful for designing the control of especially the inner-loop.
But, the expression is based on some assumptions that now will be discussed. The first
assumption, and the same assumption that was applied in Chapter 4, was the neglect of the
resistance RS . The same conclusion applies for this expression as for the one in the previ-
ous chapter. This means that by neglecting the resistance, the situations related to the TSS
gets worsen since an increasingRS is contributing to moving the current-center to the left.
Hence, this is a good assumption to make in terms of the validity of the result. The next
assumption done in order to derive Equation (5.25) is to neglect the outer-loop I-gain,Kio.
Since Kio by design should be small in value this assumption can be done. But, as this
tuning-parameter is affecting the radius of both the circles, just a small Kio might lead to
an overlap of the circles. In addition, the terms containing Kio have a small denominator,
such that even a small tuning-gain could actually lead to a big value. Hence, neglecting
it might be a relatively imprecise assumption. But on the contrary, since Kio is designed
to be small, the terms that mainly are determining the order of magnitude for the radius
of the circles are not the terms containing Kio. So, some information about the radius of
the circles gets lost with this assumption, but the main trends showing the big picture are
safeguarded. Overall, it is a relatively reasonable assumption to do. The last simplification
done, was to assume that VS and Vref can be seen as the same value since they are very
similar in value. In this way the two terms can be removed from the expressions if they
appear in both the denominator and numerator. For bigger differences between the two
parameters than what is chosen in this project, this assumption might be imprecise. But
roughly speaking, this is a fair assumption to do, especially when considering how much
the resulting expression simplifies.

Based on these results, one important issue to discuss is the importance of Kio. From
converter-control theory is it known that Kio should be great in order to rapidly reach zero
steady state error. This was also tested in the SIMULINK-models, and verified. But from
the Gershgorin analysis the conclusion was to keep Kio low. This will have consequences
in the operation of the converter, where the outer-loop voltage slowly will reach its steady-
state value. For higher values ofKio the eigenvalues were calculated from the MATLAB-
script in Appendix A.7. The result was still that the current-eigenvalue was way more
negative than the voltage-eigenvalue, i.e. that the system was stable and TSS present. So,
a consequence of the Gershgorin analysis, and its sufficient-based conclusions, is that a
lot of information gets lost. This means that Gershgorins theorem states that Kio must be
low, but in reality it can be much higher than the theorem states. Hence, a more realistic
and optimal control of the converter can in reality be achieved. So yet again it is seen that
the Gershgorin theorem is powerful, but its results are clearly conservative.
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Chapter 6

Passivity-Based Design of
Bidirectional DC/DC Converter

From the previous chapter it has now been shown that it is possible to design a unidirec-
tional converter based on passivity, such that the dynamics are stable. But in the physi-
cal world, and for all practical reasons, it is not very realistic nor of interest to have a
DC-microgrid only consisting of unidirectional converters. Hence, it is of interest to in-
vestigate the bidirectional converter, in order to ensure that power can both be delivered
and received for the converter. A consequence of this is that the current, more precisely
the reference current, can be both positive and negative. This leads to some consequences
for the passivity based derivations of the control, where the main problem is that this can
lead to a lack of passivity. The solution is to quantify this lack of passivity, and then to
compensate for it.

6.1 Mathematical Derivation and Analysis
The foundation for investigating the bidirectional converter is Equation (5.1)-(5.6). These
are the equations that were part of deriving the passivity-property for the converter system.
Equation (5.5) can be reformulated in a more convenient way for further analysis, as in
Equation (6.1) below.

˙̃q = −K · ∇V (v) + g(v) · Ĩref (6.1)

K is a constant equal to the product of e∗ and Iref∗ , i.e. a power, and g(v) is the input
vector equal to

g(v) =
e∗

v

This leads to the derivative of the Lyapunov function of this energy-based (i.e. charge-
based) system. This is the function that needs to provide passivity and is a reformulation
of Equation (5.6). The resulting time-derivative energy-storage function that needs to be
passive, is seen in Equation (6.2) below.
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V̇ (v) = −∇V >(v) ·K · ∇V (v) + y> · Ĩref (6.2)

where

y> = ∇V >(v) · g(v) (6.3)

As a reminder Ĩref is the control signal. In Chapter 5.1 this clearly fulfilled the demand
to be passive and had a relationship as expressed in (6.4).

V̇ ≤ y> · Ĩref (6.4)

Both e∗ and Iref∗ were always positive, hence making the K from Equation (6.2)
positive. This is the mathematical reasoning why the change of sign for the control signal,
i.e. reference current, will lead to a lack of passivity. This lack of passivity is causing the
Lyapunov function not to be proper. But, as suggested in [57] and [56], a solution exists.
The first part is to quantify the lack of passivity, and the second part is to compensate for
this lack with the help of the control-parameters. But, the first part is to quantify the lack
of passivity, and that will be done by adding a zero term to Equation (6.2), and obtaining
Equation (6.5). Both V , y and g are functions of the voltage v, but for practical reasons it
is not included in the next equations.

V̇ = −∇V > ·K · ∇V + y> · Ĩref +∇V >
[
γ · g · g> − γ · g · g>

]
∇V (6.5)

Further on, by rearranging the equation and extracting the negative part from the last
term and inserting it with the K, it can be formulated as in Equation (6.6).

V̇ = −∇V > · [K + γ · g · g>] · ∇V + y> · Ĩref +∇V > · γ · g · g> · ∇V (6.6)

Then, by exploiting the relationship from Equation (6.3), and formulating

y> · y = ||y||22

then the equation can be rewritten in a more convenient way, as in Equation (6.7).

V̇ = −∇V > · [K + γ · g · g>] · ∇V + y> · Ĩref + γ · ||y||22 (6.7)

Now, it is possible to achieve a negative first term, even though K is negative. This is
done by finding a γ such that

K + γ · g · g> ≥ 0 (6.8)

If this is accomplished, an expression of the passivity such as in Equation (6.4) can be
achieved. The new derivation of the control hence becomes as shown below in Equation
(6.9), for a simple P-controller.
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V̇ ≤ y> · Ĩref + γ · ||y||22
≤ −y> ·Kpo · y + γ · y> · y
≤ −y> · (Kpo − γ) · y

(6.9)

Hence, the demand for the system to be stable is for

Kpo ≥ γ

where γ is the quantity representing the lack of passivity. So it can be seen that it is the
outer-loop P-gain parameter that needs to compensate for the lack of passivity due to the
negative reference current.

So, the next step is to investigate Equation (6.8), to find the correct γ. The inequality
can be written as

γ · g · g> ≥ −K

assuming the worst case for the passivity, meaning that the current is going in the wrong
direction. Then

γ ·
(
e∗

v

)2

≥ e∗ · |Iref∗ |

since the output vector is only a scalar. Further on, solely expressing it in terms of the γ,
the result gets as in Equation (6.10).

γ ≥
∣∣Iref∗ ∣∣ · v2

VS
(6.10)

Here it is assumed that e∗ ≈ VS , which is a reasonable assumption utilized previously.
From Equation (6.10) two different approaches can be taken towards the goal. The first
approach, and the simplest one, is to determine some worst-case values for the current and
the voltage, i.e. making v in addition to Iref∗ constant, and then determine γ and Kpo.
The second approach is to only consider Iref∗ constant and let the voltage vary. Since this
leads to γ being a function of the voltage, the consequence of this is that the design of the
outer-loop P-gain, Kpo, also becomes a function dependent on the voltage.

The simplest case will be investigated, and the first step is to determine some maximal
values for the voltage and current. The current value represents the maximum current the
system can operate with before being destroyed, and the same counts for the voltage. One
example is that for currents higher than the maximum current the cables will start to melt,
and for voltage the insulation will break. Insulation and protection is a complex and im-
portant topic related to both converters and the power system, but it will not be in focus in
this project. Since the exact rated values are not the importance of this project, while on
the contrary the order of magnitude is, some literature was the foundation for determining
the maximum voltage and current [63, 64, 65]. It must be emphasized that the values are
not necessarily correct, but they do not have to be since the focus is the worst-case values
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and not the actual rated values. Additionally, compensating for the lack of passivity is the
focus, and the concept is shown here regardless of the accuracy of the mentioned values.
Hence, the chosen worst-case values for the current and voltage can be seen in Table 6.1.1.

Table 6.1.1: Maximal values for the current and the voltage while determining γ.

Parameter Value
Vmax, maximal voltage 3·Vref [V]
Irefmax, maximal current 3·IS [A]

When applying the values from Table 6.1.1, the following rule counts for the lack of
passivity and the tuning parameter

Kpo ≥ γ ≥ 27 · IS ·
V 2
ref

VS

When inserting the values applied in the previous chapter, i.e. from Table 5.2.1, the
following limitation is obtained for the outer-loop tuning variable

Kpo ≥ 27 · 20 · 8002

700
= 493714

This basically means that if Kpo is sat that high, then it would definitely compensate
for the lack of passivity in the case of negative current, i.e. power entering the system. If
this is the case, then the converter would be bidirectional and the lack of passivity would
be compensated for, and global asymptotic stability would be achieved. It can be observed
that the value ofKpo must be relatively high. As found in the previous chapter when doing
the Gershgorin analysis of the converter system, it was shown that Kpo had a high DOF
and could take relatively high values. But, this was in the case of a positive reference
current. The next step is to check if the converter will be stable for such high values of the
tuning parameter. The same approach as in the previous chapter will be applied, implying
that first only the outer-loop voltage dynamics will be analyzed, and then the full system
will be investigated.

6.1.1 Outer Loop Dynamics
The dynamics of the outer-loop is now in focus. This implies that the current already has
reached its steady-state value, such that the TSS is present. This is not a realistic event
since the states are affecting each other, but it opens up the possibility to analyze the volt-
age dynamics in an isolated way. The goal is to test if the compensation for the lack of
passivity is possible, and if so, what the consequences of it are. When simulating the sys-
tem, the values in Table 6.1.2 below are applied. The values are matching the findings
from the previous chapter, and the Kpo is sat to match the finding from above.

The script from Appendix A.4 is the relevant one. This is the same script as applied
earlier, but the difference is the direction of the current source. By making it negative, the
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Table 6.1.2: Values applied for the bidirectional outer-loop validation.

Parameter Value
VS , voltage source 700 V
C, capacitance 500 µF
L, inductance 5 mH
Rs, resistance 1.1 Ω
Kp, inner loop P-gain 15
Ki, inner loop I-gain 5
Is, current source -20 A
ζ∗inner, ζinner-steady state value -4.86
Vref , voltage reference 800 V
Kpo, outer loop P-gain 500 000/300 000
Kio, outer loop I-gain 0.2

power is entering the converter, making the current direction negative. The resulting plot
of the voltage with the values from Table 6.1.2 can be seen in Figure 6.1.1 below.
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Kp,o = 500 000 , Ki,o = 0.2

Kp,o = 300 000, Ki,o = 0.2

Figure 6.1.1: Voltage in the outer-loop of the bidirectional converter when compensat-
ing for the lack of passivity. It is assumed a TSS and that the current has already reached
the equilibrium value, and it is tested for two different values of Kpo.

It can be observed that the voltage stabilizes. While simulating the system, this was
not always the case. For the two voltage evolutions in Figure 6.1.1, one Kpo greater than
the derived value above was chosen, and one Kpo a bit lower than the derived value was
chosen. Both of these tuning parameters led to stability. For even lower values of Kpo, i.e.
values lower than 136 500, the voltage dynamics got unstable due to the lack of passivity.
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It can be noted that the limit between stable and unstable voltage dynamics are at Kpo

equal to 136 500 and that the derived value was 493 714. This means that the derived Kpo

is pretty accurate and that the safety margin at around 3.2 times the real minimum value.
The steady-state time of the system is pretty low. This is a consequence of the high Kpo.
Since a higher P-gain is leading to a more robust, i.e. faster responding, system.

The second observation is that the voltage-equilibrium value is not equal to the voltage-
reference value, i.e. 800 V . When running the script in Appendix A.7 with the values
from Table 6.1.2 to calculate the equilibrium point, the result was an equilibrium value
of the voltage equal to 800 V , as expected, and an equilibrium value of the current equal
to −22.09 A. But the simulations tell a different story, and the dynamics of the system
doesn’t manage to reach the correct value. But the higher the value of Kpo, the closer
the steady-state value of the voltage is to the reference value. This can be seen in Figure
6.1.1. The reason for this might be the high value of the proportional gain. The system
might actually act as a P-controller, due to the high value of the P-gain. The only way of
obtaining the exact reference value is to increase the outer-loop I-gain, Kio. The model
was tested with different values of Kio, and the result is that a very big value is needed in
order to obtain the reference voltage. By very big, it is meant that a Kio in the order of
104-th is necessary. Figure 6.1.2 below is showing the voltage for two different values of
Kio, both very high in magnitude. It can be observed that both of the voltages reach the
reference-voltage. But, such high values of the outer-loop I-gain is a clear violation of the
findings from the previous chapter, regarding the limitation of the tuning parameter.
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Figure 6.1.2: Voltage in the outer-loop of the bidirectional converter when compen-
sating for the lack of passivity. High values of Kio is needed to reach the steady-state
voltage of 800 V.
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It is hence possible to obtain the reference voltage when assuming TSS and that the
current has stabilized. But, the consequence is a non-tolerable highKio with respect to the
findings from Chapter 5. Further on, the dynamics of the full system will be investigated,
before a more analytical approach to the analysis of the converter will be done to examine
the consequences of this high Kio needed to reach the reference-voltage.

6.1.2 Dynamics of the Full System
In order to validate if the findings regarding the compensation for the lack of passivity is
correct, i.e. that this compensation is leading to a stable system, the SIMULINK model
from Appendix A.5 is applied. The states of voltage and current are affecting each other,
especially since the reference-current is a function of the voltage, and it is hence of great
interest to simulate the dynamics of the full system. The values in Table 6.1.3 are used for
the simulations with the mentioned model.

Table 6.1.3: Values applied for the validation of the bidirectional converter.

Parameter Value
VS , voltage source 700 V
C, capacitance 500 µF
L, inductance 5 mH
Rs, resistance 1.1 Ω
Kp, inner loop P-gain 15
Ki, inner loop I-gain 5
Is, current source -20 A
Vref , voltage reference 800 V
Kpo, outer loop P-gain 250 000
Kio, outer loop I-gain 0.2

As mentioned, the model from Appendix A.5 will be the one in focus. This is the
same model as applied in Chapter 5.1.2, except for the changes of parameter-values and
the change of sign of the current source. The resulting voltage and current dynamics can
be seen in Figure 6.1.3.

It must be emphasized, to avoid any confusion, that the current-axis in Figure 6.1.3,
i.e. the right-hand axis, is mostly negative. It can from the figure be seen that both the
voltage and the current are stabilizing. The reference value for the current is −22.09 A,
while the steady-state value of the voltage is 904 V . It can also be seen that the P-gain is
set to 250 000, which is a bit lower than the above-derived minimum value.

First of all, the reason why the P-gain of the outer-loop is set to 250 000 is by trial-
and-error. Meaning, first a value of 500 000 was chosen, but as the simulation led to an
unstable voltage the value of Kpo was changed. First the value was sat even higher, as it
was natural that maybe the P-gain was too small to compensate for the lack of passivity.
This also gave an unstable voltage. Then the value of Kpo was chosen to be half of the
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Figure 6.1.3: Voltage and current for the bidirectional converter when compensating
for the lack of passivity. The voltage is shown in blue and corresponds to the left y-axis,
and the current is shown in red and corresponds to the right y-axis.

starting one, i.e. 250 000. This led to a stable result. It can also be mentioned that for even
lower values of Kpo the voltage again got unstable. This is due to the lack of passivity
which, for small values of Kpo, doesn’t get compensated enough for. The more curious
part is what happens with the voltage for very high values of the tuning constant. In order
to answer this question a more analytical approach to the problem will be done in the next
section.

For the simulation of the full bidirectional converter system in Figure 6.1.3, on the
same level as for the simulation of only the outer-loop in Figure 6.1.1, the voltage is not
reaching its reference value. The deviation between the reference and the obtained steady-
state value is 13 %, which is pretty high. Since the converter is in voltage-control mode,
it would at first be expected that the voltage should be able to reach the reference value.
But again it is not that surprising that it doesn’t since this also was the case for the simple
simulation that only was considering the voltage-dynamics.

For the outer-loop dynamics the result was that for higher values of the I-gain, it was
possible to reach the reference-voltage. This was also done for the full converter-system.
Additionally, it is necessary to use higher values of the inner-loop tuning parameters to
stabilize the current. The resulting voltage and current dynamics can be seen in Figure
6.1.4, when the power is going in the negative direction.

From the figure can it be noted that the current is closing in on the equilibrium value
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Figure 6.1.4: Voltage and current for the bidirectional converter when power is trans-
ferred in the negative direction. The reference values get obtained. The voltage is
shown in blue and corresponds to the left y-axis, and the current is shown in red and
corresponds to the right y-axis.

faster than the voltage is. This might indicate a TSS. It can also be seen that both the cur-
rent and voltage have a transient behavior at first. This is a consequence of the non-tuned
parameters, which battles in order to ensure the correct value of the states, and it might
affect the robustness of the states. Since this converter is bidirectional, Figure 6.1.5 below
shows the voltage and current for the same values as for Figure 6.1.4 above, but now for
power going in the positive direction.

It can be seen from Figure 6.1.5 that the voltage reaches its reference-value also in the
positive direction. The steady-state voltage is now 23.4 A. Compared to Figure 6.1.4, it
can be seen that the stabilizing time is very similar, which is as expected due to similar
tuning-parameters. Since the voltage and current is stabilizing for the positive power direc-
tion as well as the negative, it can be concluded that the converter is, in fact, bidirectional,
and that it is stable and reaching the reference voltage.

It can be observed that for the full converter system, the consequence of obtaining the
exact reference-voltage is to use a very high Kio, hence violating the restrictions found in
Chapter 5. Additionally, the inner-loop tuning parameters are scaled up by many factors
compared to the ones in the previous chapter. This might also affect the converter model,
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but in order to be able to interpret and analyze it an analytical study will be completed
next.
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Figure 6.1.5: Voltage and current for the bidirectional converter when power is trans-
ferred in the positive direction. The reference values get obtained. The voltage is shown
in blue and corresponds to the left y-axis, and the current is shown in red and corre-
sponds to the right y-axis.

6.2 System Analysis, Interpretation, and Discussion
The Gershgorin theorem will yet again be exploited. The Jacobian matrix in Equation
(5.18) from Chapter 5 will be important, and is hence repeated in Equation (6.11) below.
It is assumed that e∗ can be approximated to Vs for reasons earlier explained.

A1 =


−Rs+Kp

L −Kp·Kpo·Vs

L·V 3
ref

Ki
L

Kio·Kp
L

Kp·i∗

C·Vref

Kpo·Kp·Vs·i∗

C·V 4
ref

− Vs
C·V 2

ref

·
(

Kpo·Vs

V 2
ref

+i∗
)
− Ki·i

∗
C·Vref

−Kio·Kp·i∗−Kio·Vs
C·Vref

−1 −Kpo·Vs

V 3
ref

0 Kio

0 − Vs
V 3
ref

0 0

 (6.11)

Yet again it is the current-row and the voltage row, respectively row 1 and 2 of matrix
A1, that are of interest. Some of the tuning parameters applied in the simulations explained
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above, have been relatively large in value. Consequently, since the range of the tuning
parameters have been so big, none of the terms in the matrix can be neglected in the
further analysis. The goal is a TSS, where the eigenvalue of the current is bigger, i.e. more
negative, than the eigenvalue of the voltage. This can be assured through the Gershgorin
theorem if the furthermost right point of the current-circle is to the left of the furthermost
left point of the voltage circle. These values were expressed mathematically in Equation
(5.19) and (5.20) in Chapter 5. They are repeated in Equation (6.12) and (6.13) below,
but since the equilibrium current now is negative, the terms containing this variable have
changed the sign.

λi,r = −Rs +Kp

L
+
Kp ·Kpo · Vs
L · V 3

ref

+
Ki

L
+
Kio ·Kp

L
(6.12)

λv,l =− Kpo ·Kp · Vs · |i∗|
C · V 4

ref

− Vs
C · V 2

ref

·

(
Kpo · Vs
V 2
ref

− |i∗|

)
− Kp · |i∗|
C · Vref

− Ki · |i∗|
C · Vref

− Kio · (V s+Kp · |i∗|)
C · Vref

(6.13)

For the unidirectional converter it was concluded that the Kpo had a high DOF, and
that this also would count for the bidirectional converter. The DOF of the parameter is
high also for the bidirectional converter, but way lower than for the unidirectional one. For
the values in Table 6.1.3 when testing for different values of Kpo in the MATLAB-script
from Appendix A.6, the value of Kpo that separated the two circles was approximately 5
000. As derived above a Kpo at almost 500 000, i.e. 100 times higher than the Gershgorin
circles allow, is a must to compensate for the lack of passivity.

In order to understand the system properly and be able to interpret the effect of the dif-
ferent tuning parameters, the influence of the different tuning parameters will sequentially
be investigated through Equation (6.12) and (6.13). As a reminder, it is wanted to separate
the circles to be able to ensure TSS between current and voltage in the converter, such that
the Lyapunov stability proof holds. Yet again, the Gershgorin circle theory can ensure the
TSS, but if the circles are overlapping it can not guarantee that the TSS is present. In other
words, the circles can overlap and TSS can still be present, but it can not be proven.

The first tuning parameter in focus is the outer-loop P-gain, Kpo. This parameter is
controlling the current radius. So a high Kpo implies a large radius of the current circle
which might lead to an overlap of the circles. Kpo is also controlling the voltage center.
For current in the negative direction, an increasing Kpo will push the voltage-circle to the
left on the real axis. This is also not good for the TSS since it is wanted that the voltage
circle is placed to the right of the current circle. It was noted when simulating the full
converter system, that for low and very high values of Kpo the voltage got unstable. The
reason for this is that for low values of the Kpo the eigenvalues of the voltage becomes
positive and it is a lack of passivity. For too big values of the outer-loop P-gain, the eigen-
value of the voltage becomes much greater than the eigenvalues of the current, and this
is destroying the TSS and therefore also the stability proof. The next outer-loop tuning
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parameter in focus is the I-gain, Kio. This parameter is controlling both the voltage radius
and the current radius. So a high Kio, which was shown to be needed in order for the
voltage to reach the reference value, will increase both of the circles and be leading to an
overlap between them.

Also the inner-loop parameters must be scaled up in order to stabilize both the current
and the voltage. The P-gain of the inner-loop, Kp, controls both the voltage center and the
current center. A higher Kp will move both circles to the left. This is a consequence of the
negative current-direction, leading to a negative sign in front of the Kp term representing
the voltage-center. The order of magnitude depends on the other tuning-parameters, but in
the case of compensating for lack of passivity with a high Kpo the voltage-center will in-
crease faster than the current-center. Hence the ability to move the current-circle to the left
experienced in the previous chapter, is now lost when the current in the bidirectional con-
verter is negative. Kp is additionally controlling both of the circles radius. The inner-loop
I-gain, Ki, is controlling the radius of both circles. So the requirement of a big Ki to sta-
bilize the current, is forcing an overlap between the current and voltage Gershgorin circles.

To sum it up, it is not possible to separate the Gershgorin circles, and hence mathemat-
ically be proving that the TSS is present for the bidirectional converter when the current
is in the negative direction. But even though the Gershgorin theorem can’t prove the TSS,
the TSS might be present. By calculating the eigenvalues in the script from Appendix
A.7 with the values used in Figure 6.1.4, the current-eigenvalue is still more than 10 times
more negative than the voltage-eigenvalue. But for these values of the tuning-parameters
the participation factor changes, and 15 % of the most negative eigenvalue is now ex-
plained by the voltage, while the remaining 85 % is explained by the current. But, when
increasing the outer-loop tuning parameters, especially Kpo, more and more of the most
negative eigenvalue is explained by the voltage. This is also in compliance with the con-
clusion above, stating that for very high values of Kpo the voltage-circle is being pushed
to the left of the current-circle. In other words, it exists an interval of Kpo’s which will
provide both TSS and stability.

Another point to discuss is regarding the full converter model with the negative ref-
erence current. A set of tuning parameter-values was observed to give a stable system
where the voltage reached its reference value. But when changing the values of the tuning-
parameters by only a few thousandths, instabilities occurred. For instance a set of tuning-
parameters very similar to the one mentioned above, would give a stable system but with
a positive current steady-state and a voltage steady-state at a couple of negative thousands
of volts. So small changes in tuning-parameters gave very different results. Two different
causes might be behind this type of action. The first one is related to the SIMULINK-model
and the solver used. For such high values of the tuning parameters the robustness of the
system can be fragile for small changes. More information related to the solver chosen
for the simulations can be found in Appendix A.4. The second cause might be that this
is just how the nonlinear behavior of the system actually is in that range of the tuning-
parameters. Since an analytical insight can’t be obtained for the system with these high
tuning-parameters such as in the previous chapter, the dynamics are hard to interpret.
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Since this PI-PBC of the converter in the negative direction was pretty challenging,
even though it seemed to work for some tuning-parameters, another type of control can be
applied for the current in the negative direction. From similar cases, especially for bigger
systems, it is known that a droop-control can be applied for the voltage. Hence, by using
a passivity-based droop-control the plug-and-play features would still apply, and still let
us add up the Lyapunov functions of the different systems. Of course, in order to use this
type of passivity-based droop-control, a new mathematical proof related to the passivity of
the control must be carried out.

The reason why a droop-control is a good replacement for the converter in the negative
direction is that it doesn’t require the large tuning-parameter values of the outer-loop that
is making the system hard to stabilize and analyze. As a consequence, the I-gain of the
voltage-loop will not be present. This could lead to a small tuning constant K1 of the
droop control compared to the Kpo for the PI-control, and no Kio. This might again lead
to two separate Gershgorin circles and a TSS that can be proven. A direct consequence
of the missing I-gain is that the system encounters a robustness problem. This robustness
problem can be explained from Equation (5.8) in Chapter 5.1. It was written that ũ is a
function of the control signal u and the reference u∗. This implies that the control signal
u is a function of voltage, current and control references, i.e.

u = f(v∗, i∗, u∗)

It is only possible to determine one of these values exactly, and then let the other two be
a consequence, i.e. predicted through equilibrium analysis. For the unidirectional con-
verter this was not a problem, since the TSS naturally gave the i∗ and the I-gain of the
PI-controller gave the u∗. But when removing the I-gain, the u∗ is no longer induced
and connected to a chosen reference-voltage. Since only one of the values can have the
exact correct value, the system is not perfectly described, and hence suffers from a ro-
bustness problem. Many suggestions on how to fix this problem for similar systems have
been suggested [66], and additionally, many new techniques and procedures on how to fix
this problem are being researched at this moment. So a passivity based droop-control is
recommended for the bidirectional converter, particularly for the challenging power flow
direction, given that the derivation first has been completed correctly, and while keeping
the mentioned robustness problem in mind.

77



Chapter 6. Passivity-Based Design of Bidirectional DC/DC Converter

78



Chapter 7

Conclusion and Further Work

In this chapter the findings throughout this thesis will be summarized shortly, with a focus
on the key findings and the essential discussion points. A conclusion will be formulated,
before suggestions for future work will be presented.

7.1 Conclusion and Key Findings
Throughout this thesis several mathematical derivations and results, analytical analysis
and interpretation, and validations through simulations, have been presented. The key-
findings and main conclusions will now be highlighted. The overall goal of the thesis is to
contribute towards a goal of a microgrid with stability-preserving plug-and-play features,
i.e., with fully decentralized local measurements and guarantees of stability, for any future
topology change in the microgrid. The way this thesis is contributing is by investigating
the stability of DC/DC converters with compensated modulation and with passivity-based
control, and suggesting control designs according to this.

As a part of this contribution, first of all the TSS must be ensured for the inner-loop
dynamics, such that the findings related to the Lyapunov function from [1] are ensured by
design and not by chance. The inner-loop system consists of the DC/DC converter with
a PI-controller in current-control-mode, and under compensated modulation. In order to
ensure the TSS, an eigenvalue-analysis was done, while exploiting the block-triangular
matrix properties. This direct eigenvalue approach didn’t contribute to the analytical in-
sight that was wanted in order to suggest some design criteria for the inner-loop, hence
another approach was necessary.

Therefore, the Gershgorin circle theorem was exploited in order to come up with de-
sign criteria for the inner loop. With help from the theorem it was possible to obtain an
analytical expression, which gave the possibility to interpret the dynamics of the inner loop
and the relation to the different controlling parameters. The main finding was related to the
relationship between the inductance and capacitance, and the tuning parameters Kp and
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Ki. The main conclusion was that an increasing Kp would push the current-circle to the
left, and eventually to the left of the voltage-circle, hence guaranteeing TSS. Additionally,
it was concluded that Ki had to be smaller than Kp, and that the greater the value of the
inductance is compared to the value of the capacitance, the higher the value of Kp must
be in order to guarantee the TSS. Hence, a design criterion to ensure TSS in the inner-loop
based on the Gershgorins theorem was provided, summarized in Equation (4.15). Some
assumptions had to be done in order to derive the design criteria. These assumptions were
discussed, and the conclusion was that they were realistic for practical applications.

The mentioned theorem of Gershgorin proved itself to be a very useful tool for this
kind of problem, but related to the practical aspects of the converter some disadvantages
occurred. The first issue is related to the linearizations that are necessary in order to apply
the theorem. A great amount of information related to the large-signal behavior of the
converter gets lost. However, linearizations and simplifications are a common practice for
analyzing nonlinear systems, so for most practical applications the conclusions and results
are still valid. The second issue is related to the condition of necessity and sufficiency. The
theorem can state a sufficient solution for TSS, but not a necessary one. As a consequence
of this it was concluded that by relaying the control design on the Gershgorin circle theo-
rem, you would have to accept that the design is rather conservative. This implies that the
control design is not optimal in terms of operation, i.e., the tuning parameter-values are
exaggerated either up or down in order to guarantee the TSS. Hence, much higher/lower
tuning variables are actually necessary to get the TSS, but in that case, the Gershgorin
circle theorem can’t prove it.

Further on, a mathematical derivation of PI-PBC for the added outer-loop in voltage-
mode was done for the DC/DC converter. The effectiveness of this outer loop control
proposal requires the TSS to be present. The goal is a passivity based converter with
TSS, which will guarantee global asymptotic stability. The challenge is the control de-
sign, ensuring these properties. Since the system now is even more complex than for the
inner-loop analysis, the direct-eigenvalue method would definitely not give any theoretical
insight. Therefore, yet again, the Gershgorin circle theorem was applied. By mathemat-
ically describing the separation of the voltage-disk and the current-disk, i.e. the TSS,
analytical insight of the converter-model was obtained. This gave the possibility to inter-
pret the dynamics of the converter related to the tuning parameters, such that a control
design ensuring stability and preserving plug-and-play features could be provided. This
led to some new design criteria related to the outer-loop tuning parameters. The main con-
clusion was first of all that Kpo had a really high DOF and did not affect the circles when
in the same order of magnitude as the other tuning variables. Secondly the Kio was the
most sensitive tuning parameter. It had to be really small compared to the other parameters
in order to not lead to an overlap between the circles. It was seen through calculations of
eigenvalues and participation matrices that the center of the Gershgorin circles often was
very in compliance with the actual eigenvalues of the states. So from a practical point of
view, higher values of Kio would probably also give TSS, but it would not be possible to
prove it analytically. A new control design criteria was derived for the inner-loop of the
new system, summarized in Equation (5.25). This result was based on some assumptions.
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These assumptions were discussed, and the conclusion was that they were realistic. Hence,
a control design for the full-converter model was preserved such that stability is ensured
and the voltage-reference is obtained, still preserving the plug-and-play features.

Regarding the Gershgorin theorem, the same restriction as mentioned above counts,
meaning it is a powerful tool but it has its practical disadvantages. Two SIMULINK-models
were created in order to validate the mathematical derivations mentioned above; one as-
suming TSS and only analyzing the passivity based outer-loop dynamics, and one with
the full converter-system. Both models validated the mathematical results. One challenge
related to the models was the choice of solver in the SIMULINK-models. Due to zero-
crossing derivatives and nonlinear equations, some problems occurred. But by applying
the ode45-solver, these problems got fixed.

Design criteria for the full converter-model have been suggested, but only for power
transferred in one direction. Due to an increasing share of ES such as batteries in the
power system, a bidirectional converter is essential. From the mathematical analysis earlier
provided, it is known that for negative current some constraints related to the Lyapunov-
function and the passivity requirements get violated. One possible way of solving this, is
to quantify the lack of passivity and then compensating for it. It was proven that this can
be done, but the consequence is that the values of Kpo must be really big, i.e. in the order
of 105. If this was the case, the system got stable for power transferred in both directions,
preserving the TSS. But, since the design criteria for the outer-loop indicates to have a
really big Kpo and a very small Kio, the reference-voltage does not get obtained. To reach
the reference-voltage the Kio must increase comparably in magnitude. But, this violates
the suggested design criteria for the outer-loop. In this case, the TSS cannot be mathe-
matically proven to be ensured. Additionally, the inner-loop tuning parameters had to be
increased, such that the current stabilized. This is also violating the created design criteria
for the inner-loop. By analyzing the system through Gershgorins theorem, the conclusion
was that it was not possible to separate the circles for such high values of the tuning pa-
rameters, for power transferred in the negative direction.

But even though Gershgorins theorem, as we know is a bit conservative, can’t prove
the TSS between current and voltage, it has through simulations of the earlier mentioned
SIMULINK-models been showed that the system actually manages to stabilize. Hence, the
bidirectional passivity-based converter has the ability to stabilize to the correct voltage-
reference, but not by design. On the contrary, a proposal for the converter control design
for the power in the negative direction was given. The proposal was to investigate the
possibility of a passivity-based droop-control for the outer-loop in the negative power di-
rection, such that the stability-preserving plug-and-play features also is maintained for the
bidirectional converter. If this is done, it would be possible to construct a pretty realistic
DC-microgrid with interconnections of DC-units, all based on passivity. This gives the
opportunity for plug-and-play features, such that the DC-microgrid would be stable in the
case of any future change in topology without any adjustments related to the exciting con-
trol. This can be accomplished for instance by exploiting mathematical graph theory to
interconnect multiple converters. This has been done for similar systems [67, 68], so a
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similar approach could be tested also for converter interconnections.

Throughout this thesis some simulations have been carried out. The availability of
data has been a minor challenge. The values chosen for the converter model etc. have
been based on papers with similar situations, and are therefore not completely practical
realistic. The chosen values are accurate and could represent a physical DC/DC converter,
since the order of magnitude of the parameter values is pretty precise.

At the very end, it must be emphasized that the findings from this thesis related to the
design of the tuning-parameters and the converter-parameter can be generalized. Through-
out the thesis much information about the relationships between the design-parameters
has been provided, and how the design-parameters affect the dynamics. This was made
possible because of the analytical insight obtained from the Gershgorin theorem. So for
similar converter models, even though the topology is different from the one in focus in
this project, it would be possible to obtain the same insight into the dynamics. The de-
scriptive equations will of course be different, but by using the same procedure as in this
thesis similar insight can be obtained.

So a control design, or suggestions for control, has been provided for a DC/DC con-
verter under compensated modulation. The control is based on passivity such that the
converter can be part of a DC-microgrid with stability-preserving plug-and-play features.
The design was very successful for a unidirectional power flow, while some challenges
occurred for the bidirectional case, and a recommendation for how to solve the challenges
was mentioned.

7.2 Further Work
This master thesis has taken part in contributing to construct the future power grid. The
potential is tremendous and has almost no limits. Directly related to this thesis, some
itemized suggestions for further work are presented below.

• Investigate the mentioned suggestion of a passivity-based droop-control for the bidi-
rectional converter. The first step would be to mathematically derive/prove that it is
possible. Secondly to look at the analytical expressions, for instance with help from
Gershgorins theorem, to develop some design criteria.

• Examine the interconnection of multiple DC/DC converters, in order to design a
full DC-microgrid. This can for instance possibly be done with mathematical graph
theory. This would create the opportunity to create a passivity-based DC-microgrid
that is stability-preserving with plug-and-play features.

• A natural next step is to follow the scientific method, and do laboratory experiments.
Multiple of the findings would be interesting to test in the lab. Firstly, the TSS
for the inner-loop control. Secondly, the PI-PBC design criteria. Thirdly, for the
bidirectional converter maybe more insight could be obtained from experimental
tests. Additionally, the two above bullet-points could be tested and verified.
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• The focus in this project has been the DC/DC converter under a compensated mod-
ulation. It could be of great interest to investigate the same possibilities for an
uncompensated modulation.

• Another possible step is to explore converters without the TSS, to see if the passivity-
property still could be satisfied.

• A possible approach is to linearize the voltage, instead of the current as in this
project. A feedback linearization with respect to the voltage could give a simpler
analysis of the converter for power in the negative direction.

• This thesis has only dealt with DC/DC converters. In order to manage to design a
full microgrid of any type with the stability preserving plug-and-play features, other
types of converters must also be analyzed. Inverters, or other types of converters,
should be analyzed related to passivity. The first step would be to focus on one
converter and mathematically derive some sort of passivity-based control. Then to
find some design criteria such that this always is fulfilled. And thirdly to look at the
interconnections of different converters with this property.

• It is also possible to review if a more optimal control design for the DC-DC converter
can be achieved, still guaranteeing stability and TSS. In other words look into if
other tools such as the Gershgorin circle theorem can be utilized to guarantee these
kinds of features.

If these, or some of these, bullet-points were to be done, it could contribute to shaping the
future electric power grid.
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A MATLAB Scripts

A.1 Eigenvalues and Participation-Matrix for Inner-Loop Dynamics
The created script is using the built-in MATLAB-functions solve() to solve the set of non-
linear equations and finding the equilibrium point, and eig() to calculate the eigenvalues
of the linearized matrix.

1 %S c r i p t t h a t c a l c u l a t e s t h e e i g e n v a l u e s , e i g e n v e c t o r s and
p a r t i c i p a t i o n f a c t o r s

2 Vs =700;
3 Rs = 1 . 1 ;
4 C= 0 . 0 0 1 ;
5 I s =20;
6 Kp=15;
7 Ki =10;
8 i r e f =40;
9 L=100∗C ;

10
11 %c a l c u l a t e t h e e q u i l i b r i u m :
12 syms x1 x2 x3
13 e q p o i n t 1 = s o l v e ((−Rs∗x1 ) +Vs−(Vs−Kp∗ ( i r e f −x1 )−Ki∗x3 ) ==

0 , . . .
14 (− I s ) + ( ( Vs−Kp∗ ( i r e f −x1 )−Ki∗x3 ) ∗x1 ) / ( x2 ) == 0 , i r e f −x1

==0) ;
15 f1 = d oub l e ( e q p o i n t 1 . x1 ) ; %i−e q u i l i b r i u m
16 g1= do ub le ( e q p o i n t 1 . x2 ) ; %v−e q u i l i b r i u m
17 h1= do ub le ( e q p o i n t 1 . x3 ) ; %z e t a−e q u i l i b r i u m
18
19 %c a l c u l a t e t h e e i g e n v e c t o r s and e i g e n v a l u e s :
20 A=[(−Rs−Kp ) / L , Ki / L , 0 ; −1, 0 , 0 ; ( Vs+Kp∗ i r e f −Ki∗h1 ) / ( C∗g1

) , . . .
21 (− f1 ∗Ki ) / ( C∗g1 ) , ( ( f1 ) / ( C∗ ( g1 ) ˆ 2 ) ) ∗ ( Ki∗h1−Vs ) ] ;
22 [V, D,W]= e i g (A) ; %D i s o n l y i n c l u d i n g t h e e i g e n v a l u e s
23 V; %R i g h t e i g e n v e c t o r s
24 W= t r a n s p o s e (W) ; %L e f t e i g e n v e c t o r s
25 E i g e n v a l u e s = e i g (A) %E i g e n v a l u e s
26
27 %P a r t i c i p a t i o n f a c t o r
28 f o r i =1 :3
29 f o r k =1:3
30 P ( k , i ) =abs (V( k , i ) ∗W( i , k ) ) ;
31 k=k +1;
32 end
33 i = i +1 ;
34 end
35
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36 %Normal i zed P−m a t r i x
37 f o r j =1 :3
38 f o r g =1:3
39 G( g , j ) =P ( g , j ) / sum ( P ( : , j ) ) ;
40 g=g +1;
41 end
42 j = j +1 ;
43 end
44 P ;
45 G;
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A.2 Gershgorin Circles for the Inner-Loop Dynamics
The created script is using the built-in MATLAB-function solve() to solve the set of non-
linear equations and finding the equilibrium point.

1 Vs =700;
2 L = 0 . 1 ;
3 Rs = 1 . 1 ;
4 C= 0 . 0 0 1 ;
5 I s =20;
6 Kp=15;
7 Ki =10;
8 i r e f =40;
9 % L=10∗C;

10
11 syms x1 x2 x3
12 e q p o i n t 1 = s o l v e ((−Rs∗x1 ) +Vs−(Vs−Kp∗ ( i r e f −x1 )−Ki∗x3 ) ==

0 , (− I s ) + ( ( Vs−Kp∗ ( i r e f −x1 )−Ki∗x3 ) ∗x1 ) / ( x2 ) == 0 , i r e f −
x1 ==0) ;

13 f1 = d oub l e ( e q p o i n t 1 . x1 ) ; %i−e q u i l i b r i u m
14 g1= do ub le ( e q p o i n t 1 . x2 ) ; %v−e q u i l i b r i u m
15 h1= do ub le ( e q p o i n t 1 . x3 ) ; %z e t a−e q u i l i b r i u m
16
17 c e n t e r 1 =−(Rs+Kp ) / L ;
18 r a d i u s 1 =Ki / L ;
19 c e n t e r 2 =0;
20 r a d i u s 2 =1;
21 c e n t e r 3 = ( ( f1 ) / ( C∗ ( g1 ) ˆ 2 ) ) ∗ ( Ki∗h1−Vs ) ;
22 r a d i u s 3 =0;%abs ( ( Vs+Kp∗ i r e f −Ki∗h1 ) / ( C∗g1 ) ) + abs ((− f 1 ∗Ki ) / (

C∗g1 ) ) ;
23
24 %P l o t t i n g t h e c e n t e r s
25 p l o t ( c e n t e r 1 , 0 , ’ k∗ ’ )
26 hold on
27 p l o t ( c e n t e r 2 , 0 , ’ b∗ ’ )
28 hold on
29 p l o t ( c e n t e r 3 , 0 , ’ r ∗ ’ )
30
31 %P l o t t i n g t h e c i r c l e s
32 hold on
33 t h = 0 : pi / 5 0 : 2∗ pi ;
34 x u n i t 1 = r a d i u s 1 ∗ cos ( t h ) + c e n t e r 1 ;
35 y u n i t 1 = r a d i u s 1 ∗ s i n ( t h ) + 0 ;
36 h11 = p l o t ( x u n i t 1 , y u n i t 1 , ’ k ’ ) ;
37
38 hold on
39 x u n i t 2 = r a d i u s 2 ∗ cos ( t h ) + c e n t e r 2 ;
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40 y u n i t 2 = r a d i u s 2 ∗ s i n ( t h ) + 0 ;
41 h22 = p l o t ( x u n i t 2 , y u n i t 2 , ’ b ’ ) ;
42
43 hold on
44 x u n i t 3 = r a d i u s 3 ∗ cos ( t h ) + c e n t e r 3 ;
45 y u n i t 3 = r a d i u s 3 ∗ s i n ( t h ) + 0 ;
46 h33 = p l o t ( x u n i t 3 , y u n i t 3 , ’ r ’ ) ;
47
48 hold o f f

A.3 Jacobian Matrix Calculation
The created script is using the built-in MATLAB-function jacobian() to calculate the Ja-
cobian matrix of the system.

1 syms i v z1 z2
2 j a c o b i a n ( [ ( ’ r ’∗(− i ) + ’Kp ’ ∗ ( ’Kpo ’ ∗ ( ( ’ e ’ ) ∗ ( 1 / ( v ˆ 2 ) −1/( v∗ ’ Vref ’

) ) + ’ Kio ’∗z2−i ) ) + ’ Ki ’∗ z1 ) / ( ’L ’ ) , . . .
3 1 / ( ’C ’∗v ) ∗ ( ’Vs ’− ’Kp ’ ∗ ( ’Kpo ’ ∗ ( ( ’ e ’ / ( v ˆ 2 ) )−( ’ e ’ / ( v∗ ’ Vref ’

) ) ) + ’ Kio ’∗z2−i )− ’ Ki ’∗ z1 ) ∗ ( ’Kpo ’ ∗ ( ’ e ’ / ( v ˆ 2 )− ’ e ’ / ( ’
Vref ’∗v ) ) + ’ Kio ’∗ z2 ) , . . .

4 ’Kpo ’ ∗ ( ’ e ’ / ( v ˆ 2 ) − ’ e ’ / ( ’ Vref ’∗v ) ) + ’ Kio ’∗z2−i , . . .
5 ( ’ e ’ ) ∗ ( 1 / ( v ˆ 2 ) − 1 / ( ’ V r e f ’∗v ) ) ] , . . .
6 [ i , v , z1 , z2 ] )
7
8 % Removed : −’ I s ’ / ’ C’ from t h e v o l t a g e e q u a t i o n , s i n c e t h i s

c o n s t a n t e i t h e r way would d i s a p p e a r when do ing t h e
d e r i v a t i v e s
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A.4 SIMULINK Model of the PI-PBC of the Outer Voltage-Loop

Figure A.1: SIMULINK model of the PI-PBC of the outer voltage-loop.

Figure A.1 shows the created SIMULINK model. It is a PI-outer loop control of in
voltage-mode based on passivity, designed to obtain the reference value of the voltage.
The converter system is described through the Interpreted MATLAB Fcn block. The code
which is the input to this block can be seen in Appendix A.4 below. TSS is assumed in
addition to that the current has already reached its steady-state value. Hence, the only
descriptive equation is the voltage-dynamics equation. The PI(s)-block is used to control
the y signal, and the tuning parameters are sat locally in this block. The part to the left for
this block is creating the passive output signal, y. The sign of y has been changed, in order
to let the tuning gains have positive values.

The solver in the SIMULINK-model is the variable step-length solver, called ode45
(Dormand-Prince), with the default settings. This solver was chosen because the states in
the model are continuous and the system itself not too complex, and in general because of
the nonlinearities a variable step-length solver is advisable. The Dorman-Prince solver is
a Runge-Kutta (4, 5) numerical ODE solver. More information about the math within the
solver can be found in [69].

Corresponding Interpreted MATLAB Function for the SIMULINK Model of PI-PBC
of the Outer Loop

1 f u n c t i o n dvd t = f o s i m p l e ( x )
2 u=x ( 1 ) ;
3 v=x ( 2 ) ;
4
5 V r e f =800;
6 Vs =700;
7 I s =20;
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8 C=500∗10ˆ(−6) ;
9 z 1 s s = 2 . 6 ;

10 Ki =10;
11 Kp=15;
12
13 dvd t = (− I s / C) + ( ( Vs−Ki∗ z 1 s s ) ∗u ) / ( C∗v ) ;
14 end
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A.5 SIMULINK Model of the PI-PBC of the Full Model

Figure A.2: SIMULINK model of the PI-PBC of the full converter-model.

The created SIMULINK model consists of two loops. At the bottom, the voltage outer-
loop can be seen. It is pretty similar to the model describing only the outer-loop, but the
Interpreted MATLAB Fcn is changed, to include the inner-current-loop as well. The in-
terpreted MATLAB function cooperating with the outer-loop can be seen below, named
“f o”. It can be observed that the reference-signal coming from the outer-loop, is now the
reference for the inner-loop. Hence, the current-reference is a function of v. The upper
loop in Figure A.2 is the inner-loop of the current dynamics. This loop is also cooperating
with a MATLAB function called “MatlabInterpretedInnerLoop” found below. The com-
pensated inner-loop control signal, e, is an input to the voltage-loop. The PI(s)-blocks is
used to control the y signal for the voltage-loop and the current in the current loop. The
tuning parameters are sat locally in this block. The sign of y has been changed, in order to
let the tuning gains have positive values.

The solver in the SIMULINK-model is the variable step-length solver, called ode45
(Dormand-Prince), with the default settings. This was chosen for the same reasons men-
tioned previously, in Appendix A.4.

Corresponding Interpreted MATLAB Functions for SIMULINK Model of PI-PBC of
the Converter

1 f u n c t i o n dvd t = f o ( x )
2 u=x ( 1 ) ;
3 v=x ( 2 ) ;
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4 e=x ( 3 ) ;
5
6 C=500∗10ˆ−6;
7 I s =20;
8
9 dvd t = (− I s / C) + ( e∗u ) / ( C∗v ) ;

10 end

1 f u n c t i o n d i d t = M a t l a b I n t e r p r e t e d I n n e r L o o p ( x )
2 e=x ( 1 ) ;
3 i =x ( 2 ) ;
4 Rs = 1 . 1 ;
5 C=500∗10ˆ−6;
6 L=10∗C ;
7 Vs =700;
8
9 d i d t = −(Rs∗ i ) / L+Vs / L − e / L ;

10 end
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A.6 Gershgorin Circles for the Complete Converter Model
The created script is using the built-in MATLAB-function solve() to solve the set of non-
linear equations and finding the equilibrium point.

1 Vs =700;
2 Rs = 1 . 1 ;
3 C=500∗10ˆ−6;
4 I s =20;
5 Kp=15;
6 Ki =5;
7 L=10∗C ;
8 V r e f =800;
9 Kpo =10;

10 Kio = 0 . 2 ;
11
12 %c a l c u l a t e t h e e q u i l i b r i u m :
13 syms x1 x2 x3 x4
14 e q p o i n t 1 = s o l v e ( Rs∗(−x1 ) +Kp∗ ( Kpo∗ ( Vs ∗ ( ( 1 / ( x2 ˆ 2 ) ) − (1 / ( x2∗

V r e f ) ) ) ) +Kio∗x4−x1 ) +Ki∗x3 ==0 , . . .
15 − I s + 1 / ( x2 ) ∗ ( Vs−Kp∗ ( Kpo∗Vs ∗ ( 1 / ( x2 ˆ 2 ) −1/( x2∗V r e f ) ) +

Kio∗x4−x1 )−Ki∗x3 ) ∗ ( Kpo∗Vs ∗ ( 1 / ( x2 ˆ 2 ) −1/( V r e f ∗x2 ) ) +
Kio∗x4 ) ==0 , . . .

16 Kpo∗ ( Vs / ( x2 ˆ 2 ) − Vs / ( V r e f ∗x2 ) ) +Kio∗x4−x1 ==0 , . . .
17 Vs ∗ ( 1 / ( x2 ˆ 2 ) − 1 / ( V r e f ∗x2 ) ) ==0) ;
18 f1 = d oub l e ( e q p o i n t 1 . x1 ) ; %i−e q u i l i b r i u m
19 g1= do ub le ( e q p o i n t 1 . x2 ) ; %v−e q u i l i b r i u m
20 h1= do ub le ( e q p o i n t 1 . x3 ) ; %z e t a 1−e q u i l i b r i u m
21 i 1 = do ub l e ( e q p o i n t 1 . x4 ) ; %z e t a 2−e q u i l i b r i u m
22 f11 =min ( f1 ) ;
23
24 c e n t e r 1 =−(Rs+Kp ) / L ; %C u r r e n t
25 r a d i u s 1 =Ki / L + ( Kio∗Kp ) / L + ( Kp∗Kpo∗Vs ) / ( L∗ ( V r e f ˆ 3 ) ) ;
26 c e n t e r 2 =0; %Zeta−1
27 r a d i u s 2 =1+Kio + ( ( Kpo∗Vs ) / ( V r e f ˆ 3 ) ) ;
28 c e n t e r 3 =(Kpo∗Kp∗Vs∗ f11 ) / ( C∗V r e f ˆ 4 ) − ( Vs / ( C∗V r e f ˆ 2 ) ) ∗ ( f11

+ ( Kpo∗Vs / ( V r e f ˆ 2 ) ) ) ; %V o l t a g e
29 r a d i u s 3 = ( Kp∗ f11 +Ki∗ f11 ) / ( C∗V r e f ) + abs (−( Kio∗Kp∗ f11 − Kio

∗Vs ) / ( C∗V r e f ) ) ;
30 c e n t e r 4 =0; %Zeta−2
31 r a d i u s 4 =Vs / ( V r e f ˆ 3 ) ;
32
33 %P l o t t i n g t h e c e n t e r s
34 p l o t ( c e n t e r 1 , 0 , ’ k∗ ’ )
35 hold on
36 p l o t ( c e n t e r 2 , 0 , ’ b∗ ’ )
37 hold on
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38 p l o t ( c e n t e r 4 , 0 , ’ g∗ ’ )
39 hold on
40 p l o t ( c e n t e r 3 , 0 , ’ r ∗ ’ )
41 x l a b e l ( ’Re ’ )
42 y l a b e l ( ’ Im ’ )
43 s e t ( gca , ’ F o n t S i z e ’ , 1 8 , ’ LineWidth ’ , 1 . 5 )
44
45 %P l o t t i n g t h e c i r c l e s
46 hold on
47 t h = 0 : pi / 5 0 : 2∗ pi ;
48 x u n i t 1 = r a d i u s 1 ∗ cos ( t h ) + c e n t e r 1 ;
49 y u n i t 1 = r a d i u s 1 ∗ s i n ( t h ) + 0 ;
50 h11 = p l o t ( x u n i t 1 , y u n i t 1 , ’ k ’ ) ;
51
52 hold on
53 x u n i t 2 = r a d i u s 2 ∗ cos ( t h ) + c e n t e r 2 ;
54 y u n i t 2 = r a d i u s 2 ∗ s i n ( t h ) + 0 ;
55 h22 = p l o t ( x u n i t 2 , y u n i t 2 , ’ b ’ ) ;
56
57 hold on
58 x u n i t 3 = r a d i u s 3 ∗ cos ( t h ) + c e n t e r 3 ;
59 y u n i t 3 = r a d i u s 3 ∗ s i n ( t h ) + 0 ;
60 h33 = p l o t ( x u n i t 3 , y u n i t 3 , ’ r ’ ) ;
61
62 hold on
63 x u n i t 4 = r a d i u s 4 ∗ cos ( t h ) + c e n t e r 4 ;
64 y u n i t 4 = r a d i u s 4 ∗ s i n ( t h ) + 0 ;
65 h44 = p l o t ( x u n i t 4 , y u n i t 4 , ’ g ’ ) ;
66
67 hold o f f
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A.7 Eigenvalues and Participation-Matrix for the Full Converter Model
The created script is using the built-in MATLAB-functions solve() to solve the set of non-
linear equations and finding the equilibrium point, and eig() to calculate the eigenvalues
of the linearized matrix.

1 %S c r i p t t h a t c a l c u l a t e s t h e e i g e n v a l u e s , e i g e n v e c t o r s and
p a r t i c i p a t i o n f a c t o r s

2 Vs =700;
3 Rs = 1 . 1 ;
4 C=500∗10ˆ−6;
5 I s =20;
6 Kp=15;
7 Ki =5;
8 L=10∗C ;
9 V r e f =800;

10 Kpo =10;
11 Kio = 0 . 2 ;
12
13 %c a l c u l a t e t h e e q u i l i b r i u m :
14 syms x1 x2 x3 x4
15 e q p o i n t 1 = s o l v e ( Rs∗(−x1 ) +Kp∗ ( Kpo∗ ( Vs ∗ ( ( 1 / ( x2 ˆ 2 ) ) − (1 / ( x2∗

V r e f ) ) ) ) +Kio∗x4−x1 ) +Ki∗x3 ==0 , . . .
16 − I s + 1 / ( x2 ) ∗ ( Vs−Kp∗ ( Kpo∗Vs ∗ ( 1 / ( x2 ˆ 2 ) −1/( x2∗V r e f ) ) +

Kio∗x4−x1 )−Ki∗x3 ) ∗ ( Kpo∗Vs ∗ ( 1 / ( x2 ˆ 2 ) −1/( V r e f ∗x2 ) ) +
Kio∗x4 ) ==0 , . . .

17 Kpo∗ ( Vs / ( x2 ˆ 2 ) − Vs / ( V r e f ∗x2 ) ) +Kio∗x4−x1 ==0 , . . .
18 Vs ∗ ( 1 / ( x2 ˆ 2 ) − 1 / ( V r e f ∗x2 ) ) ==0) ;
19 f1 = d oub l e ( e q p o i n t 1 . x1 ) ; %i−e q u i l i b r i u m
20 g1= do ub le ( e q p o i n t 1 . x2 ) ; %v−e q u i l i b r i u m
21 h1= do ub le ( e q p o i n t 1 . x3 ) ; %z e t a 1−e q u i l i b r i u m
22 i 1 = do ub l e ( e q p o i n t 1 . x4 ) ; %z e t a 2−e q u i l i b r i u m
23 f11 =min ( f1 ) ;
24
25 %c a l c u l a t e t h e e i g e n v e c t o r s and e i g e n v a l u e s :
26 A=[(−Rs−Kp ) / L , −Kp∗Kpo∗Vs / ( L∗V r e f ˆ 3 ) , Ki / L , Kio∗Kp / L ; . . .
27 ( Kp∗ f11 ) / ( C∗V r e f ) , ( Kpo∗Kp∗Vs∗ f11 ) / ( C∗V r e f ˆ 4 ) − ( Vs )

/ ( C∗V r e f ˆ 2 ) ∗ ( f11 +Kpo∗Vs / ( V r e f ˆ 2 ) ) , −Ki∗ f11 / ( C∗
V r e f ) ,−( Kio∗ f11 ∗Kp−Kio∗Vs ) / ( C∗V r e f ) ; . . .

28 −1, −Kpo∗Vs / ( V r e f ˆ 3 ) , 0 , Kio ; . . .
29 0,−Vs / ( V r e f ˆ 3 ) , 0 , 0 ] ;
30 [V, D,W]= e i g (A) ; %D i s o n l y i n c l u d i n g t h e e i g e n v a l u e s
31 V; %R i g h t e i g e n v e c t o r s
32 W= t r a n s p o s e (W) ; %L e f t e i g e n v e c t o r s
33 E i g e n v a l u e s = e i g (A) ; %E i g e n v a l u e s
34
35 %P a r t i c i p a t i o n f a c t o r
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36 f o r i =1 :4
37 f o r k =1:4
38 P ( k , i ) =abs (V( k , i ) ∗W( i , k ) ) ;
39 k=k +1;
40 end
41 i = i +1 ;
42 end
43
44 %Normal i zed P−m a t r i x
45 f o r j =1 :4
46 f o r g =1:4
47 G( g , j ) =P ( g , j ) / sum ( P ( : , j ) ) ;
48 g=g +1;
49 end
50 j = j +1 ;
51 end
52 P ;
53 G;
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B Derivations

B.1 Lyapunov Function for Inner-Loop Dynamics
Nonlinear stability theory is complex and might be hard to understand. Lyapunov sta-
bility is maybe the most understandable way of analyzing this. Say that V (x(t)) is non-
increasing, in such a way that

V̇ = ∇TV (x)f(x) ≤ 0

Then V (x) is a dissipated quantity. x(t) is a trajectory of f(x). One intuitive example
of a dissipated quantity is the energy of a closed LRC-circuit. The energy will never in-
crease but might decrease because of losses, and change direction within the system.

Then V is a Lyapunov function given some conditions. Firstly V must be continuously
differentiable. Secondly V (x∗) and V̇ (x∗) must be equal to zero. x∗ is the point of interest
and is often the equilibrium value of the function. The third condition is that V (x) must
be greater than zero and V̇ (x) is less than zero, for a given domain except for the point of
interest [70].

This means that x∗ is the lowest point of the function and that every trajectory is going
towards this point. So no matter where you start, within the defined domain, the conditions
will “fall down” along the trajectory and towards the equilibrium point. If the conditions
go all the way down, reaching this point, then it is said to be a strict Lyapunov function.
If the mentioned domain is limited, it is regional stable within the domain. On the other
hand, if the domain is all the real values, it is globally stable.

The difficulty is to find a Lyapunov function for the original function. Many possi-
bilities have been suggested. In [71] the Hamiltonian function is mentioned, among with
methods by Pai (1981), Michel, Milland, and Nam (1982), and Michel, Milland, and Vittal
(1984).

Mathematical derivation of the Lyapunov function.

The equations describing the relevant system are seen below.

L
di

dt
= −Rs · i+ Vs − (Vs −Kp · (iref − i))

C
dv

dt
= −Is + i · (Vs −Kp · (iref − i))

v

In the case of time-scale separation, assume that the current, i, has reached its ref-
erence value, iref . Hence the current-equation is zero. The second equation gets equal
to

C
dv

dt
= −Is + iref

Vs
v
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When v has reached its steady-state value, V∗, the expression gets as following

0 = −Is + iref
Vs
V∗

By shifting the voltage-equation with

ṽ = v − V∗
The new equation of interest is given as

C
dṽ

dt
= Vsiref

(
1

v
− 1

V∗

)
Then the following equation can be used to describe the system

dṽ

dt
= −K · ∇V (v)

where

K =
VS · Iref

C

and V(v) is the created Lyapunov function. Furthermore, the Lyapunov function can
through integration and multiplication by (-1) be shown to be

V (v) = −
(
ln(|v|)− v

V∗

)
+K1

Where K1 just is a constant equal to

K1 = ln(V∗)− 1

in order for V(V∗) to be equal to 0 and V(V∗) greater than 0, as demanded. Further on
it can be shown that the function fulfills all of the requirements for a proper Lyapunov
function as earlier mentioned.
Firstly, the value of the function can be shown to be

∇V (v) = −1

v
+

1

V∗
= 0 =⇒ v = V∗

at the point of interest, just as wanted. The function has to be convex, which is proven by
showing that the second derivative is greater than zero.

∇2V (v) =
1

v2

which never is negative. The last step is to show that the time derivative is strictly negative.

V̇ = ∇>V (v)v̇

Where v̇ is equal to the time derivative of ṽ seen above. Hence the time derivative of
the Lyapunov function V(v) gets
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V̇ = −∇>V (v) ·K · ∇V (v)

and the minus sign comes from the negative sign before the K in the expression of the
derivative of the ṽ above.

Hence the function V(v) is a Lyapunov function for the system.
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B.2 Solution to Equation (4.6)

The created script is using the built-in MATLAB-functions solve() to solve the third order
equation with respect to x, and roots() to calculate the roots, i.e. eigenvalues, of the third
order system.

1 syms a b c d x
2 eqn = a∗x ˆ3 + b∗x ˆ2 + c∗x + d == 0 ;
3 s o l x = s o l v e ( eqn , x )
4
5 C = [ a b c d ] ;
6 r o o t s (C)

λ1 = (((d/(2*a) + b3/(27∗a3)−(b∗c)/(6∗a2))2+(−b2/(9∗a2)+c/(3∗a))3)(1/2)−
b3/(27 ∗ a3)− d/(2 ∗ a) + (b ∗ c)/(6 ∗ a2))(1/3)− b/(3 ∗ a)− (−b2/(9 ∗ a2) + c/(3 ∗
a))/(((d/(2 ∗ a) + b3/(27 ∗ a3)− (b ∗ c)/(6 ∗ a2))2 + (c/(3 ∗ a)− b2/(9 ∗ a2))3)(1/2)−
b3/(27 ∗ a3)− d/(2 ∗ a) + (b ∗ c)/(6 ∗ a2))(1/3)

λ2 = (- b2/(9 ∗a2) + c/(3 ∗a))/(2 ∗ (((d/(2 ∗a) + b3/(27 ∗a3)− (b ∗ c)/(6 ∗a2))2 +
(c/(3 ∗ a)− b2/(9 ∗ a2))3)(1/2)− b3/(27 ∗ a3)− d/(2 ∗ a) + (b ∗ c)/(6 ∗ a2))(1/3))−
(3(1/2)∗((−b2/(9∗a2)+c/(3∗a))/(((d/(2∗a)+b3/(27∗a3)−(b∗c)/(6∗a2))2+(c/(3∗
a)−b2/(9∗a2))3)(1/2)−b3/(27∗a3)−d/(2∗a)+(b∗c)/(6∗a2))(1/3)+(((d/(2∗a)+
b3/(27∗a3)−(b∗c)/(6∗a2))2+(−b2/(9∗a2)+c/(3∗a))3)(1/2)−b3/(27∗a3)−d/(2∗
a) + (b∗ c)/(6∗a2))(1/3))∗1i)/2− b/(3∗a)− (((d/(2∗a) + b3/(27∗a3)− (b∗ c)/(6∗
a2))2+(−b2/(9∗a2)+c/(3∗a))3)(1/2)−b3/(27∗a3)−d/(2∗a)+(b∗c)/(6∗a2))(1/3)/2

λ3 = (- b2/(9 ∗a2) + c/(3 ∗a))/(2 ∗ (((d/(2 ∗a) + b3/(27 ∗a3)− (b ∗ c)/(6 ∗a2))2 +
(c/(3 ∗ a)− b2/(9 ∗ a2))3)(1/2)− b3/(27 ∗ a3)− d/(2 ∗ a) + (b ∗ c)/(6 ∗ a2))(1/3)) +
(3(1/2)∗((−b2/(9∗a2)+c/(3∗a))/(((d/(2∗a)+b3/(27∗a3)−(b∗c)/(6∗a2))2+(c/(3∗
a)−b2/(9∗a2))3)(1/2)−b3/(27∗a3)−d/(2∗a)+(b∗c)/(6∗a2))(1/3)+(((d/(2∗a)+
b3/(27∗a3)−(b∗c)/(6∗a2))2+(−b2/(9∗a2)+c/(3∗a))3)(1/2)−b3/(27∗a3)−d/(2∗
a) + (b∗ c)/(6∗a2))(1/3))∗1i)/2− b/(3∗a)− (((d/(2∗a) + b3/(27∗a3)− (b∗ c)/(6∗
a2))2+(−b2/(9∗a2)+c/(3∗a))3)(1/2)−b3/(27∗a3)−d/(2∗a)+(b∗c)/(6∗a2))(1/3)/2

where

a = −1

b =

(
iref
C · v∗2

)
· (Ki · ζ∗ − Vs)−

Rs +Kp

L

c =

(
Rs +Kp

L

)
·
(

iref
C · v∗2

)
· (Ki · ζ∗ − Vs)−

Ki

L

d =

(
Ki · iref
L · C · v∗2

)
· (Ki · ζ∗ − Vs)

108



Eirik H
. Lillefosse

Tow
ards D

C-m
icrogrids w

ith Stability-Preserving Plug-and-Play Features

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 P
ow

er
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Eirik Haugen Lillefosse

Towards DC-microgrids with Stability-
Preserving Plug-and-Play Features:

Passivity-Based Control Design of DC/DC
Converters under Compensated Modulation

Master’s thesis in Energy and Environmental Engineering

Supervisor: Gilbert Bergna-Diaz

June 2020


	Abstract
	Sammendrag
	Preface
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Relation to Specialization Project
	Objectives
	Scope of Work and Limitations
	Methodology and Thesis Outline

	The DC Microgrid and the DC/DC Converter
	The Smart Grid
	The DC Microgrid and its Applications
	The DC Microgrid
	Challenges
	Plug-and-Play Features

	The DC/DC Converter
	Topology and Functioning
	Control Design of the DC/DC Converter

	System Description: The DC/DC Converter with Compensated Modulation and PI-control

	Stability and Control Theory for Dynamic Systems
	Analysis of Nonlinear Dynamic Systems
	General System Theory
	Modal Transformation
	Block-triangular Matrices
	Gershgorin Circle Theorem

	Control Design and Stability
	Lyapunov
	Passivity
	Properties of Passive Systems


	Time-Scale Separation of Inner-Loop Dynamics
	Eigenvalue Analysis
	Gershgorin Circles Analysis
	Analysis and Discussion

	Passivity-Based Design of Unidirectional DC/DC Converter
	Derivation of PI-PBC
	Outer Loop Dynamics
	Dynamics of the Full System

	Design Criteria and Gershgorin Analysis
	Analytical Interpretation
	Visualization and Verification

	Analysis and Discussion

	Passivity-Based Design of Bidirectional DC/DC Converter
	Mathematical Derivation and Analysis
	Outer Loop Dynamics
	Dynamics of the Full System

	System Analysis, Interpretation, and Discussion

	Conclusion and Further Work
	Conclusion and Key Findings
	Further Work

	Bibliography
	Appendices
	MATLAB Scripts
	Eigenvalues and Participation-Matrix for Inner-Loop Dynamics
	Gershgorin Circles for the Inner-Loop Dynamics
	Jacobian Matrix Calculation
	Simulink Model of the PI-PBC of the Outer Voltage-Loop
	Simulink Model of the PI-PBC of the Full Model
	Gershgorin Circles for the Complete Converter Model
	Eigenvalues and Participation-Matrix for the Full Converter Model

	Derivations
	Lyapunov Function for Inner-Loop Dynamics
	Solution to Equation (4.6)



