
Electric Utility Customer
Segmentation from Advanced
Metering Systems Data
Development of a computer programme for shape-
based time series segmentation

June 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Kari Walstad

2020
Kari W

alstad

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

le
ct

ric
 P

ow
er

 E
ng

in
ee

rin
g

Electric Utility Customer Segmentation
from Advanced Metering Systems Data
Development of a computer programme for shape-based time series

segmentation

Kari Walstad

 Energy and Environmental Engineering
Submission date: June 2020
Supervisor: Vijay Venu Vadlamudi

Norwegian University of Science and Technology
Department of Electric Power Engineering

Abstract

This is a master’s thesis written for the Department of Electric Power Engineering
at the Norwegian University of Science and Technology in collaboration with Lyse
Elnett and the Centre for Intelligent Electricity Distribution. In this master’s thesis,
a computer based tool is developed for the segmentation of the customer base of
Distribution System Operators (DSO) based of Advanced Metering System (AMS)
time series data of the DSO customers.

The Norwegian Regulatory Authority for Energy have required all Norwegian DSOs
to install AMS-meters at every point of measurement in the distribution utility grid
by 1 January 2019. An AMS-meter is able to capture a wide variety of data types
in real time. Analysis and evaluation of this data has the potential to benefit DSOs
in several ways. However, as was confirmed through contacting several DSOs, such
as Elvia, BKK Nett and Lyse Elnett, up to now DSOs have only to a limited extend
exploited the potential benefits of using AMS data. In the report, four potential
areas of research within the use of AMS-data for DSOs were identified. Through
an Analytical Hierarchy Process one of these four areas was selected for further
study. The area of use for AMS-data which was selected for this report, was the
segmentation of utility grid customers based on AMS time series data of customer
electricity consumption.

A synthesis computer programme for customer segmentation was developed in the
coding language Python, using shape-based clustering (i.e. amplitude, offset and
time invariant), and a Cluster Validation Index (CVI) algorithm. Additionally,
an option to perform outlier analysis of the AMS input data was included in the
programme.

Following the development of a conceptual framework for the computer programme,
the actual algorithms used in the customer segmentation model were selected based
on the merits of each specific algorithm. The programme was also written in such
a way that the different algorithms could be changed/replaced by the user. The
selected clustering algorithm was the K-Shape algorithm and the selected CVI was
the Silhouette algorithm. Dynamic Time Warping was chosen as the algorithm used
in the different outlier analysis methods.

The assessment of the developed customer segmentation programme and the un-
derlying methodology was first done through tests on a known data set to check
whether the results that were known beforehand to be correct would be produced.
The developed segmentation programme was shown to produce good results when
tested on a known data set. Further, the included outlier analysis methods were
shown to be able to sort out predefined time series outliers provided user evaluation
and input. The outlier analysis part is developed to a certain point and has potential
be further improved.

Following this, an assessment was made on the basis of actual AMS-data sets pro-
vided by Lyse Elnett. When tested on the first AMS-data set, the programme
showed a tendency to prefer segmenting based on similar periodicity of the time
series. Additionally, AMS-data was more challenging for the algorithm to cluster

i

than the known data set, possibly because the AMS-data set was more homogeneous
with more similarly shaped and less discernible time series groups. Outlier analysis
was shown to improve the programme performance by removing irregular (i.e. flat)
time series.

Based on the second AMS-data set, a comparison with the current standard method
of customer segmentation utilized by Norwegian DSOs was also performed. The
developed customer segmentation method was shown to produce a better partition
compactness of the AMS-data set than the standard DSO method when measured
with a CVI. It should be kept in mind that the main objective of the standard DSO
segmentation method may not necessarily be on segmenting for similar consumption
shapes, as opposed to the developed segmentation programme.

Some potential improvements to the developed programme were also identified. One
of these was the potential for the programme to take into account the standard
DSO segmentation, in order to include amplitude and offset information in the
analysis. Another area of improvement was the language in which the programme
was written. Python is a relatively high-level coding language, and the efficiency
of the programme and thereby calculation time may be improved if a lower-level
language such as C++ were utilized.

ii

Sammendrag

Denne masteroppgaven er skrevet for Institutt for elkraftteknikk ved Norges teknisk-
naturvitenskapelige universitet (NTNU), Trondheim, i samarbeid med Lyse Elnett
AS og Centre for Intelligent Electricity Distribution (CINELDI). Tema for mas-
teroppgaven er utvikling av et datamaskinbasert verktøy for segmentering av kun-
der til nettselskaper basert p̊a tidsserier fra AMS-måledata (Advanced Metering
Systems) av kundenes strømforbruk.

Reguleringsmyndigheten for Energi (RME) i Norge har stilt som krav at alle norske
nettselskaper skal ha installert “smarte” strømmålere, det vil si AMS-målere, innen
1, januar 2019 ved alle aktuelle målepunkt i sitt distribusjonsnettverk. AMS-målere
kan registrere et spekter av parametere i sanntid. Tilgang p̊a slike data kan ha mange
fordeler for nettselskapene. Likevel har undersøkelser gjennomført i forbindelse med
denne oppgaven avdekket av nettselskapene i liten grad anvender AMS-data. I
rapporten er det identifisert fire anvendelsesomr̊ader for AMS-data som ville vært
gunstige for nettselskapene å ta i bruk. Gjennom en “Analytical Hierarchy Process”
ble ett av omr̊adene valgt ut for videre studie i denne rapporten. Omr̊adet som
ble valgt er segmentering av nettselskapenes kunder basert p̊a tidsserier av AMS-
målinger av strømforbruk.

Et dataprogram satt sammen av ulike komponenter for segmentering av nettsel-
skapenes kunder ble utviklet. Programmet er laget i programmeringsspr̊aket Python
og segmenterer kunder basert p̊a tidsserienes form (shape-based clustering), uavhengig
av amplitude, offset og tid (amplitude, offset, and time invariant), samt en Cluster
Validation Index (CVI) algoritme. I tillegg ble det lagt inn i programmet metoder
for å skille ut spesielle avvikende AMS-tidsserier basert p̊a styring fra bruker.

Etter at den konseptmessige rammen for dataprogrammet var etablert, ble algo-
ritmene benyttet i dataprogrammet valgt basert p̊a fordeler og ulemper for hver
enkelt. Programmet er skrevet p̊a en slik m̊ate at algoritmene lett kan byttes ut
og erstattes med andre av brukeren. Den valgte segmenteringsalgoritmen heter “K-
Shape” og den valgte metoden for å m̊ale godhet av segmenteringen, CVI, heter
“Silhouette algorithm”. “Dynamic Time Warping” er valgt som algoritme for de
ulike metodene for analyse av avvikende tidsserier.

Evalueringen av det utviklede dataprogrammet ble først gjennomført basert p̊a
kjente datasett for å kontrollere at modellen var i stand til å produsere et resul-
tat som p̊a forh̊and var kjent. Dataprogrammet gjennomførte dette p̊a en god måte.
Deretter ble det gjort en evaluering av programmet basert p̊a AMS-tidsserier gjort
tilgjengelig av Lyse Elnett. I rapporten er det vist at programdelen for analyse av
avvikende tidsserier er i stand til å sortere ut forh̊andsdefinerte avvikende tidsserier.
Programdelen er utviklet til et visst punkt, men kan utvikles videre.

Deretter ble programmet testet basert p̊a to AMS-datasett fra Lyse Elnett. Testin-
gen med det første datasettet viste at det utviklede programmet har en tendens til
å segmentere alle tidsserier med lignende periodisitet i samme segmentgruppe og
derved prefere et lite antall segmenter. AMS-dataene viste seg å være mer utfor-
drende for programmet å segmentere enn settet med kjente data, etter som AMS-

iii

dataene inneholdt grupper med tidsserier som var mindre distinkte og tidsserier
som kunne anses som irregulære. Programdelen for å sortere ut avvikende tidsserier
ble anvendt med positivt resultat gjennom å separere ut irregulære tidsserier (flate
tidsserier) fra datasettet.

Testing av programmet ble ogs̊a gjort p̊a det andre datasettet fra Lyse Elnett i
form av en sammenligning av segmenteringsresultatene fra kjøringer av datapro-
grammet opp mot standardsegmenteringen som nettselskapene per i dag benytter.
Det utviklede dataprogrammet produserte en bedre segmentering enn standardseg-
menteringen m̊alt med CVI. Det er likevel viktig å her være klar over at nettsel-
skapenenes standardmetode for segmentering ikke nødvendigvis er basert p̊a at kun-
der med likt profil for sitt strømkonsum skal grupperes i samme kategori, hvilket er
basis for det dataprogrammet utviklet for denne rapporten.

Det ble ogs̊a identifisert noen forbedringspunkter for det utviklede dataprogram-
met. Et av disse er å gjøre det mulig for programmet å ta den eksisterende stan-
dardsegmenteringen som nettselskapene benytter med i betraktningen, for ogs̊a å
kunne ta hensyn til amplitude og offset av tidsseriene i segmenteringens. Et annet
forbedringspunkt er knyttet til programmeringsspr̊aket som er benyttet for program-
met. Python er et relativt høyniv̊a-programmeringsspr̊ak og ved å benytte et mer
lavniv̊a-spr̊ak, som for eksempel C++, kan effektiviteten til programmet økes og
derved tiden for gjennomføringen av analysene reduseres betraktelig.

iv

Contents

Abstract i

Sammendrag iii

Abbreviations ix

Definitions xi

List of Figures xvii

List of Tables xviii

1 Introduction 1
1.1 Background . 1
1.2 Scope . 1
1.3 Author’s note to contributors . 2

2 Reader’s guide 3
2.1 Part I: Fundamentals and problem formulation 3
2.2 Part II: Method development and assessment 4

3 Fundamentals of the Norwegian power system 7
3.1 Regulatory authorities . 7
3.2 The Energy Act (1990) . 8
3.3 The power system . 8
3.4 The power market . 9
3.5 Distribution System Operators . 10

3.5.1 Economic regulations for DSOs 11
3.5.2 DSO IT systems . 11

3.6 A changing power system . 11
3.6.1 Electrification of transport . 12
3.6.2 Decentralization of power production 12
3.6.3 EU regulations on electricity balancing 12
3.6.4 The aggregator role . 12
3.6.5 Information and Communication Technology (ICT) in the util-

ity grid . 13
3.6.6 Elhub . 13

4 Advanced Metering Systems 14
4.1 Regulations related to AMS-meters 14

4.1.1 Further details on AMS regulations 14
4.2 AMS-meters in the Norwegian distribution utility grid 15

4.2.1 AMS, DSO and Elhub interaction 16
4.3 AMS-meters . 17
4.4 AMS time-series data . 18

v

5 Norwegian DSOs and their use of AMS-data 19
5.1 Current DSO use of AMS-data . 19
5.2 Potential benefits of more extensive AMS-data use for DSOs 21
5.3 Potential challenges for DSOs to actively apply AMS-data in their

operations . 22
5.4 Potential areas of use for AMS-data to be applied in this study 23

5.4.1 P1: State Estimation . 23
5.4.2 P2: Outage management . 24
5.4.3 P3: Power consumption prediction 24
5.4.4 P4: Customer segmentation 25

5.5 Selected area of AMS-data use to be studied in this report 25

6 Selecting a method for customer segmentation (P4) 28
6.1 Current method for customer segmentation 28
6.2 Approach to solution development . 29

6.2.1 Aspirational properties of the developed customer segmenta-
tion method . 30

6.3 Using Python . 30
6.3.1 Installing Anaconda and Python 30
6.3.2 Python libraries . 31
6.3.3 Text files and Python files . 32

7 Theoretical background and description of methods for the cus-
tomer segmentation programme 33
7.1 Distance measures relevant for the selected algorithms 33

7.1.1 Euclidean distance . 33
7.1.2 Dynamic Time Warping . 34
7.1.3 Shape-based distance . 35

7.2 Introduction to machine learning . 36
7.2.1 Supervised machine learning 37
7.2.2 Unsupervised machine learning 38

7.3 Clustering . 39
7.3.1 K-Shape . 40
7.3.2 tslearn KShape algorithm result stability 41
7.3.3 Cluster usefulness . 42

7.4 Cluster Validation Index . 42
7.4.1 Silhouette analysis . 43

7.5 Refine data set . 45
7.5.1 Outlier analysis . 46
7.5.2 Choice of outlier analysis methods in this report 46
7.5.3 Possibility to implement other methods of outlier analysis . . 49
7.5.4 Time series manipulation . 50

8 The developed customer segmentation programme 52

9 Assessing the developed customer segmentation programme using
known data 55

vi

9.1 Data preparation phase . 55
9.2 Performance test of simplified programme without outlier analysis . . 56

9.2.1 The applied known data set 57
9.2.2 Base case . 58
9.2.3 Effect of changing number of time series in one time series group 62
9.2.4 Testing time invariance of periodic time series 65
9.2.5 Effect of length of data set on programme accuracy 67
9.2.6 Effect of adding randomness to the data set 69
9.2.7 General conclusions from assessment of the developed model . 73

9.3 Testing outlier analysis . 74
9.3.1 Data set used in the outlier analysis 75
9.3.2 Outlier analysis . 76
9.3.3 Algorithm stability . 78
9.3.4 General observations on outlier analysis methods 79

10 Assessing the developed customer segmentation programme using
AMS-data 82
10.1 Performance of developed programme on AMS-data 82

10.1.1 Conclusions from analysis with AMS-data 91
10.2 Comparison of developed segmentation programme to standard DSO

customer segmentation . 91
10.2.1 Current standard DSO customer segmentation method 92
10.2.2 Developed customer segmentation programme applied to the

data set . 95
10.2.3 Removing customer groups with single time series from AMS-

data set . 98
10.2.4 Conclusions from the comparison 102

11 Conclusions 103

12 Programme improvements, further work and notes on the report 105
12.1 Potential modifications to improve the programme 105

12.1.1 Combination of developed and standard segmentation model . 105
12.1.2 Improve runtime by changing code language 105
12.1.3 Improve runtime by manipulating the time series data 105
12.1.4 Testing other clustering methods 105
12.1.5 Improving outlier analysis . 106

12.2 Further work . 106
12.3 Notes on the writing of this report 107

12.3.1 Reproducibility of results . 107
12.3.2 Biases in scientific research . 107
12.3.3 Available computing hardware 107

References 109

A Appendix I: Key IT systems for DSO operation 116
A.1 Supervisory Control And Data Acquisition (SCADA) 116

vii

A.2 Energy Management System (EMS) 116
A.3 Distribution Management System (DMS) 117
A.4 Outage Management System (OMS) 118
A.5 Network Information System (NIS) 118
A.6 Advanced Distribution Management System (ADMS) 118
A.7 Emergency regulation related to DSO IT systems 119

B Appendix II: Data preparation code 121
B.1 Uploading the AMS-data .txt file to a pandas DataFrame 121
B.2 Time management of the DataFrame 121
B.3 Miscellaneous operations . 122
B.4 Making a DataFrame with the correct format for tslearn 123
B.5 Specifying the time interval for further analysis 123
B.6 Writing the final data set to a new .txt file 124

C Appendix III: Code for assessing the developed customer segmen-
tation programme 125
C.1 Base case . 125
C.2 Effect of changing number of time series in one time series group . . . 129
C.3 Testing time invariance of periodic time series 131
C.4 Effect of changing length of data set 133
C.5 Effect of adding randomness to the data set 135

D Appendix IV: Customer segmentation programme 138
D.1 FullMethod.py . 138
D.2 FindKoptimal.py . 141
D.3 KShape.py . 142
D.4 OD11.py . 143
D.5 OD12.py . 144
D.6 OD2.py . 145
D.7 OD3.py . 150

viii

Abbreviations

AHP Analytic Hierarchy Process

AMS Advanced Metering Systems

API Application Programming Interface

CSV Comma-Separated Values

CVI Cluster Validation Index

DMS Distribution Management System

DSO Distribution System Operator

DTW Dynamic Time Warping

EEA European Economic Area

EMS Energy Management System

EU European Union

HAN Home Area Network

ICT Information and Communications Technology

ID Identifier

IT Information Technology

NCC Normalized Cross-Correlation

NIS Network Information System

NVE Norges Vassdrags- og Energidirektorat

OD1 Outlier Detection method 1

ix

OD2 Outlier Detection method 2

OD3 Outlier Detection method 3

OED Olje- og Energidepartementet

OMS Outage Mnagement System

RME Reguleringsmyndigheten for Energi

SBD Shape-Based Distance

SCADA Supervisory Control And Data Acquisition

SE State Estimation

STL Seasonal-Trend decomposition using LOESS

TSO Transmission System Operator

x

Definitions

Algorithm

Algorithm is defined by the University of Oxford [10] as:

“A process or set of rules to be followed in calculations or other problem-
solving operations, especially by a computer.”

Application Programming Interface (API)

Application Programming Interface is defined by the global research and advisory
firm, Gartner Inc. [13] as:

“An application programming interface (API) is an interface that pro-
vides programmatic access to service functionality and data within an
application or a database.”

Cache

Cache is defined by Gartner Inc. [19] as:

“A cache is defined as a temporary storage area for instructions and data
near a computer’s central processing unit (CPU), usually implemented
in high-speed memory. It replicates information from main memory or
storage in a way that facilitates quicker access, using fewer resources
than the original source.”

Demand response

Demand response is defined by Gartner Inc. [23] as:

“Demand response (DR) is broadly defined as a measure for reducing
energy load in response to supply constraints, generally during periods
of peak demand.”

Electricity congestion

Electricity congestion is a consequence of the utility grid transmission constraints,
characterized by a finite utility grid capacity which prevents the delivery of power
from an associated set of power transactions [82].

Gradient descent

Gradient descent is an optimization algorithm which is used to minimize some func-
tion. This is done by iteratively proceeding in the direction of steepest descent as
defined by the negative of the gradient [59].

xi

Information and Communications Technology (ICT)

Information and Communications Technology (ICT) is an umberella term for all the
various medias and technologies employed in the task of communicating information
[34].

Internet of Things

Internet of Tings is defined by Gartner Inc. [38] as:

“The Internet of Things (IoT) is the network of physical objects that
contain embedded technology to communicate and sense or interact with
their internal states or the external environment.”

Linear regression

Linear regression is defined by the Machine Learning Glossary [81] as:

“Linear Regression is a supervised machine learning algorithm where
the predicted output is continuous and has a constant slope. It’s used to
predict values within a continuous range, (e.g. sales, price) rather than
trying to classify them into categories (e.g. cat, dog).”

Logistic regression

Logistic regression is defined by the Machine Learning Glossary [45] as:

“Logistic regression is a classification algorithm used to assign observa-
tions to a discrete set of classes. Unlike linear regression which outputs
continuous number values, logistic regression transforms its output using
the logistic sigmoid function to return a probability value which can then
be mapped to two or more discrete classes.”

Metrology

Metrology is defined by the International Bureau of Weights and Measures (BIPM)
[97] as:

“The science of measurement, embracing both experimental and theo-
retical determinations at any level of uncertainty in any field of science
and technology.”

Measurement redundancy

Measurement redundancy is an important concept in State Estimation, because
increasing the number of measurements made on a system beyond the minimum
(i.e., the number of degrees of freedom in the system) can reduce the effect of
measurement errors [20]. This increase in measurement above the number that is
required to uniquely determine the state of the system is measurement redundancy.
The more the redundancy, the better it is to process bad data successfully with the

xii

help of a state estimator and get a reasonable estimate of the state. The concept
of measurement redundancy reflects the independence degree of an estimated value
on the measured value.

Natural monopoly

Natural monopoly is defined by the Organisation for Economic Co-operation and
Development (OECD) [55] as:

“A natural monopoly exists in a particular market if a single firm can
serve that market at lower cost than any combination of two or more
firms.

Natural monopoly arises out of the properties of productive technology,
often in association with market demand, and not from the activities of
governments or rivals (see monopoly).

Generally speaking, natural monopolies are characterized by steeply de-
clining long-run average and marginal-cost curves such that there is room
for only one firm to fully exploit available economies of scale and supply
the market.”

Neural networks

Neural networks are defined by the Machine Learning Glossary [58] as:

“Neural networks are a class of machine learning algorithms used to
model complex patterns in data sets using multiple hidden layers and
non-linear activation functions. A neural network takes an input, passes
it through multiple layers of hidden neurons (mini-functions with unique
coefficients that must be learned), and outputs a prediction representing
the combined input of all the neurons.”

Power-sensitive information

Power-sensitive information is defined by NVE [14, 96] as:

“Power-sensitive information is specific and in-depth information about
plants, functions, systems, and other power supplies that can be used to
inflict damage or disrupt the supply of power if the information becomes
known to unauthorized persons.”

Pseudo random number generator

Pseudo random number generator may be defined as [17]:

“A pseudo random number generator is a deterministic algorithm which
approximates a true random number generator”

xiii

Reproducibility

Reproducibility in science is defined by the U.S. National Academies of Sciences,
Engineering, and Medicine [72] as:

“[...] obtaining consistent computational results using the same input
data, computational steps, methods, code and conditions of analysis.”

Script

Scripts (in computer programming) may be thought of as a sequence of instructions
that are interpreted or carried out by another program [74].

sklearn

sklearn (or scikit-learn) is a popular machine learning library developed for the
coding language Python [79].

State Estimation (SE)

State Estimation is an analysis function used in analysis of electric power system.
Using redundant measurements, a state estimator estimates the current state of a
power system [39].

Time series

Time series are defined by the University of Oxford [92] as:

“A series of values of a quantity obtained at successive times, often with
equal intervals between them.”

True random number generator

True random number generator may be defined as [17]:

“A true random number generator is a physical process which outputs
each valid string independently with equal probability”

xiv

List of Figures
1 Illustration of Part I content of the report. 3
2 Illustration of Part II content of the report. 4
3 Hierarchy of the Norwegian regulatory authorities, in relation to DSOs. 7
4 The general structure of the power market and its main players . . . 10
5 AMS-meters from the three producers a) Kamstrup, b) Kaifa and c)

Aidon . 15
6 Map of the three AMS-vendor’s AMS locations among Norwegian

DSOs. 16
7 Example of AMS data collected by AMS-meters affiliated with the

DSO Lyse Elnett. 18
8 Example of AMS data collected by AMS-meters affiliated with the

DSO Elvia. 18
9 Areas of use for AMS-data which the DSOs Elvia, BKK Nett and

Lyse Elnett have implemented. 20
10 Areas of use for AMS-data which the DSOs Elvia, BKK Nett and

Lyse Elnett are planning to implement. 21
11 The different categories that a utility grid customer connected to the

Norwegian low or medium voltage grid can be assigned to. 28
12 The approach to selecting a method for P4, customer segmentation. . 29
13 The logos of Python, Spyder and Anaconda. 31
14 The Anaconda Prompt window. 31
15 a) Dynamic Time Warping distance matrix illustration, with b) the

calculated optimal alignment illustrated. 34
16 Supervised machine learning algorithm fitting parameters to a train-

ing set. 37
17 Supervised machine learning algorithm predicting the output for a

new data set with the parameters fit to a training set. 38
18 Illustration of unsupervised machine learning 38
19 The result of a clustering algorithm. 39
20 Cluster- and shape-based time series clustering 40
21 Silhouette analysis first step: calculate dissimilarity between object i

in cluster A to all other objects in cluster A. 44
22 Silhouette analysis second step: calculate distance (dissimilarity) be-

tween object i in cluster A and all objects in cluster C 6= A. 45
23 Meaning of outliers in time series data depending on the aim of the

analyst. 46
24 Comparing (DTW) cluster centroids to each time series in a data set. 48
25 Selecting time series which are found to be outliers in all clusters. . . 49
26 Different functions for computing rolling averages of time series found

in the tslearn library. 50
27 AMS data set spanning one week in 2018 used in this report. 51
28 Developed method for producing customer segments given a set of

AMS-data. 52
29 Chart of the data preparation phase of AMS-data analysis. 55
30 Data set for which the data preparation code is written. 55

xv

31 The programme steps 1) to 6) used in this Section for testing known
data sets. 56

32 The known time series groups used for testing the developed programme. 58
33 All time series in the Base case data set. 59
34 All time series in the Base case data set, normalized. 59
35 Silhouette score for all partitions between K=2 and K=9 clusters. . . . 60
36 Result of using K-Shape clustering on the Base case data set, with

K optimal=4. 61
37 The stability regions for the Base case, for K between 2 and 9. 62
38 a) is the data set used in this section which has a sparse sine wave

group after normalization, and b) is the data set used in the Base
case test, normalized, which illustrates the Base case size of the sine
wave group. 62

39 Graph of Silhouette scores for all partitions of the single sparse group
data set, between K=2 and K=9 clusters. 63

40 Result of using K-Shape clustering on the data set with one single
sparse group, with K optimal=4. 64

41 K-Shape algorithm stability for the data set with one sparse time
series group. 64

42 Time series data set for testing time invariance before and after nor-
malization. 65

43 Silhouette scores for all partitions of the time invariance testing data
set, between K=2 and K=5 clusters. 66

44 Result of using K-Shape clustering on the data set for testing time
invariance, with K=2. 66

45 The data set used for testing the programme with shorter time series,
before and after normalization. 67

46 Silhouette scores for the shorter time series data set. 68
47 Result of using K-Shape clustering on the data set used for testing

the effect of using shorter time series, with K=4. 68
48 Result of using K-Shape clustering on the data set with shorter time

series, with K optimal=4. 69
49 Time series data set from the Base case with 25 Random Walks in-

cluded, before and after normalization. 70
50 Silhouette scores for ten separate runs of partitions between K=2 and

K=9 of the time series data set with 25 Random Walk time series,
including a graph of the average Silhouette score across the ten runs. 70

51 Base case data set including 25 random walks K-Shape output given
an optimal Silhouette score for K optimal=4 partitions. 71

52 Base case data set including 25 random walks K-Shape output given
an optimal Silhouette score for K optimal=5 partitions. 72

53 Base case data set including 25 random walks K-Shape output given
an optimal Silhouette score for K optimal=6 partitions. 72

54 The programme used for testing outlier analysis. 74
55 The data set used to test outlier analysis, before and after normalization. 75
56 Inlier data set throughout an outlier analysis of a data set. 76

xvi

57 Outlier data set throughout an outlier analysis of a data set. 77
58 Comparison of the Silhouette scores of the Base case (red), Base case

+ 25 Random Walks (black), and Base case + 25 Random Walks
with four iterations of outlier analysis (green). 78

59 K-Shape algorithm stability before outlier analysis. 79
60 K-Shape algorithm stability after outlier analysis. 79
61 AMS-data set before and after normalization. 83
62 Silhouette scores for the AMS-data set. 84
63 Result of using K-Shape clustering on the AMS-data set, with K optimal=2. 85
64 Detected outliers using OD2 with a DTW threshold of 12, for the

AMS-data set. 85
65 Histogram of extra-cluster DTW score for the two generated clusters. 86
66 Inlier AMS-data set, before and after normalization. 86
67 Silhouette scores for the inlier AMS-data set. 87
68 Result of using K-Shape clustering on the inlier AMS-data set, with

K optimal=7. 88
69 Stability of the KShape algorithm for the original AMS-data set, with

maximum n init≈10000. 90
70 Stability of the KShape algorithm for the inlier AMS-data set, with

maximum n init≈7000. 90
71 AMS-data set with customer segment information, before and after

normalization between 14/10/2018 and the 21/10/2018. 94
72 The customer segments according to the standard DSO segmentation

method present in the AMS-data set, normalized. 94
73 Silhouette scores for all partitions of the data set which included

customer segment information, between K=2 and K=9 clusters. 95
74 The customer segments created by the K-Shape algorithm from the

original data set, with K=2. 96
75 The customer segments created by the K-Shape algorithm from the

original data set, with K=3. 97
76 The customer segments created by the K-Shape algorithm from the

original data set, with K=4. 97
77 The customer segments created by the K-Shape algorithm from the

original data set, with K=9. 98
78 The customer segment groups with more than one customer per group,

normalized. 99
79 Silhouette scores for all partitions of the data set with single time

series groups removed. 99
80 The customer segments created by the K-Shape algorithm from the

data set with single time series groups removed, with K=2. 100
81 The customer segments created by the K-Shape algorithm from the

data set with single time series groups removed, with K=3. 101
82 The customer segments created by the K-Shape algorithm from the

data set with single time series groups removed, with K=4. 101

xvii

List of Tables
1 Potential areas of study P1-P4 scored against criteria C1-C4. 26
2 The format to which the processed AMS-data set is written to a .txt

file. 56
3 Silhouette scores for all partitions of the Base case data set, between

K=2 and K=9 clusters. 60
4 Silhouette scores for all partitions of the data set with one sparse sine

wave group, between K=2 and K=9 clusters. 63
5 Silhouette scores for all partitions of the data set used for testing time

invariance, between K=2 and K=5 clusters. 66
6 Silhouette scores for all partitions of the shorter time series data set,

between K=2 and K=9 clusters. 67
7 Silhouette scores for all partitions of the data set with 25 Random

Walks, between K=2 and K=9 clusters. 70
8 Silhouette scores for all partitions of the data set with 25 Random

Walks, used for testing the effect of outlier analysis on developed
programme, between K=2 and K=9 clusters. 75

9 The strengths and weaknesses of the outlier analysis methods used in
the customer segmentation programme (OD1, OD2 and OD3). 80

10 Silhouette scores for all partitions of the AMS-data set, between K=2
and K=15 clusters. 84

11 Silhouette scores for all partitions of the inlier AMS-data set, between
K=2 and K=15 clusters. 87

12 The density of the clusters produced from the inlier data set given K=7. 89
13 Customer segments available in the Lyse Elnett AMS-data set. 92
14 Current standard method of customer segmentation for Norwegian

DSOs. 93
15 Silhouette scores for all partitions of the data set which included

customer segment information, between K=2 and K=9 clusters. 95
16 Silhouette scores for all partitions of the data set with single time

series groups removed, between K=2 and K=9 clusters. 100

xviii

1 Introduction

1.1 Background

The Norwegian power system will in the coming years undergo changes due to an in-
creasing electrification of the transportation sector, a decentralisation of power pro-
duction meaning large-scale integration of distributed/renewable energy resources
and electrical storage, and digitalization i.e. the increased connectivity of electronic
devices and the conversion of information to a digital format [4].

One aspect of the digitalization of the Norwegian power system is the installation of
Advanced Metering Systems (AMS) at each point of measurement in the distribution
grid. The AMS-meter is able to capture a wide variety of data types in real time.
There exist many potential applications of AMS-data, but Norwegian DSOs are not
yet utilizing the opportunity to a large extent. This became apparent while working
on the specialization project [96], and became the inspiration for the topic of this
Master’s thesis (from here on termed the report). It became clear that Norwegian
DSOs today have to a lesser extent exploited the opportunity to use AMS-data,
while other market players already are utilizing such data.

This report is written for the Department of Electric Power Engineering at the
Norwegian University of Science and Technology (NTNU) in collaboration with Lyse
Elnett and the Centre for Intelligent Electricity Distribution (CINELDI), and looks
into potential applications of AMS-data. The idea was presented to Lyse Elnett,
which consented to provide AMS consumption data for analysis in the report.

The initial task of this work was to identify an area for analysis of benefit to DSOs,
which could be based on the provided AMS consumption data. It was decided
to develop a computer-based tool to perform said analysis. The ambition was to
base the development of the tool on freely accessible programs and algorithms.
Furthermore, it was a wish that the tool could be used by DSOs or other interested
parties after the completion of this report.

1.2 Scope

As mentioned in Section 1.1, the initial ideas for this report emerged while working
on the specialization project [96]. The objective of this study is to illustrate that
opportunities and benefits within certain areas for DSOs can be achieved from the
analytical use of AMS-data by applying existing and openly available advanced
data analysis tools. Such tools should be possible to utilize by DSO engineers with
a power systems background and an information technology interest.

The report will be divided into two parts, Part I and Part II, where Part I will focus
on developing the background for the problem formulation, such as the fundamentals
of the Norwegian power system, AMS-meters and their application, as well as the
use of AMS-data by Norwegian DSOs. An area for applying analysis of AMS-data
will be selected, which will be further investigated in Part II of the report.

Part II will be concerned with the development and assessment of a computer-based

1

programme for the selected area of analysis of AMS-data. The background for
selecting the respective advanced data analysis tool components for the computer
based programme shall be presented. Furthermore, a method for evaluating poten-
tial outlier data will be sought included in the programme. Thereafter the developed
programme will be assessed based on both known/verifiable input data as well as
actual AMS-data provided by Lyse Elnett.

Suggestions for improvements of the developed programme shall also be included.

It will not be within the scope of this report to perform “after-analysis” of customer
groups in AMS-data sets. It will also not be within the scope of the report to
study the consumption behaviour of different customer types. Furthermore, it is
not within the scope to perform tests of several different advanced data analysis
tool component types.

1.3 Author’s note to contributors

I (the author) would like to thank everyone who has contributed to the writing of
this report.

Firstly, a note of thanks should be handed to my supervisor, Vijay Venu Vadlamudi,
for support and for giving me the opportunity to be explorative and creative in the
writing of this report.

Secondly, a note of thanks should be handed to my contacts at Lyse Elnett. Par-
ticularly Aina Romani Dalmau Serigstad for supplying the bulk of the AMS-data
analysed in this report, and Siri Torgersen Ravndal for helping me out of a chal-
lenging situation which arose close to the due date of the report.

Thirdly, a note of thanks should be handed to all companies which answered en-
quiries and surveys in relation to this report; Elvia (Hafslund), BKK Nett, Skagerak
Nett, Agder Energi Nett, Norges Vassdrags og Energidirektorat, Reguleringsmyn-
digheten for Energi, Energisalg Norge, tslearn and Trønderenergi.

Lastly, a note of thanks should be handed to my father, Jan-Erik Walstad, for
helping me with the editorial aspect of this report with such enthusiasm.

2

2 Reader’s guide

This report is divided into two main parts; Part I and Part II.

2.1 Part I: Fundamentals and problem formulation

The initial ideas for this master’s thesis emerged during work on the author’s spe-
cialization project [96]. During work with this report it appeared that Norwegian
DSOs currently have not to a significant extent exploited the opportunity to use
AMS-data, while such data is already utilized by other market players, e.g. Smartly
and NODES AS. Part I of the report provides the knowledge background which is
considered necessary for the research topic for this report.

Figure 1: Illustration of Part I content of the report.

The following report Sections are included in Part I:

Section 3: Provides a fundamental understanding of the Norwegian power system,
as well as an overview of the different factors influencing change in the Norwegian
power system.

Section 4: Describes Advanced Metering Systems (AMS), and their use by Norwe-
gian DSOs.

Section 5: Looks into how the Norwegian Distribution System Operators (DSO) are
currently utilizing AMS-data, as well as some potential future areas of use. The
topic of research for this report, P4, is also selected in this Section.

3

2.2 Part II: Method development and assessment

Part II of the report starts by explaining the conceptual framework for the de-
velopment of a computer-based programme for addressing the selected topic of re-
search, P4 customer segmentation. Following this, the theoretical background for
the various parts of the developed customer segmentation programme is explained.
Following this, the customer segmentation programme is assessed and tested. The
assessment is first performed with known data sets to see whether the programme
produces results which are known beforehand to be correct. Thereafter the customer
segmentation programme is tested on AMS-data provided by Lyse Elnett, before it is
finally compared with the current standard way that DSOs segment their customers
into groups.

Figure 2: Illustration of Part II content of the report.

The following report Sections are included in Part II:

4

Section 6: The approach to developing the P4 solution concept is described, as well
as an introduction to Python.

Section 7: The theory behind the P4 solution concept is presented, and an algorithm
for each part of the P4 solution concept is selected. Additionally, methods for
refining the data set is explained.

Section 8: The developed programme for shape-based customer segmentation is
presented.

Section 9: Assesses the developed customer segmentation programme with know
time series data.

Section 10: Assesses the developed customer segmentation programme with AMS
time series data. A comparison is done between the developed customer segmenta-
tion programme and the standard DSO customer segmentation method.

Section 11: Report conclusions.

Section 12: Potential improvements on the developed customer segmentation pro-
gramme, suggestions for further work and general notes on the writing of the report.

5

Part I: Fundamentals and problem formulation

6

3 Fundamentals of the Norwegian power system

This Section explains the fundamentals of the Norwegian power system and power
market, which represents a basis for the topic of this report. Additionally some of
the important current factors which are influencing and changing the Norwegian
power system are discussed, to give the reader an impression of how the Norwegian
power system could change in the coming years.

3.1 Regulatory authorities

The regulation of Norwegian Distribution System Operators (DSO) is achieved at
three different levels. The Royal Norwegian Ministry of Petroleum and Energy
(in Norwegian called Olje- og Energidepartementet, OED) is at the authoritative
top, followed by the Norwegian Water Resources and Energy Directorate (Norges
Vassdrags- og Energidirektorat, NVE). Then follows the Regulatory Authority for
Energy (Reguleringsmyndigheten for Energi, RME). This hierarchy is illustrated in
Figure 3.

Figure 3: Hierarchy of the Norwegian regulatory authorities, in relation to DSOs.

OED is the Norwegian ministry responsible for energy, including its production,
transport and trade. The OED reports to the legislature, i.e. Stortinget (Parlia-
ment) [63].

NVE is the Norwegian governmental directorate which regulates the national water
resources and the related energy supply. NVE is organised under OED, and has
administrative responsibility for the Watercourse Regulation Act (1917), Industrial

7

Concession Act (1917), Energy Act (1990) and Water Resources Act (2000). The
directorate may issue new regulations, and is obliged to consider regulations issued
by the European Union which affect any regulations within its purview [62].

From November 1, 2019, the RME has been designated by the OED as a regulatory
authority pursuant to Section 2-3 of the Energy Act and Section 4 of the Natural
Gas Act. These tasks shall be performed by RME as an independent regulatory
authority [71]. RME does in some cases report directly to OED, but not concerning
the Energy Act as NVE holds such administrative responsibility [62]. Therefore, as
seen in Figure 3, RME does not report directly in the hierarchy to OED concerning
regulation of DSOs.

3.2 The Energy Act (1990)

The Energy Act (Energiloven) describe the rules which govern the generation, con-
version, transmission, trading, distribution and use of energy [46]. The Act ensures
that the generation, conversion, transmission, trading, distribution and use of energy
are conducted in a way which efficiently promotes the interests of society [66].

An area licence is needed for anyone who wishes to build, own and operate an elec-
trical installation for distribution of electric energy between voltage levels within
a specific location. The holder of an area licence is obligated to provide electrical
energy to the customers within the geographical area in which the licence is appli-
cable, as well as affiliation of electric production facilities. In Norway, only DSOs
are granted local area licences. Statnett is the Norwegian Transmission System
Operator, and is in this capacity granted the national area licence [46, 66, 96].

To trade electrical energy, a trading licence for electrical energy is needed. Nor-
wegian DSOs are not granted licences for trade in electrical energy. Hence, DSOs
are not allowed to own or be owned by entities operating in production or sale of
electrical energy [46], §4-6. Trading licences are granted to power producers and
power companies. Trade in electrical energy occurs in the power market, which is
discussed in Section 3.4.

3.3 The power system

The electric utility grid in the Norwegian power system is divided into three voltage
levels. These are the high voltage grid (Sentral- or Transmisjonsnettet in Norwegian)
with voltage levels between 132 and 420 kV, the medium voltage grid (Regionalnettet
in Norwegian) with voltage levels between 33 and 132 kV, and the low voltage grid
(Distribusjonsnettet in Norwegian) with voltage levels between 230 V and 22 kV
[42].

The high voltage grid is operated by the Transmission System Operator (TSO)
Statnett. The low voltage grid, in addition to some parts of the medium voltage
grid is operated by DSOs. Which parts of the medium voltage grid that a DSO may
operate is determined by Statnett. Statnett is wholly owned by the state, while
DSOs are wholly owned by the municipalities in which they operate the low/medium

8

voltage utility grids [42].

Power production companies are not necessarily state- or municipality owned. Their
ownership will largely depend on how much power they produce annually, and from
which sources. Power companies which sell power from the power production com-
panies to various customers are also privatised to some extent [42].

Statnett is responsible for securing the instantaneous balance between the produc-
tion and consumption of power in Norway. This in essence means that Statnett is
responsible for keeping the electric frequency in the entire utility grid balanced at
approximately 50 Hz [84].

3.4 The power market

The Energy Act lays the foundation for market-based electric power production and
trade, and for clear regulation of the participants in the power market. The power
market aims to ensure that resources are utilised efficiently, and that electrical power
stays cost-efficient for the electric power customer [41].

In 1991 Norway introduced market-based trading of electric power. From the very
start, the Norwegian power market was accessible to a wide variety of participants.
Early on, the power exchange was operated by Statnett Marked AS, and today is op-
erated by Nord Pool AS. The power exchange has become an important and integral
part of the Norwegian power market. Nord Pool has since evolved to become the
worlds first international power exchange, and now operates power trading markets
in 14 countries in the Nordic, Baltic and continental European area [41].

The power market may be divided into two segments, the wholesale power market,
and the end-user power market [41].

In the wholesale power market, large volumes of electrical power are traded every
day. Large customers (consumers) which operate in the wholesale power market
may choose to buy power from power companies, Nord Pool or directly from power
producers. Smaller customers (consumers), which can exclusively operate in the end-
user power market, can only buy power from power companies. Figure 4 illustrates
this [41].

The structure of the Norwegian power market, and the interaction of the different
market players may be visualised as in Figure 4.

9

Figure 4: The general structure of the power market and its main players, adapted
from [41].

The wholesale power market comprises of the day-ahead market, the continuous
intraday market and the balancing markets. Today the TSO Statnett is the only
Norwegian market player that can buy power in the balancing market at Nord Pool
[73].

DSOs are required to buy power to cover the losses in their respective distribution
grids, and to provide power to specific utility grid customers that are not affiliated
with any power companies [43, 56]. DSOs fall into the category of “Large customers”
in Figure 4 that buy power from power companies. This has been explicitly verified
for this report by contacting NVE and some of the largest DSOs in Norway, i.e.
Hafslund, BKK nett, Skagerak nett and Lyse Elnett, in addition to power companies
such as Trønder Energi and Energisalg Norge.

3.5 Distribution System Operators

A Distribution System Operator (DSO) is defined in Norway by Energi Norge [54]
as:

a natural or legal person responsible for the operation, maintenance and
if necessary, development of a distribution network in a given area and,
where appropriate, electric connection to other networks, as well as a
responsibility to ensure the network’s ability for the long term to meet
a reasonable demand for the distribution of electric power.

Norwegian DSOs are directly regulated by NVE and RME. DSOs are subject to
extensive regulation as they are considered natural monopolies in their distribution
area. Development of utility distribution grids is associated with high fixed costs

10

and low variable costs. Thus, in Norway, it is not considered economically optimal
to have more than one market player for a particular distribution area [65].

In Norway there exists around 136 DSOs, of which 103 have less than 10’000 cus-
tomers each [42]. Lyse Elnett is one of the larger DSOs with over 150’000 affiliated
customers.

3.5.1 Economic regulations for DSOs

Because DSOs are natural monopolies in their licensed network areas, their incomes
are strictly regulated. RME is in charge of the economic regulation of DSOs and
therefore decides how much income each DSO is allowed to make. Once a year RME
calculates an “allowed income” for each DSO. At the end of each year RME checks
whether the realised income has been higher or lower than the allowed. If a DSO
has made a surplus income, the surplus, including interest, must be paid back to the
utility customers in the form of reduced network costs the following year. If a DSO
has made a deficit compared with the allowed income, the deficit can be recuperated
by increasing the network costs in the following year [64].

In addition, RME measures the efficiency of DSOs. More efficient DSOs are re-
warded, and less efficient DSOs are penalised. The more efficient DSOs are rewarded
with a higher allowed income, while the less efficient DSOs are penalised with a lower
allowed income. The larger the allowed income, the more a given DSO may charge
utility grid customers in network costs, thereby achieving a higher return [64].

3.5.2 DSO IT systems

The most important IT systems used by Norwegian DSOs today (2020) are Supervi-
sory Control And Data Acquisition (SCADA), Energy Management System (EMS),
Distribution Management System (DMS), Outage Management System (OMS) and
Network Information Systems (NIS) systems. Appendix I contains the results of
research done into the operation and hierarchy of the different IT systems carries
out in preparation for this report. More information on all the above mentioned
DSO IT systems may be found in Appendix I.

3.6 A changing power system

In a bid to keep Norway at the forefront of technological development related to
the electric power system, NVE has developed new regulations to act as a stimulus
for technological change. These regulations point towards a growing sentiment in
the industry to digitalize and modernize the electric power system. NVE’s [60]
yearly report of 2019 highlighted some of the main development trends for the future
Norwegian power system. The motivation for many of these stem from legislation
that the Norwegian government [36] passed in 2015, stating that it would reduce the
country’s carbon emissions by at least 40% by 2030, compared to 1990. In addition,
OED and NVE have published aims towards 2040 for electrification of the transport
sector and decentralization of power production [60].

11

Electrification, decentralization and digitalization are three concepts that are central
in describing what is predicted to influence how electric power production, distribu-
tion/transmission and consumption behaviour will change in the future [47].

This Section will highlight some regulations and aims of government bodies such as
OED, NVE and the EU that may either introduce new market players to the power
market, or may change behaviour of existing players.

3.6.1 Electrification of transport

The transport sector is responsible for around one third of Norway’s carbon emis-
sions, and since transport is not included in the European Union’s emissions trade
(cap and trade), large reductions in emissions from the transport sector will be re-
quired [51]. This will mean an increase in demand for electric power for transport
of around 30-40 TWh per year (Statnett [32] estimate).

3.6.2 Decentralization of power production

NVE [3] estimates that 19-38 TWh of wind power will be installed in Norway be-
tween 2019 and 2040, and that solar power production will increase, but by an
unpredictable amount. More information on the predicted development of renew-
able and decentralized power production in Norway towards 2040 may be found in
resource [3].

3.6.3 EU regulations on electricity balancing

In 2017 the European commission [21] published a set of new regulations, “Estab-
lishing guidelines on electricity balancing”, which are mandatory for all members of
the European Economic Area (EEA, known as EØS in Norwegian) and EU member
states to implement [24]. These new regulations will give DSOs the ability to man-
age local electricity congestion in the grid of their lisenced distribution area [3]. This
is contradictory to the current practice, where the TSO Statnett has sole respon-
sibility for all electricity congestion in the Norwegian utility grid. A consequence
of the new EU regulations may be that DSOs in the future will buy power in the
balancing markets, and/or the emergence of new type of players in the Norwegian
power market i.e. “aggregators”.

3.6.4 The aggregator role

A commercial player that sells demand response, and uses a commercial control sys-
tem for the demand response actuation is termed an aggregator [85]. The aggregator
is a new role in the Norwegian power market. In order to operate as an aggrega-
tor NVE will need to grant the commercial player a trading licence for aggregator
activities [44].

12

3.6.5 Information and Communication Technology (ICT) in the utility
grid

A variety of equipment with Information and Communications Technology (ICT)
functionality is being installed in both transmission and distribution utility grids in
Norway. The TSO Statnett has for example put automatic system circuit breakers
to use in the transmission grid, to comply with §21 in the regulation on system
responsibility of the power system [28]. Advanced Metering Systems (AMS) is also
now mostly installed in all relevant measurement points in the utility grid, more on
this in Section 4.

As more and more ICT equipment is being installed in the utility grid, the grid may
increasingly be considered a “smart grid”. The defining quality of a smart grid is
its ability to detect and react to local and/or global changes in its state by the use
of ICT technology with a multi-directional flow of information [90].

3.6.6 Elhub

NVE [53] has given Statnett the task of developing “Elhub”. The function of Elhub
will be to collect and store AMS-data from the Norwegian distribution utility grid.
More detailed information on AMS-meters and AMS-data may be found in Section 4.

Data in Elhub is made accessible to specific market players in the Norwegian power
market like DSOs, aggregators and power companies. An intention of the devel-
opment of Elhub is to provide stimulus for innovation in, and optimisation of, the
power market and power system. Elhub will also ensure information security for the
AMS-data preventing adversaries gaining insight into and/or control over AMS-data
[53].

13

4 Advanced Metering Systems

An Advanced Metering System (AMS) meter is sometimes called a “smart meter”.
The main purpose of an AMS-meter is to record electric power consumption in
its measurement point, and communicate the recorded information to the affiliated
utility company. However, AMS infrastructure allows for two-way communication
between a utility/power company and the AMS-meter over an ICT network. This
two-way communication is required of the AMS-meter due to its additional func-
tionality, as described in Section 4.1.1 i.e. the functionality which makes the AMS
a “smart meter”.

4.1 Regulations related to AMS-meters

The Regulations on Power Trade and Utility Grid Services (Forskrift om kraftomset-
ning og nettjenester) regulates electrical energy measurement and settlement, billing
of network services and electrical energy, the neutrality of utility grid operators, etc
[61].

Chapter 4 “Advanced metering systems” was included into the Regulations on Power
Trade and Utility Grid Services in 2011. RME is responsible for regulation of Chap-
ter 4. The inclusion of Chapter 4 was done to, inter alia, provide necessary infor-
mation for utility grid customers to control their own electrical power consumption,
and to contribute to increased opportunity for DSOs to optimize operation of their
utility grid [61].

According to Chapter 4, §4-1, utility grid companies are obligated to install AMS-
meters at every point of measurement in the utility grid, with two exceptions given
in §4-1 a) when electricity consumption at a point of measurement is low and un-
predictable, or b) when installation of a meter represents a significant and verifiable
disadvantage to the utility grid customer. Following §4-5 all measurement points
should have AMS-meters installed within the 1st of January, 2019 [61], i.e. all
AMS-meters should have been installed at the time of writing this report (spring
2020).

4.1.1 Further details on AMS regulations

According to §4-2, the sampling frequency of an AMS should be at least once per 60
minutes, with the possibility to increase the frequency to once every 15 minutes (§4-2
a)). All AMS-meter are required to comply with open standards for communication
(§4-2 b)). An AMS-meter should also be able to communicate with other measuring
devices, and should retain measured data in case of a power outage (§4-2 c)-d)).
The AMS-meter should be able to both limit and/or cut power flow, and measure
flow of active and reactive power at its point of measurement (§4-2 e) & h)). It
should also be able to receive information on electric power prices and tariffs, and
transmit data on control or short circuit to ground signal errors (§4-2 f)). Finally,
an AMS should provide adequate information security such that measurement and
control functions are not obtained by an adversary (§4-2 g)) [61].

14

Following §4-3, an AMS-meter should be capable of storing measurement data until
such data has been transmitted to the relevant DSO, at least the duration of time
until the due date of the current billing period [61].

According to §4-4, power companies should be able to send price information, and
DSOs should be able to send tariff information to AMS-meters. As such, a utility
grid customer will be able to read electric power price, and tariff information from
their respective AMS-meter [61].

By §4-6, a utility grid customer should have local access to their respective AMS-
meter measurement information.

4.2 AMS-meters in the Norwegian distribution utility grid

During the rollout of AMS-meters in the Norwegian distribution utility grid, a va-
riety of different meter models were installed. This section will present some of the
different types of AMS-meters installed. At any given location in the distribution
utility grid, the selected type of meter would depend on the voltage level at that
location, number of phases, and whether the selected point of measurement was at
a utility grid customer or at a transformer.

According to RME, three AMS producers share the Norwegian market at distribu-
tion level customer measurement points. These are Aidon (ca. 50%), Kamstrup
(ca. 25%) and Kaifa (ca. 25%). There exists other AMS-vendors that supply
AMS-meters for utility customers but they constitute around 1% of all installed
AMS-meters and will therefore not be discussed any further in this report [93].
Consequently all AMS-meters installed by DSOs after §4-1 mentioned in Section 4.1
are assumed provided by one of the three above mentioned companies. Figure 5
shows the three types of AMS-meters from the three producers which are most
commonly installed in small-scale utility grid customers.

Figure 5: AMS-meters from the three producers a) Kamstrup, b) Kaifa and c) Aidon
[22].

Figure 6 shows a map of the different DSO license areas in Norway. The DSOs
commonly have exclusive contracts with one of the three AMS vendors. The coloured
areas on the map indicates some of the areas where the vendors have exclusively

15

provided AMS-meters (areas which are not coloured lacked public information on
which AMS vendor that provided AMS-meters. This map is unfortunately partially
outdated as for example Hafslund and Eidsiva Nett have merged in 2019-2020 to
form Elvia, which is not displayed on the map in Figure 6. The most up to date
(March 2020) map of Norwegian DSO licence areas may be found in reference [57]).
All in all, around 42 Norwegian DSOs use AMS-meters produced by Aidon, 37 use
AMS-meters produced by Kamstrup, and 26 use AMS-meters produced by Kaifa
[93].

Figure 6: Map of the three AMS-vendor’s AMS locations among Norwegian DSOs.

4.2.1 AMS, DSO and Elhub interaction

Through dialogue with BKK nett and Lyse Elnett conducted for this report, the
interaction between DSO, AMS-meters and Elhub has been outlined.

All AMS-data is sent to Elhub in real-time through an intermediary information and
telecommunications entity or company. After each day’s (24h) settlement has been

16

calculated, the AMS-data is sent from Elhub to the relevant DSO. DSOs may also
access AMS-data in near real-time from their connected AMS-meters, which may be
updated every three hours. It is possible that other DSOs manage this interaction
slightly differently.

4.3 AMS-meters

A typical AMS-meter will include a combination of software, hardware and calibra-
tion systems. Each AMS-meter should include systems for metrology, information
security, and communication both between components of the AMS-meter, and be-
tween the meter and external units [16].

A smart meter system may include; a time-keeping device (clock), a data commu-
nications module, a computing and processing unit, tamper detection, transformer
driver and voltage reference. Further the meter will contain an analog-to-digital
converter. When a voltage level is measured, it will be processed by the comput-
ing and processing unit, stored in the correct format where a time stamp is added,
and sent over an ICT network to a DSO [16]. In the case of AMS-meters installed
in Norway, communication between an AMS-meter and an external unit happens
through a radio-mesh network of limited bandwidth [35].

To comply with §4-3, Section 4.1.1, an AMS-meter should have an emergency backup
power source in the form of a battery. An anti-tampering circuitry should also be
added. This is done to comply with §4-2 g) as mentioned in Section 4.1. Extra
functionality such as a display may be added to the AMS-meter according to §4-4
[16, 61].

To illustrate what specifications an AMS-meter installed in the Norwegian distri-
bution grid has, it may be helpful to look at the three series of meters that Aidon
installs. Since all AMS-meters installed must comply with Chapter 4. of the Regu-
lations on Power Trade and Utility Grid Services, as mentioned in Section 4.1, the
AMS-meters produced by Kamstrup and Kaifa should be equivalent to the ones
produced by Aidon. The different types of Aidon AMS-meters are [37]:

• The Aidon 6510-series take single-phase measurements of electric power con-
sumption for utility grid customers, at a nominal voltage level of 1x230 V.

• The Aidon 6520- and 6530-series take thee-phase measurements of electric
power consumption for utility grid customers, at a nominal voltage level of
3x230 V, or 3x230 V/400 V.

• The Aidon 6540- and 6550-series take thee-phase measurements of electric
power consumption at a transformer, at a nominal voltage level of 3x230 V,
or 3x230 V/400 V.

More detailed information on each of the Aidon AMS-meter series may be found in
reference [69].

AMS-meters also include an access point termed a Home Area Network (HAN)
port. The HAN-port may be used as an interface with the AMS-meter to which

17

commercial actors can develop various services for the meter owners. To activate
the HAN-port of an AMS-meter, the relevant utility grid customer will need to
contact the DSO of which the AMS-meter is affiliated. It is expected that in the
future the HAN-port may enable utility grid customers to participate in for example
commercial demand response activities controlled by aggregators [86].

4.4 AMS time-series data

AMS time series data may include all measurement values that the AMS-meter is
able to measure. The AMS-data may include physical measurement values (voltage,
current, active power, reactive power etc.), AMS-meter IDs, customer segment IDs,
timestamps, and possibly an ID which identifies which substation the AMS-meters
is connected to. These data types are listed column-wise, and are labeled in the first
row of each column.

Each column will be separated by a delimiter, for example a semicolon “;”. Date val-
ues in the timestamps are given in a European date format, which means DD.MM.YYYY,
as apposed to the American date format which is of the form MM.DD.YYYY. Time
values in the timestamps are given by HH.MM.SS, although the granularity is not
required to be more than minute-wise (Section 4.1.1). Decimal places are marked
with a comma “,”.

Below are two examples of AMS-data from different DSOs (Lyse Elnett in Figure 7,
and Elvia in Figure 8). They are both obtained from Aidon meters, as may be
understood by studying the map in Figure 6.

Figure 7: Example of AMS data collected by AMS-meters affiliated with the DSO
Lyse Elnett.

Figure 8: Example of AMS data collected by AMS-meters affiliated with the DSO
Elvia.

18

5 Norwegian DSOs and their use of AMS-data

While working on the specialization project [96] it became apparent that Norwegian
DSOs today have the unexploited opportunity to use AMS-data, while some market
players already are utilizing such data. Historically AMS-data has primarily been
available for consumers with large electric power consumption, typically above 100
MWh/year. As described in Section 4.1 AMS meters are now required for all utility
grid consumers enabling collection of this new data. Further, new technology has
become easily available for processing large volumes of data, e.g. machine learning
and “big data”, which this report seeks to investigate.

5.1 Current DSO use of AMS-data

In the context of this report, selected Norwegian DSOs were contacted to research
to which extent and purposes they were using their collected AMS-data. Of the
contacted DSOs, three answered enquiries before the due date of this report. These
were Elvia, Lyse Elnett and BKK Nett. With Elvia’s 900000, BKK Nett’s 245000
and Lyse Elnett’s 150000 utility grid customers, these are some of the largest DSOs
in Norway.

Firstly the DSOs were asked how they have implemented the use of AMS-data
currently. These areas of implementation are listed as I1 to I6:

• I1: Automatic detection of faults in the LV grid.

• I2: Automatic detection of ground faults.

• I3: Billing.

• I4: Detecting wrongly installed AMS-meters.

• I5: Tap change transformers.

• I6: Aggregate AMS-data to substation level when substation measurements
are missing.

Figure 9 shows across how many of the three DSOs that the different areas of AMS-
data use (I1-I6) have been implemented.

19

Figure 9: Areas of use for AMS-data which the DSOs Elvia, BKK Nett and Lyse
Elnett have implemented.

Secondly, the DSOs were asked which areas of AMS-data use they were planning
to implement in the near future. The areas of use that the DSOs are actively
planning to implement are listed as I7-I12. Some of the I1-I6 areas of use are not
yet implemented by all three DSOs, as may be seen in Figure 9, but are currently
being planned for implementation by one or more of the other DSOs.

• I7: Planning transformer size requirements in transformer- and substations.

• I8: Improve voltage quality.

• I9: Customer power consumption prediction.

• I10: Fault and anomaly detection in DMS.

• I11: State Estimation.

• I12: Customer segmentation.

Figure 10 shows across how many of the three DSOs that the different areas of
AMS-data use (I1-I12) are planned for implementation.

20

Figure 10: Areas of use for AMS-data which the DSOs Elvia, BKK Nett and Lyse
Elnett are planning to implement.

5.2 Potential benefits of more extensive AMS-data use for
DSOs

Norwegian DSOs have several reasons to increase their use of utility customer AMS-
data and substation AMS-data. Through AMS-data analysis a DSO may gain both
economic advantages in addition to improve their ability to remain independent
(further outlined below).

As stated in Section 3.5.1, “inefficient” DSOs are granted a lower allowed income
for the following year. Therefore, Norwegian DSOs are incentivised to become more
efficient. For relating the term efficiency to an organization, Investopedia [15] offers
a useful definition:

Efficiency signifies a peak level of performance that uses the least amount
of inputs to achieve the highest amount of output. Efficiency requires
reducing the number of unnecessary resources used to produce a given
output including personal time and energy. It is a measurable concept
that can be determined using the ratio of useful output to total input.
It minimizes the waste of resources such as physical materials, energy,
and time while accomplishing the desired output.

One area where application of AMS-data could improve efficiency of DSOs is related
to grid development. Use of AMS-data may also help DSOs in for example billing
customers correctly. These examples could help a DSO to become more efficient,
and result in the DSO being granted a larger allowed income by RME.

The future status of many DSOs is uncertain because of the new EU [21] regulations

21

on electricity balancing, described in Section 3.6.3, which gives DSOs in Norway the
ability to manage local electricity congestion.

In order to manage local electricity congestion, i.e. balance electricity locally in their
licensed areas, DSOs will have to buy “balancing power”. Though the Norwegian
regulations are not in place yet (2020), it is currently expected that a DSO will
only be able to buy balancing power which may be activated within its own licensed
distribution area [8].

This may represent a future incentive for DSOs to merge in order to ensure that their
licensed distribution areas are large enough to incorporate the necessary balancing
power reserves [8]. Further, the challenge for DSOs of local electricity balancing may
be mitigated with the help of aggregators. Although demand response provided
by aggregators is useful in theory, there are still unresolved issues related to the
actual implementation of it, particularly for the purposes mentioned in this Section
[96]. However, if a DSO is able to better analyze the power consumption of its
customers with the help of AMS-data, the DSO could gain an understanding of
whether demand response for electricity balancing is achievable within its licence
area. If the DSO can demonstrate that demand response with an aggregator could
provide adequate electricity balancing, the DSO may not be required to merge.

5.3 Potential challenges for DSOs to actively apply AMS-
data in their operations

There are a variety of challenges facing DSOs addressing the issue of unused AMS-
data in their company. The most important are:

• An absence of in-house competence may mean that DSOs lack ambition to
pursue the use of AMS-data by themselves.

• A number highly competitive IT-companies geared towards the power system
are emerging (Cognite, Powel, Rejlers, etc.). There is now a tendency in the
industry towards decompartmentalization of DSO data, and development of
Application Programming Interface (API) layers on top of the decompart-
mentalized data which will set the stage for IT-developers to build analysis
software on top of the open APIs.

• Power companies may in some instances have a greater incentive to work
on utilization of AMS-data than DSOs. This is because, as mentioned in
Section 3.4, DSOs have given power companies the responsibility of calculating
grid losses and buying the correct volume of power to cover them. This has
been concluded from conversations with Lyse Elnett, NVE, Hafslund, BKK
Nett and Agder Energi Nett.

• The IT systems (described in Appendix I) that DSOs use today are reliable
and have been used for decades. Additionally, it is costly for a DSO to change
an IT system. For these reasons DSOs may hesitate to ask the IT system
vendors to provide additional AMS functionality.

22

• The new EU regulations on electricity balancing have not yet been written
into NVE’s regulations for the Norwegian power system.

• The Norwegian power system’s exposure to decentralized/volatile power pro-
duction has not yet become large enough for DSOs to feel the need for more
sophisticated grid management than is in operation today.

Despite these challenges DSOs are motivated to put AMS-data to use for reasons
mentioned in Section 5.2. The services provided by companies such as Powel, Cog-
nite and Rejler will not come without economic costs. Exactly how high this cost
is is out of the scope of this report to estimate, but it is possible that DSOs could
save money by implementing some solutions themselves.

5.4 Potential areas of use for AMS-data to be applied in
this study

In this section some possible areas of use of AMS-data for DSOs are listed. This
section is not intended to cover all areas of use, but rather some selected areas which
may have the potential to be utilized by Norwegian DSOs today.

5.4.1 P1: State Estimation

A future decentralization of power production, as described in Section 3.6.2, may
mean a large infeed of power in the low voltage grid. This could cause issues in
the way State Estimation (SE) is currently calculated at DSO control centres, and
create a need for SE at the lower voltage grid (400/230 V to 22 kV). SE is an
analysis function used for electric power systems, which estimates the current state
of a power system using redundant measurements [39]. In Norway, SE is computed
in the Energy Management System (EMS) of the DSO, with grid state data collected
by a Supervisory Control And Data Acquisition (SCADA) system [96]. The classical
SE algorithms work well with SCADA-collected data at high (132 kV to 400 kV)
and medium (50 kV to 132 kV) voltage levels, but would not work well on AMS-data
as they contain new variables and typically a negative measurement redundancy [1,
94]. As electricity production becomes more decentralised and perhaps as transport
is electrified, DSOs can benefit from using AMS-data to compute SE for the grid at
lower voltage. This has already been successfully demonstrated, and some examples
may be found in references [94, 78, 95].

It should be mentioned that the Distribution Management System (DMS) of a Nor-
wegian DSO typically provides the same functionality as an Energy Management
System (EMS), but for lower voltage levels. Therefore it may seem plausible that
DMS could have the ability to compute SE for the lower voltage grid. However,
there is an important difference in the interaction between SCADA and EMS, and
SCADA and DMS. Norwegian DSO’s SCADA systems typically share their server
with the DSO’s EMS, but not the DMS. This means that the data collected by the
SCADA system will need to pass through a firewall and/or a SCADA “demilitarized
zone” to enter the DMS. This would result in a time lag in calculations done by the

23

DMS, including SE. More on the hierarchy and interaction of Norwegian DSO’s
EMS, DMS and SCADA systems may be found in Appendix I.

5.4.2 P2: Outage management

AMS-data may be used in outage management for both outage detection/verifica-
tion, and outage restoration [52]. All Norwegian DSOs have an Outage Management
System (OMS) available as a package in their EMS as well as their DMS. Due to the
“small” size of most Norwegian DSOs, they generally only have an OMS activated
in their DMS. This is because their medium voltage grid (50 kV to 132 kV) is not
large or complex enough to necessitate an OMS. The low voltage grid (400/230 V
to 22 kV) is however often complex enough to warrant a need for an OMS. How-
ever, OMS systems activated in the DMS of Norwegian DSOs only have access to
data from the SCADA system [96]. This means that the OMS of today can only do
calculations based on data from substations in the low voltage grid.

During a power outage the absence of signals from AMS-meters may be detected and
used to map the area effected by the outage. Additionally, AMS-meters store data
during an outage which may be analyzed after the incident has been resolved, (§4-2
c)-d)) of Section 4.1.1. The ability of AMS-meters to function as circuit breakers
for connected utility customers, and the ability to both detect ground faults and
measure flow of active and reactive power (all mentioned in Section 4.1.1, §4-2 e)
& h)) potentially enables more advanced outage control than a DSOs OMS system
can provide today [7]. There exists many proposed methods for outage management
with the use of AMS-meters, some of which may be found in references [7, 52, 50]

5.4.3 P3: Power consumption prediction

Predicting power consumption in the utility grid may have many useful applications
for DSOs. As described in Section 3.4, DSOs have the responsibility to buy power in
the power markets to cover grid losses and to supply utility grid customers who are
not customers of a power company. If a given DSO is able to accurately predict the
consumption of utility customers the loss in the utility grid could more accurately
be predicted, and a more correct volume of power bought in the day-ahead market.
Predicting customer consumption may also have applications for demand response,
and for deciding whether or not to use an aggregator on certain occasions.

In the past, linear or logistic regression models have commonly been used to predict
customer consumption and grid losses. This is a conclusion from conversations with
NVE, TrønderEnergi, Energi Salg Norge and Lyse Elnett realted to this report.
Linear and logistic regression models are defined as supervised machine learning
models, described in Section 7.2.1, where model parameters are fit to a training
data set. However, more accurate results may be obtained with more advanced
regression models which are based on logistic regression concepts, such as neural
networks. In these newer models, like the one developed by TrønderEnergi Kraft
AS in Norway, a supervised learning algorithm is trained with AMS-data to provide
predictions which show a 30% (or more) increase in accuracy when compared to the
old linear/logistic regression models [6]. Neural networks have become a hot topic

24

of research due to their accuracy and versatility. Therefore, many research papers
may be found on neural networks for predicting time series data, some of which are
given in references [6, 29].

5.4.4 P4: Customer segmentation

Norwegian DSOs can use AMS-data to study the electricity consumption patterns
of their customers. Before installing AMS-meters at every customer, Norwegian
DSOs could only collect time series consumption measurements from substations
and customers with large power consumption in the low voltage grid. Now, DSOs
posses a wealth of time series consumption data which they can analyze.

The goal of a customer segmentation analysis for this report would be to divide
the customers into groups of similar consumption patterns. Knowing the approxi-
mate behaviour of customers in specific segments can for example be useful for grid
developers. If the developers know the typical profiles of customers which will be
connected to the grid, they can more accurately predict if the transformers in the
substations or transformer stations situated “upstream” of the new customers have
the necessary capacity. Customer segmentation can also prove useful for DSOs for
implementing tariff systems specifically designed for the defined customer segments.
Additionally, knowing the consumption behaviour of customers may represent a
basis on which aggregators can implement demand response in the future. One
pilot project looking into demand response with AMS-data and aggregators is the
Elnett21 project where Lyse Elnett is a partner [33].

5.5 Selected area of AMS-data use to be studied in this
report

One of the areas P1 to P4 of AMS-data use should be selected for further study
in this report. When evaluating the P1 to P4 study areas, they were assessed in
an Analytic Hierarchy Process (AHP). The AHP is a tool used in decision making
which aids the decision maker in taking the best decision given a set of options
and some evaluation criteria. It reduces complex decisions to a series of pairwise
comparisons by setting up an AHP matrix, where each decision option is evaluated
against each criteria [76].

Following the AHP method, the decision options P1 to P4 were evaluated according
to the following four criteria:

• C1: Feasibility of analyzing P1-P4 based on the available AMS-data.

• C2: Perceived benefit of solution of P1-P4 for DSOs.

• C3: Availability of analysis tools (algorithms).

• C4: My (the author’s) knowledge of the topic.

The potential areas of study P1-P4 were scored in an AHP matrix, Table 1, ac-
cording to criteria C1-C4 on a scale from 1-5, where a higher score indicates a more

25

favourable evaluation. The potential area of study with the highest score was chosen
for further research. The results of the evaluation were as follows:

Table 1: Potential areas of study P1-P4 scored against criteria C1-C4.
P1 P2 P3 P4

C1: 0 0 5 5
C2: 0 2 3 4
C3: 0 3 5 5
C4: 1 2 3 4
SUM: 1 7 16 18

From Table 1 it is clear that P4, customer segmentation is preferred and was there-
fore chosen as the area of AMS-data use to be studied in further detail.

26

Part II: Method development and assessment

27

6 Selecting a method for customer segmentation

(P4)

This Section describes how developing a solution to the selected topic of research, P4,
customer segmentation, was approached. The solution will comprise of a computer
programme, and the reader is in this Section introduced to the coding language
Python which is chosen as the language for programme implementation.

6.1 Current method for customer segmentation

Traditionally, utility grid customers have been assigned to customer segments at the
time of connection. This means that customers are assigned to segments before their
consumption behaviour has been observed. The list of different segments to which
customers traditionally have been assigned is shown in Figure 11.

Figure 11: The different categories that a utility grid customer connected to the
Norwegian low or medium voltage grid can be assigned to.

28

However, as outlined in Section 3.6, the Norwegian power system is currently un-
dergoing changes. One of which is the introduction of AMS-meters, explained in
Section 4. AMS-data open up for the possibility of segmenting a DSO customer
base based on the measured electricity consumption behaviour of utility grid cus-
tomers. In other words, assigning customers to segments after their consumption
behaviour has been observed.

6.2 Approach to solution development

As an approach to developing a method for customer segmentation based on the use
of AMS-data, the problem was divided into sub-problems as shown in Figure 12.

Figure 12: The approach to selecting a method for P4, customer segmentation.

Firstly, the feasibility of actually developing a customer segmentation method was
assessed. It was questioned if there already existed accessible algorithms which
could perform segmentation of time series data. As a starting point I (the author)
attended an online Machine Learning course from Stanford’s Coursera.

Developing a method would be feasible if there existed machine learning libraries
in accessible coding languages specifically designed for time series data. After some
research the tslearn library for Python was discovered. tslearn is a machine
learning library specifically written for time series, and is freely accessible to the
public.

Secondly, based on the available Python libraries, the development of a customer
segmentation computer programme was evaluated. After attending the Machine
Learning course it became clear that the algorithm type best fit for this task was
clustering (more on clustering in Section 7.2.2 and Section 7.3). After clustering
was selected as the algorithm type of choice, it became apparent that an additional
type of algorithm should be implemented in order establish an appropriate numbers
of clusters for a given time series data set. A Cluster Validation Index was chosen
for this purpose, further explained in Section 7.4.

Lastly, although not considered a main focus of this report, functionality to identify
irregularities in the data set was added. Refining the data set based on removing

29

outliers, rolling averages and dividing the data set into subsets based on mean
values was evaluated. Outlier analysis was the functionality implemented in the
programme code. Outlier analysis is based on guidance and input from the user.
Potential implementation of rolling averages and division based on mean values are
however described in Section 7.5.4.

6.2.1 Aspirational properties of the developed customer segmentation
method

The customer segmentation method would aspire to have the following properties:

• Be computer-based and developed as part of the work related to this report.

• Be scalable to handle large amounts of data.

• Be freely accessible to anyone who wishes to use it for their own purposes.
This would mean that it should be based on a freely accessible software such
as Python.

• Be modular, which means that a user may easily apply additional functionality
to the solution, or change the existing algorithms without necessarily changing
the structure of the programme.

• Be able to demonstrate feasibility and promising results.

• Be described in this report in an accessible manner to the reader.

6.3 Using Python

As described above, Python was the programming language selected for the cus-
tomer segmentation programme. This Section gives an introduction to installation
of Python, Anaconda (Python interpreter), as well as the Python libraries relevant
for the report.

Python is a high level programming language. Anaconda is an open-source distribu-
tion of the Python programming language for scientific computing, with a simple and
efficient package management system. To use the code in this report it is necessary
to install Python, and preferable to install Anaconda.

6.3.1 Installing Anaconda and Python

Start by downloading the newest version of Python here (https://www.python.org/),
followed by the newest version of Anaconda here (https://www.anaconda.com/).

The Anaconda package should include the an program called “Spyder”. Check that
you have Spyder installed by searching for it amongst your installed programs.

Figure 13 shows the logos of the three programs that are used in this report, which
should be installed.

30

https://www.python.org/
https://www.python.org/
https://www.anaconda.com/
https://www.anaconda.com/

Figure 13: The logos of Python, Spyder and Anaconda.

6.3.2 Python libraries

A Python library is a collection of functions and methods which allows a program-
mer to perform actions and computations without having to write the code for the
function/operation from the bottom up. Using libraries in Python is highly time
cost-efficient and is done to a large extent in this report. The central libraries in
this report are numpy, tslearn, pandas and matplotlib. Anaconda has numpy and
matplotlib already pre-installed, so only the tslearn and pandas libraries need to
be installed separately.

Installing pandas

pandas is a software library for the Python language which is particularly well suited
for manipulation of data structures and time series data.

To install pandas open the Anaconda Prompt. This is a command prompt window
for Anaconda which looks like a black window, as shown in Figure 14. The Ana-
conda Prompt may be found by searching for “Anaconda Prompt” in your installed
programmes.

Figure 14: The Anaconda Prompt window.

Enter the following command into the Anaconda Prompt window, and press enter:

pip install pandas

31

Installing tslearn

tslearn is a machine learning software library for the Python language which is
specifically developed for time series type data.

To install tslearn, open the Anaconda Prompt window as described in Section 6.3.2
and shown in Figure 14. Enter the following command into the Anaconda Prompt
and press enter:

conda install -c conda-forge tslearn

6.3.3 Text files and Python files

Text files are computer files that only contain text, with no special formatting such
as bold text, italic text, images etc. On computers operated by a Windows system,
text files are identified by the “.txt” file extension. Since all code in this report is
written on a Windows-based computer, text files are referred to as .txt files.

A Python file is a script file written in the Python programming language. Python
files are identified by the “.py” file extension. These files can only be run in a Python
interpreter, which is in this report chosen to be Spyder.

32

7 Theoretical background and description of meth-

ods for the customer segmentation programme

In order to understand the customer segmentation method explored in this report
it is useful to look into the theoretical background of its different components.

Three types of algorithms represent the building blocks of the programme as ex-
plained in Section 6.2. These are; distance metrics, clustering algorithms and Clus-
ter Validation Indexes (CVI). Each of these building blocks are explained in this
section. One specific distance metric, clustering algorithm and CVI is selected as
the algorithm of choice for the customer segmentation programme, as the report
is not primarily concerned with exploring the subtle differences and advantages of
various distance metrics, clustering algorithms and CVIs. However, the customer
segmentation programme is modular, which means that the selected distance met-
rics, clustering algorithm and CVI may be changed by a future user.

7.1 Distance measures relevant for the selected algorithms

In this Section the distance metrics which are used in the algorithms and methods
central to this report are described. Since the report is concerned with time series
data, the distance metrics described are especially adapted to these types of data.

The relevant distance metrics for this report are:

• Euclidean distance: Is not well suited for calculating distance between time
series, but is included in this report because it is a often a component of other
distance metrics which are useful for calculating time series distance. One
such metric is Dynamic Time Warping.

• Dynamic Time Warping: Although first designed for speech recognition in
1978, Dynamic Time Warping (DTW) has since become one of the most used
time series similarity metrics because it is able to capture time series similarity
under time distortions [77]. This means that two time series do not have to be
perfectly aligned in time for DTW to measure their similarity, which makes
DTW far more powerful than for example pure Euclidean distance that does
not take time distortion into account [98]. DTW is in this report used for data
refinement, and in the selected CVI.

• Shape-based distance: This distance metric is used in the calculation of
clusters in the clustering algorithm, K-Shape, which is central to this report.

These three distance metrics are explained in further detail in the following Subsec-
tions.

7.1.1 Euclidean distance

Euclidean distance is the mathematical formulation of a “straight line” between two
points. The Euclidean distance between points x and y is the same as the length of
the line segment connecting them. This distance may be defined by Equation (1)

33

[26].

dx,y =
√

(x− y)2 (1)

In Cartesian coordinates, given the set of points on a two-dimensional plane x =
(x1, x2, ..., xn) and y = (y1, y2, ..., yn), the Euclidean distance between x and y is
given by the Pythagorean formula, Equation (2) [26].

dx,y =

√√√√ n∑
i=1

(xi − yi)2 (2)

7.1.2 Dynamic Time Warping

Given two normalized time series x and y where:

xxx = (x0, x1, ..., xn−1), n ∈ N
yyy = (y0, y1, ..., ym−1),m ∈ N

the aim of DTW is to calculate an optimal alignment between two time series x and
y which achieves minimum “global cost” while ensuring time continuity. The global
cost is the summation of the cost between each point xi and yj in the alignment.
The cost function, denoted C(xi, jj) is typically calculated by squared Euclidian
distance, Equation (1), denoted d [98], as shown in Equation (3).

C(xi, jj) = (xi − yj)2 = d(xi, yj)
2 (3)

Figure 15: a) Dynamic Time Warping distance matrix illustration, with b) the
calculated optimal alignment illustrated.

The DTW calculation method may be illustrated as shown in Figure 15 a), where
time series x and y are aligned along the sides of an nxm matrix called the distance

34

matrix. Each element in the distance matrix will contain the distance cost between
each corresponding point xi and yj of the time series. The optimal alignment path
which is the “path” through the distance matrix with the lowest cost is marked in
green in Figure 15 b). The optimal alignment path can be thought of as a temporal
alignment for x and y such that the Euclidian distance between x and y is minimal
[98].

Mathematical formulation

DTW is formulated as the following optimization problem:

DTW (xxx,yyy) = min
π

√ ∑
(i,j)∈π

d(xi, yj)2 (4)

Where d(xi, yj)
2 is the distance between the two points xi and yj, and π = [π0, π1, ..., πK]

is the optimal alignment path as illustrated in Figure 15 that satisfies the following
properties [88]:

• π = [π0, π1, ..., πK] is a list of index pairs, πk = (ik, jk), with 0 ≤ ik < n and
0 ≤ jk < m

• π0 = (0, 0) and πK = (n− 1,m− 1)

• for all k > 0, πk = (ik, jk) is related to πk−1 = (ik−1, jk−1) as follows:

� ik−1 ≤ ik ≤ ik−1 + 1

� jk−1 ≤ jk ≤ jk−1 + 1

The optimal global cost of DTW, i.e. the DTW distance is calculated recursively
by:

D(xi, yj) = C(xi, yj) + min

D(xi, yj−1)
D(xi−1, yj)
D(xi−1, yj−1)

(5)

Where D(i, j) is an element of the cumulative cost matrix with index [i, j] (nxm
distance matrix) [98]. C(xi, yj) is the cost function as defined in Equation (3).

7.1.3 Shape-based distance

Shape-based distance is the distance metric which the clustering algorithm central in
this report uses. Firstly, the term shape-based should be defined. An algorithm may
be thought of as shape-based when it is amplitude, offset and shift/time invariant.
This means that the algorithm should recognize the similarity of two given time series
irrespective of amplitude, offset and time shift. Hence, the shape-based distance
metric described in this section and used in shape-based clustering is in theory
amplitude, offset and time shift invariant [68].

35

Amplitude and offset invariance

Amplitude and offset invariance is achieved by normalizing the data set. This means
each time series is recomputed such that its standard deviation σ′ is equal to one,
and its mean µ′ is equal to zero, i.e. each sequence x is transformed into x ′ = xxx−µ

σ

where µ is the mean and σ is the standard deviation of x [68].

Time shift invariance

Time shift invariance is computed with a cross-correlation measure, which is a sta-
tistical measure that determines the similarity of two sequences x = (x1, x2, ..., xn)
and y = (y1, y2, ..., yn) even if they are not properly aligned. Cross-correlation is
computed by sliding x over y and computing the inner product of each shift s of x .
When all possible shifts s are considered, s ∈ [−n, n], the cross-correlation sequence
CCw(xxx,yyy) = Rw−m(xxx,yyy), w ∈ {1, 2, .., 2n− 1} is computed with Equation (6) [68].

CCw(xxx,yyy) =

{ ∑n−k
l=1 xl+k · yl k ≥ 0

R−k(xxx,yyy) k < 0
(6)

The goal is to compute the position w at which CCw(xxx,yyy) is maximised. The optimal
shift will then be given by s = w − n. CCw is then normalized, to produce NCCc
in Equation (7) [68].

NCCc(xxx,yyy) =
CCw(xxx,yyy)√

R0(xxx,xxx) ·R0(yyy,yyy)
(7)

Shape-based distance calculation

After sequence x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) are transformed to enable
amplitude and offset invariance, the position w where NCCc(xxx

′, yyy′) is maximised
is computed. The shape-based distance SBD between sequences x ′ and y ′ is then
given by Equation (8) [68].

SBD(xxx′, yyy′) = 1−max
w
{NCCc(xxx′, yyy′)} (8)

SBD will take a value between 0 and 2, where 0 indicates a perfect similarity
between sequences x ′ and y ′.

7.2 Introduction to machine learning

Machine learning may be thought of as the study of computer algorithms that
automatically improve with experience. The term was originally coined in 1959 by
Arthur Samuel, who at IBM developed an algorithm for the board game “checkers”
which improved its performance with practice [48]. In 1997 Tom Mitchell [18, 59]
defined “machine learning” as:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.”

36

This definition is today through common consensus considered a formal definition of
machine learning in academia [59]. The “computer program” for machine learning
in the definition does its computation with an algorithm.

Machine learning problems are generally assigned to one of two broad categories;
supervised or unsupervised learning problems.

7.2.1 Supervised machine learning

In supervised machine learning the algorithm is given a data set to practice on
where the correct output for the data set is already known. This data set is termed a
training set. Algorithm parameters are then fit to the training set, typically through
an optimization method like gradient descent [59]. This process is illustrated in
Figure 16.

Figure 16: Supervised machine learning algorithm fitting parameters to a training
set.

When the algorithm parameters have been fit to the training set, the algorithm may
be given another data set where the relationship between the input and output of
the data in the new data set is assumed to resemble the relationship between the
input and output of the data in the training set. This way, if the parameters of the
supervised machine learning algorithm are fit well, the algorithm may be able to
predict the correct output of the data in the new data set [59]. This is illustrated
in Figure 17.

37

Figure 17: Supervised machine learning algorithm predicting the output for a new
data set with the parameters fit to a training set.

Supervised machine learning problems may be further categorized into either regres-
sion or classification problems [59] (not developed further in this report).

7.2.2 Unsupervised machine learning

In unsupervised machine learning the algorithm will attempt to derive structure
from data where it is not know beforehand what the output should look like [59].
This is illustrated in Figure 18 where a set of input data is fed into the machine
learning algorithm, and the output data depends on the type of algorithm used.
Figure 18 may give the impression that an unsupervised machine learning algorithm
always outputs a data set of the same size as the input data set, which may not be
the case. Output data set size may vary depending on the algorithm.

Figure 18: Illustration of unsupervised machine learning

Unsupervised machine learning problems are sometimes classified into clustering and
non-clustering type problems [59].

38

Clustering algorithms derive structure in a data set based on relationships among
the variables in the data. This machine learning technique is central to this report,
and is explained in further detail in Section 7.3. Figure 19 gives a simple illustration
of the result of a clustering algorithm which has been instructed to find two clusters
in a data set of variables with attributes X and Y.

Figure 19: The result of a clustering algorithm [40].

Non-clustering algorithms are another type of algorithms which may find structure
in “messy” data, and may be used in for example speech recognition.

7.3 Clustering

Clustering may be thought of as the task of grouping a set of objects such that
objects in the groups are more “similar” to each other than to objects in other
groups. As the notion of what constitutes a desirable “cluster” and what does not
varies according to both the aims of the algorithm user and to the type of data
which is to be clustered, there exists a myriad of different clustering algorithms [91].

In this report, a centroid- and shape-based clustering approach was selected. Centroid-
based because then each time series cluster can be represented by a single average
time series (the centroid), which is both visually illustrative and informative. Shape-
based because it was considered desirable to be able to capture similarities in cus-
tomer consumption profiles despite time shifts and amplitude/offset variations. This

39

means the clustering algorithm should for example be able to recognize the simi-
larity of two household’s electrical consumption pattern even if they have different
consumption levels, and even if one household leaves the house to go to work/school
at 07:00 AM in the morning, and the other one at 09:00 AM. The centroid- and the
shape-based clustering approach is illustrated in in Figure 20, where the red line is
the cluster centroid, and the clusters are formed despite of time shifts, amplitude
and offset variations (amplitude/offset variations are not shown in the pictures as
the time series have been normalised). It was also important to select a clustering
algorithm which could handle large data sets, as Norwegian DSOs usually have at
least a couple tens of thousands of customers.

Figure 20: Cluster- and shape-based time series clustering [88].

To that end the centroid- and shape-based clustering algorithm called “K-Shape”
was selected as the algorithm of choice in this report. The K-Shape algorithm was
also favourable with respect to data size scalability as the algorithm run time scales
linearly to the number of time series [68]. tslearn does include many clustering algo-
rithms besides K-Shape for time series clustering, so the tslearn KShape clustering
algorithm in the Python programme given in Appendix III and IV may therefore
easily be changed for another clustering algorithm from tslearn. All available time
series clustering algorithms in tslearn may be found in reference [88].

The reader is discouraged from using clustering algorithms not specifically designed
for clustering time series data, such as the algorithms found in Python’s popular
sklearn library. This is because they do not use distance metrics suitable for
comparing time series.

7.3.1 K-Shape

K-Shape is a centroid- and shape-based clustering algorithm applicable to time series
data. The shape-based feature is achieved by using shape-based distance as the
algorithm’s distance metric. Shape-based distance is, as explained in Section 7.1.3,
both amplitude, offset and shift invariant [68].

The clusters are computed by minimizing an objective function, which is the sum of
squared distances between each time series to its respective cluster centroid. Given

40

K clusters this can be mathematically represented by Equation (9) ??.

P ∗ = min
K∑
j=1

∑
xxxi∈pj

dist(xxxi, cccj)
2 (9)

where pj is the partition of the total data set which includes all time series in cluster
j, cjcjcj is the centroid of cluster j and dist is the Shape-based distance metric as used
in Section 7.1.3.

The centroid of a cluster may be though of as the multidimensional average of a clus-
ter, and is in the K-Shape algorithm computed iteratively until convergence. The
number of clusters that the K-Shape algorithm computes must be given as input
to the algorithm. Throughout this report, the number of clusters that the tslearn

KShape algorithm is instructed to compute is denoted K. The cluster centroid com-
putation process occurs as follows [68]:

• All time series in the data set get randomly assigned to a cluster, and the K

number of cluster centroids are computed with Equation (10).

Then, an iterative process starts where in each iteration the following steps
are executed:

� For each time series in the data set, compute its similarity with the use
of shape-based distance as described in Section 7.1.3 to all K centroids,
and place it in the cluster with the most similar centroid.

� Recalculate the cluster centroids with Equation (10).

The above steps are repeated until no time series are moved from one cluster to
another, or when a pre-specified number of iterations are performed [68].

Centroid computation method

The cluster centroids in the K-Shape algorithm are computed using Equation (10)
[68].

µµµ∗k =
∑
xxxi∈Pk

NCCC(xxxi,µµµ
∗
k)

2 (10)

7.3.2 tslearn KShape algorithm result stability

As described in Section 7.3.1, the K-Shape algorithm will repeat the cluster centroid
recalculation and time series reassignment steps until either a pre-specified number
of iterations are performed, or until no time series are changed from one cluster to
another. In the tslearn KShape algorithm used in this report, this pre-specified
number of iterations is given by the input variable max iter [88].

The tslearn KShape algorithm also includes the input variable n init, which de-
termines the number of times that the KShape algorithm will be run with different
centroid seeds, i.e. the initial random placement of clusters. The result is then the
best output of n init consecutive runs of the KShape algorithm, in terms of inertia
[88].

41

In this report, the tslearn KShape algorithm is considered to be in a “stable
zone” when, for a constant K, its produces consistent results (i.e. a stable CVI),
for max iter or n init above a certain value. It will be shown in Section 9 that the
stability of the KShape algorithm is influenced by the value of n init, not max iter.
Therefore, the formal definition of KShape algorithm stability used in this report is
when, for a constant K, the KShape algorithm produces consistent reults (i.e. a stable
CVI) for a threshold value of n init and above.

For large data sets there may exist very many possible centroid seeds. For this
reason, large data sets may need a large value for n init to reach a stable zone for
the KShape algorithm, as many different sentroids seeds can be tested.

7.3.3 Cluster usefulness

The usefulness of a cluster partition will vary according to the type of data that
is clustered, and according to the aims of the user. However, there exists some
characteristics which may be beneficial as guidelines for assessing cluster partition
usefulness [91]. These are:

• Compactness: The clusters should be homogeneous within partitions, and
heterogeneous between partitions.

• Differentiable: The cluster partitions should be conceptually distinguishable.

• Substantial: The clusters should be large enough so that the algorithm user
is able to gain some use or knowledge from it.

• Stable: The cluster partitions should be stable over time.

Compactness can be assessed with the use of CVIs, and substantiality is managed
through outlier analysis in Section 7.5 or through the choice of K. Cluster differen-
tiability and stability will, however, need to be assessed by the user of the customer
segmentation programme developed for this report. This may be done by visually
inspecting the clusters and centroids, and by testing the AMS-data over different
time intervals. Stability over time of the K-Shape algorithm is demonstrated in
section 9.2.5.

7.4 Cluster Validation Index

A Cluster Validation Index (CVI) aims to validate how good a given cluster partition
is. In this report a CVI will be used to evaluate the partition compactness for a
given number of clusters K, with the goal of assisting the identification of an optimal
number of partitions, K optimal, for a given time series data set.

There exists no one perfect CVI, so ideally multiple CVIs should be evaluated to
determine the optimal partition [91, 5]. However, since this report deals with time
series not many attractive options for CVIs exist. Most CVIs which are robust and
accessible for Python may be found in the sklearn machine learning library. Un-
fortunately sklearn does not work very well with time series since distance metrics

42

are not adapted for time series and is commonly calculated with Euclidean dis-
tance, which is not time invariant. tslearn builds on sklearn, and is particularly
constructed to deal with time series. However, tslearn only includes one CVI,
silhouette score which uses DTW as its distance metric. Fortunately the Silhou-
ette Index is regarded as a highly accurate CVI which can in many cases achieve
satisfactory results on its own [12, 11, 75].

The author and developer of the tslearn library, Romain Tavenard, was contacted
in the context of this report concerning CVIs for time series. He confirmed that
sklearn CVIs are ineffective when used on time series data. tslearn would not
immediately be developing more CVIs adapted to time series, but would be happy to
receive contributions regarding CVIs to add to the tslearn library in addition to the
silhouette score function which already exists. These statements indicate that
further CVIs may be developed at a later date. Since the customer segmentation
programme is modular it will be possible to include other CVIs for time series once
they become available in tslearn or any other Python library.

7.4.1 Silhouette analysis

Silhouette analysis is the computation of a measure which describes how similar an
object is to its own cluster, compared to other clusters [75].

Suppose a data set DS contains object i where i ∈ [1, 2, ..., N]. Suppose object
i belongs to cluster group A, after DS which contains i has been run through a
clustering algorithm [75].

When cluster A contains other objects apart from i, it is possible to calculate the
average dissimilarity of object i to all other objects in A. Dissimilarity is computed
with a distance measure d, most commonly Euclidean distance, Equation (1) [75].
The Silhouette algorithm from tslearn used in this report uses DTW as a distance
measure, not Euclidean distance due to its weaknesses when calculating distance
between time series as discussed in Section 7.1.

The following steps are applied to a clustered data set for Silhouette analysis. First
calculate:

a(i) = average dissimilarity (distance) of i to all other objects of A

a(i) =
1

| A(i) | −1

∑
A(i),i 6=j

d(i, j) (11)

where | A(i) | is the number of data points in the cluster A assigned to the ith data
point. a(i) can be visually represented as the average distance of all lines within A
in Figure 21. Every black point in Figure 21 represents an object in the data set
DS [75].

43

Figure 21: Silhouette analysis first step: calculate dissimilarity between object i in
cluster A to all other objects in cluster A, as derived from [75].

Now consider any cluster different from A, denoted cluster C, and compute:

d(i, c) = average dissimilarity of i to all objects of C

b(i) =
1

| C(j) |
∑
j∈C(j)

d(i, j) (12)

where | C(j) | is the number of data points in the cluster C. d(i, c) can be visually
represented as the average distance of all lines between i and the objects in cluster
C in Figure 22.

44

Figure 22: Silhouette analysis second step: calculate distance (dissimilarity) between
object i in cluster A and all objects in cluster C 6= A, as derived from [75].

After computing the average distance d between i and all objects in clusters C 6= A,
the smallest distance b(i) is selected [75]:

b(i) = minC 6=A d(i, C)

Denoting the cluster for which this is attained cluster B (i.e. d(i, B) = b(i)), the
Silhouette coefficient s(i) of object i can be defined as [75]:

s(i) =

1− a(i)

b(i)
if a(i) < b(i)

0 if a(i) = b(i)
b(i)
a(i)
− 1 if a(i) > b(i)

(13)

or

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(14)

It may be seen from Equation (13) and Equation (14) that −1 ≤ s(i) ≤ 1.

The higher the value of s(i) is, the better the assessment for object i to the given
cluster is. The average of s(i) over [1, 2, ..., N] is used as a basis for evaluating the
quality of a given partition (clustering) of DS. The best clustering is achieved when
the average s(i) is maximised [75].

7.5 Refine data set

In this Section, some methods for data set refinement are proposed. Of the proposed
methods, outlier analysis is implemented in the developed customer segmentation
programme, as described in Section 8.

45

7.5.1 Outlier analysis

Outliers are broadly considered as observations which do not conform to expected
behaviour [9]. A more formal definition of time series outliers was given by M.
Hawkins [30] in 1980:

“An observation which deviates so much from other observations as to
arouse suspicions that it was generated by a different mechanism.”

However, the concept of what constitutes an outlier and what does not is context-
dependent. The user of the programme will have to decide what he or she deems as
an outlier in the specific data set that is being analyzed.

Outlier identification and analysis can be helpful in improving the Silhouette score
in sets of time series if the set of time series displays overall low cluster compact-
ness. This effect may be observed in Section 9.2.6. Additionally, outliers may be
important to detect because of results in Section 9.2.6 demonstrating that the out-
put of the K-Shape and Silhouette algorithms may become unpredictable if enough
randomness exists in the data set. Furthermore, outlier analysis may help improve
the substantiality of clusters, which is a condition for cluster usefulness as described
in Section 7.3.3.

Outlier analysis has to be used with caution. There is a fine line between removing
outliers that disturb the algorithms, and removing valuable data from the data set.

An outlier can be either “unwanted data” or an “event of interest”. In case events
of interest are captured by the outlier analysis, they may be interesting to analyse
separately. This is illustrated in Figure 23.

Figure 23: Meaning of outliers in time series data depending on the aim of the
analyst, as adapted from [9].

7.5.2 Choice of outlier analysis methods in this report

The customer segmentation model developed in this report is modular, and a module
for outlier analysis is included. However, outlier analysis is not considered a main
element of the report. Therefore, only simple outlier analysis methods are included.
These methods are based on DTW, and on the user of the programme visually
inspecting the data set and the clustering results. Additionally, analysis performed
for this report have shown that in instances of large amounts of random data (≈
10 % of the data set), or varying sizes in cluster groups, the method developed is
still able to deliver adequate results even without outlier analysis is not performed
(Section 9.2.6). In any case, outlier analysis is included in the customer segmentation
programme as an option, not a requirement.

46

The following method is proposed: Separate the data set into inliers and outliers
and analyse these separately. The inlier data set will contain the majority of data,
and the outlier data set will contain the data which is assumed to impact the par-
tition quality of the inlier data set negatively. This way, no data is deleted in the
programme, but sorted into a separate category.

Three methods for detecting and removing outliers from a time series data set are
proposed. All thee methods are flexible and require input from a user. The meth-
ods are: Removing sparse/undesirable clusters (OD1), removing outliers based on
extra-cluster dissimilarity (OD2), and removing outliers based on intra-cluster dis-
similarity (OD3). The following Subsections explain these three methods in turn.

OD1: Remove sparse/undesirable clusters

In this method, the data set is clustered into either the optimal number of clusters
given by a Silhouette score, or into the number of clusters which the program user
wishes to compute in the data set. The user of the program may then visually
inspect the clusters and remove clusters that he/she judges to be an outlier cluster.
Alternatively, a threshold which specifies how sparse an inlier cluster may be applied,
where clusters below the sparseness threshold are moved from the inlier to the outlier
data set.

OD2: Remove outliers based on extra-cluster dissimilarity

In this method, the data set is first clustered into the optimal number of clusters
(judging by the Silhouette Score), then each cluster centroid is compared with DTW
to each time series in the entire data set. A DTW threshold is then specified. All
time series which achieve a “worse” DTW-score that the threshold when compared
to all clusters will be removed from the inlier data set to the outlier data set. This
is illustrated in Figure 24 and Figure 25.

As an example, given a data set of 218 time series, and an optimal number of
clusters K optimal=2, the centroid of cluster 1 and the centroid of cluster 2 are in
turn compared to all 218 time series. Figure 24 shows a screenshot of an extract of
the result when this is applied to an actual AMS time series data set.

47

Figure 24: Comparing (DTW) cluster centroids to each time series in a data set.

If a DTW threshold of 11 were applied, the following time series would be selected
and moved from the inlier data set to the outlier data set. The outliers are marked
in red in Figure 25.

48

Figure 25: Selecting time series which are found to be outliers in all clusters.

OD3: Remove outliers based on intra-cluster dissimilarity

In this method, the data set is clustered into either the optimal number of clusters
given by a Silhouette Score, or into the number of clusters which the program user
wishes to compute in the data set. Each cluster centroid is then compared using
DTW to each time series that “belong” to the cluster. A DTW threshold is applied
by the program user to the intra-cluster DTW score, and time series that have a
“worse” score than the threshold will be moved from the cluster to the outlier data
set.

7.5.3 Possibility to implement other methods of outlier analysis

As stated in Section 7.5.2 the customer programme model is modular, which im-
plies that it is possible to implement more advanced outlier analysis code in the
programme. One such advanced outlier analysis method evaluated for use was time
series residuals analysis. The residuals of a time series may be computed in Python
with the statsmodels library’s Seasonal-Trend decomposition using LOESS (STL)
functions. Information on the statsmodels STL functions may be found in resource
[80], and information on analysis of residuals may be found in resource [31].

Although not written into the programme code in Appendix IV it is easily possi-
ble to modify the code so that a customer segmentation analysis can be performed
on the outlier data set independently. This could be done by uploading the out-
lier DataFrame to a Comma-Separated Values (CSV) file with a pandas function,

49

and then uploading the outlier CSV-file into the start of the programme as the
programme “main file”.

A thorough survey of time series outlier detection techniques may be found in re-
source [9].

7.5.4 Time series manipulation

Though not included in the customer segmentation programme in this report, it
is possible to manipulate the AMS-data in Step 2. of the programme as shown in
Figure 28. The two forms of time series manipulation which were considered for the
programme but not included were rolling averages, and dividing the AMS-data set
into subsets based on mean measurement values.

Using a rolling average on a data set could help to “smooth out” some short-term
fluctuations in the data, while still preserving the overall shape of the time series.
This would assist the K-Shape algorithm from tslearn to compute the clusters and
cluster centroids more efficiently. tslearn includes three functions for computing
rolling averages of time series data. Examples of the application of these three
functions is shown in Figure 26. Details on the individual functions in Figure 26
may be found in reference [88].

Figure 26: Different functions for computing rolling averages of time series found in
the tslearn library [88].

Dividing AMS-data into subsets based on the mean of the different time series
could prove useful when analysing small-scale and large-scale utility customers sep-
arately. As can be seen in Figure 27, which is a plot of the AMS-data set analysed
in Section 10.1, it may be interesting to analyse large- and small-scale customers
separately. This could be done by calculating the mean of each time series with
numpy.mean in Python along the first axis of the data set, and then dividing the
data set into subsets according to thresholds for the mean.

50

Figure 27: AMS data set spanning one week in 2018 used in this report.

51

8 The developed customer segmentation programme

This Section explains the developed programme for discovering customer groups
of similarly shaped power consumption profiles within a set of AMS-data. The
programme is based on a clustering approach (introduced in Section 7.2.2).

Figure 28: Developed method for producing customer segments given a set of AMS-
data.

52

When the programme is running, it will ask the user to specify two types of parame-
ters. The first parameter, n init, defines how many iterations the KShape algorithm
(i.e. the K-Shape algorithm from tslearn) will be run for. This parameter, varies
according to the “stability limits” of the KShape algorithm for the specific data set.
Further elaborated in Section 7.3.2.

The second type of parameters is an input to the KShape algorithm which specifies
how many clusters the algorithm will find in the data set. An interval of K, between
K min and K max is specified by the programme user based on what partitions the
user considers to be realistic/practical to test the suitability of for a given AMS time
series data set, i.e. the various number of clusters to be tested by the algorithms
for the data set. It may not be clear to the programme user how many partitions
he/she wishes to find in the data set. Instead the user defines an interval. This
aims to ensure a result with a reasonable and practical number of clusters, when in
theory each time series could be defined as one cluster.

The most important steps in the developed computer programme is illustrated in
Figure 28.

The selected customer segmentation method in Figure 28 consists of the following
steps:

1. The algorithm starts with a set of AMS-data which is listed row-wise in a .txt
file as input. Some AMS-data formats are explained in Section 4.4, giving the
reader an idea of its initial appearance.

2. The AMS-data is converted with code in Python such that it is stored in a
format which is readable to the algorithms in the Python tslearn library.
More on the required format of the data following data preparation is found
in Section 9.1.

3. The AMS-data is then normalized to facilitate a shape-based customer seg-
mentation approach. This means that the clustering algorithm recognizes the
similarity of two customer consumption profiles irrespective of amplitude vari-
ations, offset variations and time shifts. This is explained in more detail in
Section 7.1.

Before entering Step 4) the programme user will be asked to select a value
for n init, which will decide the integer number of iterations that the KShape

algorithm performs for each K in Step 4). The value for n init that produce
stable Silhouette scores for any given K can be found experimentally by varying
n init, while keeping K constant. Generally, larger/more complex data sets
will require a larger n init. More on n init and K-Shape algorithm stability
is found in Section 7.3.2.

4. K is used to denote the number of clusters that the clustering algorithm in
the customer segmentation programme is instructed to find in the AMS-data
set. K is an integer which is incrementally increased in a for loop from some
minimal K (K min), to some maximal K (K max) which are defined by the user
of the programme. K min and K max define the interval of customer segments

53

to be tested. An interval of Ks is tested in order to generate Silhouette scores
for multiple Ks in Step 5) and aid the user in selecting a K suitable for the data
set.

5. The partition quality of each K used in the for loop is then tested by a CVI.
When the for loop is completed, i.e. the CVI (i.e. Silhouette scores) for all
K min to K max is calculated. Following this, the programme presents the user
with the complete set of CVI scores for all K. This aids the user in determining
the choice number of customer segments in a specific set of AMS-data in Step
6).

6. K optimal is used to denote the optimal number of clusters K, as found by a
CVI within the defined interval between the selected K min and K max. Specif-
ically for the Silhouette algorithm, the score closest to +1 is the optimal score,
as explained in Section 7.4.1. The K for which the optimal Silhouette score
is achieved is denoted K optimal. However, the programme user may chose
another K, for example in the case where K optimal is calculated to be small,
e.g. K optimal=2 or large, e.g. K optimal=K max.

7. After selecting a K, the programme will plot the generated clusters, as well
as the highlighted cluster centroids. The user is then able to visually inspect
the clustering, and evaluate the programme results. Some guidelines as to
evaluate clustering results may be found in Section 7.3.3.

8. Based on the evaluation of the results in Step 7), the user can chose to refine
the data set by performing an outlier analysis as described in section 7.5.2.

9. Based on three simple outlier detection methods (OD1, OD2 and OD3) ex-
plained in Section 7.5, the AMS-data is sorted by the user of the programme
into an outlier and inlier data set. This way, no data is deleted in the pro-
gramme.

After one of the three outlier detection methods have been applied, the pro-
gramme directs the user back to Step 4). The steps Step 4) to 8) are then
repeated with the refined data set, i.e. the inlier data set. This is because after
removing outliers the Silhouette scores for different Ks changes, and partition
quality may improve.

10. When the programme user is of the opinion that (further) refinement of the
data set does not bring advantages, and/or considers the cluster partitions
satisfactory, the programme is terminated.

54

9 Assessing the developed customer segmentation

programme using known data

In this Section the customer segmentation model as described in Section 8 is assessed.
This is done by first testing the programme on a known data set, to see if the
programme gives the results that are known beforehand to be “correct”. Then,
the programme is tested on an AMS-data set obtained from the DSO Lyse Elnett.
Finally, the programme is compared to the currently applied standard DSO customer
segmentation model as described in Section 6.2 and Figure 11.

9.1 Data preparation phase

This Subsection describes the data preparation phase of the customer segmentation
model, which is step 2) in the illustration of the model in Figure 28, Section 8.

The data preparation phase of the AMS-data analysis does not include any machine
learning code, and is mainly focused on indexing and sorting the data set to a format
which appropriate for the subsequent steps of the programme. A chart of the data
refinement and manipulation process is shown in Figure 29.

Figure 29: Chart of the data preparation phase of AMS-data analysis.

The data preparation code is written for a data set which has a format as shown in
Figure 30. The code is given in Appendix II, with an explanation of how the code
may be adjusted to AMS-data of other formats than the one shown in Figure 30.
These other formats are described in Section 4.4.

Figure 30: Data set for which the data preparation code is written.

55

The result of the data preparation code is a .txt file where all AMS time series are
sorted by ID row-wise and time column-wise. This is illustrated in Table 2.

Table 2: The format to which the processed AMS-data set is written to a .txt file.
Start date time Start date time + 1h ... End date time

First ID 3.09 4.92 ... 3.45
Second ID 3.83 3.11 ... 4.04
...
Final ID 0.46 0.44 ... 1.4

For a data set to be usable to a tslearn function it will need to have the format
as shown in Table 2, because this is the format that the tslearn Python library is
able to understand.

9.2 Performance test of simplified programme without out-
lier analysis

The steps 1) to 6) of the customer segmentation model as shown in Figure 28
was tested to assess how effective the Silhouette and K-Shape algorithms are in
evaluating the optimal number of clusters K optimal in a time series data set, and
how the data set is partitioned given K optimal.

Figure 31: The programme steps 1) to 6) used in this Section for testing known data
sets.

56

Before using the complete customer segmentation programme (Figure 28) to analyse
and detect customer groups in actual AMS-data sets, the method was tested with
a known data set where the different time series groups were visually distinct and
identifiable. It was considered important to test whether the Silhouette and K-Shape
algorithms would provide the results that were known beforehand to be correct.

Reproducibility of scientific research is important for the credibility of the work, and
to enable peer-review [72]. The reproducibility of results found in Section 9.2 and
Section 9.3 aims to ensure the credibility of the findings in this report. As such,
Appendix III and Appendix IV contains all code used in every test performed for
Section 9.2 and Section 9.3. It should be possible to recreate all data sets used in
Section 9.2 and Section 9.3 with the code from Appendix III and Appendix IV, and
thus reproduce analysis results with the Silhouette analysis and K-Shape clustering
code. The reader should practice some caution when attempting to reproduce results
in Section 9.2.6 and Section 9.3 due to the randomness of the data added in these
tests. Care has been taken to not draw firm conclusions when statistically significant
results were lacking, and therefore analysis results should probably be possible to
reproduce even though the data set contains (pseudo) randomness.

9.2.1 The applied known data set

The known data set consists of four known and distinct time series groups, with
a minimum of 50 time series per group. The following time series groups were
included:

• A square wave time series set with a varying amplitude, with no phase shift
and a constant frequency.

This time series group was chosen to demonstrate the amplitude invariance of
the programme.

• A sine wave time series set with a slight phase shift between some of the sine
wave time series, no varying amplitude and a constant frequency.

This time series group was chosen to see what effect two periodic time series
groups (the sine and square wave groups) with different frequencies would have
on the programme.

• A set of time series made available by tslearn characterised by a peak, then
drop, and finally stabilising to the starting value. These time series are shifted
in time and have slightly varying amplitude and offset.

This time series group was included to test the accuracy of the K-Shape and
silhouette algorithm for non-periodic time series.

• A set of time series made available by tslearn characterised by a sloping
increase in level from one stable level to another higher level. Some time
series in this group also display oscillations after reaching the higher stable
measurement value. The time series in this group are shifted in time and have
a slightly varying amplitude and offset.

57

This time series group was also included to test the accuracy of the K-Shape
and silhouette algorithm for non-periodic time series.

The different time series groups listed above are shown in Figure 32. This data set
forms the basis for the tests performed in Section 9.2.2 to Section 9.3.

As the unit-value on the y-axis of the different known time series groups was unde-
fined, the y-axis value have been assumed (for illustrative purposes) to be kilowatt
hours, kWh. The value on the x-axis have been assumed to be time, in hours.

Figure 32: The known time series groups used for testing the developed programme.

9.2.2 Base case

The code given in Appendix III, Section C.1 was tested on the set of time series
described in Section 9.2.1. The original appearance of the time series data set before
any operations were performed on them are displayed in one plot in Figure 33.

58

Figure 33: All time series in the Base case data set.

As explained in Section 7.1.3, amplitude and offset invariance are implemented by
normalizing all time series in the data set. The appearance of the time series data
set after normalization is shown in Figure 34.

Figure 34: All time series in the Base case data set, normalized.

The Silhouette algorithm tested each partition of the normalized data set between
K=2 and K=9, and gave the results shown in Table 3 and Figure 35:

59

Table 3: Silhouette scores for all partitions of the Base case data set, between K=2
and K=9 clusters.

Number of clusters: Silhouette Score:
K = 2 0.352
K = 3 0.619
K = 4 0.884
K = 5 0.801
K = 6 0.813
K = 7 0.779
K = 8 0.757
K = 9 0.593

Figure 35: Silhouette score for all partitions between K=2 and K=9 clusters.

From Table 3 and Figure 35 it is clear that the Silhouette algorithm gives the
partition of K=4 an optimal score, i.e. K optimal=4. This is the desired result.

The K-Shape algorithm was instructed to find K optimal=4 clusters, in order to
view the discovered optimal solution. The resulting clusters are shown in Figure 36.
The red time series in each plot is the cluster centroid found in the cluster partition
by the K-Shape algorithm.

As explained in Section 7.1.3, the clustering algorithm provides offset, amplitude and
time shift invariant time series centroids, i.e. the K-Shape algorithm uses shape-
based distance. Since the centroids are phase invariant, a slight phase shift may be
observed in Figure 36, particularly in Cluster 2 and 4 between cluster centroid and
cluster time series.

60

Figure 36: Result of using K-Shape clustering on the Base case data set, with
K optimal=4.

It may be concluded from the results that given a known data set with visually
distinct groups the Silhouette algorithm is able to calculate an optimal number of
clusters K optimal, which corresponds to what may be found when visually inspect-
ing the data set. It may also be concluded that the K-Shape algorithm finds the ex-
pected partitions in the time series data set provided K optimal which is calculated
by the Silhouette algorithm. The resulting cluster centroids visually correspond well
to the cluster partitions.

Algorithm stability for the Base case

With the conditions for KShape algorithm stability described in Section 7.3.2, the
stability region of the KShape algorithm was tested for the Base case for K between
2 and 9, by varying max iter between 100 and 1000, and n init between 2 and
200. A segmentation result was considered stable if it received consistent Silhouette
scores. The results are illustrated in Figure 37. Green zones in the tables are
considered stable areas, while red zones are unstable areas. From Figure 37 it
may be seen that the size of max iter does not influence algorithm stability, while
n init does. However, increasing n init is far more computationally expensive for
the algorithm than increasing max iter. For this reason, n init will be selected
at the approximate stability boundary. For the Base case the approximate stability
boundary lies at n init=40 for K between 2 and 9, as may be seen in Figure 37.

61

Figure 37: The stability regions for the Base case, for K between 2 and 9.

9.2.3 Effect of changing number of time series in one time series group

The code in Appendix I, Section C.2 was tested with one of the four time series
groups described in Section 9.2.1 made to be very sparse. The other time series
groups remained unchanged. The sparse time series group, which was chosen to be
the sine wave group had only three time series as apposed to 50 which was the case
in the Base case. The new data set a), and its difference to the data set used in the
Base case b) is seen in Figure 38.

Figure 38: a) is the data set used in this section which has a sparse sine wave group
after normalization, and b) is the data set used in the Base case test, normalized,
which illustrates the Base case size of the sine wave group.

The Silhouette algorithm tested each partition of the normalized data set between
K=2 and K=9, and gave the results shown in Table 4 and Figure 39.

62

Table 4: Silhouette scores for all partitions of the data set with one sparse sine wave
group, between K=2 and K=9 clusters.

Number of clusters: Silhouette Score:
K = 2 0.526
K = 3 0.542
K = 4 0.888
K = 5 0.780
K = 6 0.796
K = 7 0.666
K = 8 0.624
K = 9 0.512

Figure 39: Graph of Silhouette scores for all partitions of the single sparse group
data set, between K=2 and K=9 clusters.

Again, as may be seen from Table 4 and Figure 39, the optimal number of clusters
was found to be K optimal=4. The K-Shape algorithm was then instructed to find
K optimal=4 clusters in the data set, which produced the clusters and centroids
shown in Figure 40.

From these results it may be observed that the Silhouette algorithm is able to detect
sparse clusters and differentiate them from larger clusters. It is also interesting to
observe that the maximum Silhouette score for the case in Section 9.2.2 is slightly
lower than the maximum Silhouette score for the case in this section. This may be
because the data set has been reduced by 47 time series samples.

The K-Shape algorithm is also able to correctly identify the sparse cluster and
differentiate it from the other larger clusters when given the optimal number of
clusters K optimal.

63

Figure 40: Result of using K-Shape clustering on the data set with one single sparse
group, with K optimal=4.

Algorithm stability

The stability of the K-Shape algorithm was tested for values of max iter between
100 and 1000, and for values of n init between 2 and 600 for all K between 2 and
9. The results are shown in Figure 41.

Figure 41: K-Shape algorithm stability for the data set with one sparse time series
group.

64

It may again be observed that the variable max iter does not effect the stability of
the K-Shape algorithm. It may also be observed from Figure 41 that the K-Shape
algorithm has become significantly less stable when compared with the Base case,
Figure 37 (K-Shape algorithm becomes stable for n init≈40 iterations for K between
2 and 9). This may indicate that the K-Shape algorithm becomes less stable when
attempting to find clusters in data sets with sparse groups. For the data set in this
section, the K-Shape algorithm becomes stable for n init≈600 for K between 2 and
9.

9.2.4 Testing time invariance of periodic time series

Time/phase invariance may already be observed in the Base case, Figure 36 Cluster
1 and 3. However, it was unknown whether the Silhouette and K-Shape algorithms
would cluster two periodic time series of opposite phase into one or two clusters.
This property was tested by adding a sine wave of opposite polarity to the sine time
series data set, to see if the K-Shape algorithm would differentiate the sine waves.
The code for this test is given in Appendix I, Section C.3. The two time series
groups imported from tslearn as described in Section 9.2.1 were removed from the
data set to simplify it. The data set then included:

• The square wave group as described in Section 9.2.1, with slightly fewer data
points per time series (150 in this data set, and 275 in the data set in the Base
case).

• The sine wave group as described in the Section 9.2.1, with slightly fewer data
points per time series (150 in this data set, and 275 in the data set in in the
Base case).

• A sine wave group identical to the one described in Section 9.2.1, but with 180
degrees phase shift. This group also had 150 data points per time series.

The data set had the appearance as shown in Figure 42 before and after normaliza-
tion.

Figure 42: Time series data set for testing time invariance before and after normal-
ization.

The Silhouette algorithm tested each partition of the normalized data set between
K=2 and K=5, and gave the following results:

65

Table 5: Silhouette scores for all partitions of the data set used for testing time
invariance, between K=2 and K=5 clusters.

Number of clusters: Silhouette Score:
K = 2 0.848
K = 3 0.575
K = 4 0.717
K = 5 0.624

Figure 43: Silhouette scores for all partitions of the time invariance testing data set,
between K=2 and K=5 clusters.

From Table 5 and Figure 43 it is clear that K optimal=2 produces the best partition
result. When told to produce K optimal=2 clusters, the K-Shape algorithm gives
the results displayed in Figure 44.

Figure 44: Result of using K-Shape clustering on the data set for testing time
invariance, with K=2.

These results demonstrate that the method is time invariant, and will group periodic
time series into the same cluster, even if they are of opposite phase. The algorithm
stability was not tested for this Section, as it was evaluated to have no utility when
compared to the Base case. n init was chosen at the stability boundary of the Base
case, which was 40 iterations.

66

9.2.5 Effect of length of data set on programme accuracy

The programme code given in Appendix I Section C.4 was tested to see if it would
provide different results given a data set half the length of the data set in Sec-
tion 9.2.1. In the Section 9.2.1 each time series has 275 measurement points, while
the time series in the data set used in this Section and shown in Figure 45 contained
only 136 data points per time series.

Figure 45: The data set used for testing the programme with shorter time series,
before and after normalization.

The Silhouette algorithm tested each partition of the normalized data set between
K=2 and K=9, and gave the results shown in Table 6 and Figure 46:

Table 6: Silhouette scores for all partitions of the shorter time series data set,
between K=2 and K=9 clusters.

Number of clusters: Silhouette Score:
K = 2 0.238
K = 3 0.509
K = 4 0.812
K = 5 0.771
K = 6 0.724
K = 7 0.725
K = 8 0.780
K = 9 0.665

67

Figure 46: Silhouette scores for the shorter time series data set.

As may be seen from Table 6 and Figure 46, the optimal number of clusters was
found to be K optimal=4. The K-Shape algorithm was then instructed to find
K optimal=4 clusters in the data set, which produced the clusters and centroids
shown in Figure 47.

Figure 47: Result of using K-Shape clustering on the data set used for testing the
effect of using shorter time series, with K=4.

As may be seen in Figure 47 the programme produced the “correct results”, and the
cluster centroid is similar in shape to the four different time series groups. It should
be noted that the shape of the time series has remained largely intact, even though
data has been removed. This result seems to indicate that for the known data set
the K-Shape algorithm is stable as long as the predominant shape of the time series

68

remains present. Stability over time, i.e. over varying time periods of the data set,
was a condition for cluster usefulness as described in Section 7.3.3.

Algorithm stability

The stability of the K-Shape algorithm was tested for values of max iter between
100 and 1000, and for values of n init between 2 and 400 for all K between 2 and 9.
It may again be observed that the variable max iter does not affect the stability of
the K-Shape algorithm. It may also be observed from Figure 48 that the K-Shape
algorithm has become less stable when compared with the Base case, Figure 37.
This may indicate that the K-Shape algorithm’s accuracy is reduced by having less
data in the data set.

Figure 48: Result of using K-Shape clustering on the data set with shorter time
series, with K optimal=4.

9.2.6 Effect of adding randomness to the data set

Up until this point the method has been tested with well-defined time series groups
that include a small to no degree of randomness/noise. In this section, Random Walk
time series will be added to the known data set to test how severely the method
affected by increasing randomness in the data set.

To the data set described in Section 9.2.1, 25 Random Walk time series were added.
This means that around 10% of the time series in the data set displayed random
behaviour. The Random Walk time series were computed with the formula ts[t] =
ts[t − 1] + a, where a is drawn from a normal distribution of mean µ = 0 and
standard deviation σ = 1 [87]. This was done with the code given in Appendix II,
Section C.5. Ten such time series were generated and tested in ten different run of
the programme as illustrated in Figure 31 for this Section.

Figure 49 shows a data set used in one of the ten runs. The Random Walk time
series are clearly visible, particularly before the data set is normalized.

69

Figure 49: Time series data set from the Base case with 25 Random Walks included,
before and after normalization.

The accuracy of the Silhouette algorithm was tested with the ten data sets in turn.
The following results were obtained:

Table 7: Silhouette scores for all partitions of the data set with 25 Random Walks,
between K=2 and K=9 clusters.

Number of clusters: Average Silhouette score:
K = 2 0.287
K = 3 0.521
K = 4 0.668
K = 5 0.706
K = 6 0.708
K = 7 0.592
K = 8 0.578
K = 9 0.534

Figure 50: Silhouette scores for ten separate runs of partitions between K=2 and
K=9 of the time series data set with 25 Random Walk time series, including a graph
of the average Silhouette score across the ten runs.

The results in Table 7 and Figure 50 show that adding randomness to the data set

70

may make the Silhouette and K-Shape algorithms behave unpredictably, i.e. the ten
runs of the programme provided varying Silhouette scores. Averaging the Silhouette
scores of the ten runs gave some indication of the range in which K optimal may be
found. Even though no clear conclusions can be drawn from the results given with
ten runs in Table 7 and Figure 50, it appears likely that the Silhouette algorithm
will determine an optimal partition of K optimal=4, K optimal=5 or K optimal=6
when the data set described in the Base case includes 25 Random Walks.

The following figures provide illustrations of the clusters and cluster centroids found
in data sets where K optimal=4, K optimal=5 or K optimal=6.

In a data set where K optimal=4, the partitions and cluster centroids were as shown
in Figure 51.

Figure 51: Base case data set including 25 random walks K-Shape output given an
optimal Silhouette score for K optimal=4 partitions.

In a data set where K optimal=5, the partitions and cluster centroids were as shown
in Figure 52.

71

Figure 52: Base case data set including 25 random walks K-Shape output given an
optimal Silhouette score for K optimal=5 partitions.

In a data set where K optimal=6, the partitions and cluster centroids were as shown
in Figure 53.

Figure 53: Base case data set including 25 random walks K-Shape output given an
optimal Silhouette score for K optimal=6 partitions.

It may be observed from Table 7 and Figure 50 that K optimal generally achieves
a lower Silhouette score than in Table 3 from the Base case. This indicates that
cluster compactness in the data set as defined in Section 7.3.3 has been reduced by
adding the Random Walks.

As is seen from Figure 51, Figure 52 and Figure 53, cluster centroids of the time series
groups described in Section 9.2.1 have largely preserved their shape even though the
data set now contains 25 Random Walks.

72

The algorithm stability for one specific data set at shown in this Section is tested
in Section 9.3. In this Section n init was selected to be 200.

From Figure 52 and Figure 53 it can be seen that even though the K-Shape algo-
rithm is told to calculate more than four clusters, it does not separate all Random
Walks from the existing time series groups. Due to this, cation should be taken
when assigning K optimal without due consideration for a data set which includes
a significant amount of randomness, or where the optimal K optimal is not visually
obvious. Furthermore, this result indicates that outlier analysis may be useful (
please refer to Section 7.5 for additional detail).

9.2.7 General conclusions from assessment of the developed model

From tests performed in Section 9.2.2 to Section 9.2.6, some general conclusions on
the developed programme can be drawn:

• Given a data set of multiple, well-defined time series groups, the developed
programme:

� is able to correctly assess the number of distinct time series groups in the
data set.

� is able to correctly cluster the time series groups given the calculated
optimal number of time series groups in the data set.

� produces shape-based time series clusters and cluster centroids, i.e. the
clusters and cluster centroids are amplitude, offset and phase/time in-
variant.

� is not prone to significant inaccuracy given variations in group sparseness
when calculations are performed within the K-Shape algorithm’s stability
zone.

� is not prone to significant inaccuracy given variations in length of the time
series when calculations are performed within the K-Shape algorithm’s
stability zone.

� produces clusters and cluster centroids which appear to be stable over
time if the predominant shape of the time series remains.

• Given a data set of multiple, well-defined time series groups, the KShape algo-
rithm:

� displays reduced stability given increased sparseness of a time series group
in a data set (requires a higher value for n init).

� displays reduced stability given a set of shorter time series (requires a
higher value for n init).

� stability does not seem to be effected by the max iter variable for inter-
vals in which max iter was varied.

73

• Given sufficient randomness in a data set of multiple, well-defined time series
groups, the programme will calculate varying optimal partitions depending on
the nature of the added random data.

• In a data set of multiple, well-defined time series groups with added ran-
domness (≈ 10 % random data), the programme is able to produce cluster
centroids with approximately the same shape as it would without the random
data added.

9.3 Testing outlier analysis

In this Section the programme model, as shown in Figure 54 and given in Appendix
IV, is tested with a known data set as a basis to determine whether outlier analysis
may improve the performance of the customer segmentation programme.

Figure 54: The programme used for testing outlier analysis.

74

As described in Section 7.5 three methods for outlier analysis are selected for the
customer segmentation programme; OD1, OD2 and OD3.

9.3.1 Data set used in the outlier analysis

The data set used in this Section includes the “known data set” from Section 9.2.1,
and 25 Random Walks, the same data set as used in Section 9.2.6. As may be
observed in Section 9.2.6, the Silhouette and K-Shape algorithms regarded the Ran-
dom Walks in some cases sufficiently similar to the existing time series groups, to
group them into the same clusters. However, the Random Walks time series vi-
sually appear very different from the time series groups used in the Base case. It
was therefore considered interesting to see if the different outlier analysis techniques
described in Section 7.5 would be able to sort out the Random Walks given user
input. This specific data set before and after normalization is shown in Figure 55.

Figure 55: The data set used to test outlier analysis, before and after normalization.

After testing the K-Shape algorithm stability limits as explained in Section 9.3.3,
the following Silhouette scores for partitions between K=2 and K=9 were obtained,
when the K-Shape algorithm was used in its stable zone. The Silhouette scores are
shown in Table 8.

Table 8: Silhouette scores for all partitions of the data set with 25 Random Walks,
used for testing the effect of outlier analysis on developed programme, between K=2
and K=9 clusters.

Number of clusters: Silhouette score:
K = 2 0.297
K = 3 0.534
K = 4 0.716
K = 5 0.748
K = 6 0.631
K = 7 0.759
K = 8 0.629
K = 9 0.621

75

As may be seen from Table 8 K optimal=7 with a Silhouette score of 0.759.

9.3.2 Outlier analysis

Outliers were sorted out of the data set in an iterative process between steps 4) to
9) in Figure 28. The results are shown in Figure 56.

Figure 56: Inlier data set throughout an outlier analysis of a data set.

The outlier selection methods which were found to provide the best results, and
were used for this outlier analysis in this case were OD1 and OD3. The individual
time series groups were not homogeneous enough for OD2 to provide any benefits,
i.e. each time series group was more “similar” to the outliers than to each other.
OD3 also proved only moderately successful, as within the groups imported from
tslearn (Cluster 1 and 3 in the Base case, Figure 36) the DTW difference between

76

the cluster centroids and the outliers (Random Walks) was towards the end of the
iteration process less than the DTW difference between the cluster centroids and
some of the time series, which in the Base case were allocated to the clusters.

It would be possible to remove all Random Walks from the data set given many
iterations, but four iterations proved enough to illustrate the effect of outlier analysis
on cluster partition quality.

Over the four outlier analysis iterations, the inlier and outlier data set changed as
shown in Figure 56 and Figure 57.

It can be seen in Figure 56 and Figure 57 that outliers are more easily filtered out
in the beginning of the outlier analysis, as these are the time series which fit less
well within the pre-determined time series groups from the Base case.

Figure 57: Outlier data set throughout an outlier analysis of a data set.

The Silhouette scores of each partition K of the inlier data set before any, and after
four iterations with outlier analysis are plotted in Figure 58 against the Silhouette
scores for partitions K of the Base case data set.

Figure 58 shows that the Silhouette score for the data set after outlier analysis has
improved for K between K=2 and 6, and appears to resemble the Silhouette scores
of the Base case to a higher degree. K optimal has also become more distinct after
outlier analysis.

After four iterations, six of the 25 Random Walks still remained in the data set,
which accounts for around 24% of the Random Walks originally in the data set. It

77

is expected that the remaining Random Walks are the reason why the Silhouette
score after four iterations do not perfectly match the scores from the Base case.

Figure 58: Comparison of the Silhouette scores of the Base case (red), Base case +
25 Random Walks (black), and Base case + 25 Random Walks with four iterations
of outlier analysis (green).

9.3.3 Algorithm stability

The stability of the tslearn KShape algorithm was tested for the data set described
in Section 9.3.1. To test the algorithm stability the same methodology as in Sec-
tion 9.2.2 was applied. max iter was varied between 100 and 1000, and n init was
varied between 2 and 300 until stable Silhouette scores for the different partitions
K=2 to K=9 was achieved. The stability regions for the data set in Section 9.3.1
is illustrated in Figure 59. n init is once again shown to be the critical variable
for algorithm stability. The algorithm is shown to produce stable results for all K
between 2 and 9 for n init≈200 and above. It is clear from comparing the results
in Figure 59 to the results in Section 9.2.2 that the K-Shape algorithm becomes less
stable when random time series are added. There may also be a slight destabilising
effect of simply adding more time series to the data set.

78

Figure 59: K-Shape algorithm stability before outlier analysis.

After outlier analysis it can be seen, by comparing Figure 59 and Figure 60, that
removing outliers has made the KShape algorithm stable for more values of K, and
less iterations of n init. From this it appears that the code becomes more efficient
with outlier analysis. However, the highest n init stability boundary remains ≈200
and above iterations. This is likely because not all Random Walks were removed in
the outlier analysis (six of the 25 Random Walks remained).

By comparing Figure 58, Figure 37 and Figure 60 it may also be observed that the
K-Shape algorithm becomes unstable for the data set after outlier analysis for the
same values of K that the Silhouette score diverges from the Silhouette score of the
Base case.

Figure 60: K-Shape algorithm stability after outlier analysis.

9.3.4 General observations on outlier analysis methods

The general observations on OD1-OD3, as discovered in this Section are:

79

• OD1:

� works well if the K-Shape algorithm is able to “sort out” outliers into
their own clusters, perhaps by increasing K.

� does not work well if outliers are “similar” to inliers according to the
Shape-based distance, even though they may visually appear to be dif-
ferent.

• OD2:

� works well if the DTW difference between the cluster centroid and the
“inliers” of a cluster is smaller than the DTW difference between the
cluster centroid and the outliers.

� does not work well for the opposite case, where the DTW difference be-
tween cluster centroid and outlier is smaller than the DTW difference
between cluster centroid and inlier.

• OD3:

� works well for largely homogeneous data sets where outliers generally
have a large DTW difference from all inliers.

� does not work well when the DTW difference between clusters is larger
than the DTW difference between clusters and outliers.

The strengths and weaknesses of using outlier analysis as proposed in the customer
segmentation programme are listed in Table 9.

Table 9: The strengths and weaknesses of the outlier analysis methods used in the
customer segmentation programme (OD1, OD2 and OD3).

Strengths: Weaknesses:

Outlier analysis makes the K-Shape
algorithm more stable, improving
the runtime of the algorithm.

The user of the programme has
to visually or in other ways be
able to distinguish between
outliers and inliers.

Gives the user of the customer
segmentation programme the option to
remove time series from the data set
that the he/she wishes to not include
in the analysis.

The outlier selection is neither
considered smart nor automatic.

Using outlier analysis for
AMS-data sets would mean
actually removing some
AMS-data from the customer
segmentation programme, which
means that valuable and/or
interesting data may be removed
from the analysis.

80

Based on conclusions given in Table 9, outlier analysis is, as mentioned in Section 7.5
included in the customer segmentation programme as an option, not a necessity.

81

10 Assessing the developed customer segmenta-

tion programme using AMS-data

In this Section the developed customer segmentation programme, as shown in Fig-
ure 28 in Section 8 and provided in Appendix IV, is assessed using two different
AMS-data sets. Firstly, an AMS-data set without the current standard DSO cus-
tomer segment information included, to observe the performance of the developed
programme applied to AMS-data. Secondly, the performance of the programme is
compared with the current standard DSO customer segmentation method.

10.1 Performance of developed programme on AMS-data

The data analysed in this Section is actual AMS time series data obtained from Lyse
Elnett. This data is considered power-sensitive information, and can therefore not
be shared in this report. For this reason, the exact reproducibility of the analysis
can not be verified by a third party.

The AMS-data set consisted of 378 customer consumption measurements in kWh,
taken on an hourly basis. Different time-spans to be analysed by the developed
programme were considered, from daily to monthly. In this respect several factors
were evaluated:

• The possibility to maximise the number of customers in the data set. Not all
customers had complete measurements for each day.

• The possibility to capture periodic patterns in the data set.

• The stability of the KShape algorithm for the data set. When a large value for
n init is needed, the runtime of the algorithm increases proportionally (see
Section 7.3.1).

• The length (number of measurements per time series) of the data set. A large
data set would be more computationally demanding.

Following an assessment, a weekly measurement period between the 13/11/2017 and
the 20/11/2017 was chosen. The main reason for selecting this week was because
in this week there existed measurements from all 378 customers. Secondly, a week
was considered an adequate time-span for capturing some of the more pronounced
periodic consumption patterns. A week was also considered to be able to provide
sufficient stability for the KShape algorithm. Finally, a week was expected to provide
an acceptable runtime for the programme.

The analysis was performed with the programme as described in Section 8, Fig-
ure 28. The data set before and after normalization had the appearance as shown
in Figure 61.

82

Figure 61: AMS-data set before and after normalization.

The data set did not include any information on which or how many of the 38
standard DSO customer groups shown in Figure 11 existed in the AMS-data set,
i.e. this information was unknown. The Silhouette algorithm was instructed to test
each partition of the normalized data set between K=2 and K=15, and produced the
results shown in Table 10 and Figure 62. When finding the stability zone of the
KShape algorithm for the AMS-data set, each K is tested for an increasing n init

until the stability zone is reached. Given that the stability region of the AMS-data
set is ≈10000, determining the stability for a K max>15 would result in runtime
which was considered incompatible with the work for this report. Therefore, K max

was chosen to be 15.

For various combinations of K and n init, the tslearn KShape algorithm found
that the optimal clustering produced at least one empty cluster, which had not
been experienced with any other data sets tested by the programme. This produced
an error message in the programme code, and is denoted Not a Number (NaN) in
Table 10. In Figure 62 these error messages are shown with a red dot, while results
with a calculated value are shown with green dots. These irregularities are discussed
below.

83

Figure 62: Silhouette scores for the AMS-data set.

Table 10: Silhouette scores for all partitions of the AMS-data set, between K=2 and
K=15 clusters.

Number of clusters: Average Silhouette score:
K = 2 0.031
K = 3 NaN
K = 4 -0.009
K = 5 -0.003
K = 6 -0.002
K = 7 -0.014
K = 8 -0.014
K = 9 -0.016
K = 10 -0.014
K = 11 -0.010
K = 12 NaN
K = 13 -0.008
K = 14 NaN
K = 15 NaN

As may be seen from Table 10 and Figure 62, the optimal Silhouette score was
achieved for K=2. When instructed to produce K=2 for an n init within the KShape
algorithm stability zone, the clusters and centroids shown in Figure 63 were pro-
duced.

84

Figure 63: Result of using K-Shape clustering on the AMS-data set, with
K optimal=2.

The K-Shape algorithm seems to initially segment the data set based on a perceived
“period” in the consumption pattern. Cluster 2 in Figure 63 displays a clear 24-hour
repetitive pattern characterised by a small peak in the morning, a larger peak in
the afternoon and a clear dip during night time. Cluster 1 does not display any
clear patterns, but is characterised by a weekly peak in consumption. Note that
the K-Shape algorithm is time invariant, and the different peaks seem to occur at
different times of the week.

In order to understand the composition of the data set more completely, an outlier
analysis was performed. Additionally, the error messages produced by the KShape

algorithm seemed to indicate that some “irregular” data was present in the data
set. During the analysis it was discovered that the AMS-data set contained several
“flat” time series. Using OD2 and a DTW threshold of 12, the outliers shown in
Figure 64 were separated out.

Figure 64: Detected outliers using OD2 with a DTW threshold of 12, for the AMS-
data set.

Of the 18 selected outliers, 12 (67%) of them were flat time series. Figure 65 shows a
histogram of the extra-cluster DTW distribution (DTW threshold included) between

85

the centroids of Cluster 1 and Cluster 2, and the entire data set. OD2 is explained
in further detail in Section 7.5.2. This DTW threshold (the red line in Figure 65)
was found to select the highest number of flat time series, while selecting the least
number of other time series.

Figure 65: Histogram of extra-cluster DTW score for the two generated clusters.

After isolating the outliers shown in Figure 64, the inlier data set included 360 time
series and had the appearance as shown in Figure 66.

Figure 66: Inlier AMS-data set, before and after normalization.

The Silhouette algorithm tested each partition of the normalized inlier data set
from Figure 66, between K=2 and K=15, and gave the results shown in Table 11 and
Figure 67.

86

Figure 67: Silhouette scores for the inlier AMS-data set.

Table 11: Silhouette scores for all partitions of the inlier AMS-data set, between
K=2 and K=15 clusters.

Number of clusters: Average Silhouette score:
K = 2 0.037
K = 3 -0.009
K = 4 -0.008
K = 5 -0.003
K = 6 -0.004
K = 7 -0.002
K = 8 -0.006
K = 9 -0.014
K = 10 -0.011
K = 11 -0.016
K = 12 -0.013
K = 13 -0.017
K = 14 -0.019
K = 15 -0.027

After the outliers were removed, the problem of the KShape algorithm producing
empty clusters disappeared. Additionally, the KShape algorithm became stable for
lower values of n init.

As mentioned in Section 7.4, the Silhouette score should be used as a guideline for
selecting a K, as K should not necessarily always be selected to be K optimal. For

87

this reason, it was considered interesting to test a K6=K optimal. In Table 11 the
second highest Silhouette score is achieved for K=7. Therefore K=7 was selected as
input to the clustering algorithm (Step 6) in Figure 28).

When instructed to produce K=7 for an n init within the KShape algorithm stability
zone, the clusters and centroids shown in Figure 68 were produced.

Figure 68: Result of using K-Shape clustering on the inlier AMS-data set, with
K optimal=7.

88

The clusters in Figure 68 are visually distinct from each other, and some with clear
periodic patterns. Cluster 7 in Figure 68 may be recognized as having the charac-
teristic weekly spike seen in Cluster 1, Figure 63. Equally, Cluster 2 in Figure 68
has the recognizable characteristics of a consumption spike in the morning and af-
ternoon, and a dip during night time, when compared to Cluster 2 in Figure 68.
These two clusters became the dominant shapes when the KShape algorithm was
instructed to produce K=2 clusters (Figure 63), because they are the most dense
clusters in Figure 68. This may also be seen in Table 12.

The size of each generated cluster, as shown in Table 12 demonstrates the substan-
tiality of the clustering performed by the programme. Cluster substantiality is a
condition for cluster usefulness described in Section 7.3.3. None of the clusters in-
clude less than 10 time series, and are probably large enough for some insight to be
gained by analysing them. Such an analysis could be done given that information on
standard DSO customer segments also were provided for this AMS-data set. This
type of analysis is mentioned in Section 12.2 as a potential further work for this
report.

Table 12: The density of the clusters produced from the inlier data set given K=7.
Cluster: Number of time series:
1 31
2 87
3 63
4 49
5 29
6 14
7 87

Algorithm stability for the AMS-data set

As was concluded in Section 9, the variable max iter did not affect the stability of
the KShape algorithm. Due to this, max iter was in this Section kept constant at
tslearn default (max iter=100), while n init was varied.

For the initial/original AMS-data set, the stability boundaries for different K shown
in Figure 69 were found. As may be seen in Figure 69, the algorithm becomes stable
for K between 2 and 15 for n init≈10000.

For the inlier data set, the stability boundaries for different K shown in Figure 70 were
found. It may be seen by comparing Figure 69 and Figure 70 that the algorithm has
become more stable for all values of K tested with maximum n init≈7000, following
the outlier analysis.

89

Figure 69: Stability of the KShape algorithm for the original AMS-data set, with
maximum n init≈10000.

Figure 70: Stability of the KShape algorithm for the inlier AMS-data set, with
maximum n init≈7000.

90

10.1.1 Conclusions from analysis with AMS-data

The following conclusions can be drawn from the analysis of the AMS-data set:

• The AMS-data set achieved overall much lower Silhouette scores for each K,
when compared to analysis on the known data set. This indicates that it was
much harder to achieve similar cluster compactness with the given AMS-data.

• The highest cluster compactness, i.e. highest Silhouette score, was achieved
for K=2 in both the initial/original and inlier AMS-data sets. Separating the
time series with repetitive 24-hour patterns from those without a clear 24-hour
repetitive pattern seems to yield the highest cluster compactness. However,
selecting K=2 may not lead to the preferred result when segmenting customers
from AMS-data.

• When inspecting the K for which the second-highest Silhouette score is achieved
in the inlier data set (K=7), the programme produces substantial clusters. This
holds true for K=2 as well.

• Flat time series were shown to disturb the KShape algorithm, which resulted
in it producing empty clusters (NaN).

• After the flat time series were removed from the data set, the stability of the
KShape algorithm for all K improved.

• Outlier analysis was shown to be useful when analysing AMS-data.

10.2 Comparison of developed segmentation programme to
standard DSO customer segmentation

To perform a comparison of the developed customer segmentation programme to the
standard DSO method described in Section 6.1, Lyse Elnett provided an additional
AMS-data set towards the completion of the report, which included information on
the customer segment that each time series belonged to. This data set is not the
data set analysed in Section 10.1, and differs from the data set in Section 10.1 in that
it includes less (103, not 378) and other customer IDs, in addition to the inclusion
of customer segment information. As in Section 10.1, the provided AMS-data is
power-sensitive information and can not be included in this report.

As stated in Section 5.4.4, the goal of customer segmentation analysis in this report
is to divide the customers into groups of similar consumption patterns. Due to this,
a shape-based clustering approach was selected. The approach was motivated by
the potential for DSOs to, for example, use typical consumption profiles to assess
whether a transformer has the necessary capacity for affiliation of new customers, or
for design of customer-specific tariff systems. However, given that the approach is
shape-based, it does not consider amplitude and offset of the customers, i.e. whether
the customer has a large or small electric consumption need. Furthermore, the
shape-based approach does not differentiate between customers, e.g. whether they
are household or industrial customers.

91

The fundamental principle of the standard DSO customer segmentation method is
based on differentiating between types of customers. This approach is likely to be
more amplitude and offset sensitive than the shape-based approach.

The comparison was carried out by considering the customer segments proposed
by Lyse Elnett to be clusters, calculating the CVI (i.e. Silhouette score) of this
partition, and comparing it to the CVIs of the partitions created by the developed
customer segmentation programme.

10.2.1 Current standard DSO customer segmentation method

As explained in Table 14, when a new customer connects to the distribution grid,
they will be assigned by the DSO to one of the segment categories 1-36 listed in
Table 14.

As mentioned above, the AMS-data set consisted of 103 customer measurement
time series, which included the customer segments shown in Table 13. As seen from
Table 13, the largest segment in the data set is the “Household” segment, with 76
customers. “Turnover and operation of real estate” is the second largest segment,
with 13 customers. There are three categories with only one customer. These are the
“Extraction of crude oil and natural gas”, “Construction and structural business”
and the “Other transport and storage” categories.

Table 13: Customer segments available in the Lyse Elnett AMS-data set.
Code: Customer consumption segment: Number of customers:
3 Extraction of crude oil and natural gas 1
18 Construction and structural business 1
19 Wholesale trade, repair of motor vehicles 3
21 Other transport and storage 1
23 Accommodation and serving business 4
26 Turnover and operation of real estate 13
27 Professional, scientific and technical services 2
31 Health and social services 2
35 Household 76

92

Table 14: Current standard method of customer segmentation for Norwegian DSOs.
Code: Customer segment:
1 Agriculture, forestry, fishing
1A Greenhouse
2 Mining
3 Extraction of crude oil and natural gas
4 Services in connection with extraction of crude oil and natural gas
5 Production of pulp, paper and cardboard
6 Production of chemical raw materials
7 Production of iron and steel
8 Production of ferroalloys
9 Production of primary aluminium
10 Production of other non-ferrous metals
11 Food and nutrition industry
12 Refineries
13 Other industries
14 Production and distribution of electricity
15 Production and distribution gas through gas distribution network
16 District heating
17 Water supply, sewerage, sanitation
18 Construction and structural business
19 Wholesale trade, repair of motor vehicles
20 Railway, tramway and suburban train
21 Other transport and storage
22 Postal and distribution activities
23 Accommodation and serving business
24 Information and communication
25 Financial services, insurance and pension funds
26 Turnover and operation of real estate
27 Professional, scientific and technical services
28 Business services
29 Public administration and defence
29A Street and road lights
30 Education
31 Health and social services
32 Artistic activities, libraries etc., sports and leisure
33 Activities in member organizations
34 Other services
35 Households
36 Cottages and holiday homes

As done is section 10.1, a a time period of a week was chosen for the analysis. The
chosen section of the AMS-data set included customer segment information between
the 14/10/2018 to the 21/10/2018. This week appeared to be the week with the

93

most complete data. The selected AMS-data set before and after normalization, is
shown in Figure 71.

Figure 71: AMS-data set with customer segment information, before and after nor-
malization between 14/10/2018 and the 21/10/2018.

Plotting the different customer segments according to Table 13 produces the parti-
tions shown in Figure 72.

Figure 72: The customer segments according to the standard DSO segmentation
method present in the AMS-data set, normalized.

If regarded as clusters, this segmentation of the AMS-data set achieves a Silhouette
score of -0.032. This Silhouette score is telling of a poor partition. Particularly the
partition of customer group 29 and 27 from visual inspection seem to be “ill-formed”.

94

10.2.2 Developed customer segmentation programme applied to the data
set

The developed customer segmentation programme was tested with the whole data
set as shown in Figure 72. For the analysis the developed programme as illustrated
in Figure 28 was used, though outlier analysis was not employed.

According to the standard DSO customer segmentation method, there exists 9 cus-
tomer groups in the data set shown in Figure 72. The Silhouette scores for partitions
between K=2 and K=9 were calculated for this data set, within the stability zone of
the K-Shape algorithm.

Figure 73: Silhouette scores for all partitions of the data set which included customer
segment information, between K=2 and K=9 clusters.

Table 15: Silhouette scores for all partitions of the data set which included customer
segment information, between K=2 and K=9 clusters.

Number of clusters: Silhouette Score:
K = 2 0.066
K = 3 0.038
K = 4 0.025
K = 5 0.007
K = 6 0.004
K = 7 -0.008
K = 8 -0.005
K = 9 -0.015

It may be seen from Figure 73 and Table 15 that all partitions between K=2 and K=9
found by the K-Shape algorithm achieve a better score than the partition proposed
by Lyse Elnett in Section 10.2, which had has a Silhouette score of -0.032.

The three partitions which achieved the best Silhouette scores were the partitions
for K=2, K=3, and K=4. The K-Shape algorithm was then instructed to produce

95

these three partitions, with n init between 3000 and 4000 (KShape stability zone).
The results are shown in Figure 74, Figure 75 and Figure 76.

Figure 74: The customer segments created by the K-Shape algorithm from the
original data set, with K=2.

It may be seen in Figure 74 that the K-Shape algorithm initially segments the data
set based on the perceived “periodicity” of the consumption pattern. Cluster 2 in
Figure 74 displays a consumption pattern which repeats itself around once every 24
hours (with some variation), while Cluster 1 displays a consumption pattern with
a periodicity of less than 24 hours. Additionally, from Cluster 1 in Figure 74 the
K-Shape algorithm has found that many customers have a single large consumption
spike in the course of a week, and relatively even consumption for the rest of the
week (when normalized).

When instructed to make K=3 clusters, the K-Shape algorithm in Figure 75, Cluster
3, creates a segment of consumption data with a periodicity which resembles the
one in Cluster 1 of Figure 74 but without the one large weekly consumption spike.

When instructed to make K=4 Clusters, the same effect in Figure 76 as in Figure 75
may be seen. The K-Shape algorithm creates one more cluster with a periodicity of
less than 24 hours, and without the one large weekly consumption spike.

96

Figure 75: The customer segments created by the K-Shape algorithm from the
original data set, with K=3.

Figure 76: The customer segments created by the K-Shape algorithm from the
original data set, with K=4.

97

If K=9, the programme produces the clusters as shown in Figure 77. Cluster com-
pactness is not easily assessed through visual inspection with shape-based cluster-
ing, due to the time invariance of the clusters and centroids. However, this partition
achieves a Silhouette score of -0.015, which is a higher score than the standard DSO
segmentation method achieves (-0.032).

Figure 77: The customer segments created by the K-Shape algorithm from the
original data set, with K=9.

10.2.3 Removing customer groups with single time series from AMS-
data set

As may be seen in Table 13 and Figure 72, three of the “clusters” included only one
consumption profile (customers in code 3, 18 and 21). For these customer segments
it is not possible to evaluate to what extent the single costumer is representative of
other customers in the same segment. Therefore, an additional assessment of the
data set with these three customer groups removed is performed in this Section.

The data set with customer group 3, 18 and 21 removed is shown in Figure 78.

98

Figure 78: The customer segment groups with more than one customer per group,
normalized.

If regarded as clusters, this segmentation of the AMS-data set achieves a Silhouette
score of -0.006. This is an improvement on the overall partition quality, when
compared to the Silhouette score in Table 16.

The Silhouette scores for partitions between K=2 and K=9 were found for the data
set, within the stability zone of the K-Shape algorithm.

Figure 79: Silhouette scores for all partitions of the data set with single time series
groups removed.

99

Table 16: Silhouette scores for all partitions of the data set with single time series
groups removed, between K=2 and K=9 clusters.

Number of clusters: Silhouette Score:
K = 2 0.072
K = 3 0.034
K = 4 0.013
K = 5 0.001
K = 6 0.002
K = 7 -0.005
K = 8 -0.007
K = 9 -0.015

When instructed to find K=2 clusters, the programme produces the clusters and
centroids shown in Figure 80. This result greatly resembles the result found in
Section 10.2.1, Figure 74. When instructed to find K=3 clusters, the programme
produces the clusters and centroids shown in Figure 81. This result also greatly
resembles the result found in Section 10.2.1, Figure 75. Finally, when instructed
to find K=4 clusters, the programme produces the clusters and centroids shown in
Figure 81.

Figure 80: The customer segments created by the K-Shape algorithm from the data
set with single time series groups removed, with K=2.

100

Figure 81: The customer segments created by the K-Shape algorithm from the data
set with single time series groups removed, with K=3.

Figure 82: The customer segments created by the K-Shape algorithm from the data
set with single time series groups removed, with K=4.

101

This final result resembles the result found in Section 10.2.1, Figure 76 as well.

As found in this Section, clusters and cluster centroids were not much changed by
removing the single time series groups when inspected visually. However, as may
be observed when comparing Table 15 and Table 16 the Silhouette scores for the
different partitions (values of K) were generally slightly improved.

10.2.4 Conclusions from the comparison

As was found in both Section 10.2.1 and Section 10.2.3, the developed customer
segmentation programme produced segments with a higher Silhouette score than the
standard DSO customer segmentation method does. In other words, the developed
customer segmentation programme produces clusters with an improved compactness
(described in Section 7.3.3).

As stated in Section 10.2, the developed customer segmentation method and the
standard DSO customer segmentation method may have different foundations. Al-
though the actual foundation for the standard DSO segmentation method is un-
known, the standard DSO method is based on grouping together, i.e. cluster-
ing, different customer “types” (such as “Financial services, insurance and pension
funds” and “Public administration and defence”). For this reason, the standard
DSO method may be more sensitive to for example amplitude and offset variations.
On the other hand, the developed programme is based on shape-based clustering,
with the aim of grouping together customers with of similarly shaped consumption
patterns.

As both segmentation methods appear to be based on different principles, both may
provide benefits for various uses. The developed customer segmentation programme
can be regarded as a supplementary segmentation method which provides additional
information.

102

11 Conclusions

The Norwegian power system will in the coming years undergo changes due to new
European Union and Norwegian legislation as well as increasing electrification of the
transportation sector, decentralisation of power production and the general trend of
digitalization.

One result of the digitalization trend, which also has been formalised through legis-
lation, is the implementation of AMS-meters at all consumer locations in the Nor-
wegian distribution grid. An AMS-meter is able to capture a wide variety of data
types in real time. This has the potential to benefit DSOs in several ways. However,
as was confirmed during work with this report, DSOs have up to now only to a
limited extend exploited the potential benefits of using AMS-data.

Machine learning has become an important area of research, which has resulted in
increased accessibility of machine learning algorithms and methods. Now there exists
a variety of computer algorithm libraries for machine learning, in various coding
languages. This opens the possibility for utilization of freely accessible computer
algorithms for machine learning for efficient analysis of for example AMS-data at
insignificant cost. One such library, which can be applied to time series data is
tslearn, a machine learning library for Python.

In relation to this work the founder and creator of tslearn, Romain Tavenard, was
contacted. Through a dialogue it was concluded that when using machine learning
algorithms such as clustering algorithms it is important to understand what type
of distance metrics the algorithm is based on. Only the machine learning library
tslearn was found to operate with distance metrics suitable for time series.

In the course of this report, a synthesis computer programme was developed for
shape-based (i.e. amplitude, offset and time invariant) DSO customer segmentation
based on AMS time series data. On a known/defined data set the developed cus-
tomer segmentation programme was shown to produce the results that were known
to be correct beforehand. Outlier analysis methods, which the user can chose to ap-
ply, were also added to the programme. These outlier analysis methods were shown
to be able to sort out predefined outliers provider user input and guidance. The
outlier analysis methods have been included into the programme as an option that
the user can select, i.e. not a necessity. The outlier analysis part is only developed
to a certain point and can be further improved.

An assessment was made on the basis of actual AMS-data sets provided by Lyse
Elnett. When tested on the first AMS-data set, the programme showed a tendency
to prefer segmenting based on similar periodicity of the time series. Additionally,
AMS-data was more challenging for the algorithm to cluster than the known data
set, as the AMS-data set contained less distinct time series groups and to some
extent more irregular data. Outlier analysis was shown to improve the programme
performance by removing irregular (i.e. flat) time series.

When testing the developed programme for the known data set, the runtime of the
clustering algorithm was as expected, i.e. acceptable. However, when analysing the

103

AMS-data set, the clustering algorithm in the programme became significantly less
stable. As a consequence, the runtime of the programme increased dramatically due
to the increased number of iterations needed to reach algorithm stability (i.e. ≈40
iterations on the known data set, to ≈10000 for the AMS-data set). This is possibly
because the AMS-data set was more homogeneous with more similarly shaped and
less discernible time series groups. The large number of required iterations proved
challenging for the available hardware (a standard laptop), with a runtime of ≈10
hours for 10000 iteration. Another reason for the extended runtime may be the cod-
ing language that the customer segmentation programme is written in, i.e. Python.
A lower-level language would likely significantly improve the programme runtime.

The developed customer segmentation programme was shown to produce a better
partition compactness of the second AMS-data set than the standard DSO method
when measured with a CVI. It should be remembered that the basis for the standard
DSO segmentation method is not necessarily founded on segmenting for similar con-
sumption shapes, but for similar customer types (i.e. “Information and communica-
tion”, “Financial services, insurance and pension funds”, and “Public administration
and defence”). For this reason, the developed customer segmentation programme
may be used as a complementary method, which provides additional insight to the
standard customer segmentation approach.

As stated in the report scope, the objective of this study is to illustrate that oppor-
tunities and benefits related to the use of AMS-data can be achieved by applying
existing, openly available advanced data analysis tools, and be utilized by DSO
engineers with a power systems background and an information technology interest.

In this work, the computer-based programme has been developed based on openly
available advanced data analysis tools, and is relatively user friendly. The developed
programme aims to segment DSO customers with a shape-based clustering approach,
with the use of AMS time series consumption data. The programme is considered
usable for a DSO engineer with a power systems background and an information
technology interest. Experience with the programme indicates that runtime may be
an issue when analysing large AMS-data sets.

Some potential improvements to the developed programme were also identified. One
of these was the potential for the programme to take into account the standard
DSO segmentation, in order to include amplitude and offset information in the
analysis. Another area of improvement was the language in which the programme
was written. Python is a relatively high-level coding language, and the efficiency
of the programme and thereby calculation time may be improved if a lower-level
language such as C++ were utilized.

104

12 Programme improvements, further work and

notes on the report

12.1 Potential modifications to improve the programme

12.1.1 Combination of developed and standard segmentation model

As indicated in Section 10.2.4, the developed programme could be modified to in-
clude information on customer segments as currently defined by Norwegian DSOs,
given in Table 14. This way it may be possible for the programme to be more
sensitive to for example offset and amplitude. For example customers in the “Pro-
duction of primary aluminium” likely have a larger electrical consumption need than
for example the “Education” category.

The programme could be improved with the ability to analyse the produced clus-
ters and inspect the distribution of the customers according to the standard DSO
segmentation method which exist within each cluster.

12.1.2 Improve runtime by changing code language

The largest issue when performing the analysis in Section 10.1 and Section 10.2
was the speed of the Python code. Whenever n init>1000 the tslearn KShape

algorithm would take hours to complete the computation for any K. Given that the
necessary hardware to run such computationally hard code in a shorter time was
unavailable, this was an obstacle to the completion of the analysis.

One remedy to this problem may be to write some of the code in C++. The tslearn
source code for the KShape function is available on GitHub at reference [89], so
anyone attempting to make the customer segmentation programme faster can look
into writing some of the KShape algorithm code in another coding language such as
C++ instead of Python. C++ code is used as an example as it is widely accepted to
be a much faster code to compile than Python code, as the C++ language is more
low-level [70].

12.1.3 Improve runtime by manipulating the time series data

To decrease the complexity of the data set, a rolling average as discussed in Sec-
tion 7.5.4 could be applied to an AMS-data set. This could potentially decrease the
runtime of the KShape algorithm. A rolling could also potentially decrease “noise”
in a data set and so make the “shape” of the time series more clear.

12.1.4 Testing other clustering methods

In this report the tslearn KShape algorithm was chosen as the clustering algorithm
for demonstrating the customer segmentation method. However, tslearn includes
several other clustering algorithms for time series. Among others, a K-Means algo-
rithm. Since the programme model is modular, the tslearn KShape algorithm may
simply be changed for another clustering algorithm. Note however the challenges of

105

selecting algorithms for time series, as mentioned in Section 7, where it is explained
that distance metrics in the algorithms should be adapted to time series data.

12.1.5 Improving outlier analysis

The outlier analysis used in this report was found in Section 9.3 to have several
weaknesses which could potentially make it an undesirable took to use in some
situations. As explained in Section 7.5.3 more advanced forms of outlier analysis
for time series exist, and the customer segmentation method may be improved by
implementing another form of outlier analysis.

12.2 Further work

• Decrease the runtime of the customer segmentation method code by for ex-
ample writing it wholly or partially in another coding language, as explained
in Section 12.1.2.

• Investigate other forms of outlier analysis, more details of this may be found
in Section 7.5.3.

• Comparing the customer segmentation method with a larger data set of AMS-
data that includes information on customer segments, as done in Section 10.2.

• Investigate other formats of AMS-data from AMS-meters produced by for
example Kamstrup and Kaifa (introduced in Section 4.2), and modify the code
in Appendix II to fit any AMS-data from AMS-meters installed in Norway.

• Investigate solutions to P1, P2 or P3 from Section 5.4.

• Particularly for P3, Long Short Term Memory (LSTM) neural networks with
Python, Keras and TensorFlow could be researched.

• Test whether other clustering algorithms perform better with AMS-data than
K-Shape. Highlighted in section 12.1.4.

• Adapt other CVIs to time series data by changing the distance metric to one
which may be used for time series. The challenges of CVIs for time series is
explained in Section 7.4

• Examine whether the KShape algorithm is stable over time (a condition for
cluster usefulness, described in Section 7.3.3) for an AMS-data set.

• Investigate distribution of standard DSO customer segments in the clusters
produced by the developed customer segmentation programme.

• Develop a method for visually inspecting shape-based clusters despite time-
shifts by optimally aligning the cluster time series and centroids in a figure.
This could potentially be done with a distance metric for time series such as
Dynamic Time Warping, or shape-based distance (elaborated in Section 7.1).

106

12.3 Notes on the writing of this report

12.3.1 Reproducibility of results

As stated in section 9.2, the reproducibility of results in this report has been a topic
of focus. As a consequence, all data sets (which were not considered power-sensitive
information) used in this report may be generated from code in Appendix II. All
analysis on these data sets may also be reproduced with code from Appendix II.

Ensuring reproducibility of results with analysis on power-sensitive information was
not possible, given that power-sensitive information is classified and could not be
included in this report. However, Appendix IV includes all code for the analy-
sis performed in Section 10.1 and Section 10.2, so similar results may perhaps be
reproduced on other AMS-data sets of similar sizes and compositions.

12.3.2 Biases in scientific research

Numerous biases related to scientific research have been described in the literature,
which may cause concerns related to the reliability and integrity of the scientific
enterprise. Of the most common bias patterns found in the scientific literature, this
report may be most vulnerable to the “Small-study effect” [27].

The Small-study effect is characterised by [27]:

Studies that are smaller (of lower precision) might report effect sizes of
larger magnitude. This phenomenon could be due to selective reporting
of results or to genuine heterogeneity in study design that results in
larger effects being detected by smaller studies.

The data set in Section 9 included four known time series groups, designed to demon-
strate the amplitude, offset and time invariance of the programme. However, one
bias of the report may be that the known data set was particularly “easy” to cluster
for the K-Shape algorithm, and that less promising results for the programme could
have been obtained given a data set with other types of time series groups. There
could be indications of this effect when analyzing the AMS-data in Section 10.

The data set used in Section 10.2 for comparing the developed customer segmen-
tation programme to the standard DSO customer segmentation method was small,
with AMS-data from only 103 customers. It is possible that given a larger, or a dif-
ferently composed AMS-data set, that standards DSO segmentation method could
produce partitions with an equivalent or superior Silhouette score compared to the
developed programme.

12.3.3 Available computing hardware

Towards the end of the writing of the report, during the analysis of the AMS-data
sets in Section 10.1 and Section 10.2 the runtime of the programme became very
long, because such large values of n init were needed. To find the stable region
of the KShape algorithm for the AMS-data sets in Section 10.1 and Section 10.2
before the due date of the report, six laptop computers borrowed from friends and

107

family were used to run the developed programme over two weeks. Two of these
computers were situated in Trondheim, while four were controlled remotely from
Stavanger with the use of TeamViewer. Therefore, for large AMS-data sets, more
advanced computing hardware than common laptops could be used to cut down on
programme runtime.

108

References

[1] A Abur. Power System State Estimation. CRC Press, Boca Raton, 2004.

[2] Advanced Distribution Management Systems (ADMS). Gartner Inc. url: https:
//www.gartner.com/it-glossary/advanced-distribution-management-systems-
adms (visited on 03/17/2020).

[3] Ann Myhrer Østenby et al. ANALYSE OG FRAMSKRIVNING AV KRAFT-
PRODUKSJON I NORDEN TIL 2040. 2019. url: http://publikasjoner.nve.
no/rapport/2019/rapport2019 43.pdf (visited on 03/04/2020).

[4] Cheryl martin et al. The Future of Electricity. World Economic Forum, 2017.

[5] Junjing Yang et al. K-Shape clustering algorithm for building energy usage
patterns analysis and forecasting model accuracy. National University of Sin-
gapore, 2017.

[6] Odd Erik Gundersen et al. Day-ahead Forecasting of Losses in the Distribution
Network. TrønderEnergi Kraft AS, 2020.

[7] Shoichi Kitamura et al. Disconnection Detection Method for Power Distribu-
tion Lines Using Smart Meters. IEEE, 2015.

[8] Sigurd Kvistad et al. Drift og utvikling av kraftnettet – utforming av DSO-
rollen. Energi Norge, 2018. url: https://www.energinorge.no/contentassets/
2858551aafa94bb798d89a8edf15a42b / drift - og - utvilkling - av - kraftnettet ---
rapport-05-12-2018.pdf (visited on 03/13/2020).

[9] Usue Mori et al. A review on outlier/anomaly detection in time series data.
Cornell University, 2020.

[10] Algorithm. Oxford University. url: https://www.lexico.com/en/definition/
algorithm (visited on 05/21/2020).

[11] F. Martinez Alvarez, A. Troncoso, J. C. Riquelme, and J. S. Aguilar Ruiz.
LBF: A Labeled-Based Forecasting Algorithm and Its Application to Electricity
Price Time Series. IEEE International Conference on Data Mining, 2008.

[12] F. Martinez Alvarez, A. Troncoso, J. C. Riquelme, and J. S. Aguilar Ruiz.
Energy Time Series Forecasting Based on Pattern Sequence Similarity. IEEE
Transactions on Knowledge and Data Engineering, 2011.

[13] Application Programming Interface (API). Gartner Inc. url: https://www.
gartner.com/en/information-technology/glossary/application-programming-
interface (visited on 05/21/2020).

[14] AVTALE OM HANDTERING OG BESKYTTELSE AV KRAFTSENSITIV
INFORMASJON. NVE.

[15] Caroline Banton. Efficiency Definition. Investopedia, 2020. url: https://www.
investopedia.com/terms/e/efficiency.asp (visited on 03/12/2020).

[16] Gouri R. Barai, Sridhar Krishnan, and Bala Venkatesh. Smart Metering and
Functionalities of Smart Meters in Smart Grid - A Review. IEEE, 2015.

[17] Colin Alexander Boyd. Lecture 6: Pseudorandom Numbers and Stream Ci-
phers. NTNU, 2019.

109

https://www.gartner.com/it-glossary/advanced-distribution-management-systems-adms
https://www.gartner.com/it-glossary/advanced-distribution-management-systems-adms
https://www.gartner.com/it-glossary/advanced-distribution-management-systems-adms
http://publikasjoner.nve.no/rapport/2019/rapport2019_43.pdf
http://publikasjoner.nve.no/rapport/2019/rapport2019_43.pdf
https://www.energinorge.no/contentassets/2858551aafa94bb798d89a8edf15a42b/drift-og-utvilkling-av-kraftnettet---rapport-05-12-2018.pdf
https://www.energinorge.no/contentassets/2858551aafa94bb798d89a8edf15a42b/drift-og-utvilkling-av-kraftnettet---rapport-05-12-2018.pdf
https://www.energinorge.no/contentassets/2858551aafa94bb798d89a8edf15a42b/drift-og-utvilkling-av-kraftnettet---rapport-05-12-2018.pdf
https://www.lexico.com/en/definition/algorithm
https://www.lexico.com/en/definition/algorithm
https://www.gartner.com/en/information-technology/glossary/application-programming-interface
https://www.gartner.com/en/information-technology/glossary/application-programming-interface
https://www.gartner.com/en/information-technology/glossary/application-programming-interface
https://www.investopedia.com/terms/e/efficiency.asp
https://www.investopedia.com/terms/e/efficiency.asp

[18] Anja Butter. Deep-learned Top Tagging using Lorentz Invariance and Nothing
Else. ITP, Universitat Heidelberg, 2017. url: https://indico.in2p3.fr/event/
16525/contributions/58417/attachments/45836/57087/DeepTop.pdf (visited
on 03/04/2020).

[19] Cache. Gartner Inc. url: https://www.gartner.com/en/information-technology/
glossary/cache (visited on 05/21/2020).

[20] O. M. Collins and N. Vasudev. The Effect of Redundancy on Measurement.
IEEE Transactions on Information Theory, 2001.

[21] COMMISSION REGULATION (EU) .../... establishing a guideline on elec-
tricity balancing. European comission, 2017. url: https://eur-lex.europa.eu/
legal-content/EN/TXT/PDF/?uri=CELEX:32017R2195&from=EN (visited
on 03/04/2020).

[22] De nye strømm̊alerne er utstyrt med en HAN-port som gir deg klare fordeler!
Ewave. url: https://www.ewave.no/blog/de-nye-strommalerne-er-utstyrt-
med-en-han-port-som-gir-deg-klare-fordeler/ (visited on 03/10/2020).

[23] Demand Response (dr). Gartner Inc. url: https ://www.gartner .com/en/
information-technology/glossary/demand-response-dr (visited on 05/21/2020).

[24] Drift og utvikling av kraftnettet – utforming av DSO-rollen. Energi Norge, 2018.
url: file : ///C:/Users/Kari/Downloads/Elnett 21 Forbrukerfleksibilitet
avansert ikke%5C%20kraftsensitiv.pdf (visited on 03/04/2020).

[25] Energy Management Systems (EMSs). Gartner Inc. url: https://www.gartner.
com/it-glossary/energy-management-systems-ems/ (visited on 03/17/2020).

[26] EUCLIDEAN DISTANCE. National Institute of Standards and Technology,
2017. url: https://www.itl .nist.gov/div898/software/dataplot/refman2/
auxillar/eucldist.htm (visited on 04/13/2020).

[27] Daniele Fanelli, Rodrigo Costas, and John P. A. Loannidis. Meta-assessment
of bias in science. Proceedings od the Snational Academy of Sciences in the
United States of America, 2017.

[28] Forskrift om systemansvaret i kraftsystemet. OED, 2002. url: https://lovdata.
no/dokument/SF/forskrift/2002-05-07-448 (visited on 03/04/2020).

[29] Marc Frincu, Charalampos Chelmis, Muhammad Usman Noor, and Viktor
Prasanna. Accurate and Efficient Selection of the Best Consumption Prediction
Method in Smart Grids. IEEE, 2014.

[30] M. Hawkins. Identification of outlier. Springer Netherlands, 1980.

[31] Jordan Hochenbaum, Owen S. Vallis, and Arun Kejariwal. Automatic Anomaly
Detection in the Cloud Via Statistical Learning. Cornell University, 2017.

[32] Vegard Holmefjord and Anders Kringstad et al. Et elektrisk Norge – fra fossilt
til strøm. Statnett, 2019. url: https://www.statnett.no/globalassets/for-
aktorer-i-kraftsystemet/planer-og-analyser/et-elektrisk-norge--fra-fossilt-til-
strom.pdf (visited on 03/04/2020).

[33] Hvordan f̊a en elektrisk fremtid uten at sikringen g̊ar? Enova, 2018.

110

https://indico.in2p3.fr/event/16525/contributions/58417/attachments/45836/57087/DeepTop.pdf
https://indico.in2p3.fr/event/16525/contributions/58417/attachments/45836/57087/DeepTop.pdf
https://www.gartner.com/en/information-technology/glossary/cache
https://www.gartner.com/en/information-technology/glossary/cache
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R2195&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R2195&from=EN
https://www.ewave.no/blog/de-nye-strommalerne-er-utstyrt-med-en-han-port-som-gir-deg-klare-fordeler/
https://www.ewave.no/blog/de-nye-strommalerne-er-utstyrt-med-en-han-port-som-gir-deg-klare-fordeler/
https://www.gartner.com/en/information-technology/glossary/demand-response-dr
https://www.gartner.com/en/information-technology/glossary/demand-response-dr
file:///C:/Users/Kari/Downloads/Elnett_21__Forbrukerfleksibilitet__avansert_ikke%5C%20kraftsensitiv.pdf
file:///C:/Users/Kari/Downloads/Elnett_21__Forbrukerfleksibilitet__avansert_ikke%5C%20kraftsensitiv.pdf
https://www.gartner.com/it-glossary/energy-management-systems-ems/
https://www.gartner.com/it-glossary/energy-management-systems-ems/
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/eucldist.htm
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/eucldist.htm
https://lovdata.no/dokument/SF/forskrift/2002-05-07-448
https://lovdata.no/dokument/SF/forskrift/2002-05-07-448
https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/et-elektrisk-norge--fra-fossilt-til-strom.pdf
https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/et-elektrisk-norge--fra-fossilt-til-strom.pdf
https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/et-elektrisk-norge--fra-fossilt-til-strom.pdf

[34] Information and communication technology. Oxford university. url: https :
//www.oxfordreference.com/view/10.1093/oi/authority.20110803100002983
(visited on 05/21/2020).

[35] Karoline Ingebrigtsen, Volker Hoffmann, and Arne J. Berre. Energy Analytics
– Opportunities for Energy Monitoring and Prediction with Smart Meters.
SINTEF, 2017. url: https://sintef.brage.unit.no/sintef-xmlui/bitstream/
handle/11250/2483460/paper1.pdf?sequence=2 (visited on 03/12/2020).

[36] Innsending av Norges klimam̊al til FN. Regjeringen, 2015. url: https://www.
regjeringen.no/no/aktuelt/innsending-av-norges-klimamal-til-fn/id2403782/
(visited on 03/04/2020).

[37] INSTALLASJONSVEILEDNING FOR ENERGY SERVICE DEVICES. Aidon,
2015. url: https://www.skageraknett.no/getfile.php/1324033-1563186993/
Nett/Filer/Proff/Prekvalifiserte/Installasjonsveiledning%5C%20AIDON.pdf
(visited on 03/09/2020).

[38] Internet Of Things (iot). Gartner Inc. url: https://www.gartner.com/en/
information-technology/glossary/internet-of-things (visited on 06/07/2019).

[39] Weiqing Jiang, Vijay Vittal, and Gerald T. Heydt. A Distributed State Esti-
mator Utilizing Synchronized Phasor Measurements. IEEE, 2007.

[40] Alboukadel Kassambara. CLARA in R : Clustering Large Applications. Data
Novia. url: https://www.datanovia.com/en/lessons/clara- in-r-clustering-
large-applications/ (visited on 05/05/2020).

[41] KRAFTMARKEDET. OED, 2019. url: https://energifaktanorge.no/norsk-
energiforsyning/kraftmarkedet/ (visited on 05/15/2020).

[42] Kraftsystemet. OED. url: https://www.energinorge.no/fagomrader/stromnett/
kraftsystemet/ (visited on 03/17/2019).

[43] Leveringsplikt. NVE, 2019. url: https://www.nve.no/reguleringsmyndigheten/
stromkunde/leveringsplikt/ (visited on 03/04/2020).

[44] Liste over konsesjonærer. NVE, 2019. url: https://www.nve.no/reguleringsmyndigheten/
omsetningskonsesjon/liste-over-konsesjonaerer/?ref=mainmenu# (visited on
03/04/2020).

[45] Logistic regression. Machine Learning Glossary. url: https://ml-cheatsheet.
readthedocs . io/en/ latest/ logistic regression .html?highlight=linear%5C%
20regression (visited on 05/21/2020).

[46] Lovdata. Lov om produksjon, omforming, overføring, omsetning, fordeling og
bruk av energi m.m. (energiloven). OED, 2019. url: https : // lovdata .no/
dokument/NL/lov/1990-06-29-50?q=energilov (visited on 03/03/2020).

[47] Cheryl Martin, Francesco Starace, and Jean Pascal Tricoire. The Future of
Electricity, New Technologies Transforming the Grid Edge. World Economic
Forum, 2017.

[48] Hugo Mayo, Hashan Punchihewa, Julie Emile, and Jack Morrison. Early His-
tory of Machine Learning. url: https://www.doc.ic.ac.uk/∼jce317/history-
machine-learning.html (visited on 05/05/2020).

111

https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100002983
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100002983
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2483460/paper1.pdf?sequence=2
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2483460/paper1.pdf?sequence=2
https://www.regjeringen.no/no/aktuelt/innsending-av-norges-klimamal-til-fn/id2403782/
https://www.regjeringen.no/no/aktuelt/innsending-av-norges-klimamal-til-fn/id2403782/
https://www.skageraknett.no/getfile.php/1324033-1563186993/Nett/Filer/Proff/Prekvalifiserte/Installasjonsveiledning%5C%20AIDON.pdf
https://www.skageraknett.no/getfile.php/1324033-1563186993/Nett/Filer/Proff/Prekvalifiserte/Installasjonsveiledning%5C%20AIDON.pdf
https://www.gartner.com/en/information-technology/glossary/internet-of-things
https://www.gartner.com/en/information-technology/glossary/internet-of-things
https://www.datanovia.com/en/lessons/clara-in-r-clustering-large-applications/
https://www.datanovia.com/en/lessons/clara-in-r-clustering-large-applications/
https://energifaktanorge.no/norsk-energiforsyning/kraftmarkedet/
https://energifaktanorge.no/norsk-energiforsyning/kraftmarkedet/
https://www.energinorge.no/fagomrader/stromnett/kraftsystemet/
https://www.energinorge.no/fagomrader/stromnett/kraftsystemet/
https://www.nve.no/reguleringsmyndigheten/stromkunde/leveringsplikt/
https://www.nve.no/reguleringsmyndigheten/stromkunde/leveringsplikt/
https://www.nve.no/reguleringsmyndigheten/omsetningskonsesjon/liste-over-konsesjonaerer/?ref=mainmenu#
https://www.nve.no/reguleringsmyndigheten/omsetningskonsesjon/liste-over-konsesjonaerer/?ref=mainmenu#
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html?highlight=linear%5C%20regression
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html?highlight=linear%5C%20regression
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html?highlight=linear%5C%20regression
https://lovdata.no/dokument/NL/lov/1990-06-29-50?q=energilov
https://lovdata.no/dokument/NL/lov/1990-06-29-50?q=energilov
https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html
https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html

[49] A. P. Sakis Meliopoulos. Power System Modeling, Analysis and Control. School
of Electrical and Computer Engineering Georgia Institute of Technology, 2006.

[50] Ramin Moghaddass and Jianhui Wang. A Hierarchical Framework for Smart
Grid Anomaly Detection Using Large-Scale Smart Meter Data. IEEE, 2018.

[51] Ulf Møller. Elektrifisering av transport. Energi Norge, 2016. url: https://www.
energinorge.no/fagomrader/energibruk-og-klima/elektrifisering/elektrifisering-
av-transport/ (visited on 03/04/2020).

[52] Antonio Moreno-Mufnoz, Daniel Oterino, and Angel Carmona Juan J G. de la
Rosa. Automated Meter Reading Systems in Outage Management. IEEE, 2007.

[53] N̊a m̊a strømleverandører og nettselskap innhente fødselsnummer for alle strømkunder.
NVE, 2015. url: http://publikasjoner.nve.no/faktaark/2015/faktaark2015
10.pdf (visited on 03/04/2020).

[54] J. Naas-Bibow. Norske og europeiske rammer for utøvelse DSO-rollen. Thommessen
AS, 2018. url: https://www.energinorge.no/contentassets/98d80fc7d5644904b6af3a37fb925d53/
11878092 2 2018.06.06-norske-og-europeiske-rammer-for-utovelse-dso-rollen.-
presentasjon-medlemsmote-6.6.2018.pdf (visited on 03/03/2020).

[55] Natural Monopoly. OECD Glossary of statistical terms. url: https://stats.
oecd.org/glossary/detail.asp?ID=3267 (visited on 05/21/2020).

[56] Netleie. NVE, 2019. url: https://www.nve.no/stromkunde/nettleie/ (visited
on 03/04/2020).

[57] Nettselskap Forsyningsomr̊ade. NVE, 2019. url: https://gis3.nve.no/ferdigkart/
omraedekonsesjon a0.pdf (visited on 03/12/2020).

[58] Neural network. Machine Learning Glossary. url: https : / / ml - cheatsheet .
readthedocs.io/en/latest/nn concepts.html?highlight=neural%5C%20network
(visited on 05/21/2020).

[59] Andrew Yan-Tak Ng. Week 1 Lecture Notes: What is Machine Learning?
Coursera, Stanford University.

[60] Nytt fra NVE 2019. NVE, 2019. url: https : / / www . nve . no / om - nve /
presserom/taler-og-presentasjoner/nytt-fra-nve-2019/ (visited on 03/04/2020).

[61] OED. Forskrift om m̊aling, avregning, fakturering av nettjenester og elektrisk
energi, nettselskapets nøytralitet mv. OED, 1999. url: https://lovdata.no/
dokument/SF/forskrift/1999-03-11-301 (visited on 03/03/2020).

[62] Om NVE. NVE, 2015. url: https://www.nve.no/om-nve/?ref=mainmenu
(visited on 03/03/2020).

[63] Om Olje- og energidepartementet. OED, 2020. url: https://www.regjeringen.
no/no/dep/oed/org/id774/ (visited on 06/07/2019).

[64] Om reguleringen av strømnettselskapenes inntekter. NVE. url: https://www.
nve.no/media/8368/om-reguleringen-av-str%5C%C3%5C%B8mnettselskapenes-
inntekter.pdf (visited on 03/10/2020).

[65] Oppstartsmøte for A5 Forretningsmodeller - Elnett21. Lyse Elnett AS, 2019.

112

https://www.energinorge.no/fagomrader/energibruk-og-klima/elektrifisering/elektrifisering-av-transport/
https://www.energinorge.no/fagomrader/energibruk-og-klima/elektrifisering/elektrifisering-av-transport/
https://www.energinorge.no/fagomrader/energibruk-og-klima/elektrifisering/elektrifisering-av-transport/
http://publikasjoner.nve.no/faktaark/2015/faktaark2015_10.pdf
http://publikasjoner.nve.no/faktaark/2015/faktaark2015_10.pdf
https://www.energinorge.no/contentassets/98d80fc7d5644904b6af3a37fb925d53/11878092_2_2018.06.06-norske-og-europeiske-rammer-for-utovelse-dso-rollen.-presentasjon-medlemsmote-6.6.2018.pdf
https://www.energinorge.no/contentassets/98d80fc7d5644904b6af3a37fb925d53/11878092_2_2018.06.06-norske-og-europeiske-rammer-for-utovelse-dso-rollen.-presentasjon-medlemsmote-6.6.2018.pdf
https://www.energinorge.no/contentassets/98d80fc7d5644904b6af3a37fb925d53/11878092_2_2018.06.06-norske-og-europeiske-rammer-for-utovelse-dso-rollen.-presentasjon-medlemsmote-6.6.2018.pdf
https://stats.oecd.org/glossary/detail.asp?ID=3267
https://stats.oecd.org/glossary/detail.asp?ID=3267
https://www.nve.no/stromkunde/nettleie/
https://gis3.nve.no/ferdigkart/omraedekonsesjon_a0.pdf
https://gis3.nve.no/ferdigkart/omraedekonsesjon_a0.pdf
https://ml-cheatsheet.readthedocs.io/en/latest/nn_concepts.html?highlight=neural%5C%20network
https://ml-cheatsheet.readthedocs.io/en/latest/nn_concepts.html?highlight=neural%5C%20network
https://www.nve.no/om-nve/presserom/taler-og-presentasjoner/nytt-fra-nve-2019/
https://www.nve.no/om-nve/presserom/taler-og-presentasjoner/nytt-fra-nve-2019/
https://lovdata.no/dokument/SF/forskrift/1999-03-11-301
https://lovdata.no/dokument/SF/forskrift/1999-03-11-301
https://www.nve.no/om-nve/?ref=mainmenu
https://www.regjeringen.no/no/dep/oed/org/id774/
https://www.regjeringen.no/no/dep/oed/org/id774/
https://www.nve.no/media/8368/om-reguleringen-av-str%5C%C3%5C%B8mnettselskapenes-inntekter.pdf
https://www.nve.no/media/8368/om-reguleringen-av-str%5C%C3%5C%B8mnettselskapenes-inntekter.pdf
https://www.nve.no/media/8368/om-reguleringen-av-str%5C%C3%5C%B8mnettselskapenes-inntekter.pdf

[66] University of Oslo. Acts relating to the energy and water resources sector in
Norway (unofficial translation). OED, 2004. url: https://app.uio.no/ub/
ujur/oversatte-lover/data/lov-19900629-050-eng.pdf (visited on 03/03/2020).

[67] Outage Management System (OMS). Gartner Inc. url: https://www.gartner.
com/it-glossary/outage-management-system-oms/ (visited on 03/17/2020).

[68] John Paparrizos and Luis Gravano. k-Shape: Efficient and Accurate Clustering
of Time Series. Columbia University, 2015.

[69] Produktark ESD m̊aler. Aidon, 2012. url: https://static1.squarespace.com/
static/54ec7207e4b0b896afa8664e/t/5a82ae3fc830259134d7c1e9/1518513730027/
Produktark+ESD+%5C%C3%5C%A5ler.pdf (visited on 03/09/2020).

[70] Python vs. C++: Let’s Compare. BitDegree, 2020. url: https://www.bitdegree.
org/tutorials/python-vs-c-plus-plus/ (visited on 06/01/2019).

[71] Reguleringsmyndigheten for energi (RME). NVE. url: https://www.nve.no/
reguleringsmyndigheten/ (visited on 03/03/2020).

[72] Reproducibility and Replicability in Science. National Academies of Sciences,
Engineering, Medicine, Policy, and Global Affairs, 2019.

[73] Reservemarkeder. Statnett. url: https ://www.statnett .no/ for - aktorer - i -
kraftbransjen / systemansvaret / kraftmarkedet / reservemarkeder/ (visited on
05/15/2020).

[74] Margaret Rouse. script. WhatIs.com, 2005. url: https://whatis.techtarget.
com/definition/script (visited on 05/25/2019).

[75] Peter J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and val-
idation of cluster analysis. Journal of Computational and Applied Mathemat-
ics, 1987.

[76] T.L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, 1980.

[77] Hiroaki Sakoe and Seibi Chiba. Dynamic Programming Algorithm Optimiza-
tion for Spoken Word Recognition. IEEE, 1978.

[78] Kamalanath Samarakoon, Jianzhong Wu, Janaka Ekanayake, and Nick Jenk-
ins. Use of Delayed Smart Meter Measurements for Distribution State Esti-
mation. IEEE, 2011.

[79] Scikit-learn. NVE, 2020. url: https ://scikit - learn .org/stable/ (visited on
06/04/2019).

[80] Seasonal-Trend decomposition using LOESS (STL). statsmodels v0.12.0.dev0.
url: https ://www.statsmodels .org/dev/examples/notebooks/generated/
stl decomposition.html (visited on 05/07/2020).

[81] Chanakya Shah. Linear Regression. 2018. url: http://chanakya.ca/2018/05/
13/linear-regression/ (visited on 03/09/2020).

[82] Harry Singh, Shangyou Hao, and Alex Papalexopoulos. Transmission conges-
tion management in competitive electricity markets. IEEE, 1998.

113

https://app.uio.no/ub/ujur/oversatte-lover/data/lov-19900629-050-eng.pdf
https://app.uio.no/ub/ujur/oversatte-lover/data/lov-19900629-050-eng.pdf
https://www.gartner.com/it-glossary/outage-management-system-oms/
https://www.gartner.com/it-glossary/outage-management-system-oms/
https://static1.squarespace.com/static/54ec7207e4b0b896afa8664e/t/5a82ae3fc830259134d7c1e9/1518513730027/Produktark+ESD+%5C%C3%5C%A5ler.pdf
https://static1.squarespace.com/static/54ec7207e4b0b896afa8664e/t/5a82ae3fc830259134d7c1e9/1518513730027/Produktark+ESD+%5C%C3%5C%A5ler.pdf
https://static1.squarespace.com/static/54ec7207e4b0b896afa8664e/t/5a82ae3fc830259134d7c1e9/1518513730027/Produktark+ESD+%5C%C3%5C%A5ler.pdf
https://www.bitdegree.org/tutorials/python-vs-c-plus-plus/
https://www.bitdegree.org/tutorials/python-vs-c-plus-plus/
https://www.nve.no/reguleringsmyndigheten/
https://www.nve.no/reguleringsmyndigheten/
https://www.statnett.no/for-aktorer-i-kraftbransjen/systemansvaret/kraftmarkedet/reservemarkeder/
https://www.statnett.no/for-aktorer-i-kraftbransjen/systemansvaret/kraftmarkedet/reservemarkeder/
https://whatis.techtarget.com/definition/script
https://whatis.techtarget.com/definition/script
https://scikit-learn.org/stable/
https://www.statsmodels.org/dev/examples/notebooks/generated/stl_decomposition.html
https://www.statsmodels.org/dev/examples/notebooks/generated/stl_decomposition.html
http://chanakya.ca/2018/05/13/linear-regression/
http://chanakya.ca/2018/05/13/linear-regression/

[83] Frank Skapalen, Helge Ulsberg, Roger Steen, Rikke C. Arnulf, and Truls
Sønsteby. Veiledning til forskrift om beredskap kraftforsyningen. NVE, 2011.
url: http://publikasjoner.nve.no/veileder/2011/veileder2011 01.pdf (visited
on 03/17/2020).

[84] Slik fungerer kraftsystemet. Statnett, 2018. url: https://www.statnett.no/om-
statnett/bli-bedre-kjent-med-statnett/slik-fungerer-kraftsystemet/ (visited
on 03/17/2020).

[85] Ida Mattsson Sperre, Henrik Johan Myhrer Janne Hagen, Jon-Martin P. Storm,
and Helge Ulsberg. Oppsummeringsdokument: Endringer i beredskapsforskriften
- Krav til IKT-sikkerhet m.m. NVE, 2018. url: http://publikasjoner.nve.no/
rapport/2018/rapport2018 92.pdf (visited on 03/04/2020).

[86] Strømm̊aler og HAN-port. Lyse Elnett, 2019. url: https://www.lysenett.no/
kunde/faktura-og-forbruk/strommaler-og-han-port/ (visited on 03/12/2020).

[87] Romain Tavenard. tslearn.generators.random walks. 2017. url: https://tslearn.
readthedocs.io/en/stable/gen modules/generators/tslearn.generators.random
walks.html (visited on 05/08/2020).

[88] Romain Tavenard. tslearn Documentation, Release 0.3.0. 2020. url: https :
/ / readthedocs . org / projects / tslearn / downloads / pdf / latest/ (visited on
03/03/2020).

[89] Romain Tavenard. KShape source code. tslearn. url: https://github.com/
tslearn - team / tslearn / blob / 9d20ed0 / tslearn / clustering . py # L877 - L1166
(visited on 06/01/2019).

[90] The Smart Grid. U.S. Department of Energy. url: https://www.smartgrid.
gov/the smart grid/smart grid.html (visited on 03/17/2020).

[91] Roland Olsson The-Hien Dang-Ha and Hao Wang. Clustering Methods for
Electricity Consumers: An Empirical Study in Hvaler - Norway. University of
Oslo, NTNU and Ostfold University College, 2016.

[92] Time series. Oxford University. url: https://www.lexico.com/definition/
time series (visited on 05/21/2020).

[93] Arne Venjum. Smarte m̊alere (AMS), Status og planer for installasjon per 1.
halv̊ar 2016. RME, 2016.

[94] Dominik Waeresch, Robert Brandalik, Wolfram H. Wellssow, Joern Jordan,
Rolf Bischler, and Nelia Schneider. Linear State Estimation in Low Voltage
Grids based on Smart Meter Data. IEEE, 2015.

[95] Ali Al-Wakeel, Jianzhong Wu, and Nick Jenkins. Applied Energy - State esti-
mation of medium voltage distribution networks using smart meter measure-
ments. Elsevier, 2016.

[96] Kari Walstad. Secure internet-based communication between SCADA and de-
mand response aggregator in the context of the Elnett21-project. NTNU, 2019.

[97] What is metrology? International Bureau of Weights and Measures (BIPM).
url: https://www.bipm.org/en/worldwide-metrology/ (visited on 05/24/2020).

114

http://publikasjoner.nve.no/veileder/2011/veileder2011_01.pdf
https://www.statnett.no/om-statnett/bli-bedre-kjent-med-statnett/slik-fungerer-kraftsystemet/
https://www.statnett.no/om-statnett/bli-bedre-kjent-med-statnett/slik-fungerer-kraftsystemet/
http://publikasjoner.nve.no/rapport/2018/rapport2018_92.pdf
http://publikasjoner.nve.no/rapport/2018/rapport2018_92.pdf
https://www.lysenett.no/kunde/faktura-og-forbruk/strommaler-og-han-port/
https://www.lysenett.no/kunde/faktura-og-forbruk/strommaler-og-han-port/
https://tslearn.readthedocs.io/en/stable/gen_modules/generators/tslearn.generators.random_walks.html
https://tslearn.readthedocs.io/en/stable/gen_modules/generators/tslearn.generators.random_walks.html
https://tslearn.readthedocs.io/en/stable/gen_modules/generators/tslearn.generators.random_walks.html
https://readthedocs.org/projects/tslearn/downloads/pdf/latest/
https://readthedocs.org/projects/tslearn/downloads/pdf/latest/
https://github.com/tslearn-team/tslearn/blob/9d20ed0/tslearn/clustering.py#L877-L1166
https://github.com/tslearn-team/tslearn/blob/9d20ed0/tslearn/clustering.py#L877-L1166
https://www.smartgrid.gov/the_smart_grid/smart_grid.html
https://www.smartgrid.gov/the_smart_grid/smart_grid.html
https://www.lexico.com/definition/time_series
https://www.lexico.com/definition/time_series
https://www.bipm.org/en/worldwide-metrology/

[98] Zheng Zhang, Romain Tavenard, Adeline Bailly, Xiaotong Tang, and Ping
Tang et al. Dynamic Time Warping Under Limited Warping Path Length.
Information Sciences Elsevier, 2018.

115

A Appendix I: Key IT systems for DSO operation

This is a verbatim reproduction from the specialization project report titled “Secure
internet-based communication between SCADA and demand response aggregator in
context of the Elnett21-project” submitted to the Department of Electric Power En-
gineering in December 2019, found in reference [96].

The DSOs Lyse Elnett and Hafslund, and the technologies firm ABB were inter-
viewed to provide much of the information content of this chapter, as it was not
readily available in the literature. Therefore, all statements made in this chapter
which are not referenced to a literature source, were provided by either Lyse Elnett,
Hafslund or ABB.

Traditionally, the most important IT systems used by the Norwegian DSOs have
been Energy Management System (EMS), Distribution Management System (DMS),
Supervisory Control And Data Acquisition (SCADA), Outage Management System
(OMS), and Network Information System (NIS). In Norway, the systems mentioned
above largely operate in a flat hierarchy. This means that no one system is considered
a subsystem of another, except for OMS which is considered a subsystem of EMS
and DMS. This way of categorizing the different systems differs from convention
abroad, where for example DMS, OMS and SCADA may be considered subsystems
of EMS [49].

EMS, DMS, SCADA and OMS may be supplied by several different vendors from
which a DSO may choose between. Due to this, a DSO could for example have an
DMS supplied by ABB and a SCADA system supplied by Siemens. When two soft-
ware systems that are designed by different vendors interact interoperability prob-
lems may arise, and data quality lost. Ensuring proper information security at the
interface between two software systems may also prove challenging. Consequently,
Advanced Distribution Management System (ADMS) may become a preferred solu-
tion for the future. In an ADMS all control and information systems are integrated
together into one system (the ADMS), and supplied by one vendor. NIS will however
still be supplied by a second vendor.

A.1 Supervisory Control And Data Acquisition (SCADA)

Supervisory Control And Data Acquisition systems are responsible for acquiring
data which describes the state of the utility grid for the grid operators. SCADA
systems are also responsible for the dispatch of control commands issued from the
grid operators to the physical components of the utility grid.

A.2 Energy Management System (EMS)

The global research and advisory firm Gartner Inc. [25] proposes the following
definition for Energy Management Systems:

Energy management systems (EMSs) make up the “central nervous sys-
tem” of the power transmission network and are the critical governing
component of the power grid’s operational reliability. EMSs perform

116

state estimation, contingency analysis and other advanced applications.
Operator training applications offer offline study modes and real-time
simulations.

EMS is used by DSOs in the parts of the Norwegian utility grid which have voltage
levels of between 50 and 132 kV, termed the regional grid (regionalnett). Compo-
nents of the EMS include State Estimator (SE), Short Circuit Analysis (SCA) and
Dispatch Load Flow (DLF). EMS uses data from SCADA in advanced applications
to perform real-time analysis on the grid, and for assistance in real-time decision
making of the operators. In Norway EMS is not considered a subsystem of SCADA,
or vice versa. However, it is common in other countries to define SCADA as a
subsystem of EMS [49].

Due to historical reasons, EMS and SCADA are oftentimes fully integrated. This
means that the two systems share the same server and user interface, and will
from an operator’s point of view seem like the same system. In the 1960ies when
SCADA systems were first applied to the Norwegian utility grids, the DSOs only
had need of computing functionality for the regional grid with higher voltage levels
(50 to 132 kV). This was because an outage or fault in the grid with voltage levels
between 50 and 132 kV had large social consequences, compared to lower voltage
levels which had mostly economical consequences. As a result EMS has a higher
emergency regulation classification than DMS. Hence, EMS was installed alongside
the SCADA system, and from the same vendor. DMS and OMS would be installed
at a later time when the need for such systems arose.

In Norway neither EMS, DMS or OMS has the ability to automatically change the
state of breakers in the grid. Only system operators may change breaker connections,
which happens through SCADA. EMS may change voltage phasor values in SCADA
if it thinks the SCADA values may be incorrect/outdated, after it has computed the
State Estimator.

A.3 Distribution Management System (DMS)

Distribution Management System, as utilized by Norwegian DSOs, provides the
same functionality as EMS but operates at different voltage levels. While EMS is
used for the regional grid, DMS is used for the grid with voltage levels between
400/230 V and 22 kV, termed the distribution grid. Since DMS was often installed
prior to EMS and SCADA it is not as closely integrated to SCADA as EMS is,
meaning that it will commonly not share its server and user interface with SCADA
and EMS.

DMS may not send commands to, or change values in SCADA the way that EMS can
(with its computed State Estimator values). Additionally, it is not possible for DMS
to manipulate breakers in the grid automatically. DMS acquires its distribution grid
information from NIS, in addition to SCADA.

117

A.4 Outage Management System (OMS)

Gartner Inc. [67] proposes the following definition for an Outabe Management
System:

An outage management system (OMS) is a utility network management
software application that models network topology for safe, efficient field
operations related to outage restoration. OMSs tightly integrate with
call centers to provide timely, accurate, customer-specific outage infor-
mation, as well as supervisory control and data acquisition (SCADA)
systems for real-time-confirmed switching and breaker operations. These
systems track, group and display outages to safely and efficiently manage
service restoration activities.

Outage Management System exists as a function in EMS and DMS and is used for
planning disconnections in the utility grid, when the grid where the disconnections
are to take place is so complex that the consequences of a disconnection are not
easily seen. For this reason, OMS in medium to small DSOs may only be activated
in DMS, because the grid with lower voltage levels has a higher complexity than the
grid with higher voltage levels. Large DSOs like Hafslund have OMS activated in
their EMS as well.

A.5 Network Information System (NIS)

A Network Information system (NIS) is an IT system which DSOs use to geograph-
ically map all utility grid information. NIS provides information on substations,
transformer stations and other installations (when they were built, changes that
have been made since then, specific data on installation components), zoning plans,
customer locations, landowners, specific data on cables, etc. DMS collects data for
the distribution grid directly from NIS.

A.6 Advanced Distribution Management System (ADMS)

Gartner Inc. [2] proposes the following definition of an Advanced Distribution Man-
agement System:

An advanced distribution management system (ADMS) is the software
platform that supports the full suite of distribution management and op-
timization. An ADMS includes functions that automate outage restora-
tion and optimize the performance of the distribution grid. ADMS func-
tions being developed for electric utilities include fault location, isola-
tion and restoration; volt/volt-ampere reactive optimization; conserva-
tion through voltage reduction; peak demand management; and support
for microgrids and electric vehicles.

Advanced Distribution Management System is a highly advanced system that pro-
vides the combined functionality of EMS, DMS, OMS, and SCADA. Because it is
provided by a single vendor, the interoperability issues that arise when using IT sys-
tems from different vendors should not be a problem. There are additionally security

118

advantages to using an ADMS, because of the seamless data interaction between the
different components of the ADMS. The disadvantage of changing from the “patch-
work” collection of control and information systems that Norwegian DSOs typically
have utilized, to employing an ADMS, is that all existing systems will have to be
replaced. In other words, it is not possible to keep existing systems and integrate
them into an ADMS.

Because of their network size and complexity, Hafslund will in the future change
from a “patchwork” solution to using an ADMS. This may be a trend for the future
as more DSOs in Norway merge and become larger.

A.7 Emergency regulation related to DSO IT systems

The Norwegian Water Resources and Energy Directorate, NVE, adopts the following
classification of plants/electrical installations as mentioned in Section §5-3 of the
guidance report on emergency regulations for power supply [83]. Control systems
are divided into three classes according to their significance for the country’s power
supply.

Class 1: Installatons of minor importance.

Class 2: Installations that are important for maintaining the power supply at county
level or for operation of regional networks.

Class 3: Installations that have an impact on the power supply in an area, region
or for the operation of the central transmission network or for large populations,
important infrastructure or other special considerations.

Although the above class definitions are given for electrical installations, they are
used in NVE’s Guide to regulations on emergency preparedness in the power supply
[83] to classify control system criticality. This is because a control system is directly
connected to, and can affect the operation of the installations. The SCADA system,
EMS system and ADMS is classified as a Class 3 control system. EMS is classified
as a Class 3 control system because it shares the same server as SCADA. DMS, as
explained in Section A.3 is not as closely integrated with SCADA as EMS is. DMS,
OMS and NIS are classified as Class 2 systems. A control and information system’s
classification governs the strictness of security measures used to protect it.

In NVE’s Guide to regulations on emergency preparedness in the power supply [83]
control systems are given a separate section, §6-4 Special requirements for control
systems.

Special requirement §6-4 b) states the requirement for both physical and electrical
access control to a control system. All control systems must have control regimes
that effectively protect against internal and remote unauthorized physical and elec-
tronic access, distribution of malicious software etc. [83].

Special requirement §6-4 c) states the general requirement for control system se-
curity. Class 2 control systems shall be implemented with redundancy up to the
individual power supply installations in Class 2 and 3, such that no important func-

119

tions are lost due to an error or a single undesirable event. Class 3 control systems
shall be implemented with full redundancy throughout the system up to the indi-
vidual power supply installations in Class 2 and 3, and to others relevant Class 2
and 3 operating control systems so that a fault or single event cannot put important
functions out of operation. The redundancy should be performed with physical and
electronic separation. The operating control system must be designed so robustly
that function is maintained under great and long-lasting stress. Class 3 operational
control systems shall be capable of operating independently of public networks and
telecommunications services [83].

120

B Appendix II: Data preparation code

This appendix contains the code for the data preparation step wherein the raw
AMS-data is extracted from a .txt file and output to another .txt in a format which
the machine learning code from tslearn can understand. This process is explained
in Section 9.1. This Appendix will explain how to adjust the code to other formats
of AMS-data which are mentioned in Section 4.4.

B.1 Uploading the AMS-data .txt file to a pandas DataFrame

#----------------------------PRELIMINARIES-----------------------------

import numpy as np

from datetime import datetime

import pandas as pd

Import data set in .txt file to a pandas data frame

data_frame = pd.read_csv(’EksportDataset1.txt’, delimiter=’;’,

names=(’ID’,’ReadingTime’,’ReadingValue’,’Substation’),

usecols=(0,2,3,5),skiprows=1)

#--

Any parameter in the pd.read csv may be adjusted to the raw AMS-data .txt
file. First, start by writing in the correct name of the .txt file (in this code it is
EksportDataset1.txt). Then, check whether the delimiter is “;” or something else,
in which case the delimiter parameter should be changed. Go on to decide which
columns from the raw AMS-data set that should be extracted, and remember that
Python starts indexing at 0 not 1. These columns are specified as usecols indexes.
Each of the chosen columns may be given a “label” in the pandas DataFrame. In this
case the labels names=(’ID’,’ReadingTime’,’ReadingValue’,’Substation’) are
chosen. The skiprows parameter is chosen to be 1 because the first row in the data
set does not include any AMS-data. This may be seen in Figure 30 in Section 4.4.

Before proceeding it is advisable to run the above code and see if the correct data
is uploaded to the pandas DataFrame variable, data frame.

B.2 Time management of the DataFrame

#---------------------------------TIME---------------------------------

Turn the ReadingTime column into a datetime oject

data_frame[’ReadingTime’]=data_frame[’ReadingTime’].apply(lambda x :

datetime.strptime(x,"%d.%m.%Y %H:%M:%S"))

min and max time

min_time = data_frame[’ReadingTime’].min()

max_time = data_frame[’ReadingTime’].max()

121

Create single column data frame of datetime object from min_time to

max_time

Please change ’freq’ if the sampling frequency is not hourly.

datetime_list = pd.date_range(min_time,max_time,freq=’H’)

#--

The point of this code is to find the earliest and latest AMS consumption data in
time, min time and max time, and make a list of discrete time intervals in between
these measurement times. In the first line of code it should be checked whether
the order of %d.%m.%Y %H:%M:%S corresponds to the order of the date and time
measurement in the raw AMS-data which has been uploaded to data frame. View
Figure 30 in Section 9.1 to see how date and time was represented in the AMS-data
used for this report. Also, check whether the measurement frequency is hourly. If it
is not, change the freq=’H’ parameter to a correct measurement interval parameter.

Before proceeding it is advisable to run the above code and check whether the vari-
able datetime list contains a discrete list of datetime objects between min time

and max time.

B.3 Miscellaneous operations

#----------------------------SORTING & MISC------------------------------

Changing the "," to "." in column thee and making it a float.

data_frame[’ReadingValue’]=data_frame[’ReadingValue’].apply(lambda y :

y.replace(",","."))

data_frame[’ReadingValue’]=data_frame[’ReadingValue’].apply(lambda y :

float(y))

What datatype are the different fields?

You should check that data_frame contains the correct data types.

Customer ID should be an integer (int)

Reading time should be a datetime object (datetime)

Reading value should be a floating point integer (float)

Substation should be an string (object)

what_dtype = data_frame.dtypes

here we can delete substations

Sort the ’ID’ column, ascending. ID values were an int by default.

Then, sort the ’ReadingTime’ values according to the ’ID’ column

data_frame.sort_values(by=[’ID’,’ReadingTime’])

How many IDs do we have?

IDs = data_frame[’ID’].max()

#--

The first part of this code deals with replacing all commas “,” with a period “.”,

122

as Python sees decimals by periods, not commas. The second part of the code,
what dtype, is written as a check for the user to see if the data frame variables
now contains data of the right type (it should). The data in data frame is then
sorted by ID, and each ID is then sorted in time.

There has also been added a space where specific substations may be removed from
the data frame. The code for this operation was not written because it was not
needed in the report, but it should not be particularly challenging to implement
after a few google-searches on slicing and removing pandas DataFrame rows.

Before proceeding it is advisable to run the above code and check whether all data
in the data frame variable is of the correct type, by looking at what dtype.

B.4 Making a DataFrame with the correct format for tslearn

#-----------------------------MAKE NEW DATA FRAME------------------------

Create new data frame which will contain all the ReadingTimes for the

different IDs along the columns, for each time along the rows

array = np.empty((datetime_list.size,IDs))

array[:] = 0

TimeSeriesDF = pd.DataFrame(array, index = datetime_list)

for i in range(1,IDs):

Create a data frame which only contains the ReadingTime and

ReadingValue for each ID.

Value_and_time =

data_frame.loc[data_frame.loc[:,’ID’]==i,[’ReadingTime’,’ReadingValue’]]

Re-index Value_and_time.

All missing ReadingTimes are replaced with NaN.

Value_and_time = Value_and_time.set_index(’ReadingTime’)

Value_and_time = Value_and_time.reindex(datetime_list)

Allocate the ReadingValues in Value_and_time to TimeSeriesDF

TimeSeriesDF.iloc[:,(i-1)] = Value_and_time.iloc[:,0]

#--

This part of the code does not need a lot of tampering. However, if names =

(’ID’, ’ReadingTime’, ’ReadingValue’, ’Substation’) has been changed in
the pd.read csv function then these label names will have to be changed in the
code below read csv. This applies of course to the entire code in this appendix, not
just the code in this section.

B.5 Specifying the time interval for further analysis

As may be read in the comments on the code in this section, the code user should
now specify which time interval he/she wishes to select from the AMS-data set.

123

#----------------- CHOOSE THE TIME SERIES TO WORK WITH ------------------

Write in when you want the first and last measurement in the time

series to be.

Remember to check that it lies in between max_time and min_time.

The format is: datetime(year,month,day,hour,minute,second)

Since we have hour-wise readings, the format is:

datetime(year,month,day,hour,0,0). Do not write 0 in front of any

nonzero input.

Start_date_time = datetime(2017,10,15,0,0,0)

End_date_time = datetime(2017,10,22,0,0,0)

final_TS = TimeSeriesDF.loc[Start_date_time:End_date_time,:]

final_TS = final_TS.T

Remove time series with NaN

final_TS = final_TS.dropna(axis=0)

#--

B.6 Writing the final data set to a new .txt file

At the end, the data set is saved to a .txt file. The name of the text file may be
changes from final time series.txt to any other name.

#-------------------WRITE FINAL TIME SERIES TO .txt FILE ----------------

open(’final_time_series.txt’, ’w’).close()

final_TS.to_csv(’final_time_series.txt’, sep=’,’ , header=None ,

index=None)

#--

124

C Appendix III: Code for assessing the developed

customer segmentation programme

C.1 Base case

This is the code used for executing the experiment described in Section C.1.

Generating sine and square waves

The code given in this section generates sine and square wave time series, and stores
them in a .txt file called Mixed TS.txt.

import numpy as np

import matplotlib.pyplot as plt

from random import randint

import math

#------------------------------- GENERAL -----------------------------

time_end = 275

time_vector = np.linspace(0,time_end-1,time_end)

SQUARE_size = 50

SINUS_size = 50

#..

#--------------------------- SQUARE WAVE ------------------------------

SQUARE_array = np.zeros(shape=(SQUARE_size,time_end))

for i in range(SQUARE_size):

width = 16#randint(16,17)

height = randint(1,10)

square = np.zeros(shape=(1,width*2))

for j in range(width):

square[0,j] = height

residual = (time_end)%(width*2)

repeat = math.floor(time_end/(width*2))

SQUARE_fin = square

for j in range(repeat-1):

SQUARE_fin = np.append(SQUARE_fin,square)

if residual > 0:

if residual < width:

res = np.zeros(shape=(residual))

res.fill(height)

SQUARE_fin = np.append(SQUARE_fin,res)

else:

res = np.zeros(shape=(1,width))

res.fill(height)

125

SQUARE_fin = np.append(SQUARE_fin,res)

SQUARE_fin =

np.append(SQUARE_fin,np.zeros(shape=(1,residual-width)))

SQUARE_array[i,:] = np.transpose(SQUARE_fin)

plt.figure()

for xx in range(SQUARE_size):

plt.plot(SQUARE_array[xx,:], "k-", alpha=.2)

plt.title("Square")

plt.tight_layout()

plt.show()

#..

#---------------------------- SINE WAVE ------------------------------

SINUS_array = np.zeros(shape=(SINUS_size,time_end))

for i in range(SINUS_size):

phase = randint(2,6)

SINUS_array[i,:] = np.sin(time_vector + np.pi/phase)

plt.figure()

for xx in range(SINUS_size):

plt.plot(SINUS_array[xx,:], "k-", alpha=.2)

plt.title("Sine curve")

plt.tight_layout()

plt.show()

#...

#------------------------ FINAL SET ----------------------------------

final_set = np.concatenate((SINUS_array,SQUARE_array))

row,col = final_set.shape

plt.figure()

for xx in range(row):

plt.plot(final_set[xx,:], "k-", alpha=.2)

plt.title("final")

plt.tight_layout()

plt.show()

open(’Mixed_TS.txt’, ’w’).close()

np.savetxt("Mixed_TS.txt", final_set, delimiter = ",")

#..

Performing Silhouette analysis and K-Shape clustering

The code in this section concatenates the Mixed TS.txt data set of square and sine
waves with the tslearn cached time series. A Silhouette score is then assigned to

126

partitions between variables start and stop. The data set is then clustered in to
K temp clusters. In this appendix all values of n init are set to stable values for the
respective data sets. However, n init may be varied to test the K-Shape algorithm
stability for each different data set. max iter is left at default value, which is 100
in tslearn [88]. This is because max iter was found to not effect the K-Shape
algorithm stability.

#==

import numpy as np

from tslearn.datasets import CachedDatasets

from tslearn.preprocessing import TimeSeriesScalerMeanVariance

from tslearn.clustering import silhouette_score

from tslearn.clustering import KShape

import matplotlib.pyplot as plt

#==

#==

#---------------------------- DATA SET --------------------------------

ts_2 = np.loadtxt(’Mixed_TS.txt’,delimiter=’,’)

np.random.shuffle(ts_2)

X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")

np.random.shuffle(X_train)

ts_1 = X_train[:,:,0]

ts = np.concatenate((ts_1,ts_2), axis = 0)

ts_norm = TimeSeriesScalerMeanVariance().fit_transform(ts)

#..

#------------------------------ PLOT ----------------------------------

row,col = ts.shape

plt.figure()

for xx in range(row):

plt.plot(ts[xx,:], "k-", alpha=.2)

plt.title("Manufactured time series")

plt.tight_layout()

plt.show()

ts_norm_plot = ts_norm[:,:,0]

plt.figure()

for xx in range(row):

plt.plot(ts_norm_plot[xx,:], "k-", alpha=.2)

plt.title("Time series after normalization")

plt.tight_layout()

plt.show()

#..

#==

127

#==

Test_silhouette = int(input("Do you want to test silhouette score for

multiple K? Type 1 for yes, and 0 for no: "))

if Test_silhouette:

start = int(input("Start at which K: "))

stop = int(input("Stop at which K: "))

silhouette_vector = [0]*(stop-start)

list_vector = list(range(start,stop))

for n_clusters in range(start,stop):

#------------------------ K-SHAPE --------------------------------

Generate random integer (starting point) for K-Shape algorithm

seed = 0

np.random.seed(seed)

Cluster data into n_clusters number of clusters

ks = KShape(n_clusters,random_state=seed,n_init=40)

ks.fit(ts_norm)

Extract centroids

ks_centroids = ks.cluster_centers_

Assign each time series to each centroid

ks_preds = ks.fit_predict(ts_norm)

#---

#---------------------------- SILHOUETTE -------------------------

silhouette_vector[n_clusters-start] = silhouette_score(ts_norm,

ks_preds)

print("For n_clusters =", n_clusters,

"The average silhouette_score is :",

silhouette_vector[n_clusters-start])

plt.plot(list_vector,silhouette_vector)

plt.title("Silhouette scores")

plt.show()

#..

#==

#==

K_temp = int(input("What K do you chose? (K_temp): "))

#-------------------------- K-SHAPE -----------------------------------

Generate random integer (starting point) for K-Shape algorithm

128

seed = 0

np.random.seed(seed)

Cluster data into n_clusters number of clusters

ks = KShape(K_temp,random_state=seed,n_init=10)

ks.fit(ts_norm)

Extract centroids

ks_centroids = ks.cluster_centers_

Assign each time series to each centroid

ks_preds = ks.fit_predict(ts_norm)

#--

#-------------------------- PLOT EACH CLUSTER -------------------------

rows, cols = ts.shape

plot_index = np.transpose(np.linspace(0,rows-1,rows))

for i in range(K_temp):

plt.figure()

for xx in ts_norm[ks_preds == i]:

plt.plot(xx.ravel(), "k-", alpha=.2)

plt.plot(ks_centroids[i].ravel(), "r-")

plt.xlim(0, cols)

plt.ylim(-4, 4)

plt.title("Cluster %d" % (i + 1))

plt.tight_layout()

plt.show()

#..

#==

C.2 Effect of changing number of time series in one time
series group

This is the code used for executing the experiment described in Section 9.2.3.

Generating sine and square waves

import numpy as np

import matplotlib.pyplot as plt

from random import randint

import math

#------------------------------- GENERAL -----------------------------

time_end = 275

time_vector = np.linspace(0,time_end-1,time_end)

129

SQUARE_size = 50

SINUS_size = 3

#..

#--------------------------- SQUARE WAVE ------------------------------

AS BEFORE

#..

#---------------------------- SINE WAVE ------------------------------

AS BEFORE

#...

#------------------------ FINAL SET ----------------------------------

AS BEFORE

#..

Performing Silhouette analysis and K-Shape clustering

#==

import numpy as np

from tslearn.datasets import CachedDatasets

from tslearn.preprocessing import TimeSeriesScalerMeanVariance

from tslearn.clustering import silhouette_score

from tslearn.clustering import KShape

import matplotlib.pyplot as plt

#==

#==

#---------------------------- DATA SET --------------------------------

AS BEFORE

#..

#------------------------------ PLOT ----------------------------------

AS BEFORE

#..

#==

#==

Test_silhouette = int(input("Do you want to test silhouette score for

multiple K? Type 1 for yes, and 0 for no: "))

if Test_silhouette:

AS BEFORE

for n_clusters in range(start,stop):

#------------------------ K-SHAPE --------------------------------

130

Generate random integer (starting point) for K-Shape algorithm

seed = 0

np.random.seed(seed)

Cluster data into n_clusters number of clusters

ks = KShape(n_clusters,random_state=seed,n_init=600)

ks.fit(ts_norm)

Extract centroids

ks_centroids = ks.cluster_centers_

Assign each time series to each centroid

ks_preds = ks.fit_predict(ts_norm)

#---

#---------------------------- SILHOUETTE -------------------------

AS BEFORE

#..

#==

#==

K_temp = int(input("What K do you chose? (K_temp): "))

#-------------------------- K-SHAPE -----------------------------------

AS BEFORE

#--

#-------------------------- PLOT EACH CLUSTER -------------------------

AS BEFORE

#..

#==

C.3 Testing time invariance of periodic time series

This is the code used for executing the experiment described in Section 9.2.4.

Generating sine and square waves

import numpy as np

import matplotlib.pyplot as plt

from random import randint

import math

#------------------------------- GENERAL -----------------------------

time_end = 150

time_vector = np.linspace(0,time_end-1,time_end)

SQUARE_size = 50

SINUS_size = 50

131

#..

#--------------------------- SQUARE WAVE ------------------------------

AS BEFORE

#..

#---------------------------- SINE WAVE ------------------------------

AS BEFORE

#...

#------------------------ FINAL SET ----------------------------------

Neg_SIN_array = np.negative(SINUS_array)

final_set = np.concatenate((SINUS_array,SQUARE_array,Neg_SIN_array))

row,col = final_set.shape

plt.figure()

for xx in range(row):

plt.plot(final_set[xx,:], "k-", alpha=.2)

plt.title("final")

plt.tight_layout()

plt.show()

open(’Mixed_TS.txt’, ’w’).close()

np.savetxt("Mixed_TS.txt", final_set, delimiter = ",")

#..

Performing Silhouette analysis and K-Shape clustering

#==

import numpy as np

from tslearn.datasets import CachedDatasets

from tslearn.preprocessing import TimeSeriesScalerMeanVariance

from tslearn.clustering import silhouette_score

from tslearn.clustering import KShape

import matplotlib.pyplot as plt

#==

#==

#---------------------------- DATA SET --------------------------------

ts = np.loadtxt(’Mixed_TS.txt’,delimiter=’,’)

np.random.shuffle(ts)

ts_norm = TimeSeriesScalerMeanVariance().fit_transform(ts)

#..

#------------------------------ PLOT ----------------------------------

AS BEFORE

132

#..

#==

#==

Test_silhouette = int(input("Do you want to test silhouette score for

multiple K? Type 1 for yes, and 0 for no: "))

if Test_silhouette:

AS BEFORE

for n_clusters in range(start,stop):

#------------------------ K-SHAPE --------------------------------

Generate random integer (starting point) for K-Shape algorithm

seed = 0

np.random.seed(seed)

Cluster data into n_clusters number of clusters

ks = KShape(n_clusters,random_state=seed,n_init=200)

ks.fit(ts_norm)

Extract centroids

ks_centroids = ks.cluster_centers_

Assign each time series to each centroid

ks_preds = ks.fit_predict(ts_norm)

#---

#---------------------------- SILHOUETTE -------------------------

AS BEFORE

#..

#==

#==

K_temp = int(input("What K do you chose? (K_temp): "))

#-------------------------- K-SHAPE -----------------------------------

AS BEFORE

#--

#-------------------------- PLOT EACH CLUSTER -------------------------

AS BEFORE

#..

#==

C.4 Effect of changing length of data set

This is the code used for executing the experiment described in Section 9.2.5.

133

Generating sine and square waves

import numpy as np

import matplotlib.pyplot as plt

from random import randint

import math

#------------------------------- GENERAL -----------------------------

AS BEFORE

#..

#--------------------------- SQUARE WAVE ------------------------------

AS BEFORE

#..

#---------------------------- SINE WAVE ------------------------------

AS BEFORE

#...

#------------------------ FINAL SET ----------------------------------

AS BEFORE

#..

Performing Silhouette analysis and K-Shape clustering

#==

import numpy as np

from tslearn.datasets import CachedDatasets

from tslearn.preprocessing import TimeSeriesScalerMeanVariance

from tslearn.clustering import silhouette_score

from tslearn.clustering import KShape

import matplotlib.pyplot as plt

#==

#==

#---------------------------- DATA SET --------------------------------

ts = np.loadtxt(’Mixed_TS.txt’,delimiter=’,’)

ts = ts[:,20:155]

np.random.shuffle(ts)

ts_norm = TimeSeriesScalerMeanVariance().fit_transform(ts)

#..

#------------------------------ PLOT ----------------------------------

AS BEFORE

#..

#==

#==

Test_silhouette = int(input("Do you want to test silhouette score for

134

multiple K? Type 1 for yes, and 0 for no: "))

if Test_silhouette:

AS BEFORE

for n_clusters in range(start,stop):

#------------------------ K-SHAPE --------------------------------

Generate random integer (starting point) for K-Shape algorithm

seed = 0

np.random.seed(seed)

Cluster data into n_clusters number of clusters

ks = KShape(n_clusters,random_state=seed,n_init=400)

ks.fit(ts_norm)

Extract centroids

ks_centroids = ks.cluster_centers_

Assign each time series to each centroid

ks_preds = ks.fit_predict(ts_norm)

#---

#---------------------------- SILHOUETTE -------------------------

AS BEFORE

#..

#==

#==

K_temp = int(input("What K do you chose? (K_temp): "))

#-------------------------- K-SHAPE -----------------------------------

AS BEFORE

#--

#-------------------------- PLOT EACH CLUSTER -------------------------

AS BEFORE

#..

#==

C.5 Effect of adding randomness to the data set

This is the code used for executing the experiment described in Section 9.2.6.

Generating sine and square waves

import numpy as np

import matplotlib.pyplot as plt

135

from random import randint

import math

#------------------------------- GENERAL -----------------------------

AS BEFORE

#..

#--------------------------- SQUARE WAVE ------------------------------

AS BEFORE

#..

#---------------------------- SINE WAVE ------------------------------

AS BEFORE

#...

#------------------------ FINAL SET ----------------------------------

AS BEFORE

#..

Performing Silhouette analysis and K-Shape clustering

#==

import numpy as np

from tslearn.datasets import CachedDatasets

from tslearn.generators import random_walks

from tslearn.preprocessing import TimeSeriesScalerMeanVariance

from tslearn.clustering import silhouette_score

from tslearn.clustering import KShape

import matplotlib.pyplot as plt

#==

#==

#---------------------------- DATA SET --------------------------------

ts_2 = np.loadtxt(’Mixed_TS.txt’,delimiter=’,’)

np.random.shuffle(ts_2)

X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")

for i in range(np.random.randint(0,20)):

np.random.shuffle(X_train)

random_ts = random_walks(n_ts = 25, sz = 275)

ts_1 = X_train[:,:,0]

ts_3 = random_ts[:,:,0]

ts = np.concatenate((ts_1,ts_2,ts_3), axis = 0)

ts_norm = TimeSeriesScalerMeanVariance().fit_transform(ts)

#..

#------------------------------ PLOT ----------------------------------

AS BEFORE

136

#..

#==

#==

Test_silhouette = int(input("Do you want to test silhouette score for

multiple K? Type 1 for yes, and 0 for no: "))

if Test_silhouette:

AS BEFORE

for n_clusters in range(start,stop):

#------------------------ K-SHAPE --------------------------------

Generate random integer (starting point) for K-Shape algorithm

seed = 0

np.random.seed(seed)

Cluster data into n_clusters number of clusters

ks = KShape(n_clusters,random_state=seed,n_init=200)

ks.fit(ts_norm)

Extract centroids

ks_centroids = ks.cluster_centers_

Assign each time series to each centroid

ks_preds = ks.fit_predict(ts_norm)

#---

#---------------------------- SILHOUETTE -------------------------

AS BEFORE

#..

#==

#==

K_temp = int(input("What K do you chose? (K_temp): "))

#-------------------------- K-SHAPE -----------------------------------

AS BEFORE

#--

#-------------------------- PLOT EACH CLUSTER -------------------------

AS BEFORE

#..

#==

137

D Appendix IV: Customer segmentation programme

D.1 FullMethod.py

#======================== IMPORT FUNCTIONS ============================

from OD12 import OD12

from OD11 import OD11

from OD2 import OD2

from OD3 import OD3

from KShape import K_Shape

from FindKoptimal import FindKoptimal

#==

#======================== IMPORT LIBRARIES ============================

import numpy as np

import matplotlib.pyplot as plt

from tslearn.preprocessing import TimeSeriesScalerMeanVariance

#==

#=============================== DATA =================================

#------------------------ IMPORT DATA SET -----------------------------

Upload data set

ts = np.loadtxt(’???.txt’,delimiter=’,’)

np.random.shuffle(ts)

ts_norm = TimeSeriesScalerMeanVariance().fit_transform(ts)

#..

#------------------------ PLOT DATA SET ------------------------------

row,col = ts.shape

plt.figure()

for xx in range(row):

plt.plot(ts[xx,:], "k-", alpha=.2)

plt.title("Time series data set")

plt.tight_layout()

plt.show()

ts_norm_plot = ts_norm[:,:,0]

plt.figure()

for xx in range(row):

plt.plot(ts_norm_plot[xx,:], "k-", alpha=.2)

plt.title("Time series after normalization")

plt.tight_layout()

plt.show()

#..

#==

#============================ OUTLIERS ================================

138

outliers = np.array([],dtype=np.int64).reshape(0,col)

outliers1 = np.array([])

outliers2 = np.array([])

outliers3 = np.array([])

outliers4 = np.array([])

#==

#======================== IC. FOR WHILE LOOP ==========================

refine = True

#==

#======================== REFINE INLIER SET ===========================

while (refine):

n_init = int(input("Please enter n_init: "))

Find K_optimal with Silhouette algorithm

Test_silhouette = int(input("Do you want to test silhouette score for

multiple K? Type 1 for yes, and 0 for no: "))

if Test_silhouette:

FindKoptimal(ts_norm,n_init)

Cluster data with K-Shape algorithm

K_temp = int(input("What K do you choose?: "))

ks_centroids,ks_preds = K_Shape(K_temp,ts_norm,ts,n_init)

#--------------------- OUTLIER ANALYSIS ---------------------------

print(" ")

print("You will now get options to remove outliers in the following

ways:")

print("1) OD1: Remove undesirable clusters.")

print("2) OD1: Remove sparse clusters.")

print("3) OD2: Remove outliers based on extra-cluster dissimilarity.")

print("4) OD3: Remove outliers based on intra-cluster dissimilarity.")

print(" ")

print("Any time series that are removed are not deleted, only moved

from")

print("inlier to outlier category. After outliers are removed the

clusters")

print("will be re-calculated. You may also choose to check the

Silhouette")

print("scores.")

print(" ")

print("What would you like to do?")

print("Type 1 for OD1: Remove undesirable clusters.")

print("Type 2 for OD1: Remove sparse clusters.")

print("Type 3 for OD2: Remove outliers based on extra-cluster

dissimilarity.")

print("Type 4 for OD3: Remove outliers based on intra-cluster

139

dissimilarity.")

print("Type 5 to not perform outlier analysis, try new clustering")

print("Type 0 to exit the programme")

choice = int(input("Please enter a number here: "))

if (choice == 2):

ts,ts_norm,outliers1 =

OD12(K_temp,ks_preds,ks_centroids,ts_norm,ts)

if outliers1.size != 0:

outliers = np.vstack([outliers,outliers1])

if (choice == 1):

ts,ts_norm,outliers2 = OD11(ks_preds,ts_norm,ts)

if outliers2.size != 0:

outliers = np.vstack([outliers,outliers2])

if (choice==3):

ts,ts_norm,outliers3 = OD2(ts,ts_norm,ks_centroids,K_temp)

if outliers3.size != 0:

outliers = np.vstack([outliers,outliers3])

if (choice == 4):

ts,ts_norm,outliers4 = OD3(K_temp,ts_norm,ks_preds,ts,ks_centroids)

if outliers4.size != 0:

outliers = np.vstack([outliers,outliers4])

if (choice == 5):

print("Back to clustering.")

##---------------------------- PLOT -----------------------------

row,col = outliers.shape

plt.figure()

for xx in range(row):

plt.plot(outliers[xx,:], "k-", alpha=.2)

plt.title("Selected outliers, not normalized")

plt.tight_layout()

plt.show()

row,col = ts.shape

plt.figure()

for xx in range(row):

plt.plot(ts[xx,:], "k-", alpha=.2)

plt.title("Time series inlier data set")

plt.tight_layout()

plt.show()

ts_norm_plot = ts_norm[:,:,0]

140

plt.figure()

for xx in range(row):

plt.plot(ts_norm_plot[xx,:], "k-", alpha=.2)

plt.title("Time series inliers after normalization")

plt.tight_layout()

plt.show()

#..

open(’outliers.txt’, ’w’).close()

open(’inliers.txt’, ’w’).close()

np.savetxt("outliers.txt", outliers, delimiter=";")

np.savetxt("inliers.txt", ts, delimiter=";")

if (choice==0):

break

#==

D.2 FindKoptimal.py

import numpy as np

from tslearn.clustering import silhouette_score

from tslearn.clustering import KShape

import matplotlib.pyplot as plt

def FindKoptimal(ts_norm,n_in):

start = int(input("Start at which K: "))

stop = int(input("Stop at which K: "))

silhouette_vector = [0]*(stop-start)

list_vector = list(range(start,stop))

for n_clusters in range(start,stop):

#------------------------ K-SHAPE ------------------------------------

Generate random integer (starting point) for K-Shape algorithm

seed = 0

np.random.seed(seed)

Cluster data into n_clusters number of clusters

ks = KShape(n_clusters,max_iter=100,random_state=seed,n_init=n_in)

ks.fit(ts_norm)

Assign each time series to each centroid

ks_preds = ks.fit_predict(ts_norm)

#---

141

#-------------------------- SILHOUETTE -------------------------------

silhouette_vector[n_clusters-start] = silhouette_score(ts_norm,

ks_preds)

print("For n_clusters =", n_clusters,

"The average silhouette_score is :",

silhouette_vector[n_clusters-start])

plt.plot(list_vector,silhouette_vector)

plt.title("Silhouette scores")

plt.show()

#...

D.3 KShape.py

import numpy as np

from tslearn.clustering import KShape

import matplotlib.pyplot as plt

def K_Shape(K_temp,ts_norm,ts,n_in):

#------------------------- K-SHAPE -----------------------------------

Generate random integer (starting point) for K-Shape algorithm

seed = 0

np.random.seed(seed)

Cluster data into n_clusters number of clusters

ks = KShape(K_temp,max_iter=100,random_state=seed,n_init=n_in)

ks.fit(ts_norm)

Extract centroids

ks_centroids = ks.cluster_centers_

Assign each time series to each centroid

ks_preds = ks.fit_predict(ts_norm)

#---

#------------------------ PLOT EACH CLUSTER --------------------------

rows, cols = ts.shape

for i in range(K_temp):

plt.figure()

for xx in ts_norm[ks_preds == i]:

plt.plot(xx.ravel(), "k-", alpha=.2)

plt.plot(ks_centroids[i].ravel(), "r-")

plt.title("Cluster %d" % (i + 1))

142

plt.show()

#...

return ks_centroids,ks_preds

D.4 OD11.py

import numpy as np

from tslearn.preprocessing import TimeSeriesScalerMeanVariance

inliers = 0

inliers_norm = 0

def OD11(ks_preds,ts_norm,ts):

entire = True

if(entire):

which_cluster = int(input("Which cluster do you want to remove?:

"))

outliers_norm = ts_norm[ks_preds == (which_cluster-1)]

inliers_norm = ts_norm[ks_preds != (which_cluster-1)]

outliers = ts[ks_preds == (which_cluster-1)]

inliers = ts[ks_preds != (which_cluster-1)]

more = int(input("Do you want to remove more clusters? 1=Y, 0=N:

"))

while (more):

which_cluster = int(input("Which cluster do you want to

remove?: "))

inliers_norm = ts_norm[ks_preds != (which_cluster-1)]

inliers = ts[ks_preds != (which_cluster-1)]

outliers2 = ts[ks_preds == (which_cluster-1)]

outliers = np.concatenate((outliers,outliers2))

outliers_norm =

TimeSeriesScalerMeanVariance().fit_transform(outliers)

more = int(input("Do you want to remove more clusters? 1=Y,

0=N: "))

if (more == 0):

break

143

return inliers,inliers_norm,outliers

D.5 OD12.py

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from tslearn.preprocessing import TimeSeriesScalerMeanVariance

from tslearn.metrics import cdist_dtw

import math

def OD12(K_temp,ks_preds,ks_centroids,ts_norm,ts):

sparse = True

if (sparse):

#======================== SPARSE ===============================

#-------------- HOW MANY TS DOES EACH CLUSTER HAVE? ------------

clusters = np.zeros((1,K_temp),dtype=int)

for i in range(K_temp):

for j in ks_preds:

if (i == j):

clusters[0,i] = clusters[0,i] + 1

index = np.arange(start=1,stop=(K_temp+1),step=1)

plt.bar(index,clusters[0,:])

plt.title("Number of time series in each cluster")

plt.show()

#...

#---------------------------- DTW ------------------------------

rows, cols = ts.shape

plot_index = np.transpose(np.linspace(0,rows-1,rows))

for i in range(0,K_temp):

dtw_vector = cdist_dtw(ts_norm,np.transpose(ks_centroids[i,:]))

dtw_index = np.c_[dtw_vector,plot_index]

dtw_sorted = dtw_index[dtw_index[:,0].argsort()]

if i == 0:

dtw_storage = dtw_sorted

else:

dtw_storage = np.c_[dtw_storage,dtw_sorted]

index = np.arange(start = 0, stop = (2*K_temp-1), step = 2)

144

dtw_max = np.amax(dtw_storage[:,(index)])

dtw_min = np.amin(dtw_storage[:,(index)])

#...

Set the boundary for which clusters to remove

boundary = int(input("What sparseness boundary?: "))

#----------------- REMOVE SPARSE CLUSTERS --------------------

remove_c = np.where(clusters <= boundary)

index_kspreds = np.array([])

for i in remove_c[1]:

index_kspreds = np.append(index_kspreds,i)

outliers_bool = np.isin(ks_preds,index_kspreds)

inliers_bool = np.invert(outliers_bool)

data_frame_outliers = pd.DataFrame(outliers_bool, columns =

[’corona’])

data_frame_inliers = pd.DataFrame(inliers_bool, columns =

[’corona’])

data_frame_org = pd.DataFrame(ts)

data_frame_outliers =

data_frame_org.loc[data_frame_outliers.corona,:]

data_frame_inliers =

data_frame_org.loc[data_frame_inliers.corona,:]

inliers = data_frame_inliers.to_numpy()

outliers = data_frame_outliers.to_numpy()

inliers_norm =

TimeSeriesScalerMeanVariance().fit_transform(inliers)

outliers_norm =

TimeSeriesScalerMeanVariance().fit_transform(outliers)

#..

return inliers,inliers_norm,outliers

D.6 OD2.py

import numpy as np

from tslearn.datasets import CachedDatasets

from tslearn.generators import random_walks

from tslearn.preprocessing import TimeSeriesScalerMeanVariance

from tslearn.clustering import silhouette_score

from tslearn.clustering import KShape

145

import matplotlib.pyplot as plt

from tslearn.metrics import cdist_dtw

import math

import pandas as pd

def OD2(ts,ts_norm,ks_centroids,K_temp):

Outra_cluster = True

ts_copy = ts

ts_norm_copy = ts_norm

#========================== FIRST TIME =============================

#----------------------------- DTW ---------------------------------

rows, cols = ts.shape

plot_index = np.transpose(np.linspace(0,rows-1,rows))

dtw_vector=0

for i in range(0,K_temp):

dtw_vector = cdist_dtw(ts_norm,np.transpose(ks_centroids[i,:]))

dtw_index = np.c_[dtw_vector,plot_index]

dtw_sorted = dtw_index[dtw_index[:,0].argsort()]

if i == 0:

dtw_storage = dtw_sorted

else:

dtw_storage = np.c_[dtw_storage,dtw_sorted]

index = np.arange(start = 0, stop = (2*K_temp-1), step = 2)

dtw_max = np.amax(dtw_storage[:,(index)])

dtw_min = np.amin(dtw_storage[:,(index)])

#..

#--------------- PLOT DISTRIBUTION OF CLUSTER COHERENCE --------------

counter = 0

plt.figure()

for i in range(0,(2*K_temp-1),2):

#plt.subplot(K_temp)

counter = counter + 1

plt.hist(dtw_storage[:,i],alpha = 0.4,bins =

(math.ceil(dtw_max)-math.floor(dtw_min)), label = ’Cluster %d’

% counter)

plt.legend()

plt.title("Histogram of cluster similarity distribution of %d

clusters" % K_temp)

plt.tight_layout()

146

plt.show()

#..

boundary = float(input("What is your DTW boundary? Type in a number:

"))

for i in range(1,(K_temp*2),2):

arr = np.where(dtw_storage[:,i-1] > boundary)

if (i==1):

index_storage = dtw_storage[arr,i]

else:

index_storage = np.append(index_storage,dtw_storage[arr,i])

data_frame_index = pd.DataFrame(index_storage, columns = [’corona’])

data_frame_index =

data_frame_index[data_frame_index.duplicated(keep="first")]

data_frame_org = pd.DataFrame(ts)

data_frame_outliers =

data_frame_org.iloc[data_frame_index["corona"],:]

data_frame_inliers = data_frame_org.drop(data_frame_index["corona"],

axis=0)

ts = data_frame_inliers.to_numpy()

ts_norm = TimeSeriesScalerMeanVariance().fit_transform(ts)

outliers = data_frame_outliers.to_numpy()

outliers_norm = TimeSeriesScalerMeanVariance().fit_transform(outliers)

#-------------------------- PLOT INLIERS -----------------------------

plot_inliers_arr = ts_norm[:,:,0]

row,col = plot_inliers_arr.shape

plt.figure()

for xx in range(row):

plt.plot(plot_inliers_arr[xx,:],"k-",alpha=.2)

plt.title("Inliers")

plt.tight_layout()

plt.show()

#...

#-------------------------- PLOT OUTLIERS ----------------------------

plot_outliers_arr = outliers_norm[:,:,0]

row,col = plot_outliers_arr.shape

plt.figure()

for xx in range(row):

plt.plot(plot_outliers_arr[xx,:],"k-",alpha=.2)

147

plt.title("Outliers")

plt.tight_layout()

plt.show()

#...

Outra_cluster = int(input("Do you want to continue trying other DTW

boundaries? Type 0 to keep changes, type 1 to test new boundaries:

"))

#==

#======================== OTHER ITERATIONS =========================

while Outra_cluster:

#--------------------------- DTW -------------------------------

rows, cols = ts_copy.shape

plot_index = np.transpose(np.linspace(0,rows-1,rows))

dtw_vector=0

for i in range(0,K_temp):

dtw_vector =

cdist_dtw(ts_norm_copy,np.transpose(ks_centroids[i,:]))

dtw_index = np.c_[dtw_vector,plot_index]

dtw_sorted = dtw_index[dtw_index[:,0].argsort()]

if i == 0:

dtw_storage = dtw_sorted

else:

dtw_storage = np.c_[dtw_storage,dtw_sorted]

index = np.arange(start = 0, stop = (2*K_temp-1), step = 2)

dtw_max = np.amax(dtw_storage[:,(index)])

dtw_min = np.amin(dtw_storage[:,(index)])

#...

#------------- PLOT DISTRIBUTION OF CLUSTER COHERENCE ------------

counter = 0

plt.figure()

for i in range(0,(2*K_temp-1),2):

#plt.subplot(K_temp)

counter = counter + 1

plt.hist(dtw_storage[:,i],alpha = 0.4,bins =

(math.ceil(dtw_max)-math.floor(dtw_min)), label = ’Cluster

%d’ % counter)

plt.legend()

plt.title("Histogram of cluster similarity distribution of %d

clusters" % K_temp)

plt.tight_layout()

148

plt.show()

#...

boundary = float(input("What is your DTW boundary? Type in a

number: "))

for i in range(1,(K_temp*2),2):

arr = np.where(dtw_storage[:,i-1] > boundary)

if (i==1):

index_storage = dtw_storage[arr,i]

else:

index_storage = np.append(index_storage,dtw_storage[arr,i])

data_frame_index = pd.DataFrame(index_storage, columns =

[’corona’])

data_frame_index =

data_frame_index[data_frame_index.duplicated(keep="first")]

data_frame_org = pd.DataFrame(ts_copy)

data_frame_outliers =

data_frame_org.iloc[data_frame_index["corona"],:]

data_frame_inliers =

data_frame_org.drop(data_frame_index["corona"], axis=0)

ts = data_frame_inliers.to_numpy()

ts_norm = TimeSeriesScalerMeanVariance().fit_transform(ts)

outliers = data_frame_outliers.to_numpy()

outliers_norm =

TimeSeriesScalerMeanVariance().fit_transform(outliers)

#------------------------- PLOT INLIERS --------------------------

plot_inliers_arr = ts_norm[:,:,0]

row,col = plot_inliers_arr.shape

plt.figure()

for xx in range(row):

plt.plot(plot_inliers_arr[xx,:],"k-",alpha=.2)

plt.title("Inliers")

plt.tight_layout()

plt.show()

#...

#------------------------ PLOT OUTLIERS --------------------------

plot_outliers_arr = outliers_norm[:,:,0]

row,col = plot_outliers_arr.shape

149

plt.figure()

for xx in range(row):

plt.plot(plot_outliers_arr[xx,:],"k-",alpha=.2)

plt.title("Outliers")

plt.tight_layout()

plt.show()

#...

Outra_cluster = int(input("Do you want to continue trying other

DTW boundaries? Type 0 to keep changes, type 1 to test new

boundaries: "))

#===

return ts,ts_norm,outliers

D.7 OD3.py

import numpy as np

from tslearn.preprocessing import TimeSeriesScalerMeanVariance

import matplotlib.pyplot as plt

from tslearn.metrics import cdist_dtw

import math

import pandas as pd

def OD3(K_temp,ts_norm,ks_preds,ts,ks_centroids):

size_of_clusters = np.array([])

for i in range(0,K_temp):

dtw_vector = cdist_dtw(ts_norm[ks_preds ==

i],np.transpose(ks_centroids[i,:]))

cluster_index_tuple = np.where(ks_preds == i)

cluster_index = np.array([])

for j in cluster_index_tuple[0]:

cluster_index = np.append(cluster_index,j)

size_of_clusters = np.append(size_of_clusters,cluster_index.size)

dtw_index = np.c_[dtw_vector,cluster_index]

dtw_sorted = dtw_index[dtw_index[:,0].argsort()]

if i == 0:

dtw_storage = dtw_sorted

else:

dtw_storage = np.concatenate((dtw_storage,dtw_sorted),axis = 0)

150

dtw_storage_sorted = dtw_storage[dtw_storage[:,1].argsort()]

dtw_max = np.amax(dtw_storage[:,0])

dtw_min = np.amin(dtw_storage[:,0])

plt.figure()

for i in range(K_temp):

plt.hist(dtw_storage_sorted[ks_preds==i,0],alpha = 0.4,bins =

(math.ceil(dtw_max)-math.floor(dtw_min)))

plt.title("Histogram of cluster similarity distribution of %d

clusters" % K_temp)

plt.legend("%d" % (i+1))

plt.tight_layout()

plt.show()

print("You will now be asked to provide a DTW boundary for removing

outliers")

print("based on their DTW score compared to their assigned cluster.")

boundary = float(input("What is your DTW boundary? Type in a number:

"))

outliers = dtw_storage[:,0] > boundary

inliers = np.invert(outliers)

data_frame_outliers = pd.DataFrame(outliers, columns = [’corona’])

data_frame_inliers = pd.DataFrame(inliers, columns = [’corona’])

data_frame_org = pd.DataFrame(ts)

data_frame_outliers = data_frame_org.loc[data_frame_outliers.corona,:]

data_frame_inliers = data_frame_org.loc[data_frame_inliers.corona,:]

ts = data_frame_inliers.to_numpy()

ts_norm = TimeSeriesScalerMeanVariance().fit_transform(ts)

outliers = data_frame_outliers.to_numpy()

outliers_norm = TimeSeriesScalerMeanVariance().fit_transform(outliers)

#--------------------------- PLOT INLIERS ----------------------------

rows,cols = ts.shape

plot_index = np.transpose(np.linspace(0,rows-1,rows))

plt.figure()

for index,row in data_frame_inliers.iterrows():

plt.plot(row.ravel(),"k-",alpha=.2)

plt.title("Inliers")

plt.show()

#..

#---------------------------- PLOT OUTLIERS --------------------------

rows,cols = ts.shape

151

plot_index = np.transpose(np.linspace(0,rows-1,rows))

plt.figure()

for index,row in data_frame_outliers.iterrows():

plt.plot(row.ravel(),"k-",alpha=.2)

plt.title("Outliers")

plt.show()

#..

Intra_cluster = int(input("Do you want to continue trying other DTW

boundaries? Type 0 to keep changes, type 1 to test new boundaries:

"))

while Intra_cluster:

#------------- PLOT DISTRIBUTION OF CLUSTER COHERENCE ------------

plt.figure()

for i in range(K_temp):

plt.hist(dtw_storage_sorted[ks_preds==i,0],alpha = 0.4,bins =

(math.ceil(dtw_max)-math.floor(dtw_min)))

plt.title("Histogram of cluster similarity distribution of %d

clusters" % K_temp)

plt.legend("%d" % (i+1))

plt.tight_layout()

plt.show()

#...

boundary = float(input("What is your DTW boundary? Type in a

number: "))

outliers2 = dtw_storage[:,0] > boundary

inliers = np.invert(outliers2)

data_frame_outliers = pd.DataFrame(outliers2, columns = [’corona’])

data_frame_inliers = pd.DataFrame(inliers, columns = [’corona’])

data_frame_org = pd.DataFrame(ts)

data_frame_outliers =

data_frame_org.loc[data_frame_outliers.corona,:]

data_frame_inliers =

data_frame_org.loc[data_frame_inliers.corona,:]

ts = data_frame_inliers.to_numpy()

ts_norm = TimeSeriesScalerMeanVariance().fit_transform(ts)

outliers2 = data_frame_outliers.to_numpy()

outliers = np.concatenate((outliers2,outliers))

outliers_norm =

152

TimeSeriesScalerMeanVariance().fit_transform(outliers)

#------------------------- PLOT INLIERS --------------------------

rows,cols = ts.shape

plot_index = np.transpose(np.linspace(0,rows-1,rows))

plt.figure()

for index,row in data_frame_inliers.iterrows():

plt.plot(row.ravel(),"k-",alpha=.2)

plt.title("Inliers")

plt.show()

#...

#------------------------ PLOT OUTLIERS --------------------------

rows,cols = ts.shape

plot_index = np.transpose(np.linspace(0,rows-1,rows))

plt.figure()

for index,row in data_frame_outliers.iterrows():

plt.plot(row.ravel(),"k-",alpha=.2)

plt.title("Outliers")

plt.show()

#...

Intra_cluster = int(input("Do you want to continue trying other

DTW boundaries? Type 0 to keep changes, type 1 to test new

boundaries: "))

#==

return ts,ts_norm,outliers

153

