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Abstract

In this master’s thesis, a second-order predictor-corrector method employing a self-
adaptive time step (Gear’s method) is implemented and investigated for dynamic
power system simulations. The growing use of renewable energy sources and power
electronic converters requires simulation tools capable of handling the increased
system complexity. Gear’s method has previously been shown to perform well for
differential-algebraic equation (DAE) systems with ranging time constants, mak-
ing it a promising candidate for dynamically simulating the future power system.
Despite this, few published implementations exist, and strategies to improve the
method have yet to be fully explored. This thesis presents a modeling of four sep-
arate power system cases with varying characteristics in terms of stability, size and
complexity, saturation effects, topology changes and discrete system events, and
degree of power electronic integration. Following this, Python implementations of
Gear’s method for each of the cases are developed, including comparisons with a
commercially available DAE solver. The method was shown to perform well for
the three systems dominated by synchronous generators. In addition, of the exam-
ined strategies, fixing the step length for at least 15 consecutive steps was shown
to result in the largest improvement in terms of performance and solution accuracy.
However, the method failed to successfully simulate the investigated multi-terminal
direct current (MTDC) system. Even with the best performing strategy combina-
tion, Gear’s method was unable to accurately capture the MTDC system voltages
following a line outage. To conclude, Gear’s method performed well, both in terms
of computational resource use and solution accuracy, for systems dominated by syn-
chronous generators or with limited power electronic integration. If the poor results
obtained for the MTDC system were a result of some underlying modeling nature
of power converters, or simply a feature of the particular formulation used in this
thesis, could not be concluded.
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Sammendrag

I denne masteroppgaven er en andreordens integrasjonsmetode basert p̊a prediksjon
og korreksjon med en selvregulerende steglengde (Gears metode) implementert og
undersøkt for dynamiske kraftsystemsimuleringer. Den voksende bruken av forny-
bare energikilder og kraftomformere krever simuleringsmetoder som er i stand til
å h̊andtere den økte systemkompleksiteten. Det har tidligere blitt vist at Gears
metode egner seg godt til differensial-algebraiske ligningssystemer med sprikende tid-
skonstanter, noe som gjør den til en lovende kandidat til å dynamisk simulere framti-
das kraftsystem. Til tross for dette finnes det f̊a publiserte implementeringer og det
gjenst̊ar enn̊a å grundig utforske forbedringsstrategier. Denne oppgaven inneholder
modellering av fire forskjellige kraftsystemcaser med varierende karakteristikker re-
latert til stabilitet, størrelse og kompleksitet, metningseffekter, topologiendringer
og diskrete hendelser, og grad av kraftelektronisk innhold. Basert p̊a dette blir
Python-implementeringer av Gears metode for hver av de fire casene utviklet, inklu-
sive sammenligninger med en kommersiell differensial-algebraisk ligningssystemløser.
Metoden viste gode resultater for de tre synkrongeneratordominerte systemene. Av
de undersøkte strategiene ga det å l̊ase steglengden for minst 15 p̊afølgende steg
den største økningen i ytelse og løsningsnøyaktighet. Derimot var metoden ikke
i stand til å vellykket simulere det undersøkte multiterminale likestrøms-systemet
(MTDC). Selv med den sterkest presterende strategien klarte Gears metode ikke
å produsere akseptable simuleringsresultater av MTDC-spenningene ved linjeutfall.
For å konkludere, Gears metode ga gode resultater, b̊ade med hensyn til ressursbruk
og nøyaktighet, for systemer dominert av synkrongeneratorer eller med begrensede
innslag av kraftelektronikk. Det var ikke mulig å konkludere om de svake resultatene
oppn̊add for MTDC-systemet var p̊a grunn av et underliggende aspekt av kraftom-
formermodellering, eller p̊a grunn av begrensninger i den spesifikke formuleringen
brukt i oppgaven.
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Chapter 1

Introduction

The following is the first chapter of this master’s thesis, and serves as the thesis
introduction. The chapter contains the background and motivation of the thesis,
briefly highlighting the current need for the research carried out. Following this,
the objectives and scope, including the planned limitations, of the thesis are stated,
before the method used is briefly described. The chapter concludes with an outline
of the thesis as a whole.

1.1 Background and Motivation

Today’s ever-increasing use of renewable energy sources presents a substantial chal-
lenge to the field of power system analysis. As more converter-interfaced sources,
such as solar and wind, are connected to the power system, the complexity of the
differential-algebraic equation (DAE) system used in dynamic modeling increases.
Increasing the share of power electronics in a system still largely dominated by
synchronous generators widens the span of time constants present in the system,
reducing the suitability of simulation methods with fixed time steps.

If renewable sources with their accompanying power electronics are to make a suc-
cessful integration into the power system, simulation tools capable of handling the
increased complexity are needed. Dynamic computer simulations form the founda-
tion of both the development and implementation of new technologies, as well as
daily operations and maintenance. Power systems constitute part of society’s criti-
cal infrastructure, requiring extensive simulation work before real-world action can
be taken.

Under the limitations imposed by the coming changes, conventional numerical inte-
gration methods employing fixed time step schemes are unable to balance the need
for sufficient resolution with computational resource use. Either appropriate reso-
lution is achieved, but at the cost of computational infeasibility, or the method is
appropriately resource intensive, but possibly unable to capture the system’s faster
dynamics. Choosing an appropriate time step therefore becomes the key issue.

One possible solution would be to implement a numerical integration method with
a variable time step, able to adapt to the dynamics displayed by the system. Gear’s
method is one such method [7]. It is based on a predictor-corrector scheme, of the
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Chapter 1. Introduction Erik-Anant Stedjan Narayan

desired order, where the step length is adjusted appropriately based on a monitoring
of the local truncation error.

However, other than some notable exceptions [6, 23], relatively little use of Gear’s
method for dynamic power systems simulations exists in the published literature.
In addition, the previous implementations were done decades ago and are lacking
in the descriptions required for reproducibility. The work done in [4] improved on
this, confirming that Gear’s method is suitable for simulating simple power system
cases, and forming a stepping stone for further investigations into more complex and
varied power system examples.

Therefore, a thorough description of Gear’s method and implementation for more
expanded and modern power systems are needed. Part of this includes a step-by-step
explanation of the method together with the adaptations and strategies needed for
dynamic power system simulation, as well as a comparison with commercially avail-
able simulation tools. In addition, the results and conclusions drawn by previous
implementations should be further investigated. By doing so, a greater understand-
ing of Gear’s method as a potential dynamic simulation tool can be gained.

1.2 Objectives and Scope

The main objective of this master’s thesis was to improve and expand upon the
second-order version of Gear’s method implemented in the author’s specialization
project [16] for dynamic power system simulations.

This overarching objective could be further divided into smaller objectives, more
specifically to: (1) give an exhaustive description of the method in general, and this
implementation in particular; (2) further gain experience and insight into the method
as a dynamic power system simulation tool, over a range of power system cases; (3)
verify previous implementations’ conclusions and further evaluate proposed strate-
gies; and (4) compare the simulation results obtained using Gear’s method to other
established simulation tools.

The key contributions of this thesis were to: (1) extend the list of power system
cases and categories of cases implemented using Gear’s method; (2) improve system
initialization by combining load flow and other iterative methods; and (3) imple-
ment and evaluate proposed strategies for improving the method’s computational
performance and accuracy.

Still, the scope of this thesis contained some planned limitations. The objective was
not to investigate the use of Gear’s method for all possible power system cases. By
investigating a few select uses, displaying a typical variety of power system cases, the
aim was to be able to better understand the strong and weak points of the method,
through the lens offered by these cases. The chosen cases would therefore inherently
influence the results and possible conclusions.

1.3 Method

Firstly, a brief literature review of numerical integration methods for dynamic power
system simulations was carried out. The literature review also contains the necessary

2
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theory on power system modeling required to be able to follow along with the thesis.
Secondly, Gear’s method was described and implemented in Python [18], allowing for
the simulation of four different power system cases of varying complexity. Building
on this, the obtained simulation results were verified using MATLAB [14] and the
effects of the step length strategies presented in [6] were evaluated.

1.4 Outline

The remainder of the master’s thesis is structured as follows: Chapter 2 forms
the theoretical foundation of the thesis, and builds the necessary understanding of
numerical integration methods, power system modeling, and Gear’s method.

Chapter 3 describes the four test systems implemented, as well as the actual mod-
ules, logic, and procedures used in the Python program. This includes a complete
description of the differential and algebraic equations used in the system modeling,
as well as a description of the validation method and performance metrics used to
determine the effects of the applied improvement strategies.

Chapter 4 contains the results obtained from applying Gear’s method to the four
simulation systems. For each system a base case simulation was performed before
the effects of applying different strategies to the method were explored. In addition,
the results obtained from both the base case and strategy case simulations were
compared to externally validated simulation results.

In Chapter 5 the results from Chapter 4 are discussed, and the effects of the applied
strategies on the method’s resource use and accuracy of the obtained results are
highlighted.

Chapter 6 closes the master’s thesis and presents its conclusions. The results and
discussions are summarized and seen in the light of the objectives stated in Section
1.2. Lastly, a possible path for future work is proposed, including implementing
Gear’s method for other systems dominated by power converters, developing more
sophisticated and automatic improvement strategies, and investigating the numeri-
cal stability of the method.

Appendix A contains the complete simulation results for all four cases, including
parameter combinations and performance metrics scores.

1.5 Relationship with the Specialization Project

This master’s thesis is a continuation of the work done in the author’s specialization
project [16]. Therefore, the structures are similar, and so is some of the content in
the early chapters. However, the specialization project only served as a basis, the
material has been reworked and expanded upon where appropriate, and the thesis
can be considered as a complete standalone document.

Of the four cases investigated in this thesis, only the first one can be seen as an
expanded, redone version of a case from the specialization project. The remaining
three cases are all new and more complex than those presented in earlier work, but
still based on the relevant lessons learned from the specialization project.
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Chapter 2

Theoretical Foundation

The following chapter builds the theoretical foundation on which to form the re-
maining thesis. This includes a review of numerical integration methods, focusing
on implicit methods and stiff equation systems, the general structure of dynamic
power system models, steady-state calculations and modeling of both alternating-
and direct current (AC and DC) systems, as well as coordinate transformations.
Lastly, Gear’s method is described. Chapter 2 can be seen as an expanded version
of the theory chapter in the specialization project [16].

2.1 Numerical Integration Methods

In general, a set of non-linear differential equations do not have an analytical so-
lution [13]. Instead, a numerical solution consisting of a series of function values
(y1, y2, . . . , yn, . . .) satisfying the equation ẏ = f(y, t) at time instants (t1, t2, . . . ,
tn, . . .) is used. Knowing all the previously calculated values (. . . , yn−2, yn−1, yn), the
following value yn+1 can be determined using a numerical integration method.

By their very nature, numerical solutions can only be seen as approximate solutions
to differential equations, differing from their accurate values by a local error. This
local error is made up by round-off and method errors. Round-off errors are intro-
duced by the nature of floating-point arithmetic used by computers, while the type,
order, and step length of the integration method determine the method error. Each
new step taken by the integration method introduces new errors. The local error
of any given step is therefore the sum of the local error introduced by itself and
the propagated local errors from all the previous steps. If the local error does not
increase from step to step, the integration method is called numerically stable. If,
however, the local error grows unboundedly as the integration proceeds, the method
is called numerically unstable. The cumulative effect of the errors may then cause
the value of yn to be meaningfully different from the accurate solution.

Numerical integration methods can generally be sorted into explicit and implicit
methods. Only the latter category will be explored in this section, as these methods
are particularly well-suited for dynamic power system simulations.
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2.1.1 Implicit Integration Methods

For the differential equation ẏ = f(y, t), the value yn+1 can be determined by in-
tegrating the function y(t) along the time path from tn to tn+1. By approximating
f(y, t) by a power series w(t) in the given time interval, the solution yn+1 can be
determined by

yn+1 = yn +

∫ tn+1

tn

f(y, t)dt ≈ yn +

∫ tn+1

tn

w(t)dt. (2.1)

Alternatively, y(t), in stead of f(y, t), can be approximated by a power series. This
gives y(t) ≈ w(t) and the coefficients in the approximating polynomial w(t) are
functions of consecutive values of (. . . , yn−2, yn−1, . . .). Differentiating with respect
to time gives ẏ(t) ≈ ẇ(t) or ẇ(t) ≈ f(y, t), resulting in the following implicit
integration formula:

yn+1 =
r∑
j=0

ajyn−j + b0hfn+1, (2.2)

where fi = f(yi, ti) = f(y(ti)) is the value of the function at a given point in time ti
and h is the integration step length. aj and b0 are constant coefficients of the power
series. r is the number of points used in the approximation and is referred to as the
order of the method.

It is worth noting that in order to calculate yn+1 using the formulation in (2.2), the
approximation polynomial w(t) is calculated using the known values (. . . , fn−2, fn−1, fn)
and the unknown value of fn+1. This is what makes the method implicit. Equation
(2.2) is one of the so-called implicit Gear formulas.

Furthermore, (2.2) also shows the disadvantage of implicit methods, namely that
yn+1 appears on both sides of the equation. This means that if the function f(y, t)
is non-linear, as it often is in power system modeling, the unknown yn+1 must be
found iteratively.

One such iterative method is the Newton-Raphson method. For any equation
F (y) = 0 Newton-Raphson’s formula is

y(l+1) = y(l) −

[
∂F

∂y

]−1

(l)

F
(
y(l)
)
, (2.3)

where the bracketed indexes indicate the iteration number. For a given time step n,
an initial guess y(0) is provided before (2.3) is used to calculate the next iteration
step y(l+1). This process is repeated until the difference between two consecutive
iteration calculations is acceptably small.

2.1.2 Stiffness of Differential Equation Systems

The time scale of the dynamics of the modeled system plays a key role in selecting
the appropriate numerical integration method. The solution of any set of linear
differential equations consists of a linear combination of exponential functions, each
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describing the different system modes. These modes are again defined by the eigen-
values of the system, which are linked to the time scale of the different dynamics in
the model.

When the eigenvalues are spread out over a large range in the complex plane, the
solution will consist of a combination of fast-changing dynamics, corresponding to
eigenvalues far away from the origin, and slow-changing dynamics, corresponding
to eigenvalues close to zero. If this is the case, the differential equation system
is referred to as a stiff system. For non-linear differential equations, the Jacobi
matrix, i.e. the matrix of the system’s first-order derivatives, and its eigenvalues
are not constant. Therefore, a non-linear system can only be called stiff if its linear
approximation is stiff.

Moreover, the main advantage of the Gear formulas, compared to similar formulas,
is that they have a relatively large area of numerical stability, making them more
suitable for use with stiff systems [13].

2.2 Structure of Power System Models

Figure 2.1 illustrates the general structure of power system models used for dy-
namic simulations. The overall power system representation includes models of
synchronous generators and the associated excitation systems and prime movers,
interconnecting transmission network and static loads, induction and synchronous
motor loads, and other devices, such as power electronic converters and static com-
pensators.

In addition to non-linear system equations, large discontinuities due to faults and
network switching, and small discontinuities due to limits on system variables, ap-
pear in the system model [10].

Stator equations and
axes transformations

Transmission network equations
including static loads

Rotor equations

Electrical rotor
equations

Mechanical rotor
equations

Other generators,
motors and other
dynamic devicesExcitation system

Turbine and governor

VD, VQ and ID, IQ

Local machine reference frame, dq

Global reference frame, DQ

Algebraic equations

Differential equations

Figure 2.1: Structure of the power system model used for dynamic simulations,
adapted from [10].

7



Chapter 2. Theoretical Foundation Erik-Anant Stedjan Narayan

The model equations are arranged into a set of ordinary differential equations of the
form

ẏ = f(y, t), (2.4a)

and sparse algebraic equations of the form

0 = g(y, t), (2.4b)

where y is the vector of state variables (state vector) of dimensions (K×1) and dot-
notation is used to indicate differentiation with respect to time. Throughout this
thesis bold face is used to indicate vectors or matrices. Dynamic modeling of power
systems is therefore a differential-algebraic initial-value problem, meaning that the
system solution is determined based on the state values at time t = 0 s.

The state vector can be further arranged into the form

y =
[
y0 y1 . . . yk

]T
=
[
yd ya

]T
, (2.5)

where yd and ya are the differential and algebraic variables, respectively. T is used
to denote the transpose of a vector or matrix. yd has the dimensions (N × 1)
and ya has (M × 1), giving K = M + N . Some state variables appear in both
the differential and in the algebraic equations, constituting the interface variables
[22]. Typical examples are the stator internal voltages and current components of
generators.

2.3 Steady-State Modeling of Power Systems

When performing dynamic power system simulations, the system has to be ini-
tialized. This is done by determining the system’s steady-state load flow solution,
meaning that the voltages and injected powers of all the buses in the network are
determined. From this, each state variable can be initialized, giving an equilibrium.

Initially, the relationships between the network bus voltages and injected currents
in a network consisting of N buses can be defined using the bus admittance matrix
as follows [13]:

I0
...
I i
...

I(N−1)

 =


Y 00 · · · Y 0i · · · Y 0(N−1)

...
. . .

...
. . .

...
Y i0 · · · Y ii · · · Y i(N−1)

...
. . .

...
. . .

...
Y (N−1)0 · · · Y (N−1)i · · · Y (N−1)(N−1)




V 0
...
V i
...

V (N−1)

 or I = Y V .

(2.6)
Note that throughout this thesis underlined letters will be used to denote phasors
or complex quantities. The subscripts i, j represent bus numbers, making V i the
phasor voltage at bus i, i.e. V i = Vi∠δi. I i is the algebraic net sum of the injected
currents into bus i, with the positive current direction being defined as flowing into
the bus. Y ij∀i 6= j is the mutual admittance between buses i and j, and equals
the negative sum of the branch series admittance linking the two buses. Y ii is the
self-admittance of bus i and equals the sum of all the admittances connected directly
to bus i, including any shunt admittances.
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For a given bus i, the current injected can based on (2.6) be expressed in a rectan-
gular coordinate system (D, Q) as

I i =
N−1∑
j=0

Y ijV j =
N−1∑
j=0

(Gij + jBij)(VDj + jVQj), (2.7)

where the complex admittances and bus voltages can be generally written with the
complex operator j as Y ij = Gij+jBij and V j = VDj +jVQj , respectively. Separating
(2.7) into real and imaginary parts gives

IDi =
N−1∑
j=0

(GijVDj −BijVQj) and (2.8a)

IQi =
N−1∑
j=0

(BijVDj +GijVQj). (2.8b)

With this notation the complex network equation (2.6) can be transformed into the
real-number domain to give

I0
...
I i
...

I(N−1)

 =


Y 00 · · · Y 0i · · · Y 1(N−1)

...
. . .

...
. . .

...
Y i0 · · · Y ii · · · Y i(N−1)

...
. . .

...
. . .

...
Y (N−1)0 · · · Y (N−1)i · · · Y (N−1)(N−1)




V 0
...
V i
...

V (N−1)

 or I = Y V ,

(2.9a)
where all the elements are now real submatrices of the form

I i =

[
IDi

IQi

]
, V i =

[
VDi

VQi

]
, and Y ij =

[
Gij −Bij

Bij Gij

]
. (2.9b)

Based on (2.7) the apparent power injected into any bus i can be expressed using
polar notation as

Si = Pi + jQi = V iI
∗
i = ejδi

[
YiiVie

−j(δi+θii) +
N−1∑

j=0,j 6=i

VjYije
−j(δi+θij)

]

= V 2
i Yiie

−jθii + Vi

N−1∑
j=0,j 6=i

VjYije
j(δi−δj−θij),

(2.10)

where star notation is used to denote complex conjugation and admittances are
written as Y ij = Yij∠θij. Separating the real and imaginary parts gives the active
and reactive bus power injections Pi and Qi, respectively, as

Pi = V 2
i Yii cos θii +

N−1∑
j=0,j 6=i

ViVjYij cos (δi − δj − θij) and (2.11a)
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Qi = −V 2
i Yii sin θii +

N−1∑
j=0,j 6=i

ViVjYij sin (δi − δj − θij). (2.11b)

It is often useful to combine the use of polar and rectangular coordinates, expressing
voltages in the former and admittances in the latter. This makes it possible to
express (2.11) as

Pi = V 2
i Gii +

N−1∑
j=0,j 6=i

ViVj[Bij sin (δi − δj) +Gij cos (δi − δj)] and (2.12a)

Qi = −V 2
i Bii +

N−1∑
j=0,j 6=i

ViVj[Gij sin (δi − δj)−Bij cos (δi − δj)]. (2.12b)

2.3.1 Newton-Raphson Load Flow Solution Method

When solving the steady-state load flow problem using the Newton-Raphson method,
the general form in (2.3) is used, expanded into matrix form. The goal is to deter-
mine the magnitude and angle of every bus voltage in the network, satisfying the
stated active and reactive power injections (or withdrawals in the case of net loads).

Initially, one bus is defined to be the slack bus. The slack bus, often defined as
bus number (N − 1) in an N -bus system (with zero-indexing), serves as a reference,
resulting in a defined voltage of V N−1 = VN−1∠δN−1 ≡ 1.0∠0.0◦ per unit (pu).
The slack bus also serves to balance the system, eliminating any potential power
imbalances caused by the other buses.

The remaining bus voltage magnitudes and angles are arranged into the state vector
x as

x =
[
δ V

]T
, (2.13)

where δ is the vector of the non-slack bus voltage angles and V is the vector con-
taining the non-slack bus voltage magnitudes.

The stated active and reactive power injections are collected into the column vector
b as

b =
[
P sp

0 · · · P sp
i · · · P sp

N−2 Qsp
0 · · · Qsp

i · · · Qsp
N−2

]T
, (2.14)

sp indicating set-point values. Note that the power injections of the slack bus (N−1)
are not stated.

The Newton-Raphson method requires an initial state vector guess. It is common
to utilize a flat start, i.e. setting all voltage magnitudes equal to 1.0 pu and angles
equal to 0.0◦. The equations to be solved are the injected power equations (2.12)
for each of the non-slack buses.

The Jacobian matrix J(δ,V ) can be expressed as

J(δ,V ) =


∂P

∂δ

∂P

∂V

∂Q

∂δ

∂Q

∂V

 , (2.15)
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where

P =
[
P0 · · · Pi · · · PN−2

]T
and (2.16a)

Q =
[
Q0 · · · Qi · · · QN−2

]T
(2.16b)

as defined by (2.12), and

∂P

∂δ
=



∂P0

∂δ0

· · ·
∂P0

∂δi
· · ·

∂P0

∂δN−2
...

. . .
...

. . .
...

∂Pi

∂δ0

· · ·
∂Pi

∂δi
· · ·

∂Pi

∂δN−2
...

. . .
...

. . .
...

∂PN−2

∂δ0

· · ·
∂PN−1

∂δi
· · ·

∂PN−2

∂δN−2


, (2.17a)

∂P

∂V
=



∂P0

∂V0

· · ·
∂P0

∂Vi
· · ·

∂P0

∂VN−2
...

. . .
...

. . .
...

∂Pi

∂V0

· · ·
∂Pi

∂Vi
· · ·

∂Pi

∂VN−2
...

. . .
...

. . .
...

∂PN−2

∂V0

· · ·
∂PN−2

∂Vi
· · ·

∂PN−2

∂VN−2


and (2.17b)

∂Q

∂δ
=



∂Q0

∂δ0

· · ·
∂Q0

∂δi
· · ·

∂Q0

∂δN−2
...

. . .
...

. . .
...

∂Qi

∂δ0

· · ·
∂Qi

∂δi
· · ·

∂Qi

∂δN−2
...

. . .
...

. . .
...

∂QN−2

∂δ0

· · ·
∂QN−2

∂δi
· · ·

∂QN−2

∂δN−2


, (2.17c)

∂Q

∂V
=



∂Q0

∂V0

· · ·
∂Q0

∂Vi
· · ·

∂Q0

∂VN−2
...

. . .
...

. . .
...

∂Qi

∂V0

· · ·
∂Qi

∂Vi
· · ·

∂Qi

∂VN−2
...

. . .
...

. . .
...

∂QN−2

∂V0

· · ·
∂QN−2

∂Vi
· · ·

∂QN−2

∂VN−2


. (2.17d)

11



Chapter 2. Theoretical Foundation Erik-Anant Stedjan Narayan

It is convenient to define the helper variables [3]

Tij ≡ Bij sin (δi − δj) +Gij cos (δi − δj) and (2.18a)

Uij ≡ Gij sin (δi − δj)−Bij cos (δi − δj), (2.18b)

and by substituting (2.18) into (2.12) and differentiating, the Jacobi elements in
(2.17) can be expressed as

∂Pi
∂δi

= −Vi
N−1∑

j=0,j 6=i

VjUij, (2.19a)

∂Pi
∂δj

= ViVjUij, (2.19b)

∂Pi
∂Vi

= 2ViGii +
N−1∑

j=0,j 6=i

VjTij, (2.19c)

∂Pi
∂Vj

= ViTij and (2.19d)

∂Qi

∂δi
= Vi

N−1∑
j=0,j 6=i

VjTij, (2.19e)

∂Qi

∂δj
= −ViVjTij, (2.19f)

∂Qi

∂Vi
= −2ViBii +

N−1∑
j=0,j 6=i

VjTij, (2.19g)

∂Qi

∂Vj
= ViUij. (2.19h)

Finally, the elements can be arranged into the form of (2.3) to give

x(l+1) = x(l) − J−1
(l)

b− [P
Q

](l)
 , (2.20)

which is iterated upon until a satisfactorily accurate solution is found.

2.3.2 DC Load Flow Solution Method

A DC network can also be solved using the Newton-Raphson method, but the prob-
lem formulation varies slightly from that of AC networks.

In a network consisting of N number of nodes, still with zero-indexing, node number
(N − 1) is defined as the slack node. This slack node is defined by its DC voltage,
while the other (N − 1) nodes are defined by their injected active power [2]. The
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term node is used as opposed to bus in order to distinguish the connection points
of DC lines from those of AC lines.

The steady-state DC equations are

Idc = Y dcV dc and (2.21a)

Pdci = 2VdciIdci ∀i < N, (2.21b)

where Idc is the column vector of node current injections, Y dc is the node admittance
matrix of the network, constructed using only line resistances, and V dc is the column
vector of node voltages.

By solving each of the N equations in (2.21b) for Idci and stacking them into a
column vector, they can be combined with (2.21a) to form the following system of
non-linear equations:

0 = Y dcV dc −
[
Pdci

2Vdci

]
. (2.22)

As node (N − 1) is classified as the slack node, the vector of unknowns x becomes

x =

[
x0

x1

]
=


Vdc0

...
Vdc(N−2)

Pdc(N−1)

 . (2.23)

The DC node admittance matrix is partitioned as follows:

Y dc =

[
Y 00 y01

y10 y11

]
, (2.24)

where Y 00 is an (N − 1) × (N − 1) matrix, y01 is a column vector with (N − 1)
elements, y10 is a row vector with (N − 1) elements, and y11 is a scalar.

This formulation leads to the following equation system, which can be solved using
the Newton-Raphson method:

0 = Y 00x0 + y01 · Vdcref −
[
Pdci

2x0i

]
and (2.25a)

0 = y10x0 + y11 · Vdcref −
x1

2Vdcref

, (2.25b)

where Vdcref is the reference value for the DC voltage. From (2.25), all the unknown
node voltages can be determined. By appending the slack node voltage to the end of
x0, (2.21a) can be used to determine all the net injected node currents. The branch
currents Icc are determined using the node connection matrix Y cc and the following
equation:

Icc = Y ccV dc. (2.26)

Y cc has N columns and number of rows equal to the number of network branches.
Each row represents one branch current, and contains a 1 in the column correspond-
ing to the positively defined node of the branch and a (−1) at the negatively defined
node. The remaining elements are zero. Typically, the positive branch current
direction is defined from a lower node index to a higher node index.
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2.4 Space Phasors and Two-Dimensional

Reference Frames

A key issue when designing three-phase voltage source converter (VSC) systems is
to enable the tracking of sinusoidal voltage or current commands [25]. Conventional
proportional-integral (PI) controllers only enable the tracking of constant references,
requiring a compensator of higher order and bandwidth if a sinusoidal signal is to
be tracked.

The space phasor concept and the accompanying αβ- and dq-frame concepts provide
a solution to the stated challenge, and therefore become central in the modeling of
VSC systems.

2.4.1 Space Phasor Representation of a Balanced Three-
Phase Function

A generic three-phase (a, b, c) balanced sinusoidal function with time-varying am-
plitude and frequency can be expressed as

fa(t) = f̂(t) cos (θ(t)), (2.27a)

fb(t) = f̂(t) cos

(
θ(t)− 2π

3

)
and (2.27b)

fc(t) = f̂(t) cos

(
θ(t)− 4π

3

)
, (2.27c)

where

θ(t) = θ0 +

∫ T

0

ω(τ)dτ, (2.28)

f̂(t) is the amplitude, and ω(t) is the angular frequency, all varying with respect
to time. θ0 is the initial phase angle of the function. The function could represent
a three-phase signal or three time-varying parameters, e.g. inductances. For the

sinusoidal function (2.27), the space phasor
−→
f is defined as

−→
f (t) ≡ 2

3

[
ej0fa(t) + ej 2π

3 fb(t) + ej 4π
3 fc(t)

]
. (2.29)

By substituting for (2.27) in (2.29) and using the identities cos θ = 1
2

(
ejθ + e−jθ

)
and ej0 + ej 2π

3 + ej 4π
3 = 0, it is possible to write the space phasor as

−→
f (t) = f̂(t)ejθ(t). (2.30)

2.4.2 αβ- and dq-Reference Frames

The space phasor is a complex-valued function of time, conveniently expressed in the
polar coordinate system. This kind of representation is suitable when the dynamics
of amplitude and phase of the system are of interest. However, for the purposes
of VSC control it is preferred to map space phasor equations to a Cartesian coor-
dinate system. Such a system, commonly referred to as the αβ-frame, enables the
manipulation of real-valued functions of time.
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Still assuming a balanced three-phase system, i.e. that fa + fb + fc = 0 in (2.27),
the space phasor in (2.29) can be decomposed into real and imaginary components
as

−→
f (t) = fα(t) + jfβ(t). (2.31)

This abc/αβ-frame transformation can then be expressed as

[
fα(t)

fβ(t)

]
=

2

3

1 −1

2
−1

2

0

√
3

2
−
√

3

2


fa(t)

fb(t)

fc(t)

 . (2.32)

The αβ-frame offers a simplified framework in which to analyze balanced three-
phase systems by reducing the system from three to two components. However,
reference, feedback and feed-forward signals are generally still sinusoidal functions
of time. The natural next step would then be to introduce a reference frame in
which sinusoidal signals become constants under steady-state conditions. The dq-
frame (direct-quadrature) is such a reference frame. Moreover, in the conventional
abc-frame, a salient-pole synchronous machine representation contains time-varying
self- and mutual inductances. In a proper dq-frame, these time-varying parameters
appear as constants.

For the space phasor
−→
f (t) = fα(t) + jfβ(t), the αβ/dq-transformation is defined as

fd(t) + jfq(t) ≡ [fα(t) + jfβ(t)] ejϕ(t), (2.33)

which is equivalent to a phase shift of
−→
f (t) by the angle (−ϕ(t)). From this it

can be determined that the d- and q-components are orthogonal and lie along the
same axes as the α- and β-components, only that the d- and q-axes are rotating.
Usually, the rotational speed of the dq-frame is selected to be equal to that of the

space phasor
−→
f . In power system analysis this means that ϕ̇ = ωs, where ωs is the

synchronous frequency of the system.

2.4.3 Global and Local dq-Frames

When modeling power systems, different parts of the model may use different dq-
frames. Typically, network equations are formulated in a global, common reference
frame, while machine equations are in a local reference frame, specific to the rotor.
This presents the need for a method of converting between the different frames.
Figure 2.2 shows the relative position of the machine-specific dq-frame and the
global DQ-frame. The q-axis of a given generator is shifted with respect to the
network’s real axis D by the rotor angle δ [13].
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VD
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Vq
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V

δ

q

d

D

Q

Figure 2.2: Relative position of the generator’s rectangular (d, q) coordinates
with respect to the network’s complex (D, Q) coordinates, adapted from [13].

The relationship between the two coordinate systems is[
VD

VQ

]
=

[
− sin δ cos δ

cos δ sin δ

][
Vd

Vq

]
or V DQ = TV dq. (2.34a)

The transformation matrix T is unitary, i.e. T−1 = T . This means that, similar to
the transformation from the local to the global reference frame, the transformation
from the global to the local reference frame is given by[

Vd

Vq

]
=

[
− sin δ cos δ

cos δ sin δ

][
VD

VQ

]
or V dq = TV DQ. (2.34b)

2.5 Gear’s Method

Gear’s method is a numerical integration method for solving differential-algebraic
equation (DAE) systems. The version used in this thesis is based on a second-order
predictor-corrector scheme, second-order meaning that both the first and second
derivatives of the state variables are used in the approximation. By monitoring the
local truncation error, the step length is automatically adjusted to ensure the desired
accuracy. This makes the method particularly suited for stiff equation systems,
as the step length can be increased to reduce the computational intensity during
steady-state or time spans with slow changing dynamics. When fast dynamics are
dominant, the step length is automatically reduced so as to capture the fast response
[6].

2.5.1 Method Overview

Figure 2.3 shows the steps and logic involved in Gear’s method. Initially, the method
requires a user-defined initial step length h0 and initial conditions. An initial guess
for the initial conditions is provided employing the Newton-Raphson load flow solu-
tion method described in Sections 2.3.1 or 2.3.2. This guess is then further iterated
upon to ensure that the simulated system is in steady-state, i.e. that ẏ = 0 in
(2.4a).
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Following this, initial predictions for the state variables yp
n+1, along with the first

and second derivatives ẏp
n+1 and ÿp

n+1, for the time step (n+ 1) are made.

The method then proceeds to the corrector part. Again using Newton-Raphson iter-
ations, a deviation ∆yn+1 between the predicted and accurate values is calculated.
Based on this deviation, the local truncation error εt is calculated. The next steps
are then determined depending on this value. If the truncation error is larger than
the maximum permitted value, or well within the defined upper limit, the step length
is adjusted. The first case is indicative of poor tracking, leading to a decreased step
length. On the contrary, if the truncation error indicates that the step length is
shorter than what is required to achieve the desired accuracy, it is increased. If the
truncation error meets neither of these conditions, the algorithm jumps straight to
the updating step.

However, if the case was that the truncation error was above the permitted limit, a
new deviation ∆yn+1 is calculated based on the reduced step length.

Once an appropriate deviation has been calculated, the prediction is updated to give
the corrected values for the state variables yn+1 and its derivatives ẏn+1 and ÿn+1

for the time step (n+ 1).

The next step is updating the time variable tn and iterating the step counter n. The
process returns to the prediction step, looping through the described steps until a
termination condition is met, typically that the time variable reaches the end of the
set simulation duration.

Finally, the system eigenvalues are approximated numerically and the algorithm
concludes, presenting the simulated state variables and derivatives for further ma-
nipulation, e.g. plotting.

17



Chapter 2. Theoretical Foundation Erik-Anant Stedjan Narayan

Initial values
y0, ẏ0, ÿ0

Predictor
yp
n+1, ẏ

p
n+1, ÿ
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Truncation error
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Calculate new
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Yes

No

Yes

No
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Figure 2.3: Flowchart for Gear’s method, adapted from [4].

2.5.2 Method Description

The system equations are first arranged into the form in (2.4), with the state equa-
tion partitioned into differential variables yd and algebraic variables ya as in (2.5).
This arrangement allows Gear’s method to solve the K equations making up the
DAE system, both the differential and algebraic.
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Initial Conditions

It is vital that dynamic simulations start off with the appropriate initial conditions.
As previously mentioned, the initial conditions for dynamic power system simula-
tions of AC systems are normally found through a solved load flow case as described
in Section 2.3.1. From this, the voltages and apparent powers at each bus are know,
enabling the calculation of the injected currents. However, the voltage and current
components are in the system’s global reference frame, while the local versions are
required in order to initialize each machine in the network. For this the rotor angle
δ is required.

For round-rotor machines, the phasor V DQ + (R + jXq)IDQ lies on the q-axis in
steady-state [13, 22]. V DQ is the generator terminal voltage in the DQ-frame, IDQ

is the delivered generator current, and R and Xq are the stator resistance and
q-axis synchronous reactance of the generator, respectively. From this, the rotor
angle between the real axis of the network frame and the machine q-axis can be
determined. This enables the transformation of the terminal voltage and current
into the machine-specific dq-frame, and the remaining states of the generator and
other connected devices can be initialized.

However, due to propagated round-off errors, the system may not in fact be properly
initialized to steady-state after this procedure. In order to solve this issue, the
differential and algebraic equations in (2.4) are linearized, establishing the following
equation system:

∂f

∂yd

∂f

∂ya

∂g

∂yd

∂g

∂ya


(l)

[
∆yd

∆ya

](l)

=

[
−∆f

−∆g

](l)

or J (l)∆y
(l) = D(l), (2.35)

where ∆y(l) is the linearized version of y(l) for iteration step (l), not to be confused
with the deviation ∆yn+1.

In order to ensure that the system is initialized to steady-state, all the derivatives
are set to zero, so the right hand side of (2.35), D(l), becomes the negative of the
derivatives of the differential equations and the negative of the deviations of the
algebraic equations. More specifically,

D(l) =

[
−f(∆y(l))

−g(∆y(l))

]
. (2.36)

The initial conditions are then found iteratively by first calculating the mismatch
vector D(l) for the current ∆y(l). The result of the initialization based on the
solved load flow is used as the initial guess for ∆y(0). After the mismatch has
been calculated, a check is performed to determine if the largest element in the
mismatch vector is smaller than the set Newton-Raphson tolerance. If the mismatch
is sufficiently small at iteration step (l), the initial conditions are set as

y0 = ∆y(l). (2.37)

Otherwise, the equation

∆y(l+1) = ∆y(l) + J−1
(l)D

(l), (2.38)
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similar to (2.3), is solved and the process repeats until the mismatch is negligible.

Such an iterative initialization will also solve the potential issues caused by state
saturation [22].

DC systems are initialized in a similar way. A load flow solution is found as described
in Section 2.3.2, providing a starting point for the iterative process.

Prediction

Once the system is properly initialized, the first prediction step can be performed.
Using the first and second derivatives of the state variables, as well as the step length
hn+1 at time step tn, the prediction for time step tn+1 is based on a second-order
Taylor approximation of the state variables y. The predicted values yp

n+1, ẏp
n+1, and

ÿp
n+1 can be calculated as

yp
n+1 = yn + hn+1ẏn +

h2
n+1

2!
ÿn, (2.39a)

ẏp
n+1 = ẏn + hn+1ÿn and (2.39b)

ÿp
n+1 = ÿn. (2.39c)

Correction

According to [1], the state variables and their derivatives are related to the predicted
values in the following way:

yn+1 = yp
n+1 +

(
yn+1 − y

p
n+1

)
, (2.40a)

hn+1ẏn+1 = hn+1ẏ
p
n+1 + l1n+1

(
yn+1 − y

p
n+1

)
and (2.40b)

h2
n+1

2!
ÿn+1 =

h2
n+1

2!
ÿp
n+1 + l2n+1

(
yn+1 − y

p
n+1

)
. (2.40c)

l1n+1 and l2n+1 are known constants dependent on step length and method order.
For a second-order method [6] derives them as

l1n+1 =
2hn+1 + hn
hn+1 + hn

and (2.41a)

l2n+1 =
hn+1

hn+1 + hn
. (2.41b)

Continuing, in order to calculate yn+1, an implicit function U(yn+1) is defined,
taking the difference between the approximated values of the first derivatives and
their accurate values, i.e.

U(yn+1) = ẏn+1 − f(yn+1, tn+1) = 0. (2.42)

This way, the zeros of U give the state variables at step (n+ 1). Multiplying (2.42)
by the step length hn+1 and substituting for

(
hn+1ẏn+1

)
using (2.40b) gives

U(yn+1) = hn+1ẏ
p
n+1 + l1n+1

(
yn+1 − y

p
n+1

)
− hn+1f(yn+1, tn+1) = 0. (2.43)
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However, the desired value is the mismatch between the predicted values and the
accurate ones. By letting

∆yn+1 = yn+1 − y
p
n+1, (2.44)

U can be redefined as

U(∆yn+1) = hn+1ẏ
p
n+1 + l1n+1∆yn+1 − hn+1f(∆yn+1 + yp

n+1, tn+1) = 0. (2.45)

Similar to the initial values, the zeroes of U are found using Newton-Raphson itera-
tions. Equation (2.45) is linearized, higher order terms are dropped, and is combined
with the linearized version of the algebraic equations, ∆g, to give
L1n+1 − hn+1

∂f

∂yd

−hn+1

∂f

∂ya

∂g

∂yd

∂g

∂ya


(l)

[
∆yd

∆ya

](l)

=

[
−∆U

−∆g

](l)

or A(l)∆y
(l) = ∆(l),

(2.46)
where L1n+1 is a diagonal matrix with all coefficients equal to l1n+1 . As (2.46) is
similar to (2.35), the same iterative solution method is employed. Equations (2.36)
and (2.38) become respectively

∆(l) =

[
−U(∆y(l))

−g(∆y(l))

]
(2.47)

and
∆y(l+1) = ∆y(l) +A−1

(l) ∆(l). (2.48)

As an initial guess,
∆y(0) = yp

n+1 (2.49)

is used.

Once the Newton-Raphson iterations have converged at iteration step (l) and ∆yn+1 =
∆y(l) has been determined, assuming an acceptable truncation error, (2.40) can be
updated, using the redefinition in (2.44), according to:

yn+1 = yp
n+1 + ∆yn+1, (2.50a)

hn+1ẏn+1 = hn+1ẏ
p
n+1 + l1n+1∆yn+1 and (2.50b)

h2
n+1

2!
ÿn+1 =

h2
n+1

2!
ÿp
n+1 + l2n+1∆yn+1. (2.50c)

Local Truncation Error

Having determined the deviation ∆yn+1, but before updating the state variables,
the local truncation error εt is calculated. Reference [23] gives

εtn+1 = Kqn+1q!lqn+1

∥∥∆yn+1

∥∥
∞ , (2.51)

where
∥∥∆yn+1

∥∥
∞ is the infinity norm of ∆yn+1, defined as∥∥∆yn+1

∥∥
∞ ≡ max

{i=0,1,...,k}

∣∣∆yin+1

∣∣ . (2.52)

21



Chapter 2. Theoretical Foundation Erik-Anant Stedjan Narayan

q is the order of the method, here q = 2, and Kqn+1 is a constant. According to [6]
K2n+1 is given by

K2n+1 =
1

6
· (hn+1 + hn)2

hn+1 (2hn+1 + hn)
. (2.53)

lqn+1 = l2n+1 is as defined in (2.41b).

Step Length Adjustment

According to [6] a step length change will give a truncation error ε of

ε = Kqn+1q!lqn+1

∥∥∆yn+1

∥∥
∞

(
h′n+1

hn+1

)q
, (2.54)

where h′n+1 is the new step length for step (n+ 1) and hn+1 is the old one. Letting
ε̂ be the maximum permitted truncation error and dividing (2.54) by (2.51) gives
the adjusted step length as

h′n+1 = hn+1

(
ε̂

εtn+1

) 1
q

, (2.55)

or for a second-order method:

h′n+1 = hn+1

√
ε̂

εtn+1

. (2.56)

Depending on if the current truncation error is larger or smaller than the maximum
permitted truncation error, (2.56) will adjust the step length accordingly.

Eigenvalue Calculations

The final step before the algorithm concludes is to numerically approximate the
eigenvalues of the simulated system. In order to do this, a system matrix without
the algebraic variables must be established. Still, the effects the algebraic variables
have on the interactions between the differential variables must be maintained. This
is done by forming an (N ×N) matrix, G(y, t), from the elements in (2.35) as

G(y, t) =
∂f

∂yd

− ∂f

∂ya

(
∂g

∂ya

)−1
∂g

∂yd

(2.57)

and evaluating it at the time step corresponding to t = tfinal.

2.5.3 Step Length Strategies

Reference [6] suggests that merely following the step length adjustment strategy
presented in Section 2.5.2, without any further safeguarding, may lead to the inte-
gration failing. This observation is supported by [4, 16]. It is therefor suggested to
implement specific strategies for increasing and decreasing the step length.

If the local truncation error is found to be well within the permitted upper limit,
or exceeds it, the step length is adjusted. However, as the step length is included
in the correction matrix A(l), changing the step length for each step would require
a complete rebuild. It is therefore imperative to limit the number of times the step
length is changed.
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Increasing Step Length

There are several challenges associated with excessive step length increases. If the
step length increases too much in one step, the likelihood of the next step being
rejected due to poor state variable tracking increases. As the resource use of a failed
step equals that of a successful one, it is desirable to limit the number of failed
integration steps.

Furthermore, unstable simulation cases may be simulated as stable. If a disturbance
brings about well-damped, fast oscillations together with slow, but unstable ones,
the effect may be masked by a too large step length. The step length may have
increased before any unstable modes become prevalent, giving the impression of a
stable time-response. Having tight restrictions on the permitted truncation error
will possibly handle these cases, but the number of corrector iterations required will
increase.

Based on these concerns, the following strategies are proposed:

1. Applying a user-supplied scaling factor γ to the step length adjustment formula
in (2.56), resulting in

h′n+1 = γ · hn+1

√
ε̂

εtn+1

. (2.58)

Reference [6] suggests keeping the scaling factor in the range of 0.6 to 0.9. γ
can effectively be viewed as a working tolerance compared to the maximum
local truncation error.

2. Preventing the step length from increasing more than twofold between succes-
sive adjustments, i.e.

h′n+1 = min
{
h′n+1, 2hn+1

}
. (2.59)

3. Keeping the step length fixed for a user-specified number of steps. References
[4, 6] suggest keeping the step length constant for 15 steps before it is allowed
to be adjusted.

Decreasing Step Length

Non-linearities and discontinuities, such as state saturation and discrete events, in
the simulated system may force the method to adopt a smaller step length than
what is in fact necessary. One strategy to prevent this, as suggested by [6], is:

4. Preventing the step length from decreasing by more than a factor of two from
one adjustment to the next:

h′n+1 = max

{
h′n+1,

hn+1

2

}
. (2.60)

It is worth noting that truly discrete events are not possible when employing nu-
merical integration methods. This is due to the fact that the system states before
and after the discontinuity have to be separated by at least one step length.
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Chapter 3

Implementation and Test Systems

The following chapter describes the implementation of Gear’s method for four differ-
ent power system cases. The first case is a simple system consisting of one generation
unit connected through a transmission line to an infinite bus. The generation unit
consists of a synchronous generator, exciter, hydro turbine and governor, and a
power system stabilizer (PSS).

The second case is a more complex system, consisting of three generation units,
connected to an infinite bus via a six-bus system, including dynamic loads. The third
case incorporates more power electronic devices, consisting of a four-bus system with
two generation units, a dynamic load, and a static compensator (STATCOM). The
final system is made up of three voltage source converters (VSCs), each connected
to an infinite bus, interconnected through a DC network.

Initially, an overview of the structure of the Python implementation is given. Follow-
ing this, the method of verification using MATLAB is described, before the modeling
of each of the simulated cases is presented.

As in [16], each strategy was tested separately and in combination so as to better
understand their effects on the method. This is in contrast to previous implementa-
tions such as [4, 6], where the strategies have been successfully employed, but where
only comparisons between applying all the strategies and applying none have been
made.

3.1 Python Implementation

The Python implementation of Gear’s method employs an object-oriented approach
relying on modularization. In addition to the base Python platform, extensive use
of additional packages and libraries was made. Numpy [20] was used for its scien-
tific and numerical computation functions and classes, SciPy [21] was used for its
linear algebra capabilities, and SymPy [24] was used for symbolic mathematics. In
addition, Matplotlib [8] was used for visualization and plotting.

Each of the four cases had slight variations in how they were implemented. The
overall structure, however, was shared and is shown in Figure 3.1.

The main() function is responsible for defining the necessary system parameters,
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as well as calling the other required functions to run the simulation. This includes
calling either the newtonRaphsonLF() function or the DCsteadyState() function for
solving the initial load flow of the system. In addition, main() calls the constructors
of the network objects, such as generators, VSCs, and the network itself. Finally,
main() is responsible for constructing the GearsMethod object and subsequently
calling its simulate() and plot() methods.

newtonRaphsonLF() takes the system admittance matrix, the stated injected bus
powers, an initial guess for the state variables, and a maximum permitted error, and
employs the method described in Section 2.3.1 to provide a steady-state solution
to the system. It returns the bus voltage magnitudes and angles, net active and
reactive bus power injections, and a boolean variable to indicate if the method
converged. DCsteadyState() is similar and takes in the number of system nodes,
the node admittance and node connection matrices, the injected active power of
the non-slack nodes, the node voltage references, and an initial guess of the state
variables. The function returns node voltages, injected power at the slack node, and
injected currents and branch currents, using the method described in Section 2.3.2.
Throughout this thesis a maximum permitted error of 1× 10−4 was used for the
steady-state solvers.

The network objects are all defined based on the same principles. Their constructors
take in the necessary parameters, e.g. time constants, controller gains and saturation
limits. They then create symbolic variables representing their own state variables.
Each class contains an updateSystemEquations() method used to update, or cre-
ate when the constructor is called, symbolic representations of the differential or
algebraic equations of the object. If any interface variables are needed, local ver-
sions are created so as to not interfere with their original definition. An example of
this is how a Network object requires the rotor angle of the connected synchronous
generators. The system as a whole will only have access to the rotor angle variable
defined by the Generator object, not the one defined by the Network object.

The GearsMethod class forms the core of the Python implementation. Its constructor
takes in the solved load flow case, the objects required to construct the system, and
the parameters required to run the simulation. This includes information about
when a disturbance is applied and the strategies employed. The constructor then
defines the necessary variables, such as the state vector. In addition, it calls the class’
own updateSystemEquations() method. Here the symbolic variables and equations
defined by the system objects are transformed into lambda functions which are used
to calculate numerical values, i.e f(y, t) and g(y, t) in (2.4). This includes the
derivatives of the Jacobian and correction matrices.

By first defining the system equations as symbolic equations, the SymPy library can
be used to handle the required differentiation of the system equations, as doing so
by hand would be highly inconvenient for systems of the size implemented here.

The simulate() method calls the two initialization methods, one using the result
from the load flow and the other using iterations, and loops through the methods for
handling disturbances, prediction, correction, saturation, and time variable updat-
ing. The loop is broken once the time variable equals or exceeds a final, predefined
value. In addition to calling the method for calculating the eigenvalues, simulate()
calls the method for verification and prints data about the simulation.
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initializeLF() takes the result from the load flow case, calculates the voltage
and current components in the required reference system, and provides an initial
initialization of the system. initializeDC() functions in a similar manner, only
adapted for DC systems. Following this, initializeNR() iterates on the equation
system in (2.35) to set the final initial values of the system. The lambda functions
f() and g() are used to return the results of the differential and algebraic equations
for the current ∆y(l). Similarly, J() returns the Jacobian matrix J (l) using the
lambda functions dfdyd(), dfdya(), dgdyd() and dgdya(). Each of them return a
submatrix of the Jacobian based on the current state vector.

The disturbance() method makes the appropriate changes to the system at the
specified disturbance instance, e.g. changing system constants. If applicable, post-
Disturbance() acts in a similar way to put the system in the proper state after a
disturbance has been corrected.

Next, the predictor() method calculates the predicted values according to (2.39)
and updates the prediction vectors for the state variables and derivatives.

Continuing, corrector() makes an initial guess for the deviation ∆yn+1 and calls
newtonRaphson() to set the appropriate values. It then calls truncationError()

to calculate εt, and based on this it makes a decision to either update the state
vector directly, or perform a step length adjustment. changeStep() is called if the
calculated truncation error is above the upper limit, or if it is below half of the
upper limit, as this is considered being well within the constraints. Based on the
recommendations in [6] the upper limit for the truncation error was set relatively
tightly at 1× 10−5. If the truncation error is above the limit, corrector() repeats
the call to newtonRaphson(), but with the adjusted step length. Finally, the state
variables and derivatives are updated according to (2.50).

newtonRaphson() takes the initial guess ∆y(0) passed from the corrector() method
and enters a loop. In the loop, U() and the lambda function g() return the devia-
tion vector ∆(l) according to (2.47). If the largest element in the deviation vector is
above the limit set for convergence, ∆y(l+1) is calculated according to (2.48) and the
steps are looped through again. The loop breaks when the deviation vector is suffi-
ciently small and ∆yn+1 is returned to the corrector() method. The convergence
limit was set at 1× 10−5.

The updateTime() method simply appends the current simulation time to the end of
the time vector, iterates the step variable n, and adds the current step length to the
end of the step length vector. eigenvalues() approximates the system eigenvalues
and eigenvectors based on the lambda functions dfdyd(), dfdya(), dgdya(), and
dgdyd().

After the simulation has concluded, simulate() calls the verification() method.
Initially, verification() reads the result of the verification simulation from a text
file. Following this, it interpolates between the verification points to ensure that
the simulation and verification results are defined for the same time values, so as to
make them comparable. The final function of verification() is to calculate the
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mean squared error (MSE) of each state variable according to

MSE(y, ỹ) =
1

n

n−1∑
i=0

(yi − ỹi)2, (3.1)

where n is the time step index as before, yi is the simulated value and ỹi is the
verified value for time step i [19]. The MSE will be unit-less as pu-values are used
in the calculation. verification() then prints the state variable with the highest
MSE along with the corresponding MSE value.

Lastly, plot() is called. The method uses the Matplotlib library to create a plot of
the state variables of interest with respect to the time vector. The same is done for
the step length vector, in addition to calling the movingAverage() method which
returns the moving average of the step length vector. If saturation has been enforced
during the simulation, a plot showing the affected time steps is displayed. plot()

also plots the verified state variables, if required, and the system eigenvalues in the
complex plane.

3.1.1 Verification Method

MATLAB was used to perform the verification calculations. The DAE system was
defined and converted into function handles to be solved by MATLAB’s ordinary
differential equation solver ode15i, a variable-order method for solving fully implicit
differential equations [15]. The results of the Python methods initializeLF() or
initializeDC() were used as initial guesses for the MATLAB initializer. After
solving the system, the results were written to a text file and made accessible to the
Python program.

In addition to visual verification, the MSE for each state variable was calculated
using (3.1).

3.1.2 Performance Metrics

When comparing the effects of the different strategies, the number of step length
adjustments and mean step length were used in addition to the maximum MSE as
performance metrics. As noted in Section 2.5.3, avoiding an excessive step adjust-
ment frequency reduces the computational intensity of the method. It was therefor
a goal to keep the number of step changes required to a minimum.

Furthermore, operating with a large mean step length indicates that few calculations
are required to simulate a given time span. Achieving a large mean step length was
therefore also desirable.

In order to determine the parameter combination resulting in the best performance
across the three criteria, the Euclidean distances between the achieved and the ideal
scores were used [5]. The Euclidean distances were calculated as

d(p, p̄) =

[
3∑

m=1

(
pm
p̄m
− 1

)2
] 1

2

, (3.2)
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where for a given parameter combination, p is the vector of achieved performance
scores, and p̄ is the vector of the ideal values. m indicates each of the three criteria.
The scores have each been normalized so as to ensure equal weighting, and a smaller
distance indicated an overall better score than a large distance. As with the MSE,
the Euclidean distance will be unit-less.
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main()

GearsMethod
newtonRaphsonLF()/
DCsteadyState()

simulate() init () plot() init ()

Generator,
Network, etc.

initializeLF()/
initializeDC()

updateTime()eigenvalues ()initializeNR () predictor() corrector() verification() saturation() disturbance() postDisturbance() movingAverage()
updateSystem-

Equations()

J()

newtonRaphson() truncationError() changeStep()
updateSystem-

Equations()

Dg() U() A()

g() f() dfdyd() dfdya() dgdyd() dgdya()

Figure 3.1: Structure of Python implementation of Gear’s method.
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3.2 Description of Single Machine to Infinite Bus

System

The first simulation case is based on the system in Figure 3.2, and forms a basic
building block for several of the following cases. It consist of a synchronous gener-
ator, an exciter, a hydro turbine and its governor, and a power system stabilizer.
Together these components form a single generating unit, which again is connected
to an infinite bus via a transmission line (SMIB).

Generator
y01 ∞

Stiff gridBus 0 Bus 1

Figure 3.2: Single-line diagram of SMIB system.

The system as a whole is defined by 21 state variables, divided between 17 differential
and four algebraic. The differential and algebraic state vectors are

yd =
[
∆ωs δ E ′q E ′d E ′′q E ′′d Ef Vr Vb Vf Vt Vw Vpss Vg Vp Vs Pm

]T
(3.3a)

and

ya =
[
VD0 VQ0 VD1 VQ1

]T
, (3.3b)

respectively. ∆ωs, δ, E
′
q, E ′d, E ′′q , and E ′′d relate to the synchronous generator model.

∆ωs represents the rotor angle deviation from synchronous frequency, i.e. ∆ωs =
ω−ωs, ωs being the nominal system angular frequency. Throughout this thesis, 50 Hz
is used as system frequency, resulting in ωs = 100π rad/s. The remaining variables
represent the rotor angle, and the q- and d-axis components of the transient and
subtransient internal emfs. Ef is the excitation emf, Vr is the regulator output
voltage, Vb is the regulator input voltage, Vf is the feedback stabilization signal, and
Vt is the output voltage from the transducer measuring the terminal voltage. Vw and
Vpss define the PSS and represent the filtered frequency deviation and stabilization
signals. The final four state variables, Vg, Vp, Vs, and Pm, are related to the turbine
and its governor. They represent the gate signal from the governor, the rate of
change of the gate signal, the transient droop variable and the mechanical output
power of the turbine, respectively.

The algebraic variables are the D- and Q-components of the two bus voltages, re-
ferred to the global frame.

The simulated disturbance is an increase of the voltage reference Vref by +1 %.

3.2.1 Synchronous Generator in Single Machine to Infinite
Bus System

The synchronous generator is modeled using a sixth-order model [13]. The differen-
tial equations are

31



Chapter 3. Implementation and Test Systems Erik-Anant Stedjan Narayan



f0(y, t)

f1(y, t)

f2(y, t)

f3(y, t)

f4(y, t)

f5(y, t)


=



∆̇ωs

δ̇

Ė ′q

Ė ′d

Ė ′′q

Ė ′′d


=



1

M
(Pm − Pe −D∆ωs)

∆ωs

1

T ′do

[
Ef − E ′q + Id (Xd −X ′d)

]
1

T ′qo

[
−E ′d − Iq

(
Xq −X ′q

)]
1

T ′′do

[
E ′q − E ′′q + Id (X ′d −X ′′d)

]
1

T ′′qo

[
E ′d − E ′′d − Iq

(
X ′q −X ′′q

)]



, (3.4)

where M is the machine coefficient of inertia and D is the damping coefficient related
to windage and friction losses. T ′do, T ′qo, T ′′do, and T ′′qo are the direct- and quadrature-
axis transient and subtransient short-circuit time constants. Xd and Xq, X ′d and
X ′q, and X ′′d and X ′′q are the direct- and quadrature-axis synchronous, transient and
subtransient reactances of the generator. The subsystem only consists of differential
equations, and is illustrated in block diagram form in Figure 3.3. s is the Laplace
operator.

Id Xd−X ′d
1

sT ′do

Ef

−
E ′q

Iq Xq−X ′q
1

sT ′qo−− E ′d

X ′d−X ′′d
1

sT ′′do−
E ′′q

X ′q−X ′′q
1

sT ′′qo−− E ′′d
E ′′d

(a) Electrical part.

Figure 3.3: Block diagram representation of synchronous generator in SMIB case.
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Pe

Pm

1

sM

1

s
δ

D

−−
∆ωs

(b) Mechanical part.

Figure 3.3: Block diagram representation of synchronous generator in SMIB case
(continued).

The description in (3.4) contains the current components Id and Iq. However, the
network description is voltage based, so the currents have to be eliminated.

By neglecting the armature resistance, the relationship between the dq-components
of the machine’s terminal voltage V dq and current Idq can be expressed as

[
Vd

Vq

]
=

[
E ′′d

E ′′q

]
−

[
0 X ′′q

−X ′′d 0

][
Id

Iq

]
or V dq = E′′dq −ZdqIdq. (3.5)

However, in (3.5) the voltage components appear in the local reference frame, while
the global ones are used in the system description. By applying the transformation
in (2.34a) to the voltage components and solving for the currents, (3.5) becomes

[
Id

Iq

]
=


1

X ′′d
(−E ′′q + VD cos δ + VQ sin δ)

1

X ′′q
(E ′′d + VD sin δ − VQ cos δ)

 or Idq = Z−1
dq (E′′dq − TV DQ), (3.6)

where V dq = TV DQ.

Still by neglecting the armature resistance, the active power delivered by the gen-
erator is given by

Pe = VdId + VqIq. (3.7)

The description of the synchronous generator is completed by substituting for the
current and active power in (3.4) using (3.6) and (3.7), with the voltages transformed
into the global frame. The machine parameters are given in per unit values in Table
3.1.

33



Chapter 3. Implementation and Test Systems Erik-Anant Stedjan Narayan

Table 3.1: Parameter values for synchronous generator in SMIB.

Parameter Value [pu]

M 6.20
D 0.00
T ′do 6.00
T ′qo 0.54
T ′′do 0.05
T ′′qo 0.05
Xd 0.89
Xq 0.86
X ′d 0.30
X ′q 0.30
X ′′d 0.10
X ′′q 0.10

3.2.2 Excitation System in Single Machine to Infinite Bus
System

The excitation system is based on a type DC1A model [9], more specifically the
following differential equation system:



f6(y, t)

f7(y, t)

f8(y, t)

f9(y, t)

f10(y, t)


=



Ėf

V̇r

V̇b

V̇f

V̇t


=



1

Te

[Vr − (Se +Ke)Ef ]

1

Ta

(KaVb − Vr)

1

Tb

(Vref + Vpss − Vb − Vf − Vt)

1

Tf

[
Kf

Te

(Vr − (Se +Ke)Ef)− Vf

]
1

Tr

(√
V 2

D + V 2
Q − Vt

)


. (3.8)

Te, Ta, Tb, Tf , and Tr are different time constants and Ke, Ka, and Kf are static
gains. Vref is the voltage magnitude reference value and VD and VQ are the DQ-
components of the terminal voltage. The voltage components appear directly in
the equation describing the transducer voltage as no load compensation voltage is

employed, i.e. Vc =
√
V 2

D + V 2
Q. Following the modeling done in [6], the effect of the

saturation function Se is neglected.

Figure 3.4 gives the exciter equations in block diagram form, and Table 3.2 gives
the exciter parameters. V max

r and V min
r are respectively the maximum and minimum

regulator output limits.
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Vc

1

1 + sTr

1

1 + sTb

Ka

1 + sTa

1

Ke + sTe
Ef

Se

sKf

1 + sTf

Vref

Vpss

−−
−

V max
r

V min
r

Vt Vb Vr

Vf

Figure 3.4: Block diagram representation of exciter in SMIB, adapted from [9].

Table 3.2: Parameter values for exciter in SMIB.

Parameter Value [pu]

Te 1.330
Ta 0.050
Tb 0.100
Tf 0.670
Tr 0.001
Ke 1.000
Ka 300.000
Kf 0.100
Vref 1.000
V max

r 20.000
V min

r -20.000
Se 0.000

3.2.3 Power System Stabilizer in Single Machine to Infinite
Bus System

The power system stabilizer is modeled by the differential equations

[
f11(y, t)

f12(y, t)

]
=

[
V̇w

V̇pss

]
=


Kpss

M
(Pm − Pe)−

1

Tpss

Vw

1

T2

[
KpssT1

M
(Pm − Pe) +

(
1− T1

Tpss

)
Vw − Vpss

]
 , (3.9)

where T1 and T2 are time constants of the phase compensator, and Tpss is the time
constant of the washout filter [10]. Kpss is the static gain of the PSS and M is as
before the coefficient of inertia of the machine. The delivered active power Pe is
substituted for using (3.6) and (3.7). Figure 3.5 shows the block diagram and Table
3.3 gives the PSS parameters.

Note that Figure 3.5 has ∆ωs as its input, while ∆ωs has been substituted for using
(3.4) in (3.9).
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∆ωs Kpss
sTpss

1 + sTpss

1 + sT1

1 + sT2

Vpss

Vw

Figure 3.5: Block diagram representation of PSS in SMIB, adapted from [10].

Table 3.3: Parameter values for PSS in SMIB.

Parameter Value [pu]

T1 0.10
T2 0.01
Tpss 3.00
Kpss 100.00

3.2.4 Hydro Turbine and Governor in Single Machine to
Infinite Bus System

The fourth subsystem consists of a hydro turbine and accompanying governor, and
is modeled by


f13(y, t)

f14(y, t)

f15(y, t)

f16(y, t)

 =


V̇g

V̇p

V̇s

Ṗm

 =



Vp

1

Tp

[
−Vp +

1

Tg

(
RPref −

∆ωs

ωs

−RVg − Vs

)]
1

Td

(DdTdVp − Vs)

2

Tw

(Vg − TwVp − Pm)


, (3.10)

with Tg, Tp, Td and Tw as time constants. Pref is the active power reference of the
governor and Dd and R are the transient and static droop coefficients [17]. Figure
3.6 illustrates the turbine and governor in block diagram form and Table 3.4 contains
the parameters.

V max
g , V min

g , V max
p and V min

p are the maximum and minimum values of Vg and Vp,
representing the limits on the gate position and the rate of change of the gate
position.
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∆ωs

1

ωs

1

Tg(1 + sTp)
1

s

1− sTw

1 + sTw/2

R

DdsTd

1 + sTd

Pm

R

Pref

−−

V max
p

V min
p

V max
g

V min
g

Governor

Turbine

Vp Vg

Vs

Figure 3.6: Block diagram representation of hydro turbine and governor in
SMIB, adapted from [17].

Table 3.4: Parameter values for hydro turbine and governor in SMIB.

Parameter Value [pu]

Tg 0.20
Tp 0.04
Td 5.00
Tw 0.10
Dd 0.30
R 0.05
Pref 1.00
V max

g 1.00
V min

g 0.00
V max

p 0.10
V min

p -0.10

3.2.5 Transmission Network in Single Machine to Infinite
Bus System

The system’s network equations make up the algebraic part of the description. Based
on (2.9) the two-bus system can be formulated as

ID0

IQ0

ID1

IQ1

 =


G00 −B00 G01 −B01

B00 G00 B01 G01

G10 −B10 G11 −B11

B10 G10 B11 G11




VD0

VQ0

VD1

VQ1

 . (3.11)
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From (3.11) the equations for the two buses can be extracted as, keeping in mind
that bus 1 is an infinite bus,

g0(y, t)

g1(y, t)

g2(y, t)

g3(y, t)

 = 0 =


−ID0 +G00VD0 −B00VQ0 +G01VD1 −B01VQ1

−IQ0 +B00VD0 +G00VQ0 +B01VD1 +G01VQ1

VD1 − 1.0

VQ1

 . (3.12)

With this formulation g2(y, t) and g3(y, t) force V 1 = 1.0∠0.0◦.

From Figure 3.2 it can be seen that the injected current components ID0 and IQ0 at
bus 0 equal the delivered current from the generation unit. The generator currents
therefore have to be expressed in the global DQ-frame as functions of the state
variables in (3.3).

Starting from (3.6), applying the transformation in (2.34a) to the current compo-
nents, and solving for their global versions yields

IDQ = T−1Z−1
dqE

′′
dq − T−1Z−1

dqTV DQ. (3.13)

For ease of notation, two new transformations are defined as

Y E ≡ T−1Z−1
dq and (3.14a)

Y V ≡ T−1Z−1
dqT = Y ET , (3.14b)

making it possible to write (3.13) more compactly as

IDQ = Y EE
′′
dq − Y VV DQ. (3.15)

Finally, the injected generator current components can be written as functions of
state variables as

ID(y, t) =
1

X ′′dX
′′
q

[
E ′′dX

′′
d cos δ + E ′′qX

′′
q sin δ

− (VD/2)(X ′′q −X ′′d) sin 2δ − VQ(X ′′q sin2 δ +X ′′d cos2 δ)
]

(3.16a)

and

IQ(y, t) =
1

X ′′dX
′′
q

[
E ′′dX

′′
d sin δ − E ′′qX ′′q cos δ

+ VD(X ′′d sin2 δ +X ′′q cos2 δ) + (VQ/2)(X ′′q −X ′′d) sin 2δ
]
. (3.16b)

Note that all the variables are index-less as they all refer to the same bus and
correspondingly connected generator. Substituting (3.16) into (3.12) completes the
equation description of the SMIB case.

Table 3.5 gives the branch admittance for the line between buses 0 and 1. From this
the conductances Gij and susceptances Bij in (3.12) can be found according to the
description in Section 2.3.

Table 3.5: Branch admittance for network in SMIB case.

Branch Admittance [pu]

0-1 0.397− j19.912
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3.2.6 Initialization of Single Machine to Infinite Bus System
Based on Load Flow Solution

The steady-state load flow case can be solved as described in Section 2.3.1, with the
stated net power injection being given in Table 3.6.

Table 3.6: Stated net bus power injection for SMIB case.

Bus number
Stated net active

power injection [pu]
Stated net reactive
power injection [pu]

0 1.0 0.1

From the load flow solution, the remaining system is initialized. First, the bus
voltages are transformed from polar to rectangular DQ-components using

VDi = Vi cos δi and VQi = Vi sin δi, (3.17)

where Vi as before is the voltage magnitude and δi is the voltage angle at bus i. These
voltage components can then be used directly to initialize the algebraic variables.

These global voltage components, along with the injected apparent power, determine
the injected generator currents as given by (2.10). From this, their local versions
are determined as described in Section 2.5.2, and δ is initialized as a necessary
step. In addition, in steady-state, the synchronous generator rotates at synchronous
frequency, meaning that there is no angular frequency deviation and ∆ωs = 0.0. By
letting f(y, t) = 0 and using the relationships given in (3.5), the following equations
can be developed to initialize each of the remaining 15 differential states:



y0

y1

y4

y5

y2

y3


=



∆ωs

δ

E ′′q

E ′′d

E ′q

E ′d


=



0.0

δ

Vq −X ′′dId

Vd +X ′′q Iq

E ′′q − Id(X ′d −X ′′d)

−Iq(Xq −X ′q)


, (3.18a)


y14

y15

y13

y16

 =


Vp

Vs

Vg

Pm

 =



0.0

DdTdVp

1

R

(
−VpTg −

∆ωs

ωs
− Vs +RPref

)
Vg − TwVp


, (3.18b)

[
y11

y12

]
=

[
Vw

Vpss

]
=


KpssTpss

M
(Pm − VdId + VqIq)

KpssT1

M
(Pm − VdId + VqIq) +

(
1− T1

Tpss

)
Vw

 , and (3.18c)
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

y6

y7

y8

y10

y9


=



Ef

Vr

Vb

Vt

Vf


=



E ′q − Id(Xd −X ′d)

(Se +Ke)Ef

Vr

Ka√
V 2

D + V 2
Q

Vref + Vpss − Vb − Vt


. (3.18d)

This forms an initial steady-state solution guess, which is further iterated upon as
described in Section 2.5.2.

3.3 Description of Three Machines to Infinite Bus

System

The second system is an expanded version of the SMIB case. It consist of three
generators connected via a six-bus system to an infinite bus (3MIB), including two
dynamic loads, and is based on the benchmark system presented in [12]. Figure 3.7
shows the topology of the system.

Generator 0 y03 Load 3

Generator 1 y13

y34Generator 2 y24

Load 4
y45 ∞

Stiff grid

Bus 0

Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Figure 3.7: Single-line diagram of 3MIB system, adapted from [12].

The system is defined by 57 states, of which 45 are differential and 12 are algebraic.
The three generators are defined similarly as in the SMIB case in Section 3.2, except
that no PSS is included. The differential state vector is therefore

yd =

yd0

yd1

yd2

 , (3.19a)
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where for i = 0, 1, 2:

ydi
=
[
∆ωsi δi E ′qi E ′di E ′′qi E ′′di Efi Vri Vbi Vfi Vti Vgi Vpi Vsi Pmi

]T
.

(3.19b)
The algebraic state variables are

ya =
[
VD0 VQ0 VD1 VQ1 VD2 VQ2 VD3 VQ3 VD4 VQ4 VD5 VQ5

]T
, (3.19c)

defining the DQ-components of each of the six bus voltages.

The simulated disturbance is a change in the voltage reference of generators 0, 1,
and 2 of +3 %, −1 %, and −2 %, respectively.

The synchronous generator and hydro turbine and governor subsystems are defined
as in the SMIB case, with the state equations given by (3.4) and (3.10), respectively.
By not including a PSS, the state equation for the regulator input voltage of the
exciter is slightly modified from (3.8) and given as

V̇bi =
1

Tbi

(Vrefi − Vbi − Vfi − Vti) for i = 0, 1, 2. (3.20)

The differential descriptions of the three generation units are uncoupled, with the
algebraic equations providing the coupling via the transmission network.

Table 3.7 gives the parameter values of the three generation units, separated into
synchronous generator, exciter, and turbine and governor parameters.

Table 3.7: Parameter values for generation units in 3MIB case.

(a) Synchronous generator parameters.

Value [pu]

Parameter Generator 0 Generator 1 Generator 2

M 6.20 6.20 6.20
D 0.00 0.00 0.00
T ′do 6.00 6.00 6.00
T ′qo 0.54 0.54 0.54
T ′′do 0.05 0.05 0.05
T ′′qo 0.05 0.05 0.05
Xd 0.89 0.89 0.89
Xq 0.86 0.86 0.86
X ′d 0.30 0.30 0.30
X ′q 0.30 0.30 0.30
X ′′d 0.10 0.10 0.10
X ′′q 0.10 0.10 0.10
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Table 3.7: Parameter values for generation units in 3MIB case (continued).

(b) Exciter parameters.

Value [pu]

Parameter Generator 0 Generator 1 Generator 2

Te 1.330 1.330 1.330
Ta 0.050 0.050 0.050
Tb 0.100 0.100 0.100
Tf 0.670 0.670 0.670
Tr 0.001 0.001 0.001
Ke 1.000 1.000 1.000
Ka 300.000 300.000 300.000
Kf 0.100 0.100 0.100
Vref 1.040 1.040 1.020
V max

r 20.000 20.000 20.000
V min

r -20.000 -20.000 -20.000
Se 0.000 0.000 0.000

(c) Hydro turbine and governor parameters.

Value [pu]

Parameter Generator 0 Generator 1 Generator 2

Tg 0.20 0.20 0.20
Tp 0.04 0.04 0.04
Td 5.00 5.00 5.00
Tw 0.10 0.10 0.10
Dd 0.30 0.30 0.30
R 0.05 0.05 0.05
Pref 14.04 14.04 8.00
V max

g 15.00 15.00 15.00
V min

g 0.00 0.00 0.00
V max

p 0.10 0.10 0.10
V min

p -0.10 -0.10 -0.10

3.3.1 Transmission Network and Dynamic Loads in Three
Machines to Infinite Bus System

Based on (2.9) and the one-line diagram in Figure 3.7, the six-bus system can be
expressed as
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

ID0

IQ0

ID1

IQ1

ID2

IQ2

ID3

IQ3

ID4

IQ4

ID5

IQ5



=



G00 −B00 0 0 0 0 G03 −B03 0 0 0 0

B00 G00 0 0 0 0 B03 G03 0 0 0 0

0 0 G11 −B11 0 0 G13 −B13 0 0 0 0

0 0 B11 G11 0 0 B13 G13 0 0 0 0

0 0 0 0 G22 −B22 0 0 G24 −B24 0 0

0 0 0 0 B22 G22 0 0 B24 G24 0 0

G30 −B30 G31 −B31 0 0 G33 −B33 G34 −B34 0 0

B30 G30 B31 G31 0 0 B33 G33 B34 G34 0 0

0 0 0 0 G42 −B42 G43 −B43 G44 −B44 G45 −B45

0 0 0 0 B42 G42 B43 G43 B44 G44 B45 G45

0 0 0 0 0 0 0 0 G54 −B54 G55 −B55

0 0 0 0 0 0 0 0 B54 G54 B55 G55





VD0

VQ0

VD1

VQ1

VD2

VQ2

VD3

VQ3

VD4

VQ4

VD5

VQ5



.

(3.21)

Using (3.21) and neglecting the resistive component of the branch impedances, the
algebraic equations of the system can be extracted as

g0(y, t)

g1(y, t)

g2(y, t)

g3(y, t)

g4(y, t)

g5(y, t)

g6(y, t)

g7(y, t)

g8(y, t)

g9(y, t)

g10(y, t)

g11(y, t)



= 0 =



−ID0 −B00VQ0 −B03VQ3

−IQ0 +B00VD0 +B03VD3

−ID1 −B11VQ1 −B13VQ3

−IQ1 +B11VD1 +B13VD3

−ID2 −B22VQ2 −B24VQ4

−IQ2 +B22VD2 +B24VD4

−ID3 −B30VQ0 −B31VQ1 −B33VQ3 −B34VQ4

−IQ3 +B30VD0 +B31VD1 +B33VD3 +B34VD4

−ID4 −B42VQ2 −B43VQ3 −B44VQ4 −B45VQ5

−IQ4 +B42VD2 +B43VD3 +B44VD4 +B45VD5

VD5 − 1.0

VQ5



. (3.22)

Buses 0-2 are generator buses and the injected currents ID and IQ are calculated as
in the SMIB case. Buses 3 and 4, however, are load buses. The connected loads are
dynamically modeled using polynomial functions [13] as

PLi = P0i

[
p1i

(
Vi
V0i

)2

+ p2i

(
Vi
V0i

)
+ p3i

]
and (3.23a)
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QLi = Q0i

[
q1i

(
Vi
V0i

)2

+ q2i

(
Vi
V0i

)
+ q3i

]
for i = 3, 4. (3.23b)

PL and QL are active and reactive power drawn by the load, and P0, Q0, and V0

are the steady-state values of active power, reactive power, and voltage magnitude
at the connected bus, respectively. The p- and q-coefficients determine the portion
of the load which is modeled as constant impedance (1), constant current (2), and
constant power (3). The p− and q-coefficients must each sum to 1.0.

The load currents can be found by starting with (2.10), solving for the current, and
splitting into real and imaginary components to give

IDi =
VDiPLi + VQiQLi

V 2
Di

+ V 2
Qi

and (3.24a)

IQi =
VQiPLi + VDiQLi

V 2
Di

+ V 2
Qi

for i = 3, 4. (3.24b)

By inserting (3.23) into (3.24), the current drawn by the load can be expressed
purely as a function of state variables, more specifically as

IDi(y, t) =
1

V 2
Di

+ V 2
Qi

(
VDiP0i

[
p1i

(
Vi
V0i

)2

+ p2i

(
Vi
V0i

)
+ p3i

]

+ VQiQ0i

[
q1i

(
Vi
V0i

)2

+ q2i

(
Vi
V0i

)
+ q3i

])
and (3.25a)

IQi(y, t) =
1

V 2
Di

+ V 2
Qi

(
VQiP0i

[
p1i

(
Vi
V0i

)2

+ p2i

(
Vi
V0i

)
+ p3i

]

− VDiQ0i

[
q1i

(
Vi
V0i

)2

+ q2i

(
Vi
V0i

)
+ q3i

])
for i = 3, 4.

(3.25b)

Note that the current in (3.25) is defined as flowing out of the bus.

Table 3.8 gives the branch admittances for the 3MIB network. The admittances of
branches 0-3, 1-3, and 2-4 are the sums of their respective transformer and transmis-
sion line admittances. Branch 3-4 represents a short transmission line and branch
4-5 represents a long one.

Table 3.8: Branch admittances for network in 3MIB case.

Branch Admittance [pu]

0-3 −j156.006
1-3 −j156.006
2-4 −j89.286
3-4 −j27.778
4-5 −j8.333
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The load coefficients (p1, p2, p3) and (q1, q2, q3) are given in Table 3.9.

Table 3.9: Polynomial load coefficients for network in 3MIB case.

Active
power

Reactive
power

Bus number p1 p2 p3 q1 q2 q2

3 0.0 0.0 1.0 0.0 0.0 1.0
4 0.0 0.0 1.0 0.0 0.0 1.0

3.3.2 Initialization of Three Machines to Infinite Bus System
Based on Load Flow Solution

The steady-state load flow case is solved as described in Section 2.3.1. The stated
net power injections are given in Table 3.10.

Table 3.10: Stated net bus power injections for 3MIB case.

Bus number
Stated net active

power injection [pu]
Stated net reactive
power injection [pu]

0 14.040 4.344
1 14.040 4.344
2 8.000 4.662
3 -14.000 -1.000
4 -20.000 -1.000

The algebraic variables are as before initialized directly using the load flow solution.
Each of the generation units can then be initialized, as in the SMIB case, according
to (3.18). The exception is that the initialization of the PSS in (3.18c) is not included
in this case. As a consequence, the exciter states are initialized slightly differently,
namely according to



Efi

Vri

Vbi

Vti

Vfi


=



E ′qi − Idi(Xdi −X ′di)

(Sei +Kei)Efi

Vri

Kai√
V 2

Di
+ V 2

Qi

Vrefi − Vbi − Vti


for i = 0, 1, 2. (3.26)

The remaining differential states can be initialized according to (3.18).
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3.4 Description of System with Static

Compensator

The two first cases, SMIB and 3MIB, are both conventional power system cases
where the dynamics are dominated by synchronous generators. The third case,
however, introduces more power electronics into the system. The system consists
of two synchronous generators connected to a load bus. The network consists of
four buses connecting the generators and load to an infinite bus. In addition, a
STATCOM, a component based on a VSC, is connected to the load bus. Figure 3.8
shows the single-line diagram of the system.

Generator 0 y03 y23 ∞
Stiff grid

Generator 1 y13

STATCOM

Load

Bus 0

Bus 1

Bus 2 Bus 3

Figure 3.8: Single-line diagram of STATCOM system.

The system is defined by 40 states, 32 differential and eight algebraic. The two
generators are defined as in the 3MIB case in Section 3.3, giving the differential
state vector as

yd =

yd0

yd1

yd2

 , (3.27a)

where for i = 0, 1:

ydi
=
[
∆ωsi δi E ′qi E ′di E ′′qi E ′′di Efi Vri Vbi Vfi Vti Vgi Vpi Vsi Pmi

]T
,

(3.27b)
and

yd2
=
[
Isvc Esvc

]T
. (3.27c)

The algebraic state variables are

ya =
[
VD0 VQ0 VD1 VQ1 VD2 VQ2 VD3 VQ3

]T
, (3.27d)

defining the DQ-components of each of the four bus voltages. Isvc is the current
drawn by the STATCOM, directed out of the connected bus, and Esvc is the input
to the STATCOM regulator.

The simulated disturbance is an islanding of the system, i.e. a disconnection of the
two parallel lines making up the equivalent line 2-3 in Figure 3.8. The system is
reconnected after 0.01 s, albeit through only one of the parallel lines.
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Table 3.11 gives the parameter values for the two generating units in the network.

Table 3.11: Parameter values for generation units in STATCOM case.

(a) Synchronous generator parameters.

Value [pu]

Parameter Generator 0 Generator 1

M 6.20 6.20
D 42.00 42.00
T ′do 6.00 6.00
T ′qo 0.54 0.54
T ′′do 0.05 0.05
T ′′qo 0.05 0.05
Xd 0.89 0.89
Xq 0.86 0.86
X ′d 0.30 0.30
X ′q 0.30 0.30
X ′′d 0.10 0.10
X ′′q 0.10 0.10

(b) Exciter parameters.

Value [pu]

Parameter Generator 0 Generator 1

Te 1.330 1.330
Ta 0.050 0.050
Tb 0.100 0.100
Tf 0.670 0.670
Tr 0.001 0.001
Ke 1.000 1.000
Ka 300.000 300.000
Kf 0.100 0.100
Vref 1.040 1.040
V max

r 20.000 20.000
V min

r -20.000 -20.000
Se 0.000 0.000
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Table 3.11: Parameter values for generation units in STATCOM case (continued).

(c) Hydro turbine and governor parameters.

Value [pu]

Parameter Generator 0 Generator 1

Tg 0.20 0.20
Tp 0.04 0.04
Td 5.00 5.00
Tw 0.10 0.10
Dd 0.30 0.30
R 0.05 0.05
Pref 5.000 8.00
V max

g 15.00 15.00
V min

g 0.00 0.00
V max

p 0.10 0.10
V min

p -0.10 -0.10

3.4.1 Static Compensator

Figure 3.9 shows a simplified dynamic model of the STATCOM [13], modeled by
two differential equations as

[
f30(y, t)

f31(y, t)

]
=

[
İsvc

Ėsvc

]
=


1

Tsvc

(Esvc − Isvc)

Ksvc

(
Vref −

√
V 2

D + V 2
Q − ρsvcIsvc

)
 . (3.28)

Ksvc and ρsvc are static gains and Tsvc is the regulator time constant. The regulator
input is limited by Emax

svc and Emin
svc . The maximum value corresponds to the largest

inductive current the STATCOM can deliver, and the minimum value corresponds
to the largest capacitive current. The STATCOM parameter values are given in
Table 3.12.

√
V 2

D2
+ V 2

Q2

Ksvc

s

1

1 + sTsvc

ρsvc

Vref

Isvc−−

Emax
svc

Emin
svc

Esvc

Figure 3.9: Block diagram representation of STATCOM, adapted from [13].
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Table 3.12: Parameter values for static compensator in STATCOM case.

Parameter Value [pu]

Tsvc 0.001
Ksvc 1.000
ρsvc 5.000
Vref 1.000
Emax

svc 10.000
Emin

svc -10.000

3.4.2 Transmission Network in System with Static
Compensator

Using the form in (2.9) and Figure 3.8, the four-bus system can be expressed as

ID0

IQ0

ID1

IQ1

ID2

IQ2

ID3

IQ3



=



G00 −B00 0 0 G02 −B02 0 0

B00 G00 0 0 B02 G02 0 0

0 0 G11 −B11 G12 −B12 0 0

0 0 B11 G11 B12 G12 0 0

G20 −B20 G21 −B21 G22 −B22 G23 −B23

B20 G20 B21 G21 B22 G22 B23 G23

0 0 0 0 G32 −B32 G33 −B33

0 0 0 0 B32 G32 B33 G33





VD0

VQ0

VD1

VQ1

VD2

VQ2

VD3

VQ3



. (3.29)

By neglecting line resistances, the algebraic equations can be extracted from (3.29)
to give:

g0(y, t)

g1(y, t)

g2(y, t)

g3(y, t)

g4(y, t)

g5(y, t)

g6(y, t)

g7(y, t)


= 0 =



−ID0 −B00VQ0 −B02VQ2

−IQ0 +B00VD0 +B02VD2

−ID1 −B11VQ1 −B12VQ2

−IQ1 +B11VD1 +B12VD2

−ID2 −B20VQ0 −B21VQ1 −B22VQ2 −B23VQ3

−IQ2 +B20VD0 +B21VD1 +B22VD2 +B23VD3

VD3 − 1.0

VQ3


. (3.30)

The injected currents at buses 0 and 1 are generator currents, and are calculated
according to (3.16). The injected current at bus 2 is the sum of the load current,
given by (3.25), and the STATCOM current Isvc. The STATCOM current is purely
reactive, meaning that Isvc = jIQsvc [13].
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The branch admittances for the STATCOM network in normal operation are given
in Table 3.13, and the load coefficients are given in Table 3.14.

Table 3.13: Normal operation branch admittances for network in STATCOM
case.

Branch Admittance [pu]

0-2 −j156.006
1-2 −j156.006
2-3 −j89.2857

Table 3.14: Polynomial load coefficients for network in STATCOM case.

Active
power

Reactive
power

Bus number p1 p2 p3 q1 q2 q2

2 0.2 0.8 0.0 0.0 0.0 1.0

Branches 0-2 and 1-2 represent transformers and branch 2-3 represents two parallel
transmission lines connecting the system to the infinite bus.

During the islanding, the voltage at bus 3 and the admittance of line 2-3 change to
reflect the broken connection between the network and the infinite bus. After 0.01 s
the system is reconnected and the infinite bus voltage is restored and the admittance
of branch 2-3 takes on its post-islanding value. Table 3.15 gives their values during
and after the event.

Table 3.15: Islanding and post-islanding values for the STATCOM case.

(a) Islanding values.

Parameter Value [pu]

VD3 0.000
jB23 j0.000

(b) Post-islanding values.

Parameter Value [pu]

VD3 1.000
jB23 −j44.643

3.4.3 Initialization of System with Static Compensator
Based on Load Flow Solution

The steady-state load flow case can be solved as described in Section 2.3.1. The
stated net power injections are given in Table 3.16.
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Table 3.16: Stated net bus power injections for STATCOM case.

Bus number
Stated net active

power injection [pu]
Stated net reactive
power injection [pu]

0 5.0 1.0
1 8.0 0.0
2 -15.0 -2.0

The load flow solution is used directly to initialize the algebraic variables. The two
generating units can be initialized as described for the 3MIB case in Section 3.3.2.
The STATCOM states are initialized as[

y30

y31

]
=

[
Isvc

Esvc

]
=

 1

ρsvc

(
Vref −

√
V 2

D2
+ V 2

Q2

)
Isvc

 . (3.31)

3.5 Description of Multi-Terminal DC System

The fourth and final case varies considerably from the three previous ones. It consists
of a multi-terminal direct current (MTDC) network, interconnecting three VSCs, of
which one is modeled as the slack converter. Each of the VSCs are connected to an
infinite grid as shown in Figure 3.10. Rdc and Ldc are the resistances and inductances
of the DC lines, and T0-T2 are transformers.

Stiff
grid

∞
T0

VSC 0

Rdc Ldc

VSC 1
T1

Stiff
grid

∞

Rdc

Ldc
Stiff
grid

∞
T2

VSC 2

LdcRdc

Bus 0 Bus 1

Bus 2

Node 0 Node 1

Node 2

Figure 3.10: Single-line diagram of MTDC system.

The MTDC system is defined by 37 states. 31 states are differential and six are
algebraic. The differential state vector is given as

yd =


yd0

yd1

yd2

yd3

 , (3.32a)
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where for i = 0, 1:

ydi
=
[
Idi Iqi Vdti Vqti Mdi Mqi Ndi Nqi

]T
, (3.32b)

representing the non-slack converters. The slack converter is defined by the states

yd2
=
[
Id2 Iq2 Vdt2 Vqt2 Md2 Mq2 Nd2

]T
, (3.32c)

and the DC grid is defined by

yd3
=
[
Vdc0 Vdc1 Vdc2 I01 I02 I12 Idc2 Mdc

]T
. (3.32d)

The algebraic states are the dq-components of the infinite buses:

ya =
[
Vd0 Vq0 Vd1 Vq1 Vd2 Vq2

]T
. (3.32e)

For all three converters, including the slack converter, Id and Iq are the dq-components
of the AC side current. Vdt and Vqt are the dq-components of the AC voltage at
each of the three converters. Md, Mq, Nd, and Nq are states introduced due to the
integrators in the current, voltage, and active power controllers of the converters.
Vdc is the voltage on the DC sides of the converters, and Iij are the currents in the
DC branches. Mdc is an integration state originating from the DC voltage controller
of the network.

Note that only one dq-reference frame is used, as apposed to several local and one
global frame. This is because the system does not contain synchronous generators,
but rather three infinite buses. If they are defined to have the same reference frame,
the DC system follows, and only a single reference frame is required.

The simulated fault is the removal of the line between nodes 1 and 2 in Figure 3.10,
forcing the current I12 to zero for the remainder of the simulation.

3.5.1 Voltage Source Converter

The following modeling of VSCs and their control systems is based on the modeling
done by [2]. The equivalent phasor circuit of the voltage source converter is shown in
Figure 3.11, where the converter is represented by the terminal voltage V t and the
AC system is represented by V . The two equivalent voltage sources are connected
through an impedance Zc = Rc + jXc, which includes the effect of the transformer.
I is the current flowing between the two equivalent sources.

−
+

V t

I Rc jXc

+

−
V

Figure 3.11: Equivalent circuit of VSC, adapted from [2].
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Applying Kirchhoff’s voltage law on the circuit in Figure 3.11 gives the equation

Lcİ = V t − V −RcI. (3.33)

Considering that (3.33) models a three-phase balanced system, it can be expressed
as a space phasor as defined in (2.29). From this, (3.33) can first be written in
αβ-coordinates, before finally being transformed into dq-components as given by
the transformation in (2.33):

[
İdi

İqi

]
=

−
Rci

Lci

Idi + ωsIqi(Vdti − Vdi)

−Rci

Lci

Iqi − ωsIdi(Vqti − Vqi)

 for i = 0, 1, 2, (3.34)

where the phasors V t, V , and I have been split into their dq-components and the
index i has been included to indicate that the modeling applies to all three converters
in the system. The angle ωst required for the transformation is provided by a phase-
locked-loop, assumed here to align the system voltage with the q-axis, i.e. V i = jVqi .

The VSCs here modeled have a cascaded control structure, consisting of an inner
current controller and an outer controller. The outer controller controls either re-
active power and voltage, as with the slack converter, or active power, as with the
remaining converters.

The dynamics of the current controller, voltage controller, active power controller,
and power balance of the non-slack converters can be modeled as



V̇dti

V̇qti

Ṁdi

Ṁqi

Ṅdi

Ṅqi


=



−
Kp1i

Tσi
Idi + ωs

Lci

Tσi
Iqi −

1

Tσi
Vdti +

1

Tσi
Mdi +

Kp1i

Tσi
Id,refi +

1

Tσi
Vdi

−
Kp1i

Tσi
Iqi − ωs

Lci

Tσi
Idi −

1

Tσi
Vqti +

1

Tσi
Mqi +

Kp1i

Tσi
Iq,refi +

1

Tσi
Vqi

Kj1i(Id,refi − Idi)

Kj1i(Iq,refi − Iqi)

Kj2i(Vrefi − Vqi)

Kj3i(Prefi − VqiIqi)


,

(3.35a)
where

Id,refi = Ndi +Kp2i(Vrefi − Vqi) and (3.35b)

Iq,refi =
Prefi

Vq0

+Nqi +Kp3i(Prefi − VqiIqi), (3.35c)
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for i = 0, 1. The slack converter is defined by (3.34) and



V̇dt2

V̇qt2

Ṁd2

Ṁq2

Ṅd2


=



−
Kp12

Tσ2
Id2 + ωs

Lc2

Tσ2
Iq2 −

1

Tσ2
Vdt2 +

1

Tσ2
Md2 +

Kp12

Tσ2
Id,ref2 +

1

Tσ2
Vd2

−
Kp12

Tσ2
Iq2 − ωs

Lc2

Tσ2
Id2 −

1

Tσ2
Vqt2 +

1

Tσ2
Mq2 +

Kp12

Tσ2
Iq,ref2 +

1

Tσ2
Vq2

Kj12(Id,ref2 − Id2)

Kj12(Iq,ref2 − Iq2)

Kj22(Vref2 − Vq2)


,

(3.36a)
with

Id,ref2 = Nd2 +Kp22(Vref2 − Vq2) and (3.36b)

Iq,ref2 =
2Idc2Vdc2 − Id2Vdt2

Vqt2

. (3.36c)

The Kp- and Kj-parameters are controller proportional and integral gains, Tσ is the
time constant to model the delay between the voltage reference and actual terminal
voltage of the converters, and Pref and Vref are active power and AC voltage reference
values.

The parameter values for the three converters, including the slack converter, are
given in Table 3.17.

Table 3.17: Parameter values for VSCs in MTDC case. VSC 2 is slack converter.

Value [pu]

Parameter VSC 0 VSC 1 VSC 2

Rc 0.005 0.005 0.005
Lc 0.200 0.200 0.200
Tσ 0.100 0.100 0.100
Kp1 13.000 13.000 13.000
Kp2 10.000 10.000 10.000
Kp3 20.000 20.000 20.000
Kj1 5.000 5.000 5.000
Kj2 100.000 100.000 100.000
Kj3 40.000 40.000 40.000
Vref 1.000 1.000 1.000
Pref -1.500 2.000 -

3.5.2 DC Circuit

Figure 3.12 shows the circuit of a node in an MTDC network where the positive
current direction is defined as flowing from a lower node index number to a higher
one. Cdc is a capacitance and Rdc and Ldc are still the resistance and inductance of
the DC line. All lines are modeled with the same parameters.
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Idci

Cdc

+

−
Vdci

Cdc

−

+

Vdci

Ldc
Iij · · ·

Rdc

L
dc

Iik
· · ·

R
dc

Ldc
Iij · · ·

Rdc

L
dc

Iik
· · ·

R
dc

Figure 3.12: Equivalent circuit of MTDC-node i connected to nodes j and k,
adapted from [2].

By using that the injected current at a non-slack node is calculated as

Idci =
VdtiIdi + VqtiIqi

2Vdci

for i = 0, 1, (3.37)

that the dynamics of the controlled slack converter current are modeled as

İdc2 =
1

Tdc

[−Idc2 +Kpdc(Vdcref − Vdc2) +Mdc] and (3.38a)

Ṁdc = Kjdc(Vdcref − Vdc2), (3.38b)

and Kirchhoff’s current law, the DC network can be defined by the following differ-
ential equations:
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

f23(y, t)

f24(y, t)

f25(y, t)

f26(y, t)

f27(y, t)

f28(y, t)

f29(y, t)

f30(y, t)


=



V̇dc0

V̇dc1

V̇dc2

İ01

İ02

İ12

İdc2

Ṁdc


=



1

Cdc

(
Vdt0Id0 + Vqt0Iq0

2Vdc0

− I01 − I02

)
1

Cdc

(
Vdt1Id1 + Vqt1Iq1

2Vdc1

− I01 − I12

)
1

Cdc

(Idc2 + I02 + I12)

1

Ldc

(Vdc0 − Vdc1 −RdcI01)

1

Ldc

(Vdc0 − Vdc2 −RdcI02)

1

Ldc

(Vdc1 − Vdc2 −RdcI12)

1

Tdc

[−Idc2 +Kpdc(Vdcref − Vdc2) +Mdc]

Kjdc(Vdcref − Vdc2)



. (3.39)

Kpdc and Kjdc are static proportional and integral gains of the DC voltage controller,
respectively, and Vdcref is the DC voltage reference.

Table 3.18 gives the parameters of the DC network.

Table 3.18: Parameter values for DC network in MTDC case.

Parameter Value [pu]

Rdc 0.003
Ldc 0.002
Cdc 4.000
Tdc 0.010
Kpdc 20.000
Kjdc 40.000
Vdcref 1.000

3.5.3 Transmission Network in Multi-Terminal DC System

As all the converters in the model are connected to an infinite bus, the only purpose
of the algebraic equations is to ensure that the AC bus voltages are kept at unity
magnitude and aligned with the q-axis. This leads to the formulation of the algebraic
equations as 

g0(y, t)

g1(y, t)

g2(y, t)

g3(y, t)

g4(y, t)

g5(y, t)


= 0 =



Vd0

Vq0 − 1.0

Vd1

Vq1 − 1.0

Vd2

Vq2 − 1.0


. (3.40)
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3.5.4 Initialization Based on DC Load Flow Solution

The steady-state DC load flow solution of the system can be found using the method
described in Section 2.3.2, where the admittance matrix Y dc is

Y dc =
1

Rdc

 2 −1 −1
−1 2 −1
−1 −1 2

 . (3.41)

From this, the steady-state equations from (2.25) can be extracted as

0 =
Vdc0 − Vdc1

Rdc

+
Vdc0 − Vdcref

Rdc

− Pdc0

2Vdc0

, (3.42a)

0 =
Vdc1 − Vdc0

Rdc

+
Vdc1 − Vdcref

Rdc

− Pdc1

2Vdc1

and (3.42b)

0 = −Vdc0 + Vdc1

Rdc

+
2Vdcref

Rdc

− Pdc2

2Vdcref

. (3.42c)

Each of the algebraic equations are initialized so that the equations in (3.40) are
satisfied.

Following the DC load flow solution, the dq-components of the three converter cur-
rents can be determined using (2.10). The branch currents, DC voltages, and in-
jected DC current at the slack node also follow directly from the load flow solution.
The remaining non-slack converter states are initialized as



Ndi

Nqi

Vdti

Vqti

Mdi

Mqi


=



Idi −Kp2i(Vrefi − Vqi)

Iqi −
Prefi

Vqi

−Kp3i(Prefi − VqiIqi)

Vdi + (RcIdi − ωsLcIqi)

Vqi + (RcIqi + ωsLcIdi)

Kp1iIdi − ωsLcIqi + Vdti −Kp1i [Ndi +Kp2i(Vrefi − Vqi)]− Vdi

Kp1iIqi + ωsLcIi + Vqti −Kp1i

[
Prefi

Vqi

+Nqi +Kp3i(Prefi − VqiIqi)

]
− Vqi


(3.43)

for i = 0, 1. The remaining slack converter states are initialized similarly as



Nd2

Vdt2

Vqt2

Md2

Mq2


=



Id2 −Kp22(Vref2 − Vq2)

Vd2 + (RcId2 − ωsLcIq2)

Vq2 + (RcIq2 + ωsLcId2)

Kp12Id2 − ωsLcIq2 + Vdt2 −Kp12 [Nd2 +Kp22(Vref2 − Vq2)]− Vd2

Kp12Iq2 + ωsLcI2 + Vqt2 −Kp12

(
2Idc2Vdc2 − Id2Vdt2

Vqt2

)
− Vq2


.

(3.44)

57



Chapter 3. Implementation and Test Systems Erik-Anant Stedjan Narayan

The final state, the integration state Mdc from the DC grid model, is initialized as

Mdc = Idc2 −Kpdc(Vdcref − Vdc2). (3.45)
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Chapter 4

Implementation Results

This chapter contains the results obtained from implementing Gear’s method for
the four test systems. Each system was first implemented without any strategies
applied, forming the base case simulation. The base case was then verified, before
the effects of applying the different strategies from Section 2.5.3 were investigated,
along with an additional verification.

4.1 Simulation of Single Machine to Infinite Bus

Table 4.1 shows the load flow solution which formed the basis for the initial guess
for the system’s steady-state solution. Following this, the system was initialized as
described in Section 3.2.6.

Table 4.1: Steady-state load flow solution of SMIB case. Bus 1 is slack bus.

Voltage Net power injection

Bus number Magnitude [pu] Angle [rad] Active [pu] Reactive [pu]

0 1.0047 0.0499 0.9998 0.1000
1 1.0000 0.0000 -0.9988 -0.0498

The calculated eigenvalues of the system are given in Table 4.2 and plotted in the
complex plane in Figure 4.1. The system has a total of seventeen eigenvalues, of
which eight are oscillating and none are unstable.
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Table 4.2: Eigenvalues of SMIB system.

Eigenvalue Real component Imaginary component

1 -1000.0000 -
2 -100.0000 -
3 -46.3547 -
4 -43.3014 -
5 -30.9983 -
6 -19.9969 -
7, 8 -12.5250 ±2.6087
9 -5.1545 -
10, 11 -0.5382 ±15.1785
12 -0.3333 -
13, 14 -0.2822 ±0.4470
15 -0.1527 -
16, 17 -0.0367 ±0.4587
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Figure 4.1: Eigenvalue plot for SMIB system.

4.1.1 Results of Base Case Implementation of Single
Machine to Infinite Bus

Throughout this thesis, every simulation case, regardless of system or applied strat-
egy, employed the same upper and lower step length limits and initial step length,
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as recommended by [6]. The step length limits were set somewhat arbitrarily as
hmax = 1× 10−2 s and hmin = 1× 10−5 s. The effect of changing these limits were
not explored, apart from some brief, non-systematic testing.

The base case simulation was performed with no strategies applied, apart from
applying the upper and lower step length limits. The base case simulation’s perfor-
mance is shown in Table 4.3.

Table 4.3: Performance metrics for base case simulation of SMIB system.

Simulated
time [s]

Steps
Step

changes
Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

15.01 2367 599 1.00× 10−2 2.66× 10−4 6.34× 10−3

Figure 4.2 shows the simulated excitation emf Ef and corresponding step length. Ef

was the state variable with the largest rate of change and is therefore highlighted.
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Figure 4.2: Base case simulation of SMIB system for t ∈ [0, 15] s, with voltage
reference change at t = 2 s.

Figure 4.2 shows how the step length promptly increased form its initial value to the
upper limit during the steady-state portion of the simulation, before sharply falling
at the time of the discrete event. Following this, the step length increased quickly a
few times, before oscillating with sharp, uneven peaks. As the simulation progressed,
the step length peaks periodically reached the upper step length limits, while the
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valleys increased gradually. Just after 10 s, the step length settled at the upper limit
as the fastest modes were damped out, and remained there for the remainder of the
simulation.

In addition, from Table 4.3 it is worth noting that the simulation continued for 0.01 s
longer that what was set as the termination time. At the end of the simulation the
step length had settled at its upper limit. This, in combination with the fact that the
penultimate calculation was done at 14.9994 s, meant that the termination condition
was not fulfilled before 15.0094 s.

Note that the step length plot in Figure 4.2 is semi-logarithmic.

4.1.2 Verification of Single Machine to Infinite Bus
Simulation Results

A verification calculation was performed as described in Section 3.1.1. Figure 4.3
shows the verified solution overlain the base case implementation of the SMIB system
using Gear’s method, as well as the step length.
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Figure 4.3: Verification of base case simulation of SMIB system for t ∈ [0, 15] s,
with voltage reference change at t = 2 s.

From Figure 4.3 it is evident that the base case solution strongly followed the verified
solution. The largest MSE was calculated for the filtered frequency deviation signal
Vw of the PSS, with a value of 2.43× 10−4.
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4.1.3 Results of Implementation of Single Machine to
Infinite Bus with Strategies

Following the verification of the base case implementation, simulations were carried
out to investigate the effects of the proposed step length strategies from Section
2.5.3. Scaling factors γ of 1.0, 0.9, 0.8, 0.7, 0.6, and 0.5 were tested, giving six
possible parameter values. This, combined with boolean true and false values for
the step length increase and decrease limits, and fixing the step length for either
at least 1 or 15 steps, gave a total of 48 parameter combinations. The goal was to
determine each strategy’s effect on the simulation. Therefore, the average number of
step length changes, the average mean step length, and the average maximum MSE
for each parameter value were calculated. In other words, one parameter value was
held constant and the averages were determined of all the combinations satisfying
that specific condition. Table A.1 in Appendix A contains the results of all the
simulated combinations, on which Table 4.4 is based.

Table 4.4: Performance metrics for simulation strategies for SMIB case.

(a) Step scaling factor.

Step scaling factor
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

1.0 339.38 6.48× 10−3 4.28× 10−4

0.9 241.63 6.36× 10−3 5.12× 10−4

0.8 215.63 6.15× 10−3 4.87× 10−4

0.7 331.88 5.99× 10−3 7.63× 10−4

0.6 407.00 5.90× 10−3 5.68× 10−4

0.5 758.86 5.61× 10−3 6.17× 10−4

(b) Step increase limit.

Step increase limit
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

True 423.75 5.84× 10−3 7.30× 10−4

False 315.95 6.39× 10−3 3.72× 10−4

(c) Step length fixed.

Step fixed for [steps]
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

1 681.48 6.04× 10−3 5.70× 10−4

15 103.92 6.15× 10−3 5.57× 10−4
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Table 4.4: Performance metrics for simulation strategies for SMIB case
(continued).

(d) Step decrease limit.

Step decrease limit
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

True 392.21 6.09× 10−3 2.51× 10−4

False 352.00 6.10× 10−3 9.19× 10−4

The results in Table 4.4 show that as the step scaling factor decreased, the aver-
age number of step length changes at first dropped, reached a minimum, before it
increased to a higher value. The average mean step length was strictly decreasing
along with reduced scaling factor, while the average maximum MSE generally rose
with decreasing scaling factor.

A scaling factor of 0.8 gave the lowest average number of step changes, while a
scaling factor of 1.0 resulted in the highest average mean step length. A scaling
factor of 1.0 also resulted in the smallest average maximum MSE, while scaling by
0.7 gave rise to the highest MSE.

Fixing the step length for at least 15 steps greatly reduced the number of step length
changes performed. It also resulted in a slightly higher average mean step length,
and a lower average maximum MSE.

Both the limiting strategies resulted in poorer performance in terms of the average
number of step length changes and the average mean step length, compared to
not imposing such limits. Imposing a step decrease limit did, however, reduce the
average maximum MSE, in contrast to imposing a step decrease limit.

No single case resulted in the best score on all three criteria. Still, by using the
smallest average number of step length changes, largest average mean step length
and smallest average maximum MSE, across all combinations, as ideal scores, (3.2)
could be used to determine the overall best case. With d = 1.719× 10−1, the
combination of not applying a scaling factor, fixing the step length for at least 15
steps, not imposing a step increase limit, but imposing a step decrease limit, was
used as the overall best case.

Table 4.5 and Figure 4.4 relate to the highlighted well performing combination,
showing the performance results and simulation results, including the verified solu-
tion.

Table 4.5: Performance metrics for overall best simulation case of SMIB system.

Simulated
time [s]

Steps
Step

changes
Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Max. MSE

15.01 2204 77 1.00× 10−2 1.00× 10−3 6.81× 10−3 1.29× 10−4

Figure 4.4 shows how, in the overall best performing case, the large step length
reduction at the discrete event was eliminated. The general step length trend was
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similar to that in the base case, as shown by the moving average curve. The fluc-
tuations were not as sharp and remained in a narrower band below the upper limit.
Still, from the voltage reference was changed, the step length required approximately
the same amount of time to settle at the upper limit, as compared to the base case.

The verification curve still closely aligned with the result from the overall best
simulation. Table 4.5 also indicates that a smaller maximum MSE was achieved,
compared to the base case, and no discernible error was recorded with respect to
the capture of the disturbance instance.
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Figure 4.4: Overall best case simulation of SMIB system for t ∈ [0, 15] s, with
voltage reference change at t = 2 s and verification.

Outlier Simulation Cases

During the testing of the different parameter values, three outlier cases were pro-
duced. Table 4.6 shows an excerpt from the full result table in Appendix A, showing
the relevant parameter combinations. The three cases resulted in large step length
fluctuations over the entire permitted range and simulation results considerably
different from the other combinations and the verification. Figure 4.5 shows the
simulation result from the first outlier case, along with the verified result. The three
outliers all had similar responses.
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Figure 4.5: Outlier simulation case of SMIB system for t ∈ [0, 6] s, with voltage
reference change at t = 2 s and verification.

The three cases were considered as failed integrations, and were therefore not in-
cluded when calculating the average performance metrics scores. In addition, as is
evident from Figure 4.5, the three cases failed before completing a simulation of 15 s,
preventing a comparison to other parameter combinations.

Table 4.6: Parameter combinations of outlier cases for the SMIB system.

Step scaling
factor

Step increase
limit

Step fixed
for [steps]

Step decrease
limit

0.8 False 1 False
0.7 False 1 False
0.5 False 1 False
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4.2 Simulation of Three Machines to Infinite Bus

The load flow results of the 3MIB system are presented in Table 4.7, and are com-
parable to the load flow solution found in [12].

Table 4.7: Steady-state load flow solution of 3MIB case. Buses 0-2 are generator
buses, buses 3 and 4 are load buses, and bus 5 is slack bus.

Voltage Net power injection

Bus number Magnitude [pu] Angle [rad] Active [pu] Reactive [pu]

0 1.0402 0.8826 14.0400 4.3440
1 1.0402 0.8826 14.0400 4.3440
2 1.0201 0.3500 8.0000 4.6620
3 1.0171 0.7975 -13.9986 -1.0000
4 0.9729 0.2596 -20.0000 -1.0000
5 1.0000 0.0000 -2.0814 0.4974

Table 4.8 contains the numerically approximated eigenvalues of the simulated system.
The system has 45 eigenvalues. Of these, sixteen form complex conjugate pairs, of
which two pairs are unstable. Note that the real components of eigenvalues 1-3
appear to be equal, but are in fact distinct, given that a higher precision is used.

Figure 4.6 shows the eigenvalues plotted in the complex plane, indicating the two
conjugate pairs constituting the unstable eigenvalues. Figure 4.6b also contains a
zoomed in version of the complex plane to better highlight the clustering of poles.
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Table 4.8: Eigenvalues of 3MIB system.

Eigenvalue Real component Imaginary component

1 -1000.0000 -
2 -1000.0000 -
3 -1000.0000 -
4 -71.6172 -
5 -57.2504 -
6 -53.8498 -
7 -49.5755 -
8 -45.8040 -
9 -27.5796 -
10 -26.2185 -
11 -25.9308 -
12 -23.0883 -
13 -23.0883 -
14 -23.0883 -
15 -20.0034 -
16 -20.0034 -
17 -20.0034 -
18 -17.9646 -
19 -5.5845 -
20 -5.4152 -
21 -5.1020 -
22, 23 -3.1094 ±9.7206
24, 25 -3.0381 ±9.3192
26, 27 -2.3303 ±11.5796
28 -2.0815 -
29 -2.0812 -
30 -2.0809 -
31, 32 -0.8918 ±0.9005
33 -0.4396 -
34, 35 -0.2825 ±0.0774
36 -0.1566 -
37 -0.0260 -
38 -0.0260 -
39 -0.0260 -
40, 41 -0.0186 ±1.2542
42, 43 0.0034 ±0.5410
44, 45 0.4404 ±0.8049
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Figure 4.6: Eigenvalue plot for 3MIB system.
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4.2.1 Results of Base Case Implementation of Three
Machines to Infinite Bus

By applying the same upper and lower step length limits as in the SMIB case in
Section 4.1.1, but no other strategies, the base case simulation was performed. Table
4.9 shows the obtained performance metrics scores.

Table 4.9: Performance metrics for base case simulation of 3MIB system.

Simulated
time [s]

Steps
Step

changes
Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

25.00 3433 804 1.00× 10−2 1.00× 10−5 7.28× 10−3

Figure 4.7 shows the simulated angular frequency deviation ∆ωs for each of the three
synchronous generators in the system, along with the step length. Figure 4.7 also
includes a plot showing if saturation was enforced for at least one state variable at a
given time step. This is in contrast to the SMIB system where the saturation limits
were never met.
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Figure 4.7: Base case simulation of 3MIB system for t ∈ [0, 25] s, with voltage
reference change at t = 2 s.
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From Figure 4.7 it is evident that the step length initially progressed similar to in the
SMIB base case in Figure 4.2. At the point of disturbance, the step length dropped
from the upper limit, before entering into a oscillatory, yet increasing behavior. The
shape of the peaks were similar to those in the SMIB base case, with sharp rises
and falls similar to exponential decays. At around 4 s, the step length again settled
at its upper limit.

However, once saturation was enforced, the step length again fell, eventually reach-
ing the lower limit. From there it oscillated rapidly before once again falling as
saturation ended. The step length gradually recovered, making a last considerable
dip during the second saturation period, before it once again reached the upper limit
for the remainder of the simulation.

4.2.2 Verification of Three Machines to Infinite Bus
Simulation Results

Figure 4.8 shows the verified solution along with the solution obtained using Gear’s
method.
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Figure 4.8: Verification of base case simulation of 3MIB system for t ∈ [0, 25] s,
with voltage reference change at t = 2 s.

As with the SMIB case, visual inspection indicated that there was a large overlap
between the two solutions. However, the largest MSE was found for the regulator
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output Vr0 of generating unit 0, with a value of 2.44× 10−1, considerably larger than
for the SMIB case.

Note that the verification calculation in MATLAB did not include the effects of
saturation.

4.2.3 Results of Implementation of Three Machines to
Infinite Bus with Strategies

Again, following the verification of the base case results, the 48 different parameter
combinations were applied to the method. The full results are given in Table A.2 in
Appendix A, and the averaged values are given in Table 4.10.

Table 4.10: Performance metrics for simulation strategies for 3MIB case.

(a) Step scaling factor.

Step scaling factor
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

1.0 446.88 8.20× 10−3 3.37× 10−2

0.9 506.75 7.94× 10−3 4.50× 10−3

0.8 487.38 7.67× 10−3 4.83× 102

0.7 463.38 7.84× 10−3 8.34× 102

0.6 455.43 7.93× 10−3 3.94× 10−3

0.5 578.86 7.80× 10−3 4.10× 10−3

(b) Step increase limit.

Step increase limit
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

True 617.88 7.56× 10−3 5.05× 10−3

False 347.55 8.27× 10−3 4.79× 102

(c) Step length fixed.

Step fixed for [steps]
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

1 983.95 6.78× 10−3 4.79× 102

15 37.25 8.93× 10−3 1.59× 10−3

(d) Step decrease limit.

Step decrease limit
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

True 450.92 8.10× 10−3 3.80× 10−3

False 529.68 7.68× 10−3 4.79× 102
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From Table 4.10 it can bee seen that along with decreasing scaling factor, the average
number of step length changes initially rose, then fell to a minimum before gradually
increasing again. The average mean step length followed an inverted path, initially
falling, rising to a plateau, before once again falling. The maximum MSE peaked
sharply for the middle scaling factors.

Not applying a scaling factor resulted in the fewest number of average step length
changes and once again gave the highest average mean step length. Not scaling
did, however, result in a large average maximum MSE, the value being an order of
magnitude larger than for the smaller scaling factors. Still, scaling factors of 0.8
and 0.7 gave considerably larger average maximum MSEs, compared to the other
scaling factors. The smallest average maximum MSE was obtained with a scaling
factor of 0.6.

Not applying a step increase limit resulted in a considerably fewer number of step
length changes, as well as a higher average mean step length. It did, however, result
in a markedly larger average maximum MSE, when compared to combinations where
an increase limit was imposed.

Continuing, applying a step decrease limit resulted in improved performance across
all three criteria, compared to not imposing such a limit. Preventing the step length
from changing more than for every fifteenth step once again resulted in a considerably
lower average number of step length changes. Moreover, the average mean step
length was larger, and the average maximum MSE lower than when the step length
was allowed to change every step.

Once again, no single parameter combination achieved the top score on all three
criteria. However, by calculating the Euclidean distances according to (3.2) and
defining the ideal points similarly as in Section 4.1.3, the overall best combination
was found to be not applying a scaling factor, limiting the permitted frequency
of step length changes, and not applying any increase or decrease limits. This
combination gave d = 1.202× 10−1.

Table 4.11 shows the performance metrics for the parameter combination with the
lowest d-value, and Figure 4.9 shows the simulated results along with the verified
solution.

Table 4.11: Performance metrics for overall best simulation case of 3MIB system.

Simulated
time [s]

Steps
Step

changes
Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Max. MSE

25.00 2661 26 1.00× 10−2 1.00× 10−3 9.39× 10−3 1.38× 10−3

Figure 4.9 shows how, in the overall best performing case, the large step length
reductions at the reference change and saturation were reduced. The step length
fluctuations were not as rapid and remained closer to the upper limit, as indicated
by the mean step length being longer than in the base case. As in the SMIB case,
the step length still required a similar amount of time to settle at the upper limit
after the disturbances in both cases.
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Moreover, the maximum MSE was smaller in the best case, compared to the base
case, as indicated by Table 4.11. Visual inspection of Figure 4.9 also supports a
strong agreement between the solution from Gear’s method and the verified MAT-
LAB solution.

Interestingly, whereas the base case resulted in two distinct saturation periods, the
best case simulation only resulted in a single one. The single saturation period
spanned both saturation periods in the base case simulation.
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Figure 4.9: Overall best case simulation of 3MIB system for t ∈ [0, 25] s, with
voltage reference change at t = 2 s and verification.

Outlier Simulation Cases

Also for the 3MIB system, outlier cases were produced during the parameter testing.
Two cases were considered as outliers and not included in the averaging calculations.
Table 4.12 shows the relevant parameter combinations, and Figure 4.10 shows the
simulation result of the first outlier case together with the verified solution.
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Figure 4.10: Outlier simulation case of 3MIB system for t ∈ [0, 2.5] s, with
voltage reference change at t = 2 s and verification.

The two outliers were produced by the same combinations that produced two of
the outlier cases for the SMIB system, and the effects were similar. The two outlier
cases failed shortly after the reference change at t = 2 s, due to the Newton-Raphson
iterations not converging in the corrector step. The simulated variables also deviated
considerably from the verified solution and contained a clear ripple. In addition,
saturation was enforced earlier, and the step length oscillated rapidly between the
upper and lower limits.

Table 4.12: Parameter combinations of outlier cases for the 3MIB system.

Step scaling
factor

Step increase
limit

Step fixed
for [steps]

Step decrease
limit

0.6 False 1 False
0.5 False 1 False

4.3 Simulation of System with Static

Compensator

Table 4.13 gives the load flow solution of the STATCOM system.
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Table 4.13: Steady-state load flow solution of STATCOM case. Buses 0 and 1 are
generator buses, bus 2 is load and STATCOM bus, and bus 3 is slack bus.

Voltage Net power injection

Bus number Magnitude [pu] Angle [rad] Active [pu] Reactive [pu]

0 0.9875 0.0103 5.0000 1.0000
1 0.9801 0.0305 8.0000 0.0000
2 0.9815 -0.0228 -14.9993 -2.0000
3 1.0000 0.0000 1.9993 1.6741

The eigenvalues of the STATCOM system are presented in Table 4.14 and Figure
4.11. As in Table 4.8 for the 3MIB case, the two first eigenvalues are also here
indistinguishable with the given decimal precision.

Table 4.14: Eigenvalues of STATCOM system.

Eigenvalue Real component Imaginary component

1 -1000.0000 -
2 -1000.0000 -
3 -56.9844 -
4 -54.2877 -
5 -44.9112 -
6 -44.4322 -
7 -25.9339 -
8 -25.9053 -
9 -23.0872 -
10 -23.0871 -
11 -20.0052 -
12 -20.0052 -
13 -6.8136 -
14 -6.6587 -
15 -5.5875 -
16 -5.2582 -
17, 18 -3.1130 ±9.7256
19, 20 -3.0958 ±9.6933
21 -2.0837 -
22 -2.0836 -
23 -0.5527 -
24, 25 -0.4997 ±2.1844
26 -0.4358 -
27, 28 -0.0671 ±0.1116
29, 30 -0.0454 ±0.2455
31 -0.0260 -
32 -0.0260 -
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The STATCOM system has 32 eigenvalues with five oscillating pairs and no unstable
eigenvalues. Figure 4.11b also highlights the main pole cluster by presenting a
zoomed view.
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(a) All eigenvalues.

Figure 4.11: Eigenvalue plot for STATCOM system.
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Figure 4.11: Eigenvalue plot for STATCOM system (continued).

4.3.1 Results of Base Case Implementation of System with
Static Compensator

Table 4.15 presents the performance metrics scores of the base case implementation
of the STATCOM system. As in the previous cases, no strategies were applied,
except the upper and lower step length limits presented for the SMIB case in Section
4.1.1.

Table 4.15: Performance metrics for base case simulation of STATCOM system.

Simulated
time [s]

Steps
Step

changes
Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

10.00 1433 169 1.00× 10−2 1.00× 10−5 6.98× 10−3

In addition, Figure 4.12 shows the simulated angular frequency deviation ∆ωs for
the two synchronous generators in the system. The step length is also included in
Figure 4.12, along with the network switching instance. The time interval presented
in Figure 4.12 was chosen so as to highlight the region with the most step length
adjustments. Note that none of the state variables reached their saturation limits
during the simulation, and a saturation curve is therefore not included in Figure
4.12.
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Figure 4.12: Base case simulation of STATCOM system for t ∈ [0, 10] s, with
islanding at t = 2 s and reconnection 0.01 s later.

From Figure 4.12 it can be seen that the step length initially settled at the upper
limit, similar to in the two past cases. By close inspection, Figure 4.12 further
reveals that the step length initially dropped just before the disconnection occurred,
before falling even further to the lower limit at the disconnection instant. The step
length then slightly rose, before once again falling to the floor value as the system
was reconnected. Following this, the step length quickly recovered, albeit reaching
the upper limit through a path consisting of uneven, steadily increasing oscillations.
The general shape of the oscillations were similar to those observed for the SMIB
and 3MIB cases, with pointed peaks and flattened valleys.

4.3.2 Verification of System with Static Compensator
Simulation Results

The verified solution for the STATCOM system, along with the solution from the
base case implementation, are shown in Figure 4.13. The maximum MSE was calcu-
lated for the transducer output Vt1 at bus 1 as 1.99. Not only is this an appreciably
higher value than for the two machine to infinite bus systems, but Figure 4.13 also
reveals a notable difference between the two solution methods’ results.
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Figure 4.13: Verification of base case simulation of STATCOM system for
t ∈ [0, 10] s, with islanding at t = 2 s and reconnection 0.01 s later.

4.3.3 Results of Implementation of System with Static
Compensator with Strategies

Continuing from the verification, Table 4.16 gives the averaged values from the
application of the different strategy parameter combinations. Table A.3 in Appendix
A gives the full results.

Table 4.16: Performance metrics for simulation strategies for STATCOM case.

(a) Step scaling factor.

Step scaling factor
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

1.0 73.00 7.98× 10−3 5.77× 10−1

0.9 80.17 7.85× 10−3 5.73× 10−1

0.8 45.50 7.67× 10−3 6.11× 10−1

0.7 105.00 7.32× 10−3 6.44× 102

0.6 59.00 7.47× 10−3 3.25× 10−1

0.5 86.80 7.31× 10−3 2.93× 10−1
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Table 4.16: Performance metrics for simulation strategies for STATCOM case
(continued).

(b) Step increase limit.

Step increase limit
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

True 82.28 7.35× 10−3 4.51× 10−1

False 66.88 7.91× 10−3 2.42× 102

(c) Step length fixed.

Step fixed for [steps]
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

1 189.60 7.13× 10−3 3.87× 102

15 27.29 7.81× 10−3 3.65× 10−1

(d) Step decrease limit.

Step decrease limit
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

True 25.42 8.14× 10−3 1.76× 10−1

False 102.09 7.33× 10−3 1.76× 102

Table 4.16 shows how the average number of step changes rose and fell multiple
times with decreasing scaling factor. The average mean step length, however, fell
relatively steadily with decreasing scaling factor. For the average maximum MSE,
a scaling factor of 0.7 resulted in a value three orders of magnitude larger than for
the other values.

Scaling by 0.8 gave rise to the lowest average number of step changes, while not
scaling gave the largest average mean step length. Applying a scaling factor of 0.5
resulted in the lowest average maximum MSE.

By applying a step increase limit, both performance metrics scores were worse com-
pared to not applying an increase limit. It did, however, result in a considerably
smaller average maximum MSE.

Furthermore, limiting the permitted frequency of step length adjustments gave a
favorable score on all three performance metrics. The same was true for applying a
step decrease limit.

As in the previous cases, no single parameter combination resulted in the highest
score on all three performance metrics. Using (3.2) to calculate the Euclidean dis-
tances, with the ideal points defined as in the SMIB case in Section 4.1.3, the overall
best case was determined to be the combination of not scaling, limiting the permit-
ted step length adjustment frequency, applying a step length decrease limit, but
no step length increase limit. By doing so, a d-score of 3.704× 10−1 was achieved.
Table 4.17 and Figure 4.14 relate to the overall best performing case, showing the
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performance metrics scores and simulation results, including the verified solution,
respectively.

Table 4.17: Performance metrics for overall best simulation case of STATCOM
system.

Simulated
time [s]

Steps
Step

changes
Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Max. MSE

10.00 1121 16 1.00× 10−2 1.00× 10−3 8.92× 10−3 6.41× 10−2
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Figure 4.14: Overall best case simulation of STATCOM system for t ∈ [0, 10] s,
with islanding at t = 2 s, reconnection 0.01 s later, and verification.

As in the previous cases, the overall best strategy parameter combination reduced
the step length fluctuations, both by increasing the shortest step length and reducing
the number of fluctuations. Still, a similar amount of time was required for the step
length to settle back at the ceiling value after the disturbance. The maximum MSE
was also reduced when compared to the base implementation. Nevertheless, Figure
4.14 still shows a discernible difference between the solution obtained using Gear’s
method and the verified solution.
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Outlier Simulation Cases

The testing of improvement strategies produced even more outlier cases for the
STATCOM case, compared to the machine to infinite bus systems. A total of four-
teen combinations resulted in outlier cases. In all the outlier cases the corrector was
unable to converge for the time period between when the system was disconnected
and when it was reconnected. Table 4.18 shows the parameter combinations of the
failed cases.

Table 4.18: Parameter combinations of outlier cases for the STATCOM system.

Step scaling
factor

Step increase
limit

Step fixed
for [steps]

Step decrease
limit

1.0 True 1 True
1.0 False 1 True
0.9 True 1 True
0.9 False 1 True
0.8 True 1 True
0.8 False 1 True
0.7 True 1 True
0.7 False 1 True
0.6 True 1 True
0.6 False 1 True
0.6 False 1 False
0.5 True 1 True
0.5 False 1 True
0.5 False 1 False

4.4 Simulation of Multi-Terminal DC System

The branch currents Icc were determined using the node connection matrix

Y cc =

1 −1 0
1 0 −1
0 1 −1

 . (4.1)

The injected powers at the non-slack nodes, as well as the DC voltage reference are
given in Table 4.19.

Table 4.19: Inputs to DC load flow solver for MTDC case.

Parameter Value [pu]

Pdc0 -1.5
Pdc1 2.0
Vdcref 1.0
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Table 4.20 gives the DC load flow solution divided into non-slack converter DC
voltages, injected active power at slack converter, and injected as well as branch
currents. From this, the system was initialized as described in Section 3.5.4.

Table 4.20: DC load flow solution for the MTDC case.

(a) Non-slack converter DC voltages.

Node number DC voltage [pu]

0 0.9995
1 1.0012

(b) Injected active power at slack node.

Node number Injected active power [pu]

2 -0.4968

(c) Injected node currents.

Node number Injected DC current [pu]

0 -0.7504
1 0.9988
2 -0.2484

(d) Branch currents.

Branch Branch current [pu]

0-1 -0.0017
0-2 -0.0005
1-2 0.0012

The eigenvalues of the system are presented in Table 4.21. Once again some entries
in Table 4.21 appear equal due to the used decimal precision. The system has 27
distinct eigenvalues, where only three are not part of complex conjugate pairs. In
addition, six eigenvalues form unstable conjugate pairs.
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Table 4.21: Eigenvalues of MTDC system.

Eigenvalue Real component Imaginary component

1 -94.9138 -
2, 3 -19.7881 ±1.2248
4, 5 -17.9874 ±9.4102
6, 7 -2.1156 ±11.4338
8, 9 -1.2398 ±19.3782
10, 11 -0.8535 ±1.5885
12 -0.2196 -
13, 14 -0.1323 ±0.4758
15, 16 -0.1323 ±0.4758
17, 18 -0.1323 ±0.4758
19, 20 -0.1323 ±0.4758
21 -0.0007 -
22, 23 8.2045 ±336.4494
24, 25 8.2045 ±336.4494
26, 27 9.4378 ±316.8102

Figure 4.15 shows the eigenvalues plotted in the complex plane, with the unstable
eigenvalues marked with red.
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Figure 4.15: Eigenvalue plot for MTDC system.
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4.4.1 Results of Base Case Implementation of Multi-
Terminal DC System

The performance metrics scores of the base case implementation of the MTDC
system are presented in Table 4.22.

Table 4.22: Performance metrics for base case simulation of MTDC system.

Simulated
time [s]

Steps
Step

changes
Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

1.40 296 76 1.00× 10−2 3.15× 10−4 4.73× 10−3

Figure 4.16 shows the simulated DC voltage Vdc at each of the three VSCs in the
system, including the slack converter, along with the step length. From the figure it
can be seen how the step length fell from its upper value at the disturbance instance,
and was close to reaching the lower limit. From this, it made several sharp, brisk
increases, before settling into a semi-periodic, increasing pattern.
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Figure 4.16: Base case simulation of MTDC system for t ∈ [0, 1.4] s with DC line
removal at t = 0.1 s.

At first the step length plot of the MTDC system might appear notably different
from those of the previous three cases. However, after considering that the time
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span of the MTDC case is considerably shorter than for the previous cases, the step
length graphs becomes more similar. Seen from a similar scale as the other cases,
the step length here too gradually increased via sharp points and flattened valleys.
The step length did, however, not reach the ceiling value during the simulated time.

4.4.2 Verification of Multi-Terminal DC System Simulation
Results

Figure 4.17 shows the verified MATLAB solution overlain the solution obtained
using the base case implementation of Gear’s method. The figure reveals large
discrepancies between the two solutions, which is supported by the maximum MSE
being 9.49× 103 for the q-component of the terminal voltage, Vqt2 , at node 2.

Whereas the solution given by Gear’s method was stable, the verified solution shows
that the system in fact was unstable. For the non-slack converters, rather than the
DC voltages converging to new stable operating points, high-frequent and exponen-
tially increasing oscillations started appearing at around 1 s. The solution obtained
by MATLAB is supported by the existence of poles in the right half-plane, as given
by Table 4.21 and Figure 4.15.
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Figure 4.17: Verification of base case simulation of MTDC system for t ∈ [0, 1.4]
s with DC line removal at t = 0.1 s.
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4.4.3 Results of Implementation of Multi-Terminal DC
System with Strategies

Even though the base case implementation was unable to produce a result similar
to the verified solution, it was still worth exploring the effects of applying the step
length strategies. In all the previous cases, the overall best parameter combination
resulted in a smaller maximum MSE than the base case solution, and it was worth
exploring if applying the correct strategies would improve the accuracy of the Gear
solution.

Table 4.23 gives the averaged scores on the performance metrics from applying the
different step length strategies. The complete results are given in Table A.4 in
Appendix A.

Table 4.23: Performance metrics for simulation strategies for MTDC case.

(a) Step scaling factor.

Step scaling factor
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

1.0 46.13 5.02× 10−3 1.01× 104

0.9 46.13 4.86× 10−3 9.73× 103

0.8 26.63 4.67× 10−3 1.01× 104

0.7 42.00 4.45× 10−3 9.25× 103

0.6 42.00 4.40× 10−3 9.25× 103

0.5 64.63 4.06× 10−3 9.43× 103

(b) Step increase limit.

Step increase limit
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

True 45.08 4.52× 10−3 9.49× 103

False 44.08 4.63× 10−3 9.76× 103

(c) Step length fixed.

Step fixed for [steps]
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

1 72.42 4.53× 10−3 9.23× 103

15 16.75 4.61× 10−3 1.00× 104

(d) Step decrease limit.

Step decrease limit
Average number of

step changes
Average mean
step length [s]

Average maximum
MSE

True 42.50 4.66× 10−3 9.80× 103

False 46.67 4.49× 10−3 9.46× 103
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From Table 4.23 it is evident that the lowest average number of step changes was
obtained for a scaling factor of 0.8. The average mean step length, however, grad-
ually decreased from its maximum value at 1.0 as the scaling factor was reduced.
The lowest average MSE was obtained for scaling factors of 0.7 and 0.6.

Furthermore, applying a step increase limit gave a larger average number of step
length changes and a lower average mean step length, albeit with a smaller average
maximum MSE, compared to not applying such a limit. Applying a step decrease
limit, however, gave an inverse result, i.e. resulting in both fewer average number
of step changes and a higher average mean step length, but at the cost of a higher
average maximum MSE.

Similar results were obtained by fixing the step length for at least fifteen steps. By
doing so, a lower average number of step length changes were performed, a higher
average mean step length was achieved, albeit with a higher average maximum MSE.

By employing (3.2) and with the ideal points defined as in the SMIB case in Sec-
tion 4.1.3, the overall best parameter combination was determined. With d =
1.195× 10−1, the overall best combination was found to be not scaling, limiting
the permitted step change frequency and step increases, but not decreases. This
combination also resulted in the lowest maximum MSE of all the 48 combinations.
Table 4.24 shows the highlighted combination’s performance metrics scores, and
Figure 4.18 shows the simulation results along with the verified solution.

Table 4.24: Performance metrics for overall best simulation case of MTDC
system.

Simulated
time [s]

Steps
Step

changes
Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Max. MSE

1.40 279 13 8.67× 10−3 1.00× 10−3 5.02× 10−3 8.37× 103

Even with the strategy resulting in the lowest obtained maximum MSE, Gear’s
method was still unable to capture the unstable oscillations of the DC voltages.
Fewer step length adjustments were made, and the step length remained in a nar-
rower band below the upper limit, but the maximum MSE was not reduced in any
meaningful way.
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Figure 4.18: Overall best case simulation of MTDC system for t ∈ [0, 1.4] s with
DC line removal at t = 0.1 s and verification.
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Chapter 5

Discussion

The following chapter contains the discussion of the results obtained in Chapter 4,
on which the conclusions drawn in Chapter 6 are based.

Initially, a discussion of the method, performance metrics, and validation method
used is carried out. Following this, the results from each of the four simulation cases
are discussed and possible explanations for the findings are offered. Based on this,
the more general findings are highlighted and compared with previously published
results.

5.1 Method, Performance Metrics, and

Validation

The metrics used to assess the performances of the simulation methods naturally
influence the evaluation and possible conclusions drawn from the results. As a
consequence, the performance metrics must be justified and linked to the evaluation
and distinctions one wishes to make. By doing so, it can be ensured that the chosen
performance metrics do in fact shed light on the performance of the investigated
strategies.

Based on [4, 6], the number of step length adjustments and mean step length were
chosen as performance metrics. In addition, the mean squared error was introduced
as a measure of the accuracy of the obtained results. Even though these particular
metrics can be justified as done in Section 3.1.2, it is still worth noting on their
effects on the strategy evaluations.

When one of the performance metrics is the number of step length changes, it is to be
expected that a strategy of restricting the permitted frequency of step length changes
achieves a positive score, as it directly targets the metric. Yet, due to the nature
of Gear’s method, limiting the number of step length adjustments required, and in
doing so reducing the number of failed iterations and correction matrix updates,
does impact the performance of the method.

Moreover, the method of distinguishing between the effects of the different strategies
deserves a second look. In an attempt to isolate the different strategies’ effects on
the method, mainly the average effects of each parameter was investigated. While
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this formed a basis for determining the effect of each strategy, as was one of the
stated aims of the thesis, it masked the possible inter-play between the different
strategies. In order to mitigate this, the overall best performing case as determined
by minimizing the Euclidean distance between the achieved scores and the ideal
ones was also highlighted. In doing so, both the effects of the strategies alone and
together could be better understood.

Still, as the ideal points were set based on the results from the investigated com-
binations, the best case was not measured against an external, objective goal, but
rather one set by the cumulative results. By making the criteria self-referencing, it
became harder to draw conclusions regarding the strategies on a more general basis,
as this tied their performances to the particular case investigated.

Finally, the validation method should be discussed. One of the main aims of this
thesis was to determine the suitability of Gear’s method as a dynamic power system
simulation solver. By directly using the DAE solver in MATLAB, rather than pre-
build modules representing different power system components, the modeling done
could not be evaluated. Any possible modeling errors, including discrete event
handling, from the Python implementation would be directly imported into the
MATLAB formulation.

However, by using the same system descriptions, the results from the two numerical
solution methods could be directly compared, supporting one of the thesis goals.
Such a direct formulation avoided the possible issue of not knowing if the two ob-
tained results were comparable, which is often the case when black box system
components are used.

5.2 Evaluation of Single Machine to Infinite Bus

Simulation Results

Starting off, its is worth discussing why the discrete event, in this case a reference
change, caused the step length to drop sharply. The predictor step of the algorithm
makes its prediction based on the current step length and the state derivatives. It
therefore has no information about the changes to the system caused by the event.
The corrector on the other hand, calculates the deviation between the predicted
solution and the accurate one. The reference change therefore resulted in a large
deviation, and subsequently, a large truncation error. A large truncation error in
turn led to a sharp drop in the step length.

Continuing, the results obtained in Section 4.1 confirmed the results from [6, 16],
showing that Gear’s method was able simulate higher-order models of stable single
machine to infinite bus systems. In addition, strategies could be applied to improve
the simulation results, both in terms of computational performance and accuracy.
As indicated by Table 4.5, the overall best performing case reduced the number
of step length adjustments by 87 %, increased the mean step length by 7 %, and
reduced the maximum MSE by 47 %.

When looking at each of the strategies separately for the SMIB case, applying a
scaling factor of 0.8 reduced the average number of step length changes, but at the
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cost of both reducing the average mean step length and increasing the average max-
imum MSE. Fixing the step length for at least 15 steps improved the performance
across all three metrics when compared to letting the step length change every step.
Doing so reduced both the average number of step length changes and the aver-
age maximum MSE, as well as slightly raising the average mean step length. Both
limiting strategies resulted in poorer computational performance. Imposing a step
decrease limit improved the accuracy of the solution, while imposing a step increase
limit did the opposite

The overall best simulation results, given the chosen performance metrics, were
found by not applying a scaling factor, preventing the step length from changing
more than every fifteenth step, and imposing a step decrease limit, but not a step
increase limit. This is in contrast to what was found in [16], where both limiting
strategies were found to have adverse effects. The solution accuracy was not inves-
tigated in [16], offering a possible answer to why different strategies were deemed
most successful. In addition, the system descriptions themselves varied somewhat.

Regardless of the strategies applied, the difference between the Gear solution and
the verified MATLAB solution could, for most use cases, be said to be negligible
for this test system. Disregarding outlier cases, all parameter combinations resulted
in a maximum MSE of at most 2.51× 10−3. Based on this, it would be possible
to argue that a parameter combination more heavily favoring the computational
metrics should have been chosen as the overall best performing case, as the maximum
MSE still would have been considered acceptable.

Moreover, three outlier cases were observed. All three cases had the same parameter
combinations as the base case, except that a scaling factor of either 0.8, 0.6, or
0.5 was applied. It is not obvious why these particular combinations resulted in
outlier results. By closely inspecting Figure 4.5, it is evident that just after the
reference change, the step length displayed several pulses of only a single step length,
fluctuating over a large magnitude range. At each of these pulses, the simulated
function made relatively large discrete steps, and it is possible that this is what
initially led the result to deviate from the verified solution. As the simulation went
on, the errors simply compounded.

5.3 Evaluation of Three Machines to Infinite Bus

Simulation Results

The second test system increased the complexity of the simulated system, making
it possible to gain further insight into the feasibility of Gear’s method as a dynamic
simulation tool. When comparing the overall best performing case to the base case
implementation, the number of step length changes, mean step length and maximum
MSE were improved by 97 %, 29 %, and 99 %, respectively. In addition to increasing
the size of the simulated system, the effects of simulating an unstable system, as
well as state saturation was explored.

The step length drop associated with the state saturation can be explained similarly
as with discrete events. Saturation is enforced after the correction step, capping the
affected state variables at their limits. The derivatives, however, are not altered.
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The predictor therefore expects the states to continue on the paths pointed out by
the derivatives. The deviation, as determined by the corrector, therefore becomes
large, leading to a large truncation error and a step length fall.

For the 3MIB case, applying a scaling factor showed little improvement in terms of
performance, but applying scaling factors of 0.9, 0.6, or 0.5 all improved the accuracy
of the obtained results. Again, fixing the step length for at least 15 steps improved
performance across all three criteria. Imposing a step increase limit resulted in
poorer results across all three criteria. Imposing a decrease strategy, however, gave
favorable results on all but the number of step length changes criteria.

Overall, the best performing case was determined to be the combination of not
scaling, fixing the step length, and not imposing any increase or decrease limits.

Moreover, the solution obtained by Gear’s method coincided well with the verified
solution, both for the base and best case implementations.

The outlier cases should also be examined. A possible explanation lies in how
saturation was enforced just after the reference change. This could explain the
stepping nature of the solution, as the angular frequency deviations were limited
by the false saturation of other states. This possibility is further supported by the
steps coinciding with the saturation pulses and rapid step length fluctuations.

The combinations producing the outlier cases were equal to two of the combinations
producing outliers in the SMIB case, i.e. base case configurations except with scal-
ing factors of 0.6 and 0.5. Moreover, by inspecting the similar combinations with
scaling factors of 0.8 and 0.7, it became clear that these produced maximum MSEs
substantially larger than any of the other included combinations. It would have been
possible to exclude these combinations as well, even though the associated number
of step changes and mean step lengths were not irregular. Nevertheless, the overall
best parameter combination and discussion of strategy effects would have remained
unchanged.

5.4 Evaluation of System with Static

Compensator Simulation Results

The third case presented Gear’s method with the challenge of simulating a system
with a considerable power electronic component in the form of a static compensator.
Compared to the two previous systems, the accuracy of the obtained result was
overall worse for the STATCOM case. The deviations could, however, depending
on the application requirements, be seen as acceptable as the major features of the
simulated results were comparable to the MATLAB solution.

By applying the appropriate strategies, the number of step length changes could be
reduced by 91 %, the mean step length could be increased by 28 %, and the maximum
MSE could be reduced by 97 %. When comparing each strategy, applying a step
scaling factor once again reduced the number of step length changes, but at the
cost of a lower mean step length and a higher maximum MSE. Imposing an increase
limit gave on average reduced performance, but improved accuracy. Fixing the step
length and imposing a decrease limit, on the other hand, both gave improved average
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results on all three criteria.

Overall, the best performing case was found to be not scaling, imposing limits on
the permitted frequency of step length changes and step decrease, but no increase
limit.

For the STATCOM case, a considerable number of parameter combinations resulted
in outlier cases. Regardless of scaling factor or if a step increase limit was imposed,
the combination of not fixing the step length and imposing a decrease limit produced
outliers. In addition, for scaling factors 0.6 and 0.5, not imposing a decrease limit
resulted in outliers as well. The combination of scaling by 0.7 and not imposing
any other limits, could possibly also have been treated as an outlier as it scored the
worst out of the remaining combinations, and substantially so on both the number
of step length adjustments and the maximum MSE.

One possible explanation for why these particular parameter combinations failed is
offered by the fact that, in contrast to the successful simulations, these attempted
to perform multiple calculations between the two discrete events. It is possible
that after finding an acceptable solution before the second event, the system change
resulted in a deviation too large for the Newton-Raphson iterations to converge.
The stability of the Newton-Raphson method and how this affects Gear’s method
was not explored further, but is worth investigating in future work with the method.

5.5 Evaluation of Multi-Terminal DC System

Simulation Results

The final simulation case deviated drastically from the previous, in that rather than
being a system dominated by the dynamics of synchronous generators, it was a
purely power electronic system. The MTDC system also stood out as the system
where Gear’s method produced the poorest results.

Gear’s method was able to produce stable simulation results, and the method was
improved both with regards to performance and accuracy by applying strategies.
Still, even the parameter combination resulting in the lowest maximum MSE ob-
tained unusable results. The method was unable to capture the fastest transients of
the unstable system, instead presenting a stable solution. Based on this, any further
discussion of the improvement strategies would be of little use.

It was not immediately clear why Gear’s method was unable to properly simulate
the MTDC system when it was able to simulate systems with larger ratios between
the largest and smallest time constants. Changing the upper and lower step length
limits, or forcing an artificially short step length showed no effect. Tightening the
acceptable truncation error and permitted Newton-Raphson error limit, as suggested
by [6], were also unsuccessful. Neither the first nor second derivatives showed any
odd behavior either.

A final possible explanation for the poor tracking might be that the correction matrix
A(l) was close to being singular around when the unstable oscillations should have
appeared. With an ill-conditioned system matrix, a small deviation in the input
∆(l) in (2.46) would lead to a large error in the state deviation ∆y(l) [11].
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This is further supported by the fact that the method only returned 27 distinct
eigenvalues when the system was originally defined by 31 differential equations. In
contrast to the three other systems, Gear’s method was unable to properly capture
the complete dynamic range of the system.

Beyond what has already been stated, it was not explored further why Gear’s method
was unable to properly simulate the MTDC system. If similar results can be pro-
duced for other VSC-heavy systems, or if it is the result of this formulation in
particular, is very much worth exploring further.

5.6 Evaluation of Gear’s Method and Proposed

Strategies

Based on the preceding discussion and results obtained, a general discussion of
Gear’s method and the proposed strategies can be carried out.

The results from all four cases indicated that fixing the step length was the single
strategy with the largest impact on the method, both in terms of computational
performance and accuracy. By restricting the permitted step length adjustment
frequency, the negative effects of excessive drops or increases in step length were
apparently mitigated. This indicated that simply fixing the step length for a given
number of steps not only reduced the number of recalculations of the correction
matrix required, it also handled the issues the limiting strategies were targeted at.
Moreover, only in the MTDC case did fixing the step length not also lead to a
meaningfully improved solution accuracy.

In all four cases, the overall best performing parameter combinations included not
scaling the step length change. All four cases showed different effects on performance
and accuracy from scaling, making it difficult to see any clear trends. However, the
majority of the outlier cases were produced for smaller scaling factors, indicating
that if scaling is employed, it should be kept around 1.0.

Of the four best performing combinations, three did not impose an increase limit,
while two did not impose a decrease limit. This suggests that it is more important
to prevent rapid step length decreases than rapid increases. Still, the advantage
of applying any such limits has not been conclusively shown by the four cases.
Reference [4] found similar results for their single-regulator system, albeit more
strongly in favor of limiting step length decreases.

For all investigated cases, a positive correlation between improved method perfor-
mance and solution accuracy was observed. Every best performing combination
resulted in a lower maximum MSE compared to the base case.

However, the two systems with considerable power electronics, and in particular
the MTDC system, showed poorer tracking accuracy than the systems dominated
by synchronous generators. The solver does not inherently distinguish between
synchronous generators and VSCs, it only has information about states and state
equations. However, the results obtained displayed Gear’s method giving poorer
solution accuracy with an increased power electronics share. If this is due to some
underlying modeling of power converters or simply the formulation used here, cannot
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be clearly answered, and requires further investigation.

On a more general note, the conclusions possible to draw from the method employed
here will to a large extent be system dependent. The observations made illustrate
possible strengths and weaknesses, but on different systems, modifications may very
well be required. Nevertheless, the work done here furthers the insights into a general
solution strategy which can be adapted to suit specific use cases.
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Chapter 6

Conclusions and Outlook

This final chapter contains the conclusions drawn from the master’s thesis in relation
to the objectives set in Section 1.2, and highlights and suggests possible avenues for
future work.

6.1 Conclusions

Through four different power system cases this thesis has shown how a second-order
version of Gear’s method can be used for dynamic power system simulations. The
cases explored cover a wide range of possible power system applications, displaying
varied characteristics in terms of stability, size and complexity, saturation effects,
topology changes and discrete system events, and degree of power electronic inte-
gration.

In addition to giving a thorough description of the method, different strategies for
improving the computational performance and solution accuracy of the method were
implemented and evaluated. Previous implementations’ findings were confirmed, in
that the method was able to adjust the step length to match the dynamics of the
simulated system. In addition, it was shown how discrete events, such as reference
changes, faults, and state saturation, caused the step length to drop sharply, hurting
the computational performance of the method.

The key contribution of this thesis was to extend the list of systems and system
types implemented for Gear’s method, including increasing the size and introducing
more power electronic components as compared to what already exists in published
literature. Also, system initialization was improved, basing it on both load flow
solutions and iterations, a technique not previously used for Gear’s method.

In addition, the proposed improvement strategies were evaluated both separately
and in combination, making it possible to determine each strategy’s effect and, to
an extent, in combination. The results obtained, with and without strategies ap-
plied, were furthermore compared to a commercially available differential-algebraic
equation system solver, making it possible to not only explore the performance of
the method, but the accuracy as well.

In general, the variable step length nature of the method lent itself well to the
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simulation of power system models consisting of stiff differential equation systems
and accompanying algebraic constraints, albeit with some stark limitations. For
the three systems dominated by synchronous generators, Gear’s method was able to
produce results comparable to the verified solution, while it for the fully DC system
was not. If this was due to some underlying modeling nature of power converters,
or simply a feature of this particular formulation, could not be concluded.

For the successful simulation cases, fixing the step length for at least 15 steps was
shown to give the largest improvement in terms of both performance and accuracy,
of the strategies tested. By fixing the step length, the issue of excessive step length
decreases was avoided, while also bettering the solution accuracy. For each case,
not scaling step length changes, or at least keeping the scaling factor close to 1.0,
produced the overall best results, as determined by the metrics used. Limiting the
allowable step length changes by preventing a more than twofold change between
consecutive steps could not conclusively be shown to have positive effects on the
method.

On a final note, even though the conclusions drawn from the work done in this thesis
can largely be seen as system dependent, they help further the understanding of a
possible general solution strategy using Gear’s method, which has to be adapted for
specific cases.

6.2 Outlook and Further Work

Based on the work done in this master’s thesis, the following aspects are worth
exploring further: Implementing Gear’s method for other VSC-dominated systems.
The share of power converters in the modern power system is increasing, and Gear’s
method’s ability to simulate such systems is of central importance when judging its
viability.

Likewise, increasing the size of the simulated system would be interesting to see how
the method handles systems of even more generation units and loads than what has
been explored in this thesis.

Furthermore, continuing the development of strategies for adapting the step length
would be valuable. This could include more sophisticated techniques, such as auto-
matic parameter tuning and strategy selection. In addition, methods for primarily
increasing the accuracy of the method, not just the performance, would also be of
interest.

Finally, further exploring the numerical stability of the method, including the use of
Newton-Raphson’s iterative method, would be useful. Other root-finding methods
could be explored and their effects on Gear’s method determined.
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Appendix A

Complete Simulation Results

This appendix contains the complete simulation results for all four simulated power
system cases.
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Table A.1: Complete results from simulations of SMIB system.

Maximum MSE

Step scaling
factor

Step increase
limit

Step fixed
for [steps]

Step decrease
limit

Disturbance [s]
Simulated

time [s]
Steps

Step
changes

Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Value Variable
Distance

from ideal

1.0 True 1 True 2.0 15.01 2360 596 1.00× 10−2 9.35× 10−4 6.36× 10−3 3.48× 10−4 Vr0 7.48
1.0 True 1 False 2.0 15.00 2369 599 1.00× 10−2 2.66× 10−4 6.33× 10−3 1.07× 10−3 Vr0 1.13× 101

1.0 True 15 True 2.0 15.00 2339 78 1.00× 10−2 1.00× 10−3 6.41× 10−3 3.65× 10−4 Vr0 2.29
1.0 True 15 False 2.0 15.01 2353 88 1.00× 10−2 6.97× 10−4 6.38× 10−3 9.24× 10−4 Vr0 7.33
1.0 False 1 True 2.0 15.01 2347 599 1.00× 10−2 9.35× 10−4 6.39× 10−3 1.24× 10−4 Vw0 7.21
1.0 False 1 False 2.0 15.01 2367 599 1.00× 10−2 2.66× 10−4 6.34× 10−3 2.43× 10−4 Vr0 7.30
1.0 False 15 True 2.0 15.01 2204 77 1.00× 10−2 1.00× 10−3 6.81× 10−3 1.29× 10−4 Vr0 1.72× 10−1

1.0 False 15 False 2.0 15.01 2190 79 1.00× 10−2 1.00× 10−3 6.85× 10−3 2.17× 10−4 Vr0 9.59× 10−1

0.9 True 1 True 2.0 15.00 2439 399 1.00× 10−2 8.41× 10−4 6.15× 10−3 3.18× 10−4 Vr0 4.84
0.9 True 1 False 2.0 15.01 2451 407 1.00× 10−2 2.38× 10−4 6.12× 10−3 1.04× 10−3 Vr0 9.54
0.9 True 15 True 2.0 15.01 2304 88 1.00× 10−2 1.00× 10−3 6.51× 10−3 3.97× 10−4 Vr0 2.59
0.9 True 15 False 2.0 15.01 2440 91 1.00× 10−2 6.27× 10−4 6.15× 10−3 9.88× 10−4 Vr0 7.91
0.9 False 1 True 2.0 15.01 2432 390 1.00× 10−2 8.41× 10−4 6.17× 10−3 1.20× 10−4 Vw0 4.34
0.9 False 1 False 2.0 15.00 2424 397 1.00× 10−2 2.38× 10−4 6.19× 10−3 6.97× 10−4 Vr0 6.90
0.9 False 15 True 2.0 15.00 2243 73 1.00× 10−2 1.00× 10−3 6.69× 10−3 1.57× 10−4 Vr0 4.16× 10−1

0.9 False 15 False 2.0 15.00 2169 88 1.00× 10−2 1.00× 10−3 6.92× 10−3 3.76× 10−4 Vr0 2.40

0.8 True 1 True 2.0 15.01 2499 313 1.00× 10−2 7.48× 10−4 6.00× 10−3 3.08× 10−4 Vr0 3.74
0.8 True 1 False 2.0 15.01 2521 334 1.00× 10−2 2.10× 10−4 5.95× 10−3 1.03× 10−3 Vr0 9.02
0.8 True 15 True 2.0 15.00 2441 97 1.00× 10−2 1.00× 10−3 6.15× 10−3 4.58× 10−4 Vr0 3.15
0.8 True 15 False 2.0 15.01 2546 101 1.00× 10−2 5.58× 10−4 5.89× 10−3 1.07× 10−3 Vr0 8.65
0.8 False 1 True 2.0 15.00 2497 316 1.00× 10−2 7.48× 10−4 6.01× 10−3 1.16× 10−4 Vw0 3.33
0.8 False 1 False 2.0 - - - - - - - - -
0.8 False 15 True 2.0 15.01 2350 89 1.00× 10−2 1.00× 10−3 6.39× 10−3 1.11× 10−4 Vw0 2.32× 10−1

0.8 False 15 False 2.0 15.00 2244 91 1.00× 10−2 9.19× 10−4 6.68× 10−3 3.13× 10−4 Vr0 1.84

0.7 True 1 True 2.0 15.00 2552 559 1.00× 10−2 6.54× 10−4 5.88× 10−3 2.94× 10−4 Vr0 6.86
0.7 True 1 False 2.0 15.00 2566 584 1.00× 10−2 1.83× 10−4 5.85× 10−3 1.02× 10−3 Vr0 1.08× 101

0.7 True 15 True 2.0 15.00 2603 106 1.00× 10−2 1.00× 10−3 5.76× 10−3 2.94× 10−4 Vr0 1.72
0.7 True 15 False 2.0 15.00 2700 116 1.00× 10−2 4.88× 10−4 5.56× 10−3 1.19× 10−3 Vr0 9.74
0.7 False 1 True 2.0 15.01 2528 532 1.00× 10−2 6.54× 10−4 5.94× 10−3 1.15× 10−4 Vw0 6.29
0.7 False 1 False 2.0 15.00 2486 560 1.00× 10−2 1.00× 10−5 6.03× 10−3 2.51× 10−3 Vr0 2.26× 101

0.7 False 15 True 2.0 15.01 2478 107 1.00× 10−2 1.00× 10−3 6.05× 10−3 1.31× 10−4 Vr0 5.15× 10−1

0.7 False 15 False 2.0 15.01 2187 91 1.00× 10−2 8.04× 10−4 6.86× 10−3 5.52× 10−4 Vr0 3.98

Continued on next page.
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Table A.1: Complete results from simulations of SMIB system (continued).

Maximum MSE

Step scaling
factor

Step increase
limit

Step fixed
for [steps]

Step decrease
limit

Disturbance [s]
Simulated

time [s]
Steps

Step
changes

Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Value Variable
Distance

from ideal

0.6 True 1 True 2.0 15.01 2576 785 1.00× 10−2 5.69× 10−4 5.83× 10−3 2.87× 10−4 Vr0 9.88
0.6 True 1 False 2.0 15.01 2608 897 1.00× 10−2 1.55× 10−4 5.75× 10−3 9.73× 10−4 Vr0 1.37× 101

0.6 True 15 True 2.0 15.01 2674 120 1.00× 10−2 1.00× 10−3 5.61× 10−3 4.38× 10−4 Vr0 3.02
0.6 True 15 False 2.0 15.00 2918 140 1.00× 10−2 4.18× 10−4 5.14× 10−3 1.36× 10−3 Vr0 1.13× 101

0.6 False 1 True 2.0 15.00 2481 716 1.00× 10−2 5.69× 10−4 6.05× 10−3 1.17× 10−4 Vw0 8.81
0.6 False 1 False 2.0 - - - - - - - - -
0.6 False 15 True 2.0 15.01 2427 92 1.00× 10−2 1.00× 10−3 6.18× 10−3 1.92× 10−4 Vr0 7.82× 10−1

0.6 False 15 False 2.0 15.01 2222 99 1.00× 10−2 6.89× 10−4 6.75× 10−3 6.11× 10−4 Vr0 4.52

0.5 True 1 True 2.0 15.00 2748 1596 1.00× 10−2 4.52× 10−4 5.46× 10−3 2.23× 10−4 Vr0 2.09× 101

0.5 True 1 False 2.0 15.00 2805 1735 1.00× 10−2 1.98× 10−4 5.35× 10−3 8.80× 10−4 Vr0 2.38× 101

0.5 True 15 True 2.0 15.00 3034 166 1.00× 10−2 1.00× 10−3 4.94× 10−3 6.67× 10−4 Vr0 5.18
0.5 True 15 False 2.0 15.00 3246 175 1.00× 10−2 3.49× 10−4 4.62× 10−3 1.57× 10−3 Vr0 1.32× 101

0.5 False 1 True 2.0 15.01 2276 1398 1.00× 10−2 4.52× 10−4 6.59× 10−3 1.30× 10−4 Vw0 1.82× 101

0.5 False 1 False 2.0 - - - - - - - - -
0.5 False 15 True 2.0 15.01 2567 121 1.00× 10−2 1.00× 10−3 5.85× 10−3 1.85× 10−4 Vr0 9.49× 10−1

0.5 False 15 False 2.0 15.00 2332 121 1.00× 10−2 5.74× 10−4 6.43× 10−3 6.61× 10−4 Vr0 5.00
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Table A.2: Complete results from simulations of 3MIB system.

Maximum MSE

Step scaling
factor

Step increase
limit

Step fixed
for [steps]

Step decrease
limit

Disturbance [s]
Simulated

time [s]
Steps

Step
changes

Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Value Variable
Distance

from ideal

1.0 True 1 True 2.0 25.00 3752 1056 1.00× 10−2 4.34× 10−4 6.66× 10−3 7.82× 10−3 Vr0 4.33× 101

1.0 True 1 False 2.0 25.01 3755 1037 1.00× 10−2 2.61× 10−4 6.66× 10−3 7.95× 10−3 Vr0 4.25× 101

1.0 True 15 True 2.0 25.00 2725 29 1.00× 10−2 1.00× 10−3 9.17× 10−3 1.27× 10−3 Vr0 2.10× 10−1

1.0 True 15 False 2.0 25.00 2767 36 1.00× 10−2 6.80× 10−4 9.03× 10−3 1.43× 10−3 Vr0 5.17× 10−1

1.0 False 1 True 2.0 25.00 3077 558 1.00× 10−2 4.32× 10−4 8.12× 10−3 4.20× 10−3 Vr0 2.24× 101

1.0 False 1 False 2.0 25.00 3433 804 1.00× 10−2 1.00× 10−5 7.28× 10−3 2.44× 10−1 Vr0 1.94× 102

1.0 False 15 True 2.0 25.01 2685 29 1.00× 10−2 1.00× 10−3 9.31× 10−3 1.30× 10−3 Vr0 2.10× 10−1

1.0 False 15 False 2.0 25.00 2661 26 1.00× 10−2 1.00× 10−3 9.39× 10−3 1.38× 10−3 Vr0 1.20× 10−1

0.9 True 1 True 2.0 25.00 3905 1140 1.00× 10−2 3.75× 10−4 6.40× 10−3 8.40× 10−3 Vr0 4.68× 101

0.9 True 1 False 2.0 25.01 3919 1155 1.00× 10−2 2.33× 10−4 6.38× 10−3 8.56× 10−3 Vr0 4.75× 101

0.9 True 15 True 2.0 25.01 2753 28 1.00× 10−2 1.00× 10−3 9.08× 10−3 1.38× 10−3 Vr0 1.91× 10−1

0.9 True 15 False 2.0 25.01 2789 30 1.00× 10−2 6.12× 10−4 8.96× 10−3 1.59× 10−3 Vr0 3.58× 10−1

0.9 False 1 True 2.0 25.00 3170 605 1.00× 10−2 3.90× 10−4 7.89× 10−3 4.62× 10−3 Vr0 2.44× 101

0.9 False 1 False 2.0 25.01 3943 1046 1.00× 10−2 1.00× 10−5 6.34× 10−3 8.53× 10−3 Vr0 4.30× 101

0.9 False 15 True 2.0 25.01 2731 24 1.00× 10−2 1.00× 10−3 9.15× 10−3 1.44× 10−3 Vr0 1.36× 10−1

0.9 False 15 False 2.0 25.00 2685 26 1.00× 10−2 1.00× 10−3 9.31× 10−3 1.46× 10−3 Vr0 1.71× 10−1

0.8 True 1 True 2.0 25.01 4094 1191 1.00× 10−2 3.28× 10−4 6.11× 10−3 9.03× 10−3 Vr0 4.90× 101

0.8 True 1 False 2.0 25.00 4027 1137 1.00× 10−2 2.06× 10−4 6.21× 10−3 8.78× 10−3 Vr0 4.68× 101

0.8 True 15 True 2.0 25.00 2777 31 1.00× 10−2 1.00× 10−3 9.00× 10−3 1.40× 10−3 Vr0 3.12× 10−1

0.8 True 15 False 2.0 25.01 2832 34 1.00× 10−2 5.44× 10−4 8.83× 10−3 1.66× 10−3 Vr0 5.21× 10−1

0.8 False 1 True 2.0 25.01 3110 454 1.00× 10−2 3.67× 10−4 8.04× 10−3 4.15× 10−3 Vr0 1.81× 101

0.8 False 1 False 2.0 25.00 5222 997 1.00× 10−2 1.00× 10−5 4.79× 10−3 3.86× 103 Vt2 3.04× 106

0.8 False 15 True 2.0 25.00 2737 28 1.00× 10−2 1.00× 10−3 9.13× 10−3 1.43× 10−3 Vr0 2.11× 10−1

0.8 False 15 False 2.0 25.00 2706 27 1.00× 10−2 1.00× 10−3 9.24× 10−3 1.57× 10−3 Vr0 2.68× 10−1

0.7 True 1 True 2.0 25.00 3805 1004 1.00× 10−2 2.90× 10−4 6.57× 10−3 7.79× 10−3 Vr0 4.12× 101

0.7 True 1 False 2.0 25.01 3928 1116 1.00× 10−2 1.79× 10−4 6.37× 10−3 8.50× 10−3 Vr0 4.59× 101

0.7 True 15 True 2.0 25.01 2818 36 1.00× 10−2 1.00× 10−3 8.87× 10−3 1.49× 10−3 Vr0 5.32× 10−1

0.7 True 15 False 2.0 25.00 2895 44 1.00× 10−2 4.76× 10−4 8.63× 10−3 1.84× 10−3 Vr0 9.50× 10−1

0.7 False 1 True 2.0 25.00 3102 531 1.00× 10−2 3.38× 10−4 8.06× 10−3 3.94× 10−3 Vr0 2.12× 101

0.7 False 1 False 2.0 25.01 4029 910 1.00× 10−2 1.00× 10−5 6.21× 10−3 6.67× 103 Vt2 5.25× 106

0.7 False 15 True 2.0 25.01 2791 35 1.00× 10−2 1.00× 10−3 8.96× 10−3 1.61× 10−3 Vr0 5.33× 10−1

0.7 False 15 False 2.0 25.01 2755 31 1.00× 10−2 9.03× 10−4 9.07× 10−3 1.68× 10−3 Vr0 4.36× 10−1

Continued on next page.
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Table A.2: Complete results from simulations of 3MIB system (continued).

Maximum MSE

Step scaling
factor

Step increase
limit

Step fixed
for [steps]

Step decrease
limit

Disturbance [s]
Simulated

time [s]
Steps

Step
changes

Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Value Variable
Distance

from ideal

0.6 True 1 True 2.0 25.01 3925 1152 1.00× 10−2 2.45× 10−4 6.37× 10−3 8.23× 10−3 Vr0 4.73× 101

0.6 True 1 False 2.0 25.01 4099 1329 1.00× 10−2 1.37× 10−4 6.10× 10−3 8.94× 10−3 Vr0 5.47× 101

0.6 True 15 True 2.0 25.01 2853 39 1.00× 10−2 1.00× 10−3 8.76× 10−3 1.61× 10−3 Vr0 6.83× 10−1

0.6 True 15 False 2.0 25.01 2952 51 1.00× 10−2 4.08× 10−4 8.47× 10−3 1.94× 10−3 Vr0 1.25
0.6 False 1 True 2.0 25.00 3063 539 1.00× 10−2 2.94× 10−4 8.16× 10−3 3.73× 10−3 Vr0 2.15× 101

0.6 False 1 False 2.0 - - - - - - - - -
0.6 False 15 True 2.0 25.00 2803 37 1.00× 10−2 1.00× 10−3 8.92× 10−3 1.49× 10−3 Vr0 5.71× 10−1

0.6 False 15 False 2.0 25.00 2858 41 1.00× 10−2 7.74× 10−4 8.75× 10−3 1.61× 10−3 Vr0 7.60× 10−1

0.5 True 1 True 2.0 25.01 3940 1367 1.00× 10−2 3.30× 10−4 6.35× 10−3 7.87× 10−3 Vr0 5.62× 101

0.5 True 1 False 2.0 25.01 4334 1662 1.00× 10−2 1.24× 10−4 5.77× 10−3 9.66× 10−3 Vr0 6.86× 101

0.5 True 15 True 2.0 25.00 2953 59 1.00× 10−2 1.00× 10−3 8.46× 10−3 1.81× 10−3 Vr0 1.52
0.5 True 15 False 2.0 25.01 3017 66 1.00× 10−2 3.40× 10−4 8.29× 10−3 2.18× 10−3 Vr0 1.89
0.5 False 1 True 2.0 25.01 3023 791 1.00× 10−2 2.51× 10−4 8.27× 10−3 3.67× 10−3 Vr0 3.20× 101

0.5 False 1 False 2.0 - - - - - - - - -
0.5 False 15 True 2.0 25.00 2939 59 1.00× 10−2 1.00× 10−3 8.50× 10−3 1.63× 10−3 Vr0 1.49
0.5 False 15 False 2.0 25.00 2792 48 1.00× 10−2 6.45× 10−4 8.95× 10−3 1.91× 10−3 Vr0 1.12
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Table A.3: Complete results from simulations of STATCOM system.

Maximum MSE

Step scaling
factor

Step increase
limit

Step fixed
for [steps]

Step decrease
limit

Disturbance [s]
Simulated

time [s]
Steps

Step
changes

Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Value Variable
Distance

from ideal

1.0 True 1 True 2.0 - - - - - - - - -
1.0 True 1 False 2.0 10.01 1288 187 1.00× 10−2 1.00× 10−5 7.77× 10−3 4.99× 10−2 Vr0 1.34× 101

1.0 True 15 True 2.0 10.00 1205 22 1.00× 10−2 1.00× 10−3 8.30× 10−3 2.77× 10−1 Vr0 4.63
1.0 True 15 False 2.0 10.00 1380 30 1.00× 10−2 4.18× 10−5 7.25× 10−3 9.91× 10−1 Vr0 1.90× 101

1.0 False 1 True 2.0 - - - - - - - - -
1.0 False 1 False 2.0 10.00 1433 169 1.00× 10−2 1.00× 10−5 6.98× 10−3 1.99 Vt1 4.08× 101

1.0 False 15 True 2.0 10.00 1121 16 1.00× 10−2 1.00× 10−3 8.92× 10−3 6.41× 10−2 Vr0 3.70× 10−1

1.0 False 15 False 2.0 10.00 1152 14 1.00× 10−2 9.65× 10−4 8.68× 10−3 9.10× 10−2 Vr0 8.35× 10−1

0.9 True 1 True 2.0 - - - - - - - - -
0.9 True 1 False 2.0 10.00 1307 162 1.00× 10−2 1.00× 10−5 7.65× 10−3 5.10× 10−2 Vr0 1.15× 101

0.9 True 15 True 2.0 10.01 1240 21 1.00× 10−2 1.00× 10−3 8.07× 10−3 2.80× 10−1 Vr0 4.68
0.9 True 15 False 2.0 10.01 1428 30 1.00× 10−2 3.81× 10−5 7.01× 10−3 9.72× 10−1 Vr0 1.86× 101

0.9 False 1 True 2.0 - - - - - - - - -
0.9 False 1 False 2.0 10.01 1440 238 1.00× 10−2 1.00× 10−5 6.95× 10−3 1.98 Vt1 4.25× 101

0.9 False 15 True 2.0 10.01 1120 17 1.00× 10−2 1.00× 10−3 8.93× 10−3 6.38× 10−2 Vr0 4.19× 10−1

0.9 False 15 False 2.0 10.01 1182 13 1.00× 10−2 8.69× 10−4 8.46× 10−3 9.21× 10−2 Vr0 8.55× 10−1

0.8 True 1 True 2.0 - - - - - - - - -
0.8 True 1 False 2.0 10.01 1324 103 1.00× 10−2 1.00× 10−5 7.56× 10−3 4.97× 10−2 Vr0 6.92
0.8 True 15 True 2.0 10.01 1259 24 1.00× 10−2 1.00× 10−3 7.94× 10−3 2.87× 10−1 Vr0 4.85
0.8 True 15 False 2.0 10.01 1452 32 1.00× 10−2 3.44× 10−5 6.89× 10−3 1.02 Vr0 1.96× 101

0.8 False 1 True 2.0 - - - - - - - - -
0.8 False 1 False 2.0 10.01 1475 78 1.00× 10−2 1.00× 10−5 6.78× 10−3 2.15 Vt1 4.26× 101

0.8 False 15 True 2.0 10.00 1159 19 1.00× 10−2 1.00× 10−3 8.62× 10−3 6.27× 10−2 Vr0 5.32× 10−1

0.8 False 15 False 2.0 10.01 1213 17 1.00× 10−2 7.72× 10−4 8.24× 10−3 9.39× 10−2 Vr0 9.44× 10−1

0.7 True 1 True 2.0 - - - - - - - - -
0.7 True 1 False 2.0 10.01 1347 178 1.00× 10−2 1.00× 10−5 7.43× 10−3 5.13× 10−2 Vr0 1.27× 101

0.7 True 15 True 2.0 10.01 1278 30 1.00× 10−2 1.00× 10−3 7.83× 10−3 2.89× 10−1 Vr0 4.99
0.7 True 15 False 2.0 10.01 1482 40 1.00× 10−2 4.11× 10−5 6.75× 10−3 1.02 Vr0 1.96× 101

0.7 False 1 True 2.0 - - - - - - - - -
0.7 False 1 False 2.0 10.00 1831 335 1.00× 10−2 1.00× 10−5 5.46× 10−3 3.86× 103 Vt0 7.77× 104

0.7 False 15 True 2.0 10.01 1199 24 1.00× 10−2 1.00× 10−3 8.34× 10−3 6.34× 10−2 Vr0 8.92× 10−1

0.7 False 15 False 2.0 10.00 1231 23 1.00× 10−2 6.76× 10−4 8.12× 10−3 9.62× 10−2 Vr0 1.21

Continued on next page.
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Table A.3: Complete results from simulations of STATCOM system (continued).

Maximum MSE

Step scaling
factor

Step increase
limit

Step fixed
for [steps]

Step decrease
limit

Disturbance [s]
Simulated

time [s]
Steps

Step
changes

Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Value Variable
Distance

from ideal

0.6 True 1 True 2.0 - - - - - - - - -
0.6 True 1 False 2.0 10.01 1349 158 1.00× 10−2 1.00× 10−5 7.41× 10−3 5.08× 10−2 Vr0 1.12× 101

0.6 True 15 True 2.0 10.01 1327 36 1.00× 10−2 1.00× 10−3 7.54× 10−3 2.97× 10−1 Vr0 5.28
0.6 True 15 False 2.0 10.00 1583 51 1.00× 10−2 3.53× 10−5 6.32× 10−3 1.12 Vr0 2.17× 101

0.6 False 1 True 2.0 - - - - - - - - -
0.6 False 1 False 2.0 - - - - - - - - -
0.6 False 15 True 2.0 10.00 1247 28 1.00× 10−2 1.00× 10−3 8.02× 10−3 6.30× 10−2 Vr0 1.19
0.6 False 15 False 2.0 10.00 1244 22 1.00× 10−2 5.79× 10−4 8.04× 10−3 9.54× 10−2 Vr0 1.16

0.5 True 1 True 2.0 - - - - - - - - -
0.5 True 1 False 2.0 10.01 1369 288 1.00× 10−2 1.00× 10−5 7.31× 10−3 5.08× 10−2 Vr0 2.12× 101

0.5 True 15 True 2.0 10.01 1416 39 1.00× 10−2 1.00× 10−3 7.06× 10−3 2.96× 10−1 Vr0 5.35
0.5 True 15 False 2.0 10.01 1615 50 1.00× 10−2 1.94× 10−5 6.19× 10−3 9.62× 10−1 Vr0 1.86× 101

0.5 False 1 True 2.0 - - - - - - - - -
0.5 False 1 False 2.0 - - - - - - - - -
0.5 False 15 True 2.0 10.01 1233 29 1.00× 10−2 1.00× 10−3 8.11× 10−3 6.34× 10−2 Vr0 1.26
0.5 False 15 False 2.0 10.00 1266 28 1.00× 10−2 4.83× 10−4 7.90× 10−3 9.43× 10−2 Vr0 1.47
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Table A.4: Complete results from simulations of MTDC system.

Maximum MSE

Step scaling
factor

Step increase
limit

Step fixed
for [steps]

Step decrease
limit

Disturbance [s]
Simulated

time [s]
Steps

Step
changes

Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Value Variable
Distance

from ideal

1.0 True 1 True 0.1 1.40 290 80 1.00× 10−2 7.73× 10−4 4.82× 10−3 9.49× 103 Vqt2 5.67
1.0 True 1 False 0.1 1.40 297 83 1.00× 10−2 3.51× 10−4 4.71× 10−3 9.09× 103 Vqt2 5.92
1.0 True 15 True 0.1 1.40 269 15 1.00× 10−2 1.00× 10−3 5.20× 10−3 1.13× 104 Vqt2 4.33× 10−1

1.0 True 15 False 0.1 1.40 279 13 8.67× 10−3 1.00× 10−3 5.02× 10−3 8.37× 103 Vqt2 1.19× 10−1

1.0 False 1 True 0.1 1.40 288 77 1.00× 10−2 7.73× 10−4 4.86× 10−3 9.39× 103 Vqt2 5.42
1.0 False 1 False 0.1 1.40 296 76 1.00× 10−2 3.51× 10−4 4.73× 10−3 9.49× 103 Vqt2 5.34
1.0 False 15 True 0.1 1.40 255 12 1.00× 10−2 1.00× 10−3 5.49× 10−3 1.28× 104 Vqt2 5.29× 10−1

1.0 False 15 False 0.1 1.40 264 13 1.00× 10−2 1.00× 10−3 5.31× 10−3 1.05× 104 Vqt2 2.70× 10−1

0.9 True 1 True 0.1 1.40 297 94 1.00× 10−2 6.95× 10−4 4.71× 10−3 8.53× 103 Vdt2 6.83
0.9 True 1 False 0.1 1.40 308 68 1.00× 10−2 3.12× 10−4 4.54× 10−3 9.10× 103 Vqt2 4.67
0.9 True 15 True 0.1 1.40 280 14 1.00× 10−2 1.00× 10−3 4.99× 10−3 1.00× 104 Vqt2 2.72× 10−1

0.9 True 15 False 0.1 1.41 281 15 9.80× 10−3 1.00× 10−3 4.99× 10−3 1.15× 104 Vqt2 4.59× 10−1

0.9 False 1 True 0.1 1.41 296 91 1.00× 10−2 6.95× 10−4 4.74× 10−3 1.02× 104 Vqt2 6.59
0.9 False 1 False 0.1 1.40 306 63 1.00× 10−2 3.12× 10−4 4.57× 10−3 9.18× 103 Vqt2 4.25
0.9 False 15 True 0.1 1.40 265 12 1.00× 10−2 1.00× 10−3 5.28× 10−3 9.78× 103 Vdt2 1.73× 10−1

0.9 False 15 False 0.1 1.41 279 12 1.00× 10−2 1.00× 10−3 5.04× 10−3 9.53× 103 Vqt2 1.61× 10−1

0.8 True 1 True 0.1 1.41 304 40 1.00× 10−2 6.25× 10−4 4.62× 10−3 1.01× 104 Vqt2 2.35
0.8 True 1 False 0.1 1.40 313 40 1.00× 10−2 2.74× 10−4 4.48× 10−3 9.44× 103 Vqt2 2.34
0.8 True 15 True 0.1 1.40 297 13 8.00× 10−3 1.00× 10−3 4.72× 10−3 9.91× 103 Vqt2 2.46× 10−1

0.8 True 15 False 0.1 1.40 303 16 9.89× 10−3 1.00× 10−3 4.62× 10−3 9.72× 103 Vqt2 4.03× 10−1

0.8 False 1 True 0.1 1.40 302 37 1.00× 10−2 6.25× 10−4 4.65× 10−3 1.02× 104 Vqt2 2.10
0.8 False 1 False 0.1 1.40 315 35 1.00× 10−2 2.74× 10−4 4.45× 10−3 8.98× 103 Vqt2 1.93
0.8 False 15 True 0.1 1.40 282 16 1.00× 10−2 1.00× 10−3 4.96× 10−3 1.19× 104 Vqt2 5.46× 10−1

0.8 False 15 False 0.1 1.40 288 16 1.00× 10−2 9.61× 10−4 4.86× 10−3 1.02× 104 Vdt2 4.15× 10−1

0.7 True 1 True 0.1 1.40 313 63 1.00× 10−2 6.25× 10−4 4.47× 10−3 8.92× 103 Vqt2 4.25
0.7 True 1 False 0.1 1.40 326 75 1.00× 10−2 2.36× 10−4 4.29× 10−3 8.78× 103 Vqt2 5.25
0.7 True 15 True 0.1 1.40 314 18 8.00× 10−3 1.00× 10−3 4.46× 10−3 9.10× 103 Vqt2 5.41× 10−1

0.7 True 15 False 0.1 1.40 319 18 8.46× 10−3 1.00× 10−3 4.40× 10−3 1.11× 104 Vqt2 6.29× 10−1

0.7 False 1 True 0.1 1.40 311 60 1.00× 10−2 6.25× 10−4 4.50× 10−3 8.83× 103 Vqt2 4.00
0.7 False 1 False 0.1 1.40 322 69 1.00× 10−2 2.36× 10−4 4.35× 10−3 9.32× 103 Vqt2 4.76
0.7 False 15 True 0.1 1.40 300 17 1.00× 10−2 1.00× 10−3 4.66× 10−3 8.82× 103 Vdt2 4.46× 10−1

0.7 False 15 False 0.1 1.40 315 16 1.00× 10−2 8.41× 10−4 4.44× 10−3 9.09× 103 Vqt2 3.94× 10−1

Continued on next page.
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Table A.4: Complete results from simulations of MTDC system (continued).

Maximum MSE

Step scaling
factor

Step increase
limit

Step fixed
for [steps]

Step decrease
limit

Disturbance [s]
Simulated

time [s]
Steps

Step
changes

Max. step
length [s]

Min. step
length [s]

Mean step
length [s]

Value Variable
Distance

from ideal

0.6 True 1 True 0.1 1.40 305 47 1.00× 10−2 6.25× 10−4 4.59× 10−3 8.54× 103 Vqt2 2.92
0.6 True 1 False 0.1 1.40 327 91 1.00× 10−2 2.00× 10−4 4.28× 10−3 8.79× 103 Vqt2 6.59
0.6 True 15 True 0.1 1.40 326 16 8.00× 10−3 1.00× 10−3 4.30× 10−3 9.43× 103 Vqt2 4.17× 10−1

0.6 True 15 False 0.1 1.40 354 21 8.00× 10−3 1.00× 10−3 3.95× 10−3 9.14× 103 Vqt2 8.06× 10−1

0.6 False 1 True 0.1 1.40 307 52 1.00× 10−2 6.25× 10−4 4.56× 10−3 9.06× 103 Vqt2 3.34
0.6 False 1 False 0.1 1.40 318 75 1.00× 10−2 2.00× 10−4 4.40× 10−3 8.64× 103 Vdt2 5.25
0.6 False 15 True 0.1 1.40 310 15 1.00× 10−2 1.00× 10−3 4.53× 10−3 9.83× 103 Vqt2 3.51× 10−1

0.6 False 15 False 0.1 1.40 306 19 1.00× 10−2 7.20× 10−4 4.57× 10−3 1.06× 104 Vdt2 6.63× 10−1

0.5 True 1 True 0.1 1.41 314 90 1.00× 10−2 6.25× 10−4 4.47× 10−3 9.59× 103 Vqt2 6.50
0.5 True 1 False 0.1 1.41 329 107 1.00× 10−2 1.64× 10−4 4.27× 10−3 9.39× 103 Vqt2 7.92
0.5 True 15 True 0.1 1.40 356 20 8.00× 10−3 1.00× 10−3 3.94× 10−3 9.28× 103 Vqt2 7.32× 10−1

0.5 True 15 False 0.1 1.40 390 25 8.01× 10−3 1.00× 10−3 3.60× 10−3 9.16× 103 Vqt2 1.14
0.5 False 1 True 0.1 1.41 313 97 1.00× 10−2 6.25× 10−4 4.49× 10−3 9.43× 103 Vqt2 7.09
0.5 False 1 False 0.1 1.40 330 128 1.00× 10−2 1.64× 10−4 4.25× 10−3 9.03× 103 Vqt2 9.67
0.5 False 15 True 0.1 1.40 362 24 1.00× 10−2 1.00× 10−3 3.87× 10−3 1.07× 104 Vqt2 1.08
0.5 False 15 False 0.1 1.40 393 26 1.00× 10−2 6.00× 10−4 3.56× 10−3 8.84× 103 Vqt2 1.22
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