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Abstract

With increased integration of power electronic equipment and distributed energy genera-
tion, the modern power system has become more prone to harmonic pollution. As isolated
systems categorized by low inertia such as microgrids are more common, the presence
of non-linear distortion is becoming an increasing problem. The most common methods
used for surveillance in the power system are as of now based on average value calcula-
tions. They are thus not suited for the rising non-linearity caused by the harmonics in the
evolving system. For monitoring and control equipment to keep operating with adequate
performance, there is a need for alternative surveillance methods capable of instantaneous
frequency and amplitude detection.

This thesis aims to explore the use of adaptive data analysis as an alternative surveil-
lance method for harmonic detection in the power system. Empirical Mode Decomposi-
tion (EMD) and its real-time extension, Online EMD, have been used in conjunction with
Hilbert-Transform (HT) and Fast Fourier Transform (FFT) for extensive instantaneous fre-
quency and amplitude identification. First, a comparison of the decomposition quality of
EMD and Online EMD is made using synthetic signals, looking at different stoppage cri-
teria and their reaction to disturbances. The methods have then been applied for harmonic
detection in an actual voltage and current measurement taken from a wind turbine gener-
ator. The measurements have been decomposed by EMD, utilizing FFT and a recreated
boundary condition map to construct appropriate masking signals to avoid mode mixing.
The use of masking signals to avoid mode-mixing has then been adapted and used in the
Online EMD for the same measurements. As adequately pure IMFs are extracted, they are
removed from the original signal, and the new resulting signal is treated as new input for
further decomposition. As all relevant modes are extracted, they are analyzed by HT and
FFT, and the results from the EMD and Online EMD are compared.

Essentially, the methods proved to be powerful tools for harmonic detection but requires
techniques to handle mode mixing when applied to complex signals. The use of masking
signals is shown to be a highly effective mode mixing separation technique and is seen to
also be effective when adapted for use with the Online EMD.

i



ii



Sammendrag

Den økende integreringen av kraftelektroniske komponenter har sammen med mer dis-
tribuert generering av energi ført til at kraftsystemet er mer usatt for harmonisk foruren-
sning. Isolerte systemer typisk kategorisert av lavt treghetsmoment er spesielt usatt, og
har gjort ikke-lineære harmonisk støy til et økende problem. Dagens monitoreringsutstyr
benytter seg i stor grad av metoder som baserer seg på gjennomsnittlige verdier og utreg-
ninger, og er dermed ikke egnet for å benyttes ved større grad av ikke-linearitet. Det trengs
dermed en alternativ metode med mulighet for å beregne momentant frekvens og ampli-
tude slik at kontrollutstyr skal kunne fungere med nødvendig nøyaktighet og presisjon.

Denne oppgaven utforsker bruken av adaptiv data analyse som en alternativ metode for
detektering av harmoniske komponenter i kraftsystemet. Empirical Mode Decomposition
(EMD) og sanntids versjonen Online EMD har blitt brukt sammen med Hilbert-Transform
(HT) og Fast Fourier Transform (FFT) for å se nærmere på muligheten for momentan
frekvens og amplitude beregning. En sammenlikning av dekomposisjon kvaliteten til
EMD og Online EMD er gjort for forskjellige stop-kriterier og forstyrrelser. Deretter
har metodene blitt brukt for å indentifisere det harmoniske innholdet i en virkelig strøm og
spenningsmåling henter fra en vind turbin. EMD ble brukt til å dekomponere målingene,
og FFT ble brukt sammen med et grensetilstands-kart for å konstruere maskerings signal
for å forhindre frekvens miksing. Bruken av maskerings signal ble så modifisert til bruk
sammen med Online EMD, for de samme målingene. Tilfredsstillende IMFer ble deretter
fjernet fra det originale signalet og det resulterende signalet ble analysert på nytt. Etter at
alle relevante komponenter har blitt fjernet fra signalet blir de videre analysert ved hjelp
av HT og FFT, og resultatene fra EMD og Online EMD blir sammenliknet.

Metodene brukt i denne oppgaven viste seg å være gode verktøy for å finne det harmoniske
innholdet i et signal, men krever teknikker som kan behandle mode-miksing ved mer kom-
plekse signaler. Maskerings-signal var veldig effektiv seperasjons metode, og den viste seg
og også fungere godt sammen med Online EMD.
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Chapter 1
Introduction

1.1 Background and Motivation

This thesis is a continuation of a specialization project done prior to this work, thus the
background and motivation is here presented as an adapted and revised version from [1].

For a long time, the power system has been characterized by excellent power and fre-
quency quality, ensured by the high inertia rotating masses of the generators in the system.
As such, the frequency was not likely to deviate far from the fundamental frequency, usu-
ally keeping a steady 50 Hz or 60 Hz. However, as the electrical grid is evolving, new
components, such as power electronics converters, rectifiers, and adjustable speed drives,
now interact at a larger scale. Combined with the increase of non-linear loads, the electrical
grid is more prone to harmonic pollution as harmonic injection and non-linear distortions
are becoming common.

Power systems with no connection to a stiff grid, typically categorized by low inertia,
are especially susceptible to harmonic pollution. Isolated microgrids such as wind farms,
marine vessels, and solar microgrids are only some examples of such systems as large fre-
quency deviations caused by harmonics can cause significant damage. Furthermore, as a
result of more advanced inverter control, conditions with varying load demand may lead to
time-varying oscillations in such power systems [2]. To satisfy the operational conditions
of the low inertia microgrids, sophisticated control and monitoring methods are needed.
Monitoring methods linked to frequency-related issues have been relying on Fourier based
analysis, and the concept of instantaneous frequency has yet to be used on a larger scale
for monitoring or control purposes in the electric power system [3].

The standard methods used for data acquisition in the power system today assumes a
constant fundamental frequency, relying on average value calculations and only consid-
ered constant harmonics that are integer multiples of the fundamental frequency [4, 5, 6].
Looking at the IEC Standard 61000-4-7, it is apparent that the currently used methods are
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Chapter 1. Introduction

inaccurate when dealing with environments of time-varying angular frequency [7]. For
control and monitoring equipment to keep adequate control, measurement, and estimation
techniques relying on average values should transition to rely on instantaneous frequency
and amplitude [2][8]. However, using mathematical formulations to describe physical be-
havior in large scale systems can be challenging. Controllers relying on mathematical
models and approximations may lead to complex control schemes whose operations might
be challenging to understand, and implementation might be costly due to their complex
nature. As opposed to this high-fidelity modeling, this thesis explores the use of adap-
tive data analysis as an alternative method for frequency and harmonic monitoring in the
power system. Using methods capable of handling both non-linear and non-stationary sig-
nals, available measurements are used to characterize the grid under investigation. Relying
on instantaneous values, the control systems used in microgrids should be able to perform
faster and more accurate actions, resulting in a more secure and stable power grid.

1.2 Objective and Scope of Work
This thesis’s objective is to explore adaptive data analysis as an alternative to present meth-
ods used for monitoring and control in the power system. This is done by assessing the
potential of EMD and online EMD when used in conjunction with HT and FFT. Thus, the
main methods are thorough review of existing literature and further implementation of the
methods in MATLAB. Further investigation is done by constructing synthetic signals to
compare decomposition quality, and by applying the detection methods to an actual voltage
and current measurement to identify the harmonic content. Techniques for mode-mixing
separation in the EMD are also explored, mainly focusing on masking signals constructed
by the help of frequency identification through FFT and a boundary condition map. This
technique is then adapted and investigated when used with the Online EMD.

1.3 Structure of Thesis
• Chapter 1: Introduction - Here the background and motivation for this thesis is

presented. Also included are the Objective and Scope of work, and the structure of
the thesis.

• Chapter 2: State-of-the-art in Methods for Frequency Identifications in Mi-
crogrids - This chapter presents a more thorough theoretical background for the
relevant techniques used in this thesis. A brief introduction to the concepts of mi-
crogrids and harmonics is also given.

• Chapter 3: Comparison of Classical and Online EMD - In this chapter a compar-
ison of the decomposition quality of classical and Online EMD is made by various
synthetic signals.

• Chapter 4: Frequency and Amplitude Identification Through HHT and Online
EMD - In this chapter a real voltage and current measurement is analysed by EMD,
Online EMD, HT and FFT.
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1.3 Structure of Thesis

• Chapter 5: Conclusion and Future Work - Conclusion of the thesis and recom-
mendations for future work.

• Appendix A: - Contains more graphs from the step-by-step decomposition of sig-
nals L1 and L12, and a recreation of the original signals from the resulting IMFs. A
closer look at the IF and IA plot for the resulting IMFs is also included.
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Chapter 2
State-of-the-art in Methods for
Frequency Identification in
Microgrids

The state of art were reviewed, and an identification of some of the relevant background
material were carried out in the project preceding this thesis [1]. The relevant sections
have thus been revised and adapted to be presented in this masters thesis.

2.1 Concept of Microgrids and Harmonics

2.1.1 Microgrids
The definition of a microgrid given by the US department of energy is [9]: ”a group
of interconnected loads and distributed energy resources with clearly defined electrical
boundaries that act as a single controllable entity for the grid and can connect and dis-
connect from the grid to enable it to operate in both grid-connected or island modes”.
Being a combination of storage devices, distributed energy sources, and flexible loads, the
microgrid is an entirely localized energy system capable of operating both connected and
disconnected to the traditional macro grid. Disconnecting from the grid is often called
“islanding,” while the interconnection point is referred to as Point of Common Coupling
(PCC) [10].

An essential aspect of the microgrid is local generation capability, thus integrating local
renewable energy sources such as solar, wind, small hydro, geothermal, waste-to-energy,
and combined heat and power is done to ensure reliable generation of power when not
connected to the main grid. Less distance between generation and load leads to lower
transmission losses, resulting in a more efficient power system. By integrating the local
generation, the microgrid can operate as a power source for the main grid in times of out-
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age or failure. This not only ensures a more secure and reliable main grid but results in
more reliable and affordable energy for both urban and rural communities.

Contrary to the high inertia of the traditional power system, lower inertia is a significant
concern for the microgrid as frequency, and speed deviation is inversely proportional to
the inertia of the system. The high inertia rotating masses, i.e., synchronous generators
in the traditional power grid, serve as storage for additional energy in the system during
disturbances, thus ensuring constant voltage and frequency levels [11]. Furthermore, an
increased load on the system causes a mismatch between the mechanical and electrical
power, thus slowing the rotor using the kinetic energy to compensate for the difference
in supply and demand. However, the low inertia of the microgrid makes such control
schemes ineffective when dealing with system transients. The microgrid thus needs so-
phisticated frequency control and surveillance, as well as efficient energy storage to deal
with transients when operating independently from the main grid.

2.1.2 Harmonics
This section provides a short introduction to the concept of harmonics. The information
presented here is mainly from [12], where more thorough information on harmonics and
its impact on the power system can be found. Here harmonics refers to the components
of a waveform that is an integer multiple of that waveform’s fundamental frequency [12].
When mentioned in the power system, harmonics usually refer to the harmonic content
found in either the current or voltage of the system. Thus, for a power system with a
fundamental frequency of 50 Hz, the third harmonic implies the presence of a 150 Hz
component and the fourth harmonic a 200 Hz component. Thus, harmonic components
are referred to by order and is given by:

fh = h · fn (2.1)

Where fn is the fundamental frequency and h is the harmonic order. Such that the fifth
order harmonic f5 is given by

f5 = 5 · 50Hz = 250Hz (2.2)

Non-integer multiples of the fundamental frequency may also appear, though less com-
mon, this phenomenon is referred to as inter-harmonics. Harmonic voltages and currents
are sources of many problems within the power system. These problems include over-
heating of equipment and cabling, reduced energy efficiency, and reduced functionality
due to loss of electromagnetic compatibility [12]. Furthermore, the harmonic current from
installations can flow back into the network propagating as voltage harmonics, causing the
supply waveform to be distorted, leading to increased network losses and lower reliabil-
ity for several types of equipment [12]. The presence of harmonic current in the electric
supply system is not a new phenomenon. The phenomenon was initially produced by the
mercury arc rectifiers when converting AC to DC for railway electrification, by industrial
DC variable speed drives, and by direct half-wave rectification used in radio and television
sets [12]. However, the modern power system relying more on power electronic compo-
nents and other passive equipment interacting at a larger scale has caused the number of
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units causing harmonics to increase[12].

Total Harmonic Distortion (THD) is used to measure the degree of harmonics present in
the power system. THD is defined as the ratio between the harmonics and the fundamental
frequency present in the signal. Let the current with harmonic presence be given as:

is(t) = is1(t) +
∑
h6=1

ish(t) (2.3)

Where is1 is the fundamental component and ish(t) the harmonic component. The THD
of the current in 2.3 referreing to RMS value is given as [13]:

%THD = 100 ·
√
i2s − i2s1
is1

= 100 ·
√∑
h6=1

(
ish
is1

)2 (2.4)

In an ideal power system, the current and voltage waveforms are pure sinusoids with no
distortions. Realistically the system will contain some harmonics. When a non-linear re-
lation between the applied voltage and current flowing in the load occurs, non-sinusoidal
currents (and voltages) are generated. This should not be confused with a phase shift
between the waveforms, as usually seen in simple circuits containing capacitance or in-
ductance, as the current flowing will still be proportional to the voltage. However, given a
circuit consisting of a full-wave rectifier and a capacitor, the supply voltage must exceed
that stored on the reservoir’s capacitor for the current to flow. Thus, the current only flows
when the voltage is close to the peak of the voltage sine wave [12]. This produces a cyclic
waveform as seen in Figure 2.1(b).

(a) Current waveform in a linear load (b) Current waveform in a non linear load

Figure 2.1: Waveforms of linear and non linear loads [12]

Though this waveform is a cropped version of the waveform given a linear load as seen
in Figure 2.1(a), this current waveform can be deconstructed into several sine waves that
together result in what can be seen in Figure 2.1(b). All the additional sine waves contribut-
ing to the flat shape will be the resulting harmonics in the wave. This makes it apparent
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that the distorted current waveform, as seen in Figure 2.1(b) is the sum of the fundamental
harmonic and a percentage of some higher-order harmonics.
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2.2 Fourier Transform

2.2 Fourier Transform
The Fourier transform (FT), developed by Jean B.J Fourier in 1807, is regarded as a pow-
erful tool in spectrum analysis. However, the method did not gain its current popularity
before the development of the Fast Fourier Transform (FFT) in 1965 [14]. Based on the
Discrete Fourier Transform (DTF), the FFT is a method for efficiently computing the finite
FT of N complex data points in Nlog2N operations [15]. Defined in Equation (2.5), the
FT results in the Fourier expansion seen in Equation (2.6), a trigonometric function that is
complete, convergent, orthogonal and unique.

F{g(t)} = G(f) =

∫ ∞
−∞

g(t)e−2iπftdt (2.5)

This allows every signal to be decomposed into a combination of sinusoidal waves x(t),
each with constant amplitude aj and frequency ωj [16].

x(t) =
∑
j

aje
iωjt (2.6)

The discrete implementation of the FT is given in Equation (2.7).

Ar =

N−1∑
k=1

Xke
−2πirk
N r = 0, ...., N − 1 (2.7)

Where Ar is the rth cofficient of the DFT, j =
√
−1 and Xk denotes the kth sample of the

time series consisting of N samples.

The FFT iteratively calculates coefficients, combining progressively larger weighted sums
of data samples to produce the resulting DFT coefficients seen in Equation 2.7 [17]. By
leveraging the use of symmetries in the transformation, the FFT is a more efficient imple-
mentation of the DFT, effectively reducing the number of computing operations needed
from O(N2) to O(NlogN). However, it is also important to note that as the FFT is an in-
tegral transformation that imparts a domain change from time to frequency, it is limited by
the uncertainty principle. Thus, the determination of frequency is time interval dependent,
imposing a strong limitation when the demand for both frequency and time resolution is
very high[16].

2.2.1 Fourier Transform in the Power System

The FFT is as of today the standard method used for harmonic measuring and monitoring
in the power system [4, 5, 6]. When applying Fourier series for harmonic measurement
in the electrical power grid, it should be implemented as given by IEEE 519 and IEC
61000-4-7 [6, 4, 5] as seen in Equation (2.8) to (2.15).

f(t) = c0 +

∞∑
m=1

cm sin(
m

N
ω1t+ ϕm) (2.8)
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cm =
√
a2m + b2m (2.9)

Cm =
cm√

2
(2.10)

ϕm = arctan(
am
bm

) if bm ≥ 0 (2.11)

ϕm = π + arctan(
am
bm

) if bm ≤ 0 (2.12)

bm =
2

Tw

∫ Tw

0

f(t) sin(
m

N
ω1t+ φm)dt (2.13)

am =
2

Tw

∫ Tw

0

f(t) cos(
m

N
ω1t+ φm)dt (2.14)

c0 =
1

Tw

∫ Tw

0

f(t)dt (2.15)

The signal is decomposed into a finite set of sinusoids of fundamental frequency ω1 and
mean value cm. Tw is the width of the time window in which the Fourier transform is
performed, while N denotes the number of fundamental periods within said window. The
harmonic order, or the ordinal number related to the frequency basis (f = 1

Tw
), is given

by m. Note that as the measurements obtained in the power system are of discrete-time,
the FT is not implemented exactly as in the equations above, but rather as an adapted ver-
sion to fit the FFT previously mentioned. Digital measurement instruments based on 50
Hz frequency systems are recommended by IEEE Standard 519, when applying FT based
techniques, to use a window length of 10 cycles i.e., Tw = 0.2 [4]. This results in new
spectral components every 0.2 seconds.As such, the method is not capable of instanta-
neous detection and will result in unreliable readings when time-varying frequencies or
inter-harmonics are present. The effect of a time-varying frequency on the FFT is referred
to as leakage. The energy at one point spreads to the adjacent frequencies, resulting in am-
plitude peaks spread over a larger frequency domain. In the presence of inter-harmonics
i.e., harmonics given by non-integer times the fundamental, a distorted amplitude split
between the closest integer frequency-bins can be observed. This is referred to as the
picket-fence-effect [5]. To further illustrate the FFT capabilities, it is applied to several
synthetic signals featuring different characteristics. The respective signals and their result-
ing transformation can be seen below in Figure 2.2 to 2.6.
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2.2 Fourier Transform

Figure 2.2: FFT applied to a linear and stationary signal x(t) = 2cos(2π1000t).

Figure 2.3: FFT applied to a signal with varying amplitude x(t) = (1+cos(2π50t))cos(2π1000t).

Figure 2.4: FFT applied to a signal with increasing frequency x(t) = 2cos(2π((z + 1000)t)). z
being the rate of frequency increase.
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Figure 2.5: FFT applied to a signal with increasing frequency and varying amplitude x(t) = (1 +
cos(π50t))cos(2π((z + 1000)t)). z being the rate of frequency increase.

Figure 2.6: FFT applied two superimposed signals x(t) = cos(2π800t) + 2cos(2π1000t).
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2.3 Hilbert Transform

The uncertainty principle limits the time-frequency relationship in many of the methods
used for time series analysis. Though this issue is addressed in versions such as Short Time
Fourier Transform (STFT), where the spectral window can be chosen based on the required
time and frequency resolution [16], or Wavelet Transform (WT) were the frequency and
time resolution is relative to the frequency of the signal [3], they are not capable of accu-
rate real-time tracking. Integral methods such as these are, by definition, not suited to deal
with varying frequency, as the frequency is not a function of time within the integral limit.
The differential equations can only see frequency as a constant, not a varying parameter.
Thus, it is necessary to introduce new characteristics; Instantaneous Frequency (IF) and
Instantaneous Amplitude (IA). By using the Hilbert Transform (HT) of a given time series,
a strong analytical signal is generated, making it possible to calculate the IA and IF.

The HT is an integral transform defined in the time domain as a convolution between
the Hilbert Transformer 1

πt and a function f(t) [18]:

f̂(t) =
1

π
P

∫ ∞
−∞

f(τ)

t− τ
dτ (2.16)

Where P indicates the Cauchy principal value.

Contrary to other transformations such as the FT, HT does not involve a domain change.
Thus the resulting transformed time series is not equivalent to the original signal. How-
ever, as HT can be represented by a phase shift of 90◦ to every Fourier component of a
function f̂(cos(t)) = sin(t),(i.e., a linear filter shifting the phase by π

2 while maintaining
the amplitude), four consecutive HT applied to a time series will result in the original rep-
resentation of said time series. Figure 2.7 shows how the real part of the HT represents the
envelope of the transformed signal.

Figure 2.7: A signal with varying amplitude and its envelope, calculated using the magnitude of the
Hilbert Transform
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The HT f̂(t) is related to the original signal f(t) such that together they create a strong
analytic signal, and can be expressed in exponential form as shown in Equation (2.17).

z(t) = f(t) + if̂(t) = A(t)eiϕ(t) (2.17)

where

A(t) =

√
f(t)2 + f̂(t)2 (2.18)

ϕ(t) = arctan(
f̂(t)

f(t)
) (2.19)

By expressing z(t) with an amplitude A(t) as in 2.18 and a phase ϕ(t) as in 2.19, the IF
can be expressed as the derivative of the phase, or as rate of change of phase, shown in
equation 2.20.

ω(t) =
1

2π

dϕ(t)

dt
(2.20)

As can be seen from Equation 2.17, a visualization of the HT can be achieved by viewing
the resulting analytical signal as a vector rotating in the complex plane with angular speed
ω(t) and magnitude A(t). A perfect circle represents a mono-variable time series with
constant amplitude and frequency, as a linear increase in phase at a constant magnitude
results in smooth rotation and a constant IF and IA. Using an arbitrary linearly increas-
ing phase (and magnitude) as a baseline, deviations from this line is the cause of change
in the calculated IF. The instantly calculated frequency makes it possible to handle both
varying and instantly changing frequencies in a mono-variable signal. However, given a
multi-variable signal, the IF will represent a mix of all frequencies in the signal with in-
creasing complexity depending on the number of components. It is thus commonly used
in conjunction with EMD to separate the modes of oscillation before the HT. This pro-
cess is referred to as the Hilbert-Huang Transform [19]. The definition of frequency as
a time-varying parameter is, however, highly controversial. Time and frequency are gen-
erally viewed as inverse quantities, thus making instantaneous localization of frequency
ambiguous at best [16]. Nevertheless, HT has been shown to determine the spectral peaks
for non-stationary signals quite well. Examples of the HT applied to different signals can
be seen in Figures 2.8 to 2.13.
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Figure 2.8: The complex phasor representation, instantaneous frequency and instantaneous
amplitude resulting from the HT applied to a linear and stationary signal x(t) = (1 +
cos(2π50t))cos(2π1000t).

Figure 2.9: The complex phasor representation, instantaneous frequency and instantaneous
amplitude resulting from the HT applied to a signal with varying amplitude x(t) = (1 +
cos(2π50t))cos(2π1000t).

Figure 2.10: The complex phasor representation, instantaneous frequency and instantaneous am-
plitude resulting from the HT applied to a signal with increasing frequency x(t) = 2cos(2π((z +
1000)t)). z being the rate of frequency increase.
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Figure 2.11: The complex phasor representation, instantaneous frequency and instantaneous am-
plitude resulting from the HT applied to a signal with increasing frequency and varying amplitude
x(t) = (1 + cos(π50t))cos(2π((z + 1000)t)). z being the rate of frequency increase.

Figure 2.12: The complex phasor representation, instantaneous frequency and instantaneous ampli-
tude resulting from the HT applied to a signal with offset x(t) = 2 + 2cos(2π1000t).

Figure 2.13: The complex phasor representation, instantaneous frequency and instantaneous am-
plitude resulting from the HT applied to two superimposed signals x(t) = cos(2π800t) +
2cos(2π1000t)
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2.4 Empirical Mode Decomposition
The Empirical Mode Decomposition (EMD) is a data-driven time-series method capable
of handling both non-linear and non-stationary signals. By considering oscillations on a
local level, the method separates multi-component time-series into a finite set of modes,
each representing zero-mean amplitude and frequency-modulated oscillations [20]. These
modes are referred to as intrinsic mode functions (IMFs). Requiring no a priori defined
basis system while fully capable of operating unsupervised, the method has proven to be
highly effective [21, 22, 23]. However, due to its adaptive nature, the method lacks an an-
alytical formulation, making theoretical analysis and performance evaluation challenging
[24]. As mentioned in section 2.3, EMD is referred to as Hilbert-Huang Transformation
(HHT) when used conjunction with the HT.

2.4.1 Intrinsic Mode Functions
An IMF is a function that satisfy two conditions [19]:

1. In the whole data set, the number of extrema and the number of zero crossings must
either equal or differ at most by one.

2. At any point, the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero.

The conditions limiting the IMFs are essential for defining a meaningful instantaneous
frequency and amplitude. The symmetry concerning the local zero mean, enforced by re-
quiring the mean of the envelopes constructed by local extrema to be zero, changes what
traditionally used to be a global requirement to a local one [19]. This reduces asymmetries
in the resulting waveform, further limiting fluctuations in the instantaneous frequency. To
remove all unwanted fluctuations and asymmetries, one could enforce the ideal require-
ment of ‘the local mean of the data being zero.’ However, it is immediately evident that
non-stationary signals would require a local time scale for each local mean, essentially be-
ing impossible to define [19]. However, using envelopes as an approximation to the ideal,
in combination with the first requirement, which is the traditional narrow-band require-
ment for a stationary Gaussian process, an IMF is not restricted to a narrow band signal.
Thus, an IMF can contain both amplitude and frequency modulation and can represent
non-stationary signals [19].

2.4.2 The Sifting process
The process in which EMD decomposes a signal into a set of IMFs is referred to as sifting.
The original signal x(t) is thus represented by IMFs xn(t) and a residue r(t), as can be
seen in Equation (2.21)

x(t) =
∑

xn(t) + r(t) (2.21)

The decomposition satisfies the perfect reconstruction property as superimposing all IMFs
and residue reconstructs the original signal without any loss of information [20].
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Sifting is illustrated in Figure 2.14, and Figure 2.15 shows the envelope and mean calcu-
lation for a given signal. The sifting process is summarized by the algorithm given below
[25]

• Step 0: Initialize n := 1, r0 = x(t)

• Step 1: Extract the n-th IMF accordingly:

(a) Set h0(t) = rn−1 and k := 1

(b) Identify all local maxima and minima of hk−1(t)

(c) Construct for hk−1(t) the upper envelope Uk−1(t) defined by the maxima, and
lower envelope Lk−1(t) defined by the minima, by using a fitting interpolation
method (traditionally cubic spline interpolation).

(d) Determine the mean mk−1(t) = 1
2 (Uk−1(t) − Lk−1(t)) of both envelops of

hk−1(t)

(e) Set hk(t) := hk−1(t)−mk−1(t)

(i) if hk(t) does not satisfy IMF criteria, set k → k+1 and repeat the process
starting at point (b)

(ii) if hk(t) satisfy the IMF criteria set xn(t) := hk(t) and rn(t) := rn−1(t)−
xn(t)

• Step 2: If rn(t) represents a residue, stop the process; if not set n → n + 1 and go
to step 1.

Figure 2.14: Flow diagram of the EMD algorithm [25].

18



2.4 Empirical Mode Decomposition

Figure 2.15: Example of the mean of a signal calculated by use of local envelopes based on local
extrema.

EMD applied to a signal composite of three frequency components is illustrated in Figure
2.16. As expected the sifting process decomposes the signal into three different IMFs.

Figure 2.16: EMD applied to a signal composite of three different frequencies.
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2.4.3 Stoppage Criteria
The sifting process serves two important functions; elimination of riding waves and smooth-
ing of uneven amplitudes [19]. Riding waves is defined by [26]

In a singal, if there exists a local minimum greater than zero between two
successive local maxima, or if there exists a local maximum less than zero be-
tween two successive local minima, the segment between these two successive
local maxima (or local minima) is called a riding wave.

The first function translates into ensuing meaningful instantaneous frequency, while the
second function handles cases of large amplitude disparity between waves. While these
functions are necessary for the decomposition and extraction of IMFs, they can when
overused rob IMFs of their physically meaningful characteristics [19]. As such, a signal
may be fragmented into physically meaningless IMFs that do not hold any relevance to the
original signal. Therefore, it is necessary to determine a stoppage criterion for the sifting
process that ensues the IMFs retain as much physical sense as possible while keeping the
mean close to zero. Some commonly used stoppage criteria are given below [16]:

1. Specifying a fixed number of siftings

2. Stopping when xn, or residue rn, is smaller than a pre-set value.

3. Standard deviation (SD) between two consecutive siftings is smaller than a pre-set
value.

4. Using an evaluating function*

The SD in the 3rd stopping criterion is often referred to as the Rilling stopping criterion
and is given by:

SD =

T∑
t=0

|(h1(k−1)(t)− h1k(t))|2

h21(k−1)(t)
(2.22)

A typical value given for the SD is set between 0.2 and 0.3 [19].

*An evaluating function proposed by [24] uses thresholds θ1 and θ2. Defining a mode
amplitude as in Equation (2.23) and an evaluating function as in Equation (2.24), sifting
is performed while σ(t) < θ1 for a fraction of the signal duration (1− α), and changes to
σ(t) < θ2 for the remaining fraction. Thus the method handles globally small fluctuations
while accounting for locally large excursions. Typical values for this method is α = 0.05,
θ1 = 0.05 and θ2 = 10θ1 [24].

a(t) :=
U(t)− L(t)

2
(2.23)

σ(t) := |m(t)

a(t)
| (2.24)
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2.4.4 End effect and boundary conditions
The estimation of envelops U(t) and L(t) is a critical aspect of the EMD. As the IMFs
are dependent on the mean calculated from these values, the technique used to connect
extrema can have a tremendous impact on the decomposition quality of the EMD. The
most common method used for connecting extrema is spline interpolation. Being piece-
wise composed function of polynomial order n, splines are n-1 times differentiable at their
knots acting as continuous functions [25]. The spline interpolation recommended by [19]
is the cubic spline, as though computationally costly, it usually yields the best approxima-
tion of the signal envelopes [25]. In some situations, other types of interpolation may be
better as the vital aspect is how well it is matched to the original signal.

Using spline interpolation to construct envelopes can cause mismatch at the boundaries
of the signal, causing increasingly larger fluctuations as the error propagates through the
IMFs [25]. The effect is caused by splines treating the first and last data points as knots
for both the upper and lower envelope, resulting in a mean with no physical meaning when
close to the ends of the signal [25]. As this mean is used for further extraction of IMFs,
improper boundary condition can impact all subsequent IMFs extracted. Over-sifting will
cause these errors to propagate further into their respective IMFs and can, if not handled,
render the resulting IMFs useless. An example of a boundary condition error propagating
through IMFs can be seen in Figure 2.17.

(a) EMD of the non-stationary time series
x(t) = sin(7t) + sin(4t) + 0.1t − 1 with
improper boundary conditions. Here the first
and last data point of the time series have
been treated as knots of x(t).

(b) EMD of time series given in (a) using
proper boundary conditions.

Figure 2.17: Example of improper and proper boundary conditions [25].

2.4.5 Mode mixing
The inability to distinguish between closely spaced spectral components is a common
issue in spectral analysis. This is also the case for EMD, as mode-mode mixing can cause
problems when decomposing a signal into a set of IMFs. However, an important aspect
of EMD is the IMFs representation of physically important characteristics in the original
signal [27]. Therefore, it is necessary to be aware of situations in which the fragmentation
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of a signal by EMD can cause the results to lose their physical meaning. An example of
this is the human perception of tones. When presented with two tones sufficiently close
in frequency, the ear will perceive these tones not as two separate entities but as a single
tone modulated in amplitude. This effect is commonly referred to as the beat-effect and is
shown in Figure 2.18. This can be expressed mathematically, as there is no difference in
expressing x(t) = cos(2πf1t) + cos(2πf2t) as x(t) = 2cosπ(f1 − f2)tcosπ(f1 + f2)t.
As such, one can wonder if a decomposition into two modes yields a more accurate answer
if the goal is a representation matched to perception rather than mathematics.

(a) Upper left: cos(2π30t). Upper
right: cos(2π5t). Bottom: cos(2π30t) +
cos(2π5t)

(b) Upper left: cos(2π30t). Upper right:
cos(2π35t). Bottom: cos(2π30t) +
cos(2π35t)

Figure 2.18: Beat effect — When the frequencies of the two superimposed tones are sufficiently far
apart(left) the two-tones interpretation is meaningful. When they get closer(right), an interpretation
in terms of a single tone modulated in amplitude is favored [27].

To maximize the potential of the EMD, it is necessary to know how and when it manages
to retrieve individual tones, and when it considers input as a single tone. Even if a full
decomposition is not accurate in a physical sense, a thorough understanding of the process
can be useful for understanding complex signals.

Expressing a two-tone composite signal by Equation (2.25)

x[n] = a1cos(2πf1 + ϕ1) + a2cos(2πf2 + ϕ2), f1 > f2 (2.25)

It has been discovered in [27] that the behavior of the EMD will depend on the relative
parameters a ≡ a2

a1
,f ≡ f2

f1
and ϕ ≡ ϕ2

ϕ1
. Thus the composite signal can instead be

expressed as seen in Equation (2.26).

x(t; a, f) = cos2πt+ acos(2πt+ ϕ), t ∈ R (2.26)

As the EMD extracts IMFs using a mean calculated by envelopes based on empirically
located extrema, it seems rather intuitive that the EMD will notice only components im-
pacting the final extrema in the superimposed signal. It is found in [27] that the contribu-
tion of extrema is dependent on parameters a and f . As there are three possible outcomes
i.e., clean separation of modes, no separation of modes, and something in-between, the
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relationship is divided into three outcomes. This has been extensively investigated in [27].
Below is a brief visualized recount of the findings reported.

Case 1: af < 1. If af < 1 the extrema rate in the superimposed signal is the same as the
high frequency (HF) component. This is illustrated in 2.19(a)(a). By plotting the derivative
of the HF component versus the opposite derivative of the LF component, each crossing
represents an extremum in the superimposed signal. Thus, for each pair of extrema in
the high amplitude HF component, there is exactly one crossing i.e., one extremum in the
composite signal. As the HF component has a consistent impact on the superimposed sig-
nal, the EMD is fully able to detect and extract the HF component [27].
Case 2: af > 1 ∪ af2 < 1. If af > 1 ∪ af2 < 1 there is no regular pattern to the rate
of extrema in the superimposed signal. Looking at 2.19(a)(b) there is no guarantee for a
regular distribution of crossings. In this case, the EMD is sometimes able to detect the HF
component resulting in IMF with partly separated modes.
Case 3: af2 > 1 If af2 > 1 the extrema rate is the same as the low-frequency component
(LF). Thus, the EMD cannot detect the HF component, extracting it as a part of the LF
component. This is illustrated in Figure 2.19(a)(c), as there is one extremum in the su-
perimposed signal for each pair of extremum in the high amplitude LF component. Thus,
the superimposed signal’s extrema are only impacted by the LF component, hiding the HF
component from the EMD.

(a) Each graph plots the derivative of the HF
component and the opposite derivative of the
LF component, each crossing representing an
extremum in the superimposed signal.

(b) A 3D representation of when mode-
mixing appears in IMFs.

Figure 2.19: The mode-mixing criteria visualized [27].

A visualization of the complete relationship between a and f is shown in Figure 2.19(b).
The ground level of the graph represents the complete separation of modes, while the
top-level represents no decomposition. As the relationship between a and f changes, the
degree of mode-mixing changes accordingly. Note that there is a drastic change in the
EMDs’ ability to distinguish closely spaced spectral components as the amplitude reaches
a threshold value, while a change in frequency results in a more gradual decline in decom-
position quality.

Mode mixing due to closely spaced spectral tones can be a problem when applying EMD
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Figure 2.20: Boundary condition map for mode-mixing in EMD. Red area represent mode-mixing,
blue area represent clean separation of two signals [28].

to complex signals. A method for mode mixing separation is presented in [28]. By utiliz-
ing a 2D projection of the amplitude and frequency ratios given in a Boundary Map [28]
depicted in Figure 2.20 it is possible to construct a masking singal fm(t) that will mix
with one of the tones involved in a mode mix. Adding the masking signal to the orig-
inal signal will result in a controlled artificial mode mixing, causing the extraction of a
mode mixed IMF containing the masking signal and the intended mode. This removes the
intended mode from the previous mode-mixed signal, leaving a pure IMF. Furthermore,
as the masking signal characteristics are known, it can be easily removed from the new
mode-mixed IMF by averaging the results of the EMD with a separate EMD using the
opposite masking signal. This process is depicted in Equation (2.27) to (2.4.5).

x+(t) = x(t) + fm(t) (2.27)

x−(t) = x(t)− fm(t) (2.28)

x(t) =
∑ xn,+(t) + xn,−(t)

2
+ r(t) (2.29)
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2.5 Real-time Empirical Mode Decomposition
Though the EMD is a sophisticated method with clear advantages over other empirical
decomposition techniques, which are often limited due to conditions that only apply ap-
proximately in certain situations [20], there are two apparent shortcomings. First, due
to the empirical nature of the method, time series with a high sampling rate over a long
duration, i.e., large amounts of data, can be a challenge. Current EMD techniques and
computational capacities limit the complete analysis of large amounts of data requiring
the segmentation of large data streams. Second, the traditional analysis requires the com-
plete data set, thus the need to wait until the data collection is finished. This is indeed
quite limiting if applying EMD for use in the power system as surveillance and diagnostic
of current and voltage often requires a high sampling rate and real-time tracking. Thus,
there is a need for a real-time version of the EMD capable of handling large amounts of
data. In this section, two such methods are presented. These being the weighted sliding
Empirical Mode Decomposition (wSEMD) [20] and its extension, the Online EMD [29].

2.5.1 Weighted Sliding Empirical Mode Decomposition
To handle the problem of computer memory and load when dealing with time series of
considerable length, one could propose clean segmentation of the data stream. By sepa-
rating the data into several distinct segments, applying EMD to each segment would sig-
nificantly reduce the computational load. However, due to the boundary condition effect
on the EMD, the resulting IMFs would have discontinuous and boundary condition errors
propagating in the IMFs, as shown in Figure 2.21.

Figure 2.21: EMD decomposition of synthetic signal x(t) = cos(2π10t) + cos(2π5t). The series
has been decomposed into four equal segments each with a separate EMD indicated by the color
scheme. After adding the resulting IMFs, there are clear boundary errors at t = 1.25, 2.5 and 3.75.

SEMD preforms the traditional EMD or EEMD within a fixed window of size m, shifting
the window forward with step size k applying EMD for each shifting until the whole time
series has been covered [20]. Both m and k are chosen apriori, and should satisfy Equation
(2.30) and (2.31) to avoid discontinues as in Figure 2.21 and to keep the window a multiple
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of the step size.

k < m (2.30)

E =
m

k
∈ N (2.31)

This ensures that, if omitting the first m points, there will be E estimations for each point in
the original time series x(t) for each window mi. These estimated values may vary due to
the boundary effect on each separate EMD, thus the mean value of each estimation is taken
as the result of the SEMD. Given j IMFs for each segment mi the original time series is
decomposed into j different IMFs xmi(t) and a residue rmi(t) as can be seen in Equation
(2.32).

xmi(t) =
∑

xmij(t) + rmi(t), (2.32)

Each IMF is then collected in a matrix of E columns such that each value in a given column
corresponds to the same point in the original time series. As averaging the amplitudes for
each respective point in the IMFs requires an equal amount of data in each column, the
columns related to the beginning and end of the times series are not included in further
calculations. This algorithm is illustrated in Figure 2.22. For each point t a mean value is
calculated such that for t > m

xj(t) =
1

E

i+E−1∑
i

xmij(t) (2.33)

r(t) =
1

E

i+E−1∑
i

rmi(t) (2.34)

i =
t−m
k

+ 2 (2.35)

The resulting functions xj(t) are referred to as SIMFs and r(t) as the sliding residuum
[20]. As averaging is used to calculate the resulting SIMFs, the number of IMFs uncovered
in each window needs to be constant. i.e., chosen apriori and the and stoppage criterium
is consequently limited to a fixed amount of siftings.
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Figure 2.22: Schema of the SEMD algorithm [20]

Though averaging the resulting IMFs from each step does hinder discontinues and reduce
error, the resulting SIMFs are still affected by the boundary conditions. As illustrated in
Figure 2.23, the ends of each IMF is significantly more defective when compared to the
rest of the signal.

Figure 2.23: Error in resulting IMFs given signal as in Figure 2.21

This is usually not a severe problem using traditional EMD. However, when a time series
is segmented, each segment has individual ends contributing to the boundary condition
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errors. The contribution of each segment’s ends is reduced by introducing a weighted sum
of each estimate. This is done by multiplying the IMFs and residue from every window by
a vector of rank m generated from a Gaussian distribution [20].

w(n) = exp

(
−1

2

(
α

2n

N

)2
)

(2.36)

− N

2
≤ n ≤ N

2
, α = 2.5, N = m− 1 (2.37)

The resulting averaged weighted point in an arbitrary IMF is calculated by taking the sum
of n estimates multiplied by n weighting coefficients. The result is then normalized by
the reciprocal of the sum of all used weights [20]. This preserves the amplitude of every
SIMF and residue while ensuring the completeness of the decomposition. Using SEMD
in combination with weighting coefficients is refereed to as wSEMD.

2.5.2 Online Empirical Mode Decomposition

While the method of wSEMD presented in section 2.5.1 solves some of the problems re-
lated to the classical EMD, it severely limits the potential of the underlying method. By
determining the explicit number of IMFs extracted from any given time series and only
using a fixed number of siftings as stoppage criteria, wSEMD weakens the prime benefits
of the EMD; the ability to discover intrinsic components in an unexplored signal [29] em-
pirically. An alternative method is the Online EMD proposed by Fontugne et al. in 2017.
Based on the sliding approach seen in wSEMD, Online EMD extracts, and uncovers os-
cillations without any prior knowledge. Keeping the advantages of lower computational
strain and memory requirement of the wSEMD, Online EMD can use any of the stoppage
criteria mentioned in Section 2.4.3.

By utilizing a sliding window covering l local extrema, Online EMD operates as the clas-
sical EMD within this frame by extracting the fastest oscillating component. Shifting the
window forward by one extremum, the next extracted mode is stitched to the previously
extracted mode overlapping with the current window. As in wSEMD, a weighting factor is
utilized to limit the contribution of boundary condition errors in each segment, and further
average the resulting modes. The stitching procedure uses a window function as φ̃w(s) as
can be seen in Equation (2.38) that prevents discontinuities due to boundary errors [29].
An overview of Online EMD sliding window and stitching procedure can be seen in Figure
2.24

φ̃w(s) =

{
φ̃(s) = 1√

2π
exp

(
− s

2

2

)
− 1√

2π
exp

(
− τ

2

2

)
, for s ∈ [−τ, τ ]

0, otherwise
(2.38)
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Figure 2.24: Overview of Online EMD sliding window and stitching procedure. In this case, the l =
10 extrema, M i given by the blue signal, represents the fastest oscillation and is extracted using the
classical EMD. The window function φ(t) is plotted in green, and the resulting weighted IMF, M̄ ,
stitched to the previous uncovered IMFs is red. Note that here l′ = l [29].

The complete algorithm for Online EMD is as follows [29]:

0. Initialize i = 1,Φ0(t) = 0, e1 = 0 the starting time of the signal and M = 0.

1. Identify the window starting at e1 containing l consecutive local extrema ({e1, ...el})
of the signal X(t).

2. Using classical EMD, extract the first IMF (i.e. fastest oscillation)M i(t) of the data
in the window.

3. Let e
′

1, ..., e
′

l be the positions of the l
′

extrema inM i. Set sk = −τ+2(k+1)τ/(l
′−

1) for k ∈ {1, .., l′ − 1}. We define warped weights φk(t) for k ∈ {1, ..., l′ − 1}
and t ∈ [e

′

k, ..., e
′

k+1] as

φk(t) = φ̃

(
sk + (sk+1 − sk)

t− e′k
e
′
k+1 − e

′
k

)
(2.39)

(and 0 outside). The weighted IMF M̂ i is defined as: M̂ i = (φ1(t)M i
1(t), ..., φli−1(t))

where M i
k(t) is the mode between two extrema:

M i
k(t) = M i(t), e

′

k ≤ t ≤ e
′

k+1 (2.40)
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The total of the weights is kept in memory:

Φi(t) = Φi−1(t) +

l
′
−1∑
k=1

φk(t) (2.41)

4. Stitch M̂ i on the weighted IMFs already extracted:

M̄ = M̄ + M̂ i (2.42)

and normalize the part of the data that will go out of the sliding window at the next
iteration:

M̄(t) = M̄(t)/φi(t) for all t ∈ [ei, ei+1] (2.43)

5. This newly finalized part of the IMF M̄(t), for t ∈ [ei, ei+1] is subtracted from the
data,

Ri = Xi(t)− M̄(t) for all t ∈ [ei, ei+1] (2.44)

The resulting data Ri is pushed to another instance of Online EMD in order to
identify subsequent IMFs.

6. Increase i to i+ 1 and go back to step 1.

It is worth noting that given the nature of the stitching process and dependence on subse-
quent extrema, IMFs will have a time lag of ei+l−1 − ei < ∆t < ei+l − ei. The time lag
∆twill increase for lower frequency IMFs as the distance between extrema increases. Fur-
thermore, it is also worth noting that in step 3. and 4. there is a difference in the notation
for the number of extrema in the IMF l

′
and the number of extrema defining the sliding

window l. Though rare, situations were small and fast oscillations are added to larger slow
oscillations can cause some of the smaller extremas to go unnoticed in the superimposed
signal. These can however be recovered by the EMD and will lead to new extrema in the
extracted IMF. Thus the need for a distinction between l

′
and l.

The clear advantage of the Online EMD is the ability to analyze data streams with constant
execution time. This is shown in [29] where two signals, a sinusoid with a monotonic func-
tion and a white noise signal is used to compare the execution time for both the classical
and Online EMD. Each total signal consists of 280K samples divided into 10K batches.
As more points are ”released” into the stream, classical EMD is shown to slow down sig-
nificantly, while online EMD keeps a steady execution time. The complete comparison,
as all points are added, can be seen in Figure 2.25. As expected, the online EMD keeps
each stream separate and does not need to rely on previous information for new analysis.
As can be seen in Figure 2.25, the classical EMD requires four times more execution time
from beginning to end for the sinusoidal signal, and a whole four orders more for the white
noise signal. There is also a difference in execution time dependant on the number of un-
covered IMFs. While the stitching and sliding window makes online EMD slower than
classical for fewer than 130K samples, it easily outperforms classical EMD for larger data
sets with an increasing number of oscillatory components [29] as indicated by the white
noise signal in Figure 2.25.
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Figure 2.25: Execution time of Online EMD (l = 20) and classical EMD (both using Rilling
stopping criterion) with a white noise signal and a sinusoid with a trend [29].
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Chapter 3
Comparison of classical and Online
EMD using synthetic signals

In this section comparison of the decomposition quality of the classical and Online EMD
is done through synthetic signals. Two separate signals have been constructed, both a mix
of three tones, one with an additional Gaussian white noise disturbance. Classical EMD is
applied for both cases, using three different stoppage criteria. The instantaneous error and
root-mean-square (RMS) error are then calculated for each relevant IMF uncovered. As
the amplitude of the components are different, a weighted and averaged error for all three
IMFs are used when comparing results. Using the stoppage criteria with lowest error in
the classical EMD, online EMD is applied for window sizes l = [10, 30]. The version of
Online EMD used is based on the MATLAB implementation of Online EMD as given in
the ICASSP’17 paper [29] accessible at [30].

3.1 Case 1: Standard
The signal used in this case can be seen in Figure 3.1 and is given by

f(t) = f1(t) + f2(t) + f3(t) (3.1)

where

f1(t) = 70cos(2π150t) f2(t) = 100cos(2π50t) f3(t) = 20cos(2π20t) (3.2)

The three following stoppage criteria has been chosen.

1. SD = 0.01

2. α = 0.001 θ1 = 0.001 θ2 = 0.01

3. FIX = 10
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Figure 3.1: Signal consisting of three different amplitudes and modes of oscillations.

The resulting IMFs extracted and following error calculation can be seen in Figures 3.2,
3.3 and 3.5. Each criterion successfully uncovered the three components without a trace of
mode mixing. This is to be expected as the ratios of frequency and amplitude in the signals
are well within the limits of the Boundary Condition Map given in Figure 2.20 from [27].
However, boundary condition errors can be observed for all cases, as seen in the Error
compared to synthetic graph. To exclude the error of this border effect the RMS error is
calculated omitting the first and last 0.5 seconds of the signal. As can be seen in Figures
3.2 to 3.5, criteria 2 and 3 outperform criteria one significantly in both average RMS value
and boundary condition error, the latter being almost double the value of the other criteria.
It is however stoppage criteria FIX = 10 yielding the best overall results. This method is
thus used as the stoppage criteria for the Online EMD for further analysis and comparison.
The resulting Online EMD is treated the same as the classical EMD; thus, the first and
last 0.5 seconds of the signal is omitted for the RMS error calculation. A summary of the
average calculated RMS for window sizes l = [10, 30] compared to the classical EMD for
each stoppage criteria can be seen in Figure 3.6.

The stitching procedure responsible for merging each local IMF to a resulting final IMF
is a potential new source of error for the Online EMD when compared to the classical
version. Intuitively, the number of overlapping IMFs (i.e., widow size) is a determining
factor for this error. It is observed in Figure 3.6 that this error significantly reduces as l
increases for small values of l and even outperforms the classical EMD in the case l = 13.
This is consistent with the results in [29], though it reported a significantly lower error for
the first window sizes. As the window size increases, the RMS error appears to converge
to the same error as in the classical EMD using the same stoppage criteria.
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3.1 Case 1: Standard

Figure 3.2: EMD with stoppage criteria SD = 0.01. Overall and rms error is calculated for each
extracted IMF.

Figure 3.3: EMD with stoppage criteria α = 0.001 θ1 = 0.001 θ2 = 0.01. Overall and rms
error is calculated for each extracted IMF.
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Figure 3.5: EMD with stoppage criteria FIX = 10. Overall and rms error is calculated for each
extracted IMF.

Figure 3.6: Average root-mean-square error for all IMFs as the widow size increases for the Online
EMD.
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3.2 Case 2: Gaussian white noise

To further test the robustness of the classical and Online EMD in the event of disturbances,
a second case has been constructed. Here the signal, as seen in Figure 3.1, is used as the
base with an additional Gaussian white noise component such that the resulting signal is
as can be observed in Figure 3.7. To evaluate and compare the quality of decomposition
of both classical and Online EMD, the process and stoppage criteria used in the previous
case are repeated. However, due to the disturbances, FFT is used as an additional tool to
support the evaluation.

Figure 3.7: Signal consisting of three different amplitudes and modes of oscillations with a added
Gaussian white noise component, matched to scale by the MATLAB awgn(’measured’) command.

3.2.1 Stoppage Criteria: Standard Deviation

The decomposition using SD = 0.01 can be seen in Figure 3.8. The noise component
has a significant impact on decomposition quality. Using FFT as seen in Figure 3.9 the
first three IMFs appear to have a denoising effect as they contain the high frequencies
not included in the three signals f1, f2 and f3. Furthermore, the fifth and sixth IMF
appear to be a separation of the same mode, likely due to mode mixing with low-frequency
noise components. It is deemed acceptable to use the result of adding these IMFs as a
resulting IMF, as this is a non-invasive method used to improve the decomposition quality
without altering the actual EMD. The resulting IMFs and error can be seen in Figure 3.10.
The error has increased significantly compared to case 1, and as can be seen from the
resulting IMFs, there are severe disturbances in both frequency and amplitude. However,
while instantaneous values are somewhat lacking, using FFT as a supportive tool makes it
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possible to get an overall impression of the components mixed in the signal, with regards
to both amplitude and frequency.

Figure 3.8: The first 8 IMFs from using the stoppage criteria SD = 0.01.

Figure 3.9: FFT of the first 8 IMFs using the stoppage criteria SD = 0.01.
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Figure 3.10: EMD with stoppage criteria SD = 0.01. Overall and rms error is calculated for each
extracted IMF.

3.2.2 Stoppage Criteria: Thresholding

The decomposition using stoppage criteria α = 0.001 θ1 = 0.001 θ2 = 0.01 can
be seen in Figure 3.11. Applying FFT to the IMFs as seen in Figure 3.12 it is apparent
the three first IMFs contain most of the noisy components in the signal. As with the SD
criteria, it is possible to use EMD as a denoising tool. Observing the FFT and IMFs,
the IMFs deemed to represent the same modes of oscillation have been added together in
the resulting IMFs, as seen in Figure 3.13. Though the average RMS error is seen to be
slightly lower than that of the SD condition, the instantaneous values of both frequency and
amplitude in all three IMFs are distorted enough to not accurately represent the original
modes. The most significant contribution to this error appears to be the mode-mixing due
to the lower frequency noise components, as the high-frequency components are handled
as separate IMFs. This can be most notably observed in IMF 6 and IMF 7 in Figure 3.3.
Periodic reduction in amplitude in IMF 6 has a matching increase in amplitude in IMF 7
for the same mode of oscillation, IMF 6 is thus leaking somewhat into IMF 7. Though
there are techniques capable of handling this occurrence to some extent, they are, in this
instance, deemed too invasive, as the focus is on the robustness of the method itself.
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Figure 3.11: The first 8 IMFs from using the stoppage criteria α = 0.001 θ1 = 0.001 θ2 =
0.01.

Figure 3.12: FFT of the first 8 IMFs using the stoppage criteria α = 0.001 θ1 = 0.001 θ2 =
0.01.

40



3.2 Case 2: Gaussian white noise

Figure 3.13: EMD with stoppage criteria α = 0.001 θ1 = 0.001 θ2 = 0.01. Overall and rms
error is calculated for each extracted IMF.

3.2.3 Stoppage Criteria: Fix

The decomposition using stoppage criteria FIX = 10 can be seen in Figure 3.14. The re-
sulting FFT of each IMF can be seen in Figure 3.15. It appears that this stoppage criterion
handles the noise significantly better than the previously used criteria. As can be seen from
the FFT and IMFs, the fifth IMF represents f2 surprisingly well. However, using FFT as
a supportive tool, IMF 3 and IMF 4 have been added to the resulting IMF as this gives a
slightly reduced error. As can be seen in Figure 3.16, the average RMS error is noticeably
lower than that of the previous stoppage criteria. This is mostly due to the fifth IMF ac-
curately representing the 50 Hz component. Thus, using a fixed number of siftings is the
most robust when dealing with noisy components (without changing criteria). This could
be due to the number of siftings being constant, while both SD and thresholding are more
dynamic stoppage criteria and thus more susceptible to change as the number of siftings
can be different for each IMF based on the nature of noise added.
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Figure 3.14: The first 7 IMFs from using the stoppage criteria FIX = 10.

Figure 3.15: FFT of the first 7 IMFs using the stoppage criteria FIX = 10.
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Figure 3.16: EMD with stoppage criteria FIX = 10. Overall and rms error is calculated for each
extracted IMF

3.2.4 Online EMD

As FIX = 10 gave the best result for classical EMD, it has been used as the stoppage cri-
teria for Online EMD. To test the effect of noise on the stitching process window sizes
l = [10, 30] have been used for average RMS error calculations, as the decomposition
quality is a function of window length, which again is a function of the stitching process.
The resulting IMFs with l = 10 can be seen in Figure 3.17. As with the classical imple-
mentation of EMD with FIX = 10, the 50 Hz component represented by IMF 5 is most
noticeably similar to its original component f2. However, IMF 3 and 4, as well as IMF
6 and 7, have been added to represent f1 and f3, respectively. A summary of the results
with l = [10, 30] can be seen in Figure 3.18. Surprisingly online EMD has better perfor-
mance for lower values of l than the corresponding classical EMD. This may be due to the
smoothing effect of the stitching as an averaging of the values is used, essentially reducing
the impact of a typical white noise disturbance. The error is however, seen to significantly
increase as l increases. Though the exact cause for this is unknown, it can be argued that
this is due to the smoothing effect’s trade-off and the stitching process being skewed as the
window size increases. However, overall the Online EMD seems to keep the same robust-
ness as the classical version. Furthermore, while not the intent for this comparison, using
FFT as an additional tool when applying EMD to complex signals is seen to be highly
effective.
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Figure 3.17: Online EMD with FIX = 10 as stoppage criteria. The red parts represents the section
of the IMFs not yet completed due to lacking number of extrema.

Figure 3.18: Average root-mean-square error for all IMFs as the widow size increases for the Online
EMD.
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Chapter 4
Frequency Identification in a Wind
Turbine Through HHT and Online
EMD

This section presents the results and methodology from analyzing an actual voltage and
current measurement from a wind-turbine. Due to the high complexity of each signal,
and the dominating presence of a 50 Hz component, careful separation of each mode is
needed for a complete view of the harmonic interference. By using classical EMD and
Online EMD in conjunction with FFT and a reconstructed boundary condition map [27],
the mode mixing separation method suggested in [28] is used to separate the original signal
into adequately pure IMFs. As IMFs are uncovered, they are removed from the original
signal, and the process is repeated until all relevant modes are extracted. Each resulting
IMF is then analyzed using HT and FFT, and the results of classical and Online EMD are
compared. The IMFs extracted are now referred to by the value of their most dominating
frequency component. A cubic spline and a fix of 10 has been used as stoppage criteria for
both versions of EMD, as this yields the most consistent results.

4.1 Signal specifics
The signals analyzed are the three-phase line currents and line-to-line voltages of a wind-
turbine generator located at Hundhammerfjellet windmill park. The currents and voltages
are shown in Figure 4.1 and 4.2 respectively. The measurements were taken the 8th of
October 2014 from 23:34:02 to 23:34:06 with a sampling frequency of 25600 Hz. Based
on empirical observation, the harmonic content in the voltages is very low. However,
to illustrate the capabilities of the EMD, one voltage measurement is taken for further
analysis. Figure 4.3 gives a closer look at the top of each waveform. The currents have
the highest degree of distortions, the most notable being current L1. As such, current
measurement L1 is also included in the analysis. A thorough recount of the methodology
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for the analysis of current L1 and voltage L12 is given in the following section. Appendix
A includes the IF and IA for every step of the decomposition.

Figure 4.1: Current measurement from a WTG at Hundhammarhjellet, taken the 8th of October
2014 from 23:34:02 to 23:34:06 with a sampling frequency of 25600 Hz.

Figure 4.2: Voltage measurement from a WTG at Hundhammarhjellet, taken the 8th of October
2014 from 23:34:02 to 23:34:06 with a sampling frequency of 25600 Hz.

(a) Current measurements. (b) Voltage measurements.

Figure 4.3: Closer look at the current and voltage measurement.
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4.2 Methodology - Classical EMD

4.2.1 Current measurement L1
Figure 4.4 shows the current L1 hereby denoted as f(t). Initially, it can be seen that while
a 50 Hz component dominates the signal, there are distortions at the peaks and a slight
overall change in amplitude over the signal duration. An initial analysis of the signal
using FFT can be seen in Figure 4.5. Closer inspection reveals the presence of several
frequencies in the signal, the most notable being 1050 Hz, 950 Hz, 250 Hz, and a cluster
of inter-harmonics around the 142 Hz frequency.

(a) Overall view of current measurement
f(t).

(b) Closer look at current f(t).

Figure 4.4: Current measurement f(t).

Figure 4.5: FFT of the dominant frequency, and a close-up of the other frequency components
present in f(t).
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Extraction of the 50 Hz Component

Separation of the modes is initially attempted by the use of EMD, which resulted in 11
IMFs, the most relevant being shown in Figure 4.6. Visual inspection of the resulting
IMFs indicates that parts of IMF 2 are leaking into the subsequent IMFs. This assumption
is supported by applying FFT to each IMF, as seen in Figure 4.7. The results reveal mode-
mixing between the 50 Hz component and what is assumed to be lower frequency noise
components, the latter being either part of the original signal hidden by the dominating 50
Hz component, or a byproduct of the EMD.

Figure 4.6: Resulting IMFs from EMD applied to f(t).

Figure 4.7: Closer look at the FFT of IMF 1.

Taking advantage of the significantly higher amplitude of the 50 Hz component, an appro-
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priate masking signal, denoted as fm1(t), is constructed to avoid mode-mixing and leaking
IMFs.

fm1(t) = 5000sin(2π200t) (4.1)

The resulting IMFs their respective FFT can be seen in Figure 4.8 and 4.9. A more detailed
version of IMF 1 can be seen in Figure 4.10. The leaking of IMF 2 is corrected, and IMF
1 now account for most of the modes uncovered in the initial FFT.

Figure 4.8: Resulting IMFs from EMD applied to f(t) after adding masking signal fm1(t).

Figure 4.9: FFT of the IMFs from EMD applied to f(t) after adding masking signal fm1(t).
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Figure 4.10: Closer look at the FFT of IMF 1 after adding masking signal fm1(t).

IMF 2 is now considered an adequately pure representation of the 50 Hz component and
is extracted from the original signal and treated as a final IMF, as seen in Figure 4.56. The
resulting signal f1 = f(t)− IMF50 is given in Figure 4.11.

(a) Overall view of f1(t). (b) Close-up of f1(t).

Figure 4.11: Resulting signal f1(t), after removing 50 Hz component.

Extraction of 950 Hz Component

The 50 Hz component has been successfully removed, and now the 950 Hz component
dominates the signal. Separation by EMD gives results as can be seen in Figure 4.12
and 4.13. A closer look at IMF 1 is given in Figure 4.14. Though there is a trace of
mode-mixing with a 1050 Hz frequency component, it is deemed a satisfactory IMF as the
modes are too close in both frequency and amplitude for adequately pure separation using
masking signals.
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Figure 4.12: Resulting IMFs from EMD applied to f1(t).

Figure 4.13: FFT of the IMFs from EMD applied to f1(t).
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Figure 4.14: Closer look at FFT of IMF 1 of signal f1(t).

Treating IMF 1 as a resulting IMF in Figure 4.56 it is extracted from the signal such that
f2(t) = f1(t)− IMF950. The resulting signal can be seen in Figure 4.15.

(a) Overall view of f2(t). (b) Close-up of f2(t).

Figure 4.15: Resulting signal f2(t), after removing 50 Hz and 950 Hz component.

Extraction of 250 Hz Component

Using f2(t) as the new signal results as can be seen in Figure 4.16. It is not immediately
obvious from visual inspection of the IMFs that they represent separate modes, however,
the resulting FFTs given in Figure 4.17 indicates that the cluster of inter-harmonics and
the 250 Hz component initially found in the original signal f(t) are represented by the two
first IMFs.
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Figure 4.16: Resulting IMFs from EMD applied f2(t).

Figure 4.17: FFT of the IMFs from EMD applied to f2(t).

There appears to be a high degree of mixing between the two IMFs, as such a masking
signal is constructed in an attempt to separate the 250 Hz frequency component from the
inter-harmonics.

fm2(t) = 0.05sin(2π140t) (4.2)

Results of this can be seen in Figure 4.18 and 4.19.
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Figure 4.18: Resulting IMFs from EMD applied f2(t) after adding masking signal fm2(t).

Figure 4.19: FFT of the IMFs from EMD applied to f2(t) after adding masking signal fm2(t).

The masking signal appears to have some effect indicated both by the smoother IMF and
the reduction of the amplitudes in the FFT. However, there is still obvious signs of mode-
mixing between the IMFs, indicated by the spikes in IMF 1 having an equal reduction
at the same time in IMF 2. Further separation by masking signal is not successfully and
IMF 1 is treated as a final IMF and is added to the resulting IMFs. Based on the amount
of different frequencies of inter-harmonic nature and its irregular appearance, IMF 2 is
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deemed to be a noise component. However, as these frequencies are indicated in the initial
analysis of the original signal, and as there have been reports of inter-harmonics appearing
in relation to WTG, IMF 2 is not added to the residue but rather seen as a separate ”noisy
IMF”. IMF 2 is thus removed from the signal and is added as a final resulting IMF. Now,
the remains are deemed to be residue originating from the EMD algorithm itself or the
removal of IMFs from the signal. They are thus combined and treated as the resulting
residue.
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4.2.2 Voltage measurement L12
Figure 4.20 shows the voltage L12, hereby denoted as g(t). Initial visual inspection of the
signal indicates that a pure sinusoidal of 50 Hz without the change or disturbances seen in
L1. The results of applying FFT to the signal can be seen in Figure 4.21. It is as expected
dominated by a 50 Hz component; however, closer inspection reveals the presence of other
modes mixed in the signal. While these harmonics are too low to pose a operational issue,
analysis of this signal can be useful in a diagnostic perspective.

(a) Overall view of voltage measurement
g(t).

(b) Closer look at voltage g(t).

Figure 4.20: Voltage measurement g(t)

Figure 4.21: FFT of the dominant frequency, and a close-up of the other frequency components
present in g(t).
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Extraction of the 50Hz Component

Attempting to separate the modes using EMD resulted in 15 IMFs, were IMF one to five
are shown in Figure 4.22. The FFT of each IMF can be seen in Figure 4.23.

Figure 4.22: Resulting IMFs from EMD applied to g(t).

Figure 4.23: FFT of the IMFs from EMD applied to g(t).

Based on the appearance of the IMFs and their FFTs, it seems EMD was unsuccessful
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in separating the components uncovered by the initial FFT. The low amplitude of IMF 2
and up indicates these are residue and noise components due to the empirical nature of
the separation. A closer look at IMF 1, seen in Figure 4.24 reveals that it is indeed an
unsuccessful separation attempt; all modes are present in the first IMF.

Figure 4.24: FFT of IMF 1 after applying EMD

This is expected as EMD is an empirical method, relying on extrema in the superimposed
signal to extract relevant modes. While it might seem counter-intuitive, a high amplitude
masking signal will actually reveal the lower amplitude harmonics in the signal. As the
EMD is only able to extract the original signal (without the harmonics as they are too low
to be seen) from the new superimposed signal, IMF 1 will contain both the masking signal
and the harmonic content. Thus, masking signal gm1(t) is constructed in an attempt to
separate the 50 Hz component and the lower amplitude harmonics.

gm1(t) = 40000000sin(2π230t) (4.3)

The resulting IMFs and their respective FFTs after applying gm1(t) can be seen in Figure
4.25 and 4.26.
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Figure 4.25: Resulting IMFs from EMD applied to g(t) after adding masking signal gm1(t).

Figure 4.26: FFT of the IMFs from EMD applied to g(t) after adding masking signal gm1(t).

Based on the results from the FFT, IMF 2 seems to represent the 50 Hz component, while
IMF 1 contains the other modes previously uncovered. IMF 3 and 4 now represent almost
perfect sinusoids with frequencies 30 and 10 Hz, respectively. Initially, it appears these
IMFs represents previously hidden modes, possibly masked by the 50 Hz component.
However, there is now a slight amplitude modulation present in IMF 2. This modulation is
revealed to match the frequency of IMF 3 and 4, such that when these IMFs are combined,

61



Chapter 4. Frequency Identification in a Wind Turbine Through HHT and Online EMD

it results in a sinusoid of 50 Hz without amplitude modulations. This is shown in Figure
4.27.

Figure 4.27: An example of over-decomposition. IMF 2 is shown to better represent the original
signal when added to IMF 3 and IMF 4.

Thus the combination of IMF 2, 3, and 4 is treated as an adequately pure representation
of the 50 Hz component and is removed from the original signal, g1(t) = g(t)− IMF50.
These IMFs are combined and treated as a final result in Figure 4.64. The resulting signal
g1(t) can be seen in Figure 4.28.

(a) Overall view of g1(t). (b) Close-up of g1(t).

Figure 4.28: Resulting signal g1(t), after removing 50 Hz component.
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Extraction of the 950 Hz Component

As the main component is removed, the signal is now much more erratic. The initial
analysis is done through FFT, as can be seen in Figure 4.28(a). Relying on the result from
the FFT, it appears to be a high amplitude low-frequency distortion present in the signal.
The presence can be attributed to the slight boundary error condition, as seen in IMF 2 in
Figure 4.25. As IMF 2 is removed from the original signal, the impact of the boundary
error propagates to the much lower amplitude signal g1(t), making FFT a less reliable
tool when observing the complete signal. In an attempt to limit the effect of the boundary
conditions, FFT is applied to g1(t) for t ∈ [0.5, 3.5]. The results can be observed in Figure
4.28(b). It is thus reasonable to contribute lower frequency distortions present in the FFT
to boundary errors due to the EMD. There also appears to be several new low-frequency
component present in the resulting signal based on the FFT. However, this presence can
likely be contributed residue due to the removal of the 50 Hz component. As EMD satisfies
the perfect reconstruction condition, the new components pose no problem for the overall
analysis.

(a) FFT of g1(t) (b) FFT of g1(t) omitting the ends of the sig-
nal.

Figure 4.29: FFT of g1(t) with and without boundary condition errors
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The results of using EMD to separate the modes can be seen in Figure 4.30. Applying FFT
to each IMF can be seen in Figure 4.31.

Figure 4.30: Resulting IMFs from EMD applied to g1(t).

Figure 4.31: FFT of the IMFs from EMD applied to g1(t).

Based on the FFTs, there seems to a low-frequency presence in the first three IMFs. This
can again be contributed to the boundary errors. However, based on the results from the
initial FFT and the FFT of IMF 1, there appears to be a mode mix between components of
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950 Hz and 550 Hz. This presence can also be noted visually in the IMF as there is a clear
distinction at t = 1.25s. A masking signal gm2(t) is thus constructed to separate these
modes.

gm2(t) = 200sin(2π1200t) (4.4)

The new IMFs and their FFTs after applying gm2(t) can be seen in Figure 4.32 and 4.33.

Figure 4.32: Resulting IMFs from EMD applied to g1(t) after adding masking signal gm2(t).

Figure 4.33: FFT of the IMFs from EMD applied to g1(t) after adding masking signal gm2(t).
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IMF 1 now represents an adequately pure representation of the 950 Hz component. It is
thus removed from the signal and treated as a final result, g2(t) = g1(t) − IMF950. The
resulting signal g2(t) can be seen in Figure 4.35.

(a) Overall view of g2(t). (b) Close-up of g2(t).

Figure 4.34: Resulting signal g2(t), after removing 50 and 950 Hz component.

The masking signal also separate the modes mixed in IMF 2 and IMF 3. As the low fre-
quencies present in the FFTs can be contributed to the boundary errors, these IMFs can
also be considered adequately pure representations of their respective frequency. However,
the masking signal method is here seen to effectively separate the oscillations due to the
boundary errors in IMF 1 from the actual oscillations in the IMF. While this method has
limited visual results for the IMFs, it is seen to be highly effective when EMD is used in
conjunction with FFT, as the resulting FFTs represents each IMF more accurately. To fur-
ther illustrate this, the 550 and 250 Hz components are removed after applying a masking
signal to reduce the boundary error effects in the FFT.
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Extraction of 550 and 250 Hz Component

The result of applying EMD to the signal can be seen in Figure 4.35. Looking at the FFTs
as given in Figure 4.36 the presence of boundary errors is again noticeable in the relevant
IMFs.

Figure 4.35: Resulting IMFs from EMD applied to g2(t).

Figure 4.36: FFT of the IMFs from EMD applied to g2(t).

67



Chapter 4. Frequency Identification in a Wind Turbine Through HHT and Online EMD

In an attempt to reduce the effect of the boundary error, masking signals gm3(t) is applied
to the signal.

gm3(t) = 300sin(2π540t) (4.5)

The results of applying gm3(t) can be seen in Figure 4.37 and 4.38.

Figure 4.37: Resulting IMFs from EMD applied to g2(t) after adding masking signal gm3(t).

Figure 4.38: FFT of the IMFs from EMD applied to g2(t) after adding masking signal gm3(t).
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IMF 1 represents an adequately pure IMF and is treated as a final result. IMF 2 is also
treated as an adequately pure IMF as the frequency and amplitude of the oscillation due to
the boundary error is too close to the IMF itself for the effective use of a masking signal.
The leftover component g3(t) = g3(t) − IMF550 − IMF250 as seen in Figure 4.39 is
treated as residue and is added as is added to the results as the residue component.

(a) Overall view of g3(t). (b) Close-up of g3(t).

Figure 4.39: Resulting signal g3(t).
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4.3 Methodology - Online EMD

Current measurement L1 denoted f(t) depicted in Figure 4.4 and voltage measurement
L12 denoted g(t) depicted in Figure 4.20 are now decomposed using Online EMD. The
standard EMD algorithm in the previous analysis is used as the base for the Online version,
keeping previously used parameters constant. Window size l = 10 has been chosen for all
cases.

4.3.1 Current measurement L1

The sliding window of the Online EMD continuously uncovers intrinsic mode functions
as it moves through the signal. Thus there is a delay to the uncovered IMFs based on
the rate of extrema and the length of the sliding window. As such, the possible number
of IMFs extracted increases as the number of data points increases and are added by the
EMD. Snapshots of the on-going decomposition after 662, 2650, and 10600 data points
have been processed is shown in Figure 4.40 from left to right, respectively. The colors
black, blue, and teal indicates that 2650, 5300, and 10600 data points have been used in
the process. Red illustrates parts of the IMF still incomplete. For further analysis using
Online EMD, only the results of iterating through all available data points are shown.

Figure 4.40: Online EMD applied to L1.From left to right, the total data points are 662, 2650, and
10600. The black part of the signal is related to the first 2650 data points. The blue part is related to
the parts 2650 to 5300, and teal is related to the parts from 5300 to 10600. Red indicates the parts of
the IMFs still incomplete

Initial analysis

The result of applying Online EMD to f(t) can be seen in Figure 4.41. The FFT of each
IMF can be seen in Figure 4.42. The separation of the 950 Hz component is successful.
However, as with the classical EMD, the 50 Hz component represented by IMF 2 contains
most of the modes uncovered by initial the FFT, and IMF 2 is leaking to the subsequent
IMFs.
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Figure 4.41: Online EMD applied to f(t). In red are parts of the IMFs still incomplete.

Figure 4.42: FFT of the resulting IMFs of f(t) given by Online EMD.

In an attempt to reduce leakage and separate the 50 Hz component from other modes,
mode-mixing separation by masking signal is adjusted and applied to the Online version.
As the length of the IMFs extracted by the Online EMD varies based on the modes un-
covered, the method is now adjusted to account for uneven IMFs. The result of running
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two Online EMDs in parallel, using masking signal fm1(t) and matching the output for
each IMF can be seen in Figure 4.43 and the FFT of each IMF in Figure 4.44. Based on
the visual inspection of IMF 2 and the FFT of IMF 2, it appears the 50 Hz component has
been separated successfully.

Figure 4.43: IMFs after Masking signal fm1(t) is applied to signal f(t) for the Online EMD

Figure 4.44: FFT of the IMFs after masking signal fm1(t) is applied to signal f(t) for the Online
EMD
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To simulate the analysis of a data stream, further analysis is done without altering the
original signal. IMF 2 is seen as an adequately pure IMF and is treated as a final result.
IMF 1 is thus treated as the new input, f1(t) = IMF950.

Further decomposition of IMF 1

The results of applying Online EMD to f1(t) can be seen in Figure 4.45. The FFT of each
IMF can be seen in Figure 4.46. IMF 1 is now seen to represent the 950 Hz component,
while IMF 2 and 3 contain the rest of the frequencies previously uncovered using classical
EMD. IMF 1 is seen as an adequately pure IMF and is treated as a final result. While
IMF 2 and 3 show signs of mode-mode mixing in their FFTs, further separation and use
of masking signal shows no effect. They are, therefore, also treated as final results. Due to
the low amplitude of IMF 4 and 5, these are deemed to be noise components and are thus
added to the final IMFs as residue.

Figure 4.45: Resulting IMFs after applying Online EMD to f1(t)
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Figure 4.46: FFT of resulting IMFs after applying Online EMD to f1(t)

4.3.2 Voltage measurement L12

In this section, signal g(t) is analyzed using Online EMD. Snapshots from the decompo-
sition process of the initial analysis can be seen in Figure 4.47. The first IMF represents
the original signal causing the subsequent IMFs to contain very low amplitude noise com-
ponents. As online EMD attempts to extract as many IMFs as possible, seeing each low
amplitude point as extrema, the run-time is significantly increased. Therefore, the initial
analysis is repeated, limiting the number of IMFs extracted to a maximum of three.

Figure 4.47: Online EMD applied to L12. From left to right, the total data points number 5120,
10240, and 20480. The black part of the signal is related to the first 5120 data points. The blue
part is related to the parts 5120 to 10240, and teal is related to the parts from 10240 to 20480. Red
indicates the parts of the IMFs still incomplete.

Initial analysis

The complete result of applying Online EMD with a maximum of three IMFs can be seen
in Figure 4.48. The FFT of each IMF can be seen in 4.49. Online EMD seems to be
unable to separate the low amplitude modes found in the initial FFT from the main 50 Hz
component.
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Figure 4.48: The resulting IMFs after applying Online EMD to L12

Figure 4.49: FFTs of the resulting IMFs after applying Online EMD to g(t)

By adding masking signal gm1(t), decomposition by Online EMD is attempted again. The
IMFs can be seen in Figure 4.50, and the FFT of each IMF in Figure 4.51. g(t) has now
been decomposed into four relevant IMFs, the rest being residue.
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Figure 4.50: Resulting IMFs after applying masking signal gm1(t) to the Online EMD

Figure 4.51: FFT of resulting IMFs after applying masking signal gm1(t) to the Online EMD

Again an over-separation of the 50 Hz component has occurred. This is evident in the
amplitude modulation of IMF 2 matching that of the frequencies of IMF 3 and 4. When
combined, these IMFs form a 50 Hz component without amplitude modulation. The com-
bination of IMF 2-4 is seen as an adequately pure representation of the 50 Hz component,
and it is treated as a final IMF. IMF 1 is now seen to contain a mix of several different
frequencies, and further decomposition treats IMF 1 as the new input, g1(t) = IMF250.
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Further decomposition of IMF 1

Applying Online EMD to g1(t) results in IMFs seen in Figure 4.52. The FFT of each IMF
can be seen in Figure 4.53. Based on the FFTs, it seems the resulting IMFs are heavily
mode-mixed.

Figure 4.52: Resulting IMFs after applying Online EMD to g1(t)

Figure 4.53: FFT of resulting IMFs after applying Online EMD to g1(t)

Using masking signal gm2(t) a new decomposition is attempted, resulting in IMFs and
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FFTs given in Figure 4.54 and 4.55. IMFs 1, 2, and 3 now appear to be pure representations
of frequencies 950, 550, and 250 Hz, respectively. These are seen as adequately pure
IMFs and are thus treated as final IMFs. While IMF 4 seems to properly separate a 90
Hz component, it is not included in the final IMFs, as this is a mode not detected in the
original signal. IMF 4 and 5 are thus added to the residue in the final results.

Figure 4.54: Resulting IMFs after adding masking signal gm2 to g1(t)

Figure 4.55: FFT of resulting IMFs after adding masking signal gm2 to g1(t)
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4.4 Results

This section contains all the resulting IMFs from the classical and Online EMD. The HT
and FFT of each IMF are also presented. Appendix A includes a closer look at the IA and
IF of the resulting IMFs.

4.4.1 Current measurement L1 - Classical EMD

The resulting IMFs for L1 using classical EMD as decomposition method can be seen in
Figure 4.56. The results of applying FFT, and HT to find the IF and IA can be seen in
Figure 4.57, 4.58 and 4.59 respectively.

Figure 4.56: Final resulting IMFs for current measurement L1 using classical EMD.
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Figure 4.57: FFT of final resulting IMFs for current measurement L1 using classical EMD.

Figure 4.58: IF of final resulting IMFs for current measurement L1 using classical EMD.
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Figure 4.59: IA of final resulting IMFs for current measurement L1 using classical EMD.
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4.4.2 Current measurement L1 - Online EMD

The resulting IMFs for L1 using Online EMD as decomposition method can be seen in
Figure 4.60. The results of applying FFT, and HT to find the IF and IA can be seen in
Figure 4.61, 4.62 and 4.63 respectively.

Figure 4.60: Final resulting IMFs for current measurement L1 using Online EMD.

Figure 4.61: FFT of final resulting IMFs for current measurement L1 using classical EMD.
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Figure 4.62: IF of final resulting IMFs for current measurement L1 using Online EMD.

Figure 4.63: IA of final resulting IMFs for current measurement L1 using Online EMD.
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4.4.3 Voltage measurement L12 - Classical EMD

The resulting IMFs for L12 using classical EMD as decomposition method can be seen
in Figure 4.64. The results of applying FFT, and HT to find the IF and IA can be seen in
Figure 4.66, 4.67 and 4.68 respectively.

Figure 4.64: Final resulting IMFs for voltage measurement L12 using classical EMD.

Figure 4.65: Close-up of the resulting IMFs for voltage measurement L12 using classical EMD.
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Figure 4.66: FFT of final resulting IMFs for voltage measurement L12 using classical EMD.

Figure 4.67: IF of final resulting IMFs for voltage measurement L12 using classical EMD.
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Figure 4.68: IA of final resulting IMFs for voltage measurement L12 using classical EMD.

4.4.4 Voltage measurement L12 - Online EMD

The resulting IMFs for L12 using Online EMD as decomposition method can be seen in
Figure 4.69. The results of applying FFT, and HT to find the IF and IA can be seen in
Figure 4.71, 4.72 and 4.73 respectively.

Figure 4.69: Final resulting IMFs for voltage measurement L12 using Online EMD.
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Figure 4.70: Closer look at the final resulting IMFs for voltage measurement L12 using Online
EMD.

Figure 4.71: Closer look at the final resulting IMFs for voltage measurement L12 using Online
EMD.
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Figure 4.72: IF of final resulting IMFs for voltage measurement L12 using Online EMD.

Figure 4.73: IA of final resulting IMFs for voltage measurement L12 using Online EMD.
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4.5 Discussion

Applying classical EMD to the original current measurement L1 results in reasonably pure
separation of the 50 Hz and 950 Hz component. However, further examination of the 50
Hz component reveals slight mode-mixing with frequencies discovered in the original sig-
nal using FFT. As the dominant 50 Hz component absorbs the relevant frequencies, the
rest of the IMFs uncovered are left as low-frequency noise. After a more gradual approach
using masking signals to extract IMFs with relevant modes of oscillation, the 19th, 5th,
and a cluster of inter-harmonics are discovered in addition to the fundamental 50 Hz com-
ponent. Initial visual inspection of the extracted IMFs does not yield immediately apparent
conclusions. Thus further analysis using FFT and HT is required.

A closer look at IMF 1 reveals what appears to be a somewhat well-behaved sinusoid
with slight amplitude modulation consistent throughout the entire signal duration. There
are, however, more distinct instantaneous changes in amplitude occurring in the IMF, most
prominent at t = 1.2s and t = 2.75s. FFT of IMF 1 reveals the presence of a 1050 Hz fre-
quency component of significantly lower amplitude than that of the 950 Hz component. As
the amplitude of the IMF is seen to change over the signal duration, the amplitudes in the
FFT does not necessarily represent the amplitude of each mode in the signal. Based on the
FFT, it is not possible to determine whether the low amplitude of the 1050 Hz component
is due to a low amplitude consistent in the entire signal or a high amplitude intermittence.
However, as the resulting IF of IMF 1 seen in Figure 4.58 is relatively consistent through-
out the entirety of the signal, the notion of a low amplitude 1050 Hz component being
present for the entire signal duration seems reasonable. As the difference in frequency
between 1050 and 950 Hz is relatively small, it is possible to attribute the amplitude mod-
ulations previously mentioned to the beat-effect of these two signals.

A closer look at the IF given in Figure 4.74 reveals, though distorted, frequency peaks
regularly occurring in the IMF.

Figure 4.74: The frequency component of the HT for IMF 1 of signal L1 compared to the frequency
component of the HT of a signal given by cos(2π950t) + 0.07cos(2π1050t)

This agrees with the patterns of mode-mixing mentioned in Section 2.4.5 as peaks in the
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frequency of the HT occurs based on the difference between the frequencies mixed. By
constructing a synthetic signal cos(2π950t) + 0.07cos(2π1050t), where the amplitude
of the 1050 Hz frequency component is based on the relative difference of the ampli-
tudes in the FFT, it can be observed that the frequency component of the HT for IMF 1
matches that of a mode-mixed signal of frequencies 950 Hz and 1050 Hz. The IA of IMF
1 given in Figure 4.59, also shows clear instantaneous changes in amplitude. Due to the
instantaneous nature of the changes, it seems unreasonable to contribute these changes to
amplitude modulations naturally occurring in the signal or mode-mixing. Rather, it seems
more likely that the changes are due to outside intervention of either mechanical or elec-
trical nature.

By visual inspection of IMF 2 and IMF 3, it is apparent that these IMFs are more ir-
regular than IMF 1. IMF 2 represents the 250 Hz component, and as mentioned in section
4.2.1, it shows signs of mode-mixing with IMF 3. The IMFs themselves indicate slight
mode-mixing as each spike in IMF 2 relates to a reduction in IMF 3. There are also traces
of activity in overlapping frequency ranges, as seen in the FFT in Figure 4.57. However,
IMF 2 does appear relatively well behaved, and further investigation of the IF of IMF 2
does not reveal any meaningful patterns consistent with mode mixing. As such, the mode-
mixing may be limited to intermittent bursts, explaining the low amplitude FFT and the
IMF peaks. Thus IMF 2 is seen as a representation of a 250 Hz component will slight
disturbances. IMF 3, however, is significantly more irregular than both IMF 1 and IMF 2.
Based on the FFT, it appears to contain several inter-harmonics, the most notable frequen-
cies being 142 Hz and 192 Hz. While this is likely to be noise, there have been reported
instances of inter-harmonics concerning WTGs. Furthermore, this IMF contains a 150 Hz
component noted in the initial analysis, also detected in voltage measurement L12. Thus
the IMF is separate from the residue, as the components mixed have been previously noted
in the analysis.

IMF 4 represents a 50 Hz frequency component. As the measurement is from a turbine
connected to the Norwegian power grid operating at a frequency of 50 Hz, this component
is expected. While this IMF appear well behaved, the IA, as seen in Figure 4.75 reveals a
consistent amplitude modulation of frequency 8 Hz.

Figure 4.75: Closer look a the amplitude component of the HT for IMF 4 of signal L1
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There is also a noticeable overall change in amplitude over the signal duration. Visual in-
spection of the IF of the IMF does not show the characteristic signs of mode-mixing, and
FFT does not reveal other frequency components. Thus, the internal amplitude modulation
is likely not a result of mode-mixing, but rather a part of the signal characteristic. As there
is limited information regarding the surroundings of the turbine at the time the measure-
ment is taken, the cause of the increase in current and its modulation is not immediately
apparent. However, seeing as the voltage measured in signal L12 keeps relatively stable,
this increase is possibly due to a load increase or adjustment in output.

The voltage measurement L12 has a significantly lower degree of harmonic pollution than
the current L1. Looking at the initial measurement in Figure 4.20, no clear visual in-
dication of harmonic disturbance is noted. This is also observed in the initial EMD, as
it cannot separate or detect any relevant frequencies. However, the use of FFT reveals
harmonic presence in the signal, previously hidden by the dominating 50 Hz frequency
component. For further analysis using EMD, a masking signal is constructed based on the
boundary condition map [28] and the large amplitude discrepancy between the fundamen-
tal and harmonic frequencies. The IMFs obtained after a more thorough analysis can be
seen in Figure 4.64. The resulting IMFs represent the 19th, 11th, and 5th order harmon-
ics. This agrees with the results from the current L1 where both the 19th and 5th order
harmonics also appear. As there are no obvious visual signs of harmonic disturbance in
L12 it seems likely to expect the harmonics uncovered in this signal to be relatively well
behaved and of low amplitude.

IMF 1 represents a 950 Hz frequency component, also detected in current L1. However,
this IMF is more well behaved than its counterpart. Both IF and IA, as seen in Figure
4.67 and 4.68 are relatively consistent throughout the signal duration, and apart from a
slight modulation in amplitude, the IMF behaves as a near-perfect sinusoid. No signs of
mode-mixing can be seen, and the FFT of the original L12 measurement shows no trace
of a 1050 Hz frequency component. Therefore, the modulation in amplitude is not likely
to be the result of mode-mixing, but rather characteristic to the signal itself.

IMF 2 and IMF 3 also contain very slight modulations in amplitude. These modulations
can easily be detected in the IA seen in Figure 4.68. The FFT of IMF 3 seems to suf-
fer from a high degree of mode-mixing with a component of frequency centered at 120
Hz. However, as mentioned in section 4.2.2, this peak can be attributed to the boundary
condition error propagating at the ends of the IMF. It is seen that applying FFT to IMF 3
excluding the ends, results in an FFT only containing the 250 Hz frequency component.
As none of the IMFs shows any clear signs of mode mixing in either FFT, IF, or IA, it
seems unlikely these modulations are due to causes such as the beat-effect.

Overall, the results based on Online EMD are relatively similar to those of the classical
EMD. Though the method of mode-mixing separation differs slightly as the online version
simulates input as a data-stream, therefore not removing extracted IMFs from the original
input, the methods are deemed similar enough to warrant a comparison of results. The
immediately obvious difference is apparent in the residue of both plots. This difference is

91



Chapter 4. Frequency Identification in a Wind Turbine Through HHT and Online EMD

expected as there is a delay to each subsequent IMF extracted for the Online EMD. Thus,
when combining leftover IMFs, the residue is limited to the length of the shortest, i.e., last
extracted IMF. However, some of the differences can also be attributed to mode-mixing
and quality of decomposition, as all leftover noise and unsuccessful separation accumu-
late in the residue.

Looking at the actual IMFs, the difference between the Online and classical EMD is more
subtle. There is a slight difference in the smoothness of the amplitude modulations, which
is most visible in IMF 2 for voltage L12 as seen in Figure 4.65 and 4.70. Here the On-
line EMD is seen to have a much more discinct modulation, while the classical EMD
seems somewhat irregular. However, applying HT and FFT on each IMF ultimately yields
matching results. In general, it appears the Online version is as adept at signal decom-
position as the classical EMD, even for complex signals. Based on the smoother, more
distinct amplitude modulations, it is even possible to argue the Online EMD does a bet-
ter job when dealing with noise, as the smoothing-effect of the averaging process might
cancel out some of the disturbances. Furthermore, the use of masking signals to handle
mode-mixing is seen to be effective for mode-mixing separation even when applied to the
Online EMD.

Based on the IF plots, there seems to be a small internal frequency in each IMF. How-
ever, as these modulations in frequency seem to be very consistent and not inherently
noticeable in the IMFs, they could be contributed to the HT itself. As the combination
of EMD and HT is based on empirical separation and mathematical transformation used
in conjunction, some inaccuracies are to be expected when applied to complex signals.
While the results from this method have proven to give overall solid results uncovering
much of the signal characteristics, it can be counter-productive to put too much trust in
the details of the IA and IF. As mentioned, the notion of instantaneous frequency is still
highly controversial, and patterns seen in the output can often be contributed to the nature
of the transformation itself. This, combined with altering the input by applying masking
signals, can give results that are too fragmented, not necessarily representing physically
meaningful information. Thus, it can be advantageous to compare the results obtained to
the results expected before the analysis. There are many causes of harmonics in WTGs.
One possibility is harmonic current generation due to the soft starter installed in the tur-
bine to reduce in-rush-current during startup. This harmonic current is, however, low in
magnitude and usually has a short duration. Harmonic currents are often caused by the
transformer during energization, resulting in a considerable amount of low-order harmon-
ics. As the transformer usually is set to operate close to the saturation point, the nonlinear
relationship between the voltage and current, especially given over-voltage condition, can
cause harmonic distortion in the resulting output. Generally, this phenomenon is related
to odd harmonics, and as delta windings block triplen harmonics, the harmonic content
reported in WTG are of the orders 5th, 7th, 11th, 13th, 17th, 19th and so on—i.e., those
of orders 6k ± 1, where k is an integer [31]. This is consistent with the results in this
analysis. The 19th and 5th order harmonic is extracted from L1 and the 19th, 11th, and
5th order harmonics from L12. The presence of inter-harmonics is also noted in IMF 3
for current measurement L1. While it has been noted that the harmonic content can vary
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based on the wind speeds as the size of the capacitor compensation is related to the power
[32], there is no clear link to the amplitude modulation seen in the uncovered harmonics
in this analysis.
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Chapter 5
Conclusion and Future Work

In this master’s thesis, different methods for identifying and tracking the instantaneous
frequencies and amplitudes in microgrids have been presented. First, a brief general intro-
duction is given for the concept of microgrids and harmonics in the power system, followed
by a more thorough theoretical background for the FFT, HT, EMD, and Online EMD. A
comparison of the decomposition quality of the EMD and Online EMD is made through
the analysis of synthetic signals. When applied to a three-tone superimposed signal, the
decomposition quality of the Online EMD is seen to converge to the decomposition quality
of the classical EMD using identical stoppage criteria. For lower values of window size,
the Online EMD has a slightly worse decomposition quality but is seen to outperform the
classic version for l = 13. As a disturbance is added to the signal, there is no clear re-
lationship between the online and classical versions. However, Online EMD is seen to
result in slightly better decomposition for lower window sizes compared to the classical
EMD using identical stoppage criteria, but as the window size increases, the decomposi-
tion quality declines.

These methods are then used to identify the harmonic content in an actual voltage and
current measurement taken from a WTG. The measurements are decomposed using both
EMD and Online EMD and are further analyzed by FFT and HT. Using FFT for fre-
quency identification to construct appropriate masking signals proved to be highly effec-
tive when used in conjunction with a boundary condition map. While there are traces of
inter-harmonics in IMF 3 of current measurement L1, the separation of modes using clas-
sical EMD is deemed satisfactory. This is also the case for Online EMD. As such, the
usage of masking signals for mode-mixing separation can be considered effective when
adapted to the Online EMD. The findings based on classical and Online EMD proved to
be similar enough to warrant an identical conclusion. Thus the Online EMD is deemed to
be a suitable alternative to the classical version when real-time identification or processing
power is of the essence.

However, some problems and findings have been mentioned but left unanswered and are
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thus suggested as topics for future work:

• This thesis addressed decomposition quality and mode-mixing related to the Online
EMD, it is thus suggested by the author to further study the time-delay associated
with the decomposition using Online EMD.

• The method used for frequency identification to construct masking signals is here the
FFT, it is suggested to investigate the use of other more dynamic methods capable
of detecting amplitudes more effectively when used in conjunction with the EMD.

• The use of masking signals proved to be effective for mode-mixing separation also in
the Online EMD. However, the author suggests further study into alternative mode-
mixing separation methods as the construction of masking signals requires extensive
knowledge of the signal characteristic and requires more processing power.

• Finally, it is suggested to study further the amplitude modulations discovered in the
uncovered IMFs, especially the more instantaneous changes in IMF 1 of L1 as they
appear to be influenced by outside intervention.
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[24] G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and
its algorithms,” Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and
Image Processing NSIP-03, vol. 3, June 2003.

[25] A. Zeiler, R. Faltermeier, I. Keck, A. Tomé, C. Puntonet, and E. Lang, “Empirical
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Appendix

This section contains the IF and IA of every step of the decomposition by classical EMD
for both L1 and L12. It also includes a closer look a the resulting IA and IF, and a recre-
ation of the original signal using the resulting IMF.

A.1 Current Measurement L1

A.1.1 Initial analysis

Figure A.1: IF of the IMFs from the EMD applied to f(t).
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Figure A.2: IA of the IMFs from the EMD applied to f(t).

A.1.2 After Applying Mask fm1

Figure A.3: IF of IMFs after adding masking signal fm1(t) to f(t).
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Figure A.4: IA of IMFs after adding masking signal fm1(t) to f(t).

A.1.3 After extraction of the 50 Hz Component

Figure A.5: IF of the IMFs from the EMD applied to f1(t).
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Figure A.6: IA of the IMFs from the EMD applied to f1(t).

A.1.4 After extraction of the 50 Hz and 950 Hz Component

Figure A.7: IF of the IMFs from the EMD applied to f2(t).
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Figure A.8: IA of the IMFs from the EMD applied to f2(t).

A.1.5 After Applying Mask fm2

Figure A.9: IF of IMFs after adding masking signal fm2(t) to f2(t).

105



Figure A.10: IA of IMFs after adding masking signal fm2(t) to f2(t).

A.1.6 Resulting IMFs

Figure A.11: Closer look at the IF of resulting IMFs of f(t).
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Figure A.12: Closer look at the IA of resulting IMFs of f(t).

Figure A.13: Recreation of original signal f(t) from the resulting IMFs.

107



A.2 Voltage Measurement L12

A.2.1 Initial analysis

Figure A.14: IF of the IMFs from the EMD applied to g(t).

Figure A.15: IA of the IMFs from the EMD applied to g(t).
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A.2.2 After Applying Mask gm1

Figure A.16: IF of IMFs after adding masking signal gm1(t) to g(t).

Figure A.17: IA of IMFs after adding masking signal gm1(t) to g(t).
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A.2.3 After extraction of the 50 Hz Component

Figure A.18: IF of the IMFs from the EMD applied to g1(t).

Figure A.19: IA of the IMFs from the EMD applied to g1(t).
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A.2.4 After Applying Mask gm2

Figure A.20: IF of IMFs after adding masking signal gm2(t) to g1(t).

Figure A.21: IA of IMFs after adding masking signal gm2(t) to g1(t).
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A.2.5 After extraction of the 50 Hz and 950 Hz Component

Figure A.22: IF of the IMFs from the EMD applied to g2(t).

Figure A.23: IA of the IMFs from the EMD applied to g2(t).
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A.2.6 After Applying Mask gm3

Figure A.24: IF of IMFs after adding masking signal gm3(t) to g2(t).

Figure A.25: IA of IMFs after adding masking signal gm3(t) to g2(t).
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A.2.7 Resulting IMFs

Figure A.26: Closer look at the IF of resulting IMFs of g(t).

Figure A.27: Closer look at the IA of resulting IMFs of g(t).
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Figure A.28: Recreation of original signal g(t) from the resulting IMFs.
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