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Abstract

The increased focus on environmental pollution has also led to changes in the power
industry. Today, it can be observed an increased integration of renewable energy sources
to ensure a greener energy sector. The enabling technology is power electronics which can
fulfill the new requirements of the future grid, including improved performance, higher
reliability and controllability. However, the emerging proportion of power electronics
also lead to power quality and stability issues, such as harmonic oscillations.

The focus of this thesis is to recognize sources of instability and to understand the im-
portance of preliminary stability assessment of systems dominated by power electronics.
Furthermore, it focuses on small-signal stability analysis in the frequency domain and
introduces the impedance-based stability analysis as a method to predict the stability of
a power electronics dominated system.

Throughout this thesis, the stability of a current controlled voltage source converter
(VSC), a voltage controlled VSC, a grid connected microgrid and an islanded micro-
grid is investigated. The impact on the stability from control and system parameters
are researched applying the impedance-based stability method. Additionally the the-
sis identifies the causes of instability and predicts the stability strength of the systems.
The predicted stability is further verified by time domain simulations and the method is
proven to be accurate and useful as a tool to help assess the stability of the investigated
systems.
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Sammendrag

Det økte fokuset p̊a klimagassutslipp har ført til forandringer i kraftindustrien. I dag ser
vi en økende integrering av fornybare energikilder for å sikre en grønnere energisektor.
For å muliggjøre denne overgangen vil kraftelektronikk være en viktig nøkkel for å innfri
de nye kravene til framtidens nett som innebærer høyere ytelse, større p̊alitelighet og kon-
trollerbarhet. Imidlertid fører den voksende andelen kraftelektronikk ogs̊a til problemer
med kraftkvalitet og stabilitet.

Fokuset til denne oppgaven er å gjenkjenne ulike kilder til ustabilitet og å forst̊a vik-
tigheten av en forh̊andsvurdering av et systems stabilitet. Videre fokuseres det p̊a sta-
bilitetsanalyse i frekvensdomenet og den impedansbaserte stabilitetsanalysen er intro-
dusert som en metode for å forutsi stabiliteten til et system dominert av kraftelektronikk.

I denne oppgaven har stabiliteten til en strømstyrt omformer, en spenningsstyrt om-
former, et mikrogrid tilkoblet nettet og et mikrogrid frakoblet nettet blitt undersøkt.
Ved hjelp av den impedansbaserte stabilitetsanalysen har p̊avirkningen til system- og
kontrollparametre blitt belyst og årsaken til ustabiliteten har blitt identifisert. Den
forutsagte stabilitetstyrken har blitt verifisert gjennom simuleringer i tidsdomenet. Kon-
klusjonen fra analyseresultatene er at den impedansbaserte stabilitetsanalysen egner seg
som et godt og nøyaktig verktøy til bruk for å vurdere stabiliteten til de undersøkte
systemene.
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Chapter 1

Introduction

This chapter gives an introduction to the motivation behind the thesis. In addition, it
presents the scope, highlights the contributions and outline the structure of the research.

1.1 Motivation and Problem Statement

1.1.1 The Future Grid

Environmental pollution from non-renewable energy resources such as coal and oil has
made today’s energy crisis and environmental issues more prominent. Because of this,
an increased focus regarding making the energy sector greener has emerged. A larger
proportion of renewable energy involves a technological shift in the power industry to
enable a coordination between the grid and distributed generation [1].

Today’s power grid is based on a centralized power generation from large power plants
that often are located far away from the end-users. The most prominent advantage of
centralized power is the ability to enhance the efficiency of energy use, while drawbacks
are operational difficulties, high costs and difficulty in meeting the user’s new require-
ments regarding reliability and safety [2]. This emphasizes the need of a decentralized
power generation, built up by several small power generators. This technology is called
distributed generation, which is a general term for renewables and non-renewables that
have smaller capacity than the traditional power plants [3]. Some of the advantages of
distributed generation are less pollution, reduction of line losses and operating costs,
higher energy efficiency and improved performance and reliability of power supply [4].

While the number of distributed generation units are continuously increasing in today’s
power grid, new challenges for operating and controlling the power grid safely are created.
The concept of microgrids emerged as a way to address these challenges [5]. A microgrid
is directly connected to the user side and is a smaller, independent and decentralized
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power system. It benefits from using power electronics and puts distributed generation
units such as wind power, solar power, energy storage and gas turbine devices together.
The basic structure of a microgrid is illustrated in Fig. 1.1. A microgrid brings benefits
to both the user and the grid. It can be observed as a controllable power unit for
large power grids because of its ability to meet, within a few seconds, the needs of the
distribution grid. For the users, on the other hand, a microgrid will reduce feeder loss,
increase the reliability and enhance the stability of local voltage.

Figure 1.1: An illustration of the future power grid.

A microgrid is commonly known for five characteristics: (I) uniqueness, (II) diversity,
(III) controllability, (IV) interactivity and (V) independency [6]. It is unique from its
definition as a group of interconnected loads and microsources with clear and defined
electrical boundaries that acts as a single unit connected or disconnected to the grid. This
characteristic emphasizes the main difference from a large grid, which is the microgrid’s
ability to be flexible. It is diverse because of the composition. A microgrid can consist of
both traditional power units, renewable energy and different type of loads. In addition,
energy storage is necessary to ensure stable operations. Furthermore, a microgrid has
high controllability because of its ability to choose the most appropriate control strategy.
As an independent generation unit, a microgrid interacts with the grid such that it can
provide support to the main grid and also receive support from the main grid when that
is necessary. Because of the already mentioned ability to be connected or disconnected
to the grid, a microgrid has high independency and works as an independent generation
unit that can provide the local demand of power under circumstances where the grid
experiences failure.
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1.1.2 Stability Analysis

From the information above, the future grid, including microgrids, will therefore have
many and more prominent advantages compared to today’s grid. In addition to facilitate
for renewable energy sources, the implementation of more power electronics will lead to
higher reliability, efficiency and controllability [7]. On the downside, the integration of
converters, such as voltage source converters (VSC), to the power system will result in
power quality and stability issues [8]. This makes it necessary and important to get
familiar with different stability analysis tools to understand the instability of a system
dominated by power electronics [9].

There are several methods to analyze the stability of a power electronics dominated
system. However, for small-signal stability analysis the most common used methods
are the eigenvalue-based and the impedance-based stability analysis. They are known
to need less computation and to include the impact of controller dynamics and the grid
impedance on the stability [10]. This thesis will focus on analyzing the stability according
to the impedance-based method. However, to substantiate the choice, advantages and
disadvantages of the impedance-based and eigenvalue-based method will be presented.

As can be seen from the scheme in Fig. 1.2, both the impedance-based and the eigenvalue-
based analysis methods are under the category of small-signal stability analysis in the
frequency domain. Furthermore, the impedance-based analysis can be applied either
on the alternating current (AC) side or the direct current (DC) side. If the method
is applied to the AC side, the impedance model can either be derived in the sequence
domain or the dq-domain. This thesis will focus on the AC-impedance in the dq-domain.

Figure 1.2: Small-signal stability analysis in the frequency domain.

As discussed in many other papers [11–14], the impedance-based method split the system
into one source subsystem and one load subsystem. The ratio of the source impedance
to the load impedance is called the minor loop gain and the stability of the system is
found by applying the generalized Nyquist stability criterion (GNC) to this ratio [15].
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The stability of the system is then predicted from the Nyquist plot. A stable system
does not encircle the point (−1, j0) and should have a sufficient phase margin higher
than 35◦ [16]. The eigenvalue-based stability method, on the other hand, represents the
system by a small-signal state-space model, and determines the stability by evaluating
the position of the eigenvalues.

The major advantage of the impedance-based method is that even if the system is a black
box the impedances of the two subsystems can be obtained from measurements from one
single point. This further means that the impedances of the source and load subsystems
can be found in real-time, which also applies for the stability. The eigenvalue-based
stability method, on the other hand, requires detailed model information of the system
to analytically derive the small-signal state-space model and consequently does not have
the possibility to predict the stability in real time.

As already mentioned, the impedance-based stability analysis can either be applied on
the DC side or the AC side of the converter. Different researches have discovered that
if the analysis is applied on the DC side it will not be possible to observe some of the
instability phenomena on the AC side and the other way around. This means that the
impedance-based stability analysis is a local stability method, that might require several
interfacing points to be able to analyze the stability of the whole system. On the other
side, the eigenvalue-based stability analysis is a global stability method and is able to
assess the stability of the whole system.

1.1.3 Sources of Instability

There are several different sources of instability in a power electronics dominated system,
among others, a high grid impedance can influence the stability of the system. A grid-
connected microgrid or other power electronics based power systems should in principle
be stable for all grid conditions [17], but a weak grid can cause instability. A weak grid
is brought by a high grid impedance, which can destabilize the current controller which
again can lead to sustained harmonic oscillations.

It has also been proven that the control loops of the converter technology may be a source
to instability. Among others, the phase locked loop (PLL) bandwidth and the parameters
of the proportional-integral (PI) controller of the current controller can affect the stability
of the system [18]. In addition, there might also arise stability issues regarding connecting
several converter technologies in parallel to constitute a microgrid [19]. As a result of this,
control loops might interact with each other, which can lead to harmonic instability [20].

The stability of grid-connected VSCs has been thoroughly researched in [21], which
emphasizes the affect the current controller and PLL has on the stability. In [22] the
stability of paralleled VSCs applying the impedance-based method is investigated. It
proposes a method, based on the impedance-based stability analysis, that can predict the
stability of paralleled VSCs. The origin of oscillations between an interconnected wind
farm and a VSC-based HVDC system is thoroughly researched in [23, 24]. However,
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it appears that there is a lack of research in the field of stability analysis applying
the impedance-based stability method for grid-connected and islanded microgrids. The
eigenvalue-based method is used to investigate the stability of a grid-connected microgrid
in [25] and an islanded microgrid in [26]. The research in [27] look at the stability of a
microgrid applying the impedance-based method, however, this thesis differs from other
research by presenting a more thorough stability analysis by investigating the affect of
several more sources of instability.

1.1.4 Problem Statement

The understanding of instability sources in the emerging power electronics dominated
power systems is crucial to make the realization of the future grid possible. Therefore,
in this thesis, the impedance-based stability analysis will be applied to different power
electronics dominated systems, including: (I) a current controlled VSC, (II) an AC
voltage controlled VSC, (III) a microgrid operating in grid-connected mode and (IV) a
microgrid operating in islanded mode.

1.2 Objective of the Thesis

This thesis focuses on the analytical small-signal stability analysis of a power electron-
ics dominated system. The analytical results are verified using numerical simulations,
where the impact of passive and active components is investigated. The research result
identifies how the stability of a power electronics dominated system is affected by change
in different parameters. It discusses which components that affect most to instability,
and what to consider when power electronics is cascaded. The objective of the thesis is
motivated by the following research gap:

• Stability analysis of a microgrid in grid-connected and islanded mode.

1.3 Scope of the Thesis

To be able to investigate this subject, a small-signal stability analysis has been carried
out for a VSC and a microgrid. A derivation of the small-signal state-space model and
the impedance model of the system has therefore been necessary. Based on this, the
impedance-based stability analysis has been applied and it has been possible to present
findings in terms of what affects the stability in a VSC and a microgrid. To limit the
complexity and to stay relevant to the subject, some assumptions where made:

• The investigated systems are relatively small.
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• Mainly the impedance-based method is applied to analyze the stability.

• The focus is to study the interactions between the converter and the AC side and
therefore, the control and impedance modeling of the DC side is omitted, assuming
a constant DC voltage input.

• The VSCs constituting the microgrid is equal in control and structure to simplify
the impedance modeling and stability analysis.

1.4 Contributions of the Thesis

This thesis has contributed to the field of research in stability analysis of power electronics
dominated systems. The contribution is especially prominent with regard to stability
analysis of grid-connected and islanded microgrids. The stability assessment has been
performed by applying the impedance-based stability method. The contributions of the
thesis includes the following:

• In Chapter 2, a step-by-step description of the topology and modeling of a current
controlled and an AC voltage controlled VSC is presented. By combining the
knowledge of different control strategies, a microgrid that can be operated in both
grid-connected and islanded mode is presented.

• In Chapter 3, the linearized small-signal state-space model of the current controlled
and AC voltage controlled VSC is derived. The two models are verified by com-
paring them to time domain simulations to ensure that they can be further used
for stability analysis.

• In Chapter 4, the impedance model of the current controlled and AC voltage con-
trolled VSC is derived, which is further used to derive the impedance model of the
microgrid for different operating modes. Single tone approach is introduces as a
method to verify the impedance models of a current controlled VSC.

• In Chapter 5, the stability of a current controlled VSC, an AC voltage controlled
VSC and a microgrid is analyzed by applying the impedance-based method. The
potential causes of instability are observed by changing different parameters of the
system. The impacts of the grid impedance and control parameters are especially
investigated. The research furthermore brings out how the stability changes when
several VSCs are connected in parallel to form a microgrid.

1.5 Structure of the Thesis

In the following, the structure of the thesis is reviewed. Every chapter has an ingress in
italics and a section named ”Introduction”. The ingress is meant as a short summary
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to give the reader an idea of what the chapter will discuss. The introductory section,
on the other hand, gives a more thorough establishment of the background of why the
chapter is important, in addition to give a precise explanation of what each section in
the chapter will go through.

Chapter 2 presents the description and topology of the microgrid that is analyzed further
in this thesis. To build a microgrid it is necessary to get to know the building blocks,
which in this case are VSCs. The topology of a VSC is furthermore thoroughly reviewed,
including the pulse width modulation (PWM) and the LCL-filter. It is explained how
different control strategies are necessary to enable both grid-connected and islanded
operating modes of the microgrid, and both a current controlled and an AC voltage
controlled VSC is studied. The above information is combined to present the control
strategy of a microgrid, and lastly, simulations of the microgrid are shown.

Chapter 3 explains the importance of deriving a small-signal state-space model of the
VSC. Many of the commonly used stability analysis must be applied to a linearized model.
The state-space model of both the current controlled VSC and the AC voltage controlled
VSC is therefore presented by describing the mathematical model of the physical system
and the control system. Small-signal representation is applied to linearize the system
and the models are verified by comparing the small-signal state-space responses to time
domain simulations of a system that includes the nonlinear characteristics.

Chapter 4 introduces the impedance-based stability analysis. It first explains how the
method divide a system into one source subsystem and one load subsystem. The ratio
of the source impedance to the load impedance is called the minor-loop gain and the
stability of the system is found by applying the GNC to this ratio. The system stability
strength is decided from the characteristics loci of the minor-loop gain and the phase
margin. Furthermore, the impedance models for both a current controlled VSC and
an AC voltage controlled VSC is derived. This knowledge is further used to derive the
impedance models of a grid-connected and an islanded microgrid. Lastly, the single-tone
approach is introduced as a method to verify the analytically derived impedance models.

Chapter 5 presents the stability analysis of the systems. It first discusses the often seen
sources of instability in a power electronics dominated system. The impedance-based
method is first applied to the current controlled VSC for different cases such as changing
the grid impedance or control parameters. The stability is predicted based on the Nyquist
plot retrieved from the impedance ratio found in Chapter 4. The predicted stability is
further verified by time domain simulations. Following, the stability of an AC voltage
controlled VSC, grid-connected microgrid and islanded microgrid is investigated. The
affect of having intermittent power sources with variable power input connected to the
microgrid is also researched through simulations. Lastly, a discussion of the results is
presented.

Chapter 6 includes a conclusion with the main findings and a recommendation for future
work.
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1.6 Relation to Specialization Project

The research in this thesis is based on work done in the project preceding this thesis [28].
The sections that are similar to the previous research includes:

• Section 4.3: DQ-Domain Impedance Modeling of the Current Controlled VSC

• Section 4.7: The Single-Tone Approach

• Section 5.2: Impedance-Based Stability Analysis of the Current Controlled VSC

The presented material in Chapter 2 is also based on the preceding project report, but
is amended due to the new problem statement.
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Chapter 2

Description and Control of a
Microgrid

This chapter presents the description and control of the microgrid further analyzed in
this thesis. First, the difference in modeling and control of a microgrid in grid-connected
and islanded mode is explained. To constitute the microgrid, several VSCs are connected
in parallel and the model and control of each individual converter is presented. Lastly,
time domain simulations of the microgrid is shown.

2.1 Introduction

As mentioned in Chapter 1, today’s power grid is in the middle of a big transition to
facilitate the increased integration of renewables. The realization of the future grid will
not be possible without power electronics and it can therefore be seen as the enabling
technology. To be able to analyze the stability of a microgrid, it is necessary to know
the building blocks, namely the VSCs. It is therefore important to gain knowledge of
the topology and modeling of a VSC and to be able to design a control system that
establishes stable operations. In addition, if a microgrid should have the possibility to
operate in both grid-connected and islanded mode, different control strategies of the
VSCs are required.

This chapter presents the microgrid that will be further analyzed in this thesis. Section
2.2 presents the modeling of a microgrid and the difference between grid-connected and
islanded mode. Section 2.3 describes the topology of each individual VSC that constitutes
the microgrid, and among others, mentions the role of a PWM and a LCL-filter. Two
different control strategies of the VSC are discussed in Section 2.4. Section 2.5 combines
all the previous knowledge to describe the control design of the microgrid and how it
changes between the two different operation modes. Lastly, time domain simulations of
the system are presented.
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2.2 Description of a Microgrid

Fig. 2.1 illustrates a commonly used construction of a microgrid. Several VSCs are
typically connected in parallel to constitute a microgrid. The VSCs convert the DC
voltage, vdc,n, to AC voltage, and are commonly used in power systems dominated by
power electronics as a tool to achieve higher controllability [29]. The n converters are
connected to the grid through LCL-filters at the point of common coupling (PCC). It
consists of two inductances, L1,n and L2,n, on each side of a capacitance, Cn. The
microgrid can exchange power with the main grid at the PCC, which enhances the
reliability and emphasizes the characteristic of interactivity.

The sum of each PCC current, io,n, is the grid current io. The grid voltage, vg with
the grid inductance, Lg, can be connected or disconnected to the microgrid through a
switch, which maintain the characteristic of independency. To satisfy the requirement of
diversity, the different converters n should incorporate both renewables, non-renewables,
energy storage and loads.

Figure 2.1: VSCs connected in parallel to form a microgrid.

2.2.1 Topology of the Microgrid

The topology of the microgrid that will be further analyzed is given in Fig. 2.2. To satisfy
the characteristic of diversity, an induction generator (IG), wind power, photovoltaics
(PVs), a battery energy storage system (BESS) and a regular RL-load are constituting
the microgrid. The different loads and microsources are connected in parallel to the
grid according to Fig. 2.1. Wind power produces AC voltages at varying frequencies
and would first need an AC to DC converter and then a DC to AC converter to achieve
constant frequency. For simplicity, the first converter step is not included.

Renewable power capacity grew with 8% in 2018 and for the last four years it has been
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Figure 2.2: Topology of the microgrid.

installed more renewables than fossil fuel and nuclear power together [30]. The solar
and wind power is therefore included to represent this growth in renewables and also to
represent the intermittent power supplies, characterized by randomness and uncertainty,
that often are found in microgrids. A BESS is included to introduce bidirectional power
flow and plays an important part in the microgrid’s ability to be independent of the main
grid. Energy storage supports the independent operation of the microgrid by maintaining
the dynamic balance of generation and load, stabilizing the system disturbance and
keeping the stability of voltage and frequency.

Two loads are also connected to the grid, where one is a regular RL-load, while the other
is an industry represented by an IG that requires DC voltage. While it is given that the
loads consume power and wind and PV produces power, the BESS is either consuming
or producing power based on if it is charging or discharging. All the converters are
connected to the grid through the PCC and a switch is implemented on the grid side
to enable the change from grid-connected to islanded mode. For simplicity, all of the
microsources and loads are connected to the grid through equal VSCs and the power
produced is represented by a constant DC voltage source. For further simplicity the grid
has a constant value and is therefore considered as a stiff grid.

2.2.2 Grid-Connected Mode

A microgrid can be operated in grid-connected or islanded mode based on what the
need is. During grid-connected mode, the power can flow in both directions and the two
parts, grid and microgrid, serve as a backup for each other [31]. The microgrid adjusts
the power balance of supply and demand by sending power to or retrieving power from
the main grid. Also, the voltage and frequency regulation are managed by the main grid.

The control principle of the microgrid is also changed based on if it is in grid-connected
or islanded mode. When the switch of the microgrid in Fig. 2.2 is closed it is operated
in grid-connected mode. The main grid is therefore handling the voltage and frequency
regulation and all of the VSCs are based on a current controlled strategy [27]. A current
reference is given as input to the control system and the amount of power is therefore
decided by the absolute value of this input. By choosing between a negative and a positive
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current reference, the converter is either producing or consuming power, respectively.
The modeling and control principle of a current controlled VSC is further discussed in
Subsection 2.4.3.

2.2.3 Islanded Mode

A microgrid can be operated in islanded mode for different reasons [32]. Among others,
it can be because of an unplanned incident if the main grid is experiencing a failure. By
disconnecting the grid, the microgrid is still able to supply critical loads with power and
prevent sudden power outages. A planned incident could be disconnecting the grid during
preplanned maintenance on the main grid. This would allow performing maintenance
on substations and feeders without the user experiencing service interruption. Another
advantage of islanded operations is the ability to disconnect the microgrid during peak
hours [33]. In that way it is possible to avoid importing power from the grid by being
self-sufficient during such hours.

Since the grid is disconnected when the microgrid is operating in islanded mode, it is
necessary that one of the VSCs are based on an AC voltage controlled strategy. It is
a logic choice to implement this control strategy on the BESS converter, considering
its possibility to change between charging and discharging operations. While the other
current controlled VSCs must follow a given current reference, the BESS can change
its current to ensure that the PCC voltage stays constant at the desirable value. The
modeling and control principle of an AC voltage controlled VSC is further discussed in
Subsection 2.4.4.

2.3 The Voltage Source Converter

The energy technologies constituting the microgrid in Fig. 2.2 all provide a DC output
which requires power electronics to interface with the grid [34]. There are proposed and
utilized several different converter topologies throughout the world to serve this task, but
it mainly exists two dominant types which is the line commutated converter (LCC) and
the voltage source converter. As already mentioned, the microgrid presented in Section
2.2 will be built by VSCs. However, advantages and disadvantages of both technologies
as done in [35] will be presented to substantiate the choice.

The LCC is also known as a current source converter (CSC) because the output current
is kept constant. It has a converter bridge that is built up by thyristors as shown in
Fig. 2.3a. This only provides turn-on control while the turn-off is dependent on zero
crossing of the current. To commutate, the LCC is line-commutated and requires a high
synchronous voltage source and black-start operation is therefore impossible during a
blackout. The converter bridge of the VSC shown in Fig. 2.3b, on the other hand, is
built up by insulated gate bipolar transistors (IGBTs) that can both be turned on and
off in response to the gate signal. As a self-commutated converter, it creates its own
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AC signal and black-start operation, which is beneficial from a microgrid perspective, is
therefore possible. The thyristors of the LCC only conduct the current in one direction,
and power reversal is therefore performed by inverting the DC voltage polarity. The
power reversal of a VSC is much faster because of the diodes that are connected in
anti-parallel across the IGBTs and allow the currents to flow in both directions.

(a) (b)

Figure 2.3: Converter bridge of: (a) a three-phase LCC and (b) a three-phase VSC.

However, there are also disadvantages with the VSC, such as harmonics, high switching
losses and high voltage stress. Harmonics appear as a result of the AC side voltages and
currents which contain harmonic components of frequencies that are an integer multiple
of the switching frequency [36]. Lower order harmonics are more severe than higher
order harmonics, and the problem can therefore be reduced by increasing the switching
frequency [37]. This introduces another drawback with the VSC which is high switching
losses due to rapidly turn-on and turn-off of the IGBTs [38]. Because of the series
connection of the IGBTs, the semiconductors must withstand full voltage stress which
will introduce stress on the equipment insulation. Regardless of these disadvantages,
the VSC is predicted to be increasingly applied in power electronics dominated power
systems in the future [39]. It is commonly chosen because of its contollability, simple
system interface and low carbon footprint because of few components [40]. In addition,
its possibility to control active and reactive power independently and its role as a basic
building block for cascaded converters makes it convenient and appropriate to use in a
microgrid.

2.3.1 Topology of a Voltage Source Converter

Fig. 2.4 depicts the structure of each individual three-phase two-level VSC which is
used to perform the conversion between DC and AC in the microgrid. The produced
or consumed power is represented by a constant DC voltage source, vdc. The converter
bridge is built up by six IGBTs as semiconductor switches which at a high switching
frequency utilize PWM. Only one of the switches in each leg can be turned on at the
same time, and three switches are always conducting to avoid short-circuiting and to
maintain the three-phase output converter currents and voltages, il and vcv [41]. It
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Chapter 2. Description and Control of a Microgrid

is called a two-level VSC because of the switching devices which are complementary
operated to either have an output level of +vdc/2 or −vdc/2.

Figure 2.4: Topology of each individual three-phase VSC.

Furthermore follows the total series inductance and resistance between the converter
and PCC, Lc and Rc, and the grid impedance, Lg and Rg. Together with the filter
capacitance, Cf , this constitutes a LCL-filter that eliminates high order frequencies.
The voltage at the PCC is vo. When the VSC has an AC voltage controlled strategy
the grid is disconnected and a load inductance and resistance, Ll and Rl is necessary
to maintain the voltage. For simplicity, the system parameter values of each individual
VSC are the same and are given in Table 2.1, where f is the grid frequency and fsw is
the converter switching frequency. A per unit (pu) system is given in Appendix A and
is developed to simplify calculations and to easier understand the relationship between
the parameter magnitudes. It will also be beneficial in Chapter 3 where the small-signal
state-space model of the system is established.

Table 2.1: Parameters of each individual VSC.

Parameter Value

Rated power, S 15 kVA
Rated AC voltage, vg 230 V
Rated frequency, f 50 Hz

Rated DC voltage, vdc 375 V
Switching frequency, fsw 8000 Hz
Converter Inductance, Lc 0.1 pu
Converter Resistance, Rc 0.005 pu
Filter Capacitance, Cf 0.016 pu
Grid Inductance, Lg 0.16 pu
Grid Resistance, Rg 0.02 pu
Grid Inductance, Ll 0.16 pu
Grid Resistance, Rl 2.8 pu
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2.3 The Voltage Source Converter

2.3.2 Pulse Width Modulation

As already mentioned, PWM is used to create the desired sinusoidal form of the converter
output voltage. It keeps the voltage constant, while it allows simultaneous adjustment of
the amplitude and phase angle of the voltage. This brings advantages such as being able
to control active and reactive power independently and also the fast reversal of power
flow [42]. Fig. 2.5 shows the performance of the PWM. It behaves as a comparator
and compare a low frequency reference signal, vref , with a high frequency triangular
waveform, vcarrier. In the case shown in Fig. 2.5 the reference signal has a frequency
of 50 Hz, while the triangular waveform has a frequency of 2000 Hz. If the sinusoidal
waveform is higher than the triangular waveform the PWM signal is 1 and opposite, if
the sinusoidal waveform is less than the triangular waveform the PWM signal is set to
0.

Figure 2.5: The behavior of a PWM.

Fig. 2.6a shows the resulting converter output voltage and since the PWM is operated at
a high frequency, most of the harmonics are found around the switching frequency [43].
Fig. 2.6b shows the fast Fourier transform (FFT) plot of the output voltage in Fig. 2.6a,
and as can be seen most of the harmonics are located around the 40th harmonic, which
corresponds to the switching frequency. A filter is therefore necessary to eliminate these
high order harmonics.
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Figure 2.6: (a) Converter output voltage and (b) FFT of the converter output voltage.
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2.3.3 LCL-filter

A LCL-filter is chosen to filter out the high order harmonics generated from the high
switching frequency of the PWM. The filter has the ability to reduce resonance between
the grid and the converter and to debilitate the switching current ripples [44]. The LCL-
filter is also often chosen because of practical limitations such as weight, size and cost.
Fig. 2.7 shows the per phase equivalent of the LCL-filter. From the equivalent circuit,
the transfer function, YLCL(s), between converter output voltage and grid current can
be found as in (2.1). ωres is the resonance frequency and is given as in (2.2).

Figure 2.7: Per phase equivalent circuit of the LCL-filter.

YLCL(s) =
io(s)

vcv(s)
=

1

sLcLgCf
(
s2 + s(Rc

Lc
+ Rg

Lg
) + ωres

)
+Rc +Rg

(2.1)

ωres =

√
1

LcCf
+

1

LgCf
+
RcRg

LcLg
(2.2)

The parameters Lc, Rc, Rg and Lg are already given in Table 2.1 and are chosen from
commonly used values of a VSC, while the filter capacitance, Cf , is chosen in such a
way that the harmonics around the switching frequency will be eliminated. To achieve
this, the resonance frequency, fres, must be lower than the switching frequency. The
resonance frequency is often defined as in (2.3) and by solving (2.2) with respect to Cf
the filter capacitor can be decided as in (2.4).

fres =
1

5
fsw = 1600 Hz (2.3)

Cf =

(
1

Lc
+

1

Lg

)(
1

ω2
res −

RcRg

LcLg

)
= 0.016 pu (2.4)

The Bode plot of the transfer function YLCL(s) is shown in Fig. 2.8 and as can be seen
the harmonics around the switching frequency are damped.
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Figure 2.8: Bode plot of the LCL-filter.

2.4 Control of the Voltage Source Converter

A commonly used control method of the VSC is vector control [45] where AC signals are
transformed into two constant signals using the direct-quadrature-zero (dqz) transform.
The z-component is zero for symmetric systems, as is the case for the system in this
thesis. A Clarke transformation is first used to convert a three-phase (abc) stationary
coordinate system to a two-phase (αβ) stationary coordinate system. Furthermore, a
Park transformation is used to transform the two components in the αβ-frame to a
rotating coordinate system in the dq-frame. The result from these two transformations
is that AC signals are transformed to two constant signals in a synchronous reference
frame (SRF), which significantly simplifies the computations and static errors can be
avoided in the control system by using PI-controllers [46,47]. The method and approach
of dqz-transform is further explained in Appendix B.

As already mentioned in Section 2.2, the control principle of the microgrid will change
based on if it is in grid-connected or islanded mode. An overview of the general control
principle is depicted in Fig. 2.9. As can be seen a PLL is necessary to retrieve the
phase angle of the voltage and to enable the transform from abc-frame to dq-frame. The
control of the VSC consists of an inner current control loop. When the microgrid is
grid-connected it is not necessary with an outer control loop that controls the reference
signals, ildref and ilqref . However, when the grid is disconnected and the microgrid is
operated in islanded mode an outer AC voltage control loop is necessary to generate the
reference currents that are the input of the current controller. Each and every element
of the control principle depicted in Fig. 2.9 is discussed in the following subsections.
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Chapter 2. Description and Control of a Microgrid

Figure 2.9: Control principle of the VSC.

2.4.1 Modeling of the Voltage Source Converter

Fig. 2.9 is further used to derive the mathematical model of the VSC. The difference
between converter voltage and the voltage at the PCC is found in (2.5) by applying
Kirchhoff’s voltage law (KVL) on the AC side. The subscript k represents each phase,
a, b and c, of the converter.

vcv,k − vo,k = Rcil,k + Lc
dil,k
dt

(2.5)

To control the system, the equation has to be transformed into dq-frame as in (2.6).
This adds an extra coupled term, ωgLcild and ωgLcilq, that will be accounted for later.

vcvd − vod = Rcild + Lc
dild
dt
− ωgLcilq

vcvq − voq = Rcilq + Lc
dilq
dt

+ ωgLcild

(2.6)

The active power, P , and reactive power, Q, are expressed as in (2.7).

P =
3

2
(voqilq + vodild)

Q =
3

2
(voqild − vodilq)

(2.7)

To simplify these two equations, the dq-frame voltage vector, vod, is aligned on top of vo.
This process is illustrated in Fig. 2.10 and the result is that voq = 0, which changes the
power equations to (2.8).

P =
3

2
vodild

Q = −3

2
vodilq

(2.8)
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2.4 Control of the Voltage Source Converter

It is now clear that by taking advantage of the dq-frame, it is possible to independently
control active and reactive power. Active power is controlled by controlling ild, while
reactive power is controlled by controlling ilq. The angle of the voltage position, θ, is
found from Fig. 2.10b and given by (2.9), where voα and voβ are the voltage components
of the αβ-frame.

θ = tan−1(
voβ
voα

) (2.9)

(a)
(b)

Figure 2.10: (a) Before vod is aligned on top of vo and (b) after vod is aligned on top of
vo.

2.4.2 Phase Locked Loop

The angular position of the voltage, θ, is retrieved by using a phase locked loop. A
PLL makes an output signal synchronize with a reference input signal in both phase and
frequency [48] and is therefore widely used in the task of synchronizing power electronics
based converters [49].

Fig. 2.11 shows a commonly used topology of a PLL. The input of the PLL is the three-
phase PCC voltage, vo. This voltage is transformed to the dq-frame so that the system
can be oriented in such a way that the q-component of the voltage, voq, equals zero. The
adjustment of orientation is served by a PI-controller with kppll as proportional gain and
kipll as integral gain [50]. By integrating the PLL frequency, ωpll, the phase angle of the
voltage is retrieved.

Figure 2.11: Block diagram of the PLL.
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The open loop transfer function of the PLL is found in (2.10) where Tipll = kppll/kipll.
By inserting the values of the integral gain and proportional gain given in Table 2.2, the
Bode plot of the open loop transfer function is as in Fig. 2.12. It has a sufficient phase
margin of 39.9◦ and the phase will never cross below the −180◦ line which means that
the closed loop transfer function of the PLL will stay stable.

Gol(s) =

(
Kp,ppl(

1 + sTi,pll
sTi,pll

)︸ ︷︷ ︸
PI

)
· 1

s︸︷︷︸
I

(2.10)

Table 2.2: Parameters of the PLL.

Parameter Value

Kppll 0.0844 p.u.
Kipll 4.6908 p.u.

Figure 2.12: Bode Plot of the open loop transfer function of the PLL.

2.4.3 Inner Current Control Loop

Fig. 2.13 depicts the inner current control loop of the VSC, which consists of a PI-
regulator, a PWM and the system.

Figure 2.13: Block diagram of inner current control loop.
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2.4 Control of the Voltage Source Converter

The PI-controller, with a proportional gain of kpc and integral gain of kic, is used to
ensure that the current follows its reference. The PI-controller is a good trade off between
complexity and performance, and hence is the most used controller in the industry [51].
The input of the PI-regulator is the error between reference current, il,ref , and actual
inductance current, il, while the output is the converter reference voltage, vcv,ref . The
transfer function of the PI-controller when the control design is implemented in dq-frame
is given in (2.11), where Tic = kpc/kic and the superscript ”dq” means that it is valid for
both d- and q-axis.

vdqcv,ref (s)

idql,ref − i
dq
l

= kpc

(
1 + sTic
sTic

)
(2.11)

As described in Subsection 2.3.2 the PWM behaves as a comparator that compares a
high frequency triangular waveform with a reference control signal. The output of the
PI-regulator, vcv,ref , is the input of the PWM and therefore also the reference control
signal. The PWM can be approximated as a delay and represented by a first order
transfer function shown in (2.12), where the time delay τa = Tsw/2.

vdqcv (s)

vdqcv,ref (s)
=

1

1 + sτa
(2.12)

The output of the PWM is gating signals that are used to control the switching of the
VSC. The result of this switching is the converter output voltage vcv. The next step of
the inner current controller is the system which is already described in (2.6). The system
equations in pu are given in (2.13).

vcvd,pu − vod,pu︸ ︷︷ ︸
Feed−forward

= Rc,puild,pu +
Lc
ωb

dild,pu
dt
− ωg,puLc,puilq,pu︸ ︷︷ ︸

Feed−forward

vcvq,pu − voq,pu︸ ︷︷ ︸
Feed−forward

= Rc,puilq,pu +
Lc
ωb

dilq,pu
dt

+ ωg,puLc,puild,pu︸ ︷︷ ︸
Feed−forward

(2.13)

While the PI-controller and the PWM have the same transfer function in both abc-frame
and dq-frame, it has already been mentioned that the system equations will consist of one
extra cross coupled term in the dq-frame. To decouple the two equations, feed-forward
according to (2.13) is used to eliminate the cross coupling. This process is shown in Fig.
2.14.

This gives new system equations as in (2.14). The system equations are now decoupled
which enable independent control of d- and q-axis which is an essential characteristic of
vector control.
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Figure 2.14: Block diagram of inner current control loop in dq-frame.

vcvd,pu = Rc,puild,pu +
Lc
ωb

dild,pu
dt

vcvq,pu = Rc,puilq,pu +
Lc
ωb

dilq,pu
dt

(2.14)

From Laplace transformation the transfer function of the system can be represented as
a simple first order system as given in (2.15).

idql,pu(s)

vdqcv,pu(s)
=

1

Rc,pu

1

1 + sτpu
, τpu =

Lc,pu
ωbRc,pu

, Lc,pu = ωb
Lc
Zb
, Rc,pu =

Rc

Zb
(2.15)

2.4.4 Outer AC Voltage Control Loop

As mentioned in Section 2.2, an outer AC voltage control loop, as shown in Fig. 2.15, is
necessary when the microgrid is in islanded mode. A PI-controller, with kpvac and kivac as
proportional and integral gain, is utilized to create a reference current that ensures that
the AC voltage follows its reference. The input of the PI-controller is the dq-frame error
between reference PCC voltage, vo,ref , and actual PCC voltage, vo, while the output is
the reference dq-frame inductance current il,ref which is sent as input to the inner current
control loop (ICC).
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2.4 Control of the Voltage Source Converter

Figure 2.15: Outer AC voltage control loop.

The inner current controller is now represented in dq-frame by the first order transfer
function in (2.16), where the time constant τeq = 2τa.

idql (s)

idql,ref (s)
=

1

1 + sτeq
(2.16)

To find the system transfer function, Kirchhoff’s current law (KCL) is applied to the
node that connects the filter capacitance, Cf , as in (2.17).

iCfd = ild − iod
iCf q = ilq − ioq

(2.17)

The current across the capacitor is given as in (2.18). The d- and q-axis equations are
cross coupled by the terms, ωgCfvod and ωgCfvoq.

iCfd = Cf
dvoq
dt
− ωgCfvod

iCf q = Cf
dvoq
dt

+ ωgCfvod

(2.18)

By combining (2.17) and (2.18), the pu representation of the d- and q-axis system equa-
tions are given in (2.19) where Cf,pu = ωbCfZb.

ild,pu − iod,pu︸︷︷︸
Feed−forward

=
Cf
ωb

dvoq,pu
dt

− ωg,puCf,puvod,pu︸ ︷︷ ︸
Feed−forward

ilq,pu − ioq,pu︸︷︷︸
Feed−forward

=
Cf,pu
ωb

dvoq,pu
dt

+ ωg,puCf,puvod,pu︸ ︷︷ ︸
Feed−forward

(2.19)

Feed-forward of the cross-coupling terms and PCC current as illustrated in Fig 2.16 is
utilized to decouple the equations. The system can now be described as in (2.20), where
τv is the system time constant.

vdqo (s)

isql (s)
=

1

sτv
, τv =

Cf,pu
ωb

(2.20)
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Figure 2.16: Outer AC voltage control loop.

2.4.5 Tuning

Because of simplicity and fast response, modulus optimum is used to tune the inner
current control loop [52]. The goal of this method is to keep the closed loop transfer
function, Gcl(s), equal to 1 with no overshoot for a frequency as high as possible. Fig.
2.17 illustrates the fact that the closed loop transfer function must be one for the current
to follow its reference.

(a)

(b)

Figure 2.17: (a) Closed loop transfer function and (b) open loop transfer function of the
inner control loop.

The requirements of modulus optimum is that the system has one dominant time constant
and zero poles in the origin [18]. The dominant time constant will be the one of the
physical system, τpu. Using Fig. 2.13, the open loop transfer function is found in (2.21).
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Gol(s) =

(
kpc(

1 + sTic
sTic

)

)
︸ ︷︷ ︸

PIc

·
(

1

1 + sτa

)
︸ ︷︷ ︸

PWM

·
(

1

Rc,pu

· 1

1 + sτpu

)
︸ ︷︷ ︸

The system

(2.21)

The controller zero of the PI-controller can be used to cancel out the dominant pole of
the system. When Ti = τpu, the simplified open loop transfer function is given in (2.22)
and the corresponding closed loop transfer function is given in (2.23).

Gol(s) =
kpc

τpuRc,pu

· 1

s(1 + sτa)
(2.22)

Gcl(s) =
Gol(s)

1 +Gol(s)
=

kpc
τpuτaRc,pu

s2 + 1
τa
s+ kpc

τpuτaRc,pu

(2.23)

Due to the cancellation of the system pole, the closed loop transfer function is a second
order transfer function with the characteristic equation of ss + 2ζωns + ω2

n = 0. The
natural frequency, ωn and the damping factor ζ is given in (2.24).

ωn =

√
kpc

τpuτaRc,pu

, ζ =
1

2

√
τpuRc,pu

kpcτa
(2.24)

The condition to achieve maximum flatness of Gcl(s) is that ζ = 1√
2
, which gives PI-

controller parameters as expressed in (2.25).

kpc =
τpuRc,pu

2τa
, Ti = τpu (2.25)

The control parameters of the outer AC voltage control loop are found by trial and error
method and are together with the inner current control loop parameters given in Table
2.3.

Table 2.3: Control system parameters.

Parameter Value

kpc 2.55 pu
kic 40 pu
kpvac 0.1 pu
kivac 20 pu

The open loop transfer function of the outer AC voltage controller can be found according
to the block diagram in Fig. 2.15, and is given in (2.26).

Gol(s) =

(
kpvac(

1 + sTivac
sTivac

)

)
︸ ︷︷ ︸

PIvac

·
(

1

1 + sτeq

)
︸ ︷︷ ︸

ICC

·
(
Cf,pu
ωb

)
︸ ︷︷ ︸
The system

(2.26)
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Fig. 2.18a shows the Bode plot of the open loop transfer function of the current control
loop and AC voltage control loop for the given control parameters. The crossover fre-
quency of the inner current controller is at 1159 Hz, which is 7 times smaller than the
converter’s switching frequency and an acceptable ratio. The phase margin is 65.5◦ and
the gain margin is infinite which indicate stable operations. The crossover frequency of
the outer AC voltage loop is 267 Hz. This makes it approximately 4 times faster than
the inner current control loop, which is desirable.

(a) (b)

Figure 2.18: Bode plot of the open loop transfer function of (a) inner current controller
and (b) outer AC voltage controller.

2.4.6 Control of the Current Contolled VSC

The complete control system in pu of a current controlled VSC is shown in Fig. 2.19. In
order to deliver power to the grid, a PLL is used to track the actual grid frequency and
a current controller is used to enable that the system follows the current reference. md

and mq are the modulation indexes obtained from the current controller which are given
as inputs to the PWM.

Fig. 2.20 shows time domain simulations of the presented current controlled VSC. A step
in the d-axis reference current is applied after 0.5 seconds from 0.8 to 1.0 pu. Fig. 2.20a
shows how the three-phase grid currents and PCC voltages reacts to this change. The
voltage stays constant through the change except some small disturbances at the time
when the reference current changes. Fig. 2.20b shows that the d- and q-axis currents
are able to follow its reference without any overdamped or underdamped characteristics.
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Figure 2.19: Control system of a current controlled VSC.
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(b)

Figure 2.20: Time domain simulations of (a) three-phase voltages and currents and (b)
d- and q-axis currents of the current controlled VSC.

2.4.7 Control of the AC Voltage Controlled VSC

The control principle of the AC voltage controlled VSC is depicted in Fig. 2.21. An
outer-loop AC voltage controller is now added to create the reference current input of
the current controller [53]. Because the grid is decoupled a PLL is not expedient and is
replaced with a simple block that obtains the phase angle of the voltage by integrating
the base of the grid frequency [23].
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Figure 2.21: Control system of an AC voltage controlled VSC.

Fig. 2.22 shows the time domain simulations of the AC voltage controlled VSC. At 0.5
seconds a step in the voltage reference from 0.9 to 1.0 pu is applied. Fig. 2.22a shows
how the three-phase grid currents and PCC voltages, io and vo, react to this change.
The voltage has a 0.1 pu change at 0.5 seconds and to set this voltage there must also
be a change in the current. The quick step response is further confirmed by Fig. 2.22b.
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Figure 2.22: Time domain simulations of (a) three-phase voltages and currents and (b)
d- and q-axis currents of the AC voltage controlled VSC.

2.5 Control of the Microgrid

Sections 2.3 and 2.4 have thoroughly reviewed modeling and control of a single VSC
based on both a current controlled and an AC voltage controlled control strategy. By
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combining this information with Section 2.2, that went through the model description
of a microgrid, it is possible to explain the control of the microgrid operating in both
grid-connected and islanded mode.

As previously mentioned, the grid-connected microgrid does consist of only current con-
trolled VSCs. However, when the microgrid is operated in islanded mode, it is necessary
with one AC voltage controlled VSC because of the absence of the main grid. Appendix
C shows the Simulink model of the presented microgrid, where it can be observed how
the switching between the two control strategies are implemented.

The pu value of the reference current input of the current controller for the different
VSCs are given in Table 2.4. A positive reference current represents a generator, while
a negative reference current represents a load. A current reference of −0.2 pu for the
BESS therefore means that the battery is charging when it is in grid-connected mode.
However, as is illustrated in the next subsection, this will change when the microgrid is
islanded. In Chapter 5 the stability of the system when introducing a variable power
input due to intermittent solar and wind power is analyzed, but for the simulations below
it is assumed that all the microsources and loads produce or consume a constant amount
of power according to the table.

Table 2.4: Reference current input of each current controller.

Parameter Value

ildref,pv 0.4 pu
ildref,wind 0.2 pu
ildref,ig -0.7 pu
ildref,bess -0.2 pu

2.5.1 Simulations of the Microgrid

Time domain simulations of the grid currents and PCC voltages, io and vo, of the micro-
grid are shown in Fig. 2.23. It can be observed that the microgrid is operated at current
and voltage values of 1.0 pu which is equivalent to 53.3 A and 230 V. Fig. 2.23a shows
the three-phase currents and voltages when the microgrid switches from grid-connected
to islanded mode after 1.0 second. The grid current stays constant before it becomes
zero when the grid is decoupled, while the voltage experiences some small deviations at
the point of decoupling before it goes back to normal.

Fig. 2.23b shows the time domain simulations of how the microgrid reacts to the change
from islanded to grid-connected mode. In this case, the grid current is zero until the
grid is connected, while the voltage stays constant through the switching between the
different modes. The current respond quickly to the connection of the grid and reaches
the correct value after a short amount of time.

29



Chapter 2. Description and Control of a Microgrid

(a)

(b)

Figure 2.23: Time domain simulations of grid currents and PCC voltages in the change
from: (a) grid-connected to islanded mode, (b) islanded to grid-connected mode.

Since the BESS is changing between two control modes it is interesting to see how it
operates differently in grid-connected and islanded mode. Fig. 2.24a shows the three-
phase currents and voltages at the PCC of the BESS when the microgrid changes from
grid-connected to islanded mode at 1.0 second. This corresponds to a change from
current controlled to an AC voltage controlled control strategy for the BESS. The voltage
experiences a little drop, before it quickly restores its value. The current of the BESS
first follows the reference value of −0.2 pu. However, when the grid is disconnected, the
current is increased to 0.85 pu to meet the power demand and to ensure that the voltage
remains at the correct level. This means that in islanded mode, the battery is charging
or discharging depending on what is necessary to maintain the correct PCC voltage. The
three-phase current is stable through the change, but needs some time before it reaches
the final value.

Fig. 2.24b, on the other hand, shows the time domain simulations of the three-phase
voltages and currents at the PCC of the BESS when the microgrid changes from islanded
to grid-connected mode. It can be observed that the change from islanded to grid-
connected mode is faster and smoother than the other way around. The voltage is
unaffected by the change in operation mode, and the current reaches the reference value
of −0.2 pu immediately.
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(a) (b)

Figure 2.24: Time domain simulations of PCC currents and voltages of the BESS in
the change from: (a) current controlled to AC voltage controlled strategy and (b) AC
voltage controlled to current controlled strategy.

Lastly, it is interesting to see how the other converters manage through the change
between the two microgrid operating modes. Fig. 2.25 shows the PCC currents and
voltages of the IG when the microgrid changes from islanded to grid-connected mode,
and as can be observed the voltage stays undisturbed through the change, and the current
follows its reference of −0.7 pu.

Figure 2.25: Three-phase PCC currents and voltages for the IG.
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Chapter 3

Small-Signal State-Space Modeling
of the VSC

This chapter will derive a nonlinear state-space model in pu of the VSC described in
Chapter 2. By presenting a mathematical model of the physical system, the current
controller, the AC voltage controller and the PLL, all the states, inputs and outputs will
be discussed. Following, a small-signal representation of the state-space model is found
to be able to apply stability assessments based on linear techniques. Lastly, the linearized
model is validated through comparison with a simulated model that includes the nonlinear
characteristics of the system.

3.1 Introduction

Chapter 1 described many of the advantages of a power electronics dominated power
system. However, in addition to achieve an even more controllable and effective power
system, integration of power electronics brings several new challenges regarding power
stability and quality. There exists several different methods to analyze the stability of
a power electronics dominated system. However, a common characteristic of a large
proportion of these methods is that they require a linearized model of the system to
analyze the stability.

Fig. 3.1 illustrates the concept of linearization, which is to find the linear approximation
to a function at a given point. The function f(x) is linearized around an operating point,
x, by its derivative f ′(x). As can be seen from the figure the linearization approximate
the function around the operating point, but becomes inaccurate when the distance to
x increases.

To linearize a given system, a state-space model is first found analytically in the dq-
frame. For a power electronics dominated system, this model includes both the control
loops and dynamics of the system [54]. The state-space model represents the system
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Chapter 3. Small-Signal State-Space Modeling of the VSC

Figure 3.1: Illustration of linearization.

through a set of first order nonlinear differential equations, expressed by state variables,
inputs and outputs as in (3.1), where x(t) is the state vector and u(t) is the input vector.
State variables are introduced by the derivatives of the control system, currents across
inductors and voltages across capacitors. The set of states of a dynamic system is the set
of variables that is necessary to describe the system and determine the future behavior.

dx

dt
= f

(
x(t), u(t)

)
y = g

(
x(t), u(t)

) (3.1)

The same principles of linearization, as illustrated in Fig. 3.1, apply for a system con-
sisting of a function set with multiple variables. However, since more than one variable
exist, a single derivative is not enough to linearize the system and the multi-variable
equivalent of the derivative, the Jacobian, must be used. The Jacobian matrix, J, given
in (3.2) is a matrix consisting of the derivatives of the function set with respect to all the
existing states in the system. As in the illustrative case, the Jacobian must be assessed
at a point of operation. In multi-variable systems this point is known as the steady-state
values of the differential equations and are found by setting all the differential equations
to zero. It is not possible to find steady-state values for a three-phase AC system, which
emphasizes the reason why two constant d- and q-signals in SRF are advantageous. If
the matrix is multiplied with a certain state vector with small magnitudes the product
can approximate the nonlinear system [55]. Generally, the product will determine the
small-signal behavior around the operating point.

J =

[
∂f

∂x1
. . .

∂f

∂xn

]
=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 (3.2)

The physical system is not only affected by the states, but also from external inputs,
u. The equation governing these relations must also be included. They can also be

34



3.2 State-Space Modeling of the VSC

nonlinear and must be linearized with the Jacobian as well, but with respect to the input
variables. The product of this new Jacobian matrix and the input vector determines the
linearization of any input dynamics. Adding this product with the state product above
models the complete dynamic behavior of the linearly approximated system as shown in
(3.3). ∆ indicates the small-signal deviation around the steady-state operating point,
∆xf represents the Jacobian matrix of f with respect to the states, x, and ∆uf represents
the Jacobian matrix of f with respect to the inputs ,u.

d∆x

dt
= A∆x+B∆u

A = ∆xf, B = ∆uf
(3.3)

Additional matrices C and D can be used to determine what the outputs of the system
should be as shown in (3.4), where ∆xg represents the Jacobian matrix of g with respect
to the states, x, and ∆ug represents the Jacobian matrix of g with respect to the inputs
,u.

∆y = C∆x+D∆u

C = ∆xg, D = ∆ug
(3.4)

Deriving the small-signal state-space model is expedient for two reasons. First, it is
necessary to know the steady-state values of the state to derive the impedance models
of the VSC, which is a prerequisite to apply the impedance-based stability analysis.
Secondly, it is important to verify the small-signal steady-state model by comparing it
to the nonlinear model before proceeding the stability analysis.

This Chapter presents the small-signal state-space model of the VSC discussed in Chapter
2. Section 3.2 first introduces the states of the dynamic equations of the physical system,
before the states of the PLL are introduced. Furthermore, the states of the current
controller and AC voltage controller are introduced. A small-signal state-space matrix
is now derived for both control modes of the VSC in Section 3.3. Section 3.4 presents
the time domain comparison between the state-space linearized model and the nonlinear
model. Lastly, in Section 3.5, the eigenvalue-based stability analysis is applied to confirm
the stability of the original systems and to illustrate how the stability is affected by
changing system and control parameters.

3.2 State-Space Modeling of the VSC

In this section the per unit state-space modeling of the VSC in Fig. 3.2, including control
systems, will be found analytically.
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Figure 3.2: Overview of the VSC.

3.2.1 Dynamic Equations of the VSC

First, the analytical equations of the physical system are found. As mentioned in the
introduction, state variables of the physical system is introduced by currents across in-
ductors and voltages across capacitors. For the VSC in Fig. 3.2, the states are introduced
by the filter inductance, Lc, the filter capacitor, Cf , and the grid inductance, Lg, which
result in three states. However, since the modeling, control and analysis of the system
is presented in SRF every state has one d- and one q-axis component, and the resulting
number of states of the physical system is changed to six. Following the same procedure
as in [56], and using Fig. 3.3 the analytical equations describing the physical system are
found.

(a)

(b)

(c)

(d)

Figure 3.3: (a), (b) and (c) are used to find converter, filter, and grid equations, respec-
tively and (d) is used to find the grid equations when the grid is disconnected.
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3.2 State-Space Modeling of the VSC

KVL is applied on Fig. 3.3a, to find the states of the currents across Lc. The converter
equations are given in pu by (3.5) and introduces the two inductor current states, ild and
ilq.

dild,pu
dt

=
ωb
Lc,pu

vcvd,pu −
ωb
Lc,pu

vod,pu + ωg,puωbilq,pu −
ωbRc,pu

Lc,pu
ild,pu

dilq,pu
dt

=
ωb
Lc,pu

vcvq,pu −
ωb
Lc,pu

voq,pu − ωg,puωbild,pu −
ωbRc,pu

Lc,pu
ilq,pu

(3.5)

To express the states of the filter capacitor, Cf , KCL is applied on Fig. 3.3b. Equation
(3.6) gives the filter equations of the two states, vod and voq, in pu.

dvod,pu
dt

=
ωb
Cf,pu

ild,pu −
ωb
Cf,pu

iod,pu + ωg,puωbvoq,pu

dvoq,pu
dt

=
ωb
Cf,pu

ilq,pu −
ωb
Cf,pu

ioq,pu − ωg,puωbvod,pu
(3.6)

KVL is applied to Fig. 3.3c to find the AC grid equations in pu given in (3.7). This
introduces the two states, iod and ioq.

diod,pu
dt

=
ωb
Lg,pu

vod,pu −
ωb
Lg,pu

vgd,pu + ωg,puωbioq,pu −
ωbRg,pu

Lg,pu
iod,pu

dioq,pu
dt

=
ωb
Lg,pu

voq,pu −
ωb
Lg,pu

vgq,pu − ωg,puωbiod,pu −
ωbRg,pu

Lg,pu
ioq,pu

(3.7)

However, when the grid is disconnected and the VSC utilize the AC voltage controlled
strategy, Fig. 3.3d is used. Rl and Ll is now obtaining the voltage level and the equations
representing the states iod and ioq are given by (3.8).

diod,pu
dt

=
ωb
Ll,pu

vod,pu + ωg,puωbioq,pu −
ωbRl,pu

Ll,pu
iod,pu

dioq,pu
dt

=
ωb
Ll,pu

voq,pu − ωg,puωbiod,pu −
ωbRl,pu

Ll,pu
ioq,pu

(3.8)

3.2.2 Phase Locked Loop

The PLL has already been discussed in Chapter 2. However, the block diagram in Fig.
3.4 is modified to simpler illustrate the introduction of states. The PLL introduces two
states, where the PI-controller introduces one and the integrator introduces the other.
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Figure 3.4: Block diagram of phase locked loop.

δωpll is the output of the PI-controller and represents the speed deviation with respect
to the grid frequency and is given by (3.9). The εpll term represents the integrator state
introduced by the PI-controller and is given in (3.10).

δωpll = kppllvoq + kipllεpll (3.9)

dεpll
dt

= voq (3.10)

δθpll describes the phase angle deviation between the grid voltage and the orientation of
the PLL. It represents the second state and is introduced by the integrator as in (3.11).

dδθpll
dt

= δωpllωb = ωb(kppllvoq + kipllεpll) (3.11)

The grid voltage can be transformed into PLL reference frame as in (3.12), where v̂g is
the amplitude value.

vg = v̂ge
jδθpll (3.12)

While δθpll and δωpll are necessary to model the system in SRF, the actual frequency
of the PLL, ωpll, given by (3.13) is needed to transform from stationary to SRF in the
actual control system.

ωpll = δωpll + ωg (3.13)

3.2.3 Current Controller

Fig. 3.5 shows the block diagram of the inner current control loop. The figure is used to
express the output of the current controller as in (3.14). The converter output voltage
reference introduces no states, but is necessary as an input of the converter equations
presented in (3.5).
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3.2 State-Space Modeling of the VSC

Figure 3.5: Block diagram of current controller.

vcvd,ref = (ild,ref − ild)kpc + γdkic − ωpllLcilq + vod

vcvq,ref = (ilq,ref − ilq)kpc + γqkic + ωpllLcild + voq
(3.14)

Lastly, the integrator of the PI-controller introduces the two states of the current con-
troller which is represented by γd and γq as in (3.15).

dγd
dt

= ild,ref − ild
dγq
dt

= ilq,ref − ilq
(3.15)

3.2.4 AC Voltage Controller

As mentioned in Chapter 2, an AC voltage control strategy as shown in Fig. 3.6 is
necessary when decoupling the grid.

Figure 3.6: Block diagram of AC voltage controller.
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The outputs of the AC voltage control, ild,ref and ilq,ref , are given in (3.16) and are the
input of the current controller discussed above. This equation introduces no states, but
is necessary as an input of the current controller states in (3.15).

ild,ref = (vod,ref − vod)kpvac + αdkivac

ilq,ref = (voq,ref − voq)kpvac + αqkivac
(3.16)

The integrator of the PI-controller introduces two states which are represented by αd
and αq as in (3.17) [57].

dαd
dt

= vod,ref − vod
dαq
dt

= voq,ref − voq
(3.17)

3.3 Small-Signal State-Space Matrix Realization

The steady-state operating point of the system is found by putting all the nonlinear
differential equations to zero. By linearizing the system using the Jacobian as described
in Section 3.1 a small-signal state-space model is derived. This model will approximate
the nonlinear state-space system around magnitudes close to the steady-state operating
point. As expressed in (3.3) and (3.4) the linearized system can be expressed by the
matrices A and B. The A matrix is the Jacobian matrix of f with respect to all the
states, x. f represents all the state-space equations, and there are as many state-space
equations as there are states. This means that if the number of states are n, the A matrix
would be a n× n-matrix. The physical system is also affected by the external inputs, u.
The B-matrix is therefore the Jacobian matrix of f with respect to all inputs, u. If the
number of input is m, the B-matrix would be a n×m-matrix. The A- and B-matrix are
given in (3.18).

A =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xn

 , B =


∂f1
∂x1

. . . ∂f1
∂xm

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xm

 (3.18)

Matrices C and D are used to determine the outputs of the system. The inputs are not
interesting to look at so the D-matrix is a n×m zero-matrix. The C-matrix has zeroes
on all non-diagonal elements, and ones on the diagonal elements that is expedient as
output. The C-matrix is a n× n-matrix, and if all of the outputs are desirable it equals
the identity matrix. The form of the C- and D-matrix is given in (3.19).
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C =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 , D =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 (3.19)

3.3.1 Current Controlled VSC

By combining equations (3.5) to (3.7) and (3.9) to (3.15) the state-space model of the
current controlled VSC can be found as a set of nonlinear differential equations expressed
by state variables, inputs and outputs on the form of (3.1) given in the introduction.

The state, x, and input, u, vector of the current controlled VSC are given in (3.20). The
state vector includes all the states from the dynamic equations, the current controller and
the PLL, while the input vector includes the reference inductance current, the amplitude
of the grid voltage and the grid frequency. Matrix A and B of the resulting small-signal
state-space model according to (3.18) are given in Appendix D.

x =
[
vod voq ild ilq γd γq iod ioq εpll δθpll

]T
u =

[
ild,ref ilq,ref v̂g ωg

]T (3.20)

3.3.2 AC Voltage Controlled VSC

By combining equations (3.5), (3.6), (3.8) and (3.14) to (3.17) the state-space model of
the AC voltage controlled VSC can be found.

The states of the AC voltage controller, αd and αq, are included in the new state vector.
However, the states introduced by the PI-controller, εpll and the integrator, δθpll of
the PLL will disappear with an AC voltage controlled VSC. This is because the PLL,
according to Fig. 2.21, is replaced with a simple block that obtains the phase angle of the
voltage by integrating the base of the grid frequency. The input vector will now contain
the inputs of the AC voltage controller, vod,ref and voq,ref . However, the amplitude of
the grid voltage, v̂g, will no longer be a part of the input vector due to the fact that the
grid is decoupled. The A and B matrix of the small-signal state-space model of the AC
voltage controlled VSC are given in Appendix D.

x =
[
vod voq ild ilq γd γq iod ioq αd αq θpll

]T
u =

[
vod,ref voq,ref ωg

]T (3.21)
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3.4 Small-Signal State-Space Model Verification

As mentioned in the introduction it is important to verify the linearized model with
the nonlinear model. When the linearized model is verified it is possible to proceed with
stability analysis of the system, and to use the steady-state values to derive the impedance
models of the current controlled and AC voltage controlled VSC. In this section, the
analytical small-signal state-space model is therefore validated through simulations of a
detailed model of the system including nonlinear characteristics [58]. The detailed model
of the current controlled VSC and AC voltage controlled VSC is given in Appendix C.

The comparison of the linearized and nonlinear model is completed in Simulink and the
method of how the two models are compared to each other is illustrated in Fig. 3.7. The
small-signal deviation around the steady-state point of the input, ∆u, of the analytically
derived model is sent through a state-space block. All the inputs are set to zero, except
from one which experiences a small step-change to see the response of the model. The
product of the state-space block is the small-signal deviation around the steady-state
point of the output, ∆y. To get the actual response that can be compared with the
simulated nonlinear system, the output of the state-space block must be added with the
steady-state operating value, xn,0, of the same state. The same step-change in input
parameter must be implemented to the simulated model. The output of the linearized
state-space model and the nonlinear simulated model can now be compared by using a
scope, as shown in the figure.

Figure 3.7: The method of model verification.

3.4.1 Current Controlled VSC

Fig. 3.8 shows the responses of the current controlled VSC for a 0.05 pu change in
the d-axis current reference, ild,ref , from 0.5 to 0.55 pu. Fig. 3.8a and 3.8b shows the
responses of d- and q-axis converter current. As can be observed the current ild follows
its reference and increase from 0.5 to 0.55 pu, while the q-axis current ilq stays constant
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3.4 Small-Signal State-Space Model Verification

at zero unaffected by the step-change at 0.05 seconds.

The d-axis PCC voltage vod in Fig. 3.8c oscillates around its desirable value, just above
1.0 pu, while the q-axis voltage, voq, in Fig. 3.8d oscillitates around the zero line.
Common for both d- and q-axis voltages are that the oscillation created by the step
change of the d-axis reference current does not quickly disappear. The grid currents, iod
and ioq, in Fig. 3.8e and 3.8f has the same oscillations as the PCC voltage, but also they
follow its reference.

However, the responses of the linearized model and the nonlinear model have no notice-
able difference and the linearized model can therefore be used to correctly evaluate the
stability of the system around the linearization point.
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Figure 3.8: Comparison of time domain simulations of a current controlled VSC: (a) and
(b) converter current, (c) and (d) voltage at PCC, (e) and (f) grid current.

3.4.2 AC Voltage Controlled VSC

Fig 3.9 shows the responses of the AC voltage controlled VSC with a 0.05 pu change in
the d-axis voltage reference input, vod,ref , at 0.05 seconds. Fig. 3.9a and 3.9b shows the
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responses of the d- and q-axis inductance current, ild and ilq. As can be observed the q-
axis current stays unaffected at a value close to zero, while the d-axis current experiences
a small increase from its original value at 0.35 pu. The reason for this change is that
when the VSC is based on an AC voltage controlled strategy, the current must be change
so that it can set the voltage according to the reference value. That means that when
the voltage reference is changed, the currents are also changed.

Fig. 3.9c and 3.9d shows the response of the d- and q-axis PCC voltages, vod and voq.
The q-axis voltage stays undisturbed at zero, while the d-axis voltage increases by 0.05
pu as expected. The step change is not as quick as the one for the current controlled
VSC above, but in return it has no oscillations around the desirable value. The same
goes for the d- and q-axis grid currents, iod and ioq.

The currents and voltages of the linearized and nonlinear model are similar to each
other, which emphasizes the correctness of the derived small-signal state-space model.
The analytically derived model of the AC voltage controlled VSC can therefore also be
used in further stability analysis.
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Figure 3.9: Comparison of time domain simulations of an AC voltage controlled VSC:
(a) and (b) converter current, (c) and (d) voltage at PCC, (e) and (f) grid current.
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3.5 Eigenvalue-Based Stability Analysis

The eigenvalue-based stability analysis was discussed in Chapter 1 as an alternative
method to analyze a system’s stability. This thesis mainly focuses on the impedance-
based stability analysis. However, to give insight in how the state-space model can be
used in stability analysis, the eigenvalue-based method is applied to the current con-
trolled and AC voltage controlled VSC. First, it is investigated how the location of the
eigenvalues change when the grid impedance is increased for the current controlled VSC.
Subsequently, the impact of changing the current controller proportional gain of the AC
voltage controlled VSC is observed. The findings are further verified in Chapter 5, when
the impedance-based stability method is applied to investigate the same cases.

3.5.1 Current Controlled VSC

The resulting eigenvalues calculated analytically from the small-signal state-space matrix
by applying the eigenvalue-based stability analysis are shown in Fig. 3.10. The model
of the current controlled VSC has 10 states, and therefore also 10 eigenvalues. For the
stable case in Fig. 3.10a there are 3 pairs of complex conjugated poles, 2 real poles and
a pair of repeated real poles. In Fig. 3.10b, Lg is increased from 0.16 pu to 1.0 pu to
investigate the impact the grid impedance has on the stability of the system. As can
be observed, there are now 2 pairs of complex conjugated poles on the right-half plane
(RHP), which predicts the system to be unstable under weak grid conditions.
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Figure 3.10: Eigenvalue plot of the current controlled VSC for (a) the stable case and
(b) when Lg = 1.0 pu.
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3.5.2 AC Voltage Controlled VSC

The eigenvalues resulting from the analytical calculations of the AC voltage controlled
VSC are shown in Fig. 3.11. For the stable case in Fig. 3.11a there are 4 pairs of
complex conjugated poles, and 1 pair of repeated real poles. Fig. 3.11b, on the other
hand, shows how the stability is affected when the proportional gain of the outer voltage
control loop is decreased to 1% of its original value. It can now be observed that one
pair of complex conjugated poles are located in the RHP, and the system is predicted to
be unstable.
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Figure 3.11: Eigenvalue plot of the AC voltage controlled VSC for (a) the stable case
and (b) when kpvac is decreased to 1% of original value.
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Chapter 4

Impedance Modeling of the
Microgrid

This chapter introduces the impedance-based stability analysis and explains how it can be
applied to power electronics dominated systems. Furthermore, an analytical model of the
impedance model is derived for the (I) current controlled VSC, (II) the AC voltage con-
trolled VSC, (III) the grid-connected microgrid and (IV) the islanded microgrid. Lastly,
the analytical impedance model is verified by applying the single-tone approach.

4.1 Introduction

As already mentioned in Chapter 1, the increased integration of power electronics will
lead to higher reliability, efficiency and controllability. However, it will also result in
power quality and stability issues which makes it crucial to to be able to perform pre-
liminary assessment of a system’s stability. The impedance-based method is, because of
its advantages, commonly used to assess the stability of a power electronics dominated
system. The method is regarded as an efficient and reliable tool to discover instability
sources. Researchers [10] have observed that some of the instability caused by the grid
impedance and control parameters is not possible to observe using the impedance-based
method from the DC side. The method is therefore applied to the AC side of the systems.
It determines the stability by studying the ratio between the source impedance and load
impedance of a system.

To investigate the stability, it is necessary to obtain the impedance model of the an-
alyzed system. This chapter gives an introduction to the impedance-based stability
analysis. First, Section 4.2 illustrates the impedance model of (I), (II), (III) and (IV).
Subsequently, Section 4.3 to 4.6 derives the AC side impedance model for the same four
systems. Lastly, Section 4.7 verifies the analytically derived impedance model of the
current controlled VSC by applying the single-tone approach.
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4.2 Impedance-Based Stability Analysis

The main characteristics of the impedance-based stability analysis is that it divides the
system into one source and one load subsystem [59]. In the following, the impedance-
based stability analysis is applied to a voltage source system, a current source system and
a grid-connected VSC, as done in [14], to explain how the impedance ratio can be used
to assess the stability. The impedance-based model of the grid-connected and islanded
microgrid is also presented as a foundation before deriving the impedance model in the
following sections.

4.2.1 Subsystems of a Voltage Source System

For a voltage source system as in Fig. 4.1, the source subsystem is represented by its
Thevenin equivalent with a voltage source, Vs, in series with an output impedance, Zs,
while the load subsystem is represented by its input impedance, Zl. Considering that
most of all power electronics dominated systems are nonlinear, the circuit in Fig. 4.1 is
a small-signal representation and is therefore only accurate for small-signal analysis [14].

Figure 4.1: The small-signal representation of a voltage source system with load.

The load current, I, of the system can be expressed as in (4.1), which can be rearranged
as in (4.2).

I(s) =
Vs(s)

Zl(s) + Zs(s)
(4.1)

I(s) =
Vs(s)

Zl(s)
· 1

1 + Zs(s)/Zl(s)
(4.2)

It is assumed that the voltage is stable when it is unloaded and that the load is stable
when powered from an ideal voltage source. The stability of the system is therefore not
affected by V (s) and 1/Zl(s), but is determined by Hv(s) as given in (4.3).

Hv(s) =
1

1 + Zs(s)/Zl(s)
(4.3)
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4.2 Impedance-Based Stability Analysis

Hv(s) is similar to the closed-loop transfer function of a negative feedback control system,
where the negative feedback equals Zs(s)/Zl(s) and the gain is 1. From control theory,
the impedance ratio, Zs(s)/Zl(s), must satisfy the GNC for Hv(s) to be stable. However,
most of the grid-connected VSCs are based on a current controlled strategy and is not
represented by an ideal voltage source, but by an ideal current source.

4.2.2 Subsystems of a Current Source System

To develop an impedance-based stability analysis of a current source system, Fig. 4.2 is
used. It illustrates the small-signal representation of a current source system with load.
The source subsystem is now represented by its Norton equivalent, where Is is the source
current which is connected in parallel to an output admittance, Ys. The load subsystem,
on the other hand, is represented by an input admittance, Yl.

Figure 4.2: The small-signal representation of a current source system with load.

The voltage across the load is expressed as in (4.4), which is further rearranged as in
(4.5).

V (s) =
Is(s)

Yl(s) + Ys(s)
(4.4)

V (s) =
Is(s)

Yl(s)
· 1

1 + Ys(s)/Yl(s)
(4.5)

As with the voltage source system, it is assumed a stable current source when its unloaded
and that the load is stable when powered from an ideal current source. Both I(s) and
1/Yl(s) is therefore stable and the result is that the stability of the current source system
is determined by Hc(s) given in (4.6).

Hc(s) =
1

1 + Ys(s)/Yl(s)
(4.6)

This also appears like the closed-loop transfer function of a negative feedback control
system with unity gain, except that the negative feedback now equals the admittance
ratio Ys(s)/Yl(s), which must satisfy the GNC for Hc(s) to be stable.
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Chapter 4. Impedance Modeling of the Microgrid

It can be observed that the stability of a voltage source system is decided by its impedance
ratio, while the stability of a current source system is decided by its admittance ratio.
To be able to easier compare the two ratios, the voltage of the current source system
expressed by its impedances in (4.5) is given in (4.7).

V (s) = Is(s)Zl(s) ·
1

1 + Zl(s)/Zs(s)
(4.7)

By comparing (4.2) and (4.7) it is observed that the requirement of stability of the voltage
and current source system is the opposite of each other. For the voltage source system it
is the ratio of the source impedance to the load impedance, Zs(s)/Zl(s), while it is the
ratio of the load impedance to the source impedance, Zl(s)/Zs(s), for the current source
system. This means that for the voltage source system to stay stable for a wide range of
loads it should have a low Zs and that a high Zl secure stable operations. The current
source system, on the other hand, will operate more stable for a low Zl and require a
high Zs to operate stable for a wide range of loads.

4.2.3 Subsystems of a Grid-Connected VSC

A grid-connected VSC is represented by both a Norton equivalent and a Thevenin equiv-
alent. The Norton equivalent represents the current controlled converter, while the grid
is represented by its Thevenin equivalent. Fig. 4.3 depicts the small-signal representation
of a grid-connected VSC. The converter is modeled as a current source, Ic in parallel to
a converter impedance, Zo, while the grid is modeled as a grid impedance, Zg, in series
with a voltage source, Vg.

Figure 4.3: The small-signal representation of a grid-connected VSC.

According to the assumptions made for the voltage source and current source system,
the grid voltage is stable when unloaded and the converter is stable if it is powered from
an ideal voltage source which implicates that Zg is zero. From Fig. 4.3, the converter
output current, I, is given by (4.8), which is rearranged to (4.9).

I(s) =
Ic(s)Zo(s)

Zo
− Vg(s)

Zo(s) + Zg(s)
(4.8)
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4.2 Impedance-Based Stability Analysis

I(s) =

(
Ic(s)−

Vg(s)

Zo(s)

)
· 1

1 + Zg(s)/Zo(s)
(4.9)

From the equations it can be observed that the ratio of the grid impedance to the
converter output impedance, Zg(s)/Zo(s), must satisfy the GNC for the grid-connected
VSC to be stable. In addition, the converter impedance, Zo, should be high to provide
stable operations under a wide range of grid conditions. The grid impedance, Zg, on the
other hand, should be low to ensure more stable operations.

Small-signal representation of a system requires a steady-state operating point. As ex-
plained in Chapter 3, since an AC system do not have an equilibrium, it is necessary
to convert the signals from abc-frame to dq-frame. A result from this transformation is
that the grid impedance, Zdq

g , and converter impedance, Zdq
o , is given as a 2× 2-matrix

as in (4.10), where the off-diagonal elements, Zdq(s) and Zqd(s), occur as a result of
the cross-coupling effect between the d- and q-axis. Throughout this thesis, bold font
represents a matrix.

Zdq
g (s) =

[
Zg,dd(s) Zg,dq(s)
Zg,qq(s) Zg,qd(s)

]
Zdq

o (s) =

[
Zo,dd(s) Zo,dq(s)
Zo,qq(s) Zo,qd(s)

] (4.10)

4.2.4 Subsystems of the Grid-Connected Microgrid

The VSCs that are represented by a Norton equivalent are based on a current controlled
strategy, while the VSCs that are represented by a Thevenin equivalent are based on
an AC voltage controlled strategy [27]. When the microgrid is in grid-connected mode
the converters can therefore be represented by their Norton equivalent circuit with an
ideal current source connected in parallel with an admittance [60]. Fig. 4.4 depicts the
impedance-based model of the microgrid and as can be seen, the different microsources
and loads are connected to the main grid through the PCC. The switch is closed to
emphasize the operation in grid-connected mode. For every VSC n, the admittance is
represented by Yo,n while the ideal current source is represented by io,n. The subscript
n ∈ 1, 2, 3, 4 is introduced to easier keep track of the different converters. “1” represents
the PV, “2” represents the wind power, “3” represents the IG and “4” represents the
BESS. The regular RL-load is represented by Zload. The grid, on the other hand, is
represented by its Thevenin equivalent circuit which consists of an ideal voltage source,
vg, in series with an output impedance Zg.
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Chapter 4. Impedance Modeling of the Microgrid

Figure 4.4: Impedance-based model of the microgrid in grid-connected mode.

4.2.5 Subsystems of the Islanded Microgrid

Since the grid is disconnected when the microgrid is operating in islanded mode, it
is necessary that one of the converters has an AC voltage controlled strategy and is
represented by its Thevenin equivalent. Fig. 4.5 illustrates the impedance-based model
of the microgrid in islanded mode where the converter of the BESS is represented by its
Thevenin equivalent circuit while the IG, PV and wind power stay represented by their
Norton equivalent. The Thevenin equivalent consists of an ideal voltage source, vo,4, in
series with an output impedance, Zo,4.

Figure 4.5: Impedance-based model of the microgrid in islanded mode.

4.3 DQ-Domain Impedance Modeling of the Cur-

rent Controlled VSC

The dq-domain impedance model of the current controlled VSC is now derived. As can
be observed in Fig. 4.6 the system is divided into two subsystems at PCC, where the grid
equivalent system consists of the grid impedance and filter capacitor, while the converter
subsystem consists of the converter impedance and the converter characteristics. The
minor loop gain, L(s), is given by the impedance matrix of the grid equivalent, Zgeq(s),
multiplied by the admittance matrix of the current controlled VSC, Zcc

−1(s) as in (4.11).
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4.3 DQ-Domain Impedance Modeling of the Current Controlled VSC

Figure 4.6: Subsystems of a current-controlled VSC.

L(s) = Zgeq(s)Zcc
−1(s) (4.11)

4.3.1 Dynamic Equations

The converter impedance is the impedance seen from the PCC towards the converter.
The voltage at this point is vo and the current is il. The converter impedance is therefore
given by the voltage divided by the current at this point. Using Fig. 4.6, equation
(4.12) can be derived to describe the interface voltage, where Zo consist of the series
impedance, Lc and Rc, between the converter and the PCC and the converter output
voltage is expressed by the modulation index, m, multiplied with vdc.

[
vsod
vsoq

]
=

[
ms
d

ms
q

]
vdc −

[
Rc + sLc −ωgLc
ωgLc Rc + sLc

]
︸ ︷︷ ︸

Zo(s)

·
[
isld
islq

]
(4.12)

4.3.2 Current Controller

To find the converter impedance it is necessary to express the the modulation index in
terms of the interface voltage vo and the current il. Using the block diagram of the
control system of the current controlled VSC in Fig. 2.19, the d- and q-axis modulation
index can be stated as in (4.13).

mc
d = e−sTs

1− e−sTs
sTs︸ ︷︷ ︸

PWM

·
(

(kpc +
kic
s

)(icld,ref − icld) + vcod − ωgLciclq
)

mc
q = e−sTs

1− e−sTs
sTs︸ ︷︷ ︸

PWM

·
(

(kpc +
kic
s

)(iclq,ref − icld) + vcoq + ωgLci
c
ld

) (4.13)

53
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These two equations can be collected into matrix form as in (4.14).

[
mc
d

mc
q

]
=

[
Hpwm 0

0 Hpwm

]
︸ ︷︷ ︸

Gpwm(s)

·

([
Hcc 0
0 Hcc

]
︸ ︷︷ ︸

Gcc(s)

·
[
icld,ref − icld
iclq,ref − iclq

]
−
[

0 ωpllLc
−ωpllLc 0

]
︸ ︷︷ ︸

Zdel

·
[
icld
iclq

]
+

[
vcod
vcoq

])
(4.14)

Gpwm(s) represents the PWM delay, where Hpwm(s) = e−sTs · 1−e−sTs

sTs
and Ts is the

sampling delay. Gcc(s) is the current compensator transfer function where Hcc(s) =
kpc + kic

s
. Equation (4.14) can now be expressed simpler as in (4.15).

[
mc
d

mc
q

]
= Gpwm(s)Gcc(s) ·

[
icld,ref
iclq,ref

]
−Gpwm(s)(Gcc(s) + Zdel) ·

[
icld
iclq

]
+ Gpwm(s) ·

[
vcod
vcoq

]
(4.15)

4.3.3 Transformation from Controller to System Referance Frame

To explain the superscript “s” and “c” in (4.12) to (4.13) the PLL must be closer looked
at. There are papers, such as [61], that explain this thoroughly. The PLL introduces
two dq-frames, where the superscript “s” represents the system dq-frame at system
frequency, while superscript “c” represents the controller dq-frame at PLL frequency.
Fig. 4.7 illustrates the difference between the two dq-frames.

Figure 4.7: Controller and system dq-frame.

If the converter system is in steady-state the two dq-frames in Fig. 4.7 would be aligned
with each other. The position of the dq-frame of the system is first changed when small-
signal perturbations are added to the grid voltage. This change happens because of
the PI-regulator of the PLL. The angle between the system- and controller dq-frame is
represented as ∆θ.

The modulation indexes, currents and voltages in (4.13) are all given in the controller
reference frame. To find the converter impedance, it is necessary to convert them to the
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4.3 DQ-Domain Impedance Modeling of the Current Controlled VSC

system reference frame. This is served by the matrix T∆θ in (4.16), which is used to
transform between system and controller frame for the duty cycle, voltage and current as
in (4.17). The voltage and current vectors in the system dq-frame must be transformed
by T∆θ to the controller dq-frame to use as inputs in the current controller. While the
duty cycle in the controller dq-frame is transformed by the inverse of matrix T∆θ to
control the IGBTs in the converter bridge in the system dq-frame.

T∆θ =

[
cos (∆θ) sin (∆θ)
− sin (∆θ) cos (∆θ)

]
(4.16)

~vco = T∆θ~v
s
o, ~icl = T∆θ

~isl ,
~ds = T∆θ

−1~dc (4.17)

The small-signal perturbations added to the PCC voltage, vo, will influence the output
angle of the PLL, θ, which will further affect the current and duty cycle of the controller.
The result of this is that also the converter output voltage, vcv, and the inductance
current, il, are influenced by the perturbations, which lastly causes the impedance of the
converter to be affected by the perturbations. This emphasize the importance of taking
the propagation of the small-signal perturbation through the PLL into account. This is
done by finding the transfer functions Gv

pll(s), Gi
pll(s) and Gd

pll(s), which models the
small-signal perturbation path from the system to controller dq-frame for respectively
the voltage, current and duty cycle. To find these three transfer functions, an average
model of the PLL is given in Fig. 4.8.

Figure 4.8: Average model of PLL in dq-frame.

As already discussed the two dq-frames would be aligned in steady-state, which gives
(4.18). Vo, Il and D is the steady-state values of the PCC voltage, inductance current
and duty cycle, respectively.

~V c
o = ~V s

o ,
~Il
c

= ~Il
s
, ~Ds = ~Dc (4.18)

Following, only the calculations of Gv
pll(s) is demonstrated, but the same follows for the

current and the duty cycle. When assuming that ∆θ is equal to zero, (4.16) can be
rewritten as in (4.19).

~V c
o =

[
cos (0) sin (0)
− sin (0) cos (0)

]
~V s
o (4.19)
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Adding small-signal perturbations to (4.19) gives (4.20).

[
V c
od + ṽcod
V c
oq + ṽcoq

]
=

[
cos (0 + ∆θ̃) sin (0 + ∆θ̃)

− sin (0 + ∆θ̃) cos (0 + ∆θ̃)

]
·
[
V s
od + ṽsod
V s
oq + ṽsoq

]
(4.20)

In equation (4.21), small-angle approximation has been applied.

[
V c
od + ṽcod
V c
oq + ṽcoq

]
≈
[

1 ∆θ̃

−∆θ̃ 1

]
·
[
V s
od + ṽsod
V s
oq + ṽsoq

]
(4.21)

Lastly, equation (4.22) is derived by linearization and canceling steady-state terms in
accordance to (4.18).

[
ṽcod
ṽcoq

]
≈
[
ṽsod + V s

oq∆θ̃

ṽsoq − V s
od∆θ̃

]
(4.22)

To express the voltage of the controller dq-frame with terms only from the system dq-
frame, an expression of ∆θ̃ must be found. From the average model of the PLL in Fig.
4.8, ∆θ̃ can be given as in (4.23), where tfpll = kppll + 1

s
kipll.

∆θ̃ = ṽcoq · tfpll ·
1

s
(4.23)

By substituting the expression of ṽcoq of (4.23) into the second equation of (4.22), ∆θ̃ is
further derived with only terms from the system dq-frame, as in (4.24).

∆θ̃ =
tfpll

s+ V s
od · tfpll

ṽsoq (4.24)

By defining Gpll(s) as in (4.25), the expression of ∆θ̃ is simplified further as shown in
(4.26).

Gpll(s) =
tfpll

s+ V s
od · tfpll

(4.25)

∆θ̃ = Gpll(s)ṽ
s
oq (4.26)

Equation (4.22) can now be rewritten as in (4.27). The result is an approach to go
from the small-signal perturbation voltage of the controller dq-frame to the small-signal
perturbation voltage of the system dq-frame. The transfer function matrix, Gv

pll(s),
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that models this small-signal perturbation path from system to controller dq-frame is
also shown in (4.27).

[
ṽcod
ṽcoq

]
≈
[
ṽsod + V s

oqGpll(s)ṽ
s
oq

ṽsoq − V s
odGpll(s)ṽ

s
oq

]
=

[
1 V s

oqGpll(s)
0 1− V s

odGpll(s)

]
︸ ︷︷ ︸

Gv
pll(s)

[
ṽsod
ṽsoq

]
(4.27)

The same procedure can be used to find Gi
pll(s) and Gd

pll(s), and the resulting matrices
are shown in (4.28) and (4.29), respectively.

[
ĩcld
ĩclq

]
=

[
ĩsld
ĩslq

]
+

[
0 IslqGpll(s)
0 −IsldGpll(s)

]
︸ ︷︷ ︸

Gi
pll(s)

·
[
ṽsod
ṽsoq

]
(4.28)

[
m̃c
d

m̃c
q

]
=

[
m̃s
d

m̃s
q

]
−
[

0 −Ds
qGpll(s)

0 Ds
dGpll(s)

]
︸ ︷︷ ︸

Gd
pll(s)

[
ṽsod
ṽsoq

]
(4.29)

4.3.4 The Converter Impedance

Equation (4.30) can now be linearized and expressed with terms only from the system
dq-frame by writing it in small-signal form and inserting (4.27) to (4.29). Because the
VSC is controlled by a current controller, the reference currents, ild,ref and ilq,ref , are
constants and are cancelled when linearizing. The result is given in (4.30), and for
simplicity GP

C is short for the expression given in (4.31).

[
m̃s
d

m̃s
q

]
= GP

C(s) ·
[
ṽsod
ṽsoq

]
−Gpwm(s) · (Gcc(s) + Zdel)

[
ĩsld
ĩslq

]
(4.30)

GP
C(s) = Gd

pll(s) + Gpmw(s)Gv
pll(s)−Gpwm(s) · (Gcc(s) + ZdelG

i
pll(s)) (4.31)

The last step is to insert (4.30) into (4.12). With the converter output voltage expressed
by voltage vector ~vso and current vector ~isl the converter impedance is found in (4.32).
Where Vdc is the steady-state value of the DC-voltage and I(s).

Zcc(s) =
~vso
~is

=
−Gpwm(s)(Gcc(s) + Zdel)Vdc − Zo(s)

I(s)− VdcGP
C(s)

(4.32)
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4.3.5 The Grid Equivalent Impedance

The grid equivalent impedance contains the grid resistance and inductance, Rg and Lg,
and the filter capacitance, Cf . By using the dq-transformation the series grid impedance,
Zg(s), is given in (4.33) and the filter admittance, YCf

(s), is given in (4.34).

Zg(s) =

[
Rg + sLg −ωgLg
ωgLg Rg + sLg

]
(4.33)

YCf
(s) =

[
sCf −ωgCf
ωgCf sCf

]−1
(4.34)

The total grid equivalent impedance can now be found by (4.35).

Zgeq(s) =
(
Zg(s)−1 + YCf

(s)
)−1

(4.35)

4.4 DQ-Domain Impedance Modeling of the Grid-

Connected Microgrid

As discussed in Subsection 4.2.4, all of the VSCs constituting the microgrid in grid-
connected mode will have a current controlled strategy and can be represented by their
Norton equivalent. From Fig. 4.9, it can be observed that the PCC now is located before
the grid impedance to ensure that the two converters have the same information about
the voltage, to ensure synchronization with the grid. To constitute the LCL-filter, an
additional filter inductance, Lf = 0.1 pu, is connected in parallel with Cf .

Figure 4.9: Subsystems of a grid-connected microgrid
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The system is now divided into new subsystems and it is necessary to derive a new
grid equivalent impedance, Zgeq(s), and a new current controlled converter impedance,
Zcc(s). The new grid equivalent impedance consist of the grid impedance, Rg and Lg,
while the new converter impedance equals the parallel connection of the four current
controlled VSCs and the load. The resulting minor loop gain, L(s), for the grid-connected
microgrid is given in (4.36).

L(s) = Zgeq(s)Zcc
−1(s) (4.36)

4.4.1 The Converter Impedance

The new converter impedance will be similar to the one found in Subsection 4.3.4, except
that the matrix Zo(s) will change. In addition to consist of the converter impedance,
Rc and Lc, the new Zo(s) will consist of the new filter inductance, Lf , and the filter
capacitance, Cf , as given in (4.37).

Zo(s) =

[
sLf −ωgLf
ωgLf sLf

]
︸ ︷︷ ︸

ZLf
(s)

+

([
sCf −ωgCf
ωgCf sCf

]
︸ ︷︷ ︸

YCf
(s)

+

[
Rc + sLc −ωgLc
ωgLc Rc + sLc

]−1
︸ ︷︷ ︸

Zo(s)

)−1
(4.37)

The RL-load, Zload(s), that is a part of the microgrid is given in (4.38) and must also
be taken into account when calculating the new impedance model of the converter.

Zload(s) =

[
Rl + sLl −ωgLl
ωgLl Rl + sLl

]
(4.38)

The new load impedance, Zcc(s), for the grid-connected microgrid is given by each
individual current controlled VSC and the load impedance, connected in parallel as in
(4.39)

Zcc(s) = Zcc,1(s) ‖ Zcc,2(s) ‖ Zcc,3(s) ‖ Zcc,4(s) ‖ Zload(s) (4.39)

4.4.2 The Grid Equivalent Impedance

The new grid impedance consists only of the series grid inductance, Lg, and grid resis-
tance, Rg as given in (4.40).

Zgeq(s) =

[
Rg + sLg −ωgLg
ωgLg Rg + sLg

]
(4.40)
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4.5 DQ-Domain Impedance Modeling of the AC Volt-

age Controlled VSC

The dq-domain impedance model of an AC voltage controlled VSC is now derived. Since
the VSC is disconnected from the grid it can be represented as the voltage source system
in Subsection 4.2.1. The division between subsystems is therefore given as in Fig. 4.10.

Figure 4.10: Subsystems of an AC voltage controlled VSC.

The VSC is represented by its Thevenin equivalent and the source subsystem is now
the AC voltage controlled converter impedance, Zvac(s). The load subsystem is now
the load equivalent impedance, Zleq(s), that consists of the filter capacitance, Cf , the
load resistor, Rl, and the load inductance, Ll. The minor loop gain of the AC voltage
controlled VSC, L(s) is given as in (4.41).

L(s) = Zvac(s)Z
−1
leq (s) (4.41)

4.5.1 Dynamic Equations

The dynamic equations of the AC voltage controlled VSC, is similar to the one found for
the current controlled VSC in Subsection 4.3.1. However, since the AC voltage controlled
VSC does not need a PLL it is not necessary to separate between system frequency and
control frequency. Using Fig. 4.10, the PCC voltage, vo, can be described as in (4.42).

[
vod
voq

]
=

[
md

mq

]
vdc −

[
Rc + sLc −ωgLc
ωgLc Rc + sLc

]
︸ ︷︷ ︸

Zo

·
[
ild
ilq

]
(4.42)
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4.5.2 Outer Voltage Controller

From the control structure of the outer voltage loop given in Fig. 2.21 the d- and q-
axis reference current input of the current controller can be obtained as in (4.43), where
Hvac(s) = kpvac + kivac/s.

[
ild,ref
ilq,ref

]
=

[
Hvac(s) 0

0 Hvac(s)

]
︸ ︷︷ ︸

Gvac(s)

·
([

vod,ref
voq,ref

]
−
[
vod
voq

])
(4.43)

4.5.3 Current Controller

The modulation indexes obtained from the inner current control loop is the same as
the equations found for the current controlled VSC in Subsection 4.3.2. However, as
with the dynamic equations, it is longer necessary to divide between system and control
frequency, and md and mq can be given as in (4.44). Gpwm(s), Gcc(s) and Zdel is the
same as for the current controlled VSC.

[
md

mq

]
=

[
Hpwm 0

0 Hpwm

]
︸ ︷︷ ︸

Gpwm(s)

·

([
Hcc 0
0 Hcc

]
︸ ︷︷ ︸

Gcc(s)

·
[
ild,ref − ild
ilq,ref − ilq

]
−
[

0 ωpllLc
−ωpllLc 0

]
︸ ︷︷ ︸

Zdel

·
[
ild
ilq

]
+

[
vod
voq

])
(4.44)

4.5.4 The Converter Impedance

To obtain the impedance model of the AC voltage controlled VSC from (4.42), it is
necessary to find the modulation index, m, as a function of il and vo in the frequency
domain. Linearizing and combining (4.43) and (4.44), the modulation index can be
expressed as in (4.45).

[
m̃d

m̃q

]
= Gpwm(s) · (I(s)−Gcc(s)Gvac(s))

[
ṽod
ṽoq

]
−Gpwm(s) · (Gcc(s) + Zdel) ·

[
ĩld
ĩlq

]
(4.45)

By linearizing (4.45) and inserting it into (4.42), the impedance model of the AC voltage
controlled VSC can now be found as in (4.46).

Zcc(s) =
~vo
~il

=
Zo(s) + VdcGpwm(s) · (Gcc(s) + Gdel)

I(s)− VdcGpwm(s) · (I(s)−Gcc(s)Gvac(s))
(4.46)
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4.5.5 The Load Equivalent Impedance

The load equivalent impedance contains the load resistance and inductance, Rl and Ll,
and the filter capacitance, Cf . By using the dq-transformation the series load impedance,
Zl(s), is given in (4.47) and the filter admittance, YCf

(s), is given in (4.48).

Zl(s) =

[
Rl + sLl −ωqLl
ωgLl Rl + sLl

]
(4.47)

YCf
(s) =

[
sCf −ωgCf
ωgCf sCf

]−1
(4.48)

The total load equivalent impedance can now be found by (4.49).

Zleq(s) =
[
Zl(s)

−1 + YCf
(s)
]−1

(4.49)

4.6 DQ-Domain Impedance Modeling of the Islanded

Microgrid

As discussed in Subsection 4.2.5, the BESS will change to an AC voltage controlled strat-
egy when the microgrid operates in islanded mode. The other three VSCs will keep their
current controlled strategy. The converter impedance of the AC voltage controlled VSC,
Zvac(s), will be the source impedance since it is represented by its Thevenin equivalent.
The parallel connection of the load and the three current controlled VSCs, Zcc(s), will
be the load impedance. The division of the subsystems is illustrated in Fig. 4.11. The
new minor loop gain, L(s), is given in (4.50).

L(s) = Zvac(s)Zcc
−1(s) (4.50)

Figure 4.11: Subsystems of the islanded microgrid.
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4.6.1 The Source Impedance

The source impedance will be similar to the one found for the single AC voltage controlled
converter found in Subsection 4.5.4, except that Zo(s) now will consist of the filter
inductance, Lc, and the filter capacitance, Cf , as given in Subsection 4.4.1 in (4.37).

4.6.2 The Load Impedance

The load equivalent impedance will consist of the other three current controlled VSC
and the load as given in (4.51).

Zcc(s) = Zcc,1(s) ‖ Zcc,2(s) ‖ Zcc,3(s) ‖ Zload(s) (4.51)

4.7 The Single-Tone Approach

The analytically derived impedance model of the current controlled VSC from Section
4.3 is verified, as illustrated in Fig. 4.12, by injecting shunt current perturbations.

Figure 4.12: Impedance verification setup of a current controlled VSC based on shunt
current injections.

Fig. 4.13 illustrates the algorithm of the single-tone approach which inject one current
perturbation for every frequency [23]. The measured currents and voltages are then
transformed to the dq-frame so that the FFT can be applied to analyze the contribution
of the perturbation frequency. The impedances are calculated by dividing the voltage by
the current at each frequency. In the following, every step of the single-tone approach is
discussed as done in [62].

Figure 4.13: The algorithm of the single-tone approach.
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4.7.1 Frequency Selection

A vector of frequencies, ftab = [f1, f2, ..., fn], is chosen to decide the number of n iterations
the algorithm will have. The frequencies are chosen arbitrary, but the value of the
fundamental frequency, 50 Hz, should not be selected because the background voltages
and currents with the same frequency will make it difficult to measure the contribution
from the perturbation currents [63].

4.7.2 Simulations and FFT

The next step of the single-tone approach is to simulate the system n times for different
current perturbations. The perturbations will give different responses on the source and
load currents for every iteration. FFT must then be applied to extract the components
at the perturbation frequency [64]. This process is further discussed and explained in
the next section.

4.7.3 Calculating the Impedances

Fig. 4.14 illustrates the division of the load subsystem and source subsystem with cor-
responding equations in the dq-frame. The load and source voltages, vol(s) and vos(s),
are equal to each other and given in (4.52). The load and source impedances, Zl(s) and
Zs(s), are given in (4.53) and the load, source and perturbation currents, il(s), is(s) and
ip(s), are given in (4.54).

Figure 4.14: The system load and source impedances, with corresponding equations in
the dq-frame.
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vo(s) = vos(s) = vol(s)

[
vod(s)
voq(s)

]
(4.52)

Zl(s) =

[
Zldd(s) Zldq(s)
Zlqd(s) Zlqq(s)

]
Zs(s) =

[
Zsdd(s) Zsdq(s)
Zsqd(s) Zsqq(s)

] (4.53)

is(s) =

[
isd(s)
isq(s)

]
, il(s) =

[
ild(s)
ilq(s)

]
, ip(s) =

[
ipd(s)
ipq(s)

]
(4.54)

It is needed two sets of linear independent perturbation currents to be able to estimate
the four impedances. The perturbation signals are given in (4.55), where the first signal
is a positive sequence perturbation and the other one is a negative sequence perturbation
[3]. The magnitude of the perturbation, Ip,mag, should be approximately 5% of the AC
base current. ωp is the perturbation frequency and φp is an arbitrary chosen angle that
has to change between the two perturbation sequences.

iabcp1 = Ip1,mag

 sin
(
(ωp + ωg)t+ φp1

)
sin
(
(ωp + ωg)t− 2π

3
+ φp1

)
sin
(
(ωp + ωg)t+ 2π

3
+ φp1

)


iabcp2 = Ip2,mag

 sin
(
(ωp + ωg)t+ φp2

)
sin
(
(ωp + ωg)t+ 2π

3
+ φp2

)
sin
(
(ωp + ωg)t− 2π

3
+ φp2

)
 (4.55)

The two perturbations give different responses on isd, isq, ild, ilq, vod and voq, which
are necessary to retrieve to estimate the load and source impedances. In the following,
the subscripts ”1” and ”2” denote the positive and negative sequence perturbations,
respectively. By injecting the two different perturbations, the voltages can be estimated
as in (4.56).

[
vod1(s)
voq1(s)

]
=

[
Zldd(s) Zldq(s)
Zlqd(s) Zlqq(s)

] [
ild1(s)
ilq1(s)

]
[
vod2(s)
voq2(s)

]
=

[
Zldd(s) Zldq(s)
Zlqd(s) Zlqq(s)

] [
ild2(s)
ilq2(s)

] (4.56)

The impedances of the two equations in (4.56) are the same since the frequency of the
systems are the same through both perturbations [65]. The equations of (4.56) can be
regrouped as in (4.57).
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[
vod1(s)
vod2(s)

]
=

[
ild1(s) ilq1(s)
ild2(s) ilq2(s)

] [
Zldd(s)
Zldq(s)

]
[
voq1(s)
voq2(s)

]
=

[
ild1(s) ilq1(s)
ild2(s) ilq2(s)

] [
Zlqd(s)
Zlqq(s)

] (4.57)

The load impedances can now be calculated as in (4.58).

[
Zldd(s)
Zldq(s)

]
=

[
vod1(s)
vod2(s)

] [
ild1(s) ilq1(s)
ild2(s) ilq2(s)

]−1
[
Zlqd(s)
Zlqq(s)

]
=

[
voq1(s)
voq2(s)

] [
ild1(s) ilq1(s)
ild2(s) ilq2(s)

]−1 (4.58)

Lastly, equation (4.58) can again be regrouped as in (4.59).

[
Zldd(s) Zldq(s)
Zlqd(s) Zlqq(s)

]
=

[
ild1(s) ilq1(s)
ild2(s) ilq2(s)

] [
vd1(s) vd2(s)
iq1(s) iq2(s)

]
(4.59)

An expression of the load impedance is now derived and can be found by simulations.
The exact same process can be done for the source impedance.

4.7.4 DQ-Frame Impedance Verification of the Current Con-
trolled VSC

As mentioned in the introduction, it is important to verify that the analytical impedance
model describes the nonlinear system with a sufficient accuracy. If the match between
the analytical and actual impedance deviates from each other, it would not be expedient
to apply the impedance-based method to analyze the stability. Therefore, to ensure that
the impedance-based stability analysis can predict the stability with high certainty, the
impedance model of the current controlled VSC found in Section 4.3 is compared to
numerical simulations using the single-tone approach.

Fig. 4.15 shows the result of the impedance verification. The solid line represents the
frequency response of the analytical impedance model, while the dotted line represents
the frequency response of the numerical simulations. As discussed in Section 4.2, the
stable operations of a grid-connected VSC is maintained by having a low grid impedance
and a high converter impedance. This is recognized in Fig. 4.15 for the diagonal ele-
ments, where the black and green line is lower than the blue and red line for almost all
frequencies. There is a good agreement between the black and green line who shows the
simulated and analytical frequency response of the grid impedance. It is also a good
agreement between the red and blue line that shows the converter impedance. The only
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4.7 The Single-Tone Approach

exception is that it can be observed a deviation for low frequencies for the off diagonal el-
ements of the converter impedance. It can be because the phase shift of the off-diagonal
elements are ignored in the analytical calculations and that the anti-aliasing filter is
neglected.
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Figure 4.15: A comparison of the simulated and analytical impedances.
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Chapter 5

Impedance-Based Stability Analysis

This chapter apply the impedance-based stability method on a single current controlled
VSC, a single AC voltage controlled VSC, a grid-connected microgrid and an islanded
microgrid to discover the sources of instability. By applying the GNC, it is possible to
predict the stability of the system. The literature especially points out that a high grid
impedance and the parameters of the control loops might have a negative affect on the
system stability. The predicted instability is further verified by time domain simulations.

5.1 Introduction

As microgrids are a part of the future power grid solution, a large proportion of integrated
power electronics is essential. This emphasizes the importance of the possibility to
perform preliminary assessment of the stability of a system. There are several sources to
instability in a power electronics dominated power system. Among others, a large grid
impedance can cause instability or harmonic resonance between the grid and the VSC
by destabilizing the current control loop. It has also been proven that the PLL leads to
system instability and that the parameters of the PI-controller of the current controller
might influence the stability. There can also arise stability issues when connecting several
VSCs in parallel because the control loops might interact with each other. By applying
the GNC on the ratio, the stability can be predicted based on the Nyquist plot. A system
is predicted to be stable if the Nyquist plot does not encircle the point (−1, j0) and if
the phase margin, which indicates the stability strength of the system, is sufficiently high
enough, preferably above 35◦.

This chapter will utilize the impedance models retrieved in Chapter 4 to investigate
sources of instability in power electronics dominated systems. Section 5.2 analyzes the
stability of a grid-connected VSC based on a current controlled strategy. It discusses
the effect of increasing the grid impedance and changing the controller parameters of
the current controller and PLL. A stability analysis of the grid-connected microgrid
is presented in Section 5.3. First, the microgrid is simulated with a variable power
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input to take the intermittent solar and wind power into account. Furthermore, the
impedance-based stability method is used to see how a weak grid and changing the
control parameters affect the stability of the microgrid. Section 5.4 and 5.5 analyzes the
stability of an AC voltage controlled VSC and an islanded microgrid, respectively. The
predicted stability of all the cases are verified by time domain simulations. Lastly, a
discussion of the findings are presented in Section 5.6.

5.2 Impedance-Based Stability Analysis of the Cur-

rent Controlled VSC

In this section, the stability of the current controlled VSC introduced in Chapter 2 is
analyzed for different cases. The GNC is applied to the ratio of the grid and converter
impedance model given in Section 4.3, and the predicted stability is verified by time
domain simulations.

5.2.1 Stable Case

The stable case is based on the system and control parameters given in Table 2.1, 2.2
and 2.3. Fig. 5.1a presents the eigenvalues λ1 and λ2, more commonly known as the
characteristics loci of the minor loop gain. The plot does not encircle the point (−1, j0)
and has a sufficiently high phase margin of 107◦. The system is therefore predicted to be
stable, which is validated through time domain simulations in Simulink. Fig. 5.1b shows
the three-phase grid currents and PCC voltages when there is a step change from 0.8 pu
to 1.0 pu in current reference at 0.5 seconds. As predicted, the system operates stably
through the step change. The voltages stay unaffected through the change, except some
small disturbances at 0.5 seconds and the currents are able to quickly follow the step
change in current reference.
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Figure 5.1: (a) Nyquist plot and (b) time domain simulations for the stable case of the
current controlled VSC.
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5.2.2 Impact of the Grid Impedance

The stability of the current controlled VSC when connected to a weak grid is now
analyzed. From Chapter 3, the system is already predicted to be unstable from the
eigenvalue-based stability analysis when the grid impedance between the converter and
the stiff grid is increased from 0.16 pu to 1.0 pu. Fig. 5.2a shows the characteristics
loci of the minor loop gain when applying the impedance-based stability analysis. It
is observed that λ2 is now encircling the point (−1, j0) and have a low phase margin
of −7.46◦. The open loop system has a pole in the RHP and the system is therefore
predicted to be unstable, which is verified by time domain simulations in Fig. 5.2b. The
three-phase currents and voltages are out of phase and not able to follow the desirable
value.
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Figure 5.2: (a) Nyquist plot and (b) time domain simulations when Lg = 1.0 pu.
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5.2.3 Impact of the Current Controller Proportional Gain

To see how the performance of the current controller affect the stability of the system,
the proportional gain, kpc, is decreased to 1% of its original value. It is interesting to see
if the stability of the the open loop transfer function of the inner current control loop is
affected by this change. The Bode plot in Fig. 5.3 has a gain margin of 89.7◦ at 12.7 Hz
and has infinity gain margin at infinity Hz, which causes the closed loop system of the
current controller to stay stable with a change in kpc.

Figure 5.3: Bode plot of inner current controller when kpc is decreased to 1 % of original
value.

Fig. 5.4a shows the characteristics loci of the minor loop gain. λ2 is encircling the
point (−1, j0) with a phase margin of −1.76◦, which predicts an unstable system. This
means that a change in kpc does not necessarily mean that the current controller itself is
unstable, but it can affect the stability of the whole system. The instability is confirmed
by the time domain simulations in Fig. 5.4b, where it can be observed that the three-
phase currents and voltages are out of phase and not pure sinusoidal.
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Figure 5.4: (a) Nyquist plot and (b) time domain simulations when kpc is decreased to 1
% of original value.
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5.2.4 Impact of the PLL Integral Gain

The impact of the PLL on the stability is now investigated. The integral gain of the
PLL is increased until its 25 times larger than its original value. Fig. 5.5 shows that
the open loop system of the PLL will remain stable through the change with a phase
margin of 37.9◦ at 6.88 Hz and a gain margin of minus infinity at 0 Hz. This is the same
characteristics as with the Bode plot found in Fig. 2.12 in Chapter 2 and causes the
closed loop transfer system to stay stable as well.

The corresponding Nyquist plot in Fig. 5.6a, on the other hand, predicts an unstable
system with a phase margin of −2.62◦. This is confirmed by time domain simulations in
Fig. 5.6b, where the three-phase grid currents and PCC voltages are out of phase and
not pure sinusoidal. As with the impact of the current controller gain, the PLL gain does
not necessarily affect the stability of the closed loop system of the PLL, but it affects
the stability of the whole system.

Figure 5.5: Bode plot of PLL when kipll is 25 times larger than original value.
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Figure 5.6: (a) Nyquist plot and (b) time domain simulations when kipll is 25 times larger
than original value.
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5.3 Impedance-Based Stability Analysis of the Grid-

Connected Microgrid

In this section, the stability of the grid-connected microgrid introduced in Chapter 2 is
analyzed for different cases. First, simulations of the microgrid is completed for a vari-
able power input to resemble the intermittent power sources as wind and solar power.
Furthermore, the GNC is applied to the impedance ratio derived for the grid-connected
microgrid in Section 4.4. Lastly, the predicted stability is verified by time domain simu-
lation.

5.3.1 Impact of Intermittent Power Sources

When analyzing the stability by applying the impedance-based method, the impedance
models are derived assuming that all microsources and loads produce or consume a con-
stant amount of power. In real life this is not likely due to the intermittent characteristic
of solar and wind power. To look at how the system reacts to the intermittent sources,
it is simulated with a variable power input for the solar and wind converter. Fig. 5.7a
shows the variable output of the solar power unit, which is built to resemble the solar
radiation during a day, with no solar radiation during night, and then increasing radi-
ation until noon before it decreases again. The figure further shows the d- and q-axis
current response to the variable reference input. Fig. 5.7b verifies that the three-phase
PCC currents react quickly and accurate to this change.
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Figure 5.7: (a) d- and q-axis currents and (b) three-phase PCC currents for a variable
current reference of the PV.
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The variable output from the wind power in Fig. 5.8a carries more character of random-
ness. The wind, as a power source is very unpredictable and changes quickly, sometimes
with big steps. For instance, at 1.75 seconds the output power changes from 0.2 to 0.8
pu. However, although it is a step change of 0.6 pu, the d-axis current of the wind
converter is able to follow the reference, while the q-axis current continues to equal zero.
Fig. 5.8b validates that the three-phase PCC currents are able to quickly follow the
change in reference with no disturbances.
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Figure 5.8: (a) d- and q-axis currents and (b) three-phase PCC currents for a variable
current reference of the wind power.
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Lastly, Fig. 5.9a shows how the three-phase PCC voltages and grid currents react to
the intermittent power sources. And as with the single VSC, the three-phase currents
quickly changes from one reference value to another. The three-phase PCC voltages on
the other hand, stays unaffected through the changes as desired. Fig. 5.9b shows a
zoomed view of the step change in current reference at 1.5 seconds from 0.4 to 0.2 pu.
As can be observed the three-phase PCC voltages keep constant, while the three-phase
grid currents quickly change without any disturbances.

(a)

(b)

Figure 5.9: Three-phase PCC voltages and grid currents (a) full view and (b) zoomed
view.
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5.3.2 Stable Case

For the rest of the stability analysis, the impedance-based method is applied to the
impedance ratio of the system, and it is assumed that the microsources and loads produce
or consume a constant amount of power. For simplicity, each individual VSC has the
same converter and controller parameters as the single VSC analyzed in Section 5.2, the
only thing that separates them is the current reference. The different current references
are already chosen according to Table 2.4. However, to repeat, the reference current of
the PV is 0.4 pu, while it is 0.2 pu for the wind power, −0.7 pu for the IG and −0.2 pu
for the BESS.

Fig. 5.10a shows the Nyquist plot of the given stable case. The characteristics loci of
the minor loop gain does not encircle the point (−1, j0) and the phase margin is 103◦.
The predicted stability is further verified by time domain simulations in Fig. 5.10b. It
shows the PCC voltages and grid currents of the grid-connected microgrid and as can be
observed the three-phase currents and voltages operate at 1.0 pu.
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Figure 5.10: (a) Nyquist plot and (b) time domain simulations for the stable case of the
grid-connected microgrid.
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5.3.3 Impact of the Grid Impedance

The stability of a grid-connected microgrid when connected to a weak grid is now ana-
lyzed. In Fig. 5.11a the grid inductance, Lg, is increased to 0.7 pu. As can be observed,
λ1 just encircles the point (−1, j0) with a phase margin of −5.73◦.

To see how the system stability reacts to the same change in grid impedance as for the
single current controlled VSC, Lg is further increased to 1.0 pu in Fig. 5.11b. As can be
seen, λ1 is now encircling the point (−1, j0) with an even more negative gain margin of
−37.1◦. Compared to the single grid-connected VSC, this insinuates that the stability
of a grid-connected microgrid with several VSCs is more prone to stability issues due to
connections to a weak grid. Fig. 5.12 shows the three-phase PCC currents and voltages
and verifies the predicted instability when Lg = 0.7 pu. The three-phase signals are out
of phase and are not able to reach the desirable value.
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Figure 5.11: Nyquist plot of the grid-connected microgrid when (a) Lg = 0.7 pu and (b)
Lg = 1.0 pu.

Figure 5.12: Time domain simulations when Lg = 0.7 pu.
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5.3.4 Impact of the Current Controller Proportional Gain

The grid-connected microgrid is constituted by cascaded VSCs that are based on a
current controlled strategy. It is therefore interesting to see how stable operations of the
microgrid depend on the performance of the current control loops. First, in Fig. 5.13,
the proportional gain of the BESS converter, kpc,BESS, is decreased to 1% of its original
value. That is, the proportional gain of the current control system of the wind power,
PV and IG remains the same.

From Subsection 5.2.3, it can be recalled that the same decrease in proportional gain of
the single VSC made the system unstable. However, the corresponding Nyquist plot in
Fig. 5.13a, shows that neither λ1 nor λ2 encircles the point (−1, j0), which means that
the grid-connected microgrid stays stable. The small phase margin of 6.32◦, on the other
hand, indicates that even if the system operates stable, a small step in current reference
could affect the stability. This is shown in Fig. 5.13b, where grid currents and PCC
voltages are shown when a step is applied after 1.0 second. The result is an unstable
system with currents out of phase.
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Figure 5.13: (a) Nyquist plot and (b) time domain simulations when kpc,BESS is 1% of
its original value.
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Fig. 5.14 shows the case where the proportional gain of the current control loop of both
the BESS and IG is reduced to 1% of its original value. This means that two of the
current control loops have changed the value of kpc, while the two other control loops
keep the original value. λ1 of the Nyquist plot of Fig. 5.14a encircles the point (−1, j0)
with a phase margin of −13.6◦, which means that the system is predicted to be unstable.
This is confirmed by time domain simulations of PCC currents and voltages in Fig.
5.14b.
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Figure 5.14: (a) Nyquist plot and (b) time domain simulations when kpc,BESS and kpc,IG
is 1% of its original value.

To sum up, the grid-connected microgrid can withstand one of the current controller
proportional gains to change, even though the result is that the stability of the system
is fragile and do not tolerate a step change in the current. However, if two out of four
proportional gains are changed, the system will be unstable.
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5.3.5 Impact of the PLL Integral Gain

The impact of the integral gain of the PLL control loop is now investigated. First, kipll
of three of the converters are changed to 40 times its original value, while the integral
gain of the PV keeps its original value. Fig. 5.15a shows the characteristics loci of the
minor loop gain of this case, and as can be observed, neither λ1 nor λ2 encircles the point
(−1, j0). With a sufficient high phase margin of 98.4◦ the system is therefore predicted
to be stable, which is confirmed by time domain simulations of the three-phase grid
currents and PCC voltages in Fig. 5.16b
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Figure 5.15: (a) Nyquist plot and (b) time domain simulations when kipll of all converters
except the PV are changed to 40 times its original value.
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In Fig. 5.16 all of the integral gains of the PLL control loops are changed to 40 times its
original value. Fig. 5.16a shows the Nyquist plot of this case. As can be observed, λ1
encircles the point (−1, j0) with a phase margin of −16.9◦ and the system is predicted
to be unstable. This is confirmed by time domain simulations in Fig. 5.16b. The three-
phase grid currents and PCC voltages are out of phase and not pure sinusoidal. In
addition, the currents are almost twice as high as the original operating point at 1.0 pu.
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Figure 5.16: (a) Nyquist plot and (b) time domain simulations when kipll of all converters
are changed to 40 times its original value.

In Section 5.2, the stability of a single grid-connected VSC was analyzed. To destabilize
the system, the integral gain of the PLL had to be multiplied with 25. From the analyze
above, it is shown that for a grid-connected microgrid, the integral gain of all converters
must be changed for the system to experience instability. In addition, the kipll must be
multiplied by 40 rather than 25 to affect the stability. This lead to the conclusion that
it is more demanding to destabilize a cascaded system than a single VSC by changing
the integral gain of the PLL.
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5.4 Impedance-Based Stability Analysis of the AC

Voltage Controlled VSC

In this section, the stability of the single AC voltage controlled VSC introduced in
Chapter 2 is investigated for different cases. The GNC is applied to the ratio of the
converter impedance and load equivalent impedance as given in Section 4.5. First the
impedance-based stability analysis is applied to the stable case, before the impact of the
load impedance and the proportional gain of the current controller is researched.

5.4.1 Stable Case

The Nyquist plot of the stable case is given in Fig. 5.17a. The characteristics loci of the
minor loop gain does not encircle the point (−1, j0), and has a sufficient phase margin
of 208◦. The system is therefore predicted to be stable, which is further verified by time
domain simulations in Fig. 5.17b, where the PCC voltage reference experiences a step
change from 0.9 to 1.0 pu after 0.5 seconds. The measured currents in the time domain
simulations are also increased after 0.5 seconds to ensure the correct voltage level.
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Figure 5.17: (a) Nyquist plot and (b) time domain simulations for the stable case of AC
voltage controlled VSC.
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5.4.2 Impact of the Load Impedance

The AC voltage controlled VSC is disconnected to the grid, and the size of the load
impedance is therefore of importance to be able to obtain the correct voltage level.
In this case the load resistance, Rl, is changed from 2.8 pu to 1.0 pu. A small load
resistor requires a high current which might cause instability. Fig. 5.18a shows that the
characteristics loci of the minor loop gain does encircle the point (−1, j0) with a negative
phase margin of −32.5◦. The predicted instability is verified by time domain simulations
of the PCC voltages and currents in Fig. 5.18b.
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Figure 5.18: (a) Nyquist plot and (b) time domain simulations when decreasing Rl.
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5.4.3 Impact of the AC Voltage Controller Proportional Gain

From Chapter 3, the system is already predicted to be unstable from the eigenvalue-based
stability analysis when the proportional gain of the outer voltage control loop, kpvac, is
decreased to 1% of its original value. By applying the impedance-based stability analysis
on the impedance ratio of the system, the Nyquist plot of Fig. 5.19a is retrieved. As can
be observed λ1 encircles the point (−1, j0) with a phase margin of −27.5◦ and the system
is predicted to be unstable. This confirms the results from the eigenvalue-based stability
analysis. The predicted stability from the analytical methods are further verified by time
domain simulations in Fig. 5.18b.
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Figure 5.19: (a) Nyquist plot and (b) time domain simulations when decreasing kpvac to
1% of original value.
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5.5 Impedance-Based Stability Analysis of the Is-

landed Microgrid

In this section, the stability of the islanded microgrid introduced in Chapter 2 is analyzed
for different cases. First, simulations of the microgrid is completed for a variable power
input to resemble the intermittent wind and solar power sources. The GNC is applied
to the ratio of the source impedance and load impedance as given in Section 4.6. First,
the impedance-based stability analysis is applied to the stable case, before it is used to
investigate the impact on the stability of the proportional gain of the current controller
and the proportional gain of the AC voltage controller.

5.5.1 Impact of Intermittent Power Sources

The same variable input of wind and solar power as introduced for the grid-connected
microgrid in Subsection 5.3.1 is applied to the islanded microgrid. When the microgrid
is disconnected from the grid it can not receive compensation from the grid and it is
therefore especially interesting to see how an islanded microgrid responds to a variable
power input. An important factor, will be how the BESS is able to compensate for a
high power input and a low power input, but first it is investigated how the solar power
converter reacts to the variable power input.

Fig. 5.20a shows how the d- and q-axis currents of the PV converter respond to the
variable reference input and Fig. 5.20b verifies that the three-phase PV currents react
quickly and accurate to the change.
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Figure 5.20: (a) d- and q-axis currents and (b) three-phase currents for variable current
reference of PV.
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The impact of a variable power input of the wind power is now investigated. As reviewed
in Subsection 5.3.1 the variable output of wind power carries more characteristics of
randomness. Fig. 5.21a shows how the converter of the wind power unit respond quickly
to the d- and q-axis reference current, despite large step changes. Fig. 5.21b validates
that the three-phase converter currents are able to quickly follow the change in reference
without any undesirable spikes or instability.
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Figure 5.21: (a) d- and q-axis currents and (b) three-phase currents for variable current
reference of wind power unit.

Fig. 5.22a and 5.22b shows how the three-phase currents of the BESS changes in size
according to the variable power input of the PV and wind power, respectively, to ensure
a constant voltage level at the PCC. As can be observed the three-phase PCC voltages
keep constant, while the three-phase currents quickly change without any disturbances.

(a) (b)

Figure 5.22: Three-phase PCC voltages and BESS currents for variable reference input
of (a) PV and (b) wind power.
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5.5.2 Stable Case

For the rest of the stability analysis it will be assumed a constant current reference input
according to Table. 2.4 of the three current controlled VSCs, which is the induction
generator, solar power and wind power converter. For further simplicity, as with the
grid-connected microgrid, all the system and converter parameters are the same for every
VSC. Fig. 5.23a shows the Nyquist plot of the islanded microgrid for stable conditions.
The characteristics loci of the minor-loop gain has a phase margin of 159◦ and does not
encircle the point (−1, j0), which means that there is no poles in the RHP of the open
loop system, hence the system is predicted to be stable. The stability of the system is
verified by time domain simulations of the PCC voltages and currents of the BESS in
Fig. 5.23b. To emphasize the stability, a step change in the reference voltage from 0.9
pu to 1.0 pu is applied after 0.5 seconds. It can be observed that the BESS currents
must be operated at 0.9 pu to obtain the desirable voltage level.
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Figure 5.23: (a) Nyquist plot and (b) time domain simulations for the stable case of the
islanded microgrid.
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5.5.3 Impact of the Current Controller Proportional Gain

The impact on stability of the current controller proportional gain, kpc is investigated
in this subsection. The kpc of both the BESS and the wind power unit is decreased to
1% of its original value. As can be observed from the Nyquist plot in Fig. 5.24a, λ1 is
now encircling the point (−1, j0) with a phase margin of −48.9◦. The open loop system
has a pole in the RHP, and the system is predicted to be unstable. Fig. 5.24b verifies
the predicted instability by time domain simulations of the PCC voltages and currents
of the BESS.
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Figure 5.24: (a) Nyquist plot and (b) time domain simulations when kpc of wind and
BESS is changed to 1% of original value.
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5.5.4 Impact of the AC Voltage Controller Proportional Gain

In the last case, the impact of the proportional gain of the AC voltage controller, kpvac,
is investigated. Fig. 5.25a shows the Nyquist plot of the impedance ratio of the islanded
microgrid when the proportional gain is multiplied by 3. As can be observed, λ2 is now
encircling the point (−1, j0) with a negative phase margin of −19.2◦, and the system is
therefore predicted to be unstable. This instability is further verified in Fig. 5.25b by
time domain simulations of the three-phase PCC voltages and currents of the BESS.
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Figure 5.25: (a) Nyquist plot and (b) time domain simulations when kpvac is multiplied
by 3.
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5.6 Discussion

The stability of different power electronics dominated systems has been investigated in
this chapter, including (I) a current controlled VSC, (II) a grid-connected microgrid,
(III) an AC voltage controlled VSC and (IV) an islanded microgrid. To predict the sta-
bility, the impedance-based stability analysis was applied to the four different impedance
models obtained in Chapter 4. If the corresponding Nyquist plot did not encircle the
point (−1, j0) the system was predicted to be stable, and the stability strength of the
systems was decided from the phase margin, which preferable should be over 35◦. The
predicted stability or instability from the Nyquist plot was verified for all cases by time
domain simulations.

First, the stability of the current controlled VSC and the grid-connected microgrid was
discussed. It is interesting to compare these two systems since the grid-connected mi-
crogrid is built up by several paralleled current controlled VSCs. The GNC was first
applied to both systems for stable operations, where the predicted stability was verified
by time domain simulations. Subsequently, the impact of a weak grid was discussed.
A weak grid is introduced by a high grid impedance, which can destabilize the current
controller which again can lead to sustained harmonic oscillations [17]. For the current
controlled VSC an increase in grid inductance from 0.16 pu to 1.0 pu led to an unstable
system with a Nyquist plot that just encircled the point (−1, j0). The instability of the
grid-connected microgrid, on the other side, was predicted to be more severe for the same
increase in grid inductance. It was discovered that the Nyquist plot of the microgrid just
encircled the point (−1, j0) already at Lg = 0.7 pu. Based on this research, this means
that a system can better withstand a weak grid if it has fewer VSCs connected to it.

Furthermore, the impact of the current controller proportional gain was investigated.
Since both the grid-connected microgrid and the VSC is based on a current control
strategy, it is especially interesting to observe how the current controller parameters
might affect the stability. For the single current controlled VSC the propotional gain,
kpc, was decreased to 1% of its original value. The Bode plot of the open loop transfer
function of the current controller was obtained, which concluded that the closed loop
system would stay stable for this new value of kpc. However, the Nyquist plot of the
characteristics loci of the minor-loop gain predicted the system to be unstable, which
means that a change in kpc does not necessarily mean that the current controller itself is
unstable, but it might affect the stability of the whole system. For the grid-connected
microgrid, on the other hand, it was proven that the system will stay stable if one of
the control system proportional gain is decreased to 1% of original value. However, the
small phase margin of 6.32◦ suggested that the system could experience instability if
there was a small step change in the reference current. This was confirmed by time
domain simulations, where it was shown that the three-phase currents and voltages are
stable until the step change in current reference. Furthermore it is shown that two of
the current control loops constituting the grid-connected microgrid must be changed to
1% of its original value to make the system unstable. Based on this, it is clear that the
microgrid can tolerate one of the current controller proportional gain to change, even
though the system stability strength is weak. However, if two of the proportional gains
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are changed, the system will be unstable.

It is proven that also the PLL parameters can affect the stability of a system [18]. The
integral gain of the PLL was increased until it was 25 times larger than its original
value, and as with the proportional gain of the current controller the open loop transfer
function of the PLL showed that the change in kipll did not affect the stability of the
closed loop system of the PLL. However, the Nyquist plot predicted the system to be
unstable, which led to the same conclusion as with changing the proportional gain of
the current controller, namely that the PLL integral gain does not necessarily affect
the stability of the closed loop system of the PLL, but it can affect the stability of the
whole system. The reason for this is that the PLL can be compared to a bridge [66]
that propagate the small-signal perturbation in the system voltage to the duty cycle
of the controller dq-frame. This will further affect the output current and voltage of
the system dq-frame, that finally affects the output impedance of the converter. For
the grid-connected microgrid it was shown that even if the integral gain of the PLL is
increased for three of the four VSCs, the system will stay stable with a sufficient phase
margin of 98.4◦. However, when all of the integral gains are multiplied by 40, the Nyquist
plot predicted an unstable system. Based on this research, it is shown that it is more
demanding to destabilize a microgrid with several paralleled VSCs than a single VSC by
changing the integral gain of the PLL.

When applying the impedance-based stability analysis it is assumed that the power
input or output of the different microsources and loads are constant. Nevertheless, it is
interesting to look at how the grid-connected and islanded microgrid reacts to a variable
power input that resembles the intermittent solar and wind power. For both operating
modes of the microgrid, it was observed that the d- and q-axis currents are able to follow
its reference without any overdamped or underdamped characteristics. This was further
verified by the three-phase currents and voltages, where the currents changed according
to the variable power input, while the voltage at PCC stayed at the desirable value. For
the islanded microgrid it was also interesting to see how the currents of the AC voltage
controlled BESS changed to compensate for the variable power input.

The stability of the single AC voltage controlled VSC was further investigated. The
GNC was first applied to the system for stable operations, where the predicted stability
was verified by time domain simulations. The AC voltage controlled VSC is disconnected
from the grid, and hence does not retrieve voltage and frequency regulation from the grid.
It is therefore important that the load impedance on the AC side is of such magnitude
that the desirable voltage level can be obtained. A low load impedance will require a
high current which might cause instability. It was therefore considered interesting to look
at the impact of the load resistor when it was decreased from 2.8 pu to 1.0 pu. As was
observed, the characteristics loci of the minor loop gain encircled the point (−1, j0) and
the system was predicted to be unstable. Subsequently, the impact of the AC voltage
controller proportional gain was discussed. When kpvac was decreased to 1% of its original
value, the Nyquist plot encircled the point (−1, j0) and the system was predicted to be
unstable.

Lastly the stability of the islanded microgrid was analyzed. A microgrid consists of
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several VSCs in parallel, and different research [19, 20] has shown that this might cause
instability because of interacting control loops. The impact of the current controller
and AC voltage controller parameters was therefore further analyzed, but first the stable
operations of the microgrid was verifed by the GNC and time domain simulations. When
the current controller proportional gain, kpc, of two of the VSCs was changed to 1% of its
original value, the corresponding Nyquist plot predicted an unstable system. An unstable
system was also predicted when the proportional gain of the AC voltage controller was
multipled by 3. Based on this research, it is therefore confirmed that the control loops
of a microgrid might be a source of instability.
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Conclusion

This chapter presents the concluding remark, in addition to provide a recommendation
for future work.

6.1 Concluding Remark

The increased focus on decreasing environmental pollution has led to a technological shift
in the power industry and VSC-based systems have received considerable attention due
to its important role in the future grid. VSC-based systems are a necessary building block
when moving from a centralized to a decentralized power generation. A decentralized
power system take advantage of distributed generation which will lead to benefits such as
higher energy efficiency, reliability and controllability. However, the increased amount of
power electronics devices will also lead to new challenges for operating and controlling the
power grid safely. The complexity and nonlinear characteristics of a VSC-based system
emphasizes that it is necessary to have knowledge about methods that can perform
preliminary assessment of a systems stability.

To investigate the stability of a power electronics dominated system, the modeling and
control of a VSC for two different control strategies, current controlled and AC voltage
controlled, where discussed. By connecting several VSCs in parallel, a microgrid with
the possibility to switch between the two different control strategies to enable operations
in both grid-connected and islanded mode where presented. Furthermore, a small-signal
representation of the state-space model of the current controlled VSC and the AC voltage
controlled VSC where derived. The intention of deriving the small-signal state-space
model was to explain the importance of linearization when applying a large proportion
of the stability analysis methods and to show how the eigenvalue-based stability analysis
can be used as an alternative method to predict the stability. The impact of the grid
inductance was investigated for the current controlled VSC. It was shown that 2 pairs
of complex conjugated poles where located on the RHP, which indicates an unstable
system, after increasing Lg to 1.0 pu. For the AC voltage controlled VSC, the impact of
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the proportional gain of the AC voltage controller was investigated. It was shown that 1
pair of complex conjugated poles were located at the RHP after decreasing kpvac to 1%
of its original value. To validate the correctness of the analytically predicted stability,
the small-signal representation of the two state-space models were further validated by
comparing it to a nonlinear model.

This thesis has mainly focused on small-signal stability analysis in the frequency domain
and introduces the impedance-based stability analysis to predict the stability of a power
electronics dominated system. One of the advantages of this method is that it needs less
computation and includes the impact of the controller dynamics and the grid impedance
on the stability. Another advantage is that the method do not need the detailed mod-
eling of the system and are therefore able to predict the stability even if the systems is
presented as a black box. To apply the method on a power electronics dominated system,
it is a prerequisite that the impedance models are obtained. The impedance models of a
current controlled VSC and an AC voltage controlled VSC is therefore derived utilizing
the steady-state values from the small-signal state-space models. This knowledge is fur-
thermore combined to obtain the impedance models of a grid-connected and an islanded
microgrid.

By applying the impedance-based stability analysis on the minor-loop gain, which is the
ratio of source and load impedance, the stability of the VSC-based systems was inves-
tigated. The main findings included an understanding of how the system and control
parameters affect the stability of a power electronics dominated system. It was estab-
lished that a weak grid represented by a large grid impedance is a source of instability
for both the current-controlled VSC and the grid-connected microgrid. It was also shown
that a single VSC was able to better withstand a weak grid than the microgrid. Fur-
thermore, the impact of the current control and PLL parameters was investigated. It
was shown that the current-controlled VSC was predicted to be unstable when decreas-
ing the proportional gain of the current controller and increasing the integral gain of
the PLL. The same could be observed for the grid-connected microgrid, except that it
required that the proportional gain of two of the current control loops and the integral
gain of all the PLL loops had to be changed to experience instability. Based on this,
it can be concluded that it is more demanding to destabilize a microgrid than a single
VSC by changing the control parameters. It was also discovered that even though the
system became unstable after changing the control parameter, the Bode plot of the PLL
and current controller implied stable operations. This emphasizes the importance of the
impedance-based stability analysis.

The AC voltage controlled VSC is disconnected to the grid and by applying the impedance-
based stability analysis it was identified that a small load resistor would lead to instability
due to the large currents required. It was also established that changing the proportional
gain of the AC voltage controller would lead to instability. The impact of changing con-
trol parameters were also investigated for the islanded microgrid. It was observed that
an increase in the AC voltage control proportional gain would have a negative impact on
the stability. Lastly, it was established that the proportional gain of two of the current
controllers had to be changed to influence the stability of the microgrid.
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6.2 Recommendation for Future Work

In this report, the impedance-based stability analysis was applied to a relatively small
and simple system. One way to make the system more close to reality would be to remove
the assumption of a constant voltage on the DC side and to add a DC voltage control
loop. Because of this, it would be interesting to also apply the impedance-based stability
analysis on the DC side to see if any of the sources of instability where neglected when
analyzing it only from the AC side. To expand the system further, a HVDC transmission
line from the wind power unit to the AC grid could be implemented. Since a weakness
of the impedance-based stability analysis is that it has limited observability for larger
systems, it would be interesting to investigate the stability at more than one interface,
to find the critical location of where the method should be implemented. By applying
another stability analysis method, as the eigenvalue-based method, for the same cases
as in Chapter 5, it would be possible to compare the results from two different methods
and to investigate the potential lacks of the impedance-based stability analysis. By
presenting a broader analysis of the islanded and grid-connected microgrid, it would be
interesting to compare the stability strength of the two operation modes. Lastly, the
impedance model of the AC voltage controlled VSC should be verified.
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Appendix A

Base Values of Per Unit System

A per unit system is developed to simplify calculations and to easier understand the
relationship between the parameter magnitudes. The base system is decided from (A.1)
where Vb is the nominal peak voltage at the AC side that is decided from the line-to-
line RMS voltage, Vn. Sb and Ib is the nominal three-phase power and nominal peak
phase current, respectively. Zb, Lb and Cb are the base AC impedance, inductance and
capacitance. Lastly, ωb is the base frequency. The resulting base values of the system
are given in Table A.1.

Vb =

√
2√
3
Vn, Ib =

2

3

Sb
Vb
, Zb =

Vb
Ib
, Lb =

Zb
ωb
, Cb =

1

Zbωb
(A.1)

Table A.1: Base values of the system.

Parameter Base Value

Sb 15 kVA
Vb 187.8 V
Ib 53.3 A
Zb 3.52 Ω
ωb 314.2 rad/s
Lb 11.2 mH
Cb 902.7 µC
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Appendix B

Direct-Quadrature-Zero Transform

The Direct-Quadrature-Zero (dqz) transform consists of two steps and is used to trans-
form three-phase signals into three constant signals. First, the Clarke transform is used
to convert time domain signals in the abc-reference frame into signals in the stationary
orthogonal αβγ-reference frame. The second and last transform is the Park transform
which transform the αβγ signals to dqz-signals in a rotational orthogonal frame. The
rotation of the axis is set to match the speed of the phases, which eliminates the relative
motion between the transforms. The result from the transform is given in Fig. B.1 and
the matrix used to go from abc- to dqz-frame is given in (B.1). For symmetrical systems,
the zero-line in Fig. B.1b and B.1c is removed, and one is left with an αβ- and dq-frame
with two signals instead of three.
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(c) dq-frame

Figure B.1: Dq-transformation.
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Appendix C

Simulink Models

In the following, the most important Simulink models are presented. This includes the
current controlled VSC, the AC voltage controlled VSC and the microgrid.

C.1 Current Controlled VSC

The structure of the current controlled VSC connected to the grid is shown in Fig. C.1.
The electrical system, PLL and inner current control loop is depicted in Fig. C.2, C.3
and C.4, respectively.

Figure C.1: Overview of the current controlled VSC.

Figure C.2: Electric circuit of current controlled VSC.
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Figure C.3: PLL of the current controlled VSC.

Figure C.4: Inner current control of the grid-connected VSC.

C.2 AC Voltage Controlled VSC

The electric circuit of the AC voltage controlled VSC is given in Fig. C.5. The grid is
now disconnected from the grid and the phase of the voltage is found according to Fig.
C.6. The AC voltage controller in Fig. C.7 is implemented to control the AC voltage
and to create the reference current signals.

Figure C.5: Electric circuit of AC voltage controlled VSC.
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C.3 Microgrid

Figure C.6: Retrieving of phase of a AC voltage controlled VSC.

Figure C.7: Outer voltage control of the VSC.

C.3 Microgrid

Fig. C.8 shows how the VSCs and RL-load are connected in parallel to constitute a
microgrid. A three-phase circuit breaker is implemented on the grid side to enable
changing between islanded and grid-connected mode.

Figure C.8: Electric circuit of microgrid.
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The VSC of the induction generator, PV and wind is based on the current controlled
strategy shown in Fig. C.4, while the BESS has the possibility to change between a
current controlled and AC voltage controlled strategy. To enable this, the PLL of Fig.
C.9 is implemented. When the grid is connected the switch is closed and the PLL works
according to the one introduced for the current controlled VSC. On the other hand, when
the grid is disconnected the switch opens, the PI-controller is decoupled and the phase is
retrieved by integrating the base frequency according to the method introduced for the
AC voltage controlled VSC.

Figure C.9: PLL of the microgrid.

It is also necessary to combine the current control strategy and the AC voltage control
strategy to enable grid-connected and islanded operations of the microgrid. Fig. C.10
illustrates how the outer AC voltage control loop can be connected through a switch
when the grid is disconnected, while it will be decoupled so that it is only an inner
current control loop in grid-connected mode. This also applies for the cross-coupling
term, where a switch is implemented to either multiply with ωb or ωpll.

Figure C.10: Control strategy of the microgrid.
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Appendix D

Small-Signal State-Space Model

In the following the linearized small-signal state-space model of both a current controlled
and an AC voltage controlled VSC are presented.

D.1 Current Controlled VSC

Matrices A andB of the current controlled VSC are given in (D.1) and (D.2), respectively.

A =



−ωb(kpc+Rc)

Lc
−ωb(ε0kipll + kppllVoq0) 0 −ωbIlq0kppll 0 0 ωbkic

Lc
0 −ωbIlq0kipll 0

ωb(ε0kipll + kppllVoq0) −ωb(kpc+Rc)

Lc
0 ωbIld0kppll 0 0 0 ωbkic

Lc
ωbIld0kipll 0

ωb

Cf
0 0 ωbωg0 − ωb

Cf
0 0 0 0 0

0 ωb

Cf
−ωbωg0 0 0 − ωb

Cf
0 o 0 0

0 0 ωb

Lg
0 −ωbRg

Lg
ωbωg0 0 0 0 ωbVg0 sin δθ0

Lg

0 0 0 ωb

Lg
−ωbωg0 −ωbRg

Lg
0 0 0 ωbVg0 cos δθ0

Lg

−1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 ωbkppll 0 0 0 0 ωbkipll 0


(D.1)

B =



ωbkpc
Lc

0 0 0

0 ωbkpc
Lc

0 0

0 0 0 ωbVoq0
0 0 0 −ωbVod0
0 0 −ωb cos δθo

Lg
ωbIoq0

0 0 ωb sin δθo
Lg

−ωbIod0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


(D.2)
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D.2 AC Voltage Controlled VSC

Matrices A and B of an AC voltage controlled VSC are given in (D.3) and (D.4), respec-
tively.

A =


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0 0
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