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Summary

The increasing fraction of electric vehicles and their charging power, as well as the devel-
opment of fast-charging stations, creates grid challenges regarding increased peak power
and more power fluctuations. The combination of growing charging power, consequently
decreasing charging time, gives higher variations. To postpone grid investments by in-
stalling stationary battery storage is an alternative to meet increased EV charging demand.
The battery storage can peak shave and then fulfill the purpose of avoiding grid reinforce-
ment. This thesis performs a case study of an EV fast-charging station with stationary
battery storage to postpone grid investments in case of increased EV charging demand.

The EV charging demand is generated based on stochastic variables and empirical data.
Information from a real fast-charging station in Trøndelag, Norway, is used to estimate the
EV charging demand at a given fast-charging station. The operation of the fast-charging
station is optimized using Julia for a five year period. The operational constraints include
the degradation of the battery’s capacity, so with time and use, the battery will have a
reduced ability to peak shave because of energy storage fade. The optimal battery storage
is 225 kWh and 300 kW in the case study.

The results of the case study show no economic arguments to invest in battery storage. The
case was not the most suitable for battery storage integration. A situation where potential
grid investment costs are higher can give a completely different outcome, for instance, if
long power lines need to be upgraded. The investment analysis shows that investing in
battery storage to peak shave has 7.5 % higher discounted costs than reinforcing the grid.
It also shows that given a higher power tariff, investing in battery storage is not less costly
than reinforcing the grid, but the gap between the options contract with 29 %.

More sensitivity analyses are done, including on time step. Through the whole Master’s
thesis, the time resolution is in minutes for power and degradation. By optimizing the
operation of battery storage without degradation, the operational costs are 14.5 % higher if
the time resolution is in minutes compared to hours. If cyclic aging, degradation based on
the operation of the battery, is included, the cyclic degradation is 45 % higher if the time
resolution is in minutes compared to hours.

If projections on future battery investment price for 2025 is correct, the investment cost of
the optimal battery is reduced by 31.5 %. Investment reduction gives enormous impacts
on the profitability of applying battery storage compared to grid reinforcement.
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Sammendrag

Stadig økende andel elbiler og ladeeffekt, samt utbygging av hurtigladestasjoner, skaper
nye utfordringer, blant annet økte effekttopper og mer varierende effekt. Med økende
ladeeffekt vil ladetiden gå ned, og kombinasjonen av økt effekt og kortere ladetid gir mer
fluktuerende laster. For å utsette eller unngå nettinvesteringer kan et stasjonært batterisys-
tem være et alternativ. Batterisystemer brukes til å kutte effekttopper for å holde effekten
fra nettet nede på et gitt nivå med formål å unngå oppgradering av eksisterende nett. Denne
masteroppgaven ser på en hurtigladestasjon i kombinasjon med et stasjonært batteri for å
utsette nettinvesteringer ved økt ladebehov.

Hurtigladestasjonen er stokastisk modellert med forventningsverdier og parametere basert
på en reell hurtigladestasjon. Driften av hurtigladestasjonen er optimert i Julia for en
fem års periode. I formuleringen av optimeringsproblemet er degradering av batteriets
energikapasitet tatt med i de driftsrelaterte variablene. Det vil si at med tid og bruk, vil
batteriet ha en redusert tilgjengelig energikapasitet til å kutte effekttopper. Det optimale
batterisystemet viser seg å være 225 kWh og 300 kW.

Resultatene viser at det ikke er økonomisk gunstig å investere i et batterisystem i dette
tilfellet. Case studiet var ikke det best egnede caset for å se lønnsomhet i en batteriin-
vestering, men for andre energikonsumenter får man et helt annet resultat - for eksempel
dersom lange kraftlinjer måtte oppgraderes. Investeringsanalysen viser at de totale diskon-
terte kostnadene ved å investere i et batterisystem og drifte det i fem år er 7.5 % dyrere enn
å utvide nettkapasiteten. Dersom effekttariffen øker, viser beregningene at det å investere
i et batterisystem er fortsatt dyrere sammenlignet med nettutvidelse, men at forskjellen
mellom de to alternativene reduseres med 29 %.

Flere sensitivitetsanalyser enn på nettleien er gjort, blant annet på valget av tidssteg i op-
timeringen. I masteroppgaven er det hele tiden brukt minutt som oppløsning på effekt og
degradering. Ved optimering av batteriets drift uten å ha med degradering blir driftskost-
nadene 14.5 % høyere dersom man bruker tidssteg i minutt i stedet for timer. Dersom man
tar med syklisk degradering, altså degradering fra batteriets bruk, går den sykliske de-
graderingen av batteriet 45 % raskere dersom man har minutt i stedet for timesoppløsning.

Basert på projeksjoner for 2025, går prisen på batterier ned, og nedgangen tilsvarer en re-
duksjon på 31.5 % i investeringskostnader i dette tilfellet. Dette gir store utslag i lønnsomheten
ved å ta i bruk batterier sammenlignet med nettinvesteringer.
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Chapter 1
Introduction

1.1 Motivation and background

Norway and several other developed countries undergo electrification of many different
sectors at a high pace, and new challenges occur from a grid perspective. The Norwe-
gian regulator (NVE) estimates that the yearly energy consumption from electricity will
increase from 118 TWh in 2020 to 128 TWh in 2030 [1]. However, the increase in energy
is not the problem; the power line capacities and voltage levels in weak grid points are
of deeper concerns [2]. Peer to peer, new measuring pieces of equipment, load shifting,
and local storage and production are all important elements in the development of meeting
these challenges. Grid reinforcements are necessary to meet the new demand. However,
new solutions with lower costs and increasing flexibility are also important to consider.

The electrification of the transportation sector is maybe the most relevant example. By an
increasing fraction of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV),
the need for electrical power increases in this sector. From a climate perspective, an in-
creasing fraction of EVs is a positive development if the power system is environmentally
friendly. An environmentally-friendly system has low greenhouse gas (GHG) emissions
from electricity production and EV production [3]. That is why the reinforcement of re-
newable energy sources (RES) is an important issue as well to make the power system
ready for increased energy demand.

A battery energy storage system (BESS) is a potentially important part of the future power
system. BESS can serve as a buffer for local production, contribute to frequency control,
or as an alternative to grid reinforcement. BESS can do peak shaving, which means that
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Chapter 1. Introduction

the BESS provides energy when the demand is high and charge when the load demand is
low and most preferably when prices are low. With more local PV production, production
uncertainties from increased RES, and higher power at the load side, the relevance of
BESS increases [4].

There exist some advantages to using lithium-ion battery cells in a BESS. The self-discharge
rates are low, the energy density is high, and the power it can provide is high [5]. A chal-
lenge with using this in real life is high prices. For the last years, the prices on lithium-
ion batteries have decreased continuously [6], and the research publications connected
to lithium-ion batteries are exponentially increasing [7]. Lithium-ion batteries are well
suited for large scale grid applications from a technical perspective [8]. For every year
that passes, its relevance also increases from an economic perspective, due to decreasing
prices.

There have been similar studies having some of the same objectives as this thesis. Fast
charging stations with BESS for EVs with a focus on battery degradation and optimal
integration into the grid have been an object for earlier research [9, 10]. Article [9] in-
vestigates BESS sizes of 250 and 650 kWh with respectively 250 and 650 kW with an
assumed battery price of 250 e/kWh and 200 e/kW. FCS is causing negative impacts on
the grid in the future with short but high power peaks. If the FCS operator, which installs
a BESS, in addition to peak shave, provides ancillary services, the revenues will increase
[9]. The installation of BESS has positive effects from a grid perspective. However, the
investments needed are still too high, and a battery price reduction of 30 % is required to
have a profitable case of a stationary battery [10].

A Master’s thesis from 2018 [11] conducts an optimization of installing battery storage of
150 kWh for a medium-scale swimming facility in Norway with an on-site PV production.
The optimization included battery degradation as cost element in the objective function and
not in the operational constraints, as for instance in article [9] and [10]. By including the
degradation as a cost element is a shortcoming in the conclusion of the thesis [11]. The
thesis concludes that there is a net saving of 0.64 % of the annual system costs with the
BESS installation and a peak power reduction of 13.9 %. Another conclusion is that the
system cost is more sensitive to changes in the power tariff than in the battery investment
costs [11].

From a system perspective, the degree of flexibility at EV charging infrastructure depends
on the management and control of the charging [12]. For instance, energy storage and use
of EVs for increasing the flexibility of the power grid requires a smart and well-controlled
charging and battery operation. The recommendations of the report [12] are partly that

• competitive markets should provide flexibility services,

2



1.2 Problem description

• the flexibility services can be opened if there is a high degree of transparency which
can lead to more interaction between the DSO and market participants and

• the DSO should give incentives for conventional grid reinforcements when uncon-
ventional solutions are not feasible.

Another recommendation from the report [12] is that the involvement of the DSO in plan-
ning the EV charging infrastructure should be only in a stage where the market is imma-
ture. In advance of the time when the market is mature, the report highly recommends the
DSO to have a clear exit strategy for the involvement in EV charging infrastructure [12].

1.2 Problem description

Electrification leads to increased demand for electricity in several sectors, including the
transportation sector. The traditional approach of reinforcing the existing grid is an alter-
native to install a stationary BESS to shave power peaks. Commercial customers of the
grid must pay a fee for the monthly power peak to the distribution system operator. If the
peak power is high, the customer has incentives to reduce it to save costs.

Fast charging stations for electric vehicles are in such a situation when the amount of
fast chargers increases. Load shifting is not a possibility because the operator of the fast-
charging station cannot control when cars are coming in. With a battery storage system,
the operator can store energy for the busiest time periods and thus keep the grid power
below a desired limit. This peak shaving technique can generate cost savings, which in
turn pays down the investment of the BESS.

By conducting a case study of a fast-charging station, the goal is to compare a battery in-
stallation to reinforce the grid and determine which investment alternative makes the most
economic sense. The method is to create an optimization model, which minimizes the
overall costs for the fast charging station operator. The optimization model will include
battery capacity degradation. Sensitivity analysis shows how the impact of different pa-
rameters, such as degradation, spot price, grid tariff, and the time step, have on the system.

There are several important notes to make, which regards the details of the total descrip-
tion. First, the battery degradation should be well-considered and incorporated into the
optimization. The reason for this is to have a real-life analysis that takes as many influenc-
ing factors as possible into account. Instead of estimating degradation as a pre-calculated
equivalent cost based on previous simulations, it is in the operational constraints. The bat-
tery capacity will become lower by time and use, and the grid must provide a continuously
increasing amount of energy.

3



Chapter 1. Introduction

Second, the load increase is an EV charging demand at a fast-charging station (FCS)
based on stochastical distributions and empirical data. The modelled EV charging de-
mand, which is the case study, is based on detailed information handed in from Tensio for
a specific and anonymous FCS in Trøndelag. Tensio is the DSO in the Trondheim area. To
sum up, the candidate shall

1. optimize battery size and costs of applying BESS at an EV FCS if the number of
charging points increases with 50 %

2. compare installation of BESS to grid reinforcement in the case study

3. look into advantages and disadvantages for the DSO when a consumer applies BESS
to peak shave, based on the case study and sensitivity analysis

4. include battery degradation in the optimization model

5. explain fundamental effects and mechanisms of battery degradation

6. analyze the impacts of including battery degradation in the analysis

7. perform sensitivity analysis on the spot price, power tariff, and time step.

1.3 Approach

The optimization model is build up by a mathematical formulation of equations and con-
straints based on operational and system properties and characteristics. The optimization
problem is written in Julia using the JuMP package and solved by the optimization tool
solver Ipopt. The load demand, which is input, is generated by a method developed by the
author in the specialization project during fall 2019. In general, the method used to find
the best solution is as follows

1. Determine the EV charging demand at the FCS. The basis for modeling an EV
charging demand is from the specialization project during the fall [13], and further
changes are presented in section 3.3. The input is information about a particular EV
FCS, given from Tensio, such as the number of chargers and maximum power.

2. Establish case. Section 4.1 establishes a case where a comparison of grid reinforce-
ment and BESS installation.

3. Decide on which cost elements which should be in the objective function. Based
on that, formulate a cost function that will be the objective function, and minimized
in the optimization. The objective function is deducted and presented in subsection
3.2.1.

4



1.4 Structure

4. Set up the constraints for the case and then the overall mathematical formulation.
The constraints are set up in subsection 3.2.2 and the mathematical formulation for
the optimization problem is shown in subsection 3.2.3.

5. Decide the value of the economic parameters, such as grid tariffs, electricity price,
investment costs, discount rates, and degradation costs. The values for the case study
is summarized in section 4.3.

6. Choose a proper solver to solve the formulated optimization problem. Important
issues are complexity, i.e., non-linearities, and size. Section 3.4 discuss and explain
the choice of solver, as well as describing the implementation.

7. Compare the financial results between BESS installation and grid reinforcement and
realize the most economically reasonable option. The results are presented in section
5.1, discussed in section 6.1 and concluded in section 7.1.

1.4 Structure

First, this introduction is presenting the motivation and literature background, problem
description, approach, and structure of the report. The content of the remaining chapters
is summarized below.

Chapter 2, Literature and theory, introduces the theory of fundamental lithium-ion bat-
tery storage technology and degradation, optimization, economic analysis, and error
estimation.

Chapter 3, Method, presents the methodology for BESS optimization and EV charging
demand estimation.

Chapter 4, Case study, contains the results from modeling EV charging demand at the
FCS. The case study is formulated with the modeled EV charging demand. The
estimated charging demand is input to the optimization model.

Chapter 5, Results from case study, presents the result of the case study, which is a com-
parison between the optimized BESS and grid reinforcement. The chapter contains
results from degradation analysis and sensitivity analysis on spot price selection,
grid tariffs, and time steps.

Chapter 6, Discussion, discuss the findings and results presented in the chapter 5.

Chapter 7, Conclusion and further work, concludes on the working points described in
the problem description based on the results and discussion. Suggestions for further
work are presented.
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Chapter 2
Literature and theory

This chapter starts with laying a theoretical background for lithium-ion battery technol-
ogy and degradation. Then the chapter introduces net present value, investment analysis,
general optimization setups, and error estimation.

2.1 Battery energy storage system

Lithium-ion batteries are globally increasing both in installed capacity and market shares.
In 2011, the total capacity addition of lithium-ion batteries was 25 MW globally and 40
% of the total capacity addition market [14]. Five years later, in 2016, the global capacity
addition of lithium-ion batteries had increased to 162 MW and a market share of almost
90 % [14]. The last 10 % contains lead-acid batteries, sodium-sulfur batteries, and others.

2.1.1 Battery fundamentals

A BESS consists of many modules, which in turn include battery cells. The battery cells,
which in this case are lithium-ion based electrodes, consists of a cathode (positive elec-
trode), an anode (negative electrode), an electrolyte, and a separator. The electrodes and
the separator is in the electrolyte, and the separator is there to insulate the electrodes and
only allow ionic transport of lithium ions.

Table 2.1 shows the most typical lithium-ion batteries, and their cathodes and anodes, as
well as the standard, used abbreviations for each type. Usually, for lithium-ion batteries,
the cathode is lithium oxide, and the anode is graphite. For LTO, this is not the case, be
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aware that the lithium titanate oxide is the anode of the battery.

Table 2.1: Abbreviations for different lithium ion battery technologies.

Battery cathode Battery anode Abbrev.

lithium cobolt oxide graphite LCO

lithium manganese oxide graphite LMO

lithium nickel manganese cobolt oxide graphite NMC

lithium iron phosphate graphite LFP

lithium nickel cobolt aluminum oxide graphite NCA

lithium manganese oxide lithium titanate oxide LTO

Further, the different batteries with different cathodes perform differently and have dif-
ferent strengths and weaknesses. For selecting the best battery configuration and also the
rates of degradation, it highly depends on the chemistry of the battery [3]. NCA is the best
performing cathode on lifetime, while LFP, NMC, and LMO-NMC show high sensitivity
on temperature [3].

Table 2.2: Characteristics for different cathodes in lithium ion battery cells.

Abbrev. Charge Discharge Lifetime Specific energy Thermal

[C] [C] (FEC) [Wh/kg] runaway[◦C]

LCO 0.7-1.0 1.0 500 - 1000 150 - 200 150

LMO 0.7-1.0 1.0 500 - 5000 100 - 150 250

NMC 0.7-1.0 1.0 500 - 5000 150 - 220 210

LFP 1.0 1.0 1000 - 10000 90 - 130 270

NCA 0.7 1.0 500 - 2000 200 - 260 150

LTO 1.0 10.0 5000 - 10000 70 - 85 -

According to [15], LTO and LFP are the lithium-ion cathodes that have the highest per-
formance for BESS operation. Because of the high titanium costs, selecting LFP will give
lower investment costs than LTO. Regarding other characteristics for LTO and LFP, they
are quite similar, which includes energy density, power density, safety, and lifetime.

Different degrees of the described degradation mechanisms depend on what cathode it is.
The constants during the process of making the constraints reflect the differences.
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2.1 Battery energy storage system

It is necessary to connect a AC/DC converter (rectifier) between the BESS and the load
bus when connecting BESS at a AC load bus. If the load bus is a DC bus, a DC/DC
converter is necessary. Fast chargers for EV applications are in almost every case DC
chargers. Each charger is connected to the DC bus with a DC/DC converter, as well as
the BESS. A conventional, uncontrolled rectifier may give power quality problems on the
grid side due to the presence of current harmonics and voltage distortion [16]. There exist
limits on minimum allowed power factor, and converter control of the rectifier with PLL
and PI control of the DC voltage is necessary [16]. The current and voltage are properly
controlled with PLL and PI control [17].

2.1.2 Degradation mechanisms for lithium-ion batteries

Battery degradation has an impact on the economic outcome that looks at BESS opera-
tions. A techno-economic analysis, as in Naumann’s Ph.D. thesis from 2018 [18], consider
an analysis where technical and economic aspects are combined.

Degradation mechanisms in lithium-ion batteries depend on operation and storage condi-
tions. The effects of degradation consist of two separate effects. The first is energy storage
capacity loss, referred to as capacity loss. The second one is reduced power the BESS
can supply, referred to as power fade. State of health (SoH) and internal resistance Rint

represent the two degradation effects. The instantaneous battery energy capacity, EB,cap,
which is the maximum energy the battery can store compared to the initial storage capac-
ity, EB0, is represented by the SoH . SoH is a percentage that is continuously decreasing
as a consequence of degradation mechanisms caused by time and use of the battery. Math-
ematically it is formulated as [18]:

EB,cap(t) = SoH(t) · EB0 (2.1)

Typically, when the SoH is 80 %, it is considered as the EoL criterion and initiates a
reinvest because then the BESS is considered to be unusable [19]. By the car industry,
the EoL is set to between 70 and 80 % [9]. The origin of this limit is from lead-acid bat-
teries, which experienced a rapid decrease in capacity after the SoH decreased to 80 %
[20]. For lithium-ion batteries, the EoL criterion can be lower. Typically, stationary appli-
cations such as BESS exploits previously used batteries. There is no adequate method or
understanding of how batteries below 80 % should operate, and the degradation is perhaps
following different patterns [21]. However, a residual value can be assumed by stating that
batteries with SoH below 60 % can not operate.
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SoC is the instantaneous percentage of energy level of the BESS, mathematically formu-
lated as [18]:

SoC(t) =
EB(t)

EB,cap(t)
(2.2)

SoC increases when the BESS charges and decreases when the BESS discharges. For var-
ious reasons, for instance degradation, the SoC is limited by a lower and upper boundry,
formulated as:

SoC ≥ SoCmin (2.3)

SoC ≤ SoCmax (2.4)

Calender aging mechanisms

Calender aging is an unavoidable battery capacity reduction as a function of time. There
have been several experimental studies that looked into the impact on degradation from
the battery storing conditions. It shows that the temperature is the primary factor for
accelerating calender aging, but also the state of charge (SoC) has a massive impact.
These variables also influence the self-discharge rate [4].

The primary mechanism which causes degradation is the growth of a solid electrolyte in-
terface (SEI). A high SoC, which is equivalent to a high voltage difference between elec-
trodes, accelerates the degradation since the difference in electrode potentials is important
[4]. There is a clear consensus that SEI growth dominates calender aging. By Arrhenius
relation, the capacity decrease due to calender aging has an underlying time dependence
as
√
t. The BESS capacity EB reduces over time corresponding to SoH , which represents

the capacity fade. Besides, several minor degradation mechanisms are working on various
battery components and result in capacity and power fade.

Cyclic aging mechanisms

Cyclic aging is degradation caused by the operation of the battery. Here, two significant
effects are highlighted because they are particularly impacting the rate of power fade and
capacity fade [3]. The first is lithium plating which leads to both capacity fade and power
fade. Temperature and C-rate are the main drivers for this effect. The second is a me-
chanical failure, which causes both capacity and power fade. A mechanical failure at the
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cathode is just driven by DoD. At the anode, C-rate, SoC, and DoD impact the mecha-
nisms. A full eqvivalent cycle (FEC) is when the change in SoC correspond to one cycle
between the minimum SoC and the maximum [18]:

FEC(t) =
1

2

∫
T

∣∣∣∂SoC(t)

∂t

∣∣∣SoH(t)dt (2.5)

= FEC(t− 1) +
1

2
· |SoC(t)− SoC(t− 1)|

SoCmax − SoCmin
(2.6)

= FEC(t− 1) +
1

2
· Pchar(t) + Pdchar(t)

EB0 · (SoCmax − SoCmin)
·∆t (2.7)

The C-rate with unit 1
h is the rate of which the BESS is charging or discharging. The

definition is that 1 C is the rate when the BESS delivers its nominal capacity during one
hour. The C-rate is [18]:

Cchar(t) =
PB(t)

EB0
(2.8)

If the BESS is represented as an equivalent circuit, the internal resistance represents the
power fade in the BESS [22]. Over time and by use, the internal resistance will increase
due to degradation mechanisms. The currents can be calculated from the charging and
discharging power, Pchar and Pdchar. By havingRint as a variable representing the power
fade, then these equations would be non-linear. The same will be the case for SoH , which
gives the currently available energy storage capacity by multiplying SoH with the initial
storage capacity. It is not a linear equation nor constraint - two non-linear constraints for
each time step origins from these two operating measures for battery degradation.

Figure 2.1 shows the lifetime as a function of temperature. The degradation is, as men-
tioned, highly dependent on temperature. However, these equations are not linear. The
graph in figure 2.1 is the same shape as experiments conducted by several institutions
shown in subsection 2.1.2. The right part of figure 2.1, which is increasing due to Arrhe-
nius law, is related to calender aging as the dominant effect. Lithium plating dominates the
left and corresponds to accelerated cyclic aging. When the battery has a high C-rate and
the cycle degradation is high, the increasing temperature due to high currents and thermal
losses decelerating the degradation.
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Figure 2.1: Battery life time as function of temperature [21].

Existing models to estimate battery degradation

To model degradation mechanisms, several models are suggested and applied in the later
years. This subsection presents four models, where some elements from them are involved
in modeling the degradation for the case study. Three of the models have specific names
(named as in [3]), NREL, Wang, and MOBICUS, which are semi-empirical and were
introduced 6 to 8 years back in time. A more recent and much more detailed model with an
experimental basis is from the already mentioned Naumann Ph.D. [18]. The author of the
Ph.D. thesis created an objective oriented program in Matlab for his model, called SimSES
[23]. The SimSES model is a deterministic operation model with build-in accurate battery
degradation which can be run with different applications.

The three first models are very alike and build on each other [3]. The first publication of
the NREL model was in [24] and later used to model degradation mechanisms in batteries
[3]. The equations for internal resistance increase (power fade) and loss of energy capac-
ity incorporates calender and cyclic aging. The internal resistance in the BESS Rint is
growing with a rate that consists of two additive terms, one caused by calender aging and
one by cyclic aging. The increase in Rint is linearly proportional to the number of cycles,
FEC, and to the square root of time,

√
t.

Rint = Rinit
int + a1

√
t+ a2FEC (2.9)

According to the same model, the loss of energy capacity depends on the loss of active

12



2.1 Battery energy storage system

lithium or lithium inventory. The minimum of these two is the capacity loss, ∆Q.

∆Q = min(b0 + b1
√
t, c0 + c1FEC) (2.10)

There are one storage and operational condition set for the model. If there are several con-
ditions, predefined factors should be defined as a function of T, Voc,∆DOD, and more, if
possible, to correct the expressions. These equations are not shown here; they are not used
in the case study and is highly non-linear. The NREL model includes temperature, SoC,
and time in the calender aging equations and temperature, SoC, C-rate, and DoD in the
cyclic aging equations. The NREL model is based on lithium-ion batteries with NCA and
LFP as cathode [3].

MOBICUS is an abbreviation for modeling of batteries, including the coupling between
calender and cyclic aging. The first demonstration of the model equations was in [25]
and later used in several papers and projects. MOBICUS can is as an extension of NREL
according to [3]. The formula for an increase in internal resistance is the same as in the
NREL model given in equation 2.9. MOBICUS assumes that the calender aging dominates
the total degradation. The battery capacity decrease in equation 2.10 is

∆Q = min(b0 + b1
√
t, c0 + c1t) (2.11)

The vital change from the NREL model is the change in the cyclic influence represented
by FEC to a linear time element t. The MOBICUS model includes temperature, SoC,
and time in the calender aging equations and temperature, C-rate, and DoD in the cyclic
aging equations. The MOBICUS model is based on lithium-ion batteries with NCA, LFP,
NMC-LMO, and NMC as cathode [3].

The model equations for battery degradation given in [26] make the origin of the Wang
model. The model describes cyclic aging and capacity fade in NMC and LMO cells, as
well as calender aging, which linearly follows the square root of time. The experiments
reported in the Wang article show that the predicted degradation estimated by the model
corresponds with measured values for 10, 20, 34, and 46 ◦C [26]. The work done in the
original Wang article ([26]), is based on previous work estimating LFP cell’s lifetime [3].
The general Wang equations for capacity loss is a sum where the first term is the cyclic
degradation and the second term is the calender degradation.

Qloss,% = (a · T 2
K + b · TK + c)e(d·TK+e)·CrAhthroughput + f ·

√
t · e

−Ea
RTK (2.12)
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For experimentally purposes, commercially available NMC-LMO battery was used, more
specifically a 1.5 Ah, 18650 cylindrical cells (UR18650W) from Sanyo [26]. The results
are origin to the Wang model and its constants given in table 2.3.

Table 2.3: Constants in the Wang model.

Name Value Unit

a 8.61 · 10−6 1/AhK2

b −5.13 · 10−3 1/AhK

c 7.63 · 10−1 1/Ah

d −6.7 · 10−3 h/K

e 2.35 h

f 14.876 1/
√
day

Ea 24.5 kJ/mol

R 8.314 J/Kmol

i. Cr is C-rate [1/h]

ii. t is time [days]

iii. TK is temperature [K]

The power loss is quite low compared to the capacity loss even after several thousands
of FEC when the C-rate is under 5C, and the temperature is above and around 20 ◦C
[26]. The Wang model includes temperature and time in the calender aging equations
and temperature, C-rate, and, to some extent, DoD in the cyclic aging equations. The
Wang model is based on lithium-ion batteries with NMC-LMO as cathode [3]. Cordoba-
Arenas et al. [27] propose a similar model for NMC-LMO batteries to Wang’s. The cyclic
aging is not linear to FEC but linear to FEC to the power of z, where z in the case of
NMC-LMO is 0.48, i.e., the square root. A case study that applies the Wang model to EV
batteries studies the degradation for various driving distances [28]. There are two notable
aspects of the results of the case study in [28]. The first is that NMC-LMO has the best
life span of the tested lithium-ion batteries. NCM + Spinel Mn and LiFePO4 where other
cathodes, with no predicted end of life (EoL) below six years for NMC-LMO. The second
aspect is that compared to experimental test data from EVs, the Wang model overestimates
the degradation.

The models have many of the same characteristics and interactions between different states
and variables. The Nauman Ph.D. thesis from 2018 is quite more sophisticated and shows
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some of the same fundamental relations and even more depending and non-linear rela-
tions [18]. Reference [18] reports experiments with 1850 LiFePO4-graphite cells, and it
proposes equations for both calender and cyclic degradation. There is energy capacity
degradation as a function of three multiplied functions. One is the square root of time, one
is a function of temperature (exponential), and one is a function of SoC (SoC to the third).
For the cyclic aging, which also is three functions multiplied and one them is the square
root of FEC [18]. Not a linear FEC function, as the Wang model suggests. Another of
these three functions describing cyclic degradation is including the C-rate, and the rela-
tionship is linear, not exponential, as indicated in the Wang model. The last is expressing
a relation with DoD, which is to the third and, in other words, highly non-linear.

By combining some of the equations in [18], makes a fundament of establishing a good
model. The Nauman Ph.D. proposes a sophisticated model that justifies a linear relation
between degradation of energy capacity and C-rate. In section 3.2.2, the exponential func-
tion in the Wang model, which includes C-rate in the exponent, is linearized.

The referred studies in the introduction ([9, 10]) have models based on the Wang model.
In the optimization for the case study in this thesis, the Wang model will model the battery
degradation of the BESS.

Several more simple approaches have been taken and can be sufficient in some cases. A
possible way to estimate battery degradation is as the own cost element dependent on
various factors. For instance, Kempton and Tomic suggest the equation:

cd =
cbat
LET

(2.13)

where LET is the total energy throughput during the battery’s lifetime, and cbat is the
capital cost of the battery [29]. The factor LET is equal to Lc · ES · DOD, where Lc is
the lifetime of the battery given in cycles, ES the total battery energy and DOD depth
of discharge, at which Lc is determined. Making a reasonable estimate requires that the
lifetime is given and independent of use and operation, which is not the case in real life.
This way to describe battery degradation provides several advantages, such as smaller
optimization problem which requires less computational power. The optimization will be
completely linear.

2.1.3 Battery investment costs

In previous work, the battery installation costs have been assumed to be 16 000 NOK/kWh
and the annual maintenance costs to be 1 % of the initial investment costs [30]. However,
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these cost estimates are conservative and need to be updated. The battery price, which is
used in [10], presented in the introduction, is 250 e/kWh plus 200 e/kW.

Figure 2.2: Estimates on battery investment cost [31].

To find precise estimates for battery prices are complicated. Because of the rapid decrease
in investment costs, figures from just four and five years back can already be outdated.
Table 2.4 shows the highest and lowest estimates found for lithium-ion batteries for the
years 2018 and 2019. There will be differences in prices because of the different material
costs for different battery electrode chemistries.

Table 2.4: Price estimates for lithium ion batteries with exchange rate of 9.5 NOK/USD.

Company Year Lowest price Highest price Average price

[NOK/kWh] [NOK/kWh] [NOK/kWh]

Wood Mackenzie 2018 3990 6175 5083

NIPSCO 2018 3135 7410 5273

EPRI 2018 3040 4940 3990

Brattle 2018 3040 4560 3800

Lazard 2018 2755 3325 3040

There are several cost projections from different sources, and figure 2.2 shows the devel-
opment and forecast for the cost of lithium-ion batteries in USD/kW [31]. The cost in
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USD/kW is meant for a battery operating 4 hours a day, and the price in USD/kW must be
divided by 4 hours to get the price in USD/kWh.

Figure 2.3: Investment cost projections for lithium ion batteries [32].

The investment cost in a battery should be divided into cost per energy unit kWh and cost
per power unit kW. The cost element of energy is associated with the cells and battery
technology. In contrast, the cost of power is related to the power electronic devices. These
two elements are already a part of the objective function defined in subsection 3.2.1. Figure
2.3 shows the estimated projection of these two cost elements regarding the investment of
BESS.

Figure 2.3 shows the cost for both the energy and power term based on a major litera-
ture review finished in June 2019 by the U.S. national renewable energy laboratory [32].
The estimated costs are then the sum of the BESS power multiplied with the specific
price in NOK per kW, and the BESS energy storage capacity multiplied with the specific
price in NOK per kWh. The specific cost in USD is for energy storage capacity cE =
200 USD/kWh and for power cP = 650 USD/kW. By applying an exchange rate of 8.5
NOK/USD, which was the average rate for the period 2018 to 2019 [33], the specific
investment costs for the battery is cE = 1700 NOK/kWh and cP = 5525 NOK/kW.

To compare this price with Brettles’s literature review for instance, the specific investment
cost for the power term, must be divided with 4 hours. Then the specific investment cost in
total then becomes cBESS,kWh = cE + cP

4h = 200+650/4 USD/kWh = 362.5 USD/kWh
= 3081.25 NOK/kWh or per kW with 4 hours operation cBESS,kW = 200 · 4 + 650

USD/kW = 1450 USD/kW = 12 325 NOK/kW. The cost of 1 450 USD/kW is fitting in
the middle of the estimated cost for 2020 shown in figure 2.2 from a literature review by
Brettle [31]. The specific cost elements will be multiplied with the resulting maximum
BESS power and storage capacity given in the solution of the optimization. The specific
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costs are

1. IE,cap
B = 1700 NOK/kWh for energy storage capacity

2. IP,cap
B = 5525 NOK/kW for power capability

This cost element is the most uncertain in this thesis. It is important to specify that, in
reality, correct investment costs should be available when a company or DSO does this
kind of analysis.

2.2 Optimization

Optimization refers to the situation where an objective function is minimized within a
limited space determined by the constraints. In general, an optimization problem is on the
form

minimize
x

f(x)

subject to h(x) = 0

g(x) ≤ 0

x ≥ 0

where f(x) is the objective function and the vector of decision variables is x = [x1, x2, . . . , xn]

[34]. The equality constraints h(x) and inequality constraints g(x) set boundaries of where
the feasible region is, a region where the solution must be within. The objective function
f is minimized with respect to x inside the feasible region determined by the constraints.

Dual variables

For an optimization problem, dual variables can be calculated by the Lagrange function
[35]. The dual variables provides information on how much a change in the corresponding
constraints impacts the objective function. The Lagrange function is defined as:

L(x) = f(x) +
∑
x

λ(x) · h(x) +
∑
x

µ(x) · g(x)

where λ and µ are the dual variables for, respectively, the equality and inequality con-
straints. When the Lagrangian function is derivated with respect to all the variables and
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set to zero are called Karush Kuhn Tucker conditions. By assuming the problem is lin-
ear, linear algebra will give a solution with the value of the dual variables. The derivated
expression equal to zero is satisfied for the optimal solution.

∂L

∂xi
= 0 ∀xi ∈ x (2.15)

The dual variables provide numeric information about how a change in the corresponding
constraint changes the objective function. For the case of a non-zero dual variable, the
corresponding constraint is at its boundary in the optimal solution. When the objective
function represents costs and the relevant constraint has a particular unit, the value of the
dual variable in the optimal solution is the marginal cost.

2.3 Economic analysis

This section provides background material to understand the economic calculations and
various cost elements, such as spot price, grid tariffs, and transformer loss costs.

Net present value

Over time, money loses value. The interpretation of why can be many; however, to dis-
count cash flows, the discounting rate expresses the time value. With a discount rate r, a
future value, FV , in year N can be calculated to a present value, PV , by multiplying FV
with α(N). Equation 2.16 describes this mathematically [36].

α(N) = (1 + r)−N (2.16)

The method to calculate the long term economic cost is done by net present value (NPV)
in equation 2.17 by applying the discounting term shown in equation 2.16 [36].

NPV = I0 +

N∑
n=1

α(N) · Cn −RN (2.17)

I0 - investment cost [NOK]

n - year

N - years of analysis

19



Chapter 2. Literature and theory

α - discount factor (defined in equation 2.16)

Cn - cash flow in year n [NOK]

RN - residual value ind the end of the last yearN or beginning of yearN+1 [NOK]

Equation 2.17 shows the net present value by discounting a cash flow and sum up the
initial investment cost and the residual value. The residual value is the remaining value of
the investment after the end of the economic period of N years. Further, in this section, a
description of some cost elements follows.

Spot price

The spot price is the current price for electricity determined on the market to ensure the
balance between supply and demand [37]. The spot price is fluctuating along with the
supply and demand changes. Electricity can be bought on the intra-day market and day-
ahead market. Other derivates, such as forwards and futures, where the price is locked for
future delivery, can be purchased to reduce risk [38].

Grid tariffs

The grid tariffs are the fees a consumer has to pay to the DSO. The grid tariff consists of
three parts, the fixed term, the power tariff, and the energy tariff and is known parameters
[39]. Some cost parameters are difficult to predict, such as the spot price in the coming
ten years and the investment costs. The financial parameters will vary and be estimated
differently for different cases.

Tariffs are what companies and households pay to the DSO to use the grid. The grid tariff
price levels are based on several factors [40]

• energy consumption, if the DSO does not correctly estimate the consumption, the
tariff is adjusted to cover the income difference.

• electricity price, DSO must cover the physical losses in the grid.

• investment and maintenance, the grid is constantly under expansion and mainte-
nance.

• fees, the DSO is obligated to pay some fees to certain public institutions.

• blackouts, DSO is responsible for covering the costs in case of a blackout.

• interest rate, the level of state obligations and dividend depend on this.
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Transformer loss costs

The DSO can not own batteries according to Norwegian law [41], which means that the
owner of the FCS must operate their own BESS. To secure reliability and power quality,
the DSO can make an agreement with a customer with flexible resources. The DSO can,
in the agreement, offer reduced grid tariffs in exchange for getting a guarantee that the
customer uses the BESS in specified situations. In [42], such a contract is investigated and
presents a model that compares customer’s cost savings with different pricing schemes.
The result leads to postponing of grid reinforcements and improved voltage control [42].

Subsection 4.1 presents the case study, the alternative to not invest in a BESS is that the
customer pays for a new, higher rated transformer [39]. In the case study, the cost of
strengthening the grid is a cost paid by the customer, because the customer provokes the
need for it. The total cost will be the investment itself and the cost of power losses. Power
loss costs are the additional loss of the generated electricity, which has a cost equivalent to
the electricity production costs for the society [43].

A planning guide published and created by SINTEF Energy Research is useful to make
estimates for transformer and substation costs [43]. The planning guide contains equiva-
lent specific costs for investment and power losses, which is found in a table based on the
voltage level and rated power capacity. The capitalized costs have a discounting rate of
4,5 % for 30 years and 2014 price level [43]. The calculation of the total losses is with
the capitalized factors for losses. The discounted cost elements are, therefore, investments
and costs of losses. To discount future values to present values, equation 2.16 is used.

An important variable is the so-called ”utilization time for losses” κt [hours]. κt is the
number of hours during a year when the transformer must operate at the power loss at the
transformers rated power to cover the annual losses. Mathematically κt is [43]

κt =
∆W

∆Pmax
(2.18)

where ∆W is the annual energy losses [kWh] and ∆Pmax is the losses when the trans-
former is operating at maximum level [kW]. The annual transformer cost of losses, Ctot

loss

is [43]
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Ctot
loss = kp ·∆Pmax +

∫ t

t0

kw(τ) ·∆P (τ)dτ (2.19)

= kp ·∆Pmax + ∆Pmax · kw,ekv ·
∫ t

t0

∆P (τ)

∆Pmax
dτ (2.20)

= (kp + kw · κt) ·∆Pmax (2.21)

= kpekv ·∆Pmax (2.22)

To calculate kpekv , the specific factors kp and kw,ekv can be found from the planning guide
[43], while κt must be calculated or assumed. For the case study, κt is calculated. The
specific factors depend on the size of the transformer and are stated in section 4.3 for the
case study. Almost the same procedure can be done for power line losses.

The power loss costs are important for power grid planning purposes [44]. The annual
energy losses in the grid in Norway is about 7.5 TWh, while gross consumption is 137
TWh, which corresponds to 5.4 % [45]. The transformer operational cost consists of
copper losses. In case of an investment, that will also be a part of the cost. The calculation
of losses are done with equation 2.23.

∆W = Pk

( S
Sn

)2
(2.23)

∆W - Copper losses [kW]

Pk - Losses at rated power [kW]

S - Transformer load [kVA]

Sn - Transformer rating [kVA]

2.4 Error estimation

By randomly select a data point from a data set to represent the set, bring an error along to
the result of running a model, or do a calculation. An error estimate quantifies the deviation
from the average value by letting a random data point represent a whole set. By having
several runs and calculations with different randomly selected data points, it is possible to
calculate an error estimate.

The result from a test run is denominated as Ci (for cost) where i is the index of the test
run and I = {1, . . . , N} is the set containing N test runs. Equation 2.24 shows how the
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standard deviation is calculated [46].

σ =

√√√√ 1

N − 1

N∑
i=1

(Ci − C̄)2 · 100% (2.24)

where i = 1, . . . , N and equation 2.25 shows how the average C̄ is calculated.

C̄ =
1

4

N∑
i=1

Ci (2.25)

The relative error ε is calculated as a percentage of the standard deviation σ divided by the
average result, C̄, mathematically shown in equation 2.26.

ε =
σ

C̄
(2.26)

The relative error ε indicates the average error of choosing a random data point out of a
data set to represent the data set. The more cases (N ), which are used to compute the
value, increases the significance of the error estimate.
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Chapter 3
Method

This chapter builds up the optimization model, which is used to optimize the BESS and its
operation. The optimization model needs particular input, such as the load. A method to
estimate EV charging demand is presented. In the end, the implementation and a summary
will try to make the complete task and method overview clear.

3.1 Assumptions and notations

The BESS is NMC-LMO cell-based, and the size is optimized. The battery degradation
must involve several assumptions and linearizations to make it possible to implement and
run. The running time quickly increases if the model contains a high order of linearities.

The calender and cyclic aging are separated mathematically. Different impacting variables
on the degradation are decoupled, while they, in reality, are coupled and interacting. The
degradation mechanisms are, therefore, superpositions of linearized functions. Precalcu-
lating the constants reduces the battery energy capacity with time and use.

When the BESS operation is optimized, the charging demand and load are known, which
means that there is a perfect forecast when applying the BESS. In reality, this is not pos-
sible to predict, and the results from the optimization are in the optimal use of the battery
when a perfect forecast of the load and electricity prices are assumed.

There are some sets which describes different time intervals, and they are

• T - set of minutes, where t ∈ T
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• H - set of hours, where h ∈ H

• M - set of months, where m ∈M

• Y - set of years, where y ∈ Y

∆ is used to describe the difference in one variable between time steps to make a more
compact notation of recursive variables. For instance, the change in stored energy in the
battery ∆EB(t) is equivalent with EB(t) − EB(t − 1). Before the formulation of opti-
mization in detail, the system parameters, economic parameters, and system variables are
presented and explained below.

System parameters

PL - EV charging demand [kW]
P contracted
grid - Maximum grid capacity [kW]
ηc - BESS charging efficiency [%]
ηd - BESS discharging efficiency [%]
SoCmin - Minimum level of SoC [%]
SoCmax - Maximum level of SoC [%]
kt - Calender ageing factor [1/

√
min]

kCr0
- Cyclic ageing factor constant with respect to C-rate [%/cycle]

kCr1 - Cyclic ageing factor linear with respect to C-rate [h %/cycle]
EB0 - BESS energy capacity [kWh]
Pmax
inv - BESS power capacity [kW]

Economic parameters

cspot - Spot price [NOK/kWh]
cE,tar - Energy term of the grid tariff cost [NOK/kWh]
cP,tar - Power term of the grid tariff cost [NOK/kW/month]
cmain - Specific battery maintenance cost [NOK/kWh]
IE,cap
B - Specific battery energy investment cost [NOK/kWh]
IP,cap
B - Specific battery power investment cost [NOK/kW]
N - Number of years [years]
r - Annually discount rate [%]

System variables

Pgrid - Grid power [kW]
PB - Battery power [kW]
Pchar - Battery charging power [kW]
Pdchar - Battery discharging power [kW]
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3.2 Mathematical formulation for optimization problem

SoC - State of charge [%]
FEC - Full equivalent cycle [cycle]
fc - Cyclic ageing factor as function of C-rate [%/cycle]
SoH - State of health [%]
EB0 - BESS energy capacity [kWh]
Pmax
inv - BESS power capacity [kW]

Further, the terms calibration model and optimization model are used as names for differ-
ent setups of the problem. Both describe optimization models but to distinguish between
models where the BESS size is a variable and not, to names are applied. The optimization
model does not include the BESS size as a variable in the objective function. However,
the calibration model has included BESS energy and maximum power as variables in the
objective function. The calibration model’s purpose is to know the optimal BESS size
without including degradation.

3.2 Mathematical formulation for optimization problem

The constraints will be determined in section 3.2.2 and the objective function in section
3.2.1. This section builds up the model to optimize the battery in figure 3.1.

Figure 3.1: FCS and BESS connection.

3.2.1 Objective function

The objective function will be the total costs, which is consisting of several elements.
The total cost function Ctot reflects the total operational and investment related costs and
corresponds to f(x) in section 2.2. There are both operational and investment costs, which
for the BESS case are

• spot price for electricity cspot

• grid tariffs, given in energy (cE,tar) and power (cP,tar) terms
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• specific investment costs for BESS for installed energy and power capacity, IE,cap
B

and IP,cap
B

The customer pays the electricity price and energy tariff for each unit of energy imported
from the grid. The power tariff is paid based on the maximum grid power during each
month. The specific cost marked with P, cap is proportional to the maximum battery
power, while the cost marked with E, cap is proportional to the installed energy capacity.

Instead of having a cost element in the objective function, reflecting the cost of bat-
tery degradation, SoH reflects the degradation, which represents energy storage capacity.
Based on the presented model in section 2.1, the operational constraints includes battery
degradation. Battery degradation leads to higher power tariff costs due to the BESS’s
reduced ability to peak shave because of the reduced capacity due to degradation. The dis-
counting factor α, presented in section 2.3, is incorporated on yearly basis. The grid tariffs
are a monthly based fee, and therefore monthly time steps must be incorporated. The
variables have a time step interval in minutes. The smallest time step is minutes, while
hours are the longest lasting time step, such as the spot prices, which are hourly changing.
For notation simplicity, by applying equation 3.1, minute-based power is transferred to
hour-based, which leads to the grid energy for one hour.

Egrid(h) =

60∑
t=1

Pgrid(t)∆t (3.1)

The objective function is the sum of the costs. For the calibration model, the costs of
the BESS investment must be included to be minimized. The BESS size is set and only
operational variabels are optimized in the optimization model. These variabels includes
power for the BESS and grid as well as the degradation of the BESS. Ideally, the BESS
size would be part of the cost function, and the model would give the optimal case. Due to
limited computer power, this is not possible due to too high non-linearities in the degrada-
tion constraints. This is the reason why the BESS size will be omitted in the optimization
model and pres-set from the calibration model. The objective function for the calibration
model is

Ccal,tot =
∑
y∈Y

α(y)
[ ∑
m∈M

cP,tar(m) · Pmax
grid (m) +

∑
h∈H

Egrid(h)
(
cspot(h)

+ cE,tar(m)
)]

+ IE,cap
B · EB0 + IP,cap

B · PB,max (3.2)
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and for the optimization model

Copt,tot =
∑
y∈Y

α(y)
[ ∑
m∈M

cP,tar(m) · Pmax
grid (m) +

∑
h∈H

Egrid(h)
(
cspot(h)

+ cE,tar(m)
)]

(3.3)

Objective function 3.2 is including the BESS size. By adding constraints to the prob-
lem, and then minimize function 3.2, the result will be the optimal size of the BESS, the
maximum grid power each month, and the minimum costs.

3.2.2 Constraints

The BESS operation and its degradation mechanisms must be formulated mathematically
as constraints. The constraints set the boundaries of the feasible region in the overall
optimization formulation. An overview of a situation with an EV FCS integrated with a
BESS is in figure 3.1. The power balance at the DC bus must be satisfied at all times t ∈ T
and ensured by the first constraint:

Pgrid(t) + PB(t) = Pload(t) (3.4)

as seen in figure 3.1. When the battery is charging, PB is negative and more power is
drawn from the grid than just the load. The connected transformer has a rated power Sn

as shown in figure 3.1 which determines the limit of the grid power. The FCS operator has
a contracted capacity, P contract

grid , corresponding to Sn, with the DSO, which gives:

Pgrid(t) ≤ P contract
grid (3.5)

The battery variables SoC and SoH are defined with equation 2.1, 2.2, 2.3 and 2.4 as in
section 2.1.2. The power which the BESS can provide is limited by the nominal power
of the inverter, Pmax

inv . These characteristics are incorporated in the following constraints
which can be added to the cost minimization problem:
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Pchar(t) ≤ Pmax
inv (3.6)

Pdchar(t) ≤ Pmax
inv (3.7)

The variable EB is the amount of energy which is stored in the BESS and must be updated
every time step. The maximum energy charged and discharged are based on the BESS’
capacity EB,cap and the SoC limits. EB is limited by the SoC limits stated in constraint
2.3 and 2.4. There is an energy loss while charging and discharging the battery, and that is
reflected in the charigng and discharging efficiences, ηc and ηd. The energy balance in the
BESS is mathematically [11]:

EB(t) = EB(t− 1) + ηc · Pchar(t)∆t− ηd · Pdchar(t)∆t (3.8)

Assuming that the efficiencies are below one, equation 3.8 will make sure that the dis-
charging and charging power is not simultaneously different from zero. The definition of
battery power, PB is the difference between the charging and discharging power. When
the battery is charging, the grid power is higher than the load power, which means that the
battery power is negative according to equation 3.4. Thus, battery power is:

PB(t) = Pdchar(t)− Pchar(t) (3.9)

As mentioned in the problem description in section 1.2, degradation of the BESS is in-
cluded in the optimization. The SoH will be the measure of degradation, and at all times
available energy storage capacity EB is SoH times the initial energy storage capacity
EB0. The constraints is as defined in equation 2.1.

The SoH depends on several factors, temperature TK , time t, C-rate Cr and FEC. Cr

and FEC are defined in respectively equation 2.8 and 2.7. Some of these degradation-
driving factors will be set constant values, while others will be variables. Ideally all of
them are a variable. The temperature is assumed to be constant, maintained by the battery
managament system (BMS). The FEC is the eqvivalent amount of cycles the BESS has
experienced and the sum of all SoC changes through the entire BESS life. The Wang
model presented in section 2.1.2 suggests that SoH decreases the available energy capacity
as a function linear proportional to the squareroot of time and linear proportional to FEC.
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The Wang model is applied and recognized as a well-suited model for capturing battery
degradation [3]. Equation 2.12 in section 2.1.2 calculates the lost capacity based on the
Wang model [26] and is defining the negative terms in the SoH function, formulated as:

SoH(t) = SoH(t0)− kt(TK) ·
√
t− fc(TK , Cr) · FEC(t) (3.10)

If the temperature TK is given, only the last term in equation 3.10 is non-linear. The
multiplication factor fc is corresponding to the factor (a ·T 2

K + b ·TK + c)e(d·TK+e)·Cr(t)

given in equation 2.12 according to the Wang model [26]. The exponent (d ·TK +e) ·Cr is
where the C-rate is included. Appendix B calculates the approximation of the exponential
term. By setting the temperature TK to a constant T0, the final function fc(T0, Cr(t)) is:

fc(T0, Cr) = kCr0 + kCr1 · Cr(t) (3.11)

Figure 3.2: Exponential function (original function), the linearized function and the case of not
including C-rate.

In figure 3.2, the blue line is the ideal impact of C-rate. The red line is the linear ap-
proximation, and the yellow dashed line is if the C-rate is assumed to be one, and thus
make fc a constant. The constraints of SoH would be linear in that case. The linearized
function underestimates the C-rate below one and overestimates it above one. Compared
to assuming a constant C-rate of 1, the linearized version is closer to the ideal case. The
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term which will represent the cyclic aging of the battery will be quadratic because of the
multiplication of the linear variables fc and FEC.

3.2.3 Problem formulation

As stated in section 3.2.1, the optimization problem has a objective function and several
operational constraints, which can be equalities and inequalites. The objective function is
the investment costs and operational costs for the FCS operator and the objective function
is derived in section 3.2.1. The constraints are derived in section 3.2.2 and section 2.1.2.
The inequality constraints include limitations on variables while the equality constraints
forces the battery operation and degradation to satisfy the physical conditions. All the
constraints are now summarized in this section in the finite definition of the optimization
problem. To estimate the optimal BESS size, a linear optimization model without degra-
dation constraints, referred to as the calibration model, is defined as:

minimize
Pmax

grid ,

Pmax
B ,EB0

∑
y∈Y

α(y)
[ ∑
h∈H

Egrid(h)
(
cspot(h) + cE,tar(m)

)
+
∑
m∈M

cP,tar(m)·

Pmax
grid (m)

]
+ IE,cap

B · EB0 + IP,cap
B · PB,max (3.12a)

subject to PL(t) = Pgrid(t) + PB(t) ∀t ∈ T (3.12b)

PB(t) = Pdchar(t)− Pchar(t) ∀t ∈ T (3.12c)

∆EB(t) = ηc · Pchar(t)∆t− 1

ηd
· Pdchar(t)∆t ∀t ∈ T (3.12d)

SoC(t) =
EB(t)

EB0
∀t ∈ T (3.12e)

Pchar(t) ≤ Pmax
inv ∀t ∈ T (3.12f)

Pdischar(t) ≤ Pmax
inv ∀t ∈ T (3.12g)

SoC(t) ≥ SoCmin ∀t ∈ T (3.12h)

SoC(t) ≤ SoCmax ∀t ∈ T (3.12i)

Pgrid(t) ≤ P contract
grid ∀t ∈ T (3.12j)

To find the optimal BESS configuration for the case study, several selected BESS size
configurations based on the result from the linear optimization above. The optimization
model, referred to as the optimization model, is:
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minimize
Pmax

grid

Ctot =
∑
y∈Y

α(y)
[ ∑
h∈H

Egrid(h)
(
cspot(h) + cE,tar(m)

)
+
∑
m∈M

cP,tar(m) · Pmax
grid (m)

]
(3.13a)

subject to PL(t) = Pgrid(t) + PB(t) ∀t ∈ T (3.13b)

PB(t) = Pdchar(t)− Pchar(t) ∀t ∈ T (3.13c)

∆EB(t) = ηc · Pchar(t)∆t− 1

ηd
· Pdchar(t)∆t ∀t ∈ T (3.13d)

EB,cap = SoH(t) · EB0 ∀t ∈ T (3.13e)

SoC(t) =
EB(t)

EB,cap
∀t ∈ T (3.13f)

Cr(t) =
PB(t)

EB0
∀t ∈ T (3.13g)

SoH(t) = SoH(t0)− kt ·
√
t− fc(t) · FEC(t) ∀t ∈ T (3.13h)

∆FEC(t) =
1

2
· Pchar(t) + Pdchar(t)

EB0 · (SoCmax − SoCmin)
∆t ∀t ∈ T (3.13i)

fc(t) = kCr0 + kCr1 · Cr(t) ∀t ∈ T (3.13j)

Pchar(t) ≤ Pmax
inv ∀t ∈ T (3.13k)

Pdischar(t) ≤ Pmax
inv ∀t ∈ T (3.13l)

SoC(t) ≥ SoCmin ∀t ∈ T (3.13m)

SoC(t) ≤ SoCmax ∀t ∈ T (3.13n)

Pgrid(t) ≤ P contract
grid ∀t ∈ T (3.13o)

3.3 EV charging demand estimation method

This section describes the method to estimate the EV charging demand in figure 3.1. A
method is necessary, when the only information is the number of chargers and the max-
imum power of the chargers, to estimate the EV charging demand. The method used to
determine the charging demand builds on a technique developed during the author’s work
on a specialization project during fall 2019 [13]. Appendix A contains more details for
the theoretical build-up of the method developed in the project. The appendix explains
the stochastic behavior and connections between the arrival time, inter-arrival time, and
the number of cars arriving each hour. Their expectation values are based on a large scale
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data set for EV charging (excluded home charging) for one year for whole Norway. That
does include not only FCSs but also single/multiple ordinary public charging points. Some
adjustments are made to be able to estimate the EV charging demand based on the given
information.

The interarrival-time, charging time, and EV type of every arriving car are given from
probability functions and user-set input. The necessary input to estimate EV charging
demand is

• number of arriving cars each day

• number of chargers and its rated power

• EV distribution

The EV distribution is constant and based on today’s composition of the EVs in Norway.
Table 3.1 shows the fractions of the top 10 EV models in Norway on December 31st, 2019.
This is the basis for the distribution of EVs used in the charging demand estimation.

Another input that must be decided upon by the user is the average total amount of cars
that arrive at the FCS every day. In addition to the number of chargers at the FCS.

Table 3.1: Key figures for modeling of EV charging demand at FCS.

EV model Number Fraction Battery DC power Driving range

of EVs of top 10 size charging winter/summer

[%] [kWh] [kW] [km]

Nissan Leaf 55 964 26.4 30 50 125/190

Volkswagen e-Golf 39 608 18.7 35.8 40 200/300

BMW i3 23 951 11.3 42 50 200/275

Tesla model S 19 876 9.4 98.5 120 400/550

Kia Soul 16 899 8.0 31.8 80 150/220

Tesla model 3 13 593 6.4 80 150 400

Tesla model X 12 793 6.0 98 120 350/380

Renault ZOE 11 492 5.4 41 22 300

Volkswagen e-Up! 9 438 4.5 18.7 40 120/165

Hyuandai IONIQ 8 331 3.9 30.5 70 160/240

Sum 211 945 100
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The time step in the EV charging demand estimation method is in minutes. If the time
resolution for optimizing is hours, hours are the smallest time step, thus charging demand
is in hours. The hourly demand is calculated by computing an average value for each hour
from the charging demand in minutes, mathematically done by equation 3.14 for each hour
h.

Ph
L(h) =

1

60

60∑
t=1

PL

(
t+ 60 · (h− 1)

)
∀h ∈ H (3.14)

Ph
L(h) - hourly EV charging demand [kW]

PL(t) - original EV charging demand in minutes [kW]

3.4 Implementation and solvers

To implement the optimization problems in 3.2.3, Ipopt in Julia is used as a solver. Visual
Studio Code is used as a platform to write code and compiling the code. Ipopt is an interior
point algorithm implemented to solve nonlinear optimization problems, and the constraints
can be both convex and non-convex. Appendix C shows the mathematical method of the
interior point method.

The advantage of using Julia to do the optimization is the JuMP package, which is a
userfriendly optimization tool. Julia is a programming language developed at MIT with
high-level syntax and low level running time [47]. For the sake of consistency, Matlab is
used to make the plots. The implementation of the EV charging demand estimation method
is in Matlab. Figure 3.3 gives an overview of the application and connection between the
input and models.

Figure 3.3 shows the overall build-up of the method in this thesis. The modeling of the EV
charging demand and the processing of selecting a day to represent the month is done in
Matlab. The EV charging demand is exported to Julia as part of the input to the optimiza-
tion. After the optimization is done in Julia, the results are exported back to Matlab, and
the results are then processed in Matlab as well. As seen in figure 3.3, the optimization
formulation, which is build up and stated earlier in this chapter, need an input. The input
can be every relevant load each individual wants to look at, and in this thesis, it is an EV
FCS in Trøndelag, Norway. The EV charging demand at the FCS, which is the input to the
calibration and optimization model, is the topic of the next chapter.

The representation of a month with one day makes the implementation not entirely straight
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Figure 3.3: Overview of data selection and application of the optimization model.

forward. The variables and most of the constraints are the same, except SoH . When
FEC is calculated, every change is multiplied with the number of days in that month.
The reason is that the same day will go over again for such many times. Also, this is taken
care of in the square root of time function describing calender aging. The same applies
to the objective function, where costs that are repeated every day of a month. The cost
element and the number of days are multiplied. The implementational technicalities are
not described in the formulation of the optimization model. This representation is done
for reasons regarding computational power available. Appendix D states the complete
and detailed formulation, which is implemented incorporating the daily representation of
a month mathematically.
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This chapter presents the case study in section 4.1. Section 4.2 presents the results from
modeling the EV charging demand for three cases. The first case is today’s situation, the
second is a situation if the number of chargers increases with 50 %, and the third is if the
time step is in hours instead of minutes. The EV charging demand is the fundament of
establishing a case where the EV charging demand is input to the optimization model. The
numeric parameter values for the case study are summarized in section 4.3.

By including quadratic constraints about battery degradation, the computational effort to
solve a massive problem is increasing massively with the number of equations and vari-
ables [48]. It is not easy to avoid it when degradation is in the operational constraints and
described by a SoH variable. An EV charging demand on a minute time basis as input
to an optimization problem has a too large RAM need to run on a computer with 64-bit
Windows 10, Intel R© CoreTM i5-8250U 1.80GHz CPU and 8 GB of RAM. That is the rea-
son behind the choice of having one day represent one month, which will be repeated and
underlined in this chapter. The idea is to reduce the necessary computational effort, such
that the optimization model can run for a more extended period.

4.1 Introduction to case study

A DSO regularly experiences that the load (power and energy demand) is changing. The
DSO is responsible for delivering enough power and energy for all consumers at all times.
The traditional approach to meet a load increase is to reinforce the grid. An alternative to
this is applying BESS. However, the DSO has strict restrictions to operate a BESS itself
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[41]. The consumers can, however, install and operate BESS, and that is the second option
to meet a load increase.

A load increase or power demand increase is the reason for conducting a case study to
apply BESS for peak shaving purposes. During a specialization project in the fall 2019,
the EV charging demand at an EV FCS was estimated with a particular method presented
in section 3.3 with more detailed description in appendix A. This charging demand was
generated for one year with a resolution on a minute basis.

The case study is for an EV FCS in Trøndelag based on real data. Today’s EV charging
demand is shown in figure 4.2. If the FCS operator installs 50 % more chargers, the EV
charging demand is as shown in figure 4.4. The EV charging demand in the case study is
from figure 4.4. It is from now on an input to the calibration and optimization models.

Figure 4.1: Overview of case study.

The two options to meet the increased EV charging demand are:

1) grid reinforcement

2) install BESS to peak shave

To avoid to violate the contracted power of 1250 kVA, denoted Sn,1 in figure 4.1, the FCS
must install a BESS. The FCS operator makes the investment costs regarding the BESS.
If the FCS operator does not invest in a BESS, the increase of EV charging demand due
to the increase of 50 % more available chargers, force it to invest in a new transformer at
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the substation. The necessary transformer is dimensioned to 1600 kVA, denoted Sn,2 in
figure 4.1.

The case study consists of two calculations, one for grid reinforcement and one for the use
of an optimal BESS. Figure 4.1 shows an overview of the two considered options of the
case study. Section 2.3 provides NPV assessment method.

4.2 Results from EV charging demand modeling

Today, the EV FCS consists of two 22 kW chargers, two 50 kW chargers, and twelve 150
kW chargers. The agreed capacity is 1250 kW.

Table 4.1: Clustered EV groups with key figures. This is the input to the EV charging demand
estimation method.

Group Fraction Battery size DC charging power

[%] [kWh] [kW]

a 5.4 41 22

b 60.9 33.2 50

c 33.7 71.2 150

For the EV charging demand method, the EV composition of Norway’s top ten EVs in
table 3.1 is clustered into three groups. EVs with charging power of 22 kW or less merges
into group a. EVs with charging power equal to or less than 50 kW and higher than 22 kW
merges into group b. The rest, EVs with a charging power higher than 50 kW merges into
group c. The clustered groups are a uniform distribution and are the distribution used as
input in the model to generate the EV charging demand at the FCS. Table 4.1 shows the
distribution of EVs.

The EV charging demand in the case is the estimated charging demand if the FCS in-
creases the number of chargers with 50 %. That means that the FCS will have three 22 kW
chargers, three 50 kW chargers, and eighteen 150 kW chargers. The 150 kW chargers are
in pairs and regulated to have a power of 150 kW in total for each pair. The aggregated
maximum power today with twelve 150 kW chargers is then 150 kW times 6, which is
900 kW. The total theoretical power peak is the sum of all 900 kW and the four others,
which gives a total of 1044 kW. Thus, today’s theoretical maximum power is less than the
contracted power of 1250 kW. With a 50 % increase, the total theoretical peak power is
1566 kW, and 1250 kW will not be enough. If the FCS operator installs a BESS, it must
cover at least 316 kW to keep the agreement of a maximum power of 1250 kW.
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Ten independent charging demands make an average profile. Matlab decides which of the
then charging demands that correlates best with the average. That profile is the resulting
EV charging demand. Finally, note that the method to estimate EV charging demand does
not distinguish between weekdays and weekends.

4.2.1 EV charging demand today

As mentioned, the EV FCS consists of two 22 kW chargers, two 50 kW chargers, and
twelve 150 kW chargers and has an agreed capacity of 1250 kW today. Table 4.1 is input
to the EV charging demand estimation algorithm, and as well as average cars per day,
which is 250 for today’s situation.

Figure 4.2: EV charging demand for the selected days that represent their month in todays situation.
The selection criterion in each month is the highest daily peak power.

The EV charging demand has a resolution of minutes, and the power and energy balance
will be on a minute basis. Thus, the degradation mechanisms depend on this, and the
non-linear constraints are on a minute basis. Two possible measures can make it possible
to run an analysis for several years. Either the time step can increase to hourly intervals
or each month can have one representative day, which will be in the optimization on a
minute basis. The latter method is applied where each month is represented by one day, to
capture the degradation on a minute basis. The criterion for the selection of each month’s
representative day is peak power. For January, the day with the highest power peak is
representing January, and so on. By making this selection, figure 4.2 shows the days used
to describe the whole year in the optimization.

Figure 4.3 shows January as a visual example of the selection of days. The figure shows
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plots of every day in January, and the day with the highest power peak is bold black.

Figure 4.3: Visual example from January on the selection of days to represent the month in today’s
situation. It is all days in January where the selected day in bold black.

4.2.2 EV charging demand for increased number of chargers

The case study is based on that the operator decides to increase the number of chargers
with 50 %. Then the FCS will have three 22 kW chargers, three 50 kW chargers, and
eighteen 150 kW chargers. The EV charging demand generated is in minutes, and the
same applies to the case formulation as for today’s situation. One day will represent each
month, and the day with the highest power peak will be chosen. By making this selection,
figure 4.4 shows the days which represent a whole year in the optimization.

Figure 4.5 shows January as a visual example of the selection of days. The figure shows
the plot of every day in January, and the day with the highest power peak is bold black.
The day in bold black is, therefore, also the selected day for January. The concept of one
day representing one month will initiate the need to select spot prices to represent each
month, and this is done in subsection 4.3. The spot prices will not necessarily be the same
day as the EV charging demand. There is no reason to pick the same date because the EV
charging demand is randomly generated and not connected to particular days in reality.
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Figure 4.4: EV charging demand for the selected days that represent their month for the case study.
The selection criterion in each month is the highest daily peak power.

Figure 4.5: Visual example from January on the selection of days to represent the month for the
case study. It is all days in January where the selected day in bold black.

Table 4.2 shows some describing figures for the EV charging demand. Erep is the energy
of the selected day for that month multiplied with the number of days. Eest is the total
EV charging energy demand for the month in the original EV charging demand before the
selection of a day.
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Table 4.2: Monthly energy consumption (after the selection of days representing one month) at FCS
for the case study (Erep) compared to the estimated EV charging demand (Eest).

Erep Percent of Eest ∆

Month Days [MWh] total [%] [MWh] [MWh]

January 31 253.38 7.7 256.81 -3.43

February 28 205.65 6.2 212.04 -6.39

March 31 176.36 5.4 174.77 1.59

April 30 239.67 7.3 228.56 11.11

May 31 252.44 7.7 237.45 14.99

June 30 282.13 8.6 256.80 25.33

July 31 357.40 10.9 327.47 29.93

August 31 261.20 7.9 276.27 -15.07

September 30 299.98 9.1 270.80 29.18

October 31 353.85 10.7 339.14 14.71

November 30 363.77 11.0 306.91 56.86

December 31 246.26 7.5 273.36 -27.10

Total one year 365 3 292.08 100 3 160.38 131.70

In the optimization with this EV charging demand as input, the desired goal is to get an
optimal BESS based on NMC-LMO cells. The BESS has the same characteristics as in the
original experiments of the Wang model [26]. Compared to other lithium-ion batteries, the
NMC-LMO variant has a good overall performance considering factors as energy density,
cost, life span, safety, and specific energy [49]. The degradation constants are calculated
in section 3.2.2 based on constants for the model in table 2.3. The presence of LMO will
accelerate the SEI growth and thus calender aging [26]. The Wang model for degradation
is giving a relatively fast degradation compared to other models [21].

To sum up, the input to the optimization problem, the EV charging demand, is twelve
days, representing one year. Each day represents their month, selected with the criterion
of highest daily peak power. The days were picked out from a modeled EV charging
demand for 365 days based on information about the particular FCS in Trøndelag and
stochastical data. The reason for selecting one day to represent one month is for compu-
tational purposes. The reason for having a minute resolution is to capture the degradation
within a small time frame. For all analyses and results, the twelve days will be input to the
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optimization.

4.2.3 Time step transformation

The time step can now be transformed from minutes to hours by applying equation 3.14.
This subsection shows the resulting EV charging demand for the case of converting the
time step from minutes to hours, and then select the days to represent the month by picking
the days with power peaks. The EV charging demand with the hourly resolution is only
used for comparison to minute resolution. All other degradation and sensitivity analysis
with EV charging demand are in minutes, not in hours.

Figure 4.6: The selected day in January as example for EV charging demand at FCS with minute
and hourly resolutions (January 15th). The blue graph is with minute resolution and the red is with
hourly resolution.

The blue graph in figure 4.6 shows the day representing January in the case study presented
in subsection 4.2.2. The red graph is the aggregated EV charging demand with a time
resolution in hours. The blue graph is the same as in figure 4.4 and is the first output
from the modeled EV charging demand. The main observations from this example are
the reduced peak power and smoothening of rapid variations. The peak during the day,
which represents January, reduces from 1544 kW to 1063 kW with the transformation of
resolution from minutes to hours. The reduction of daily peaks will be the case of every
day because the average cannot be higher than the highest single value used to calculate
the average. If the day with hourly resolution and minute resolution is the same, the total
amount of energy is the same, but the power peaks are different.
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Figure 4.7: EV charging demand for the selected days that represent their month for the case study
after the time step transformation. The selection criterion in each month is the highest daily peak
power.

Figure 4.8: Visual example from January on the selection of days to represent the month with hourly
time resolution. It is all days in January where the selected day in bold black.

Figure 4.7 shows the selected days when the time step is hours. The selection happens
after the transformation of the EV charging demand for the whole year from minutes. The
days selected are for most months different compared to the selected days in the case study.

Figure 4.8 shows all the 31 days in January with an hourly time resolution. The power
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profile in bold black is the day with the highest peak power and is, therefore, the selected
day to represent the month. For January, it is coincidentally the same, but that is not the
case for the rest of the months.

Figure 4.9 shows the maximum power from the EV charging demand with resolution in
minutes and hours for the charging demand. When the resolution is in minutes, the lowest
value is 997 kW in March, and the highest is 1544 kW in January, May, July, and Novem-
ber. For a resolution in hours, the lowest value is 742 kW in March, and the highest is
1275 kW in November.

Figure 4.9: Monthly maximum power at EV FCS with resolution in minutes and hours. The blue
bars are with minute resolution and the red bars are with hourly resolution.

4.3 System parameters

The price for electricity used in the analysis in this Master’s thesis is the historic set of
hourly spot prices from 2019. Nordpool’s website provides downloadable data. Each
month is represented by one chosen day. Therefore a particular day with spot prices must
be selected to represent the month. The EV charging demand does not distinguish between
weekends and weekdays. The day which will represent the spot prices each month will
be picked randomly from all the weekdays each month. Section 5.3.1 contains the results
from a sensitivity analysis and an estimate for uncertainty by randomly select a day to
represent the month based on a method presented in subsection 2.4. Figure 4.10 shows the
price used in the case study, randomly picked from the historical spot prices from 2019.
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Figure 4.10: Spot prices from 2019 randomly selected and applied in the analysis of the case study.

The regulator, NVE, set the layout of the tariffs for using the grid. The DSOs adjust the
level of the costs according to their needs. Since the EV FCS is in Trøndelag, grid tariffs
from that region are used in the case study. Table 4.3 contains the grid tariffs from Tensio.

Table 4.3: Grid tariffs today in Trøndelag [39].

Fixed fee Energy tariff Power tariff

[NOK/year] [NOK/MWh] [NOK/kW/month]

LV: October - April 8818 65.1 81.6

LV: May - September 8818 65.1 0

HV: October - April 15512 44.5 73.6

HV: May - September 15512 44.5 0

Table 4.4 sums up all the parameters used in the optimization model for the case study.
Limitations for SoC is set to a minimum value of 20 % and a maximum value of 90 % to
reduce degradation. The voltage is approximately linear to SoC in that region [50], and
the degradation models fit best in this region.

The residual value of a BESS is assumed to be 25 % of its initial value when SoH is 80
%. The reason is that the considered EoL can be lower than 80 % for BESS.
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For a 1600 kVA transformer, the value of the losses at rated power, Pk, is 13.1 kW, ac-
cording to Wahl Gundersen Master’s thesis [44]. For a 1250 kVA transformer, the value of
Pk is 9.7 kW. Based on the losses ∆W , the utilization time of losses, κt, is calculated for
the case when no BESS is installed, when the rated power transformer is 1600 kVA, and
also when the BESS is installed, when the rated power transformer is 1250 kVA.

According to the planning guide from SINTEF Energy [43] the transformer specific loss
cost factors with 2020 price level are

• kp = 585 NOK/kW/year

• kw = 0.261 NOK/kWh/year

The nominal power of the inverter, Pmax
inv , as well as the initial battery energy storage ca-

pacity, EB0, is being varied between respectively 300 and 400 kW, and 225 and 350 kWh.
After the optimization for the BESS sizes and configurations, the optimization model will
give a result with minimum total costs. For power tariff sensitivity, the same BESS range
is used to see how the cost function is affected. For the rest of the sensitivity analysis, the
optimal BESS configuration based on the case study is applied.

The temperature is assumed to be managed by the BMS to lay around 5◦C for all ∀t ∈ T .
Thus, the temperature will be set to 5◦ C = 278 K and is fundamental to calculate the
constants. One of the optimization tasks of the BMS is to maximize performance and
lifetime by limiting temperature deviations [51].

For battery degradation, several constants muse be determined. The constants kt and kc
in constraint 3.13h must be determined. Section 2.1.2 provides several approaches and
ways to calculate som constants. The kt is the time based constant and determines the
pace of calender ageing. The capacity decrease is proportional to the squareroot of time
according to all the presented models in section 2.1.2. Using the values for the given
constants in table 2.3, TK = 5◦C, the constant kt = 0.3706 %/

√
day where the % is the

decrease of SoH value. The constant kCr0
and kCr1

that scales the FEC including C-rate
are 1.903 · 10−3 %/cycle and 1.809 · 10−3 %/cycle. The temperature dependent constant
in the cyclic degradation term is included in kCr0 and kCr1 . Detailed calculation for the
linearization constants is shown in appendix B as mentioned in section 3.2.2.
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Table 4.4: Applied numeric values for the parameters in the optimization model for the case study.

Parameter values

Parameters Unit Value

cP,tar NOK/kW/month Table 4.3 (LV)

cE,tar NOK/kWh Table 4.3 (LV)

cspot NOK/kWh Figure 4.10

IE,cap
B NOK/kWh 1700

IP,cap
B NOK/kW 5525

P contract
grid kW 1250

EB0 kWh determined from the calibration model result

Pmax
inv kW determined from the calibration model result

PL kW Figure 4.4

N years 5

r % 4.5

ηc % 0.95

ηd % 0.95

T0 K 278

kCr0
%/cycle 0.001903

kCr1
h %/cycle 0.001809

kt,day %/
√

day 0.3706

kt %/
√

min 0.00977

SoCmin % 20

SoCmax % 90
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Chapter 5
Results from case study

This chapter contains the results obtained from solving the optimization problem and sen-
sitivity analysis in Julia. The chapter consists of three main sections,

5.1: The main results which include the case study of an EV FCS. This part contains
results from simulation for grid reinforcement and a NPV assessment. Besides, it
contains an optimization without degradation to estimate the BESS size and simula-
tions with BESS for different BESS capacity and maximum power. The result gives
the optimal solution with BESS, and a NPV analysis is done for the optimal case.

5.2: Degradation analysis, which looks into the impact of including degradation. This
section contains results from three simulations with optimal BESS size. One where
there is no degradation, one with only calender aging and one with only cyclic aging.

5.3: Sensitivity analysis on a random selection of days for spot price, on power tariff, and
on the time step. This part contains results from a spot sensitivity analysis, which is
used to compute an error estimate for randomly selected spot prices. It also contains
results on time step sensitivity analysis, both without degradation and with cyclic
degradation, and on grid tariff sensitivity analysis with NPV calculations.

Except for the result of the calibration model, all the analyses are done with the optimiza-
tion model. For all analyses except time step and spot sensitivity, the time period is five
years. The concept of one day representing one month applies for all simulations. Invest-
ment analysis is done with NPV assessments. The NPV calculations include operational
costs, which are the purchase of electricity on the market and grid tariffs, investment costs,
and residual costs.
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Simplifications and assumptions are made throughout the chapters so far. The list below
contains a summary of assumptions regarding battery degradation and input data.

• The EV charging demand is estimated based on empirical data and stochastic vari-
ables, described in section 3.3. It is the load in all the conducted analysis.

• In the calibration and optimization model, the EV charging demand is input and a
known variable. Hence a perfect forecast is assumed.

• The spot prices are historical spot prices for the year 2019.

• The BESS is NMC-LMO based and has a charging and discharging efficiency of 95
%.

• The degradation impact as a function of C-rate is approximated as a linear function
from the exponential function.

• The temperature is assumed to be regulated at 5 ◦C, which sets the constants for
BESS degradation and causes low calender aging compared to higher temperatures.

• The degradation is only reducing the BESS energy capacity, and the power fade is
not included.

• The investment costs for the BESS are calculated based on a projected 2020 price
level and an exchange rate of 8.5 NOK/USD.

5.1 Comparison of BESS installation and grid reinforce-
ment

The result of the optimization with load from the case study presented in section 4.1 as
input is the content of this section. The case study is the comparison of installing BESS
and reinforce the grid for a given load increase at a FCS in Trøndelag.

5.1.1 BESS

The calibration model for a five year period without degradation gives an optimal BESS
capacity of 180 kWh and optimal BESS maximum power of 294 kW. The optimal BESS
size is the minimum BESS capacity that satisfies the constraints since the dual variables
for the relevant constraints are different from zero. For a five year period, assuming 1
FEC on average every day, with C-rate of 1 on average, gives a SoH equal to 80.0 %. By
considering this, the minimum BESS capacity needed to be able to provide the necessary
energy to keep the grid power below 1250 kW in the fifth year is 180 kWh divided by
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0.8. That gives a capacity of 225 kWh. 180 kWh BESS capacity is the minimum energy
amount necessary to keep the grid power below the transformer’s maximum. Therefore,
the estimated initial BESS capacity is 225 kWh to prevent violation of the limit after five
years of degradation.

Figure 5.1: Result for optimizing for different BESS power and energy in range 225 to 350 kWh
and 300 to 400 kW. The first figure (225 kWh) shows the total costs, while the rest is showing the
difference from 225 kWh. The black lines show the accumulated additional costs compared to the
figure with BESS capacity 225 kWh. The red line is the cost increase compared to the BESS with
minimum cost - 225 kWh and 300 kW.

For the case study, the optimization model, which includes battery degradation, is applied,
where the BESS size is a pre-set parameter. The simulations for five years takes typically
between 2 and 3 hours for each simulation. The simulation is done for all the combinations
of 225, 250, 275, 300, 325, and 350 kWh and 300, 325, 350, 375, and 400 kW. The total
costs are for all these combinations shown in figure 5.1. Figure 5.1, as well as 5.7 and 5.9
contains several figures where one is showing the actual costs and used as a reference for
the rest. The rest is the difference in cost with respect to the figure with the actual costs.
The κt values are shown in figure 5.2. Compared to the case with grid reinforcement, these
values are about 60 % higher. Figure 5.2 shows that the variations between the different
BESS configurations are small. Transformer losses are not a significant fraction of the
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total cost, and the cost element is almost invisible in figure 5.1.

Figure 5.2: Annually transformer loss costs calculated with κt for case study with various BESS
configurations.

Optimal BESS case

The black graph in figure 5.1 is the gradient of total cost compared to the same battery
maximum power for 225 kWh. The red chart is the gradient of total costs compared to
the lowest cost, which is the BESS configuration of 300 kW and 225 kWh. The selected
BESS configuration for further investigation is the optimal configuration. Figure 5.1 gives
that the optimal maximum power and energy capacity of the BESS is 300 kW and 225
kWh. The transformer limit of 1250 kW is in the constraints. This constraint will not be
fulfilled for lower energy capacities and thus make the optimization infeasible.

Figure 5.3: SoH for optimal BESS case and calender ageing. EoL criterions as 60 % and 80 % are
marked.
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The total losses in the transformer are 13 260 kWh during a year, which gives a utilization
time κt for losses of 1367 hours. For the NPV calculations shown in various tables without
the transformer losses. The value of κt corresponds to a cost of 41 909 NOK discounted
for five years.

Table 5.1 shows the yearly costs and NPV for five years when a BESS is installed. The
total costs end up to 11 226 857 NOK. By adding the total transformer loss cost of 41
909 NOK, the NPV for the case of grid reinforcement is 11 267 766 NOK. Figure 5.3
shows the SoH for the case study with optimal BESS size, as well as the calender aging
contribution to SoH for the whole time period of 5 years. The assumption that the SoH
is 80 % after five years is entirely accurate.

Table 5.1: Yearly costs and NPV calculation for BESS.

Investment Operational costs [kNOK]: Discount Present

costs Spot Energy Power factor value NPV

Year [kNOK] tariff tariff [%] [kNOK] [kNOK]

1 2 040 1262.5 214.7 617.2 100.0 4134.4 4134.4

2 0 1262.2 214.6 617.2 95.67 2003.3 6137.7

3 0 1262.3 214.6 617.2 91.57 1917.6 8055.3

4 0 1262.4 214.6 617.2 87.63 1835.1 9890.4

5 0 1262.5 214.5 617.2 83.86 1756.2 11646.6

6 -510 0 0 0 80.24 -420.2 11226.4

Figure 5.4 shows the power profiles during the first year for four chosen days of the total
12, that represent the month. The BESS power (yellow graph) shows the BESS charging
and discharging in order to peak shave in the most cost-efficient way. Figure 5.5 shows
the power profile for the same days in the fifth year. The BESS is cutting about the same
power as the first year because the maximum power is restricting the ability to cut more
the first year. It is theoretically possible to provide more energy in the first year because
the BESS capacity is higher than the last year. The optimization model gives the optimal
solution, and thus the reason is that it doesn’t provide any economic advantages.
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Figure 5.4: Power profiles for 4 chosen days the first year - January, March, July and October. The
shown day is the one that represents the month.

Figure 5.5: Power profiles for 4 chosen days the fifth year - January, March, July and October. The
shown day is the one that represents the month.

5.1.2 Grid reinforcement

The EV FCS today has a peak power of 1044 kW. The case study looks at a 50 % increase
of chargers, which will increase the peak power to 1544 kW. If the FCS operator does not
invest in a BESS, the operator will be forced by the DSO to finance a new transformer at
the substation because the existing substation’s rating is 1250 kW. The new transformer at
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the substation needs to have a capacity of 1600 kVA.

The peak power at the FCS is 1544 kW, and the losses in the transformer are 11 065 kWh
a year. The ∆Pmax is 13.1 kWh per hour [44] and corresponds to an annual κt of 845
hours. The value of κt gives a total cost of transformer losses of 45 039 NOK discounted
for five years. The investment costs are the costs of buying a new transformer, subtracted
by the residual value. The residual value of the existing transformer is 250 000 NOK, and
a new 1600 kVA transformer is assumed to cost 500 000 NOK. The difference between the
cost of a new transformer and the residual value of the old one is set to be the investment
cost, which is 250 000 NOK. By assuming the lifetime of the transformer of 30 years and
a linear decrease in value, the residual value of the new transformer after five years is 416
000 NOK. Table 5.2 shows the yearly costs and NPV for a 5 year period.

Table 5.2: Yearly costs and NPV calculation for grid reinforcement.

Investment Operational costs [kNOK]: Discount Present

costs Spot Energy Power factor value NPV

Year [kNOK] tariff tariff [%] [kNOK] [kNOK]

1 250 1264.3 214.3 788.6 100.0 2767.2 2517.2

2 0 1264.3 214.3 788.6 95.67 2169.0 4686.2

3 0 1264.3 214.3 788.6 91.57 2076.1 6762.3

4 0 1264.3 214.3 788.6 87.63 1986.7 8749.0

5 0 1264.3 214.3 788.6 83.86 1901.3 10650.3

6 -416 80.24 -333.8 10316.5

The discounted operational and investment costs without BESS are 10 316 850 NOK.
By adding the total transformer loss cost of 45 039 NOK, the NPV for the case of grid
reinforcement is 10 361 889.

5.1.3 Comparison of BESS and grid reinforcement

The NPV for grid reinforcement is 10 361 889 NOK and for BESS installation 11 267
766 NOK. That corresponds to a difference of 905 877 NOK. The transformer loss costs
for grid reinforcement is 45 039 NOK and for BESS installation 41 909 NOK, which
corresponds to a difference of 3 130 NOK. However, the energy losses are slightly higher
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for the BESS case than for the grid reinforcement, with a difference of 2 195 kWh annually.
The κt is 60 % bigger when using BESS than reinforcing the grid. The losses at rating
power for a 1250 kVA transformer are less, around 70 % of a 1600 kVA, than for a 1600
kVA transformer.

Figure 5.6 shows the difference between the case of BESS and grid reinforcement and
contains the same numbers as discussed above. The monthly cost difference is the costs
of BESS subtracted by the cost of grid reinforcement. The costs include operational and
investment (and residual) costs and not transformer loss costs.

Figure 5.6: NPV difference between grid reinforcement and BESS installation. The cost difference
is the cost of grid reinforcement subtracted the cost of BESS installation. A negative accumulated
cost at the end means that the resulting NPV of the costs of installing a BESS is higher than grid
reinforcement.

5.2 Degradation analysis

Some test runs are done with the optimization model in section 3.2.3 for a period of five
years to perform an analysis of the impact of degradation. The battery size and power are
pre-determined and are the optimal case of 225 kWh and 300 kW. The three test runs are:

1. one is without any degradation (D0)

2. one is with only calender aging (D1) and

3. one is with only cyclic aging (D2).

A comparison of these cases estimates the impact of degradation. The optimization model
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has only operational costs in the objective function, thus no investment costs as the overall
model in section 3.2.3.

For the first case without any degradation (D0), the SoH(t) is set to 1 for all t ∈ T in
constraint 3.13e. Thus the BESS has a constant energy storage capacity equal to EB0,
which can be seen from constraint 3.13e. Constraint 3.13h, 3.13i and 3.13j are omitted.
Since all degradation-related constraints are removed, the optimization problem becomes
completely linear.

For the next couple of runs (D1 and D2), the cyclic and calender degradation distinctly in-
vestigated. The optimization model is applied to simulate the different degradation mech-
anisms. With only calender aging (D1), the only difference from the case study is that
fc(t) is set to 0 for all t ∈ T and eliminate all cyclic aging. For D2, the only difference
from the case study is that kt is set to 0, and thus remove all calender aging.

Figure 5.7: Economic result of the optimization model for degradation analysis. D0 - no degrada-
tion, D1 - calender degradation and D2 - cyclic degradation. (b) and (c) is the economic result the
first year subtraced for the case with no degradation, shown in (a). (e) and (f) is the same for the fifth
year

5.2.1 No degradation

Figure 5.7 (a) shows the operational costs. The total cost for the first year is 2 093 795
NOK. The BESS discharged 45.08 MWh and charged 49.28 MWh through the year and
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thus had a charging and discharging loss of 4.21 MWh. In the fifth year, the operational
cost is 2 093 783 NOK.

5.2.2 Calender ageing

Figure 5.7 shows the operational costs. The final SoH value of the year is 92.91 %. The
total cost for one year is 2 094 273 NOK. The BESS discharged 44.07 MWh and charged
48.75 MWh through the year and thus had a charging and discharging loss of 4.68 MWh.
In the fifth year, the total operational cost is 2 094 177 NOK.

Compared to the total operational costs for D0, including calender aging raises the costs
by 478 NOK the first year and 394 NOK the last year, which corresponds to an 0.022 %
increase and 0.019 % increase respectively for the first and last year.

5.2.3 Cyclic ageing

Figure 5.7 shows the operational costs. The final SoH value of the year is 99.11 %. The
total cost for one year is 2 093 939 NOK. The BESS discharged 45.00 MWh and charged
49.43 MWh through the year and thus had a charging and discharging loss of 4.43 MWh.
The last year the total operational cost is 2 093 870 NOK.

Compared to the total operational costs for D0, including calender aging raises the costs
by 144 NOK the first year and 87 the last year, which corresponds to an 0.007 % increase
and 0.004 % increase respectively for the first and last year.

Summary of degradation analysis

The degradation analysis shows the impact of degradation in the first and last year. The
calender aging is determined in this case because the temperature is assumed to be con-
stant. The cyclic aging depends on operational behavior. The calender aging is much
higher than the cyclic aging the first year. After a few years, the calender contribution to
aging is less, as seen in figure 5.3 from the case study. It shows five years of degradation
where the domination of calender aging can be seen in early periods.

5.3 Sensitivity analysis

This section includes the results of varying some variables which are set in the main case
and investigates how it impacts the overall costs. It provides sensitivity analysis on the
spot price, time step, and grid tariff. Table 4.4 show the system and simulation parameters
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for the case study where BESS installation and grid reinforcement are compared. Table
5.3 gives an overview of the sensitivity analysis.

Table 5.3: Change in parameters compared to case study to conduct sensitivity analysis. EB0 and
Pmax
inv are the set to optimal values determined from the case study.

Analyze Parameter New value

Spot cspot Figure 5.8

Time step PL Figure 4.7

Grid tariff cP,tar, cE,tar Table 5.7

The spot sensitivity analysis is different from the other sensitivity analysis. The spot sensi-
tivity is to quantify the weakness of picking a random day to represent the month, which is
classified as a weakness of the model. Since one day represents one month, it is necessary
to pick a day of spot price representing that month as well. The ideal model would have
included every day. However, as mentioned in previous chapters, this is not possible for
long-term optimization due to computational limits.

5.3.1 Sensitivity on spot price

This section will quantify the possible errors due to the random selection of a day of spot
price representing one month. The BESS configuration is the optimal one, 225 kWh and
300 kW. The four cases are denominated as a,b,c,d. The dates which are randomly picked
from the historical 2019 spot prices for the spot sensitivity analysis are shown in table 5.4.

Table 5.4: Dates chosen in the sensitivity analysis, randomly picked weekdays from 2019 spot
prices. All the prices are shown in figure 5.8.

Case Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

a) 13 1 27 5 3 9 15 5 28 10 9 3

b) 10 8 22 1 2 20 18 16 21 23 23 10

c) 7 10 4 16 10 6 5 28 20 13 28 4

d) 27 5 29 16 23 28 9 14 13 24 24 4

61



Chapter 5. Results from case study

Figure 5.8: Randomly selected prices for spot sensitivity analysis. There are four cases, a)-d), which
will be used in four independent optimizations.

Figure 5.9: Sensitivity analysis: economic result for the four cases a)-d). a) contains the acutal cost,
while b) to d) is the difference in those cases wirh respect to a).

Figure 5.8 shows four instances where there has been randomly chosen a day to represent
each month. When the spot price is randomly chosen, an error estimate is made by con-
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ducting a sensitivity analysis based on section 2.4. Figure 5.8 shows four cases a)-d) where
a day with spot prices are chosen randomly to represent each month, which is used in the
sensitivity analysis. By running one year for all the cases a)-d), the financial result of these
4 cases is presented in figure 5.9. Based on that result, an empirical standard deviation σ
is calculated with equation 2.24 presented in subsection 2.4.

Numerical values of the total costs are shown in table 5.5 which also includes the final
SoH values. Figures in table 5.5 gives an average operational cost C̄ of 2 094 463 NOK
by applying equation 2.25. By applying equation 2.24 with the figures in table 5.5 and
the average cost C̄, the standard deviation σ is calculated to be 23 901 NOK. The relative
error ε is then 1.14 % given from equation 2.26.

Table 5.5: Sensitivity analysis results.

Unit Case a) Case b) Case c) Case d)

Total operational cost [NOK] 2 125 195 2 075 236 2 075 798 2 101 622

Deviation from C̄ [%] 1.46 0.92 0.89 0.34

SoH after one year [%] 92.13 92.24 92.26 92.05

Figure 5.10: With no degradation, the EV charging demand, grid power and BESS power is shown
for 4 chosen days - January, March, July and October. The shown day represent the month.
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5.3.2 Sensitivity on time step

The choice of the time step is an object for a sensitivity analysis to investigate the con-
sequence of that choice. The decision in this thesis was to use minute resolution. The
sensitivity analysis shows the impact on the total costs if the time step interval instead is
in hours. One case of no degradation and one with cyclic degradation are considered. All
constants affected by the time step are corrugated. The optimization period is one year.

Table 5.6: Results from optimization without degradation mechanisms with both minutes and hours
as resolution.

Variable Unit Value Value Difference

min resolution hour resolution

BESS discharged [MWh] 45.08 54.89 -9.81

BESS charged [MWh] 49.28 59.82 -10.54

BESS loss [MWh] 4.21 4.93 -0.72

Grid energy [MWh] 3 296.29 3 121.19 175.1

Costs

Spot [NOK] 1 261 985 1 203 070 58 915

Energy tariff [NOK] 214 589 203 190 11 399

Power tariff [NOK] 617 221 422 530 194 691

Total cost [NOK] 2 093 795 1 828 790 265 005

The time step analysis is done with the optimization model with the same modifications as
for D0, now at h instead of t and H instead of T . The EV charging demand is therefore
changed with the resulting charging demand shown in section 4.2.3. Running the opti-
mization model with an hourly time step, figure 5.10 shows the resulting power profiles.

Table 5.6 shows the two test runs with no degradation, one with a minute resolution, which
is presented in subsection 5.2.1, and one with an hourly resolution, shown in this section.
From table 5.6, it can be seen that the difference in costs for one year is 265 005 NOK. This
corresponds to an additional cost of 14.5 % when the simulations are done with minute
resolution compared to hourly resolution. The power tariff costs are 194 kNOK less with
an hourly time step. However, the level of peak shave with the hourly resolution is lower
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than minute resolution, as shown in figure 5.11.

Regarding calender aging, it will give the same result since it does not depend on any
other variable than time. In the case of cyclic aging, the other time resolution may impact
the SoH differently. To investigate this, the model with hour resolution is run for a year
with cyclic degradation constraints, which is given in equation 3.13h, 3.13i and 3.13j, with
time step h instead of t. The result can then be compared to the results of D2 to see the
difference in FEC and the final SoH for the two different time steps.

Figure 5.11: Peak shave with hourly and minute resolution.

Running the optimization model with time step intervals in hours, now with cyclic degra-
dation, results in 271.4 FEC during one year and a decrease in SoH of 0.62 %. Compared
to the result of D2, which has a SoH reduction of 0.9 % and 394.1 FEC, there is a note-
worthy difference. By looking at the relationship between the SoH reduction and FEC,
the impact of the C-rate function can be investigated. For hourly time resolution this num-
ber is 2.26 ·10−3 and for minute time resolution 2.28 ·10−3. The average C-rate for the
two different time resolutions is about the same. The only explanation to the different final
SoH is not different C-rates, but different numbers of FEC.

5.3.3 Sensitivity on grid tariff

The last sensitivity analysis is done concerning the tariffs, both energy and power tariff. In
the case study of a FCS, the grid tariffs are based on the DSO in the region, Tensio’s, tariffs.
To make a sensitivity analysis of this, the tariffs from Norway’s largest DSO, Hafslund,
is used [52]. The optimization model is used as presented in section 3.2.3 for the same
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battery sizes to run with these tariffs. Hafslund has a different set up of the energy and
power tariffs, as shown in table 5.7.

Table 5.7: Alternative grid tariff regime.

Fixed fee Energy tariff Power tariff

[NOK/month] [NOK/MWh/month] [NOK/kW/month]

December - February 1065 70 150

March & November 1065 70 80

April - October 1065 39 23

The optimal BESS configuration is the same when the alternative grid tariff regime is ap-
plied. The BESS capacity is 225 kWh and maximum BESS power 300 kW, corresponding
to the minimum BESS size to keep the maximum grid power at 1250 kW. The economic
costs for both BESS installation and grid reinforcement with the alternative grid tariff
regime are higher compared to the total costs in the case study. However, by running the
case of no BESS (grid reinforcement) for this grid tariff regime, it can be compared to the
BESS case of the alternative grid regime.

Table 5.8: Yearly costs and NPV calculation for grid reinforcement with alternative grid tariff
regime.

Investment Operational costs [kNOK]: Discount Present

costs Spot Energy Power factor value NPV

Year [kNOK] tariff tariff [%] [kNOK] [kNOK]

1 250 1264.3 167.0 1068.5 100.0 2749.8 2749.8

2 0 1264.3 167.0 1068.5 95.67 2391.6 5141.4

3 0 1264.3 167.0 1068.5 91.57 2289.1 7430.5

4 0 1264.3 167.0 1068.5 87.63 2190.6 9621.1

5 0 1264.3 167.0 1068.5 83.86 2096.3 11717.4

6 -416 80.24 -333.8 11383.6
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Table 5.9: Yearly costs and NPV calculation for BESS with alternative grid tariff regime.

Investment Operational costs [kNOK]: Discount Present

costs Spot Energy Power factor value NPV

Year [kNOK] tariff tariff [%] [kNOK] [kNOK]

1 2 040 1262.8 167.2 837.8 100.0 4307.8 4307.8

2 0 1262.4 167.1 838.0 95.67 2169.3 6477.1

3 0 1262.5 167.1 838.1 91.57 2076.5 8553.6

4 0 1262.6 167.1 838.2 87.63 1987.4 10541.0

5 0 1262.7 167.1 838.4 83.86 1902.1 12443.1

6 -510 0 0 0 80.24 -420.2 12022.9

Table 5.8 and 5.9 shows the yearly costs and discounted costs for five years for those two
cases. Figure 5.12 shows the discounted cost difference between the two options with
alternative grid tariffs. The accumulated cost difference, which is equivalent to the NPV
difference, is 639 kNOK in the advantage of reinforcing the grid.

Figure 5.12: NPV difference between grid reinforcement and BESS installation with alternative
grid tariffs. A positive bar or value means that the cost is higher for grid reinforcement.
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The transformer losses in this case of changed grid tariffs are in the same size of the order
as for the case study. κt is 845 hours for grid reinforcement and 1357 for using BESS. The
discounted costs for transformer loss is 45 040 NOK for grid reinforcement and 41 796
NOK for BESS.

The remaining capacity during the five years is shown in table 5.10, and the final SoH
value is 80.45 %. The alternative grid tariffs lead to higher utilization of the BESS, which
is evident from comparing to the remaining capacity for the case study. Table 5.10 shows
the numeric values.

Table 5.10: BESS capacity at the beginning of each year with alternative tariffs.

BESS capacity [kWh] in

Year Case study Alternative grid tariffs

1 225.0 225.0

2 209.2 207.3

3 199.6 199.0

4 193.2 192.3

5 187.6 186.4

6 182.5 181.0

For a BESS capacity of 225 kWh, which is the optimal case, the change in cost per kW is
2018 NOK/kW for the alternative grid tariffs and 2060 NOK/kW for the main case. For
the highest BESS capacity, 350 kWh, the same change in cost is 1099 NOK/kW for the
alternative tariffs and 1451 NOK/kW for the main case.
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The chapter discusses the result of the case study to compare installing a BESS or reinforce
the grid. It also discusses the sensitivities and impact of degradation on the financial
outcome. The main findings from chapter 5 are discussed as well as the model and the
assumptions which are made.

6.1 BESS versus grid reinforcement

Given the outcome of the NPV calculations for reinforcing the grid and installing BESS,
the difference is 906 kNOK in favor of reinforcing the grid. The difference in investment
costs is high. The net investment cost is 1700 kNOK higher for the BESS. Installing BESS
provides around 800 kNOK of operational cost savings since the end NPV difference is
900 kNOK. The power tariff costs are substantially reduced by applying a BESS due to
reduced peak power. The peak power is reduced by 19 % for the months with the highest
power peaks. With another grid tariff regime, the cost savings will be different, and the
result from the grid tariff sensitivity analysis is discussed in section 6.3.

Energy arbitrage and energy-related cost elements

The costs of buying electricity referred to as spot costs are slightly lower when BESS
is installed. The advantage of that is energy arbitrage. The BESS stores energy buying
in cheap time periods and discharging when necessary to peak shave; however, these are
time periods where the spot price is typically higher. The energy tariff is, on the other
hand, higher when installing BESS. The energy tariff is not varying daily and is paid
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independently of when the energy is bought. Due to charging and discharging losses when
applying BESS, more energy is drawn from the grid when installing a BESS. Thus, the
energy tariff cost is slightly higher than for the case of grid reinforcement. Summing
up these two discounted cost elements, the BESS has 7 kNOK lower costs connected to
energy-related costs compared to grid reinforcement. The cost savings equals 0.06 %
of the total cost for BESS. In this case, the advantages of buying at cheaper hours are
higher than the disadvantage of additional energy tariffs for losses due to charging and
discharging losses of the BESS. In sum, the FCS operator saves costs from power tariff
and purchasing energy from the market but pays a higher energy tariff. If the spot price
varies more than the spot price used in this case study, the effect of energy arbitrage will
be higher. In this case, it can be seen in figure 4.10 that mainly two months have high
fluctuations in the spot price, which is January and June. From May to September, the
power tariff is zero. In figure 5.6, a small bar in July is visible, which means that there is
some cost saving from installing a BESS this month. July is seen in figure 5.4, where it
can be seen that the net BESS energy is discharged. Since one day represents one month,
the spot price for when the BESS charged in June. The spot price in figure 4.10 shows that
June has a low price. Thus, the cost savings in July are from charging and storing energy
from June, to discharge in July. It gives cost savings since a lot less energy is bought in
July compared to the load and the case of grid reinforcement.

The optimal solution is on two constraints, the lower limit for BESS power and energy
capacity. An optimization model that does not include the alternative cost or the lower
grid limit of 1250 kW has another solution with a smaller BESS as an optimal solution.
Figure 5.1 shows that. The red line, which is the overall cost function, clearly shows a
pattern that a smaller BESS configuration is optimal. The requirement of keeping the grid
power below 1250 kW makes a solution with a smaller BESS infeasible.

Spot sensitivity analysis

Energy arbitrage is fundamentally the same as the spot sensitivity. The question is, how
much does the spot price impact the total economic cost. The sensitivity analysis on spot
price ends up with a relative error of 1.14 %. There are two ways to interpret the deviation
from the average total cost. Either as an error estimate of picking a random day to represent
the spot prices for a month or as potential uncertainty of using BESS for energy arbitrage.
However, by interpreting the result with the last interpretation, the premise for selling
energy is not high prices, but peak shaving. The relative error from randomly select spot
price is about 20 times higher than the impact of net savings from the sum of the energy
losses in the battery and energy arbitrage. Changes in spot price impact more on the
overall cost for BESS and grid reinforcement rather than the difference between them,
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which comes from energy arbitrage. Figure 5.9 shows the impact of different spot prices,
and it shows a random and changing pattern. The energy tariff costs are barely seeable at
some months since the difference in charged energy is not present; it is only a change in
the cost of buying electricity at spot price.

By comparing the spot prices in figure 5.8 and the economic result in figure 5.9, som
considerations are done for the spot sensitivity analysis. Case d) had a more expensive
January than all the three others but a cheap summer, and compared to the spot prices, it
is reasonable. January and February had high price fluctuations in case d). The high price
fluctuations would give some extra income for both BESS and grid reinforcement for that
spot price. The results for case b) and c) show that in these cases, there is summer with
lower spot prices than case a), as can be seen from the spot prices. Table 5.5 shows the
results for each case, and case a) is the one with the highest deviation from the average cost
with 1.46 %. Case b) and c), which have the lowest costs deviate 0.92 % and 0.89 % from
the average costs while case d) is only deviating 0.34 % and has a cost quite close to the
average cost. Since the costs are all from the same year, only different days in the month,
the deviation is measured over a time period within a year. A comparison for spot prices
from many different years will give a more satisfying picture of the potential in energy
arbitrage. However, it is clear from the spot sensitivity analysis that the potential for the
big cost savings from energy arbitrage is not present. The error estimate is not accurate by
looking at four cases and only gives a sign of the range the impact the random selection
on spot prices have.

Energy losses

The expected transformer losses are to be higher when the existing transformer is in use,
and a BESS is applied. Installing a BESS will make the grid power more often to be
at the transformer’s rating power. The expected scenario is what happens in the case
study, and figure 5.2 shows the utilization cost of transformer losses when installing a
BESS. With higher maximum BESS power, the transformer losses decrease. With higher
BESS capacity, the transformer losses increase slightly. The reason for the last comment
is that the grid power is on average at high levels for a larger BESS. The BESS charges
and discharges more energy and is in that period at high power levels for a long time
since the losses are quadratic. However, the differences in transformer losses for different
BESS configurations are low, the difference between BESS configurations that results in
the highest and lowest is around 0.1 kNOK annually.

The installation of BESS gives 60 % higher utilization losses compared to reinforcing the
grid. The loss rating is less for the small transformer, so the losses when the transformer
operates at rated power are less compared to a transformer with a higher power rating.
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The actual losses are 2195 kWh more in the case of BESS. However, due to higher loss
ratings for bigger transformers, the costs for power losses are higher for grid reinforcement
than for BESS installation. However, the actual losses for BESS installation are lower
compared to grid reinforcement. The cost of transformer losses is respectively 45 kNOK
and 42 kNOK for grid reinforcement and BESS installation. The transformer losses are
not a substantial part of the total economic cost and counts for respectively 0.43 % and
0.37 % of the total costs. Economically, installing a BESS will lead to that energy losses
are a smaller part of the costs in contrast to the actual losses in kWh, which are higher.

Impact from reduced battery prices in the future

Since the investment costs are high, a small consideration is done around further decreas-
ing battery costs. If the price on BESS is reduced as the projections show in 2.3, the
price in 2025 is about 450 USD/kW and 130 USD/kWh. With an exchange rate of 8.5
NOK/USD, the price is 3825 NOK/kW and 1105 NOK/kWh. For the optimal BESS size
(225 kWh and 300 kW), the investment costs will be 643 875 NOK lower. The price re-
duction will have a direct and highly impactful effect on the NPV difference. The residual
value will be 160 969 NOK lower. Thus the net decrease is 483 kNOK. The NPV differ-
ence of 900 kNOK in the case study will be reduced to 417 kNOK, however still in the
advantage of grid reinforcement. In a few years, the calculations will be quite different if
the projections are realized.

Comparison to other work

There are some differences in the results and assumptions of this case study compared to
the other studies presented in the chapter 1 ([9], [10] and [11]). Reference [9] and [10]
look into when the BESS does grid services and peak shaving and concludes that the BESS
has a net positive effect. However, a 30 % decrease in battery investment cost is needed to
have a profitable case, which is a lower decrease than needed in the result from the case
study in this thesis. The assumed costs for the AC/DC converter is 200 e/kW and far less
than assumed in this thesis. Operational cost savings are the main contributing factor in all
cases, and the profitability is set up to the investment cost. Therefore the assumed invest-
ment cost impacts the conclusion on profitability by installing a BESS. Installing a BESS
and its profitability must be investigated in each specific case based on the battery prices
available and the estimated cost savings. Reference [11] concludes that for the specific
case of a Norwegian swimming pool facility, installing a BESS is profitable. Degrada-
tion was taken into account by incorporating a degradation cost element in the objective
function.

By including the degradation, an over-dimensioned BESS is necessary for it to be able to
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peak shave the inevitable power peaks. Thus, degradation results in a higher investment
cost than assumed without considering capacity fade. As introduced in subsection 2.1.2,
it is possible to put degradation as a cost element in the objective function. However, the
additional investment cost needed is not considered when making the cost estimate for
degradation. The additional investment cost should, therefore, be included in that cost
element if the degradation is a pure cost element in the objective function.

6.2 Eonomic impact by including degradation and increased
time step

The degradation analysis consists of three models, D0 (no degradation), D1 (only calender
aging), and D2 (only cyclic aging). The results are presented in section 5.2.

Degradation analysis

The results in section 5.2 gives a picture of a small economic impact. The highest financial
difference is from calender aging. However, it is relatively small compared to the oper-
ational costs. The increase in operational costs when including calender aging is about
0.02 % higher. There is a reason why this is not impacting that much in this case. The
minimum BESS size (and the optimal) is set to 225 kWh because of the first simulation
without degradation, and with BESS size as a variable, gave the result of 180 kWh BESS
capacity as optimal. The resulting BESS capacity was divided by an estimated SoH of
80 % to ensure that the energy capacity was sufficient after five years of operation. The
BESS must be able to provide enough energy to peak shave the necessary power to keep
the grid power below 1250 kW. This estimation method succeeded in ensuring that the
BESS had enough energy to peak shave. The maximum power of the BESS was 300 kW,
and maximally utilized to reduced power tariff costs. Figure 5.1 shows that the savings
of power tariffs with increasing BESS maximum power did not cover the increasing in-
vestment costs of the BESS. However, when the investment was made, it is utilized to
minimize the cost, thus minimize the grid power tariff.

Cyclic aging

In the case study, the degradation mechanisms did not make a direct seeable impact on
the financial result. Both calender and cyclic aging had tiny deviations from the case of
no degradation. The simulation verified that calender aging is the main aging effect and
dominates cyclic aging in the short-term.

The cyclic aging has a long term impact on battery degradation, and it is necessary to have
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a detailed model of degradation. The economic impact is, as mentioned, small in this case.
Mainly because the dimensioning of the BESS is to ensure that the BESS can provide
enough energy to peak shave a wanted level for the five year period. It is also affected by
the fact that the power capacity of the BESS is constant, which limits the potential of peak
shaving. For a case when the energy capacity is not over-dimensioned for the first years to
peak shave, this will have another impact on the result. C-rate is included to incorporate
degradation details, to scale the degradation. A discussion on C-rate and FEC for the first
year of D2 and the time step sensitivity model with cyclic degradation will follow to slide
over to time step analysis.

Hourly versus minute time resolution with cyclic degradation

This paragraph discusses the result of D2 in section 5.2, which has time step in minutes,
compared to the result in section 5.3.2, which shows the result of D2 with time step in
hours.

By using a time step in hours, the financial result for the first year is 14.5 % higher when
the time step is in minutes. The average C-rate is not changing much between the two
different time resolutions, but the number of FEC is. The number of FEC is about 45
% higher in the case of minute resolution compared to hourly resolution. It corresponds
one to one with the difference in SoH between the two cases. The SoH reduction is 45
% higher in the case of minutes resolution compared to hourly resolution. The answer
to this significant difference is found in the power profiles for the first year in figure 5.4
and figure 5.10. By looking at the BESS power, there are many small fluctuations on the
minute scale and none with hourly resolution. These fluctuations are the reason why the
number of FEC is different. Information on power peaks and small variations in the load
is lost, which massively impacts the economic outcome and degradation analysis, using
hourly resolution.

Hourly versus minute time resolution with no degradation

This paragraph discusses the result of D0 in section 5.2, which has time step in minutes,
compared to the result in section 5.3.2, which shows the result of D0 with time step in
hours.

By looking at the yearly difference in using time step in hours instead of minutes with no
degradation is also having an impact on the financial result. Subsection 5.3.2 shows an
increased total operational cost of 14.5 % if the time step intervals are in minutes instead
of hours. Again, power tariffs are a substantial contributor to reduced costs. Around 75 %
of the total cost difference is due to the power tariff. The selection of days to represent the
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month is made after the transformation from minutes to hours. Therefore, most of the days
are different in the case of hourly resolution than minutes resolution. Figure 4.9 in chapter
4 shows that the power peaks of the EV charging demand are substantially reduced, and
thus even without a BESS, the power tariff costs would be reduced. Figure 5.11 shows the
peak shave for both time resolutions. It is evident that the BESS peak shave abilities are
lower when the EV charging demand is given in hours. Thus the cost savings compared to
grid reinforcement will be lower.

6.3 Grid tariff’s impact on BESS profitability

This section discussed the results obtained from a grid tariff sensitivity analysis, where the
results are presented in subsection 5.3.3. The results are a comparison of installing BESS
and reinforce the grid with a different grid tariff regime. The alternative grid tariffs are
more expensive for the FCS operator and give higher income to the DSO. The power tariff
is never zero and varies over the year, where the winter months are costly, about 2.3 times
more expensive than in the case study.

Economic outcome with alternative grid tariff

The alternative grid tariffs make the electricity bill higher for the FCS operator and income
for the DSO higher, in both cases, installing a BESS and reinforcing the grid. By installing
a BESS with an alternative grid tariff regime, the total cost is 12 022 kNOK, which is 6.7
% more expensive than installing a BESS in the case study. For alternative grid tariffs,
installing BESS compared to reinforce the grid, the NPV difference is 639 kNOK in favor
of the grid reinforcement. Thus the NPV difference between the two options to meet
increased load demand reduces with 29.5 % compared to the NPV difference in the case
study. The future price scenario for 2025 with a net investment decrease of 483 kNOK
implies a NPV difference of 156 kNOK in the case of alternative grid tariffs.

Dual variables for BESS

Another indication of the increased profitability of the alternative grid tariffs is the change
in cost per kW for higher BESS capacities. These numbers are equivalent to dual variables
if the BESS size was a variable. For a 225 kWh BESS, the difference of the expenses per
kW is significant because of the constraint of maximum grid power of 1250 kW and thus a
minimum BESS power capacity of 300 kW. For a 350 kWh BESS, the change in cost per
kW is lower compared to a 225 kWh BESS, and with alternative grid tariffs, the difference
in cost is 24 % lower compared to the grid tariff in the case study. Thus, higher and
more expensive grid tariffs increase the profitability of using BESS. The last observation
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which should be highlighted in terms of power cost savings versus energy capacity is the
EV charging demand. In this case, the EV charging demand is highly fluctuating, and
thus a cut of 1 kW during peak hours requires low energy amounts. The optimal BESS
configuration depends a lot on the profile and characteristics of the power demand.

Future grid tariffs

The grid tariffs in Norway are under development. The applied and discussed grid tariffs in
this thesis is for a commercial customer. NVE, the regulator, published on February 2nd,
2020, a new suggestion for the grid tariffs for households [53]. It contains new main ideas
that are likely to be approved, and the most fundamental shift is to have a tariff more based
on power than earlier. This tariff regime creates incentives for the customer to minimize
the peak power and, for example, invests in BESS.

6.4 Value for DSO

This section of discussion is provided to discuss the value and challenges BESS installa-
tions could mean for the DSO. The value for DSO is to see the BESS installation from a
socio-economic view and a grid perspective.

First of all, when a customer installs a BESS to peak shave, the DSO loses revenue. The
DSO’s income is used to upgrade the grid. On the other hand, a peak shaving BESS
contributes to a lower need for doing grid upgradations. The charging and discharging
losses of the BESS, in addition to increased transformer losses, increase the total losses of
the system. From a system perspective, this is not a positive effect.

BESS increases the overall utilization time of the existing equipment and grid. BESS
has a shorter lifetime, and there will be several reinvestments during the lifetime of a
transformer. Due to the low investment costs of a transformer compared to a BESS, the
BESS must be able to cover the investment cost with the total operational cost savings. The
reinvests will be cheaper by time if the price projections of lower costs in the future are
correct. The utilization of the existing grid of a highly fluctuating load is better compared
to a more traditional load with a flatter power profile. This case study has a load where
the power peaks and periods with high power are short-lasting. If BESS installations are
more widespread in the future, the sum of peak shaving at the lowest level can postpone
grid investment on higher grid levels.

If BESS is applied in the near future, BESS can be used as an alternative to grid reinforce-
ment is potentially high. BESS can be installed with an initial SoH lower than one, i.e.,
reuse already used batteries from, for instance, EV batteries. Thus, looking at the whole
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energy system, BESS applied for peak shaving can be a positive contributor to a circular
economy and reduce overall costs.

However, BESS can be used for other grid services as well. As in [9], when the operator of
the FCS is using the BESS for frequency control, the profitability increases, and it provides
grid services for the transmission grid operator. In light of the increasing distribution of
RES, applying BESS is smoothening out the grid power and reduce fluctuations from PV
production [11]. BESS can contribute to realize a higher share of RES and contribute to
reducing the carbon intensity of power production.

6.5 Model assumptions

The optimization model is based on several assumptions, which can be seen as advantages
and disadvantages. All premises and simplifications will move the model from the ideal
and realistic world. However, some of them are good to eliminate potential sources for
interpretation. The case study with an EV FCS is based on a real FCS in Trøndelag, and
this is input to the model. However, the model can take any load as input.

As mentioned in section 6.1, the significant cost savings are from power tariffs. Energy
capacity is needed. However, it does not directly contribute to cost savings. It indirectly
contributes because stored energy is needed to provide power from the BESS. The degra-
dation mechanisms in the Master’s thesis are only on capacity fade and not power fade.

The principle of one day representing one month must be discussed because it is the reason
for several weaknesses of the model. The reason for the choice was due to computational
force and the wish to analyze for a long term period (5 years) with time resolution in
minutes. Each day had an operational cost, which was multiplied with the number of days
in the month. The first disadvantage is that the variations within a month are not present.
That is partly shown in table 4.2, where the annual energy difference from the estimated
EV charging demand (365 days) and the input to the optimization model is 131 MWh.
The difference is equal to 1 % of the total energy consumption. As a part of the discussion
in section 6.1, the issue was touched when cost savings in July were a consequence of
bought energy in June. It is a late discovered weakness and means that some BESS energy
is given for ”free”. If at the end of the day (i.e., the day that represents the month) is 200
kWh and in the beginning 100 kWh, a net energy increase is present that day. The cost
of buying energy is multiplied by the number of days that month. Thus the optimization
will minimize these costs based on monthly variations in the spot price. In the ideal case,
all the 365 days would be input. Since the spot price has monthly and daily fluctuations,
which are following different patterns, this gives a small error in the cost of purchasing
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electricity. The error is probably not a substantial effect since the spot cost element has
a tiny difference in that case of comparing NPVs between BESS and grid reinforcement.
However, it is present and is seen in figure 5.4, where July had a small cost saving. The
reason is due to the model weakness as cost savings in July is from energy purchase in
June, as discussed here and in section 6.1.

The optimization of the estimated EV charging demand and spot prices are known before
solving. That is not the case in reality. The EV charging demand will depend on the
number of cars when they arrive, and the initial SoC of the EV battery of the incoming
vehicles. The spot price is varying on market conditions. The battery degradation is also
assumed to have a constant temperature, which will not be the case. When the temperature
is higher than expected, the calender aging will be accelerated while the cyclic degradation
will be decelerated. The temperature will go up in reality due to time delays in the cooling
system. A high battery power, thus high current, will cause heating. However, the BMS
could measure current and based on that act accordingly and therefore have small temper-
ature variations, but there will still some. Dynamic programming can control a BESS in
real life and optimize the operation of the battery, such as suggested in [54]. Also, MCP
algorithms are recommended to control BESS, for example, in [55] as a charge/discharge
control scheme.
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7.1 Conclusion

The conclusion will answer the problems formulated in chapter 1. In this thesis, a com-
parison between grid reinforcement and BESS installation is considered, and a case study
has been conducted for an EV FCS. The case is based on today’s situation and investigate
the case if the number of chargers increases with 50 %. The objective of the BESS is to
shave the power peaks of the EV charging demand. An optimization model implemented
in Julia is built and used to optimize the operation and costs for a five year period. The
transformer loss costs are not varying significantly for various BESS configurations. In-
stalling the optimal BESS and keeping a 1250 kVA transformer results in higher losses
compared to reinforcing the grid with a 1600 kVA transformer.

The results obtained from the optimization shows higher discounted costs for installing a
BESS than reinforcing the grid. The optimal BESS configuration of 225 kWh and 300 kW
in the case study cuts the peak power from the grid with 19 % and generate operational
cost savings of 800 kNOK. Due to high investment costs, the alternative of reinforcing
the grid is more profitable and has 900 kNOK less total cost. When installing a BESS,
energy arbitrage gives small cost savings compared to the savings from reduced power
tariff. From a grid perspective, there is no significant difference in energy losses or costs
of energy losses.

The degradation did, in an almost insignificant manner, impact the total costs. The BESS
was dimensioned based on the time period of 5 years and estimation of SoH after five
years. To conclude on this, two main methods can be used to decide the necessary BESS
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capacity to ensure low degradation impact after a specific time period. The first is to op-
timize without any degradation mechanisms and with the BESS size (maximum power
and energy capacity) as variables. The battery capacity from optimization results is then
divided with the assumed final SoH of the time period. Calender aging can be calculated
and give a sufficient estimate of the closing SoH . The calender aging dominates the total
degradation and can be calculated with only one operational information, which is temper-
ature. The other method is to do optimization with degradation, which is computationally
much heavier. The cost of degradation can and has been used in previous work for ana-
lyzing BESS. The extra investment cost due to the degradation, as concluded here, should
be incorporated using an equivalent cost for degradation in the objective function to give
a realistic cost estimate.

The spot sensitivity analysis shows that a random pick of spot prices gives an expected
deviation from the average total operational cost of 1.14 %. The expected deviation can be
understood as an expected potential, both in a negative and positive direction, for energy
arbitrage.

The time step analysis shows that the total operational costs are 14.5 % higher when the
time resolution is in minutes compared to hours. When cyclic aging is included, the SoH
decrease 45 % faster when the resolution is in minutes. The reason for the faster SoH
decline is due to the different number of FEC and not the average C-rate.

The last sensitivity analysis, which is on grid tariffs, shows that a more expensive grid
tariff regime increases the cost savings for the BESS compared to grid reinforcement. The
alternative grid tariffs made the NPV 6.7 % higher while the NPV difference between
BESS and grid reinforcement decreased by 29 %. The DSO can do the optimization of the
grid and optimize the tariff structure based on their wishes, which must be represented in
the objective function.

In the end, the future battery investment costs projections will give a 54 % decrease in the
NPV difference between BESS and grid reinforcement. With alternative grid tariffs, the
reduction in NPV difference between BESS and grid reinforcement is 75 %.
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7.2 Further work

The EV charging demand and spot prices are pre-known variables. An objective for further
work is making an operating model for the BESS, where the algorithm must estimate the
mentioned variables. An algorithm that predicts and determines these variables can be
used in real life to control a BESS.

As mentioned, the power fade is not part of the degradation modeling. Adding that to
the model will improve the complexity and wholeness. The driving cost saving when
installing BESS is in the power tariffs. The impact of power fade is, therefore, essential to
consider from an economic perspective.

The optimization model can be further improved in several ways. First, as mentioned,
power fade can be added. Another improvement will be to include the BESS size in the
objective function, which was initially intended in this thesis as well. In short, that will be
to combine the two models, the calibration model and optimization model. In that way,
the verification of the optimal solution will be more convenient. And last, remove the
representation of a month with one day, such that the model includes the whole year with
unique days. The two last-mentioned improvements could have been done in this thesis
but were not due to computational limits.

The proposed optimization model can be applied to other grid applications and all types
of load with a minute based power profile. The case studied in this thesis is not the ideal
case for a BESS, since the investment costs for grid reinforcement was low. Other cases
with weaker grid or long power lines are of a higher BESS profitability opportunity.
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Appendix A
Method to estimate EV charging
demand at FCS

The central development of the method to estimate EV charging demand was in the fall.
The appendix will describe the details of the method. Figure A.1 shows the general
method.

Figure A.1: Overall method to estimate EV charging demand [13].

First, empirical information is collected. The empirical data is input to generate expec-
tation values for probability distributions. Then, the allocation of random numbers to
variables based on their distributions for each time step. These numbers then determine all
the necessary information to generate a power profile for the total charging demand at the
FCS.

To make an intuitive approach explaining the model, imagine a FCS where a car has just
arrived and started to charge. The time to the next arrival of a vehicle is exponentially
distributed, with the expected value of X . The X is picked based on a non-homogenous
Poisson distribution, which means that the expected value of the Poisson distribution varies
with time, which describes the number of cars arriving each hour. This expected value of
the Poisson distribution based on empirical charging data from Norway gives the hourly
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patterns. The distribution of interarrival time between two Poisson distributed events is
exponential. These are the factors and distributions which determine the traffic at the FCS.

When an EV arrives, it has a specific charging power and battery size, as well as an original
EV battery SoC. The initial SoC was calculated based on another empirical distribution,
which was the log-normally distributed vehicle kilometers traveled. By assuming a con-
stant relationship between the driven distance and the driving range of the EV’s, the initial
SoC has a correlating distribution. The initial SoC of incoming EV’s was, therefore,
log-normal distributed with fixed expectation values and standard deviations based on the
empirical data.

The incoming EV was allocated a specific battery size and charging power. The basis of
the allocation was a clustered composition of the top ten EV models in the Norwegian EV
park in fall 2019. The primary assumption was that the FCS was in a rural area, so the
models with driving ranges below 200 km were omitted. The clustered groups consist of
the six remaining EV models, where each group had a charging power and battery size.
Each group has a total amount of cars and a fraction of the whole car park each. So group
a was 9.2 % of the clustered total with a battery size of 80 kWh and charging power of 200
kW, and similar for group b and c. The arriving car in the model had a charging power
and battery size from a uniform distribution, which corresponded to these fractions of the
clustered groups.
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Appendix B
Linear approximation of
temperature dependent C-rate
function

In chapter 3.2.2 the fc(TK , Cr) = (a · T 2
K + b · TK + c)e(d·TK+e)·Cr(t) is said to be lin-

earized. The linearization is done in this appendix, and the corresponding constants, kCr0

and kCr1
, are computed. Taylor expansion is used to linearize the exponential function.

The constants a, b, c, d and e are taken from table 2.3.

Taylor approximation of the exponential function ek·x around the point x0 is

ek·x = ek·x0

N∑
n=0

kn(x− x0)n

n!

For the linear case, N is set to 1 and

ek·x = ek·x0 · (1 + k · (x− x0)) (B.1)

By letting kC = (d ·TK +e) and x = Cr, the exponential term e(d·TK+e)·Cr(t) in fc can be
described with equation B.1 as flin(TK , Cr) = ekC(TK)·Cr = ekC(TK)·Cr · (1 + kC(TK) ·
(Cr −Cr0)). By defining kcyc(TK) = (a · T 2

K + b · TK + c), the function fc now consists
of a product of two temperature dependent functions and one C-rate dependent function,
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and is as shown in equation B.2.

fc(T,Cr) = kcyc(TK) · flin(TK , Cr) (B.2)

To make fc linear, the temperature cannot be a variable. Since flin is a linearized function
with respect to Cr, fc will be linear with respect to Cr. To capture this in the optimization,
the factor fc(TK , Cr(t)) in equation 3.10 is split up in two parts, one constant and one
linear with the C-rate. The constants depends on the temperature.

By setting the temperature TK to a constant value T0=5◦C = 278 K, kcyc = 2.28·10−3.
The first order Taylor expansion of e0.3869·Cr(t) around Cr0 = 1.0 1

h is e0.4874·1 · (1 +

0.4874 · (Cr(t)− 1.0)) = 1.6281 + 0.7935 · (Cr(t)− 1.0). In total, fc becomes

fc(T0, Cr) = 2.28 · 10−3 ·
[
1.6281 + 0.7935 · (Cr(t)− 1.0)

]
(B.3)

= 1.903 · 10−3 + 1.809 · 10−3 · Cr(t) (B.4)

= kCr0 + kCr1 · Cr(t) (B.5)

The function fc has a unit of measurement of % per FEC. For instance, 2000 full cycles
with a constant C-rate of 1, gives a cyclic degradation of 7.4 %.
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Appendix C
Interior point method

The interior point method is a way to compute an optmization problem by adding a bar-
rier function to the objective function to ensure not avoiding the feasible region. Ipopt,
and typically, the barrier function is defined as ζ

∑n
i=1 ln(si), including the variables

x1, x2, . . . , xn and a barrier parameter ζ. That definition is an approximation to fulfill
the ideal properties, which are that the value of the barrier function is 0 when g(x) ≤ 0

and∞ when g(x) > 0. If the original problem on a general form is

minimize
x

f(x)

subject to h(x) = 0

g(x) ≤ 0

x ≥ 0

the problem becomes

minimize
x

f(x)− ζ
n∑

i=1

ln(si)

subject to h(x) = 0

g(x) + s ≤ 0

x ≥ 0

s > 0
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The approximations of the barrier function demand that it must be twice differentiable. A
large ζ makes the approximation less accurate than for a smaller value of ζ. A low value of
ζ improves the approximation. However, it makes the minimization by Newton Raphson’s
method difficult because the Hessian will have huge variations near the boundaries of the
feasible set.
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Appendix D
Mathematical formulation of the
implemented optimization model

The appendix contains the implemented version of the optimization problem. The variable
and parameter description is in section 3.1. The added vector dm is giving the days in
a month number for the corresponding time variable, both h by using the convertation
function h2t and t. The first 1440 elements of dm has value 31, because January has 31
days, the next 1440 elements has value 28 because February has 28 days and so on. The
transformation function h2t is

h2t(h) = (h− 1) · 60 + 1 (D.1)

minimize
Pmax

grid ,

Pmax
B ,EB0

Ctot =
∑
y∈Y

α(y)
[ ∑
h∈H

Egrid(h)
(
cspot(h) + cE,tar(m)

)
· dm(h2t(h))

+
∑
m∈M

cP,tar(m) · Pmax
grid (m)

]

subject to PL(t) = Pgrid(t) + PB(t) ∀t ∈ T (D.2a)

PB(t) = Pdchar(t)− Pchar(t) ∀t ∈ T (D.2b)

∆EB(t) = ηc · Pchar(t)∆t− 1

ηd
· Pdchar(t)∆t ∀t ∈ T (D.2c)
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EB,cap = SoH(t) · EB0 ∀t ∈ T (D.2d)

SoC(t) =
EB(t)

EB,cap
∀t ∈ T (D.2e)

Cr(t) =
PB(t)

EB0
∀t ∈ T (D.2f)

SoH(t) = SoH(t0)− kt ·
√
t− fc(t) · FEC(t) ∀t ∈ T (D.2g)

∆FEC(t) =
1

2
· Pchar(t) + Pdchar(t)

EB0 · (SoCmax − SoCmin)
· dm(t) ∀t ∈ T (D.2h)

fc(t) = kCr0 + kCr1 · Cr(t) ∀t ∈ T (D.2i)

Pchar(t) ≤ Pmax
inv ∀t ∈ T (D.2j)

Pdischar(t) ≤ Pmax
inv ∀t ∈ T (D.2k)

SoC(t) ≥ SoCmin ∀t ∈ T (D.2l)

SoC(t) ≤ SoCmax ∀t ∈ T (D.2m)

SoH(t) ≥ SoHmin ∀t ∈ T (D.2n)

SoH(t) ≤ SoHmax ∀t ∈ T (D.2o)

Pgrid(t) ≤ P contract
grid ∀t ∈ T (D.2p)
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