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Abstract
This master thesis explores the online identification methods for synchronous machine
parameters using online measurements. The central concept of the online parameter esti-
mation algorithm is to use the dynamic measurements from the machine in combination
with the manufacturer’s estimates of the parameters to make the machine model agree
with the measurements. The goal is to use already available measurements to improve
upon manufacturers estimates of the synchronous machine parameters which may be ob-
tained from stand-still tests decades ago.

The model of the generator is based on Park’s model of the synchronous machine with an
observer for the damper winding currents. The generator modelled was a ten pole salient-
pole synchronous generator from Voith situated in a German hydropower-plant. Three
hundred seconds of voltage and current measurements was received from the generator
during steady-state running on rated load connected to the grid. Inductances and resis-
tances of the generator were calculated from the available data from the datasheet. The
model for the parameter estimation is built in MATLAB Simulink. To estimate the rotor
position of the generator, a phase-locked-loop control system was implemented on the
signal from the phase a voltage. A Kalman Filter was used as an optimal observer to fil-
ter and correct the measurements by using previous knowledge about the synchronous
generator and its parameters. The method for parameter estimation uses the recursive
least squares (RLS) algorithm to create an estimate for the inductances and resistances of
the machine using available measurements.

However, due to disturbances and noise present in the measurements of the field voltage
and current, results from the parameter estimation using the real measurements from the
generator had large errors. For this reason, it was decided to use measurements created
by a Synchronous Machine block from the Simscape library in Simulink which was mod-
elled to be equal to the Voith generator for further simulations. To explore how the algo-
rithm reacts to changes in the machine parameters, a case study is presented where the
RLS algorithm was given a deliberately faulty initial estimate for the parameter estima-
tion. The algorithm first showed poor ability to track changes in the machine parameters
and would converge towards an erroneous estimate. However, after tuning of the initial
parameter covariance matrix, the parameter estimation showed significant improvements.
It was able to converge towards the correct value of the parameter even with an incorrect
initial estimate. The conjecture from the thesis is that the parameter estimation algorithm,
if tuned correctly, could give more accurate estimations for the parameters of the ma-
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chine, than the manufacturer’s parameters obtained from stand-still tests possibly from
many years ago. However, before the algorithm could be used in the industry a more ef-
fective way for noise filtering and rejection of bad measurements has to be implemented.
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Sammendrag
Denne masteroppgaven utforsker metoder for online identifiksajon av synkronmaskiner
ved hjelp av online målinger. Det sentrale konseptet for online parameterestimeringsal-
goritmen er å bruke de dynamiske målingene fra maskinen i kombinasjon med estimater
av parametrene for å få maskinmodellen til å stemme overens med målingene. Målet er å
bruke allerede tilgjengelige målinger for å forbedre produsentens estimater av synkron-
maskinparametrene som muligens er kalkulert fra still-still-tester for flere tiår siden.

Modellen av generatoren er basert på Parks modell av synkronmaskiner med en ob-
servatør for demperviklingsstrømmene. Generatoren som ble modellert var en ti-pol
salient-pole synkrongenerator fra Voith som ligger i et tysk vannkraftverk. Tre hundre
sekunder spennings- og strømmålinger ble mottatt fra generatoren under steady-state
med nominell last koblet til nettet. Induktanser og motstander til generatoren ble bereg-
net ut fra tilgjengelige data fra databladet. Modellen for parameterestimering er bygget
i MATLAB Simulink. For å estimere rotorposisjonen til generatoren, ble benyttet et
phase-locked-loop kontrollsystem signalet fra fasespenningen til fase a. Et Kalman-filter
ble brukt som en optimal observatør for å filtrere og korrigere målingene ved å bruke
tidligere kunnskap om generatoren og dens parametere. Metoden for parameterestimer-
ing bruker recursive least squares (RLS) algoritmen for å lage et estimat for induktansene
og motstandene til maskinen ved å bruke tilgjengelige målinger.

På grunn av forstyrrelser og støy tilstede i målingene av feltspenning og -strøm, ga imi-
dlertid resultater fra parameterestimeringen ved bruk av de virkelige målingene fra gen-
eratoren store feil. Av denne grunn ble det besluttet å bruke målinger opprettet av en
Synchronous Machine-blokk fra Simscape-biblioteket i Simulink som ble modellert
til å være lik Voith-generatoren for videre simuleringer. For å utforske hvordan algo-
ritmen reagerer på endringer i maskinparametrene, presenteres en casestudie der RLS-
algoritmen ble gitt et feil initialt estimat for parameterestimering. Algoritmen viste først
dårlig evne til å spore endringer i maskinparametrene og konvergerte mot et feilaktig
estimat. Imidlertid, etter tuning av intiell parameter-kovariansmatrise, viste parameteres-
timeringen betydelige forbedringer. Den var i stand til å konvergere mot riktig verdi av
parameteren selv med et feil initialt estimat. Konklusjonen fra oppgaven er at parameter-
estimeringsalgoritmen, hvis den er tunet riktig, kan gi mer nøyaktige estimater for mask-
inens parametere enn produsentens parametere hentet fra ’stand-still’-tester muligens fra
mange år siden. Før algoritmen kan brukes i bransjen, må det imidlertid implementeres
en mer effektiv måte for støyfiltrering og avvisning av dårlige målinger.
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Chapter 1
Introduction

1.1 Background

Global increase in the utilization of renewable energy has a significant impact on the op-
erating regimes of conventional power plants. Synchronous generators are the bulk of
power generation worldwide and form the principal source of electric energy in power
systems. In Norway, 95% of the electricity production comes from hydropower [2] where
the use of salient-pole synchronous generators are the norm. Therefore, the proper un-
derstanding of these devices is essential for planning, operation, and control of the power
system. The information about the synchronous generator parameters is important for
both reliable stability studies and ”post mortem” analyses [3].

A valid model for synchronous generators is essential for a valid analysis of stability and
dynamic performance [4]. Today the machine parameters are calculated only in the de-
sign phase during standstill frequency measurements by the manufactures. Offline pa-
rameter estimation methods are both expensive and inconvenient as it leads to loss of
income for power producers. Also, offline identification of the parameters is often in-
accurate as many parameters change with different levels of excitation and loading, and
saturation. Online parameter estimation is therefore attractive, as it can be more accu-
rate and have no interference for the regular operation of the machine. In addition, the
continuous tracking of parameters values over time enables power generation companies
to foresee generator failures, such as turn-to-turn short circuits in the field winding and
rotor imbalance. Accordingly, it is possible to avoid outages and save large amounts of
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Chapter 1. Introduction

resources due to rehabilitation of the machine, loss of income and social costs. A goal for
this master thesis will attempt to solve a well-defined problem for the industry; the iden-
tification of synchronous generator parameters and the tracking of parameters over time
to potentially prevent system outages.

1.2 Previous Work

This master thesis is a continuation of the work performed in the pre-master project last
fall [5] and the work performed by Erick F.Alves in his master thesis, [6]. In [6], a MAT-
LAB Simulink model was created for estimation of synchronous machine parameters
based on estimating the impedance shape of the synchronous machine under operation.
His thesis proved that 8 out of 13 parameters could be reliably estimated with the use of
a Kalman Filter and the Recursive Least Squares algorithm. The main focus of the fall’s
pre-master project was to explore if the parameter estimation performed in [6] could be
improved by including the saturation effect in the model of the synchronous generator.
However, the results showed that there were no improvements in the parameter estima-
tions of the machine after the saturation effect is included.

1.3 Problem Definition

This master’s thesis further delve into the theory of the synchronous machine and the as-
pects of parameter estimation. There were multiple ways to continue the work performed
in the fall, but it was chosen to test if the parameter estimation algorithm created in [6]
could be validated using data from measurements from a real hydropower-plant. The data
available to validate the algorithm was high-frequency data from a Voith salient-pole syn-
chronous generator situated in a German hydropower-plant. Before the algorithm could
be tested, a model of the synchronous generator had to be created, and the electrical pa-
rameters had to be calculated. In addition, it was decided to examine the performance of
the estimation aglorithm with reduced knowledge of the parameters. Another goal of this
thesis is to achieve a good and thorough understanding and knowledge about all aspects
of the parameter estimation.

1.4 Related Work

Sherwin Wright wrote in 1931: ”The importance of the analysis of synchronous machine
operation is well evidenced by the considerable literature on this subject, representing

2



1.4 Related Work

definite steps in the advancement of the art” [7]. Almost one hundred years later, the lit-
erature on the synchronous machine has considerably grown, and the subject is far from
dated. It might even have gotten more relevant, as with increasing complexities in power
systems, more accurate models and parameters of subsystems, particularly synchronous
generators have become essential [8]. The main initial advance in the modelling of syn-
chronous machines was with the development of Park’s model, in 1929 with [9]. Park’s
model for the synchronous machine is standard practice to use for all engineering ap-
plications, and will also be used for this thesis. However, to use this model multiple re-
sistances and inductances for the machines needs to be known. The different methods
for synchronous machine parameter estimation can be summed up by analysis of tran-
sient data (short-circuit tests or load rejections) or frequency response tests, with distur-
bances in standstill, offline or online operations [10]. The literature in the field of online
synchronous machine parameters estimation is steadily growing. However, the conven-
tional method of determining parameters through offline tests through open- and short-
circuit tests on unloaded machines is still the most used. There are many limitations to
these tests which have been recognized for decades, so better models are continuously
researched.

The alternative to offline parameter identification methods is parameter estimation us-
ing measurements with the machine is running and carrying a load, referred to as online
parameter identification. The main attraction of online methods is their minimal inter-
ference with the normal operation of the generator. Many different algorithms are used
for this and have been proven to give accurate estimations of the machine parameters.
One of the more common algorithms is different versions of the least-squares estimators.
The least-squares algorithm is applied by, among others, [10–14]. Another popular algo-
rithm is the maximum likelihood method which is used to perform parameter estimations
in [14–16]. The methods of parameter identification are varied, but the approaches can be
summarized with the measured outputs of voltage and currents being used for identifica-
tion of parameters by an estimator.

3



Chapter 1. Introduction

1.5 Thesis Outline

• Chapter 2 introduces the basic theory about the synchronous machine, the Kalman
Filter, and the Recursive Squares algorithm.

• Chapter 3 presents how the state-space representation of the synchronous model
is created, and details about the observer for the damper winding currents. After
this, it is explained how the electrical parameters of the synchronous machine from
values collected from the datasheet. The Simulink model used in the thesis is also
presented in this chapter.

• Chapter 4 first presents the specifications of the machine used for this thesis. Af-
ter this the results from the parameter estimation using the real measurements is
showed. A case study to explore how the RLS algorithm handle errors in the initial
estimation of the parameter is also presented. Lastly results achieved after the RLS
algorithm is tuned is given.

• Chapter 5 includes the discussion of the method and results.

• Chapter 6 presents the conclusion of the thesis and some thoughts on further work.
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Chapter 2
Basic Theory

2.1 Synchronous Machines

Before a parameter estimation can be performed, a good and thorough knowledge of the
general synchronous machine is needed. A state-space formulation of the synchronous
machine is necessary. There is a vast amount of literature that deals with synchronous
machine theory, but the mathematical model of the synchronous generator which is pre-
sented here is based on the theory from [1], and the notation follows the IEEE conven-
tion.

The synchronous generator consists of two magnetic parts; rotor and stator, where the
stator is connected to the grid. The generator is supplied with fixed voltages and fre-
quency from the grid. By definition, the synchronous generator produces electricity with
a frequency synchronized with the mechanical rotational speed [17]. The simplest ver-
sion of a synchronous generator has two poles, one south and one north pole. However,
low-speed generators, such as the ones used for hydropower turbines, often have many
poles. With multiple field pole pairs, each passing of a south and north pole completes a
cycle of a magnet field oscillation. The stator windings will also be made of multiple cor-
responding sets of coils as the number of field poles. The relationship between the rotor
angle expressed in electrical units and mechanical units is shown by eq. (2.1).

θelec = p · θmech (2.1)
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Chapter 2. Basic Theory

Where p is the number of pole pairs, θelec is the electrical angle, and θmech is the corre-
sponding mechanical angle.

These magnetic poles can either be of the salient or nonsalient type, where the salient
poles are protruding. The salient-pole rotor introduces a non-uniformity of the magnetic
reluctance of the air gap [18]. This type of synchronous machines is often used for low-
speed generators where it is beneficial to have many pole pairs, as the synchronous speed
of the machine is given by eq. (2.2).

n =
240f

p
(2.2)

The generic mathematical model of a synchronous machine has three stator windings,
one field winding and two amortisseur or damper windings. These six windings are mag-
netically coupled as a function of the rotor position. The cross-section of such a machine
is pictured in fig. 2.1.

Figure 2.1: Schematic diagram of a three-phase two pole synchronous machine and the circuits for
the axes [1].

The field winding (f1,f2) carries the direct current which produces a magnetic field that
in return induces three-phase alternating voltages in the armature windings (a1,a2,b1,b2,c1,c2).
The stator windings carry the load current which supplies power to the system. In addi-
tion, the generator has two damper windings which are short-circuited; one on the direct-
axis (D) and another on the quadrature-axis (Q). In fig. 2.1 the d-axis is centred magnet-
ically in the centre of the north pole and q-axis 90 electrical degrees ahead of the d-axis.
The choice of the q-axis leading the d-axis is arbitrary, and it might as well be the other
way around.
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2.1 Synchronous Machines

Before the mathematical model of the synchronous machine can be created, it is conve-
nient to make some assumptions, which are as follows:

1. The stator windings are symmetrical.

2. The capacitance of the windings can be neglected.

3. The originally distributed windings can be represented on the form of a concen-
trated winding.

4. The change in the inductance of the stator windings due to rotor position is sinu-
soidal and does not contain higher harmonics.

5. Hysteresis loss is negligible, but the influence of eddy currents can be included in
the model of the damper windings.

6. In the transient and subtransient states, the rotor speed is near synchronous speed.

7. The magnetic circuits are linear (not saturated), and the inductance values do not
depend on the current.

2.1.1 Flux linkages in stator reference frame

The windings are magnetically coupled, so the flux in the separate windings are depen-
dent on the current in all the other windings. This fact is represented by the following
matrix equation in eq. (2.3).

Stator

{

Rotor

{


ΨA

ΨB

ΨC

Ψf

ΨD

ΨQ


=



LAA LAB LAC LAf LAD LAQ

LBA LBB LBC LBf LBD LBQ

LCA LCB LCC LCF LCD LCQ

LfA LfB LfC Lff lf LfQ

LDA LDB LDC LDf LDD LDQ

LQA LQB LQC LQf LQD LQQ





iA

iB

iC

if

iD

iQ


(2.3)

Equation (2.3) shows how the inductances represent the proportionality between a flux
linkage and a current. In this form, the inductances are used as parameters.

The matrix equation can also be written in its compressed form:[
ΨABC

ΨfDQ

]
=

[
LS LSR

LTSR LR

][
iABC

ifDQ

]
(2.4)
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Chapter 2. Basic Theory

Where LS , LR, LSR is the matrices of stator self- and mutual inductances, rotor self-and
mutual inductances and rotor to stator mutual inductances, respectively. Most of these
inductances are dependent on the rotor position and therefore vary with time.

2.1.2 Flux Linkages in Rotor Reference Frame

When viewing the flux linkages in a stator reference frame, one gets the unfortunate oc-
currence of the inductances not being constant, but varying with time. It is more conve-
nient to transfer the equations into a rotor reference frame, where the reference frame
rotates with the rotor. This is more commonly called the Park transformation and was in-
troduced by Robert H. Park in 1929 with [9]. The theories presented in [9] is based on
Blondel, Dreyfus, Doherty and Nickles previous work in [19] and [20]. Park’s transfor-
mation is considered a large breakthrough in the modelling of synchronous machines as
it significantly simplifies the analysis of the machine, and almost all analytical models
are later based upon this transformation [21].

The Park transformation is performed by transforming the armature currents, voltages
and fluxes into two sets of variables in a rotor reference frame, by the using trigonomet-
ric functions of the rotor angle, θ. One set is aligned with the magnetic axis of the field
winding, also called the direct axis and a second one which is aligned along with the ro-
tor, the rotor quadrature axis. The most fortunate consequence of this transformation is
that all the elements of the inductance matrix will be constant and independent of time.

The transformation is defined by the matrix equation given in eq. (2.5).

idiq
i0

 =

βdcosγ βdcos(γ − 2
3π) βdcos(γ + 2

3π)

βqcosγ βqcos(γ − 2
3π) βqcos(γ + 2

3π)

β0 β0 β0


iAiB
iC

 or i0dq = WiABC

(2.5)

Where the coefficients, β0, βd and βq , are arbitrary non-zero coefficients and introduced
due to the change in the reference frame. γ is the rotor angle. The supplement of i0 is
conveniently added to make the transformation unique.

A similar transformation can also be done for the flux linkages and voltages, and this is
shown on its compressed form in eq. (2.6).

vdq0 = WvABC and Ψdq0 = WΨABC (2.6)

8



2.1 Synchronous Machines

This transformation is not necessary for the rotor currents, voltages and flux linkages as
they already are in the rotor reference frame.

The coefficients can be chosen arbitrary, but are usually chosen to be either all equal to√
2/3 or 2/3. Both these have their attractions and disadvantages. By choosing β0 = 1√

3

and βd = βq =
√

2
3 as in [1] and [22], the transformation will be orthogonal and power

invariant. However, this has little physical meaning and gives that the equivalent d- and
q-axis coils have

√
3/2 times the number of turns as the abc-coils [23]. For this reason

[23] chooses the coefficients equal to 2/3, as this leads to a system which reflects most
closely the physical features of the machine.

The coefficients for this thesis model are chosen to be equal to
√

2/3 such that W−1=WT

and the transformation power invariant. This orthogonal transformation was proposed in
1951 by Charles Concordia in [22]. The transformation matrix, W, will then be defined
as in eq. (2.7).

W =

√
2

3

cosγ cos(γ − 2π
3 ) cos(γ + 2π

3 )

sinγ sin(γ − 2π
3 ) sin(γ + 2π

3 )
1√
2

1√
2

1√
2

 (2.7)

This transformation matrix can then be used to transform the matrix equation eq. (2.3)
into:



Ψd

Ψq

Ψ0

Ψf

ΨD

ΨQ


=



Ld kMf kMD

Lq kMQ

L0

kMf Lf lf

kMD LDf LD

kMQ LQ





id

iq

i0

if

iD

iQ


(2.8)

where k=
√

3/2. When saturation of the iron is neglected, all of the inductances are con-
stant and independent of time as wanted.
By observation of eq. (2.8), it can be seen that there are three independent sets of of
equations. These three sets of equations are shown in eq. (2.9), (2.10) and (2.11).

Ψ0 = L0i0 (2.9)

9



Chapter 2. Basic Theory

Ψd

Ψf

ΨD

 =

 Ld kMf kMD

kMf Lf lf

kMD lf LD


 idif
iD

 (2.10)

[
Ψq

ΨQ

]
=

[
Lq kMQ

kMQ LQ

][
iq

iQ

]
(2.11)

This set of equations together represents the fictitious and uncoupled dq0-windings of the
three-phase stator windings and are illustrated infig. 2.2.

Figure 2.2: The sets of fictitious dq0-windings representing the three-phase stator windings. [1].

In fig. 2.2, does the f correspond to the field winding and D- and Q- corresponds to the
damper windings.

2.1.3 Voltage Equations

By applying Kirchoff’s voltage law, the voltage equation of the machine in the stator
reference frame can be written as:



vA

vB

vC

−vf
0

0





RA

RB

RC

Rf

RD

RQ





iA

iB

iC

if

iD

iQ


− d

dt



ΨA

ΨB

ΨC

Ψf

ΨD

ΨQ
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Or in the compact form:[
vABC

vfDQ

]
=

[
RABC

RfDQ

][
iABC

ifDQ

]
− d

dt

[
ΨABC

ΨfDQ

]

The voltage equations in the rotor reference frame can be written as:

[
vdq0

vfDQ

]
= −

[
W

1

][
RABC

RfDQ

][
W−1

1

][
idq0

ifDQ

][
W

1

]
− d

dt

{[
W−1

1

][
Ψdq0

ΨfDQ

]}
(2.12)

When assuming that the resistances in the three phases of the stator is equal, then:

WRABCW−1 = RABC (2.13)

It is convenient to define the rotation matrix, Ω, as written in eq. (2.14). This matrix is
called the rotation matrix as it introduces terms dependent on the speed of rotation.

Ω = ẆW = ω

0 0 −1

0 1 0

0 0 0

 (2.14)

Equation (2.12) can then be rewritten as:

[
vdq0

vfDQ

]
= −

[
RABC

RfDQ

][
idq0

ifDQ

]
−

[
Ψ̇dq0

Ψ̇fDQ

][
W−1

1

][
Ψdq0

ΨfDQ

]
(2.15)

Where the rotational term, ΩΨ0dq , represents the EMFs induced in the stator windings
due to the rotation of the magnetic field. Ψ̇, called the transformer emfs, is the term
caused by the changing currents in the coils on the same axis as the ones considered.
For the purpose of creating a state-space representation of the synchronous machine, it is
desirable to have the voltages expressed in terms of currents only, as the measurements
of flux linkages are not available. In addition, the machine is often grounded through an
impedance ZN to limit the zero-sequence current [18].
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When substituting the flux linkages for currents and the addition of ZN , eq. (2.15) can
be written as:



vd

vq

v0

vf

0

0


= −



R ωLq ωkMQ

−ωLd R −ωkMf −ωkMD

R+ 3RN

Rf

RD

RQ





id

iq

i0

if

iD

iQ



− d

dt



Ld kMf kMD

Lq kMQ

L0 + 3LN

kMf Lf lf

kMD LDf LD

kMQ LQ





id

iq

i0

if

iD

iQ


(2.16)

2.1.4 Rotor angle position

The park transformation presented above depends on the rotor angle, so information of
the rotor angle is required. If such a signal is not available, it has to estimate. The equa-
tion for the rotor angle is defined as eq. (2.17).

γ = γ(t = 0) +
p

2

∫
ωmechdt− 2πf (2.17)

Where p is the number of poles of the machine, and f is the frequency. The rotor angle is
defined as the angle which the d-axis leads the magnetic axis of the phase a winding, as
shown in fig. 2.1. By the assumption that γ is zero after the zero-crossing of the phase a
voltage, the rotor angle could be estimated by the use of a phase-locked-loop controller, a
PLL, on the phase voltage measurements of phase a. A PLL is a controller that generates
a signal with a phase related to the phase of the input signal.

2.2 Per unit system

In the case of a synchronous machine, the per-unit system may be used to remove arbi-
trary constants and simplify mathematical equations so that they may be expressed in

12
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terms of equivalent circuits [23]. There are several ways of choosing a pu-system.

It is agreeable that using pu-units has many attractions compared to physical units, such
as normalizing parameters and greatly reducing computational efforts. One difficulty
with the physical units is the numerical awkwardness of the stator voltages being in the
kilovolt range, while the field voltages are at a much lower level. If the per-unit system
is chosen well, this can simplify greatly and even facilitate a greater understanding of
system characteristics. However, as Machowksi writes ”Perhaps the one area in power
system analysis that causes more confusion than anyother is that of per-unit systems” [1].
The many specialists in the field of have not been able to agree on one superior per-unit
system, which can be used by everyone. Each pu-system has its attractions and conse-
quently its drawbacks.

During the work on the model presented in this thesis, there had to be juggled multi-
ple pu-systems, and Machowski as wrote, this caused a great deal of confusion. The pu
model of the synchronous machine is based on the one used in [1], but the synchronous
machine parameters in pu were calculated according to the equations given in [23], which
use a different pu base. In this section, both pu bases are presented, but the main focus is
on the one presented in [1], which form the pu model of the synchronous machine used
in this thesis.

2.2.1 Stator Base Quantities

The choice for stator base quantities varies some between authors but is pretty straight
forward. The almost universal choice is to choose machine ratings as the base values for
the stator base quantities. Some base quantities can be chosen independently, but others
follow automatically. Thus if three base quantities are chosen, which involve all three
dimensions, that is voltage, current and time, all bases will be fixed for all quantities.
The stator quantities are those that can be directly related to the a-b-c phase quantities
through Park’s transformation.

The stator base quantities used by Kundur is presented in table 2.1. Here using subscript
b to indicate base and subscript r to indicate rated.
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Table 2.1: Stator base quantities, Kundur

Description Symbol Definition Unit
Base voltage Vb Peak value of line-to-neutral rated voltage [V]
Base power Sb Stator rated 3-phase apparent power [VA]
Base time tb tb = 1

ωr
[s]

Base elec. speed ωb ωb = ωr = 2πfn [elec. rad/sec]
Base mech. speed ωmb ωmb = ωb

2
pf

[mech. rad/sec]
Base current Ib Peak value of rated line current, Ib = Sb

Vb
[A]

Base impedance Zb Zb =V
2
b

Sb
[Ω]

Base inductance Lb Lb = Zb

ωb
H

This choice of stator base quantities makes the belonging inductances and reactances
equal in per unit.

The stator base quantities used for the thesis model is presented in table 2.2.

Table 2.2: Stator base quantities, thesis model

Description Symbol Definition Unit
Base voltage Vb Line to neutral RMS terminal voltage [V]
Base power Sb Rated power per phase [VA]
Base time tb tb = 1 [s]

Base elec. speed ωb ωb = ωr = 2πfn [elec. rad/sec]
Base mech. speed ωmb ωmb = ωb

2
pf

[mech. rad/sec]
Base current Ib RMS of rated line current, Ib = Sb

Vb
[A]

Base impedance Zb Zb =V
2
b

Sb
[Ω]

Base inductance Lb Lb = Zb H

2.2.2 Rotor base quantities

The most confusing elements of the per-unit system are introduced by the rotor base
quantities. This is also where the largest differences in the two pu-systems lie. Kundur
uses the rotor base quantities, which is referred to as the Lad-base reciprocal per unit

system. This pu-system has chosen the rotor base quantities to give the following advan-
tages:

1. Per unit inductances between the different windings reciprocal, e.g, Lafd = Lfda.

2. Per unit mutual instances between stator and rotor circuits in each axis are equal,
e.g., Lafd=Lakd.

In the pu system chosen by Kundur, the base current in any rotor circuit is defined as that

14



2.2 Per unit system

which induces in each phase a per unit voltage equal to per unit Lad [23]. This choice of
the rotor base quantities is shown in table 2.3.

Table 2.3: Rotor base quantities, Kundur

Description Symbol Definition Unit

Base field current Ifb
Lad

Lafd
Ib [A]

Base damper winding current d-axis IDb
Lad

Lakd
Ib [A]

Base damper winding current q-axis IQb
Laq

Lakq
Ib [A]

Base field voltage Vfb
Sb

Ifd
[V]

Base field impedance Zfb Zfb =Vfb

Ifb
[Ω]

Base field inductance Lfb Lfb = Zfb

ωb
[H]

Base damper winding impedance d-axis ZDb ZDb = Vfb

IDb
[Ω]

Base damper winding inductance d-axis LDb LDb =ZDb

ωb
[H]

Base damper winding impedance q-axis ZQb ZQb =Vfb

IQb
[Ω]

Base damper winding inductance q-axis LQb LQb =ZQb

ωb
[H]

The rotor base quantities used for the thesis model is chosen to be the equal mutual flux

linkages system, that is defined by Anderson and Foud in [24], also found in [1]. This
system is defined such that the mutual flux linkage in each winding is equal. By the use
of this pu-system, the number of parameters is significantly reduced.

Before defining the rotor bases, it is convenient to split each individual self-inductance,
Lx into its magnetizing component, Lmx, and leakage component, lx. The assumption
that mutual flux linkage in each winding is equal together with eq. (2.8), gives the flux
linkage in each winding as defined in eq. (2.18)

d-coil : LmdIb = kMDIDb = kMfIfb
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D-coil : kMDIb = LmDIDb = lfIfb

f-coil : kMfIb = lfIDb = LmfIfb (2.18)

q-coil : LmqIb = kMQIQb

Q-coil : kMQIb = LmQIQb

Previously it was explained how the coefficient, k, in the dq0-transformation was chosen
such that to make the transformation power invariant. This comes in handy now, as the
power base is same and equal for each winding: Sb = VbIb = VfbIfb = VDbIDb = VQbIQb.
This fact together with eq. (2.18), produce the rotor scaling factor which can be defined
as the following:

Vfb
Vb

=
Ib
Ifb

=

√
Lmf
Lmd

=
kMf

Lmd
=
Lmf
kMf

=
lf

kMD
≡ kf (2.19)

VDb
Vb

=
Ib
IDb

=

√
LmD
Lmd

=
kMD

Lmd
=
LmD
kMD

=
lf
kMf

≡ kD (2.20)

VQb
Vb

=
Ib
IfQ

=

√
LmQ
Lmq

=
kMQ

Lmq
=
LmQ
kMQ

≡ kQ (2.21)
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The rotor base quantites used in this thesis can now be summed up by table 2.4.

Table 2.4: Rotor base quantities, thesis

Description Symbol Definition Unit

Base field current Ifb
Ib
kf

[A]

Base field voltage Vfb
Sb

Ifd
[V]

Base field impedance Zfb Zfb =Vfb

Ifb
= k2fZb [Ω]

Base field inductance Lfb Lfb = Zfb [H]

Base field mutual inductance Mfb Mfb = Vfb

Ib
= Vb

Ifb
=kfLb [H]

Base damper winding impedance d-axis ZDb ZDb = Vfb

IDb
= k2DZb [Ω]

Base damper winding inductance d-axis LDb LDb = ZDb [H]

Base damper mutual inductance d-axis MDb MDb = VDb

Ib
= Vb

IDb
= kDLb [H]

Base damper winding impedance q-axis ZQb ZQb =Vfb

IQb
= k2DZb [Ω]

Base damper winding inductance q-axis LQb LQb = ZQb [H]

Base damper mutual inductance q-axis MQb MQb = VQb

Ib
= Vb

IQb
= kQLb [H]

Base mutual inductance f and D winding coupling LfDb LfDb = Vfb

IDb
= VDb

Ifb
= kfkDLb [H]

By this choice of pu system all the per-unit values of all the mutual inductance on one
axis is equal:

Lmd = Lmf = LmD ≡ Lad, Lmq = LmQ ≡ Laq (2.22)

After converting the system equations into per-unit values, the matrix equation of the
machine from eq. (2.16) can be normalized as shown in eq. (2.23).
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vd

vq

v0

vf

0

0


= −



R ω(Laq + ll) ωLaq

−ω(Laq + ll) R −ωLad −ωLad
R+ 3RN

Rf

RD

RQ





id

iq

i0

if

iD

iQ



− d

dt



Lad + ll Lad Lad

Laq + ll Laq

L0 + 3LN

Lad Lad + lf Lad

Lad Lad Lad + lD

Laq Laq + lQ





id

iq

i0

if

iD

iQ


(2.23)

Or in its compact form:

vdq0fDQ = −Rsmidq0fDQ −
d

dt
Lsmidq0fDQ (2.24)

Equation (2.24) shows that the matrix equation for a synchronous machine can be re-
duced to impedance with a resistive part, Rsm and an inductive part Lsm.

2.2.3 Synchronous Machine Parameters

The equations of the synchronous machine shown in the previous section have induc-
tances and resistances as its parameters. These are commonly referred to as the funda-
mental parameters, and consists of the elements on the d- and q-axis equivalent circuits.
These parameters describe the electrical performance of the machine, but cannot be mea-
sured or directly determined from measurements. For this reason, the fundamental pa-
rameters are not to be found from the machine datasheet. In the datasheet, the machine
data is expressed in the form of derived parameters that are related to observed behaviour
viewed from the terminals under multiple test conditions. The correspondence between
the standard parameters and the electrical parameters requires a good understanding of
the equivalent circuits of the synchronous machine.
It is common practice to use equivalent circuits to provide a visual description of the ma-
chine model. The equivalent circuit of the synchronous machine, which is commonly
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used is shown in fig. 2.3.

Figure 2.3: Equivalent circuit commonly used for synchronous machines

The parameters of the synchronous machine are divided into three: the subtransient, tran-
sient and sustained parameters. After a disturbance, currents are induced in the rotor,
where some currents decay faster than others. The machine parameters which influence
the rapidly decaying components are called the subtransient parameters, and the ones
which influence the slowly decaying components are called the transient parameters. In
addition, the synchronous parameters influence the sustained parameters.

The characteristics of the machine of interest are the inductances and reactances as seen
from the terminals that are associated with the fundamental frequency currents during
sustained, transient and subtransient conditions. In addition to these parameters, the cor-
responding time constants which determine the rate of decay of currents and voltages
form the standard parameters used in specifying synchronous machine electrical charac-
teristics. [23].

Expressions for the standard parameters of a synchronous machine are given in section
4.4 of Kundur’s Power System Stability and Control [23] which is rewritten here. The
notation used here is not the same as used in [23], but the notation used in this thesis,
together with a definition, is presented in table 2.5.
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Table 2.5: Notation for the synchronous machine parameters used in this thesis

Symbol Definition
R Stator resistance per phase
Rf Rotor resistance
lf Leakage inductance field
Lf Rotor field inductance
Ld Stator self inductance d-axis
Lq Stator self inductance q-axis
ll Leakage inductance
Lad Mutual inductance d-axis
Laq Mutual inductance q-axis
RD Damper winding resistance d-axis
RQ Damper winding resistance q-axis
lD Damper winding inductance d-axis
lQ Damper winding inductance q-axis

After converting to pu-values, it is convenient to separate the self-inductance into its
magnetizing and leakage inductance. The stator self inductances, Ld and Lq , are asso-
ciated with the total flux linkages due to id and iq respectively and can be split into to
the leakage inductance due to flux which does not link any rotor circuit and the mutual
inductance due to flux that links the rotor circuits.

For the direct-axis the expressions are:

Ld = Lad + ll (2.25)

T ′do =
Lad + lf
Rf

+
Lad + LD

RD
≈ Lad + lf

Rf
(2.26)

T ′d =
1

Rf

(
lf +

Ladll
Lad + ll

)
+

1

RD

(
LD +

Ladll
Lad + ll

)
≈ 1

Rf

(
lf +

Ladll
Lad + ll

)
(2.27)

T ′′do =
1

TdoRDRf

(
LD +

Ladlf
Lad + lf

)
(Lad + lf ) ≈ 1

RD

(
LD +

Ladlf
Lad + lf

)
(2.28)
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T ′′d =
1

T ′dRDRf

(
lf +

Ladll
Lad + ll

)(
LD +

Ladlllf
Lad + ll + lf

)
≈ 1

RD

(
LD +

Ladlllf
Lad + ll + lf

)
(2.29)

L′d = Ld
T ′d
Tdo′

(2.30)

L′′d = L′d
T ′′d
Tdo′′

(2.31)

Similarly for the q-axis for salient pole machines:

Lq = Laq + ll (2.32)

L′′q = ll +
LaqLD
Laq + LD

(2.33)

T ′′qo =
Laq + LQ

RQ
(2.34)

2.3 Noise filtering

When measuring currents and voltages on a machine, there is always going to be noise
present. Generating stations are especially notorious for both measurement error and
large amounts of noise due to high currents and voltages [25]. Therefore, when deal-
ing with synchronous machine measurements, there is always a need for some sort of
noise filtering. There are various types of noise which require different filtering. Noise
is often divided into white and non-white noise. Where white noise is characterized as a
sequence of independent, equally distributed, Gaussian, random variables of zero mean
value and variance σ2 [26]. With white noise, there is no correlation between the noise
and the signal. Generally, however, a disturbance in a signal or measurement is not just
white noise. With non-white noise, there could be a clear correlation between the noise
and the signal, making it harder to filter.

Many different filters have been developed for the purpose of noise filtering. The filters
used for this purpose are the digital discrete filters, where some essential mentions are
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the moving-average filters, Butterworth, Chebyshev and Bessel.

One disadvantage of using a filter is that it always introduces a phase shift or delay to
the filtered signal. However, when the synchronous machine is in only analyzed during
steady-state, this is not so crucial, but the fact is important to remember if the one were to
study the synchronous machine under transient conditions. If transient conditions were to
be studied, it would be desirable to implement a zero-phase digital filter.

2.3.1 Kalman Filter

After discussing noise and how this appears together with the signals in measurements
from the machine, there is a need to discuss solutions for this. A solution for the sepa-
rating random noise signal itself is by the use of a Kalman Filter. The Kalman Filter was
introduced by Rudolf E. Kálmán in 1960, and he solves the problem of separating signal
from random noise with a ”state” point of view [27]. This was done by defining the noisy
measurements to be a discrete sequence instead of a continuous signal. In the model of
estimation the parameters of the synchronous machine used in for this thesis, the Kalman
filter is used as an optimal observer with the primary goal of filtering and correcting mea-
surements by using prior knowledge about the synchronous machine and its parameters.
The following theory presented about the Kalman filter is based on the theory from [28].

The Kalman filter revolutionized the field of estimation, as it can be used to both recon-
struct unmeasured states in addition to removing white and coloured noise from state
estimates. The main approach of the Kalman is to improve the prior estimate by using
measurements. Kalman filtering is used in this thesis model for both as an observer for
the damper winding currents, as there are no measurements for these, in addition to re-
moving noise from measurements.

Consider a basic dynamic system presented as a state-space model:

xk+1 = Akxk + Bk(uk + wk)

yk = Ckxk + vk

The state-space model is given on its discrete form and is the result of sampling a continuous-
time measurements. Here xk is the process state vector at time tk. THe matrices A and B
are known and w is the assumed white noise of the input signal, u. yk is defined as the
vector measurement at time tk and v is measurement error for yk, and is assumed to be
white and having zero cross-correlation with the input noise sequence.
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The covariance matrices of the noise are assumed known and characterized by:

E[wkw
T
i ] =

Qk, i = k

0, i 6= k

E[vkv
T
i ] =

Rk, i = k

0, i 6= k

E[wkv
T
i ] = 0 for all k and i

The process of the Kalman filter can be visualized with fig. 2.4.

Compute Kalman gain

Update estimate with
 measurements

Compute error covariance
 to update estimate

Project ahead

z

x0̂Enter prior estimate
 and its error covariance 

x̂

Figure 2.4: The Kalman filter loop.

First, a a priori estimate, x̂k, is defined, which is an initial estimate of the process at a
given time tk and is based on all the knowledge prior to this time. The estimation for this
a priori estimate is defined as e−k =xk − x̂k, with a covariance matrix is P−k . The next
step is to now update and improve the estimation by using the measurement, yk and the
blending factor, Kk. The blending factor, Kk, is computed in order to minimize the es-
timation error and tells the system how much it should rely on measurements contra the
estimate from the Kalman filter.

The updated (a posteriori) estimate will then be:

x̂k = x̂k + Kk(yk −Ckx̂
−
k )
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After this, the a posteriori estimate will be used to re-compute the error covariance and
used in the next step to project ahead and predict a new x−k . The algorithm will continue
to repeat itself in the Kalman filter loop that is illustrated in fig. 2.4.

The Kalman Filter presented above is the discrete Kalman Filter, which is the original
Kalman Filter and is the one used for the model in this thesis. However, the Kalman filter
also has a continuous counterpart, as well as an unscented and extended version which
can be used for nonlinear systems.

2.4 Recursive Least Squares algorithm

In addition to noise filtering and state observing, an algorithm for the actual parameter
estimation has to be chosen. Parameter estimation can be defined as the process of giving
a value to a system variable, where the actual value is unknown, based on some criteria.
There are many different methods and algorithms for performing parameter estimation,
such as infinite -norm, and 1-norm, or least-squares estimators. In this thesis, the algo-
rithm chosen is the Recursive Least Squares algorithm due to its fitness and availability
in the System Identification Toolbox of Simulink. The RLS algorithm is good for real-
time settings, where the’ true’ underlying parameters are changing over time [29]. The
RLS algorithm is not so dissimilar to the Kalman Filter, and the former can be considered
a special case of the latter [30]. With perfect knowledge of how the actual system varies,
the Kalman filter provides a natural framework for the estimation [31].

It is well-known that a constant value of this parameter leads to a compromise between
misadjustment and tracking. When the value of the forgetting factor is very close to 1,
the algorithm achieves good misadjustment but poor tracking. [32]

2.4.1 Recursive Least Squares Parameter Equations

Recursive least squares (RLS) is a statistical framework involving a probabilistic treat-
ment of observational errors and was developed by Karl Frederick Gauss in 1809 [33].
In the context of adaptive filtering, the recursive least-squares (RLS) is a very popular
algorithm, especially for its fast convergence rate. Firstly, let’s define an estimate of an
arbitrary parameter as, θ̂t, where the ’hat’ denotes it as an estimation and the subscript,
t, denotes the iteration number. Online recursive identification methods compute the pa-
rameter estimations recursively over time. At iteration t, new observations have become
available and these are used to modify a the estimate, θ̂t−1 which was computed at itera-
tion t− 1.
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Given a linear regression signal model on the form:

yt = ϕTt θ + et, ∀t = 1, 2, ... (2.35)

where yt and ϕt are known signals, θ is the unknown parameters which are to be esti-
mated and et is zero mean value noise of some form.
The most popular approach to deal with time-varying linear regression is to minimize a
cost function:

Vt(θ) =
t∑

k=1

β(t, k)(yk − θTϕk)2

where

β(t, k) =

t∏
j=k+1

λj

and where 0 ≤ λ ≤ 1 is called the forgetting factor. If λ is set to a value smaller than
one, less weight will be given to older observation. The smaller λ gets, the quicker older
observations will be forgotten. The use of the forgetting factor is such that the RLS al-
gorithm can track time-varying parameters, where the true parameter vector varies over
time. It is well-known that a a constant value of the forgetting-factor leads to a compro-
mise between misadjustment and tracking. When the value of the forgetting factor is very
close to 1, the algorithm achieves good misadjustment but poor tracking. [32] The algo-
rithm aims to minimize the error between the observed and predicted outputs.
The general algorithm for recursive least squares that minimizes the cost function is writ-
ten as follows in eq. (2.36).

θ̂t = θ̂t−1 + Ltεt (2.36a)

Where the error of the approximation, ε is given by

εt = yt − ϕTt θ̂t−1 (2.36b)

The gain vector Lt is given by

Lt =
Pt−1ϕ

R̂2tϕT (t)Pt−1ϕt
(2.36c)
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and the matrix P(t) is updated by

Pt = Pt−1 −
Pt−1ϕtϕ

T
t Pt−1

R̂2t + ϕTt Pt−1ϕ(t)
+ R̂1 (2.36d)

Where R̂1 and R̂2 are the covariance matrices of the white Gaussian noise to θ0 and
y, respectively The term εt is interpreted as the prediction error, and is the difference
between observed sample, and the predicted value. If this value is small, the estima-
tion is good, and does not need to be modified much. The important issue on choosing
the initial values, P0 and θ̂0, for the RLS algorithm will be revisited later in the thesis.
Throughout the rest of the thesis, the following notation will be used:

Table 2.6: Notation for RLS parameters used in thesis

θ The ’true’ value for a given parameter
θ̂t The estimation of the given parameter
θ0 The ’true’ initial condition of a given parameter
θ̂0 The estimation of the initial condition of a given parameter
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Method and model

3.1 Creation of a State-Space Representation

The synchronous machine model is assumed to be a linear time-invariant system, mean-
ing its parameters are constant and independent of time. The state-space-equations are to
be written on the form shown in eq. (3.1).

ẋ(t) = Ax(t) + Bu(t) (3.1a)

y(t) = Cx(t) + Du(t) (3.1b)

Where the vectors, x,y, and u, are the states, outputs, and inputs, respectively.

By looking at eq. (2.23) it would be natural to assume y= x= [id, iq , i0,if ,iD,iQ]T and
u= [vd, vq , v0, vf , vD, vQ]T and thereby A= -L−1smRsm, B= L−1sm, C= I and D= 0.
However for control purposes, the input vector is chosen to be u= [id, iq , i0, vf , vD,
vQ]T , as these are all affected by external factors. The currents are defined by the load of
the machine, vf is given by the excitation system and vD and vQ are zero as the damper
windings are short-circuited. The output vector will then be defined as y= [vd, vq , v0, if ,
iD, iQ]T .

Before completing the state-space, it is helpful to define a star-connected dummy load
of Rdl=104 pu that is connected to the voltage terminals. As Rdl is so large, the voltage

27



Chapter 3. Method and model

drop across the resistance can be neglected.
The stator voltages in the rotor reference frame can then be expressed as:

vd = Rdl(id − idt) vq = Rdl(iq − iqt) v0 = Rdl(i0 − i0t)

Equation (2.23) can then be written as eq. (3.2) and the state space can be expressed as
eq. (3.3), as obtained in [6].



Rdlidt

Rdliqt

Rdli0t

vf

0

0


=

Rsm,dl︷ ︸︸ ︷

R+Rdl ω(Laq + ll) ωLaq

−ω(Laq + ll) R+Rdl −ωLad −ωLad
R+ 3RN +Rdl

Rf

RD

RQ





id

iq

i0

if

iD

iQ



− d

dt



Lad + ll Lad Lad

Laq + ll Laq

L0 + 3LN

Lad Lad + lf Lad

Lad Lad Lad + lD

Laq Laq + lQ


︸ ︷︷ ︸

Lsm



id

iq

i0

if

iD

iQ


(3.2)

u = [Rdlidt Rdliqt Rdlid0 vf 0 0]T

y = [vd vq v0 if iD iQ]T x = [id iq i0 if iD iQ]T

A = −L−1smRsm,dl B = Lsm
−1 (3.3)
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C =



Rdl

Rdl

Rdl

1

1

1


D =



−1

−1

−1

0

0

0



3.2 Observer for damper winding currents

One obvious problem with the state-space representation in eq. (3.3), is that there are of-
ten no available measurements for the damper winding currents iD and iQ, but these ap-
pear in both x and y. This problem can be solved in two ways, either if only steady-state
analysis is to be performed, the damper currents can be assumed to be zero, or a state ob-
server can be created, as done in [10], [34] and [25]. For this model, the latter is chosen
so that the damper winding resistances also can be estimated. By examining eq. (3.2),
it is possible to use the last to rows of the matrix equation to create expressions for the
currents. The state observer generates an estimation of the unknown damper winding
currents as an output. The initial values of iD and iQ are assumed to be zero without loss
of accuracy, which can be proved by the final value theorem.

The expression for the damper windings by rearranging the last two lines of eq. (3.2) can
be written as shown in eq. (3.4).

iD = − sLad
s(Lad) +RD

(id + if ) iQ = − sLaq
s(Laq) +RQ

iq (3.4)

3.3 Calculate Parameters of the Synchronous Generator

The parameter estimation algorithm is created to be performed on a synchronous genera-
tor and in the case of this thesis, a salient pole synchronous generator with five pole pairs
from Voith situated in a German Hydro plant. The data received about the synchronous
generator from the manufacture is a datasheet including the rated data, and the standard
parameters of the machine collected from short- and open-circuit tests. From this rated
data and standard parameters, the electrical parameters that are needed to complete the
state-space representation of the machine, on the form of eq. (3.3), can be calculated.

In addition to the standard parameters, one parameter is wanted, namely the stator leak-
age inductance, to avoid an iterative process when calculating the electrical parameters.
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This parameter represents the amount of leakage flux in the stator of the machine, and
together with the armature inductance, the leakage inductance forms the self-inductances,
Ld and Lq . The leakage inductance value is not traditionally included in the datasheets
of synchronous generators, but for a salient-pole synchronous generator, the typical value
of the stator leakage inductance is between 0.1 - 0.2 p.u [23]. By knowing this, the leak-
age inductance can be initially guesstimated and updated after the parameter estimation.
However, for the machine modelled in this thesis, the leakage inductance is fortunately
known, so the iterative process is avoided.

By the use of the equations eq. (2.25) - (2.34) presented presented in section 2.2.3, it is
possible to calculate the corresponding electrical parameters which are included in the
state space equations of the machine and needed for the parameter estimation, which are
Lad, Laq , Rf , lf , lQ, RD, RQ, lQ.

Initially the electrical parameters were attempted to be calculated from equations (2.25)
- (2.34) by using the Matlab function solve. However, due to small discrepancies and
errors in the standard parameters, there was no solution which made all the equations to
be fulfilled perfectly. Therefore, to be able to calculate the parameters there had to be
done some approximations by making some reasonable assumptions.

The standard parameters can also be expressed with expressions from inspection of the
equivalent circuit. This is done by the introduction of the series inductance Lpl, which
corresponds to the peripheral flux that links the field and the damper and is given by
eq. (3.5).

Lpl = LfD − Lad (3.5)

By the assumption that the rotor resistance, Rf , is zero during subtransient periods and
that the damper resistance, RD, is infinitely large during transient periods. After defining
Lpl, it is also common to assume LfkD =Lad, such that Lpl = 0 [23]. This assumption is
reasonable as the flux linking the damper circuit is almost equal to that linking the arma-
ture, as the damper windings are near the air-gap. The approximate expressions for the
standard parameters for the d-axis can then be written as follows:
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Ld = Lad + ll (3.6)

L′d = ll +
1

1
Lad

+ 1
lf

(3.7)

L′′d = ll +
lDlfLad

Ladlf + LadlD + lDlf
(3.8)

T ′do =
Lad + lf
Rf

(3.9)

T ′′do =
1

RD

(
lD +

lfLad
lf + Lad

)
(3.10)

T ′d =
1

Rf

(
lf +

Ladll
Lad + ll

)
(3.11)

T ′′d =
1

RD

(
lD +

Ladlllf
lfLad + lf ll + Ladll

)
(3.12)

For laminated salient-pole machines, such as the one modelled in this thesis, the only
circuit in the rotor for the q-axis is the damper winding. The expressions for the q-axis
parameters are equal to the ones presented in section 2.2.3 and are repeated here:

Lq = ll + Laq (3.13)

L′′q = ll +
LaqlQ
Laq + lQ

(3.14)

T ′′q0 =
Laq + lQ
RQ

(3.15)

As Kundur [23] shows that the deviation between the accurate and approximate values of
the parameters are insignificant for the parameters, the approximate equations presented
above could be used to calculate the parameters.

Firstly the mutual inductances, Lad and Laq , were calculated by the use of eq. (3.6) and
eq. (3.13), respectively. Secondly the leakage inductance of the field winding, lf , could
also computed by the means of eq. (3.7). Rf could then be computed from eq. (3.9).
Lastly, the damper inductances and resistances of the d- and q-axis, lD, lQ, RD and RQ,
are calculated by eq. (3.8), eq. (3.14), eq. (3.10) and eq. (3.15), respectively. The only
equations not used to calculate a parameter is then eq. (3.11) and eq. (3.12), but since all
parameters included are known, they could be used to validate values.
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One important thing to notice is that the equations above of the standard parameters are
valid when using the pu-system introduced by Kundur in [23], but not for all pu-systems.
Before the pu values from the equations above can be used in the model, they have to be
converted between the two pu-systems presented in section 2.2.

3.4 Simulink Model

After the parameters and pu-bases are calculated, the model of the machine can be im-
plemented in Simulink. The model built in Simulink is based on the model which Erick
Alves created for his master thesis, [6]. A brief explanation of the model implemented in
MATLAB and Simulink is presented in this section.

3.4.1 Testing Parameter Estimation using real data

A goal of this master thesis was to validate the parameter estimation algorithm with the
use of actual data from a generator, not only data produced by a Synchronous Machine
block from Simulink as done in [6] and [5]. The goal of the algorithm is to correctly esti-
mate the standard parameters of the machine given in the datasheet. If this is successful,
the algorithm could possibly be used to track generator parameters over time to poten-
tially prevent system outages, without ever having to take the machine of the grid.

From Voith, 300 seconds data of phase currents, voltages and in addition, the field cur-
rent and voltage during the steady-state operation was received. This data was collected
and measured without taking the generator off the grid while the generator was running
at rated load. The data had a high-frequency sampling of 2000 Hz.

In addition to the voltages and currents from the generator, information about the rotor
angle, δ, is needed before the parameter estimation can be performed. There are several
ways the rotor angle position can be estimated, some far more complicated than others.
For this thesis, simplicity was preferred, and a PLL was chosen to estimate the rotor an-
gle. This choice was made as the PLL is already readily available in the System Identifi-
cation Toolbox of Simulink.

The measurements of the phase voltages and currents, vabc, and iabc, and field volt-
age and current, vf and if , are uploaded to Matlab and sent to Simulink using a ”from
workspace” block. There were used 30 seconds of measurements starting when the phase
a stator voltage had its zero crossings when the rotor angle is assumed to be zero. The
measurements replace the synchronous machine block from Matlab in the original model.
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3.4 Simulink Model

When using actual measurements, there is now neither necessary nor wanted to add ex-
tra noise or re-sampling. The Simulink model using the measurements from the Voith
generator is shown in fig. 3.1.

Figure 3.1: Simulink model using real measurements from a synchronous generator

The measurements are then converted to their per-unit values, using the bases stated in
table 2.2 and table 2.4. The ”PLL”-block takes in the phase a voltage in pu as input and
returns the rotor angle position. The PLL was tuned some, but it was not used an exces-
sive time doing this. The rotor position is then converted from mechanical into electrical
units by eq. (2.1).

The stator phase voltages and currents can now be transformed into the rotor reference
frame using the park transformation explained in section 2.1.2. After this the u, y vector
are created as presented in eq. (3.3). The damper winding currents are then estimated by
use of the observer created eq. (3.4). The vector of u and y can then be fed to the Kalman
filter together with the discretised transfer function of the A, B, C, and D matrices from
eq. (3.3). An additional input to the Kalman filter is the noise covariances Q and R. The
elements of Q and R were tuned some in [6] and [5] and the matrices is presented in
eq. (3.16).
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Q =



0.05

0.05

0.05

0.05

0.03

0.03


R =



0.05

0.05

0.05

0.05

0.05

0.05


(3.16)

The values for Q and R were proven to produce robust results in several load conditions
and values of noise [6]. The Kalman filter is used for state estimation and has x̂ and ŷ

as outputs. x̂ and ŷ, are then together with u sent to the RLS algorithm to perform the
parameter estimation. The RLS-estimator estimates the parameters of Rsm-matrix by as-
suming steady-state of the machine. During steady-state d

dt idq0fDQ= 0, and the equation
of the voltages, eq. (2.23), can be written as shown in eq. (3.17).



vd

vq

v0

vf

0

0


= −



R ω(Laq + ll) ωLaq

−ω(Laq + ll) R −ωLad −ωLad
R+ 3RN

Rf

RD

RQ





id

iq

i0

if

iD

iQ


(3.17)

or in its compact format:

vdq0fDQ = −Rsmidq0fDQ (3.18)

The RLS-estimator use Recursive least squares estimation, as explained in section 2.4.1.
The RLS estimator uses the measurements/estimates of vdq0fDQ and idq0fDQ to provide
an estimate for Rsm. Each element in Rsm is then estimated by its own RLS-estimator
block using the corresponding currents and voltages according to eq. (3.17). The RLS-
estimator block has P0, λ and θ̂0 as inputs, where P0 is chosen as 0.05, λ = 0.998 (corre-
sponding to a memory horizon of 10 seconds), and θ̂0 is set according to the calculated
pu values found stated in table 4.1 and table 4.3. The latter means that θ̂0 is chosen equal
to θ, the true value. The block uses the initial parameter estimate at the beginning of a
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simulation or when the algorithm is triggered by using the reset signal [35].

When steady-state is assumed, it is not possible to estimate Lsm; however, 4 out of 8 pa-
rameters from Lsm are also represented in Rsm. But when Lsm is not estimated, not all
parameters which are included in eq. (2.25) - (2.34) is estimated, thereby not possible to
create complete estimates of the standard parameters. In addition, the stator phase resis-
tance, R, from Rsm is not estimated as it is much smaller than the other parameters and
therefore hard to estimate.

To ensure that the parameter estimation is only performed during steady-state, the RLS-
estimator-block is only enabled when iD and iQ is below a threshold value of 0.005 pu,
which is the value where steady-state is assumed in [6]. If the damper winding currents
are increased above this level, the RLS-estimator is disabled, and the estimation does not
take place. Another important thing to note with this is that when the RLS-estimator is
enabled after being disabled, it is reset to its initial conditions.
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Results

4.1 Specifications of Machine

The synchronous generator which the parameter estimation algorithm is to be performed
on is a salient pole synchronous generator from Voith in a German hydropower plant.
The generator has five pole pairs, and the specifications of the generator are given below
in table 4.1. The standard parameters were given in the datasheet of the machine and are
re-given in table 4.2. The calculated electrical parameters which are included in the state-
space representation of the machine is pretended in table 4.3.

Table 4.1: Machine rated data of the Voith salient-pole synchronous generator

Description Symbol Value
Voltage (line-line) U 21 kV

Apparent effect S 300 MVA
Power factor φ 0.75
Frequency f 50 Hz

Number of poles p 10
Number of phases m 3

No-load field current Ifn 726 A
Stator resistance (per-phase) Rs 5.49 mΩ

Field resistance Rf 128.65 mΩ
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Table 4.2: Standard Parameters for the Voith synchronous generator from datasheet

Reactances Value [p.u]
Xd 1.39
X ′d 0.46
X ′′d 0.44
Xq 0.98
X ′q 0.46
X ′′q 0.77

Time constants Value [s]
T ′do 18.38
T ′d 6.03
T ′′d 0.81
T ′′do 1.14
T ′′q 0.11
T ′′qo 0.42

Additional parameters Value [p.u]
Xl 0.134

Table 4.2 shows the transient and subtransient reactances of the d- and q-axis in addition
to the four principal d-axis time constants and the two q-axis time constants. The stan-
dard parameters presented in table 4.2 rare collected from short-circuit- and open-circuit
tests performed on the machine by the manufacturer. The standard parameter reactance
values are given in their per-unit value with the stator base value equal to the correspond-
ing machine rated values. The time constants are given in seconds.

From the rated data in table 4.1 and the standard parameters in table 4.2, the electrical
parameters that are needed to complete the state-space representation of the machine, on
the form of eq. (3.3), can be calculated. The electrical parameters of the machine are then
calculated by the use of eq. (3.6) - (3.15) and the per-unit values for these are presented
in table 4.3
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Table 4.3: Calculated Parameters

Parameter Description Value [p.u]
Direct axis

Lad Mutual inductance d-axis 1.256
Lfd Leakage inductance field 0.4403
Rfd Field resistance 0.3566e-3
Lf Field inductance 1.6963
L1d Damper winding inductance 4.9878
R1d Damper winding resistance 0.0148

Quadrature axis
Laq Mutual inductance 0.846
L1q Damper winding inductance 2.4073
R1q Damper winding resistance 0.0243

After the electrical parameters are calculated, the state-space model of the synchronous
generator that is used for the parameter estimation can be created using the equations in
(3.3).

4.2 Parameter Estimation with Real Measurements

The measurement data which was received for the synchronous machine from Voith was
300 seconds of phase currents and voltages and field current and voltage during steady-
state of the machine running with rated load. The measurements had a frequency sam-
pling of 2 kHz,

The rotor position of the machine information was unavailable, so this was estimated us-
ing a phase-locked-loop on the per-unit value of the phase a voltage measurements. The
parameter estimation algorithm was performed with a Recursive Least Squares algorithm
using Matlab and Simulink with the setup as presented in fig. 3.1. The parameters which
are estimated are the ones which are included in the Rsm, thus R + 3RN , Rf , Lad, Laq ,
RD, RQ, Xd, and Xq . The initial parameter estimation value of the RLS-block, θ̂0 is
chosen to be equal to the ’true’ value, θ, according to the calculated parameter values
given in table 4.3. The standard parameters are not directly estimated, but can be calcu-
lated from the estimated parameters, in addition to values from table 4.3 for the parame-
ters where the estimation is not available.

One significant problem presented itself after the generator model was created and when
the parameter estimation was to be performed; the measurements of the field voltages
and currents were subject to a large amount of noise which was not white. A sample of
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0.5 seconds of the field voltage is shown in fig. 4.1. This noise was present in all 400
seconds of the data.
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Figure 4.1: Sample of the field voltage of the Voith generator during rated load in per unit showing
the noise of the signal

Figure 4.1 shows the amount of noise present at the measurements of the field voltage. It
can be observed that the field voltage has a slowly varying component of about 1.25 Hz.
An oscillating component of about 333.33 Hz is also present in the measurements. The
same amount of noise was also present at the field current. These components are unde-
sired as in the measurements for field current and voltage, the components of interest are
at or near DC.

[6] shows that the performance of both the algorithm and the Kalman Filter was good
even with high amounts of noise present, with a noise density of 10−9 W

Hz . However, the
noise which was added in [6] was band-limited white noise, and it was added to all mea-
surements. However, the problems with the amounts of noise present in the field voltage
and current in this scenario, was that the noise was not white. It, therefore, presented a
problem of trying to filter out this noise as the Kalman Filter is not able to filter out non-
white noise.

It would at this point have been beneficial if the measurements could be replaced with
measurements with lower levels of noise, but due to the corona situation, this was not
possible. There was made countless attempts of filtering the measurements with both
variations of a low-pass filter, moving-average filter, and manually trying to filter out the
noise based on its frequency by using the mean-block from the Simulink libraries. None
of these attempts resulted in a satisfactory quality, but manually trying to find the noise
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frequency and then filtering out these with high-frequency components of the signal by
using ”mean”-block in Matlab appeared to give a not good, but yet best result.

A problem with noisy field current measurements was that this also resulted in noisy
observations of the damper winding currents. All the measurements from the generator
were collected during steady-state of the machine with a rated load. During steady-state,
both damper winding currents are zero in the dq0-equivalent model. However, due to the
high noise present in the field current, this caused the observer for the damper winding
current on the d-axis to observe a highly oscillating current for the damper windings. The
plot of the d-axis damper winding current is shown in fig. 4.2.
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Figure 4.2: Sample of the observed d-axis damper winding current of the Voith generator during
rated load. Showing the signal is clearly affected by noise.

Figure 4.2 shows that the d-axis damper winding current is affected by large amounts of
noise and is oscillating with a high frequency with values from -0.5 to 0.5 pu. The os-
cillations in the d-axis damper winding current are due to it being a function of the field
current as can be seen by eq. (3.4). A problem associated with this was that the machine
is assumed to be in steady-state with values of the damper windings currents between
-0.005 pu and 0.005 pu. If the values are outside of this range, the RLS-algorithm is dis-
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abled and reset to its initial conditions. The RLS-block then remains disabled until the
currents again were below ± 0.005 pu.

The noise in the damper winding current therefore created the problem that the oscillat-
ing value kept disabling and enabling the RLS algorithm frequently giving a highly oscil-
lating value for θ̂. This problem is illustrated with the results of the parameter estimation
from the RLS algorithm, shown in fig. 4.3.

Figure 4.3: First ten seconds of the parameter estimation from the RLS-block by using noisy mea-
surements from a real generator at rated load.

Figure 4.3 shows how the parameter estimates, θ̂, from RLS parameter are affected by
large amounts of oscillation during the simulation. This is due to the RLS-algorithm be-
ing reset, thereby making the value of θ̂ again equal to the ’true’ value of θ0.

The conclusion from the parameter estimation was that the quality of the field current
and voltage was so low, that it was hard to test the algorithm and evaluate the perfor-
mance of the parameter estimation. The fig. 4.3 shows that the estimation for the pa-
rameters from the RLS algorithm was highly oscillating for all parameters and it did not
appear to be converging to the real value even with longer simulation time.
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4.2.1 Parameter Estimation with Damper Winding Currents Set to Zero

To avoid the problem of the oscillating damper winding current shown in fig. 4.2, the
same simulation was performed as explained above, only with the damper winding cur-
rents set to zero. The results from the parameter estimation for this is shown in fig. 4.4.

Figure 4.4: First ten seconds of error in parameter estimations from the RLS-block of estimating
the parameters of the synchronous generator using data from real measurements while damper
winding currents set to zero.

Figure 4.4 shows how the algorithm fastly gets unstable, and the error for the estimation
of R + 3RN grows approximately exponentially and diverge. As shown in eq. (3.17), the
parameter R + 3RN is estimated from by the zero-sequence current and voltage, i0 and
v0, respectively. The instability in the parameter estimation can be caused by rounding
errors in the RLS algorithm, which is generally the main cause of instability of the al-
gorithm. The rounding errors are caused by the errors being summed over time and then
causing rapid growth of error [36]. Therefore, if the estimations from the Kalman Fil-
ter of i0 and v0 are affected by noise, the algorithm can get unstable and then diverge as
t→∞. h
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The other parameters, except the damper winding resistances, had large, but even devi-
ations. The estimations quickly deviated from the initial conditions and stabilized with
a deviation of about 100%. The small error in estimations of the damper windings re-
sistance is not caused by a good estimate, but rather that the estimations are not updated
from the θ̂0 as the damper winding current is manually set to zero.

The percentage deviation in the estimated parameters from the RLS algorithm after the
same simulation has run for 30 seconds is presented in table 4.4.

Table 4.4: Error deviation given in % from datasheet values for the parameter estimation from
RLS after 30 seconds of simulation. Data from real measurements from generator during rated
load, and damper winding currents set to zero.

Electrical parameter Error in % deviation from actual value
Rs + 3RN 25010

Rf -102.32
Lad -103.23
Laq 711.42
RD 0.002
RQ 0.002
Xd -100.78
Xq -101.13

Table 4.4 shows that the percentage error in the Rs + 3RN estimate continued to grow
and shows no sign of converging. The error in the Laq-estimate also showed tendencies
to diverge as it continued to grow during the 30 seconds of simulation. The other estima-
tions, except for damper winding resistances, stabilized at a error of about -100% early in
the simulation, which can also be observed by table 4.4.

Additionally, estimations of the standard parameters are calculated by using eq. (2.25)-
(2.34) and the estimated parameters from RLS. The estimations of the standard param-
eters are calculated by using eq. (2.25)-(2.34). The RLS-blocks estimates the parame-
ters given in the Rsm matrix. However, there are more parameters which are included in
the equations than these. Only four out of the eight parameters in the Lsm-matrix is es-
timated. The standard parameters are calculated by using estimated parameters for the
ones included in Rsm and ’true’ values for the others.

43



Chapter 4. Results

Table 4.5: Estimations of Standard Parameters given in % from datasheet values. Calculated from
the estimated parameters from RLS, after 30 seconds of simulations, using measurements from real
generator during rated load with damper winding currents assumed zero.

Standard parameter Error in % deviation from datasheet value
from datasheet value

Xd 100.78
X ′d 80.58
X ′′d 79.789
T ′do 1125.7
T ′′do 11.386
T ′d 3090
T ′′d 7.7768
Xq 101.13
X ′′q 152.14
T ′′q0 171.49

Table 4.5 shows that none of the standard parameters is estimated satisfactory, and they
all have large deviations from the datasheet values. Besides, when the damper winding
currents are set to zero, only five of the parameters included in the equations for the stan-
dard parameters are estimated. The other parameters, Lfd, L1d, L1q , R1d, R1q , are not
estimated and the ’true’ value was used so that the standard parameters could be calcu-
lated.

4.3 Back to the ”Synchronous Machine”-block

As the data proved to be unsatisfactory and the filtering was not as successful as hoped, it
was decided it was pointless to continue forward with the same measurements. A goal of
this master thesis was to perform a sensitivity analysis on the RLS algorithm to find out
how sensitive it was to changes in the parameters. For example, it would be beneficial
to know how the algorithm reacted if the mutual inductance deviated from its datasheet
value. A sensitivity analysis would be pointless to perform on the measurements as it
would be impossible to evaluate the results.

For this reason, it was decided to go back to the previous Simulink model used in [6]
and [5]: Here, the measurements of vabc, iabc, uf , and if is generated by a synchronous
machine from the SPS library connected to an RL-load. The RLS-algorithm needs an
initial estimation for the parameter, θ̂0 as a starting point for the algorithm. In [6], [5],
and, in addition, previously in this thesis, θ̂0, was chosen equal to the true value of the
parameter itself, θ. This is an unrealistic scenario, as in reality, the value of θ is unknown,
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or else there would be no need to try to estimate it. It would, therefore, be interesting to
explore how depended the RLS algorithm is on the value of θ̂0, and if ˆtheta would con-
verge towards θ even if θ̂0 deviated from θ. The sensitivity analysis was performed by
changing the value of θ̂0 away from θ. After this, the error between θ̂ and θ was evalu-
ated. By this analysis, it can see how much the parameter estimation algorithm relies on
the measurements versus the initial condition. The sensitivity analysis was performed by
having θ̂0 deviate ± 5 and 10 % from θ.

The parameters estimated by the RLS algorithm are the ones present in the Rsm matrix,
and the standard parameter is recalculated by the use of these estimations. As the sensi-
tivity analysis focuses on the RLS algorithm, and not the filtering and Kalman filter, all
the simulations were performed without the addition of noise to the measurements from
the synchronous machine model. Zero noise is not realistic, as there will always be noise
present in the measurements from a machine. However, as the performance of the RLS
algorithm is to be evaluated, it was decided that it would be easier to analyze the results
without the presence of noise.

4.3.1 Sensitivity analysis

The simulations were performed using the same Simulink model that is presented in
fig. 3.1. However, instead of the real measurements, the measurements were provided
by a ”synchronous machine”-block from the SPS library. The synchronous machine from
Simulink was modelled to be equal to the generator presented previously in this chapter,
in table 4.1. The RL-load connected to the machine was equal to the specified rated load.
The simulations run for 60 seconds, to let the RLS algorithm converge to a value before
the error in the parameter estimation was calculated. The simulations were all performed
in the same manner, but with different values for the initial parameter estimation, θ̂0. In
this section five cases are presented for different values of θ̂0, and the specification for
the cases are listed below.

1. Case 1: Basecase: θ̂0 = θ

2. Case 2: - 5% deviation: θ̂0 = 0.95 θ

3. Case 3: 5% deviation: θ̂0 = 0.95 θ

4. Case 4: -10 % deviation: θ̂0 = 0.9 θ

5. Case 5: 10 % deviation: θ̂0 = 1.1 θ
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4.3.1.1 Case 1: Basecase: θ̂0 = θ

The first scenario is the basecase, where the RLS-estimator was given the true value of
the parameter as the initial condition. This case is used to validate the performance of
the algorithm, and to have a reference for other cases. The results of the errors from the
parameter estimation for this case is presented in fig. 4.5.

Figure 4.5: Errors of the parameter estimation for the basecase with θ̂0 = θ in the RLS algorithm.
Measurements from ”Synchronous Machine”-block running on rated load during steady-state.
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Table 4.6 shows the errors in the standard parameters calculated from the estimated pa-
rameters from the RLS algorithm.

Table 4.6: Error given in % of the estimated standard parameters compared to datasheet values.
Standard parameters are calculated using the estimated parameters from the RLS-algorithm with θ̂0
=θ. Measurements from ”Synchronous Machine”-block running on rated load during steady-state.

Standard parameter Error deviation [%]
from datasheet value

Xd 0.051674
X ′d 0.020095
X ′′d 0.01851
T ′do 0.76181
T ′′do 0.036554
T ′d 1.7592
T ′′d 0.038139
Xq 1.6888
X ′′q 0.00013111
T ′′q0 0.0017783

Figure 4.5 shows that the RLS algorithm estimates the parameters of the machine with
minimal percentage deviations, whose values are in line with those achieved in [6]. The
standard parameters are also calculated from the estimated parameters and give very
small errors, as can be seen in table 4.6.

4.3.1.2 Case 2: θ̂0 = 0.95 θ

The second case was performed in the same manner as the basecase, except the initial
parameter value given to the RLS-estimator was chosen equal to 0.95θ. The errors from
the parameter estimation is given in fig. 4.6 for the estimated parameters and in table 4.7
for the standard parameters.
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Figure 4.6: Errors of the parameter estimation for the basecase with θ̂0 = 0.95θ in the RLS algo-
rithm. Measurements from ”Synchronous Machine”-block running on rated load during steady-
state.
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Table 4.7: Error given in % of the estimated standard parameters compared to datasheet values.
Standard parameters are calculated using the estimated parameters from the RLS-algorithm with θ̂0
= 0.95 θ. Measurements from ”Synchronous Machine”-block running on rated load during steady-
state.

Standard parameter Error deviation [%]
from datasheet value

Xd - 5.7287
X ′d - 0.65332
X ′′d - 0.60212
T ′do -1.7405
T ′′do 5.2439
T ′d 1.6862
T ′′d 5.2981
Xq - 1.6922
X ′′q 3.0874
T ′′q0 3.8965

Figure 4.6 shows by giving the RLS-estimator an incorrect value for θ̂0 this resulted in
almost the same error in the estimation of the parameters. The exception is for Rf , which
converged to its actual value. Table 4.7 shows that the errors in the calculated standard
parameters was considerably increased compared to table 4.6.

4.3.1.3 Case 3: θ̂0 = 1.05 θ

The third case was performed with the initial parameter value equal to 5 % larger than
the true value. The errors of the parameter estimation for this value of θ̂0 in the RLS al-
gorithm is presented in fig. 4.7. Also, the deviation in the calculated standard parameters
compared to the datasheet values is listed in table 4.8.
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Figure 4.7: Errors of the parameter estimation for the basecase with θ̂0 = 1.05θ in the RLS algo-
rithm. Measurements from ”Synchronous Machine”-block running on rated load during steady-
state.

Table 4.8: Error given in % of the estimated standard parameters for Case 3:θ̂0 = 1.05 θ

Standard parameter Error deviation [%]
from datasheet value

Xd 5.832
X ′d 0.58244
X ′′d 0.53622
T ′do 3.2642
T ′′do 4.6774
T ′d 1.828
T ′′d 4.7212
Xq 1.6854
X ′′q 3.0078
T ′′q0 3.522

The interesting result can now be observed as fig. 4.7 and fig. 4.6 appears to be almost
mirrored about the x-axis, as the results from the third case give the same deviation in
parameter estimation but with switched signs. This is true except for the estimation for
Xq , which had a consistent error in both cases, equal to the error in the basecase.
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4.3.1.4 Case 4: θ̂0 = 0.90 θ

The fourth case was performed with θ̂0 = 0.90 θ, and the results from the parameter esti-
mation is shown in fig. 4.8 and table 4.9.

Figure 4.8: Errors of the parameter estimation for the case 4 with θ̂0 = 0.9θ in the RLS algorithm.
Measurements from ”Synchronous Machine”-block running on rated load during steady-state.

Table 4.9: Error given in % of the estimated standard parameters for Case 4:θ̂0 = 0.9 θ

Standard parameter Error deviation [%]
from datasheet value

Xd -11.509
X ′d -1.3196
X ′′d -1.2169
T ′do -4.2429
T ′′do 11.027
T ′d 1.6084
T ′′d 11.142
Xq -1.6956
X ′′q 6.257
T ′′q0 8.224

Figure 4.8 shows how the error in the parameter estimation for R + 3RN , Lad, Laq , RD,
RQ and Xd increased as θ̂0 deviated farther from the true value.
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4.3.1.5 Case 5: θ̂0 = 1.1 θ

The fifth and last case was performed with θ̂0 being 10% larger than the true value and
the results are given in fig. 4.9 and table 4.10.

Figure 4.9: Errors of the parameter estimation for the case 4 with θ̂0 = 1.1θ in the RLS algorithm.
Measurements from ”Synchronous Machine”-block running on rated load during steady-state.

Table 4.10: Error given in % of the estimated standard parameters for Case 5:θ̂0 = 1.1 θ

Standard parameter Error deviation [%]
from datasheet value

Xd 11.612
X ′d 1.1565
X ′′d 1.1565
T ′do 5.7665
T ′′do 8.9651
T ′d 1.8928
T ′′d 9.0481
Xq 1.682
X ′′q 5.9396
T ′′q0 6.7255

Another interesting fact showed in the sensitivity analysis, is that the estimations for Rf
and Xq seems to be largely insensitive to changes in θ̂0, while the others showed devia-
tions. The error for the estimations of Rf and Xq stayed in line with the ones presented
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in the basecase.

4.4 Tuning of Algorithm

The results from the sensitivity analysis and the changing of θ̂0 showed that an error be-
tween θ̂0 and θ0 produced the same error in the estimation of θ for most of the estimated
parameters. The reason for this could be that the RLS-estimator trusted the initial param-
eter estimation too much and thereby not letting the new measurements update the esti-
mation. This unfortunate tendency is desired to be corrected so that the RLS-estimator
would converge to the correct value of θ. To correct this, the two other block inputs of
the RLS-estimator block, namely λ and P0 , was attempted to tune separately. The results
after the tuning are presented in section 4.4.1 and section 4.4.2.

4.4.1 Tuning of Forgetting Factor, λ

There are multiple variables which affect the final value of the parameter estimation, but
one important one is the forgetting factor. Due to the forgetting factor, older observations
will have a smaller influence than newer ones. [31].

The forgetting factor is closely related to the memory horizon and this term is defined as:

Tλ =
1

1− λ
= fsTm (4.1)

As the memory horizon is a more physical term, it is convenient to write the forgetting
factor as a function of the memory horizon:

λ = 1− 1

fsTm
(4.2)

The memory horizon was initially chosen to be 10 seconds, which gives a λ = 0.998.
A larger memory horizon leads to a larger forgetting factor and vice versa. The smaller
that λ is, the more sensitive the filter is to recent samples, as the previous samples have
a smaller contribution to the covariance matrix. A λ=1 corresponds to infinite memory.
The forgetting factor, λ is usually chosen between 0.98 and 1 [37].

An initial guess was that by reducing the memory horizon, the algorithm would rely less
on the initial value and rely more on the measurements. It would thereby give more ac-
curate estimation even with deviations in the initial values. There were performed several
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rounds of simulation with different values for the memory horizon, but no improvement
of the parameter estimation was achieved. It was however noticed that too small values
for the memory horizon (shorter than 2 seconds) led to an unstable algorithm.

4.4.2 Tuning of the Initial Parameter Covariance Matrix

Another user input to the RLS-block is the initial value for the parameter covariance ma-
trix, P0. The value P0 is chosen based on the knowledge of the parameters at the start-
ing time. If the knowledge is vague, a high value is to be expected.

The choice of the initial values is paramount in the real-life application of RLS schemes.
If P0 is small, the value will not change much from the in ital values, but if P0 is large,
the next estimation will quickly jump away from the initial value. Without prior knowl-
edge, it is common knowledge to choose P0 to a’ large number’ [29].

The value for P0 was initially chosen to be 0.05, and equal for all RLS-blocks. The
value of P0 will not be equal for all machines and should be adjusted according to the
knowledge of the parameters. For this reason, it is also natural to increase the values of
P0 as the knowledge of the parameters is decreased, when the value of θ̂0 deviated far
from θ0.

The value for P0 was tuned in an ad-hoc manner, were θ̂0 had a +10% deviation from
the true value. It was quickly observed that a larger value of P0 decreased the error in
the parameter estimation, bringing the estimated value closer the actual value. It was
thereby showed that the RLS algorithm depended less on the initial value. It was also
observed that a too large value for P0 gave a too large jump in the parameter estimation,
and caused instability.

The best result was achieved with P0 = 25, a value hundred times larger than the original
value used in [6] and [5]. The error from the parameter estimation and the estimation of
the standard parameters are shown in fig. 4.10 and table 4.9.
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Figure 4.10: Errors of the parameter estimation after tuning P0 with θ̂0 = 1.1θ in the RLS algo-
rithm. Measurements from ”Synchronous Machine”-block running on rated load during steady-
state.

Table 4.11: Standard Parameter estimation with 10% larger parameters.

Standard parameter Error deviation [%]
from datasheet value

Xd 0.81826
X ′d 0.81826
X ′′d 0.05962
T ′do 1.0934
T ′′do 2.839
T ′d 1.7555
T ′′d 5.833
Xq 0.5908
X ′′q 1.7396
T ′′q0 1.7067

The comparison of fig. 4.10 and 4.9 to fig. 4.9 and 4.10, respectively, shows that with a
larger value of of P0, the error in the parameter estimation has significantly decreased
for all values except R + 3RN . There attempted to change the value of P0 for this RLS-
block independently, but the estimation did not improve.
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Figure 4.11 highlights how the algorithm manages to converge the estimate to the correct
value even with an initial error of 10%, illustrated with the estimation for the parameter,
Lad.

Figure 4.11: Errors of the parameter estimation of Lad after tuning P0 with θ̂0 = 1.1θ in the
RLS algorithm. Measurements from ”Synchronous Machine”-block running on rated load during
steady-state.

Figure 4.11 shows how the parameter estimation of the mutual inductance on the d-axis,
Lad, starts with an initial error of 10%, but after about 25 seconds this error is approxi-
mately zero without any overshoot. The rise time of the estimation is 3.6 seconds, where
the rise time is specified as the time the algorithm has gone from a 9% to a 1% error in
the estimation.
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Discussion

5.1 Results using real data

The main goal of this master thesis was to validate the parameter estimation model cre-
ated in [6] with measurements collected from real a real power plant. The concept of
the algorithm is to use these measurements to improve upon manufacturers parameter
estimation for synchronous machine parameters. Early simulations of the algorithm,
presented in section 4.2, by using data from a real generator, however, revealed large
amounts of noise present in the measurements of the field voltage and currents. The
noise-corrupted data resulted in extremely poor parameter estimation. There was made
several attempts of trying to filter out the noise, but in fear of wasting to much time and
with the risk of not achieving good results from filtering, the measurements were put
aside. Filter design was out of the scope of the thesis, and filtering techniques were ini-
tially not thoroughly investigated. There could be ways to design a filter which made the
measurements useful for testing of the algorithm, even as this was not achieved in this
thesis.

The main disadvantage of the RLS is the fact that the noise model, for which unbiased
estimates are obtained, is very unrealistic in practical situations since, in general, the dis-
turbance is not just white. [26]

The noisy measurements, however, reveal the problem of the algorithm not being able to
handle non-white noise. In [6] is was proved that the algorithm could handle white band-
limited noise, but real measurements often include noise which is not perfectly white. In
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general, generating stations are well known for poor electromagnetic interference envi-
ronment [25], but the results suggested that the estimator accuracy could be improved
by the designing of effective filters. A possible extension of the algorithm would, there-
fore, be to handle a larger selection of noise. Besides, it would be helpful if the algorithm
could detect and reject bad measurements, such as the reliability of the results would be
improved.

5.1.1 Leakage inductance

Another thing which can be discussed which was briefly mentioned previously is the
subject of the leakage inductance. When calculating the parameters of the machine used
in this thesis, the actual value for the leakage inductance was used. However, there are
not many instances where the knowledge of the synchronous generator is as great as in
this thesis, and the leakage inductance is often unknown. If it is not known, it has to be
estimated together with the other parameters, which adds more uncertainty to parameter
estimation.

5.2 Sensitivity analysis

The sensitivity analysis performed in section 4.3.1 presented the problem of the algo-
rithm seemed to rely too much on the input of the initial estimate for the parameter,
namely θ̂0. All the four cases gave the same result of a deviation in θ̂0 from the true value
almost exclusively resulted in the same error in the parameter estimation. The reason for
this is suspected to be a poorly tuned RLS algorithm for this specific machine, and this
assumption is proved to be correct as the tuning of the P0 later showed good improve-
ment in the parameter estimation. As the algorithm showed that it would converge to-
wards correct value of θ even with errors in θ̂0, this implies that the algorithm could be
able to detect faults within few seconds. Therefore, the continuous tracking of the pa-
rameter values could give the companies the opportunity to foresee generator failures and
possibly avoid outages.

5.2.1 Tuning of algorithm

The results in section 4.4.2 shows that the parameter estimation considerably improved
by the tuning of the initial parameter covariance matrix. There is good reason to believe
that by continuous tuning, a better value could be found. Also, the values for P0 should
possibly have been tuned separately to find the optimal value. Additionally, there exist
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more convenient and methodical ways of tuning the algorithm, as the tuning-method was
quite time-consuming.

There was, also suspected that tuning of the forgetting factor would have improved upon
the estimation, but this effect was not achieved. The reasons for this is not straight for-
ward, but can be due to a couple of reasons; One being that the forgetting factor remained
constant through the entirety of the estimation, and other that; λ and P0 were tuned inde-
pendently. The idea to adjust λ has been proposed in [38], and in [39] showed how a way
for the forgetting factor to be selected optimally and that this resulted in an algorithm
which was less sensitive to noise while the tracking ability was well retained. There is
also a possibility that the tuning of λ in combination with the tuning of P0 would have
given favourable results.

A problem with the tuning of the algorithm for each machine is that it is much easier to
perform the tuning of the algorithm when the correct value of the parameter is known.
This way, the performance of the algorithm could always be evaluated, and the tuning
could be performed until a satisfactory result for the parameter estimation was received.
This is often not the case, as when performing the parameter estimation on an actual ma-
chine, the true value is not known, and if it were, there would be no point for the param-
eter estimation. When the true values of the parameters of the machine at an operating
point are unknown, so it is not possible to derive any definite conclusions about the ac-
curacy of the estimation. This fact also makes it hard to verify the algorithm, as the per-
centage deviations from the manufacturer’s values of the parameters cannot be used to
validate or reject the proposed method.

The parameter estimation algorithm in total has a lot of complexity. In total, there is
plenty of parameters which should be tuned, from the multiple parameters in the Kalman
Filter to the RLS algorithm. Besides, to receive a good parameter estimation, a great deal
of knowledge has to be known about the system, both the algorithm and the machine
itself. Even though the extensive tuning of the algorithm for each machine could be cum-
bersome, from section 4.4.2, there is reason to believe that good tuning can give good
estimations even if the knowledge about the parameters is not perfect.
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Chapter 6
Conclusion and Future Work

6.1 Summary and Conclusion

The focus for this master thesis was to continue the work performed this last fall in [5]
and the master thesis of Erick F.Alves in [6], on the online parameter estimation of syn-
chronous machines. A natural continuation of the previous work was to modify the model
to validate the algorithm using current and voltage measurements from a real synchronous
generator available without taking the machine out of service. The data used to test the
algorithm was from a ten pole salient-pole synchronous generator from Voith situated in
a German hydropower-plant. Naturally, the first step was to use the rated data of the ma-
chine in addition to the standard parameters from the datasheet to define the resistances
and inductances to be able to create an accurate model of the machine. The electrical
parameters were calculated using the equations presented in [23]. A good part of the ef-
fort in this thesis was put into understanding the equations and parameters of the syn-
chronous generator, where the pu system, not surprisingly, proved to be a very confusing
element of this. After all the per-unit values for the generator was calculated, the state-
space equations for the machine could be created according to eq. (3.3). The next step
was to create the Simulink model, which uses the current and voltage measurements to
create an estimate for the machine parameters. No measurements of the rotor position, so
the angle was estimated using a phase-locked-loop Controller, or a PLL. The parameter
estimation was performed by using a Kalman filter for noise filtering and the Recursive
Least Square algorithm to each estimate the parameters: R + 3RN , Rf , RD, RQ, Xd,
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Xq , Lad, and Laq .

However, one significant problem stopped the validation of the algorithm using real data,
and that was the presence of large amounts of nonwhite noise in the measurements of
the field current and voltage. There was attempted several methods for filtering the mea-
surements, but all proved to be unsatisfactory. The results from the parameter estimation
using the noisy measurements gave large deviations compared to the datasheet values. As
the noisy measurements lead to high oscillations in the observation of the damper wind-
ing currents, the parameter estimation was also performed by setting the damper winding
currents to zero in the model. However, this lead to instability of the RLS algorithm for
both R+3RN and Laq . The algorithm did not give a good estimation for any of the other
parameters either.

Another goal of the master thesis was to perform a sensitivity analysis of the estimation
model and the RLS to find out how the algorithm reacted to changes in the machine pa-
rameters. As the measurements from the real generator proved to be unsatisfactory, it
was decided to rather use measurements generated by a ”Synchronous Machine”-block
in the Simulink library. The sensitivity analysis was performed by introducing an error of
± 5% 10 % to the initial parameter estimation, θ̂0, in the RLS-algorithm, and then evalu-
ating if the estimation is able to converge to the true value. The initial results of the sen-
sitivity analysis showed that an initial error in θ̂0 gave the same error in θ for R + 3RN ,
RD, RQ, Xd, Lad, and Laq . The reasons for this was concluded to be poor tuning of the
RLS-algorithm, making the estimator trusting the initial estimation too much and not up-
dating the estimation with new observations from the measurements.

The next step was to attempt to tune the algorithm by tuning the forgetting factor, λ, and
the initial parameter covariance matrix, P0. The tuning of the forgetting factor showed no
improvements in the parameter estimation as initially suspected, but it was experienced
that a too small value for the factor resulted in instability. However, the tuning of the ini-
tial parameter covariance matrix, P0, led to more success. The best result was achieved
with a P0 equal to 25, which was 100 times higher than the value used for the simula-
tions in section 4.3.1. After the tuning, a better estimation was achieved for all parame-
ters except R + 3RN . The improvement in the parameter estimation caused by tuning P0

comes from its definition. P0 is to be chosen based on how good the initial estimation for
the parameter is, so when the θ̂0 deviated largely from θ, the RLS-algorithm this value
should be increased accordingly. There is also reasons to believe that the parameter esti-
mations could be further improved from the results in section 4.4.2 by a more methodical
tuning.
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6.2 Future Work

• The algorithm is still not able to perform the parameter estimation on a synchronous
generator in real time. A more sophisticated method for testing the algorithm
would be to program the algorithm by using an object-oriented GUI, to be able
to receive measurements directly from the generator, which is done in [25]. By us-
ing this approach, the algorithm would be able to run in real-time, and from there
be used for fault detection and investigating issues of stability and robustness.

• Actually test the algorithm on data from real power plant. Preferably multiple to be
able to validate the method.

• Expand the model to handle the unlinearity of the synchronous machine such that
the parameters of Lsm which are included in the equations for the standard param-
eters also could be estimated.
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