
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Ingrid G
rim

stad
Classification of W

ader Birds' Vocalisations using N
eural N

etw
orks

Ingrid Grimstad

Classification of Wader Birds'
Vocalisations using Neural Networks

Master’s thesis in Electronic Systems Design and Innovation
Supervisor: Guillaume Dutilleux
June 2021

M
as

te
r’s

 th
es

is

Ingrid Grimstad

Classification of Wader Birds'
Vocalisations using Neural Networks

Master’s thesis in Electronic Systems Design and Innovation
Supervisor: Guillaume Dutilleux
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract
Monitoring birds’ activity is an essential part of recognising birds behaviour patterns
and estimating their population size. Doing such monitoring through long time audio
recording enables us to study when a bird vocalises over smaller and longer time windows,
in a way physical monitoring is not adequate. To do such , the Norwegian Institute for
Nature Research (NINA) has recorded 146 days of recordings at known breeding sites
for three less documented birds in Norway: the Jack Snipe, the Spotted Redshank and
the Broad-billed Sandpiper. To help their research, a system was built to detect specific
vocalisations in wav-files.

The system was built using neural networks with supervised learning on self-made training
and test sets, mainly made using NINA’s data. The top-performing solution extracted
spectrograms from the audio data and used a trained 34-layered ResNet model to output
whether or not the desired vocalisations were detected. If detected, the system would
output what bird was detected and the timestamps for the start and end of the detection.

Several tests were done, where the true positive rate (TPR), precision and number of false
positives (FP) were calculated from the number of vocalisations the system found. Two of
the tests used 72 hours of NINA’s data, where one looked at single sound expressions, and
the other looked at longer sound sequences which are the most relevant for monitoring
the birds’ activity. The first test gave a TPR of 87.87% and a precision of 96.56%, while
the second test gave a TPR of 89.19% and precision of 95.64%. When it comes to the
true negative rate (TNR), the first test got a TNR of 99.98%, and the second got a
TNR of 99.97%, while both got a total of 23 cases of FP cases. From the same data, it
was estimated that a human would label with a TPR of approximately 91%. Indicating
that the system with a processing time of four minutes per day of audio using a Geforce
RTX3090 graphics could offer NINA a considerable speed up and similar TPR as a human
could offer.

i

ii

iii

Sammendrag
Monitorering av fuglers aktivitet er viktig for gjenkjenning av adferdselsmønster og
estimering av populasjon. Gjennom monitorering i form av lengre lydopptak er det mulig
for oss å studere når en fugl vokaliserer, i forhold til døgn og sesongvariasjon, på en måte
som fysisk monitorering ikke ville være istand til. For å studere slik oppførsel har Norsk
institutt for naturforskning (NINA) gjort lydopptak som tilsvarer 146 dager med audio
på kjente hekkeområder til de tre fuglene: kvartbekkasin, sotsnipe og fjellmyrløperen.
For å hjelpe til med deres forskning ble det laget et system for å detektere spesifikke
vokalisasjoner i wav-filer.

Systemet ble laget ved å bruke nevrale nettverk og veiledet læring på et selvlagt trening- og
testset, som hovedsakelig bestod av NINAs data. Den mest lovende løsningen transformerte
lydopptak om til spectrogram og brukte et 34 lags trent “ResNet” modell til å si om en
av fuglelydene av interesse var til stede eller ikke. Dersom de var til stedet, ble fuglens
forkortelse, sammen med start- og stopptidspunkt for lydytringen sendt ut av systemet.

Flere tester ble gjort hvor den sanne positive raten (engelsk forkortelse: TPR), presisjonen,
og antall falske positive (FP) ble regnet ut fra antall vokalisasjoner systemet fant. To av
testene brukte 72 timer av NINA sin data. Den ene så på enkle lyduttrykk, mens den
andre så på lengre lydsekvenser, hvor den sistnevnte er mest interessant for studie av
fuglene sin oppførsel. Den første testen gav en TPR på 87.87% og presisjon på 96.56%,
mens den andre testen gav en TPR på 89.19% og presisjon på 95.64%. Når det kommer
til den sanne negative rate (engelsk forkortelse: TNR) hadde det første systemet en TNR
på 99.98% og den andre testen hadde en TNR på 99.97%, mens begge fikk 23 FP tilfeller.
Fra samme data ble det estimert at et menneske ville markert dataen med en TPR på ca
91.0%. Dette tilsier at systemet, som har en prosesserings tid på fire minutter per dag
med opptak når den bruker et Geforce RTX3090 grafikkort kan tilby NINA en betydelig
raskere metode, som har tilnærmet like god TPR som et menneske kan tilby.

iv

v

Acknowledgements

First of all I would like to thank my supervisor, Guillaume Dutilleux, for giving me the
opportunity of working on this project, as well as contributing to some good discussions
and guidance.

I want to thank John Atle Kålås at NINA, for providing data, information and interest
for this project.

Then I would like to thank my close ones for fruitful discussions and support during the
project.

- Ingrid Grimstad

vi

Contents vii

Contents

1 Introduction 1
1.1 The problem . 2
1.2 Previous work . 4

1.2.1 Previous work with NINA’s recordings 4
1.2.2 Other previous work . 5

1.3 This report’s structure and assumed pre-knowledge 6

2 Background material 7
2.1 The birds of interest . 7
2.2 Bioacoustics . 10
2.3 Intro to Machine learning . 12
2.4 Datasets and feature extraction . 12
2.5 Learning types within machine learning 14
2.6 Neural networks . 15

2.6.1 Training the model . 18
2.7 Convolutional Neural networks . 20

2.7.1 The convolutional layers . 20
2.7.2 Pooling . 21
2.7.3 Fully connected layers . 22
2.7.4 Residual neural network . 23

2.8 Transfer learning . 23
2.9 Overfitting and underfitting . 23
2.10 Balanced and unbalanced datsets . 24

3 Methodology 26
3.1 System overview . 26
3.2 A closer look at the data . 27

3.2.1 Public available data . 28
3.2.2 The available data from NINA . 28
3.2.3 The soundscape in NINA’s data 28
3.2.4 Signal to noise ratio for the vocalisations 32
3.2.5 How to utilise each data source 35

3.3 Labelling of the data . 37
3.4 Pre-processing . 40

3.4.1 Segmentation and extraction of the training data 41
3.4.2 Feature extraction . 45
3.4.3 Balancing the training set . 47

3.5 Defining NN structure . 49
3.6 Post-processing of model output . 53
3.7 Software and hardware . 54
3.8 Training the model . 55
3.9 Testing . 57

4 Results 60

viii Contents

4.1 The datasets . 60
4.2 Training curves for the models . 62
4.3 Results from the tests . 66

4.3.1 Test 1 and Test 2 . 66
4.3.2 Test on public available data . 71

5 Discussion 74
5.1 Test 1 and Test 2 . 74
5.2 The third test . 76
5.3 The data and its limitations . 76
5.4 The systems . 78

5.4.1 Processing time and capacity . 78
5.4.2 Comments to how the system was built 79
5.4.3 Is the system able to generalise? 80

5.5 Comparison to other systems . 80
5.6 Usage of the systems . 81
5.7 Future work . 82

6 Conclusion 84

References 85

Appendix 92
A1 Location and time of the recordings . 92
A2 Equipment used for the recordings . 97
A3 Birds in the area . 99
A4 Training data . 103
A5 Code parameters for the system . 105
A6 Data collected from online sources . 108

A6.1 The Berlin museum: . 108
A6.2 Macaulay Library . 108
A6.3 Xeno-canto . 108

Contents ix

Abbreviations
BS Broad-billed Sandpiper

CCN Convolutional neural network

CSV Comma-separated values

FFNN Feed forward neural network

FN False negative

FP False positive

JS Jack Snipe

MFCC Mel-frequency cepstral coefficients

ML Machine learning

NINA Norwegian Institute for Nature Research

NN Neural network

ResNet Residual neural network

SMOTE Synthetic Minority Over-sampling Technique

SNR Signal to noise ratio

SR Spotted Redshank

TN True negative

TNR True negative rate

TP True positive

TPR True positive rate

1

1 Introduction
The world has a rich diversity of animal species, of all kinds of colours and shapes, divided
across the globe. Some live in the hot deserts, while others prefer cold Antarctica or humid
rain forests. A big percentage of the human population lives in buzzing and busy cities,
which is not an ideal habitat for most animal species. This is one of several reasons why
most of us only get to see a small number of species throughout our lifetimes. Looking at
birds specifically, more than 10 600 different species have been documented across the
globe [1] as a result of centuries of studying them [2, 3, 4, 5]. However, some researchers
estimates that there are over 18,043 species in total [6], leaving a world of new discoveries
and information open for us to explore.

Collecting bird data has traditionally been manual labour by professional bird experts
and bird enthusiasts, where they spend time out in the wild observing and taking notes[7].
Fieldwork like this is costly, time demanding and can lead to uncertainties as a result of
human error in the field, without the possibility for others to validate the results. These
errors could be due to lack of concentration, subjectivity and tiredness. The accessibility
of cheap and high quality recording devices has opened up a new way of gathering data
and reducing the effect of human error drastically, making it far easier to gather more
data that can be shared and discussed with experts across the globe.

Nowadays, a microphone can be dropped out in the wild for a longer time period, to do
long-time recordings of animals, also at locations that for long have been hard to reach,
like deep in the ocean [8]. This is enabling us to replay an incident and have it validated
or discussed with peers, leading to higher certainty and quality of data. It also opens
up new doors by giving us the possibility to monitor species over longer time periods
and thereby ask new questions. Nevertheless, with big amounts of data you need ways
processing it. One option is to inspect the audio manually, but this is both inconvenient
and time-consuming in most cases. Another option is to use technology that can help
us process the data. One of these technologies is called machine learning. It has been
around since the ’60s [9], blossoming in the last decade as a result of the breakthroughs of
AlexNet in 2010 [10] and by ResNet 2015 [11], which has lead to even newer methods and
breakthroughs [12]. A way to describe what the technology does is that it uses data to
learn patterns through experience [13]. Machine learning has been shown to be useful
in solving complex problems if applied right [14]. However, good results with machine
learning is heavily correlated with the amount of data available[15], which has driven
people and companies to save and collect data. Some even sell the data they generate
and make a good profit from it [16, 17].

The data machine learning is applied on can be almost anything, from images of pets,
stock marked data, people talking, music or even what you and your friends do on social
media. The need for data to solve difficult problems has inspired the creation of many free,
open-source datasets and databases, made with a common interest in solving these difficult
problems and educate people who want to learn about machine learning. Two examples of

2 1.1 The problem

well-known datasets are the MNIST dataset, which has over 60 000 images of handwritten
numbers between zero and nine [18], and Google Audioset, containing 2,084,320 labelled
sound clips lasting for ten second, taken from Youtube videos [19]. There are also some
databases and datasets that hold pictures, videos or sound clips of birds or other animals
in addition to other sounds [20]. Some are even are dedicated to only animals, examples
on this are the macaulay library[21], and xeno- carton [22]. However, even the worlds
largest public sound database for animals, the Macaulay Library[23], have significant gaps
in the amount and the quality of data it holds for each species. This is especially true for
audio recordings in the database, some species have thousands of examples, while others
have barley any.

All this shows that we have merely gotten started and that there is a lot of work left that
can be done. In an attempt to contribute a step further, this thesis will, in cooperation
with Norwegian Institute for Nature Research (NINA), look into three specific bird species
with limited information about their behaviour. These species are named Jack Snipe,
Spotted Redshank and Broad-Billed Sandpiper.

1.1 The problem
The Norwegian Institute for Nature Research (NINA) wish to know more about wader
birds circadian and seasonal variation in Norway. They are generally interested in getting
to know all of the birds, however, the three birds; Jack Snipe, Spotted Redshank and
Broad-Billed Sandpiper are of particular interest. These three species live mainly in a
specific part of Norway during their breeding season, Finnmarksvidda [24, 25], and are
considered rare in Norway by NINA’s ornithologist John Atle Kålås. This has led to limited
information about these species and their activity in Norway, pointed out in a report
done by NINA in 2013 [24]. To get more information about the birds’ activity during the
breeding season, they have chosen to look at the three birds territorial vocalisations used
for mate attraction, which will be presented in Section 2.1, over a more extended period.

To achieve this, they did audio recordings in Kautokeino, the western parts of
Finnmarksvidda, in June of 2016, 2017 and 2018. A total of eight different locations
has been used as recording site over the three years. An overview of the locations used,
comments about them, and time of recording at each location can be found in Appendix
A1, while the equipment used and pictures of the equipment’s setup can be found in A21.
When adding all audio recordings together, it gives a total of approximately 146 day’s
worth of data 2. All this data would be quite a time demanding to go through manually.
Therefore, NINA soon realised that they had to look into other options to get the job
done, which is how this project was created.

NINA wants to have a system or a tool that can take in the audio recordings (WAV-files)

1The reason why some of the text in these appendixes are blue will be explained in Section 1.3.
2Approximately 29 days recorded in 2016, 96 days in 2017, and 22 days in 2018.

1.1 The problem 3

and give predictions on when one of the three birds has vocalised in the sound file. A
black-box version of such a system is presented in Figure 1.1. The system takes in a
wav-file, processes it, and returns what is called a comma-separated value (CSV) file with
timestamps of when a bird has vocalised. The CSV file as a output format was chosen for
convenience as it is a widely supported format.

Wav-file

CSV-fileThe system

Figure 1.1: A simplified version of the system NINA needs.

To evaluate the system, some minimum requirements are set. First of all, the system
should compute at least a couple of hours of data at a time. In addition, it should be
able to predict whether the birds are present or not better than random. Nevertheless,
the system would have to be evaluated further by NINA before it could be used in their
research. NINA’s main interest is to know if one of the birds of interest has been near the
recorder and at which time of day. Hence, since they mainly need the time of day, one of
the minimum requirements will be to say with a minutes accuracy when a vocalisation
has occurred. Since they are mainly interested in whether the system found a vocalisation,
the system will be tested on whether it found a vocalisation or not, not how accurate a
vocalisation was predicted from start and end.

An important thing to mention is that a similar system was built for detecting the Jack
Snipe as a preliminary project for this thesis, which will be presented in Section 1.2.
Even though a Jack Snipe detector is already built, this thesis will try to make a system
that can be able to detect the Jack Snipe, the Broad-billed Sandpiper and the Spotted
Redshank all together.

Another thing worth mentioning is that even though NINA are generally interested in
having a system that can provide good predictions, their wish is to have as few false
positives as possible. Meaning they would rather have more false negatives than false
positives. The reason why false negatives are not as bad for them is that they already
expect that the recording equipment will not pick up on all vocalisations due to distance,
sound propagation, and the fact that all the three birds are flying while making the
vocalisations of interest, which we will come back to is Section 2.1. Nevertheless, they
view false positives as bad since it requires more supervision of the system and its output.

4 1.2 Previous work

1.2 Previous work
In this section we will take a look at previous work relevant to this project. Section 1.2.1,
will look into two previous project on the Jack Snipe using NINA’s data. Followed by
Section 1.2.2, that will look into some other technical solutions for detecting birds.

1.2.1 Previous work with NINA’s recordings

The first project done on detecting the Jack Snipe’s mating vocalisation using NINA’s
data was the master thesis "ANN for classification of Jack Snipe", written by Maja Sofie
Stava. To accommodate the project, an ontologist from NINA worked through eight days
from one of the locations and labelled 264 Jack Snipe vocalisation. These were divided
into a training and test set used to train and test a convolutional neural network (CNN)
and a long short-term memory(LSTM) network. For preprocessing, the data was divided
into 4-second segments, bandpass filtered from 400 Hz to 2000 Hz and then transformed
into Mel-frequency cepstral coefficients (MFCC) before Dynamic Time Warping (DTW)
was applied. The best result came from a four-layered CNN model, when testing with a
shorter test on 1 hour and 49 minutes containing 22 Jack Snipe vocalisations. The test
gave a true prediction rate (TPR) of 0.88 and a true-false rate (TNR) of 0.91. However, it
was pointed out that longer tests of 9 and 15 hours had been done, where it was concluded
that predictions were more unstable due to windy weather conditions.

Due to non optimal results from the thesis written in 2020, the preliminary project
mentioned in Section 1.1, was created. The project report’s title was "Detection of Jack
Snipe Vocalisation using Neural Networks" [26] and had access to the same data, but did
not use any of Maja S. Stava work. When making the dataset, the eight days with the
264 pre-labelled vocalisations were gone through a second time, leading to 376 additional
vocalisations being found. One of these days, containing 120 vocalisations, were used
for testing, while the rest were used for training. Among the 521 vocalisations left for
training, 20 were removed for being too weak and uncertain. In addition, two additional
test days were labelled from another year than the rest, and from different locations to
give diversity. The final solution for the project contained a system divided into three
parts; a preprocessing step, a trained neural network/model, and a post-processing step of
the model’s data. The first part would take in the wav file, resample it if necessary before
dividing the audio into 1-second segments, and then transform it into RGB spectrogram
images plotted between 0 and 2 kHz. These images would then be sent into an 18-layered
ResNet model, made using pre-trained weights and the dataset. For post-processing, the
output is checked for vocalisations that are three seconds or longer, as these would be
"accepted" as vocalisations. These would then be written to a text file with timestamps
of the start and end of the vocalisations. The final test testing all 72 hours of test data
had approximately 29 minutes of the vocalisation of interest. Out of the 188 vocalisations
the system was able to detect 180, leaving five undetected, giving the system TPR=0.96
and TNR=1.00 [26]. Six of the 188 cases were first found by the model, showing that it
only found 1 case less than a human being.

1.2 Previous work 5

1.2.2 Other previous work

Both within bio-acoustics and machine learning have a tremendous amount of work
been done, so going through it all would not be feasible. Therefore, some examples of
classification of bird vocalisations have been hand-selected to give a feeling of what type
of work has been done before.

The first example is Warblr, an app that can recognise over 80 different British bird species
[27]. The co-founder Dan Stowell published the paper "Automatic large-scale classification
of bird sounds is strongly improved by unsupervised feature learning" together with
Mark D. Plumbley, where they talk about the technology behind Warblr. This indicated
that the app uses unsupervised feature learning in the form of Spherical k-means and
Random forest with raw Mel-spectra [28]. This method requires a large dataset to be
viable. Another example is the smaller app Whatbird, which can recognise 22 different
Norwegian bird species [29]. It is developed by ablemagic, in Norway together with the
help of the Norwegian Ministry of the Environment and Norwegian University of Science
and Technology (NTNU), and has over 35 000 active users [29]. According to a master
student’s, Kristian Selboe, thesis from 2015 the solution consists of or at least consisted
of; using MFCC as features and one Gaussian Mixture Model (GMM) per bird [30].

A third app solution for recognising bird vocalisations is BirdNET, developed by Stefan
Kahl, Shyam Madhusudhana and Holger Klinck [22], in an cooperation between Cornell
Lab of Ornithology and the Chemnitz University of Technology. BirdNET is the name of
the app, a neural network model and the project, which is under the MIT license. The
network supports 984 of the common bird species in North America, and Europe [31].
This includes the three species of interest, which no other public available solution does.
The model is based on a ResNet structure, using spectrograms features as input and is
trained on approximately 80 000 different labelled vocalisations [32].

The last example we will look at is a competition called "Cornell Birdcall Identification"
arranged in 2020 by Cornell Lab of Ornithology [33]. The goal of the competition was
to detect birds vocalising as well as possible, by using data from mainly xeno-canto [22],
and a couple of other sources. The ones scoring the highest did mostly use data features
like MFCC, Mel-spectrogram and spectrogram, in a combination with a supervised deep
learning model [33]. The models mostly were tweaked and newer versions of ResNet,
where some used pre-trained weights, while others trained the models from scratch. In
addition, many of the competitors did use some form of data augmentation.

Of all work mentioned in this section, it is only BirdNET that recognise any of the species
of interest in this thesis, however, it does not solve NINA’s problem described in Section
1.1. Nevertheless, the solution presented in Section 1.2.1 solves the problem of detecting
the Jack Snipe.

6 1.3 This report’s structure and assumed pre-knowledge

1.3 This report’s structure and assumed pre-knowledge
The report is divided into six main chapters: Chapter 1 introduces the problem and
previous work related to it. Chapter 2, "background material", is meant to give a brief
explanation of the theory used and help a reader understand the the rest of the report.
This is followed by Chapter 3 and Chapter 4 presenting how the project was implemented
and the results it has given. Chapter 5 discusses different aspect of the project, what
could have been done differently and future work. The thesis is concluded in Chapter 6.

As this thesis is a continuation of a preliminary project (see Section 1.2.1) some of
the material from the prior report will be relevant. This is especially the case for the
background chapter, as much of the theory remain the same. Therefore are some parts
of the previous report be reused. To provide an proper overview of were larger amounts
of text have been reused directly or it have heavily inspired by the preliminary project
report [26], this text has gotten this colour instead of black.

No prior knowledge of deep learning is assumed, which is why the background chapter
will go through some of the basics within machine learning and neural networks. However,
it can be an advantage to be somewhat familiar with the concept. Nevertheless, it will be
expected to be familiar with basic signal processing, this includes knowledge of how audio
is digitised, how a filter works, what a spectrogram is and what a mel-spectrogram is.

7

2 Background material
This chapter contains ten sections. Section 2.1 contains more information about the three
birds of interest, while the second Section 2.2, will explain some concepts and theory
within bio-acoustics relevant for this project. The rest of the sections will look at different
machine learning related topics; like what machine learning is (Section 2.3 and 2.5),
datasets and feature extraction (Section 2.4), and neural networks (Section 2.6).

2.1 The birds of interest
In this section, we will take a closer look at the three bird species of interest. Figure
2.1 shows a picture taken of each of the birds. The first picture, in Figure 2.1a, shows a
Broad-billed Sandpiper (Limicola falcinellus) standing in moss bog and grass, while the
second one, Figure 2.1b, shows the Jack Snipe (Lymnocryptes minimus) held in hand
by an ornithologist from NINA. The last photo, Figure 2.1c, shows a Spotted Redshank
(Tringa erythropus) nearby the water.

(a) Broad-billed Sandpiper (b) Jack Snipe (c) Spotted Redshank

Figure 2.1: Photos of each of the birds, taken by the ornithologist John Atle Kålås,
from NINA (used in this thesis with permission).

All three birds are waders, also called shorebirds, of the order Charadriiformes[34, 35].
They belong to the family Scolopacidae [34], which has around 90 different species on a
global scale [5, 35]. The three birds we will look at in particular are all migratory species
[34], meaning they will move to different areas throughout the year [36]. Even though
they do not live in the same places all year round, they all breed in Northern Europe and
Russia, in open land areas with marsh and bogs with swampy grounds [37, 38, 39].

All birds have multiple vocalisations [40]. However, what is special about the breeding
season is that the male of each of the three species vocalises a particular vocalisation used
for mate attraction only at this time of the year. It is this particular type of vocalisation
we will be looking at throughout this thesis. There is limited information about the
frequency features of the three species’ mate attraction vocalisations, which is why the
spectrograms (Figure 2.2, 2.3 and 2.4) and the information about them are supplied as a
part of this thesis contribution.

8 2.1 The birds of interest

Figure 2.2 shows a spectrogram of the Jack Snipe’s mate attraction vocalisation lasting
for 10-12 seconds between 500-1500 Hz. This particular vocalisation is often referred to
as sounding like a galloping horse in the distance [41]. The male makes the vocalisation,
where he starts by flying to a higher altitude before he dives down while vocalising from a
height of 50-150 meter, often in a circular or semi-circular like pattern[34, 42].

0 1.5 3 4.5 6 7.5 9 10 12 14
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

Figure 2.2: A spectrogram of the Jack Snipe mate attraction vocalisation.

The second bird we will look at is the Spotted Redshank, which has two different
vocalisations that we are interested in. According to one of the ornithologists at NINA,
John Atle Kålås, the first vocalisation is an alarm call often displayed before the second
one. The second one is the territorial vocalisation used for mating, making it the most
interesting of the two. Figure 2.3 shows an example of both vocalisations, which lie around
2.1-3.0 kHz. However the vocalisations can be found up to 3.6 kHz, which we will come
back to in Section 3.2.4 The first vocalisation (the alarm call) is displayed between 1.5-3.5
seconds in 2.3, while the second one is between 3.5 and 8 seconds. The latter vocalisation
is made while flying in dipping circles from a height of 20 meters down to 6 meters before
it climbs again [34]. The alarm call is included because they are often vocalised sequential,
and NINA wished to detect both vocalisations, for this very reason.

2.1 The birds of interest 9

0 1 2 3 4 5 6 7 8 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000
Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

Figure 2.3: A spectrogram of the Spotted Redshanks vocalisations of interests.The first
type of vocalisation (an alarm call) can be found between 1.5 and 3.5 seconds. The second
vocalisation (the mate attraction vocalisation) can be found between 3.5 and 8 seconds.

The last bird’s mate attraction display is somewhat more difficult. This is because the
Broad-billed Sandpiper has two different mate attraction vocalisations, which can be found
both separated, and together. These vocalisations are made during flight approximately
10-20 meter above the ground [34]. Figure 2.4 shows a spectrogram of both vocalisations.

10 2.2 Bioacoustics

0 1 2 3 4 5 6 7 8 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000
Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

Figure 2.4: A spectrogram of the Broad-billed Sandpipers’s territorial vocalisations
used to mate attractions.Even though only one sound can be seen, the sounds made from
2.1-5.1 second and the 5.1-6.1 seconds appear both together and apart and are therefore
viewed as two separate sound expressions.

The first one start with an "introduction" sound lasting 0.5-1 seconds followed by sound
displayed as dense lines in a spectrogram, between 2.3-4.2 seconds in the Figure 2.4.
Followed by the second vocalisation, which starts around 4.2 and lasts to 5.2 seconds
in Figure 2.4. From Figure 2.4 we can also see that the vocalisation(s) have a broader
frequency bandwidth, in this case between 1.6 kHz and 5.5 kHz, but can in some cases be
stronger and therefore be between 1.5 kHz and 6 kHz.

An important thing to mention is that the spectrograms that are shown in this section
only belong to one individual per species in a specific area. For some species, it has been
documented that a bird, just as humans, can have dialects meaning that their vocalisations
can be somewhat different from one area to the next [43] even though they sound quite
the same. However, no literature was found to support any of the three birds having
or not having any dialects. Another thing that is even more likely to happen is some
variation in the vocalisations due to various effects happening while the sound is travelling
from the source to the received, which we will look closer at in the next section.

2.2 Bioacoustics
When stepping outdoors, one encounter often a sea of different sounds and sound sources
at once, either it is in the city or out on a country side. When adding all the sound
sources produced in a landscape together it forms what is called a soundscape [44].

2.2 Bioacoustics 11

A soundscape can be divided into three main categories; geophonies, biophonies and
anthrophonies [44]. Geophonies are nonbiological nature sounds, such as running water or
wind. Biophonies are sounds produced by living organisms that are not human, like a bird
vocalising or the sound a rattlesnake makes with its tale. Anthrophonies are human-made
sounds, not limited to speech and movement from a human body, but also sounds from
human-made things like cars, planes, windmills, church bells, children’s toys etc.

When making audio recordings in a soundscape, there is often one or multiple sound
sources of interest, often referred to as the signal. The signal could be anything; a dog
bread, cats majoring or sounds made by the wind. Everything else is background noise,
also referred to as ambient noise[45]. The relationship between the signal and noise is
called the Signal-to-Noise ratio (SNR) [46]. The ratio alone does not necessarily give
enough information to tell if the signal is strong or weak, but gives an indication of
how easy it may be to detect the signal. If the ratio is high, it indicates a strong signal
compeared to the background noise, while a low ratio indicates that there might be a lot
of noise present, a weak signal or both.

Before a signal gets to a receiver, the signal has to travel through a medium from the
sender. The signal will then be attenuated due to distance, atmospheric attenuation
and ground effect [47], other effects are considered as negligible. The attenuation due
to distance is not frequency dependent, while this is not the case for attenuation due to
atmospheric attenuation and ground effect. This can therefore change the vocalisation
form it leaves the sender, until it gets to the receiver, affecting how the spectrogram will
look. Another thing to think about is whether a bird is flying while vocalising, like in
the cases presented in Section 2.1, it can lead to the Doppler effect causing the signal to
shift frequency, thereby changing the signal’s frequency range. Another effect to take into
consideration is if a bird is flying below the height of the microphone when it has Plexiglas
plate as NINA’s had during their recordings it could lead to diffraction of the signal.
However, in the case of the three species of interest this does not seem to be a problem as
they all fly above 3 meter while vocalising (see Section 2.1), which is approximately the
hight of the equipment (see Appendix A2). The last effect we will mention is refraction
due to distance from the microphone in heterogeneous medium, can cause the signal to
change direction and thereby end up not reaching a microphone, or end up reaching the it
because of the refraction [48].

However, for the signal to actually be detected by a microphone or another individual
the signal must be strong enough, and not masked by noise. One source of noise can be
wind, which can contribute to high levels of noise. Even a small breeze with a speed of
4 m/s in an open grassland can alone exceed a noise level of 35 dB(A), and accumulate
a noise level between 45 and 55 dB(A) in the forest[49]. When it comes to frequencies,
the wind tends to be greatest between 0 and 6 kHz but can exceed to higher frequencies
as well [48]. Another important geophony sound source is rain, which can also generate
high levels of noise. It has a frequency range from 0.5 kHz to 8 kHz and can generate a
noise level of at least 50 dB in a forest [49]. In addition to these two geophonic sound
sources, there are many others, including bioacoustic and anthropogenic sources, that can

12 2.3 Intro to Machine learning

contribute to a lot of noise, all of which can cause a sender to be masked.
Masking over time can lead to a sender not being able to communicate and hunt as well
[50, 51], which has lead some species to adapt. One of these adaptations is called the
Lombard Effect, where the sender increases its signals amplitude to avoid being masked
[48]. Other methods are to increase the duration of their vocalisation or shift the frequency
of the signal. Hence, it is important to point out that not all animals can do this; some
will also adapt by changing the time of their vocalisation, or some might even leave the
area if the noise level continues over longer time periods [48].

2.3 Intro to Machine learning
Machine learning (ML), is a branch of Artificial intelligence that has existed since before
the 60’s [52]. It is however, in the last decade that the technology has seen its true raise in
popularity, as mentioned in the introduction of Chapter 1. Simply put, it can be said that
machine learning is used to recognise patterns in data, by using algorithms. Algorithms,
which both take input, and provides output. What is special about machine learning when
comparing to other methods, is that these algorithms will learn and improve through
experience, much like humans do. Moving recognition algorithms away from being solved
through hard-coded rules, but instead through trial and error.

To learn, these algorithms need data to "practice" on. This is done by showing them
examples, preferably data that is similar to the real problem. Not only do they need
data, but they also need to be able to distinguish between when they do something right
and wrong. This is done by giving the algorithm some feedback on how well it is doing.
The process of showing data examples and giving feedback is called training. When an
algorithm is training on data, it builds what is referred to as an model [53]. It is through
the training process that the patterns in the data are found. It is this "experience" the
algorithm uses when exposed to new data. However, for the algorithm to learn well it is
crucial to have high quality data. Fixing the data after gathering it, and feature extraction
are both a part of an important step (if not the most important) to get good results from
machine learning.

2.4 Datasets and feature extraction
As mentioned in the introduction chapter, the input data of machine learning
models/algorithms can take many forms; it can be audio, images, sensor data, or data
from the stock market etc. A dataset is simply put a collection of related data [54], which
is needed during training and testing of a model. Each data example in a dataset is called
a data point [55], which could be an image of a stop sign in a dataset of images of road
signs. For the algorithm to learn well, it is necessary to have a dataset with quality data,
and to give it a large enough number of data points. More data often leads to better
results, or a more "correct" model [15, 56]. It can be difficult to define what "good" and
"enough" data is. If we were to create a classifier that should classify if a sound is a dog
barking or a cat miaowing, we could likely do a fine job by recording the same cat and

2.4 Datasets and feature extraction 13

dog many times. However, if we then redefine the problem to not only tell us if the sound
is a dog or a cat, but to also tell us what breed the animal is, the data would not be
nearly sufficient enough. A high quality dataset in the redefined problem would require
us to gather sound clips from as many dog and cat types/breeds as possible, big, small,
schafers, chihuahuas etc. Defining what makes up high quality data is difficult, but the
data should at least have enough information for the model to learn about the defined
problem. Another example of things to think about in the cat and dog example is; where
we want it to work? Should the model recognise the data from any soundscape, or should
it just work on recordings done in a music studio? If it should work in several soundscapes,
the training data should also have different soundscapes, while if not, it might not be
needed nor beneficial.

The datasets can be labelled or unlabelled. A labelled dataset assigns each data point
to a specific class by giving it a label, while unlabelled datasets do not have any such
information[53]. Both cases need data, but making a labelled dataset requires one to go
through the data and assign appropriate tags or classes to each data point.

Data can be represented in countless formats and sizes. Finding features in the data that
makes the problem easier to solve for the algorithm is a time consuming and difficult
process, but can have huge impact. To look at one example, could spectrograms and
Mel-frequency cepstral coefficients (MFCC) be features that promotes the frequency
features in audio data. Processing the data and finding useful information requires a good
understanding of the problem at hand, and often some field expertise around the data type
to transform the data into something useful. Data can be anything from audio, images or
social media engagement, all requiring a different asset of skills and understanding.

When gathering data for training a model, it can have different format and sizes. However,
the data that goes into a model often has to be of a particular format and shape. As we
will see later, some ML methods take in 1D data, while others take in 2D or 3D data of a
specific format and size. This means that the data given as input to a model, should be
standardised if it is not already on the required format. For getting the data to a specific
shape and format, data transformation, also called pre-processing is used. However, it can
be important to know that the format of the data is not necessarily chosen just because
of the model. It is chosen based on what data format combined with the model seems
more likely to give successful predictions.

The data transformation can be so many different things depending on what type of data
it is. This may involve resizing or normalising the data. It can transform audio into a
spectogram, Mel-frequency cepstrum coefficients (MFCC), or waveforms. Changing an
image’s lighting, or rotating it, or taking the image and "flatten" it out which would mean
to go from 2D to 1D by changing the shape from Height×Width to 1×(height×width). All
these transformations are usually done by a programming script, which gives the "final"
dataset that is the input of the model. Many of the things listed above are so-called feature
extraction methods. They can be used to change the format of the data and extract a

14 2.5 Learning types within machine learning

particular feature or "part" of the data. The spectrogram and MFCC is an example of
extracting frequency features of audio segments. Feature extraction is an essential part of
ML. It determines what the model has to work with, and can be the difference of failure
or success.

2.5 Learning types within machine learning
Now that we know about the concepts of training an algorithm and preparing data for
it to use, let us go through some different ways an algorithm actually learns. There are
three main categories:

• Supervised machine learning

• Unsupervised machine learning

• Reinforcement learning

Supervised machine learning: Is where you use a labelled dataset for training it. As
the name suggests, the algorithm is trained with a "supervisor", or a "teacher" that gives
feedback on what was right and wrong. The training process is a repeating cycle where the
algorithm makes a prediction on each data point, and gets feedback from the supervisor
on how well it performed. The latter part is done by comparing the predictions with
the labels. The algorithm can then use this to make small tweaks to try to improve its
performance for the next cycle [53].

Unsupervised machine learning: On the other hand, uses unlabelled data, and the
algorithm has to try to find some pattern itself without a teacher[53]. This is typically
used for problems such as clustering, where it is possible to get feedback to the system in
the form of a closeness measure of data. Other example on where unsupervised learning
could be useful in abnormalities, which maybe could find something the human eye could
not see on its own.

Reinforcement learning: Is based on learning in an environment through feedback
given in the form of a reward, where the goal is to make the model for satisfactorily
interacting with the environment [57, 58]. An example of an application is that it could
be used in games to learn how to play. It can then be "rewarded" or not, by how far it
gets. So, in other words, if it gets a new high score, it should get rewarded.

Within all of these categories different types of machine learning can be applied, like the
Support Vector Machines (SVMs), Decision Trees and Random Forest, clustering, and
neural networks (NN) [53]. From here on and out we will focus on the the latter method,
called neural network, which can be applied both within supervised and unsupervised
learning. However, we will only focus on supervised learning.

2.6 Neural networks 15

2.6 Neural networks
Neural networks (NN), also called artificial neural networks (ANN), are inspired by the
biological neurons in the human brain [53, 58]. Like the brain does neural networks have
several layers, but how many can vary. A Neural Networks have an structure of one input
layer, at least one hidden layer and one output layer. Within these layers, are what we
call an artificial neuron, but can also be referred to as a node. Figure 2.5 illustrates a
basic network with one hidden layer.

Hidden layer
Output layerInput layer

output

input1

input2

Figure 2.5: A simple neural network with one hidden layer.

The circles in Figure 2.5 are the neurons. They are the points of communication between
the layers, allowing us to propagate data from the input- to output layer. Each such
neuron holds a number. What this number is or represents, depends on what layer we are
looking at.

The input layer is what takes in the data from a dataset. The format of the data decides
the number of neurons in this layer. In the Figure 2.5 the data point sent in would have
two numbers, since there are two neurons. It could, for example, be used to hold one
number that tells about the texture of a fruit (represented by a number), and one to tell
about the fruit’s weight. Example on numbers of the first and second node in the input
layer could have been two and 231. Where the two would maybe represent a smooth
surface, and 231 stood for how many grams it weighed. An input layer could also for
example have taken in a 24×24 black and white image, which would have needed 576
(24×24) nodes in the input layer.

The number of nodes in the output layer, on the other hand, is determined by the number
of classes the input data could belong to. Where if the input data belonged to the class a
node represented, it should ideally hold a "high" number that is sent out of the node. If
the data, however, did not belong to that node, it should give out a "small" number. The
output ranges typically from 0 to 1, where 0=No and 1=Yes, but this does not have to
be the case. In the example about the fruit data, the network could have one node, as
in Figure 2.5. This could for example have been used to determine if it is an apple or
not. However, it could also have five nodes if we wanted it to say whether it was an apple,
banana, kiwi, orange or pineapple.

16 2.6 Neural networks

The numbers held by the nodes in the hidden layers are a bit more complicated. To help
explain it we have Figure 2.6, which shows how one node is connected to all the nodes in
the previous layer. The first layer is in this case, the input layer, with a length N , which
have N connection to the node of interest.

. . .

x

a1

a2

a3

aN

. . .

w1

w2

w3

wN

Bias

= w aT + B

Weights

(a)

98

. . .

2

11

234

13.85

0.1

-1

0.33

-8

= 9.85 + 4

(b)

Figure 2.6: Two figures that demonstrates how the hidden layer nodes gets their values.

The connections between the neurons, will have various strengths, just as the connections
between the biological neurons in the brain. The way these strengths are "simulated" is
through numbers, which is why they are called weights. In Figure 2.6a, they are symbolised
with an w in the equation, and wi, i = 1, 2..., N per connection. Each of these connections,
is represented by an individual weight/number. In addition to the weights between the
connections of the layers, there is an additional weight, called the bias. Each neuron has
a bias, which is symbolised by a B in the figure.

When all the inputs goes into the first layer, they will have a value called the activation
value, a. This value tells how "active" a node is, or how high number it has. Then these
values will "travel trough" the connections to the node, and be "formed," i.e. multiplied
with a weight. All these values are then summed up, and forms the node value, x, together
with the bias, B, as shown in Equation 2.1 and Figure 2.6a.

x =
N∑
i=1

Wiai +B = W aT +B (2.1)

This happens for all the nodes in a hidden layer. Figure 2.6b, illustrates how Figure 2.6a
could look like with values. The example also shows that an activation value will have
little impact if the weight is low. However, this is also one of the reasons why "neighbour"
nodes in the same layer, can have such different values, and extract different information.

2.6 Neural networks 17

As mentioned in the introductions of this section, does a model at least have one layer but
can have several as well. When a model have many layers they are often referred to as
deep models/networks. If we look at the weighted sum in Equation 2.1, and think of deep
neural networks, one can imagine that the sum can grow quite large. One of the reasons
why these numbers do not "grow out of hand" is feature scaling of data, and activation
functions. Feature scaling, is often applied on the input data because ML algorithms
usually do not work that well when the input have very different scales [53]. The feature
scaling is done in the data transforming step, before the data enters the algorithm/model.
One of the common ways to do scaling is by using min-max scaling, also referred to as
normalization [53]. What it does is rescale and shift the input data between the range
from zero to one.

Activation functions are another way to "scale" the data, but inside the model. These
functions are found at the node’s output, as Figure 2.7 shows. They take in the weighted
sum and the bias from the node and scale them in certain matters to determine what will
be sent out and "how active the node is".

w1

w2

w3

Inputs

x1

x2

x3

Weights

Output:

(weighted sum)

Weighted sum

Activation function

b

Bias

Figure 2.7: A node showing how the activation function sits on the end of the node,
taking in the weights and bias.

Activation functions can both be linear and non-linear, where the latter is most used. This
is because it introduces non-linearity, which is often needed to solve complex problems
humans have a hard time with. Two well-known examples of non-linear activation functions
are ReLU and Sigmoid. The ReLU-function scales the data such nothing is below 0, like
Equation 2.2 shows. Hence sigmoid scales the numbers between zero and one, as Equation
2.3 shows.

ReLU(x) = max(0, x) (2.2) Sigmoid(x) =
1

1 + ex
(2.3)

Figure 2.8 shows both these activation function plotted with input vs output.

18 2.6 Neural networks

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Input: x

0

2

4

6

8

10
Ou

tp
ut

:
F(

x)

(a)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Input (x)

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
: F

(x
)

(b)

Figure 2.8: The two activation functions ReLU and Sigmoid plotted with input vs
output. Figure 2.8a shows the activation function called ReLU, while Figure 2.8b shows
Sigmoid

Throughout the model will often the same activation function be used, except from the
case of the output-layer. The activation function referred to as the output function, shapes
the model’s output. This is why one often have to look at what type of problem one
have, and what type of output one want when choosing this function, since all activation
functions has its advantages and disadvantages. This means that they can work great for
one type of model and problem, but not necessarily for all. Throughout the model will
often the same activation function be used, except from the case of the output-layer. The
activation function referred to as the output function, shapes the model’s output. Besides,
some functions suits some problems better than others, as some will depend on the other
classes outputs while others will not.

2.6.1 Training the model

When training a neural network through supervised learning, the model’s weights and
biases start by being initialised with random values, if not configured differently. This is
the reason why an untrained model often outputs relatively useless results, and that it
has to be trained. During training, the model will first be given data, that propagates
through the network. Then the results/predictions will be compared with the labels in
the case of supervised training, used to calculate a measure called loss. The loss describes
how far the model’s predictions were from the truth, and is calculated by the use of a
loss function, also referred to as a cost function [59]. Which cost function one choose
to use depends on the problem. Some cost function will compute the loss of the output
independently of potential other outputs while others will not. The latter is a problem if
it is a multi-label classification problem, as several outputs might be "True".

The loss is then used in a step called the back-propagation to improve the model. This
step involves using gradient descent, to compute in which direction the model should
change the weights and biases for getting the most significant loss reduction. After finding
the "best way", the model parameters are shifted in that direction by the amount the

2.6 Neural networks 19

learning rate allowed. The learning rate says how big steps the backpropagation step
is allowed to take in the direction the decent gradient algorithm suggests. After this is
new data "feed" to the model and "worked" trough, were the backpropagation scheme is
applied and so on.

For not letting abnormalities in the data affect the model too much, as well as save
computation resources, the model does not only go trough one data point at a time. It
goes through a batch of data, calculating the loss average, instead of the loss of one data
point. When the model has gone through all the data points in the training data, it is
said to have gone through one epoch. When training a model the data is gone through
Y number of epochs, which is a self-chosen number set when choosing the parameters for
training. The batch size and learning rate is also self-chosen number. Of these are the
learning rate particularly important, and have a big impact on whether the training will
succeed or not [53].

For each time the backpropagation scheme is applied, the hope is that the loss will decrease,
and the accuracy increase. However, we do not actually know how the loss would look like
as a function of initialised values (weights and biases values), but it is often illustrated by
a graph similar to the one in Figure 2.9.

Local minimum

Global minimum

Loss

Random initialised
weights and bias

Parameters

Figure 2.9: A simplified graph symbolising how the relationship between the loss and
the model’s parameters can be illustrated. The graph demonstrates how the model will
start with some parameters, which will place it close or far from one or multiple local
minima and the global minimum. The arrow symbolises how the training will change the
model’s parameters and move the model along the x-axis.

The idea is that the random initialised values will put the model somewhere along the
blue line, which symbolises the variation of loss. Along this line, there are multiple local
minimums and a global minimum. The goal is to get as close as possible to the global

20 2.7 Convolutional Neural networks

minimum, and it is here the learning rate comes in. If the learning rate is too big, then the
model can end up taking steps over a local or the global minimum. This is not necessarily
a problem, however, if it is starting to stagnate over a local minimum, the model can
have missed out on having a smaller loss. On the other hand, if the learning rate is too
low, it can end up in a local minimum which is not the global minimum. Therefore, the
learning rate value is important when it comes to achieving accurate models. There are
several approaches to deal with this, by changing the learning rate during training. This
can either be after a particular time or after the change in the loss has reached a value.

The examples we have seen upon until now are networks where each node in one layer are
connected to all the nodes in the next, which are called a fully connected layer. When
all the layers in a model are fully connected, it is called a fully connected model. The
network we have so far, where the data only goes forward is such a model and is called
a feed-forward neural network (FFNN). However, this does not have to be the case. A
model can have both none or some fully connected layers. In the next section we will look
at an example of the latter one.

2.7 Convolutional Neural networks
Convolutional Neural networks (CNN), also called ConvNet, are considered a feature
extractor, and are typically applied on images. The model’s layers extract information
about the image; while at the same time compressing the data. These models can
both be used as feature extractor, or as a pre-processing step before feeding data into
another network structure or a bigger system. A CNN typically has three types of layers;
convolutional layers, pooling layers and fully connected layers, which will be explained in
the Section 2.7.1 to Section 2.7.3 [60]. We will go briefly through all of them to get an
idea of how they work. However, the latter one has been introduced at the end of last
section, and will therefore not be mentioned in great details.

2.7.1 The convolutional layers

Each of these layers has what we call filters or a kernels. These are the elements carrying
out the convolution to extract the information from the data. The filters are composed of
an array of weights, which is trained to give the best possible feature extraction, with a
corresponding bias per filter[53]. Figure 2.10 shows how the filter would be used on the
input array, to get an output, called a feature map[53]. The filter’s values are multiplied
with some of the input values at a time, before being multiplied with some of the next
values, and so on. Each time are these values summed up, and the filter’s bias value
is added, as the figure shows. Just as for FFNN the weights and biases are randomly
initialised, and not "handpicked". Then during training, backpropagation is used to
improve the filters.

2.7 Convolutional Neural networks 21

The filter

The input

The output
(convolved fetures)

0
-1
1

1
1

-1
-1
10

162 166 167 167 169 ...

163 165 166 168 170 ...

162 161 165 167 170 ...

159 160 163 164 167 ...

159 158 162 163 164 ...

...

162 166 167 167 169 ...

163 165 166 168 170 ...

162 161 165 167 170 ...

159 160 163 164 167 ...

159 158 162 163 164 ...

...

x1 x0 x1

x-1 x1 x-1

x0 x1 x-1

162 165 166 ...

161 ...

...

...

160 + 1

Bias

Figure 2.10: An illustration of how the the convolution is done by a filter, on the input.

The size of both the input, the filter and the output can vary, but the filter usually is
not too big[53]. In the example in Figure 2.10 the filter is moved just one pixel to the
right at a time, then down one row at the end, until it has gone through the whole image.
Nevertheless, this does not have to be the case. The filter could also have gone two steps
at a time. How many steps it takes is a parameter called striding [53], this parameter will
therefore affect the output size. Another parameter used, that will affect the output is
called padding or zero padding [53]. The name comes from that zeroes are padded around
the input (image) if the padding is anything else than zero. Each layer has typically
multiple different filters, with different parameters(weights and biases) that are applied to
the same data. These extract different features, resulting in different feature maps that
are stacked upon each other[53].

2.7.2 Pooling

The pooling layers "mission" is to shrink the data size, to reduce the computational
load[53]. These have some similarities to the filters. Their size has to be defined and how
they should "move" (stride and padding size)through the data. However, they do not have
randomly initialized weights. They are either calculating the average or find the highest
number within the pooling kernel [53]. Figure 2.11 demonstrates how the two pooling
methods work. In this case it is a 2x2 kernel, with two in stride and zero in padding.

22 2.7 Convolutional Neural networks

12 17 24 25

18 9 22 29

21 19 18 21

33 27 23 26

18 29

33 26

Max pooling

14 25

25 22

Average pooling

Figure 2.11: An example of how both max pooling and average pooling works, using a
2x2 pooling kernel, with two in stride.

2.7.3 Fully connected layers

As mentioned earlier, is fully connected layers are where all the neurons in one layer are
connected to all the neurons in the next layer. After the convolutional- and pooling layers
are often one or multiple fully connected layers used. They are used to classify the data
from the features extracted in the previous layers, and to give the final output of the
model as Figure 2.12 shows. How many convolutional or pooling layers used can differ,
and the same goes for the fully connected layers. Before the fully connected layer(s), the
data is usually flattened to a 1D array. Either by using a pooling layer, or a flattening
function. It should also be mentioned that in between these layers are typically activation
functions like ReLU used [53].

Convolution Pooling Convolution

Feature extraction

Output

. . .

Cat
Dog

Human

. . .

Fully connected layers

Classification

Figure 2.12: An overview of the different steps a CNN model can have.

One last thing that should be mentioned is when talking about the number of layers a
model has, it is a common practice to only count the layers with parameters [53]. For
CNN, this means the convolutional layers, and the fully connected once, but not the input
and output layer, the pooling layer, or a flattening step (if used).

2.8 Transfer learning 23

2.7.4 Residual neural network

Residual neural network, ResNet, was the type of network Kaiming He used for winning
the the ILSVRC 2015 challenge with [11], using an 152 layered, deep CNN. However, it is
important to point out that smaller versions exist (18, 34, 50, 101 layers) [11]. The key
point about the ResNet compared to other deep CNN, is that it "skip connections", or
uses "shortcut connections" [53], as Figure 2.13 show. F(x) in Figure 2.13, is how the
layers will affect the data, while X is the input data. By letting the input "bypass" in
addition to go through the layers, and adding it to F(x), one gets what is called "residual
learning" [53]. By using shortcut connections in deep model, like in Figure 2.13, one can
solve one of the big problems deep neural networks are facing [61].

weighted layer

weighted layer

X

X

F(X) + X

F(X)

+

Figure 2.13: A building block using residual learning.

2.8 Transfer learning
Transfer learning is a method within machine learning where you re-use a model that is
trained for a similar problem, to your own. This is done by either reusing the trained
weights and biases from parts of the model or the whole model, in a new model. Then
retraining it on your own dataset. This teqhnice is especially usefull when the dataset is
not to big [53].

Within transfer learning there are two approaches for training:

(i) The first one, is where one freeze some, or all of the layers from the pre-trained
model. Preventing the training from changing any parameters in the frozen layers,
and only change the other layers.

(ii) The other approach is to continue training the network with the pre-trained weights,
on the new dataset.

2.9 Overfitting and underfitting
Overfitting, is when the model is trained too well on the training data, to be able to
generalise well [62]. It happens when the model is to complex for the problem [63], and the
model becomes to specialised on the training data to be able to generalise well. Because

24 2.10 Balanced and unbalanced datsets

the model is too complex, it makes extra adjustments to make the model "fit" the training
data better. This can make it seem like the model works better than it actually does.
The risk is then having good training results, but bad test results. If the training and
test data’s accuracy and loss are measured during training, and then plotted, the plot can
sometimes show if a model is overfit. However, overfitting does not have to give poor test
results if for example the test data is not different enough from the training data. This is
one of many reasons why one should think through what data one uses for both training
and testing of a model. There are several measures that can be taken against overfitting,
some examples are getting more training data, and having a model with fewer parameters
[53].

Underfitting, on the other hand, is the opposite of overfitting. It happens when the model
has too little training to generalise the problem [62]. It happens when the model is to
simple for the problem [53]. When a model is underfit it does not mean that running the
model over more epochs will necessarily help. When a model is underfit, it could indicate
that the training data does not has enough data or good enough "examples". Approaches
to deal with underfitting is for example choosing a more powerful model, and choosing a
better features to feed the model [53].

Both overfitting and underfitting are big problems within machine learning, with many
more approaches to avoid them than the ones mentioned above. However, it does not
mean that it is not a problem anymore, and is something one have to consider when
looking at a model’s results.

2.10 Balanced and unbalanced datsets
The last topic of this chapter will be the balancing of data between classes in a dataset.
When there is approximately the same amount of data points per class in a dataset,
it is referred to as a balanced dataset. However, if the amount of data is not divided
equally, which is often the case in the real world, it is called an unbalanced or imbalanced
dataset[64]. If a dataset is unbalanced, it can become a problem because when one or
multiple classes accounts for the majority of the data training the model, the model can
become biased against the majority class[65], leading it to fail to understand the underlying
pattern in the data, which is supposed to help differentiate the classes. However, it is
important to emphasise that an unbalanced dataset does not automatically lead to this
problem, meaning it does not have to be a problem.

Nevertheless, if it seems to have become a problem or one wants to take precautions
against it, several preventative techniques are out there. Examples of strategies are;
collecting more data, resampling the data, or using techniques that penalise wrongful
predictions of the minority classes heavier than the majority class [66]. This part will
focus on the second example, resampling of data, which means to up-or downsample the
dataset: Downsampling is when data is removed from the dataset either randomly or by
choice, while upsampling entails adding examples by duplicating existing examples in the
original dataset or creating new examples from existing ones [65]. Both can be used to

2.10 Balanced and unbalanced datsets 25

make the dataset more balanced, but the latter can also be used to make more data. A
technique often used for this is data augmentation, which takes existing data and modifies
it slightly in a realistic matter, so it becomes a "new" data example[53]. Examples of
data augmentation techniques on an image could be to rotate or resize, while on audio, it
could be adding noise or other sounds.

26

3 Methodology
This chapter contains nine different sections. The first section, Section 3.1, gives an
overview of a suggested system to solve NINA’s problem described in Section 1.1, followed
by Section 3.2, which will try to give a better overview of the soundscape, the challenges
related to the data and how the data available was utilised. Continuing with the labelling
process in Section 3.3, before Section 3.4, Section 3.5 and Section 3.6 presents the pre-
processing, the model’s structure and the post-processing of the data. Section 3.7 shows
the software and hardware used to build the system, before Section 3.8 and Section 3.9
rounds of the chapter by talking about how the models were trained and how the final
system was tested.

3.1 System overview
To solve the problem described in Section 1.1, we need a system that can detect the
vocalisations presented in Section 2.1. Figure 3.1 shows a simplified overview of such a
system containing three main parts or steps; a pre-processing component, a trained model,
and a post-processing component.

Pre-prossessing of
the data The model Post-prossessing of

the outputWav-file

21 3

The system

CSV-file

Figure 3.1: The suggested system contains three parts or components: A pre-processing
part that will take in wav-files and prepare the data for the model, the model, and a post-
processing part that process the model’s output and transform it into a human-readable
format, in the form of a CSV-file.

The components can be listed as follows:

1. Pre-processing of the data: The pre-processing component reads raw wav-files,
and is responsible for formatting the data to be used by a machine learning algorithm.
The wav-files can have different durations and sampling rates, so this component
ensures that all the data has the same sampling rate of 16 kHz, which is done by
up-or down sampling the data if needed. Other sampling rates could likely have
been used as well, but it was chosen since all of NINA’s data had a sampling rate of
16 kHz. This pre-processing component is also responsible for transforming the data
and extracting features if necessary, to collect valuable information and prepare the
data for the model. This is explained further in Section 3.4.

3.2 A closer look at the data 27

2. The model: This component contains a trained neural network that utilises the
output from the pre-processing step. From this data, it produces an output for each
data-point to say if this data is a known bird, or if it is something else entirely. This
data is then sent to the post-processing step.

3. Post-processing: The third part of the system uses the model’s output and
transforms the data into a convenient, human-readable format that the researchers
at NINA can work with; a CSV-file. The file contains a list of vocalisations the
model predicted to have found in the wav-file. Each vocalisation is tagged with the
abbreviation of the bird (JS, SR or BS) and a timestamp of when the vocalisation
was found in the wav-file. Details about this post-processing component will be
presented in Section 3.6.

The system described above illustrates a simplification of how the system looks like in
"production". The system behaves a bit different when training: The two first blocks
in Figure 3.1 are more or less identical, but the model’s output is not post-processed
when training. It is instead used to give the model feedback to learn. A choice was made
early on in the project to use neural networks and supervised learning to try to solve the
problem. This was motivated by good results from both the preliminary project and other
similar projects, some of which are listed in Section 1.2. In addition, some of the data
was also already labelled as a result of the preliminary project.

When looking at the problem defined in Section 1.1, we stand between two types of
classification: multi-class classification and multi-labelled classification. A multi-class
classification problem only has one class for each data point, while a multi-label problem
can have multiple classes that belong to one data point [53]. The fact that multiple
of the vocalisations of interest can be present at the same time is important to have
in mind when defining the classification problem. This scenario was rarely found in
the inspected data, so one could likely have chosen to ignore these cases without losing
much information. However, since viewing the problem as a multi-label classification
problem would represent the problem better, and make it easier to expand the dataset
with more frequently overlapping classes if ever desired, this thesis views it as a multi-label
classification problem.

3.2 A closer look at the data
This section starts by looking at what audio data is available on the three birds, both from
publicly available sound databases and NINA’s recordings done in Kautokeino. Continuing
by presenting the soundscape in NINA’s data, and looking into potential challenges in the
data such as the SNR of the vocalisations. Before rounding off this section with how the
data available was utilised.

28 3.2 A closer look at the data

3.2.1 Public available data

As mentioned in the introduction of Chapter 1, there are multiple sound databases
containing bird vocalisations. Most of these are under different creative commons licenses,
making it possible to use them for research such as this project. However, since this
project is looking at less common birds, there is a limitation to what is available when it
comes to quantity and quality. It is also not enough to find just any audio of the birds,
but it has to be specific vocalisations, making it even harder to find interesting data.
Nevertheless, there are a few examples of the specific vocalisations in the three databases:
Macaulay library [21], Xeno-Canto [22] and Tierstimmen Archiv [67]. All data tagged
with the birds of interest in these databases were inspected. The number of vocalisations
gathered from these databases will be listed together with the other datasets in Chapter 4.
This data is mostly recorded by bird enthusiasts, with no requirements to recording
equipment used, audio quality or duration of the audio. Some of the audio is even
modified with filters or edited so that parts of the sound clip has been removed. Most
of the data was stored in a mp3 format, a compressed format [68], instead of a lossless
format like wav-files[69]. All this means that the publicly available data has a huge variety
in the quality of data, sampling rates and durations of the audio clips, often with high
noise levels.

3.2.2 The available data from NINA

The amount of data from NINA was tremendous in comparison. As introduced in Section
1.1, there were about 146 days worth of data made available to this project, all with a
sampling rate of 16 kHz, recorded on a total of eight different locations over three years
(see Appendix A1). The recordings were carried over different durations. Sometimes only
over a few hours within a day, while other times they were carried out over several days
almost continuously. Due to the equipment’s limitation, approximately 18 hours and 38
minutes is the max duration of a recording before needing to start saving data in a new
recording file. Therefore, many of the recordings carried out over a full day (24 hours)
were split up into one 18 hour and 38-minute file and one 5 hour and 20-minute file. When
it comes to the equipment chain, the only variation of the equipment used across all the
recordings was that the microphone used at location 6 in 2016 and location 7 in 2017 was
different, and that an additional wind-screen was tested on top of the microphones in 2018
(see Appendix A2). This implies that the data from NINA might have little diversity in
the data recorded when it comes to the equipment used. However, the recordings are done
at all hours of the day, over many days, with changing weather conditions and variations
in other parts of the soundscape, resulting in large variety of background noise, which we
will look closer at in Section 3.2.3.

3.2.3 The soundscape in NINA’s data

If we look back at Section 2.1, we saw that each bird had its frequency range. The Jack
Snipe had between 0.5 kHz and 1.5 kHz, the Spotted Redshank had between 2.1 kHz
and 3.6 kHz, and the Broad-billed Sandpiper had a frequency range of 1.5 kHz and 6.0

3.2 A closer look at the data 29

kHz. However, they are far from the only sounds in their frequency ranges. The following
part will look at the main sound sources in each of the soundscape categories presented
in Section 2.2; geophonies, biophonies and anthrophonies. Table 3.1 shows all the main
sources found within each of the categories. The reason for looking into all these sources
is that they can all mask the vocalisations when they are in the same frequency range or
create false positives for the system by having similar data characteristics/properties as a
vocalisation.

Table 3.1: An overview of the most dominating sound sources within each soundscape
category, as introduced in Section 2.2.

Soundscape catagory: Most common sounds:
Antrophony Motors and gunshots.

Geophony Wind, rain and running water.

Biophony Other birds in the area.

Of the three categories, anthropogenic sounds is the least dominant at most of the locations.
The exception is location five and sometimes at location six, where a lot of traffic noise is
a big part of the soundscape. Distant motor sounds does, however, appear occasionally at
the other locations as well. An example of a motor sound is shown in Figure 3.2.

0 1 2 3 4 5 6 7 8
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

Figure 3.2: A spectrogram of motor noise in a sound clip taken from NINA’s data.

The motor sound can cover significant parts of the spectrogram from 0 Hz to around 5
kHz, which can cause problems as it overlaps with the frequency range of all vocalisations
of interest. Other anthropogenic sound sources found are; humans talking, gunshots and
animal bells.

30 3.2 A closer look at the data

When it comes to geophony sound sources, wind and rain are the most dominant. Figure
3.3 shows two spectrograms of both wind and rain.

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

Wind

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

Rain

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(a)

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

Wind

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

Rain

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(b)

Figure 3.3: Two spectrogram of the strongest geophony sound sources. Figure 3.3a
shows a spectrogram of strong wind between 0 Hz and 5-8 kHz. Figure 3.3b shows a
spectrogram of rain covering the the whole frequency range of 0-8 kHz.

Some degree of wind is often present within the frequency range of 0 Hz to 0.1-0.2 kHz.
However, there are cases of stronger winds having a frequency range of up to 5-8 kHz,
as shown in Figure 3.3a. Rain covers a broader frequency range and often occurs from
0 to 8 kHz, while the density of the sound it produces and its strength will vary much
more. Figure 3.3b shows an example of a spectrogram during a rainy sound clip. Another
geophony source, found several times but not as often as the two prior once is running
water, mostly generated sound between 0.2-2 kHz.

When it comes to biophonic sounds, other birds are by far the most significant, even
though there are other sources such as insects. Most of the birds vocalise within the
frequency range of 1.5 kHz to 7 kHz, but some vocalise outside this frequency range.
Based on data from previous observations, registered at artsdatabanken [70], confirmed
by the ornithologist John Atle Kålås, there are approximately 100 birds species that
can potentially be heard in the area in the recording periods of June. Many of them
are less common and will have little anticipated activity. According to the ornithologist,
approximately 30 of them will be heard regularly, while twelve are expected to dominate
the soundscape at the recording sites in June. However, of these twelve, five of them
will dominate the most. For more information look at Appendix A3, which list how the
observations were extracted and each of the bird species with which group they belong to.
Among the most frequent, we have the Bluethroat, which is particularly interesting to look
at as it likes to imitate other birds [71]. This can be a problem both when trying to label
bird vocalisations or detect them. Even though no cases were found where the Bluethroat
tried to mimic the Jack Snipe, several instances were found where it was believed to mimic
the Spotted Redshank and Broad-billed Sandpiper. There are also several cases of other
sounds and vocalisations that are quite similar to the three vocalisations. All of which can
bring challenges for data labelling and for a model to predict them accurately. Figure 3.4

3.2 A closer look at the data 31

shows six sound samples taken from the data, where two of them shows the Blue Throat,
while all the others belong to different birds.

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(a)

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(b)

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(c)

0 1 2 3 4 5 6
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000
Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(e)

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(f)

Figure 3.4: Six different sound samples taken from NINA’s data to give insight to
how the different soundscapes can look like. Figure 3.4a shows a Golden Plover, Wood
Sandpiper, and Meadow Pipit. Figure 3.4b shows a Willow Warbler vocalising. Both
Figure 3.4c and Figure 3.4d show two different examples of the Bluethroat. Figure 3.4e
shows the Ringed Plover and Figure 3.4f shows a Common Redpoll.

The first figure, Figure 3.4a shows a medium noisy sound clip with the Golden Plover
in the frequency range of 2.2-3.0 kHz, the Wood Sandpiper in 2.5-3.9 kHz, and what is
probably a Meadow pipit between 3.5-7.5 kHz. Figure 3.4b, Figure 3.4c shows less noisy
sounds clips. Figure 3.4b shows a Willow Warbler between 2.5 and 4 kHz, and Figure 3.4c
and Figure 3.4d contains the Bluethroat. In Figure 3.4d, between 2.7 and 3.5 kHz, it is

32 3.2 A closer look at the data

suspected of imitate the Spotted Redshank or the Golden Plover (Figure 3.4a) which both
have some similarities in there vocalisations. Figure 3.4e between 2.5 kHz and 2.3 kHz we
have another vocalisation the bird Ringed Plover, which can also look a bit like the SR,
but unlike the Golden Plover, it vocalises in a lower frequency range. The last sound clip
in Figure 3.4f has a Common Redpoll between 2.8 kHz and 6.5 kHz, a vocalisation that
can resemble the first of BS vocalisation presented in Section 2.1.

3.2.4 Signal to noise ratio for the vocalisations

Up until now, only strong versions of the vocalisations of interest have been presented.
This section presents some weaker examples to give a better picture of the problem, and
the variations of the strength of the signal. In addition to looking into how the level of
background noise from the soundscapes presented in Section 3.2.3 affects the signals of
interest, and the signal-to-noise ratio (SNR).

Let us start by looking at some weak signals of the birds of interest. Figure 3.5 shows a
weak SR signal, Figure 3.6 a weak JS signal and Figure 3.7 a weak BS signal. All the
vocalisations of interest are highlighted with white boxes.

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

Figure 3.5: A weak Spotted Redshank mating vocalisation.

3.2 A closer look at the data 33

0 1.5 3 4.5 6 7.5 9 10
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

Figure 3.6: A weak Jack Snipe mating vocalisation.

0 1 2 3 4 5 6 7 8
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

Figure 3.7: A weak Broad-billed Sandpiper mating vocalisation.

When comparing the spectrograms in Section 2.1, one can see that these are much harder
to detect and that the SNR is lower for the weaker vocalisation than the stronger ones. The
weaker vocalisations are likely due to the birds having a greater distance to the equipment
when vocalising. However, as we saw in Section 2.2, there is more than distance that will
effect how the sound propagates, and the fact that the birds are flying while vocalising
the vocalisations of interest, as mentioned in Section 2.1, will probably have something to
say as well. Something not illustrated in the figures above is that the vocalisations also
can be much shorter, particularly when the signal is weak. When going through parts
of the data, it was discovered that all three vocalisations had cases where a vocalisation
lasted no longer than a second. Compared with the stronger JS vocalisations that lasted
for 8-13 seconds, the SR for 3-7 second, and the BS for 2-6 seconds.

High levels of noise also leads to lower SNR, as mentioned in Section 2.2. Nevertheless, it is
important to remember that it is noise with the same frequency range as the vocalisations
of interest that gives the most trouble, effectively masking the vocalisations. When it

34 3.2 A closer look at the data

comes to the different sound sources introduced in Section 3.2.3 and the three birds, it
was observed that the Jack Snipe is the most exposed to masking by wind and running
water, which makes sense when comparing their frequency ranges. The Broad-billed
Sandpiper and Spotted Redshank are much more vulnerable to being masked by other bird
vocalisations, as most of them vocalise between 1.5-7 kHz, which is the same frequency
range as the BS and the SR. Figure 3.8a shows an example where an the SR mate attraction
vocalisation has a medium to strong strength but is masked by a Wood Sandpiper, making
it much harder to detect. Figure 3.8b shows a sound clip of a powerful SR vocalisation
between 2.4 kHz and 3.2 kHz, with a high level of noise, due to strong winds up to
approximately 2 kHz and other bird vocalisations. Due to the strong SR vocalisation it is
still not that difficult to detect, even with a lot of background noise.

0 1 2 3 4 5 6 7 8
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(a)

0 1 2 3 4 5 6
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(b)

Figure 3.8: Two examples of SR vocalisations in strong level of noise. Figure 3.8a shows
an example of where the SR is being masked by a Wood Sandpiper. Figure 3.8b shows a
much more intense SR, with a lot of background noise.

An important thing to point out with the spectrogram in Figure 3.8b is that the shapes
between 4.9 kHz and 6.4 kHz looks like harmonic replicas of the SR vocalisation between
2.4 and 3.2 kHz. This phenomenon was observed several times with multiple types
of vocalisations in the soundscape, including the BS. The reason behind it was not
determined.

If we recall Section 2.2, it was mentioned that some birds adapts to masking in different
ways. Figure 3.8 illustrates one of many cases were the Spotted Redshank seems to
vocalise stronger at times during high levels of noise due to wind and rain. This is the
only one of the birds of interest that does this, and has been observed throughout the
project. Even though it does not happen every time, it could be due to the Lombard
effect (see Section 2.2) or it could be that many of the SR vocalisations are made at a
closer range to the microphone. However, it is hard to say any of this for certain.

Throughout the project, it was observed that the Spotted Redshank’s vocalisations could
have a shifting frequency ranges, regardless of strength. Two examples we have seen up
to now show this as the SR example in Section 2.1 had the frequency between 2.1 and
3.2 kHz, while Figure 3.8 had the frequency range 2.4 and 3.2 kHz. This could be due to
one of the other masking avoidance techniques, presented in Section 2.2, called frequency
shifting. It could also be due to the double effect but since this has not been observed for

3.2 A closer look at the data 35

any other species, it is more likely to be vocalisations made by different individuals having
different sizes, as there is a correlation between the frequency range a bird vocalises in
and their body size [48].

3.2.5 How to utilise each data source

As presented in Section 3.2, most of the data used in this project came from NINA, in
addition to some examples from publicly available datasets. The number of examples
from the public datasets were heavily outnumbered by NINA’s data, making it worth
thinking about how to best utilise this data. Using this data during training would result
in a few more data points and a bit more diversity, but no way to "validate" the effect of
including this data when training. Instead it was chosen to only use these samples when
testing the model, where it could be used to say something about the model’s ability to
generalise on data from other sources than NINA. When only training on NINA’s data,
one could suspect the model to overfit, only giving good results with a specific equipment
chain or in a specific type of soundscape. Using other soundscapes and other equipment
chains when testing helps us to validate or invalidate overfitting. However, the quality of
the public data is as mentioned in Section 3.2 of variable quality. It is also often prone to
high noise levels, which is important to consider when looking at the test results. We will
come back more to how the system will be tested in Section 3.9.

Due to the fact that NINA’s recording was done in a total of eight locations over three
years, the locations were carefully selected and divided into training and test locations.
The reasoning behind this was to ensure that the test data would not come from the same
locations as the data the model was trained on. Attempting to create a model that could
support placing a microphone in a new location, without the need to retrain the model,
as would be the practical use of this project for NINA. It was determined to choose three
test locations, to ensure diversity in the testing. Ideally, there would be a lot of data used
for testing, but labelling the data for testing is quite time consuming. Therefore, one day
form each location was used for testing. An overview of how each location was used when
training and testing is shown in Table 3.2.

Table 3.2: An overview of how the different locations were utilised, showing which
location was used for training and which was used for testing.

Location 1 2 3 4 5 6 7 8
Training x x x x x
Testing x x x

The reasoning behind each selected location and year differs. Some recordings includes
variations in the equipment chain,and other recordings were used in the preliminary
project, giving the possibility to directly compare how well this system is at detecting
the JS compared to the system made in the preliminary project. The equipment chain
is much more than just the microphone or the analog-to-digital converters (ADC), but
everything between when the signal "hits" the microphone until it is digitised. All of
which can contributes to small variations in the data recorded in the form of noise. This

36 3.2 A closer look at the data

means that there are quite small variations in the equipment chain to NINA, as we saw in
Section 3.2.2. However it is tried to utilise the little variations that exist. Let us have a
closer look:

Testing
The test location was selected first and was based on tying to use the diversity that was
available in NINA’s data. Different reasons which will be listed up in the following part:

• Year 2018: In 2018, NINA added a component to the equipment chain that was
not used in the other years, a windshield. Instead of including this data as part
of the training, it was decided to use data from 2018 to test the system. This is
to see if the model would generalise, still giving good results if adjustments to the
equipment chain were made, and new recordings were done another year than the
model had trained on.

• Location 2 and 4: One day from each of these locations was processed and labelled
in the preliminary project. It was chosen to use this data to test this project’s model
as well, to get a direct comparison of the quality of JS detection. This is valuable
as there are no other known models that classifies this bird, effectively creating
a benchmark for the JS classification in this project. Both locations are known
breeding sites for both JS and BS, increasing the chance of finding the vocalisations
of interest. This data was recorded in 2018.

• Location 7: One day from location 7 in 2017 was used. From a quick look at the
data from 2018, none of the data had the Spotted Redshank vocalisation of interest,
which according to the is probably due to the recordings were done later in June
this year. Therefore was it particularly important that this day had a good amount
of cases, which the day selected had. It is also important to have the fact that only
one of the three test days holds SR examples, when looking at the results.
Regarding the equipment chain used at location 7 in 2017, it was only this location
and year, and location 6 in 2016 used another microphone in the equipment chain.
Making this test day an opportunity to test with this change as well.

• Known breeding sites: If we look in Appendix A1 we can also see that by choosing
the combination of the locations listed above, we also ensured that there are at least
one known breeding site of each bird. As location 2 is a known breeding site of JS,
location 4 is a known BS breeding site, and location 7 is a known SR breeding site.

Training
All the remaining locations were marked as training data, and used by choosing at least
some days from each. This was so one would take advantage of the data collected, and
that the recordings were carried out at different locations. In the following part will we
list some comments to the test data used, while Appendix A4 lists up all the specific days
and time spans selected from each location.

• Location 1: This data was already processed and labelled as a result of the
preliminary project. This data included eight full days of data recorded in 2017,
saving a lot of manual processing time in this project.

3.3 Labelling of the data 37

• Location 6: This location is a bit special as it really contains five "sub-locations".
It is however viewed as one location by NINA, as they are close and the recording
equipment was moved between them. In this case were one day from four of the
sub-locations picked out.

• Location 5: This location was only recorded at in 2016 and were first thought
almost only contain car noise. This was the case for about the first half of the data,
however, the rest turned out to contain all three species in between the car noise.
One can also notice that in Appendix A4 were two of the longer 18.6 hours recording
from this site marked with being added after the original labelling was done. This
was done as a measure to look for more ’BS’ vocalisations when the data set were
discovered to be unbalanced with ’BS’ as the minority class. This we will come back
to in Section 3.4.3 and Section 4.1.

3.3 Labelling of the data
The software Audacity[72] was used to label all the data (version 2.3.3 for ubuntu). It was
chosen because it is a well supported and used free open source software, which had all
the necessary tools needed. The tool offers the ability to import both mp3- and wav-files,
and to view the audio as either a spectrogram or waveform while listening to the sound
clip. The spectrogram view was chosen as it is not possible to spot the vocalisations in a
waveform-format with the data in this project. But it is fully visible in a spectrogram
view, as shown in Section 2.1 and Section 3.2.
Audacity also offers the possibility of zooming in and out on both the time and the
frequency axis, and then highlight parts of the audio one wants to label. Figure 3.9, shows
a screenshot of this software in use while marking and labelling a Jack Snipe vocalisation.

38 3.3 Labelling of the data

Figure 3.9: A picture of Audacity in use, while marking and labelling a Jack Snipe
vocalisation.

An important thing to point out is that the time resolution and frequency range used to
view the audio has a big effect, as it can make it harder or easier to spot something. A
second by second time scale was used for the whole project, as shown in Figure 3.9, to
ensure high visibility of weak or masked vocalisations. Using this resolution also made
it easier to accurately label the vocalisations. When the labelling of an audio file was
done, a method to extract the data was needed. It was chosen to extract the labels in
txt-files, which included the labels and start/stop timestamps, given in seconds with a
six decimal accuracy, of each vocalisation. How these txt-files were used to make the
complete training and test datasets will be explained in Section 3.4 and Section 3.9.

The data consists of four classes:

• The Jack Snipes class: JS

• The Spotted Redshank class: SR

• The Broad-billed Sandpiper class: BS

• All data that was not the vocalisation of interest: other

All bird vocalisations of interest were labelled with the bird’s abbreviation. When there
were multiple vocalisations from the same species in the same sound clip, only one label
would be assigned. If the sound clip included vocalisations from two or more classes, the
sound clip would be labelled with each of the classes present. An important aspect of the

3.3 Labelling of the data 39

classification task is to tell when there is no bird in the sound clip. A selection of many
different sounds were therefore assigned to the other class, for the training data. While
selecting this data, the focus was to create a diverse and large set of examples of how the
vocalisations of interest does not sound like. The idea was that the more examples from
different sources was assigned to this class, the less prone the model would be to wrongly
predicting a bird from some random noise. This labelling of the other class was only an
important aspect when training the model. As when testing the model, and when used
in "production", everything that is not a vocalisation of interest is considered to be the
other class. This will be explained further in Section 3.9.

As the author of this report had no previous specific knowledge of bird-audio before the
preliminary project, and that the project consists of a lot of manual labelling, it was
important to get familiar with the data. The ornithologist John Atle Kålås helped by
giving a short introduction on each vocalisation, as well as working as a "validator" in the
start of the project, to confirm that the author was understanding what characterised each
vocalisation of interest. After getting more familiar with the vocalisations the ornithologist
only functioned as a second opinion, to discuss specific vocalisations when they were
difficult to define. This resulted in a higher quality data-labelling process, but also made
the process more time consuming. An important thing to consider when evaluating the
quality of the data-labelling process is that the ornithologist was foremost familiar with the
Jack Snipe’s vocalisation, but was also somewhat familiar with the other birds as well. The
Broad-billed Sandpiper turned out to be a challenge to identify in many cases, for both the
author and the ornithologist, as the vocalisations were often weak and frequently masked
by other stronger vocalisations. The vocalisations that were masked was particularly
challenging to verify for the ornithologist, as the audio source masking the vocalisation of
interest often would dominate the sound segment. When inspecting the sound clips for
labelling, the author would foremost look at the spectrogram, combined with listening in
difficult cases, while the ornithologist primarily listened to the sounds. Even though the
ornithologist came with his opinions, it was the author of this project that was responsible
to make the final decision on how to label the specific segment. Ideally one would be able
to classify each vocalisation with a high degree of certainty. However, the method used
for gathering data combined with manual labelling, as done in this project, will always
introduce cases with some degree of uncertainty.

Another thing that is believed to have an impact on the quality of the data is that each
day was inspected in two rounds, first to look for JS vocalisations, and the second time
to look for the BS and SR vocalisations. A measure done to not miss any vocalisations,
especially the weaker ones, as the JS is in another frequency range than SR and BS. After
all the days were labelled, the training data’s labels were double checked to see if they
were correctly labelled. This was to reduce the chance of any mislabelling that could have
taken place, as human labelling is assumed to have an error rate of around 5% [73]. To
reduce the chance of any mistakes in the labels belonging to the test data, the data were
often inspected when checking the results of a trained model in the system, especially
when observing false-positive cases. After the test data was inspected and labelled for
all three classes for the second time, all cases where a vocalisation was found during the

40 3.4 Pre-processing

second iteration was given an extra tag. This was done so one could measure the error
rate of the manual labelling process.
How many cases found per class, both used in the training and test data, will be listed in
Chapter 4 where we will take a closer look at the dataset.

3.4 Pre-processing
In this section, we will look at how the data was pre-processed, both for training and
testing. Figure 3.10 shows what the first part of the system in Figure 3.1 looks like when
in production.

Segmentation
of the data

Feature
extraction Feature scaling

Wav-file

Make sure the
sampling rate is

16 kHz

Part 1 of the system

Figure 3.10: The pre-prossesing part of the system when in production.

The first step for the pre-processing component is to check if the wav-file has a sampling
rate of 16 kHz. If not, it up-samples or down-samples the data to 16 kHz as mentioned in
Section 3.1. The second step is to get the data in a standardised format with a specified
given length, so that the data can be used as input in a neural network. As the input
layer of a neural network has a fixed number of nodes to take in data. The vocalisations
are therefore divided into smaller segments. It was determined to use one-second segments
in this project, as it showed great results in the preliminary project, and accurate enough
to catch some of the patterns in the vocalisations of interest. One-second segments, also
enable us to say whether or not the bird was there that second or not. When dividing the
audio into one-second segments in testing/production, the data segments were divided so
each data-point had 50% overlap with the next data point. Why this was done, will be
explained in the post-processing Section 3.6.

The third step for the pre-processing component as shown in Figure 3.10 is feature
extraction. This part transforms data from standardised audio samples into new domains,
extracting valuable information. How exactly this is done will be presented in greater
detail in Section 3.4.2. The last step is called feature scaling, a technique introduced in
Section 2.6 that scales all the data. This is done as ML algorithms has a tendency to
perform worse when the data operates with different scales [53]. Standardisation scaling
was applied on the data, which uses the mean and standard deviation of the training
set to scale the data, by subtracting the mean value and then dividing it at by standard
deviation [53].

3.4 Pre-processing 41

Most of the steps in Figure 3.10 were done in the same way both during training, testing
and when in production. However, since the training data came from many different files
with corresponding labels, the data segmentation had to be done a bit differently. How
this segmentation process works for the training data will be presented step by step in
Section 3.4.1.

When it comes to the first step, we know that we do not need it, since all the training
data will have a sampling rate of 16 kHz. However, it is done automatically when loading
the data, which is why this step will remain. Between the segmentation of the data and
feature extraction there is also added an additional step to look into how to scale the
dataset, this we will come back to in Section 3.4.3.

3.4.1 Segmentation and extraction of the training data

The process for labelling the training data was presented earlier in Section 3.3. The next
step is to extract data and segment the audio-clips correctly, so that it can be used to
train a machine learning algorithm. Figure 3.11 shows an overview of how the audio and
labelling files are used to extract the training data.

CSV Data
segments

wav-files

txt-files

The audio-files
for training

The label files Segmentation
of the data

Dataset

Figure 3.11: The segmentation block to extract training data from the audio files.

A simplified description of the process is that the segmentation block takes inn all
the labelled wav files and their corresponding txt-files, iterates over them and outputs
segmented data and a CSV-file. The CSV-file functions as a record, storing the file path
for each segment and its label. Let us have a closer look on how this is done.

As seen in Section 2.1 and Section 3.2.4, the vocalisations has varying lengths. The
timestamps of each label were given in seconds with a six decimal accuracy, as mentioned
in Section 3.3. These timestamps were rounded off to one decimal, as it was assumed to
be accurate enough and simplifies the segmentation process.
However, since these timestamps often does not add up to whole seconds, we must find a
way to process the data so that it fits with our selected segmentation size of one second.
This can be done by adding background noise to the segments, or by removing parts of
the vocalisation.

42 3.4 Pre-processing

For the bird vocalisations of interest, the length was rounded up by increasing the size
of the data, to make sure that no information of interest was lost. This was done by
extracting the sound with some of the background noise from right before or after the
vocalisation in the audio clip. Making sure enough background noise is included so that the
vocalisation plus the background noise adds up to whole seconds. Figure 3.12 illustrates
how this was done.

Bird

Background noise Background noise added to do the segmentation Bird vocalisation

Figure 3.12: A demonstration of how the bird vocalisations of interest would be divided
into one second segments.

In a scenario where the vocalisation did not add up to one second, X number of 0.1 second
of noise would have to be included. If it was an even number, it would be divided equally
on each side of the label. If there was an uneven number needed, the remainder would
always be added to the start of the vocalisation.

However, the segmentation process illustrated in Figure 3.12 can not be used in all
scenarios. What happens if the added background noise isn’t noise at all, but is instead
the end of another vocalisation? Or what if two individual birds vocalise simultaneously?
These are cases that also had to be considered. It was decided to make sure there would
be no overlap between two data-points in the training data in this project. From Section
3.3, we know that if two birds from the same species vocalise simultaneously they would
share a label. However, if they are two separate species, we have to decide how to segment
the data and extract the vocalisations correctly. Figure 3.13 shows an illustration of how
two simultaneous vocalisations were segmented.

3.4 Pre-processing 43

Bird 1

Bird 2

Bird 2
Bird 1

Time

Background noise Background noise added to the segmentation

Time

Both birds presentBird 1 present in the audio Bird 2 present in the audio

Segmentation of the sounds

Figure 3.13: An illustration of how two different birds of interest vocalising at the same
time were handled.

As the figure shows, the simultaneous vocalisations were not looked at separately but as a
continuous audio clip. One would start counting when the first vocalisation started, and
if that vocalisation ends with an overlapping vocalisation, the end timestamp is set to
when the last vocalisation is finished. Then, if the length did not add up to whole seconds,
extra sound from the original wav-file would be added to segment the data correctly. At
the part where both birds were present, a check of how many percentages each bird was
present in the one second segments would determine how to label each segment, which we
will go into details about later in this section.

Then we have the scenario where two vocalisations were so close in time, that including
background "noise" when segmenting a vocalisation leads to an overlap between the
two vocalisations. This is particularly the case for BS and SR, as both of them were
found to have many cases where their vocalisations are less than half a second apart,
but still labelled separately. To avoid getting too many cases where sound segments
overlap, all vocalisations that were 0.5 seconds or less apart were joined before starting
the segmentation. This reduced the number of overlapping cases, but there would still
be a few cases where adding additional data lead vocalisations to overlap. Figure 3.14
illustrates how these remaining cases were solved.

44 3.4 Pre-processing

Bird 1

Bird 2

Bird 2Bird 1

Background noise Background noise added to do the segmentation

Time

a segment

Time

Time

Adding background to get the segmentation adding up per vocalisation

Adding background to get the segmentation to go up for both vocalisation

Bird 2Bird 1

Bird vocalisation

Figure 3.14: An illustration of how two close audio clips to be extracted could overlap
because of the audio extraction method used and how it was handled.

The figure first shows two vocalisations that needs additional background noise to be
divisible into one second segments. Then after doing this, the sounds to be segmented
starts to overlap and are "joined" / viewed as one vocalisation sequence to be segmented.
If they had been joined and did not overlap, no additional actions were needed as they
would add up to whole seconds. However, in the cases where they do overlap, noise
was added, as the figure illustrates. The last step is repeated until all the data fits into
one-second segments. As one can see, and probably imagine, this can lead to some of the
segments not having that much vocalisation left. In these cases, the same thing will be
done as for two bird that vocalises simultaneously. To handle all cases like these, a check
will be done at the end when the actual extraction of each data point is done and their
labels are written to the CSV file. The check checks how much of the data was labelled
with a birds vocalisation. If 0.25 seconds or more of a one-second segment were labelled
with a bird before the label were rounded up to one decimal, the segment/data point
would be labelled with that bird.

Now, let us look at what happens with the audio marked with the label ’other’, illustrated
in Figure 3.15.

3.4 Pre-processing 45

other

Sound marked with the other tag Background noise

Figure 3.15: How the data labelled with other was segmented.

After handling the birds labelled data as described up to now, one would check that none
of the other segments overlapped with the birds. If they did, that part of the other label
would be removed. These sound clips would be rounded down, instead of up, at each side
to make them fit into one-second segments.

All the sounds were extracted so that all segments would be put in separate wav-files at
the end. Storing the filename, path and the belonging label for these files in a csv file, as
illustrated in Figure 3.16.

Filename JS SR BS

... 0 0 0

... 1 0 0

... 1 0 0

... 1 0 1

...

Figure 3.16: How the CSV-files holding the multi-labelled labels and the path to data
points looked like.

The ’0’ means that a bird is not present, while ’1’ means it is present. If all birds have
the label 0, this means that the data segment belongs to the ’other’ class. An example of
the ’other’ class can be seen in the first row in the figure above.

Having processed and segmented the data, the next step is to find and extract features of
the data that enables us to differentiate between the birds, and the background noise.

3.4.2 Feature extraction

Looking back at the system overview in Figure 3.10, the next block is feature extraction.
This section explains how this block works both during training and testing. Now that
the data is processed and segmented, it is in a format that could be fed into a neural

46 3.4 Pre-processing

network. However, we can also do some form of transformation of the data, to extract
valuable features from the data. Feature extraction can take many forms, and can consists
of several steps. Examples of well used features in audio are: MFCC, Mel-spectrograms
or spectrograms, as we saw some examples of in Section 1.2. It is also possible to use
techniques such as filtering (low-pass, band-pass, band-stop or high-pass), noise reduction,
and attention models to say what portion of the data to concentrate on, either in addition
or alone.

In the preliminary project, one second long spectrograms with the frequency range 0-2
kHz were plotted and saved as RGB PNG-images (Section 1.2.1). There were two reasons
why spectrogram images were used in the preliminary project: It was thought out that
if a human could recognise a vocalisation through visually inspecting the pattern in a
spectrogram, perhaps a neural network could recognise it as well if it was fed spectrogram
images. Especially, if the network was a pre-trained network trained to recognise images,
such as ResNet [26]. The second reason, which also supported the first one, was that
spectral features were often used in similar projects, as we also have seen in Section 1.2.

It is possible to use the same procedure as in the preliminary project, if one adapts the
frequency range to fit for all three vocalisations. However, plotting and saving images for
each data point is inconvenient, and time demanding. It was not mentioned in Section
1.2.1, but the preliminary project report showed that the pre-processing took much more
time than any of the other parts of the system because of the plotting of the PNG-images
[26]. The system used a total of 3 hours and 40 minutes per day, where 2 hours and 33
minutes of that was from the pre-processing step. A time that is not terrible, but has
potential to be improved through this master thesis. Because of the slightly inconvenient
and time consuming feature extraction method used, it was recommended in the report
as potential future work to look into other potential solutions and compare them.

For this project, mainly three different data formats were tested: spectrograms in RGB
images (as done in the preliminary project), pure spectrograms, and Mel-spectrograms.
The reason for continuing plotting spectrogram and saving images, even though it is
considered a bit inconvenient and time consuming, was that it was a good benchmark
for comparing results. The two others were a hope of getting a faster and better feature
extraction process, as well as continue using features that has shown to work in related
projects. Spectrograms, and Mel-spectrograms are quite similar. The only thing separating
them is that Mel-spectrograms are spectrograms where the Mel-scale is applied, which
takes less space/has a smaller size. However, as we do not know what will give the best
results both features were tested.

When testing with RGB images, several frequency ranges were tested, but mainly around
0.45 kHz to 6.0 kHz. It was also tested with different window sizes, which was mainly
motivated by two things: The fact that the BS vocalisation could sometimes look a
bit "blurry" when having a bigger window size than a smaller one, and that within
speech recognition it is recommend with a window size of 20-40ms [74]. Speech and bird

3.4 Pre-processing 47

recognition are not the same, but there can be drawn parallels between the two problems,
such as detecting rapid changing sounds made by an animal’s vocal tract.
When it comes to Mel-spectrogram, both a frequency range of 0.45 kHz and 0.5 kHz to 6
kHz were tested, as well as the default frequency range 0.0-8.0 kHz. When it comes to
the "pure" spectrograms, a Butterworth bandpass filter of the eight order was tested for
this purpose using the cut off frequencies 0.4 kHz and 6.5 kHz.

Using a process of trial and error resulted in two of the methods mentioned to be proposed
as possible final solutions for feature extraction:

• The Mel-spectrogram with a window-length of 34.5 ms, using 116 Mel-frequency
bins, FFT of 552, a hop-length of 138, a minimum frequency of 0.5 kHz and a max
frequency of 6.0 kHz, which all gives a shape of 116×116.

• The Spectrum without filtering, with window length of 27.9 ms, using a FFT of
446 and a hop length of 73, giving the shape of 224×220 after transforming the one
second audio.

3.4.3 Balancing the training set

From early on in the project it was suspected that there would be an imbalance between
the classes in the training data. Something that was confirmed when the training data
was extracted for the first time and the number of data points per class was checked.
The exact numbers of each class will be specified in Chapter 4, as the dataset is viewed
as a result of this project, while this part will focus on what was done to even out the
imbalance in the data.

From the four classes there were most examples of the ’other’ class, the ’JS’ had the
second most, the ’SR’ the third most, and the ’BS’ the lowest number of examples. Both
the ’JS’ and ’SR’ classes had considerably more data than ’BS’. As mentioned in Section
2.10 an imbalanced dataset is not necessarily a problem, but it can be. Therefore, it was
decided to test different techniques that would make the dataset more balanced, to check
whether it would give better results or not. As mentioned in Section 2.10, there are several
measures that can help with this. One of them is to add more data of the minority class,
which was done by going through two additional 18.6 hour long sound clips, as mentioned
in Section 3.2.5. Even though it evened out the number of examples somewhat, it was far
from enough. It was therefore decided to try another technique, also presented in Section
2.10, called re-sampling. This can both entail up- or down sampling, as both would be
able to balance the data more. In this project, both up-sampling and down-sampling was
tested.

When down-sampling, it was decided to removed existing samples from the majority
classes ’other’, ’JS’ and ’SR’ at random. It was tested by:

• Removing enough to have the same amount of samples per class (25% of the whole

48 3.4 Pre-processing

dataset per class).

• Having more datapoints in the three majority classes, than in the BS class, but
balancing them and having less data in all of them.

When up-sampling, one could have just duplicated the ’BS’ samples and some of the
’SR’ samples, but this makes the model more prone to overfitting [66]. Instead, it was
decided to look into oversampling using data augmentation, which would increase the
number of data points by duplicating the data and modifying them in a realistic way,
creating realistic versions of the data [53]. When applying data augmentation to balance
the dataset it is often referred to Synthetic Minority Over-sampling Technique (SMOTE)
[64]. However, data augmentation can also be used to increase the number of samples
in a dataset. Example of different data augmentation techniques that can be applied on
audio is noise injection, time shifting, time stretching, pitch shifting, mix sounds, volume
turning, and filtering(highpass, lowpass, bandpass or band-stop) [75, 76, 77]. Even though
multiple of these could have worked, it was decided to test the three listed below:

• Adding noise

• Time shifting

• Mixing two audio segments

All three were chosen as they seemed to be well used and fitting for the problem. They
were done after the audio and prior to feature extraction mentioned in Section 3.4.2, as
mentioned in the introduction of this section. The adding of noise was done by adding a
uniform distribution of noise between [-0.001, 0.001] with zero as the mean. The time-
shifting was done by shifting the audio with a random length between 1% and 99% of
the audio’s length to the right. The last method, called mixing, was done by taking two
sound clips from two different classes and adding them together in the matter shown in
Equation 3.1, where a is a number between 0 and 1.

mixed_audio = a ∗ audio1 + (1− a) ∗ audio2 (3.1)

To set the labels for these sound clips the sound clip called "audio1" would get a multiplied
with it’s label, and "audio2" get (1-a) multiplied with its label. This means that the bird
would get either a or (1-a).
The mixing was done with all the combinations of the three birds, and by mixing either
’BS’ or ’SR’ with other. When mixing two birds a would be set to 0.5 in Equation 3.1, so
half of both sounds were added, and both labels would be set to 0.5. For mixing ’BS’ or
’SR’ with other sound clip, both a=0.5 or a=0.4 were tested, where the bird would be
audio1 in Equation 3.1, giving the data point the label a.

3.5 Defining NN structure 49

3.5 Defining NN structure
In this section, we will look at the second block of the system, presented in Figure 3.10,
and what it entails in testing or production. Section 3.8 will supplement by looking at
what was done to train potential models.

There are a lot of different neural network structures out there. Some of the categories are
feed forward neural networks (FFNN), Convolutional neural networks (CNN), Recurrent
neural networks (RNN) and Long short time memory (LSTM), which again have many
combination of network structures and ways they can be initialised. In the preliminary
project, the pre-trained model called ResNet18 was used, in combination with RGB-images
as described in Section 1.2.1. This model was as mentioned in Section 3.4.2, chosen as it
was thought to work well on images of spectrograms. The original model structure was
as mentioned in Section 2.7.4 built by Kaiming He for the ILSVRC ImageNet challenge,
which he won using ResNet in 2015 [11].

In this project it was determined to focus on pre-defined CNN structures, which one
could adapt using transfer learning as explained in Section 2.8. This was done for several
reasons: It have shown to give good results in other projects, including the preliminary
project, both for images and other features such as spectrograms and mel-spectrogam
[11, 26, 33], which was tested and used in this project. The other main reason is that
there is already so many other thing one can tweak and change in a project, such as in
the pre-processing step of the data, and different training parameters and techniques.
Selecting a pre-trained network utilises work already done by often highly skilled people,
specifically designed to extract a type of information, potentially saving time and giving a
better overall result.

Before we talk about the specific models that were looked at, we will talk a little bit about
the programming language of choice and machine learning framework that was used to
build the system, as it is relevant for the following part. The software used will be explained
in greater detail in Section 3.7. To implement the system, the programming language
Python was used.From Python, there are two big and well supported machine learning
libraries call Tensorflow [78] and PyTorch[79]. PyTorch was chosen in the preliminary
project, and this project continues to use the same due to its popularity in research.

Two types of structures were mainly focused on and tested in this project: ResNet and
EfficientNet [11, 80]. They were both tested with different sizes, with and without pre-
trained weights. The ResNet structure comes in several sizes (152 , 101, 50, 34 and 18
layer). As a part of the PyTorch project, the library torchvision enabled one to download
certain models, among others; ResNet with 18,34,50, 101 or 150 layers. The other model,
EfficientNet, was developed by Mingxing Tan and Quoc V. Le, who submitted a paper
on it in 2019 [80]. They had developed a model that demands much less parameters to
achieve the same top-5 accuracy on the ImageNet dataset than many other networks,
including the ResNet models (152 , 101, 50, 34 and 18 layer) ?? [11]. Therefore it seemed

50 3.5 Defining NN structure

fitting to test EfficientNet as well. However, EfficientNet is not, at least yet, a part of
PyTorch’s model library and was therefore downloaded through the much used python
library; efficientnet_pytorch, which we will come back to in Section 3.7.

After adapting both structures using transfer learning (see Section 2.8), testing with
different sizes of the structures, using both pre-trained and random initialised weights
with both features; Mel-spectrogram and spectrogram, the best results were achieved by
using Pytorch’s ResNet34 model with pre-trained weights. Figure 3.17 shows an overview
of the model’s structure used for both features, which we will go through step by step in
the rest of this section.

3.5 Defining NN structure 51

kernel: 7x7, 64

kernel: 3x3, 64

Max pooling

kernel: 3x3, 64

kernel: 3x3, 64

kernel: 3x3, 64

kernel: 3x3, 256

kernel: 3x3, 256

kernel: 3x3, 256

kernel: 3x3, 256

kernel: 3x3, 128

kernel: 3x3, 128

kernel: 3x3, 128

kernel: 3x3, 128

kernel: 3x3, 512

kernel: 3x3, 512

kernel: 3x3, 512

kernel: 3x3, 512

Average pool

Fully connected: 3

Output size: 112x112
(64 layers)

Output size: 56x56
(64 layers)

Output size: 28x28
(128 layers)

Output size: 14x14
(256 layers)

Output size: 7x7
(512 layers)

Output size: 1x1
(512layers)

Output size 3

kernel: 3x3, 64

kernel: 3x3, 64

kernel: 3x3, 128

kernel: 3x3, 128

kernel: 3x3, 128

kernel: 3x3, 128

kernel: 3x3, 256

kernel: 3x3, 256

kernel: 3x3, 256

kernel: 3x3, 256

kernel: 3x3, 256

kernel: 3x3, 256

kernel: 3x3, 512

kernel: 3x3, 512

kernel: 3x3, 256

kernel: 3x3, 256

Output size: 14x14
(256 layers)

Output size: 56x56
(64 layers)

JS SR BS

Part 1 of the system

Figure 3.17: A block diagram of the model structure used in the system.

52 3.5 Defining NN structure

The first layer of the the original model was a convolutional layer that took in images
with 3×224×224 (channel×height× width) input. It used a 7×7 kernel with two in stride
and three in padding to get the output size of 112×112×64, where the latter number is
the number of feature maps 64. For both the Mel-spectrogram and spectrogram this layer
was adapted so it would take in the input shape defined in Section 3.4, and give out a
112×112. For the Mel-spectrogram which had the shape 1×116×116, the first layer used
the same kernel size, but was adjusted to only take in one channel and changing both
the padding and stride to one. For the spectrogram with a shape of 1×224×220 the first
layer only takes in one channel and only pads with one at the longer side and three on
the shorter. Otherwise it also used the 7×7 kernel, with two in stride to get an output
112×112×64. After this the output of the first layer was taken into a max pooling layer
with a 2×2 kernel using a stride of two, giving out an output of 56×56×64.

The successive 32 layers are also convolutional layers. However, unlike the first layer, they
are all residual blocks (see Section 2.7.4) with two layers per block, or a skip connection
and a kernel size of 3×3. As Figure 3.17 shows, they are all divided into colours after
which output size they have, meaning width, height, and the number of feature maps.
To maintain the same output size, both the stride and padding size is set to one. When
downsizing the width and height and increasing the number of features maps the stride
is set to two, and the number of kernels is doubled. The skip-connections or residual
connections that have dotted lines in Figure 3.17 symbolises a change in size, which is
achieved by changing the stride from one to two.

The first set of three residual blocks in pink in Figure 3.17 both takes in the input size
and give out the output size of 56×56×64. Followed by four residual blocks in green with
the output size of 28×28×128. Then, a total of six residual block in yellow give out an
output of 14×14×256 before the last set of six residual blocks in orange in Figure 3.17
give out is a output of 7×7×512. After this, an average pooling layer is applied to get
the output 1×1×512, which is then flattened. The last layer is a fully connected layer. It
originally took in 512 and gave out 1000 outputs, but is adapted to give out 3 classes: one
for each bird as Figure 3.17 shows. Since this is set up to be a multi-label classification
problem, the outputs are independent of each other. Meaning each node is basically a
binary classification, where we want it to say ’1’ for yes and ’0’ for no for whether that
class is present. However, the models output will not automatically be ’0’ or ’1’, it must
first be scaled between zero and one, and than processed in the post-processing step, which
we will come back to. To scale the fully connected layer’s output between 0 and 1 the
activation function Sigmoid which was presented in Section 2.6 is used. However, Sigmoid
is not the only activation function used in the model, there is also ReLU, presented in
Section 2.6, which is used between the convolutional layers. In addition, what is called
a batch normalisation was used before each ReLU. Batch Normalisation proposed by
Sergey Ioffe and Christian Szegedy in a paper in 2015 [81]. It normalises the data in
mini-batches through standardisation, which act as a regulator addresses the problem
of vanishing/expedient gradient [53]. This was not the only regulation technique, which
we will come back to in Section 3.8 when talking about training. First, we will look at
how the model’s output data was processed in production/testing and what software and

3.6 Post-processing of model output 53

hardware was used to built the system.

3.6 Post-processing of model output
This section will look at the third and last block of the system in Figure 3.1. As mentioned
in Section 3.1, this part only exists in testing or production, and is responsible for
taking the models output, processing it and returning the CSV-file listing of potential
vocalisations found by the model used with start and end timestamp.

In the preliminary project, the model had two outputs; one for the ’JS’ and one for the
’other’ class. Since only one of the outputs could be correct per datapoint, the class with
the highest value was set to belong to the input [26]. After this, all the vocalisations the
system believed to have found were checked for whether they lasted for three seconds or
longer by having three data points after each other, as mentioned in Section 1.2.1. If so,
they would be "accepted" as vocalisations and be added to a txt-file with timestamps.
In this project, the model and problem is set up as a multi-label classification problem,
meaning that each output node belongs to a class/bird and is independent of the other
classes as all or none of them can be active at the same time, as mentioned in Section 3.5.
This suggests that the first method used to process the model’s output in the preliminary
project would not fit this problem, as the output of each class is independent. Instead, an
"acceptance" threshold was set for each class to say whether one of the birds were present
or not.

When it comes to the next step of the system, the preliminary project check for a three-
second duration, which worked great as most of Jack Snipes vocalisation are a bit longer
and it removed a lot of false positives. However, the BS and SR are often a bit shorter, as
mentioned in Section 3.2.4, which is why a three-second threshold would not necessarily
work that great. It should also be mentioned that the number of false negatives in the
preliminary project was almost exclusively lower than this, which is why they became
false negative. Therefore it was chosen to think slightly differently but still not drop the
concept used in the preliminary project. The system will still check for a number of X
data points in a row that belongs to the same bird class, but instead of the data points
having no overlap they will have 50% overlap with the data segments next to them, as
mentioned in Section 3.4. Doing this enables the system to check for multiple positive
outputs in a row per class, but for smaller time intervals than the method used in the
preliminary project allowed. Nevertheless, even though such a check eliminates some false
positives, one will risk losing some true positives. The same goes for where the threshold
of acceptance is set per class. It will often be a trade off between true positives and false
positives for both cases, resulting in several tests with multiple thresholds and durations.

54 3.7 Software and hardware

3.7 Software and hardware
In this section we will we look at the software and hardware used to build the system.
A few months into the project a Nvidia GPU (GeForce RTX3090) came at the projects
disposal to speed up the systems processing time by using CUDA (version 10.1.243-3). As
mentioned in 3.5, Python version 3.7.10 was used, together with the library management
anaconda (version 4.9.2). The code was written in the editor Jupiter notebook (version
6.3.0). All the libraries downloaded for this project are listed together with version number
below, as long as it is not one of pythons standard libraries.

• Librosa, version 0.8.0

• Matplotlib, version 3.3.4

• Torch, version 1.8.0

• Torchvision, version 0.8.0

• Efficientnet_pytorch, version 0.7.0

• Numpy, version 1.19.2

• Pydub, version 0.25.1

• Sklearn, version 0.24.1

• Scipy, version 1.6.2

• Pandas, version 1.2.3

• Os (part of pythons standard library)

• Random (part of pythons standard library)

• Copy (part of pythons standard library)

• Time (part of pythons standard library)

The main rule when downloading them was to use anaconda if possible, if not available the
python install manager (pip) would be used. The version of each library can be important
both for running the system code in the future, but also if one wants to reproduce the
result at any time, as PyTorch do not guaranty reputability across versions and using
different hardware [82]. However, to reproduce the results, the datasets and code would
also be needed.

Librosa was used to both read the wav-files, and plot the Mel-spectrogram and the ordinary
spectrogram. It was also used together with Matplotlib to plot all the spectrograms in
this report, which was also used to make the PNG images. Pytorch’s libraries Torch and
Torchvision is used for most of what have to do with making and training the models, in
addition to some of the pre-processing and CUDA. However, as mentioned in Section 3.5,
Efficientnet_pytorch was needed to download and test Efficientnet. The library Numpy
was used for a lot of the smaller mathematical operations, Padas was used to deal with
the labels and some more, and Os was used to access the data files. Then we have Pydub
that was used to transform the mp3 files in the test data to wav files, while Scipy was

3.8 Training the model 55

used to test Butterworth filter (see Section 3.4). Random was used to set one of several
random seeds, which we will come back to Section 3.8. It will also explain why we needed
copy to make a deep copy of the model while training. The last library Time was used to
time the computation time, both during training and testing.

3.8 Training the model
This section will go through what was done to train the neural network structures into
models described in Section 3.5. When doing so, some of the concepts explained in the
background chapter will not be explained in great detail.

For this project, a GPU was used to speed up the training and testing process of the
system, as mentioned in Section 3.7. However, what we need to know is that it enables us
to use CUDA and the cuDNN library, significantly reducing the time needed to train and
test a model. First of all, to ensure that any model could be reproduced, all the random
seeds and flags the code depend on were set, following the instruction for reproducibility
provided by PyTorch [82]. This is done so the "random" numbers produced will always
be in the same sequence.

Before starting to train a model, the training data was extracted with labels as explained
in Section 3.4.1. The data was then divided into a training and validation dataset by
randomising and splitting the data into a 70%-30% split(training-validation data). It is
often common to split the training data in such a way that one can use the training data
to train the model and the validation set to validate the results per epoch. An important
thing to emphasise here is that the validation data is not used to train the model, but
merely used as an indicator to validate if the model is actually improving. By having a
smaller dataset the model has not trained on to test on, one will get a better sense of how
the model works on new data, which can thereby help choose the best model. It can also
help adjust the model’s parameters and look for signs of over or underfitting.
If the dataset was down-sampled, it was done before the data was split into two sets,
while if it was upsampled, it would be done after, so the validation set would not contain
any of the data points used for data augmentation.

To upload the data a dataset class was defined, which would pre-process the data in a
correct manner before it was uploaded into a dataloader. The dataloader determines,
among other things, the batch size and number of workers used. Even though it was
tested with both a batch size of 8 and 32, most of the training was done with a batch size
of 16. These sizes were chosen based on the paper "Revisiting small batch training for
deep neural networks" written by Dominic Masters and Carlo Luschi [83], which showed
how they got the best performance by using a batch size between 2 and 32.

Now, let us focus on how the neural networks were set up. As mentioned in Section 3.5,
both the ResNet and EfficientNet structures were tested with and without pre-trained

56 3.8 Training the model

weights and different sizes/number of layers. This was done by loading the structures
with a given size, either with or without weights. If we recall from Section 2.8, some of
a pre-trained model’s layers may be frozen. In this project, the models were "unfrozen"
while training, meaning that all the weights in the model will continue to be adapted
through the training, instead of training only some layers (see Section 2.8). After the
models were loaded, the model’s first layer would be redefined if needed, depending on the
input shape of the pre-processing step. On the other hand, the last layer would always
be redefined to having three nodes, one for each bird class. When the last layer was
redefined, the popular regulation function called dropout was also added, which is meant
to decrease the chance for overfitting and increase the accuracy in deep neural nets[58, 84].
The "dropout" technique is only used during training and will "drop" or ignore a set of
random nodes per batch in the layer it is applied in, which helps the model not become
too dependent on some nodes [53]. How many nodes are "blocked" will be determined by
a parameter called the dropout rate, p, which is typically set between 10% and 50% [53].
Another measure done in the hope of improving the model was to initialise the last layer
with what is often referred to as the Xavier initialisation, recommended when using the
Sigmoid function to prevent its output from saturating and speed up training [53, 61].

When training the model, it was first decided to use the loss function Binary Cross
Entropy, called BCEloss in PyTorch [85]. However, as PyTorch recommends using
BCEWithLogitsLoss, which combines Sigmoid and BCELoss in a more numerically stable
way than using them separately, this was used instead. When it comes to the optimiser
used, both Adam and SDG were tested, with several learning rates ranging from 0.01 to
0.0001 and various weight decays between 0.1 and 0.0001. In addition, SGD was tested
with a momentum of 0.9. The learning rate scheduler StepLR was used to adjust the
learning rate during training, which decreases the learning rate with a number called
gamma, per X epoch. The scheduler was tested with different gammas and different
numbers of epochs, X. The gamma was mostly set between 0.1 and 0.5, and the number
of epochs 3-6.

The training was done over a variable number of epochs ranging from 15 to 50. Each
epoch started by iterating over the batches of training data. For each batch of data, the
loss would be calculated, and the optimiser would be used to improve the model through
backpropagation. While iterating over the data, both the loss and accuracy would be
calculated for the training set. After all batches had been processed, the validation data
would be iterated over to calculate the loss and accuracy for the epoch. Sklearn’s function
accuracy_score [86] was used to calculate the accuracy. The accuracy score does not
consider the case where only some of the labels per data point are correct, but whether all
are correct or not. The reason for using accuracy score as a metric is so so both the loss
and accuracy of each epoch during training can be used to plot how the model’s training
progresses. These graphs will be looked into for the final model in Chapter 4.

The validation loss was used to determine the best model. To get the best model, a deep
copy of the model’s parameters was taken before the training started, and updated at
the end of an epoch if the validation loss got a new minimum for the whole epoch. Then,

3.9 Testing 57

after all the epochs, the deep copy of the best model parameters would be uploaded to the
model. This technique, where you either automatically or manually stop the model when
the validation data has the lowest loss, is refereed to as early stopping. This is typically
used to prevent the model from overfitting [53]. This method for training is a well known
and used way of training a model. The way of training described up to now was considered
the first way to train the model. However, a second method was also used, where one
would use everything up to now but also update the model with the best parameters at
the end of every X epoch. This would be when the learning rate scheduler decreased the
learning rate, instead of just saving these parameters for later use. After training the
model, the model’s parameters would be saved, by using PyTorch’s save function that
stores the model parameters in a zip file [87]. By doing this it enables us to use the model
later by loading the model’s parameters on to a model again, so it is ready for use.

3.9 Testing
This section will look at how the different versions of the system were tested. A total
of three tests were set up for the different versions of the system: Two of the tests were
based on the test data from NINA and one on the publicly available data found. However,
only the two tests using NINA’s data were used to determine the best models (one using
Mel-spectrograms and one using spectrograms). The last test that only uses publicly
available data was used to check how well the system would generalise new data from
other sources and soundscapes. As mentioned in Section 1.1, this project does not focus
on how accurate the system is to predict the start and the end of vocalisations, but
rather whether the final system can find the vocalisations at all. Therefore, the number of
true positives (TP) and false negatives (FN) is not based on the number of data points
predicted correctly, but on how many vocalisations the system is able to find. The number
of true negatives (TN) and False Positives(FP) will, on the other hand, be calculated from
the number of data points. Nevertheless, since NINA specifically expressed that having a
low number of false positives was vital, we will also calculate how many FP vocalisations
each test predicts.
To evaluate the system, the true positive rate (TPR), precision and the number of FP
vocalisations are used. TPR is calculated by dividing the number of true vocalisation
found (TP) on the total number of vocalisation in the data, as Equation 3.2 shows [53].
Precision is, on the other hand, a measure of how many of the vocalisations found were
correct, given by Equation 3.3[53].

True positive rate (TPR) =
TP

P
(3.2)

Precision =
TP

TP + FP
(3.3)

Testing with NINA’s data
As mentioned, the two first test will use NINA’s data. Both tests will feed the 72 hours of

58 3.9 Testing

test data, as described in Section 3.2.5, through the system. The 72 hours of data is split
into six files, where three of them contain 18.6 hours of continuous audio, and three files
contains 5.4 hours of data. The system will first be tested by feeding these files into the
system, to see if it can handle processing such large files. If the system can not handle it,
they will be divided into smaller once. By doing this, we get to test if the system meets
the minimum requirement from Section 1.1 of being able to compute at least two hours of
data at a time. By feeding continuous files like this we also get to test the system as it
is intended to be used by NINA. The results from the tests will then be calculated by
comparing the output of the system to the txt-files created through the labelling process
described in Section 3.3. So, what differentiates the two tests?
Up to now, we have talked about detecting vocalisations, but what is considered a
vocalisation? Does each sound a bird makes count as a new vocalisation? Or are all sound
expressions made within a specific time window considered as one? As these types of
questions not necessarily has a straightforward answer, the two tests will use different
definitions of what a vocalisation is. The definitions are as follows:

1. A vocalisation is one or several sound expressions a bird makes, with no more than
0.5 seconds apart.

2. A vocalisation is one or several sound expressions a bird makes, with no more than
10 seconds apart.

Definition 2 is what the ornithologist at NINA would use, and how the system would be
applied there. As this definition looks more at sound sequences, which is more relevant
than definition one in bird monitoring. However, according to the ornithologist John Atle
Kålås, there is no consensus among bird researchers on how this is defined and could
therefore have been done differently by someone else.

When running the first and second tests, all false positive would be visually inspected.
When running the first and second test, the false positives would often be checked. This
was to check if it was actually a false positive, or if the system might have found a
vocalisation that was not found in the labelling process. Any such vocalisations found
by the model or author after the first round of labelling would be marked, so one can
compare what a human had found vs the model. When going through the FP or any
other of the test data, any cases that were too uncertain would be removed, just as done
when labelling the rest of the data, as mentioned in Section 3.3. This was done so these
would neither gain nor punish the system by selecting a class. The results from these
two tests will reveal if the system meets the minimum requirements of being better than
random, mentioned in Section 1.1.

Testing with public data
Unlike the two other tests, this only uses data gathered from publicly available sound
archives. It focused more on checking whether the systems works on data from all types
of sources using different recording equipment and having different soundscapes. However,
as mentioned in Section 3.2.1, this data had varying quality and durations, which has to
be considered when looking at the results. As much of the data from the publicly available
dataset was mp3 files, they first had to be transformed into wav-files to be sent into the

3.9 Testing 59

system. This was done using the python library Pydub, as mentioned in Section 3.7. The
test done were more or less exactly the same as for the two others, except for the mp3
conversion. The fact that the data from the publicly available data had different sampling
rates also allowed us to test that the system could handle that. The only difference
between the tests is that the this test data was not visually inspected afterwards in the
same matter as for the two tests on NINA’s data. The reason for this was that it was
quite time demanding, and the main focus was at getting the system to work for NINA.

60

4 Results
In this chapter, we will start by looking at the datasets, in Section 4.1. Section 4.2
continues by looking at the two final models’ loss and accuracy curves during training.
Then at last, in Section 4.3, we look into how the two versions of the system preformed
on the three tests presented in Section 3.9.
Something to note is that not all the parameters used in the two final systems were listed
in Chapter 3, but all the parameters used to train and build the two versions of system
are listed in Appendix A1.

4.1 The datasets
Up until now, we have talked about the process of collecting data and making the data set.
In this section, we will look at how much data was actually collected for each class, and
how much of the training data was duplicated and augmented. We will start by looking
at the training data. Table 4.1 shows an overview of how many labels were used per class,
their average, minimum and maximum duration, and number of data points that was
extracted from these labels.

Table 4.1: An overview of the data collected for training.

The class Number of
labels

Average
duration

Minimum
duration

Maximum
duration

Number of
data points

JS 815 8.10 sec 0.93 sec 24.62 sec 6900
SR 1669 3.35 sec 0.31 sec 21.61 sec 5500
BS 947 2.28 sec 0.28 sec 17.92 sec 2553

other 2626 5.67 sec 0.26 sec 134.4 sec 13730

If we start by looking at the number of labels listed in Table 4.1, we can see that the
JS had the fewest number of labels, following comes the BS class, while SR has twice
the amount of JS. The other class has over three times as many as the JS, with 2626
cases. Part of the reason why the SR has so many is probably because the two types
of vocalisations presented in Section 2.1, sometimes were a little bit apart and therefore
labelled separately. Meaning that the average duration of SR probably is a bit longer
than the duration listed in Table 4.1. When it comes to the average duration of JS, it is
still more than twice as long as SR, and more than three times longer than for BS. When
it comes to the minimum duration, we can see that all three bird classes can have short
vocalisations, especially the SR and the BS. However, we can also see that they can have
a longer vocalisations as well by looking at the maximum duration. Nevertheless, the
average indicates that the maximum duration is far from average for all classes. When
it comes to the minimum duration of the ’other’ class on 0.26 sec, this specific case was
discarded, due to the data extraction method described in Section 3.4.1. It should be
noted that it was generally avoided to include such short vocalisations/labelled audio,
even though some cases may have occurred.
When looking at the last column in Table 4.1 listing the number of data points after the

4.1 The datasets 61

data extraction, we can see that the other class by far has the most data point with 13730
cases/seconds. After this, we have the JS with 6900, following SR with 5500 and BS with
2553 data points. As mentioned in Section 3.4.3, we can see that the BS has the fewest
data points, by far. However, the class was even more unbalanced before the two extra
18.6 hours long wav-files were labelled to help balance the class, as described in section
2.10. By doing this and finding a couple extra vocalisations while double checking all the
labels (see Section 3.3), the BS class got 362 additional data points.

To further deal with the imbalance in the data set, both up and down-sampling were
tested as described in Section 3.4.3. The dataset that gave the best results for both
version of the system on NINA’s data was using all the types of augmentation described
in Section 3.4.3. However, how big portion of the data set came as a result of duplication
and augmentation was never discussed in that section as the amount of data found was
not presented yet. Therefore, we will go through how the validation and training set was
made as listed below, in the order they were done:

• 3730 data points from the other class were set aside.

• The remaining 24953 data points from all four classes were split into training data
and validation data in a 70%-30% split. Setting aside and saving the validation
data.

• Duplicating and random shifting all the BS samples and every fifth SR sample
remaining in the training set.

• Duplicating and mixing two and two birds: For BS and SR, and BS and JS, this
was done for every tenth sample until reaching the end of BS samples. For SR and
JS, it was done for every tenth sample until one ran out of SR data points(since
SR has less data than JS).

• Duplicating and mixing a bird class with the other class: This was done for all the
original BS samples and every sixth SR, using the 3730 ’other’ set aside in the first
step. The other class had a=0.6, in equation 3.1.

• Duplication and adding noise was done for all four classes in varying degrees: Every
tenth BS data point, every 15th SR, every 18th JS, and every 20th other.

• Then all the data points were collected, including the other labels set aside and used
for data augmentation, in a new CSV-file ready for training.

When duplicating only a part of a class, it should be mentioned that it was tried to switch
which data points were duplicated. To prevent that only a portion of a class would have
many augmented duplications, while other part had none.

When it comes to the 72 hours of test data from NINA all the data was used, except from
14 smaller sound segments that were too hard to determine and were therefore dismissed.
Out of the 14 cases, two were suspected of being SR, while the remaining twelve suspected
of being the BS. When counting the vocalisations as sound expressions with more than
0.5 seconds apart (test one), there were a total of 734 vocalisations: 88 belonging to the

62 4.2 Training curves for the models

JS, 290 belonging to the SR and 356 to the BS. Out of 734 vocalisations, 66 were found
later on by either one of the models or by the author after the first iteration of labelling.
Showing a human error rate of approximately 9.0% or a human TPR of 91.0% in this
project. In most cases, these cases belonged to the BS or SR class. However, four of them
were JS cases, all of which were found at location 2 and 4, meaning that the model in the
preliminary project had poorer performance than initially thought and listed in Section
1.2.1. Three of these had a duration of 1-2 seconds, and the fourth with a duration of
four seconds.

For the second test, where a vocalisation is counted as a sound expression or sequence
with more than 10 seconds apart from another vocalisation of the same bird, the data
had a total of 555 vocalisations. Of these, 84 belonged to the JS, 222 belonged to the SR
and the remaining 249 belonged to the BS.

When it comes to the dataset collected from the publicly available data, there was a total
of 81 audio files found: 29 belonged to the JS, 35 to the SR, and 17 to the BS. Appendix
A6 will list a complete overview of what sound clips and any additional information about
them that were requested by the database they came from. From the 81 audio files, a
total of 212 separate vocalisations were found when defining a vocalisation as in test one.
The number of separate vocalisations found for each bird was 49 for JS, 58 for SR, and
105 for BS.

4.2 Training curves for the models
In this section, we will take a look at the loss and accuracy curves for the two final models
during training. Both the models were trained for 50 epochs, using the second training
method mentioned in Section 3.8 and the augmented data set described in Section 4.1. It
took 78 minutes to train the model based on Mel-spectrograms over 50 epochs, while the
spectrogram based model took 122 minutes.

Let us start by looking at the loss curves, as the loss was metric of choice to decide what
model was the best. Figure 4.1a shows the loss for the Mel-spectrogram model, while
Figure 4.1b shows the loss for the spectrogram model.

4.2 Training curves for the models 63

10 20 30 40 50
Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Va
lid

at
io

n
da

ta
 lo

ss

Training loss
Validation loss

(a)

10 20 30 40 50
Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Va
lid

at
io

n
da

ta
 lo

ss

Training loss
Validation loss

(b)

Figure 4.1: Plot of how the average loss progressed during training for both the training
(blue) and validation (green) data. Figure 4.1a shows the curve for the model using
the Mel-spectrogram, while Figure 4.1b shows the loss curvature for the model using
spectrograms.

Both in Figure 4.1a and Figure 4.1b the blue line is the average training loss, while
the green line is the average validation loss computed per epoch. The Mel-spectrogram
model in Figure 4.1a, starts at a loss of 0.1521 for training data the first epoch, while
the validation starts at a loss of 0.0644. They then converge to a loss of around 0.072
for the training data, and a loss of 0.033-0.034 for the validation data after about 20
epochs. The same happens for the spectrogram model in Figure 4.1b, which start with
a loss of 0.1662 for the training data and a validation loss of 0.0709 in the first epoch.

64 4.2 Training curves for the models

Then after approximately 25 epochs the loss stabilises at approximately 0.0720 for the
training loss, and 0.0400 for the validation loss. After about 18-25 epochs for both models,
when the loss have "stabilised", both the training and validation loss only varies about
+/- 0.0005. Meaning that there are no clear signs of overfitting, as one would expect the
validation loss to increase and the training loss to continue decreasing if this happened
[53]. However, we will come back to this topic in Chapter 5. The reason why all the loss
graphs are stabilising is probably due to the learning rate scheduler, which in both cases
decrease the learning rate every fourth epoch with half its value (gamma=0.5). Meaning
that the models’ weights will be changed in a smaller and smaller degree during training,
as the learning rate is decreased.

As mentioned in Section 3.8, the best model would be picked from the epoch with the
lowest validation loss. For the Mel-spectrogram model this was in epoch 22, where it had
a training loss of 0.0647 and a validation loss of 0.0325. While for the spectrogram model,
this was in the 31st epoch where it had a training loss of 0.0723 and a validation loss of
0.0396.

In both figures, we can see a clear gap most of the time between the training and validation
loss. This seems to be biggest during the first epoch, likely due to the training loss is
calculated from the first to the last batch of data of training data. Meaning that the loss
of the first time the model sees this type of data is apart of the average training loss of
epoch one, while the validation loss is computed after the model has trained once at all
the training data. After the first epoch, we see that the loss oscillate a little bit back
and forward before stabilising. If we look a bit closer at how it oscillate, one can notice
that the best loss comes typically after the learning rate scheduler has decreased the
learning rate, which is every 4th epoch. This is probably due to the combination of the
learning rate is decreased and the training technique used, which can enable the models
to get closer to a local minima. If we then look back at the gap in loss between training
and validation, we can see that it is still there after the loss is quite stable. This was
speculated to be due three potential reasons: The first being that the validation data’s
loss is calculated without any regulation techniques such as drop out, while the training
data’s loss is, the second being that the training data has augmented data which would
increase the loss. The last reason is that the model is chosen out from the best validation
loss, which would have lead to a better validation loss. As the two first was relatively
easy to check, they were confirmed through testing. This was done by first testing the
training data on the final model using the evaluation mode, used for the validation and
testing. Then, while using the evaluation mode, only the original training data, without
data augmentation was tested on the models. This both confirmed that the dropout
rate and data augmentation affected the training data’s loss and showed that the data
augmentation had the biggest impact on it.

Now, let us take a look at the accuracy curves for both models in Figure 4.2. Figure 4.2a
shows the accuracy curve for the Mel-spectrogram, while Figure 4.2b shows the accuracy
curve for the spectrogram model.

4.2 Training curves for the models 65

10 20 30 40 50
Epoch

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Training accuracy
Validation accuracy

(a)

10 20 30 40 50
Epoch

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Training accuracy
Validation accuracy

(b)

Figure 4.2: A graph showing how the average accuracy progressed during training for
both the training (blue) and validation (green) data. Figure 4.2a shows the accuracy
curvature for the model using the Mel-spectrogram, while Figure 4.1b shows for the model
using spectrograms.

As for the loss curves in Figure 4.1, the training data’s accuracy is plotted blue and
the validation accuracy in green. Both the Mel-spectrogram and spectrogram model’s
training and validation accuracy starts at a lower value, and converges against a higher
value in Figure 4.2, as the loss did in Figure 4.1. For the Mel-spectrogram model the best
accuracy was found in epoch 29 where it had an validation accuracy of 0.9812, however
the best model was picked by the best loss in epoch 22, which had an validation accuracy

66 4.3 Results from the tests

of 0.9808. For the spectrogram, the best accuracy was achieved in epoch 22 with an
validation accuracy of 0.9803, while the best loss the model achieved was at the 31 epoch
had an validation accuracy of 0.9788. Since the loss and accuracy has a certain correlation,
we will see some of the same things in the accuracy graphs in Figure 4.2 as for the loss
curves in Figure 4.1. As an example, we can see that the peaks in both Figure 4.2a and
Figure 4.2b happens after the learning rate has been decreased and the best model weights
has been "updated" while training. We can also see that there is a gap of 0.5%-1.0% in
both Figure 4.2a and Figure 4.2b, between the training and validation data, which also is
affected by the data augmentation and regularisation used during training,.

4.3 Results from the tests
This section will start by looking at the test results from test one and two, followed by
look at the third and last test. As mentioned in Section 3.9, the TPR, the precision and
the number of FP are particular important measures for the system and is therefore listed
per version of the system and test. The results per class, and for the whole current dataset
will be listed as well.

4.3.1 Test 1 and Test 2

We will start by listing up the results of test one and two for both versions of the system,
before we will look at some sound examples linked to the results.

Test1, Mel-spectrogram
We start by looking at Table 4.2, which shows the result from the first test using Mel-
spectrograms.

Table 4.2: With Mel-spectrogram, test 1.

TPR Precision Number of FP
JS 0.9090 0.8989 9
SR 0.9000 0.9491 14
BS 0.8340 0.9224 25
For all classes 0.8692 0.9300 48

Overall, we see that the TPR=0.8692 with a precision on 0.9300, meaning that version of
the system found 86.92% of the vocalisations in the data, and that for every 40 vocalisation
it predicted approximately 37 were correct. When looking specifically at each species, we
can see that both the JS and SR have a higher TPR than the average, while the BS has a
bit lower TPR. When it comes to number of FP cases, the JS has the lowest number with
9 cases, the SR have 14 cases and BS has 25 cases, giving a total of 48. However, it is
important to remember that the BS has by far the most vocalisations in the first test as
well. Meaning that one missed case (FN) or FP have much less impact on the results of
the BS class than on JS in Table 4.2. If we divide the 48 FP cases on three days, we get

4.3 Results from the tests 67

approximately 16 FP cases per day/24 hour. When it comes to the systems TNR, given
by TN divided on negative cases [53], the system got a TNR=0.9997.

Test1, spectrogram
Now, let us look at the results from the first test using the spectrogram version of the
system listed in Table 4.3.

Table 4.3: With spectrogram, test 1.

TPR Precision Number of FP
JS 0.9545 0.9882 1
SR 0.9103 0.9706 8
BS 0.8387 0.9550 14
For all classes 0.8787 0.9656 23

When comparing Table 4.3 and Table 4.2, we can see that the overall TPR for the
spectrogram solution is a bit higher than for the Mel-spectrogram solution. The difference
in TPR for the BS is less than 1.00%, for SR is it approximately 1.00%, while for the JS
it has increased with 4.55%, as the TPR=0.9545. When looking at the FP in Table 4.3
we can see that the JS has one, the SR has eight, and the BS has 14, giving a total of 23
FP. This is approximately half of the amount of FP compared to the Mel-spectrogram
solution. The lower amount of FP combined with a higher TPR have lead to a increase of
3.69% in precision for the spectrogram solution. For the JS it has increased the most, by
approximately 10%, while the SR has increase 2.15%. The 23 FP, mean that there were
on average approximately 8 FP per day. It has also increased the TNR compared to the
Mel-spec solution, as it got a TNR of 0.9998.

Test2, Mel-spectrogram
For the second test, the Mel-spectrogram solution got the results listed in Table 4.4.

Table 4.4: With Mel-spectrogram, test 2.

TPR Precision Number of FP
JS 0.9286 0.8966 9
SR 0.9099 0.9352 14
BS 0.8635 0.8958 25
For all classes 0.8919 0.9116 48

The total amount of TPR has gone up for all three classes, when defining the vocalisation
a bit differently, where the biggest change lies at BS which went up 2.95%. Nevertheless,
the change in vocalisation definition has also gotten the overall precision for the three
test days to go down. This is due to the number of vocalisations in the second test is
somewhat lower than in the first test as we saw in Section 4.1. The FP number and TNR,
on the other hand, stays the same for both test.

68 4.3 Results from the tests

Test2, spectrogram
For the second test at the spectrogram solution got the test scores listen in Section 4.5.

Table 4.5: With spectrogram, test 2.

TPR Precision Number of FP
JS 0.9640 0.9878 1
SR 0.9099 0.9619 8
BS 0.8916 0.9407 14
For all classes 0.9099 0.9564 23

When comparing the numbers in Table 4.5 with Table 4.3, we can see that the overall
TPR has gone up 3.12%, where the highest increase can be seen for the BS at 5.29 %.
However, the TPR for the SR class showed a decrease of -0.50%. Looking at Table 4.5,
one can see that the precision decreased for all classes, just like the Mel-spectrogram
solution. The number of FP stays the same, but the TNR on the other hand, is 0.9997
due to less number of negative data points in test two.

When it comes to computation time, it took the Mel-spectrogram approximately 5 minutes
and 10 seconds on the three test days. In contrast it took the spectrogram solution
approximately 12 minutes. Nevertheless, the time could vary some from time to time,
especially if the computer was computing the results while running several other things
at once. When it comes to the system’s computation abilities, the system in both cases
were able to handle the shorter and longest wav-files of 5.4 and 18.6 hours without any
problems.

Now, let us look a bit closer at why there is a noticeable change in number of vocalisation
for the BS class between test one and two, as mentioned in Section 4.1, and why especially
the BS class’s TPR went up as it did in test two. Figure 4.3 shows one of the better
examples on this from one of the test days.

4.3 Results from the tests 69

0 5 10 15
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

Figure 4.3: A sound clip with BS mating vocalisations. In the first test this sound clip
contains six vocalisations, while in the second test it only counts as one.

In test one, there are a total of six sound expression made by the BS in this sound clip, at
second: 1-3.5, 6-7, 11-12,13, 16, and 17.5. "Both systems failed to predict vocalisations
for the five shorter ones, meaning they can give 5 FN cases. In contrast, the second test
would only count all six as one vocalisation, meaning it would only be one TP or FN,
from this sequence of sounds.

Now, let us take a closer look at some false negative cases for both tests. Figure 4.4,
shows two examples of this.

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(a)

0 1 2 3 4 5 6 7
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(b)

Figure 4.4: Two examples of false negatives.Figure 4.4a is of a BS, while Figure 4.4b
shows an SR vocalisation.

Figure 4.4a shows a BS between 2.5-5 seconds in the frequency range 3.0-5.7 kHz, while
Figure 4.4b is of an SR from 2 to 4.5 seconds in the frequency range of 2.2-3.2 kHz. As we
can see both examples are quite weak, which is the case for most of the FN vocalisations.
Several of them are also shorter than the two examples in Figure 4.4, such as the five
shorter sound expressions made in Figure 4.3, which can make them even harder to detect.

70 4.3 Results from the tests

Now, let us take look at the other group of false prediction; false positives. First, a closer
look at the difference in FP cases for the JS for Mel-solution and the pure spectrogram
solution. As seen in both tests, the Mel-spectrogram solution has nine FP cases for the
Jack Snipe, while the spectrogram solution has one. When inspecting these cases closer,
it was discovered that seven of the FP cases for the Mel-spectrogram solution were during
heavier rain, which appeared several times during the 72 test hours. Figure 4.5a shows an
example of one of these FP predicted by the Mel-spectrograms solution.

0 1 2 3 4 5 6 7 8 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(a)

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(b)

Figure 4.5: Two examples of FP by the models. The first case in Figure 4.5a is one of
several cases the Mel spectrogram model had of FP prediction of the JS during strong
rain, while Figure 4.5b shows a type of wind that would trigger FP for both models.

Another FP example worth showing is in Figure 4.5b, which shows a type of wind both
the versions of the system mistook for the SR a couple of times. This is probably due
to the winds between 1 kHz, and 3 kHz, which create an activation that can resemble
the SR mate attraction vocalisation. When it comes to the BS class, there were not that
much repetition in the FP for any of the systems, except for a couple of different looking
Bluethroat vocalisations.
When comparing the two versions FP there were not that much overlap, on when exactly
the FP occurred for any of the classes. One thing that should be mentioned for the birds
FP is that none of their vocalisations were mistaken for another bird, and all their FP
cases always belonged to the ’other’ class. When it comes to the FP cases duration, most
of them had a duration of 3 seconds or longer.

Even though many more cases could have been interesting to look at, there is one type of
SR vocalisation in particular that is perhaps more interesting than many of the others.
The reason for this is that the vocalisation’s frequency pattern diverges from the others
seen up to now and found at the different training sites. Figure 4.6 shows an example of
this vocalisation in question.

4.3 Results from the tests 71

0 1.5 3 4.5 6 7.5 9
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

Figure 4.6: A SR mate attraction vocalisation found at location 7.

The vocalisation has a frequency range of approximately 2.2 kHz to 3.5 kHz, and was
confirmed to be a SR mate attraction vocalisations by John Atle Kålås. When comparing
the vocalisation to the other SR vocalisations found in the test data, such a Figure 2.3,
we can see that the start of the vocalisation is somewhat different by looking at its
pattern in the spectrogram. Nevertheless, after approximately six seconds it seems more
like the vocalisations seen at the training locations. Why these vocalisations are a bit
different is hard to say, but it is probably another individual than the ones at the other
locations. When it comes to the two versions of the system’s performance on these types
of vocalisation, it were in most cases not a problem to find them. However, there were a
couple of cases where both system missed, even though they were not among the weakest
vocalisations. The specific case shown in Figure 4.6 were found by both versions of the
system.

4.3.2 Test on public available data

For the third test using the publicly available data and test one’s definition of a vocalisation,
both versions of the system were tested with two different acceptance thresholds. The
first threshold was the same as used during testing on NINA’s data(test one and two),
and the second was set to 0.5 for all three classes, as the original threshold was relatively
high (see Appendix A5).
We will start with the first threshold, where the Mel-spectrogram results are listed in
Table 4.6 and the spectrogram solution’s result is listed in Table 4.7.

72 4.3 Results from the tests

Table 4.6: With Mel-spectrogram, test 3 with the same threshold of acceptance as on
NINA’s data.

TPR Precision Number of FP
JS 0.5306 1.0000 0
SR 0.6552 0.8261 8
BS 0.0476 1.0000 0
For all classes 0.3255 0.8961 8

Table 4.7: Spectrogram solution results on test 3, using with the same threshold of
acceptance as on NINA’s data.

TPR Precision Number of FP
JS 0.2449 1.0000 0
SR 0.6552 0.7917 10
BS 0.0190 1.0000 0
For all classes 0.2453 0.8387 10

As we can see, the TPR is much lower for both systems, than in test one and two,
especially for the BS class where only 4.76% and 1.90% were found. When comparing
the two versions of the system, the Mel-spectrogram has over twice as high TPR for the
JS as the spectrogram solution, while they have the same TPR for SR. However, the
Mel-spectrogram has, in this case, less FP than the spectrogram solution, making its
precision on the SR a bit higher. When it comes to the other classes, both versions of
the system had a precision of one due to no FP cases. When it comes to the TNR, the
Mel-spectrogram got 0.9929, while the spectrogram solution got 0.9862.

However, when changing the threshold of acceptance in the post-processing step, both
systems number of FP change as we can see in Table 4.8 and 4.8.

Table 4.8: Results fromMel-spectrogram solution on test 3, with a threshold of acceptance
= 0.5.

TPR Precision Number of FP
JS 0.7143 0.9459 2
SR 0.6552 0.8261 8
BS 0.2857 1.0000 0
For all classes 0.4858 0.9115 10

4.3 Results from the tests 73

Table 4.9: Results from spectrogram solution on test 3, with a threshold of acceptance
= 0.5.

TPR Precision Number of FP
JS 0.6735 1.0000 0
SR 0.7586 0.6567 23
BS 0.2667 1.0000 0
For all classes 0.4953 0.8203 23

The Mel-spectrogram solution got two additional Jack Snipe FP cases, while the number
of FP for the SR increases to 23 for the spectrogram solution. Thus, when it comes to
the TPR, it is much more even between the two systems, than for Table 4.6 and Table
4.7. The precision for the Mel-spectrogram solution is lower due to the spectrogram
solution’s higher number of FP cases. In the case of the Mel-spectrogram, the prediction
given for the JS is better than for the spectrogram solution, while the SR is worse. For
the last class: BS, have the Mel-spectrogram 1.9% higher TPR. When it comes to the
TNR, the Mel-spectrogram solution got 0.9904 while the spectrogram solution got a
TNR=0.9723, which is a bit lower but expected to the higher number of FP. A last thing
worth mentioning is that in all cases both versions of the system was able to process all
the files from the public available dataset, meaning the system was able to handle different
sampling rates.

74

5 Discussion
This chapter is divided into seven sections. The first two, Section 5.1 and Section 5.2, will
discuss around the three tests and their results. Then will Section 5.3 talk around the
data used and some limitations it has. Followed by Section 5.4, which will talk about the
system and its processing capacity and ability to generalise. Then will Section 5.5 and
Section 5.6 compare the system against others and talk about usage of it, before Section
5.7 will round off the chapter talking about potential future work.

5.1 Test 1 and Test 2
This section will look closer at the two first tests, which were used to determine the best
version of the system, as stated in Section 3.9. The two versions of the system presented
with results in Chapter 4 were picked by looking at the TPR and precision, while tweaking
each bird’s acceptance threshold and minimum duration used in post-processing, as
explained in Chapter 3. When choosing which threshold and minimum duration to use in
the post-processing step, a trade-off had to be made between FP and FN, which affects
the TPR and precision. A lower threshold and a minimum duration would have resulted
in more predictions on the bird, which at least in this case would have made the system
able to find more of the vocalisations in the data and thereby give a higher TPR. However,
this would also have given a terrible precision score. The same goes the other way around.
If the threshold and duration were set so only some cases were found per class and no
FP were predicted, the precision would then be one, while the TPR would be terrible.
Therefore a balance had to be found. It is also why both versions of the system could have
had a higher TPR than the results listed in Section 4.3. However, it would have been at
the cost of the precision and higher number of FP cases. Although the results from both
tests suggest that the spectrogram version worked the best, both will be commented on
in through out this chapter. It should also be said that the spectrogram versions were not
working best at all times. It could also be that the Mel-spectrogram version of the system
could have worked better with some other parameters than the once listed in Appendix
A5.

In Section 1.1, we saw that one of the minimum requirements is that the system should
predict better than random. As it is a multi-label problem, we will look at each class
separately and see if it predicts better than 50% correct per class("random"). By looking
at the results in Section 4.3.1, which shows that both version of the system has a TNR of
over 99% and a TPR of over 83% per class, we see that the system is much better than
random. This means that the system meets this minimum requirement. Nevertheless,
even though both versions of the system did way better than random, it is also safe to
say that the system is not perfect either and has its limitations. This is why we will look
closer at the FP and FN in the following part.

False positive cases are important as they will appear as any other prediction for the
end-user of the system, which can not differentiate them from the TP cases without
further investigation. As we saw in Section 4.3.1, both versions of the system have some

5.1 Test 1 and Test 2 75

FP cases for the three test days. The spectrogram solution has a total of 24, while the
Mel-spectrogram solution has 48 cases. The number of FP perhaps the most important
difference between the two systems test scores, as the Mel-spectrogram solution had over
twice the number of FP cases. The most significant difference was for the JS class, where
the Mel-spectrogram solution had nine FP cases, while the spectrogram solution had
only one FP case. Of the nine cases, seven of them seemed to be caused by rain, which
we saw an example of in Figure 4.5a. Rain also happens to be a reoccurring sound in
the landscape, meaning that it is likely that the Mel-spectrogram will have reoccurring
FP cases over time when there is rain in the wav-files. Nevertheless, it should also be
mentioned that several hours of the data did contain rain, and the FP cases listed would
be much less than one percent of this time.
Another example mentioned in Section 4.3.1 was the false positive SR cases that seem to
come from a specific type of wind. If they were due to a type of wind, they also have a
good chance of reoccurring. However, as there were much fewer cases than for the JS for
the Mel-spectrogram solution, even though there was a lot of wind, it migth not happen
that often. For all the FP cases, a common denominator is that the sound source was in
the same frequency range and typically resembles the vocalisation to some degree, which
makes sense, as the system thinks it is one of the birds.

When it comes to false negatives, the number itself refers to how many cases/vocalisations
were not found during testing and can therefore be an important thing to have in mind.
In Section 4.3.1, we could see that the number of FN cases depended on whether it was
the first or second test. Showing that how one defines a vocalisation can have a lot to
say. Even though both versions of the system’s FN cases were often weak or short in both
tests, the ones that only were present in test one were close to other sound expressions
made by the same bird. This was especially the case for some of the BS cases, as it had
both a big shift in the number of vocalisations and TPR between the two tests, as seen in
Section 4.1 and Section 4.3.1. However, the BS class did still hold the highest number of
vocalisations in both tests on NINA’s data, meaning it also has the biggest impact on the
test set’s overall precision and TPR. However, there was almost the same amount of SR
and BS in the second test, while the JS class had considerably fewer vocalisations. This is
important to have in mind when looking at the datasets scores and not the individual
classes. How many vocalisations there are per species will also affect how much one single
vocalisation affects the different "scores" of the class. We will touch more upon this in
Section 5.3. Nevertheless, there is also an uncertainty connected to whether one has
found all the FN cases and if each vocalisation is labelled correctly. As we saw in Section
4.1, four additional JS cases were found from the two test days used in the preliminary
project[26]. However, these were also mostly shorter cases the JS detector could catch do
to its minimum duration of three seconds. Still, there was also a human error both in that
and this project, as we also saw in Section 4.1, where the human error was calculated to
be approximate 9% leaving a TPR of 91%.
When we compare it to the system’s scores, we can see that the spectrogram version of
the system scored more or less the same in test two for the overall dataset with a TPR of
90.99%. Then when looking at the other test results, we can see that this is not far from
the same score neither. Even though both the test and the error rate may not be 100%
representative for all NINA’s data, it does at least indicate that the system can help to

76 5.2 The third test

find approximately the same amount of data as if one use one human being to label it
manually. Nevertheless, one should still go through the cases as the precision score is not
equal to one, but who knows, this might not be the case for a human either. It is also
important to remember that the system is not critical in the way a medical system may
be or a system that is scanning for terror threats.

5.2 The third test
Now, let us see closer at the third test, meant as an additional test to look at the system’s
ability to use other data than NINA’s. As we saw in Section 4.3.2, both versions of the
systems was tested using different thresholds of acceptance in the post-processing step;
one using the thresholds used in NINA’s data and one using a 50% threshold on every
class. This was done as the thresholds listed in Appendix A5 were chosen based on NINA’s
data, which the systems also trained on, while the public available data has more noise
and other sound in it. Making it interesting to test with another threshold not determined
from NINA’s data, and see what diffrance it has.

When using the same threshold as in test one and two, the Spotted Redshank had the
highest TPR of the classes with 65.52%, for both versions of the system, as shown in
Section 4.3.2. However, it is also the only class with FP cases for both versions of the
system. When it comes to the JS class, Section 4.3.2 showed that the Mel-spectrogram
had the highest TPR for both thresholds but that the difference was the biggest for the
first threshold as it went from 28.57% difference to 4.08%. The BS class had, on the other
hand, a poor TPR for the first test of 1.90% and 4.76%, but a better one at the second
test, yet still was not ideal. This test set is also the BS, the one holding the majority of
vocalisations, meaning the BS has a bigger effect on the overall TPR and precision on the
test. However, if we look at the classes separately, we also see that both the SR and JS
class have not the badest scores when one considers that the data is completely different
and that there are bigger uncertainty connected to the data as well. Uncertainties both
due to the quality of the data and the test sets’ labels as they were not gone through after
they were first labelled, as for NINA’s test data. Nevertheless, to expect the same results
from the third test as for the two priors would be somewhat unrealistic as the data differs
entirely from what the model has been trained to recognise. Even good results could have
been obtained. It is also important to remember that this project has not focused on
making the system perform best on this test or type of data, but for it to perform well at
NINA’s data, which the system is intended for.

5.3 The data and its limitations
In this report, data has been a topic several times, both when discussing topics such as
what data was available and how it was used, and the soundscape in NINA’s data. As no
dataset was available, one of the main tasks in this thesis was choosing which data to use,
labelling it and making datasets out of it. This presented several challenges and decisions
that had to be made. One of these was what data to use. This is why a plan on how to

5.3 The data and its limitations 77

utilise the available data as good as possible was made in Section 3.2.5. Nevertheless, it
will always be hard to say want would have worked the best for the project, using the
available time.

One of the biggest challenges related to the data was how to label it. Getting assistance
from the bird researcher/ ornithologist, John Atle Kålås, did increase the quality and
probably the credibility of the dataset. However, the fact that the author made the final
decision on what to label or not, probably is one of the most significant uncertainties of
the project, both for thee classifiers built and the results presented in Chapter 4.
This uncertainty is especially the case for the BS class, which both the author and the
ornithologist had problems with at times, as mentioned in Section 3.3. It was particularly
hard because other birds could both resemble its vocalisations or mask the bird. It also
had a more complex vocalisation than the two others, especially the JS. The difficulty
around labelling the BS class, in particular, is also reflected by the cases removed from
the three test days. As 12 out of 14 cases were connected to the BS. Nevertheless, there
were also cases used in the test data that could not be confirmed with 100% certainty.
However, if one were to remove all cases that could not be said with certainty, the test
would be far from the same. The two tests using NINA’s data would also not test on
the real use case if to many cases were removed, as the real recordings will have different
strengths and duration in the vocalisations .Therefore, it is just something that has to be
taken into account when reviewing both the results and the way of detecting vocalisations.
Nevertheless, there are bright sides to the fact that the author made the dataset. It
allowed one to get to know the data and the decisions made along the way. Including the
datasets’ strengths and weaknesses.

When it comes to the three test days used, it allowed one to test for a real use case and
also test for a relatively large amount of data. Nevertheless, the number of vocalisations
for each bird and the sound made by other sources can vastly diverse from one day to
another. Thereby, the results given in Chapter 4 could be somewhat different if one had
use three completely different days. Both in the number of vocalisation, how easy they
could be for different versions of the system to detect, or how many false-positive cases
the system producers. This was also reflected in the three test days used as all the SR
cases come from one day, meaning two of the three days only tested whether it gets FP or
not. That the number of vocalisation can change from day to day could also be seen if one
compared the training and test data in Section 4.1. Where we can see that the BS holds
the majority of vocalisation in the test data while not in the training data. However, this
could be due to the absence of SR in two of the test days and the fact that the training
data is the average of 18-19 days of data taken from 2016 and 2017 (Appendix A4). It
also does that the BS class has the most to say for the overall results, while if one of the
other class had the majority of cases, its class would have the most significant impacts.

Another thing worth commenting on regarding the training data is the estimated human
error at 9%, reflecting some of the difficulties in catching all the cases the first time one
looks and by a human. Nevertheless, the error rate is estimated based on the author’s
ability to label and not necessary the researchers at NINA. Although, in the preliminary

78 5.4 The systems

report, the author’s labelling was compared to the ornithologist, where the author found
the most cases. This was speculated to be due to thorough labelling from the author’s
side. It should also be commented on that 9% is relatively high, and almost double as high
as the estimated human labelling error at 5% mentioned in Section 3.3. This is thought
to be because of the challenges in labelling the data used, and that the 5% comes from
another type of data

When it comes to the public data, there are several uncertainties both to its quality and
how well it is labelled, as mentioned in Section 3.9. As mentioned in Chapter 3, most
of the publicly available data had to be transformed from mp3 to wav file format to be
run through the system. We do not know what effect this has, as the data is already
compromised when transformed into wav-files. This was not tested further in this project
but could have been tested by transforming the test data to mp3 and back again to
wav-files, then run it through the system and check the initial results.

5.4 The systems

5.4.1 Processing time and capacity

This part will take a brief look at both systems’ computation speed and capacity. As
mentioned in Section 3.4.2, one of the recommendations from the preliminary project
was to look into other methods for transforming the data than using PNG images, as
it was pretty time-consuming. Even after getting the GPU at the project’s disposal, as
mentioned in Section 3.7, it would still be quite time-consuming, since the most time
demanding part of the system, making the images would have to run at the computer’s
CPU instead of GPU. A process that could take around 2 hours 33 minutes per day
it was computing. In contrast, it takes less than two minutes for the Mel-spectrogram
solution and four minutes per day for the spectrogram solution, when the computer is
not computing anything else. As we can see, this is a tremendous improvement in speed.
When comparing the two versions of the system, the one using Mel-spectrogram vs the
one using the spectrogram, we can see that computation time using the spectrogram is
more than twice as long time. This is due to the Mel-spectrogram almost having almost
one-fourth of the data and a smaller input put layer as well.
However, when the system is computing a day as fast as it is for both versions of the
system, we should also ask ourselves if we need the fastest solution if it will cost in
performance? Here it is important to point that the system is not a real-time system, and
therefore is not the Mel-spectrograms solution’s speed needed. With smaller changes to
the code of the system, it could iterate over many different files at once without human
supervision. Meaning the system should be able to do all the computations over one night
if it is using the same GPU everything goes well, after being set up correctly. Thereby,
even if the Mel-spectrogram is faster, the tests suggest that the spectrogram solution is
the better choice for NINA, as it seems to be more than fast enough and give the better
results on their data.

5.4 The systems 79

When it comes to computational capacity, Section 1.1 stated that one of the minimum
requirement was to compute at least two hours at once. This requirement was met as the
system was able to compute the longer test files of approximately 18.6 hours with 16 kHz
in sampling rate, as mentioned in Section 4.3.1. In addition to this, the system was also
able to handle different sampling rates, as was set as a goal in Chapter 3.

5.4.2 Comments to how the system was built

When using machine learning, one has a sea of different possible methods and structures
to try. Therefore, it is most likely some other type of model’s structures and techniques
out there that would have worked just as good, if not even better. However, we will not
know without setting up and testing them. Many different decisions were made for this
project, and we will not look at all of them. However, we will look at some selected ones.

First, we will look at how the data was segmented. In this project, it was determined to
use one-second segments, as explained in Section 3.4.2. This was because it seems to work
good in the preliminary project and that it would give a prediction per second feed-in.
However, perhaps one should have tested with longer second segments as well on either
1.5, 2 or 3 seconds, for example. Maybe, longer segments would have caught more of
the patterns at times and helped the model detect more such it could distinguish better
between false and positive cases. However, longer segments would still have "edges" where
a vocalisation could just have ended or started, or contain some really short vocalisations
at times, meaning only a small part of the data set in would contain a vocalisation.
Nevertheless, it was also thought that the way all the data samples overlapped 50% in
testing/production combined with the minimum duration in the post-processing step
would help filter away cases where the model had mistaken a negative data point for a
positive data point. Another thing to think about is that there was limited time for the
project, and one had to choose what to test.

When it comes to the training set, several small decisions had to be made in an attempt
to extract the multi-label data in a good matter. However, perhaps some of the decisions
made, explained in Section 3.4.1, should have been done differently. Maybe the labels
should have been dealt with higher accuracy and not rounded off to a second given with
one decimal. Maybe the threshold saying that at least 25% of the segments had to contain
a bird label for the segment to be label the same was either too high or low, or it should
have been done a different way.

Then we have the handling of the unbalanced dataset. In this project were two main
techniques tested and used: adding data and resampling of the dataset. By going through
some extra data, it increased the minority class, BS by 362 data points, which lead to an
increase of 16.5% datapoints for that class. Then when testing, we saw that upsampling the
dataset, especially focusing on balancing the data using all three using data augmentation
seems to work best. However, as we also saw in Section 3.4.3 were there many other
augmentations techniques that might have worked. It should also be mentioned that it

80 5.5 Comparison to other systems

should probably have been tested with other types of noise than just the uniform one.
This could also have helped on the system’s overall performance in the third test and
on other types of data in general as noise is supposed to help the model becoming more
robust.

When it comes to the model, it was as stated in Section 3.5, decided to only use predefined
structures that had to seem to work on similar project and ratter adapt than. This allowed
one to focus more on other aspects of the project, such as how to train the model, collect
more data and test different varieties of the techniques used. Several of these techniques
used was to prevent overfitting as we will look at in the next section.

5.4.3 Is the system able to generalise?

As mentioned in the last section, several techniques were used during training to prevent
overfitting of the models, such as drop out, the learning scheduler, and early drop-out.
When it comes to the training graphs presented in Section 4.2, there were as mentioned no
signs of overfitting, as both the training and validation data saturated around a number.
However, the early stopping technique should have stopped it by taking the model with
the lowest validation loss anyway. Even though the graphs do not show any clear signs of
overfitting, we can still not know for sure just by looking at the graphs.

When looking at the results from the first and second tests, both models seem to also
generalise well on NINA’s data. The fact that it is able to pick up on the somewhat
"special" SR mate attraction vocalisation also seems promising, as it was not included in
the test data. However, when it comes to generalising on other data sources than NINA’s,
we saw in test three that the model did not perform as well. Suggesting that the system
might be somewhat overfitting on NINA’s data, especially for the BS. Nevertheless, it
is some questions around the qualities around the test, and it does not mean that the
system will not work for NINA. The system might even work more or less the same for
data collected with similar equipment chains, however we will not know without further
testing.

5.5 Comparison to other systems
The previous work section (Section 1.2) showed that there were only three related projects
that had looked into any of the vocalisations of interest, as far as the author of this thesis
could find: BirdNET, the preliminary project, and Maja Sofie Stava’s master thesis. In
the preliminary project, and as one can also see by studying the description in Section
1.2.1, the preliminary project performed better than Maja S. Stava’s JS detector. This is
why only the preliminary project and BridNET will be discussed and compared against
the spectrogram version of the system in this section.

BirdNET:
BirdNET is the only publicly available system and also the only system prior to this thesis

5.6 Usage of the systems 81

that could detect any of the vocalisations of interest to the best of the author’s knowledge.
However, the system did also detects more than just the vocalisation of interest to the
birds. Nevertheless, how accurate it makes the predictions is another question. To look
into this in the preliminary project, a little test was made setting the preliminary project
and the BirdNET demo[88] at the projects page up against the preliminary system. The
test showed that the BirdNET found the stronger cases, but had problems with the weaker
ones, that the JS detector was able to find in most cases. Nevertheless, both systems are
built somewhat different. We also do not know how the system would perform on the SR
or BS, as this were to look into in this thesis.

The preliminary project:
When it comes to the preliminary project’s "Jack Snipe detector", there are both
similarities and differences, which mostly has been compared throughout Chapter 3.
The biggest difference is, of course, that the current system detects two more species
mate attraction vocalisations. Nevertheless, there are also some other big changes if we
only look at how the system is built and the results in the JS class. One of them is
that the models in the current system were trained on much more data, and not at least
diverse data from several locations and not only one as the JS detector was. Another huge
difference is that the PNG images are no longer used, and the computation speed is much
better, as we saw in Section 5.4.1. It also allows us not to have to plot, save, compute, and
delete the images, making the current solution less "clumsy". When it comes to testing,
the JS detector was not tested in the same matter as the system built in this project. It
had a third test day from the same location as the training data and had no firm definition
of a vocalisation. Also, as we saw in Section 4.1, four additional vocalisations were found
in the test days used in the preliminary project, meaning that its real TPR is 93.85%.
Nevertheless, the JS detector did not get any FP and thereby had a precision=1.0. In
contrast, the spectrogram version of the system had one FP case and precision of 98.82%
or 98.78%, depending on how one defines the vocalisations. However, the current system
did not have such big of a problem with the shorter JS vocalisations as the preliminary
project’s. This project avoided this by having the data points overlapping 50% and a
minimum duration of two data points instead of no overlap and a minimum duration
of three data points. Nevertheless, the latter part was never tested for the preliminary
project, and could have lead to higher TPR. However, it would also have lead to a more
time-consuming computation as it would almost double the number of data points.

5.6 Usage of the systems
This section will mainly focus on the potential usage of this system for NINA, as their
research was the main reason for doing this project. The system built in this project
has certain limitation. However, the tests also indicate that the system is approximately
as good as a human being. Nevertheless, as discussed in Section 5.3, we can not know
this is the case for all NINA’s data without further testing. However, regardless of this,
it would be recommended for them to check all positive prediction the system makes,
especially if they were to change their equipment chain any further or change the recording

82 5.7 Future work

locations. This could either be done by tweaking the system to write these cases to
separate wav-files or using another program such as Audacity, which was, as mentioned
in Section 3.7, used for labelling the data. Except for ensuring that the vocalisations
are true, it could also be a good idea to go through if one wants to know the number of
vocalisation made, as the system only detects whether one of the vocalisations of interest
is present or not, not whether multiple birds from the same species are vocalising at once,
which sometimes was the case. However, even though someone should go through the
predictions to validate them, the system can still save NINA a lot of time compared to
the time it would demand to go through it manually. It is also a possibility only to use
one or two of the classes predictions as especially the JS vocalisation had relatively high
TPR and precision. Another possibility is to have one person go through parts of the
data in addition to the system computing the results.

For other use cases than on NINA’s data, it is strongly recommended to test the system
further on the intended data/use case due to the indications that the system works much
poorer on data from other data sources. Nevertheless, there is also a possibility that some
changes to the training of the model, which could potentially improve the results scores
for the third test. This will be elaborated more on in the next section.

5.7 Future work
When it comes to future work, there can be the type that focuses on on improving the
system performance, user-friendliness or the kind that goes more out of the scope of the
problem described in Section 1.1 and looks into expanding what the system can detect.
We will start by talking about the first type of future work. First of all, we can not know
what will work the best, but we can speculate and look at what seems more likely to help.
Collecting more data to train on is among the more likely things to help, especially making
a more extensive training set on the Broad-billed Sandpiper. This can be by using more
of NINA’s data or by recording and collecting new data. The latter is also recommended
doing using different types of equipment chains and other locations, perhaps even in other
countries if possible, if one wants the system to work across even more soundscapes and
equipment. This could also open up for making better tests for the system’s generalisation
on the vocalisations of interest. Nevertheless, it would also be recommended to look into
and test more with data augmentation, especially with noise injections, as this is thought
to make the system more robust. It may even boost the performance somewhat in test
three. However, it is also recommended to test the system further, with more days to
evaluate it. In addition, it could also be a good idea to take a deeper dive into the dataset
made by publicly available data, as this was not done after making the dataset, as stated
in Section 3.9. Including looking into if the mp3 format has anything to say or not.

It could also be possible to split the BS mate attraction up to two different classes, one
class for each type of sound, especially if more data on the BS mate attraction vocalisations
were collected. The same could be done for the SR’s two types of vocalisation presented
in Section 2.1. This way, each class would only contain one main pattern it would have to
recognise. The results of these classes could also be added together before writing the

5.7 Future work 83

cases to the CSV file.

It could also be possible to go through all the labels and removed the weakest cases or at
least test without them, as they have a higher uncertainty around them since they often
are harder to verify. This was done for the preliminary project. However, the effect it
had was never tested and therefore not prioritised in the thesis. Another thing that could
perhaps improve the dataset and its balance is to look closer at the ’other’ class. Since
the ’other’ data class is "randomly" collected over time and the largest class, some of the
samples could probably be removed. By using clustering, an unsupervised ML technique,
to look at the data’s resemblance, one could have done selected downsampling. This could
then have helped removed some examples there may be an abundance of. This could also
open up for adding samples from other locations and perhaps sounds recorded with other
equipment without affecting the datasets balance too much.
Another thing clustering or something called Principal component analysis (PCA) could
be used for is to check the convolutional layer’s ability to due feature extraction. This
would be done by removing the fully connected layer and running data through them
before using PCA or clustering to group the data. This can be used to consider if one
should test with two fully connected layers at the end of the model instead of one. This
technique was used in early testing to look at the feature extraction abilities of the model,
but not on the later versions.

In addition to the things mentioned above, are there still many other options as testing
with more with different parameters and the techniques already used, test with different
lengths on the data segments, other unbalanced dataset techniques than collecting more
data or re-sampling, testing with attention models (mentioned in Section 3.4.2), or noise
reduction methods. One could also change the type of model completely to test other
approaches, such as recurrent model or look into hidden Markov models, both of which
are used within speech recognition.

Nevertheless, the system has a relatively good TPR and precision, and further improvement
may not be needed. Therefore, potential future work could also be to add more vocalisations
and try to train the model further. This could be vocalisations of other birds or other
vocalisations from the three birds of interest than those in this project. Another way to
angle future work could be adding smaller features such as the ability to run through
a folder of wav-files as mentioned in Section 5.4.1, or give the user the ability to add
together vocalisations within X seconds of each other. It could also be to make a graphical
user interface for the less technical researchers at NINA, enabling them to use the system
easier.

84

6 Conclusion
This thesis aimed to make a system to help NINA with detecting specific vocalisations
from the JS, SR and BS in wav-files, as a tool for their research. By getting familiar with
the vocalisations of interest and the data they wanted to process, it made it possible to
use some of NINA’s data to make multi-label datasets. This could then be used to both
make the system, using a neural network, and test it. To evaluate the final versions of the
system a total of three tests were made.

Two of the tests used 72 hours of NINA’s data to test the systems ability to detect the
vocalisations. The first test looked at the single sound expressions, while the second
looked more at sound squeezes made by each bird and is the most relevant for NINA’s
research. The test showed the best results coming from a model using spectrograms at
the input. It got a TPR of 87.87% and precision at 96.56% on the first test and a TPR
of 90.99% and precision of 95.64% on the second test on the overall dataset. Using the
same test data a human TPR was calculated to be approximately 91%, indicating that
the final system should match the work of a human during labelling. When it comes to
computation capacity, the system was able to process the longest wav-files of 18.6 hours
with 16 kHz in sampling rate. For computation speed, on the other hand, the system was
able to compute 24 hours of data in 4 minutes using a RTX3090.

The third test used the limited amount of publicly available data on the vocalisations
of interest to test the system on other sources. Even though no indication of overfitting
was found on NINA’s data, the third test indicated that the system might not be able
to generalise as well on a random data source, especially the BS vocalisations. However,
there are also questions related to the data quality. Therefore, it is recommended to test
the system further if more publicly available data is made available or data using other
equipment chains than NINA did as a part of future work. It is also recommended that
the system be further tested as three days will not necessarily give an accurate image
of all of NINA’s data. Particularly for the SR class, as only one test day contained its
vocalisation. To improve the system’s performance any further, it is recommended to
gather more data, especially for the BS class, and look further into data augmentation
and other data balancing techniques. Other potential future work could be to make a
GUI for the less technical researchers at NINA.

The thesis itself has contributed by making a potential tool for NINA to process all their
data, which can be used to select the data a researcher should go through, and potentially
save them a lot of time. It has also contributed with several spectrograms for each species,
going into its spectral features, and relatively large multi-label training and test sets on
the three species.

References 85

References
[1] Edvard Kaurin Barth and Jørn H. Hurum (Universitetet i Oslo) Jan Ove Gjershaug

(Norsk institutt for naturforskning). The norwegian lecicon (store norske leksikon)
on the page for birds. URL https://snl.no/fugler. (Accessed: 10.11.2020).

[2] Bird study. British Trust for Ornithology, Thetford, Norfolk, UK, 1954.

[3] Elliot Coues. Birds of the Northwest : A hand-book of the ornithology of the region
drained by the Missouri river and its tributaries. Washington, 1874.

[4] Thomas Bewick. A history of British birds, volume 2. Edw. Walker, 1826.

[5] IUCN. International union for conservation of nature (iucn) redlist webpage, . URL
https://www.iucnredlist.org/. (Accessed: 1.05.2021).

[6] George F Barrowclough, Joel Cracraft, John Klicka, and Robert M Zink. How many
kinds of birds are there and why does it matter? PLoS One, 11(11):e0166307, 2016.

[7] R. Dennis Cook and Jerald O. Jacobson. A design for estimating visibility bias in
aerial surveys. Biometrics, 35(4):735–742, 1979. ISSN 0006-341X.

[8] John C Montgomery and Craig A Radford. Marine bioacoustics. Current Biology,
27(11):R502–R507, 2017.

[9] Arthur L Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of research and development, 3(3):210–229, 1959.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information processing
systems, 25:1097–1105, 2012.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.
03385.

[12] Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg,
Paheding Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and
Vijayan K Asari. The history began from alexnet: A comprehensive survey on deep
learning approaches. arXiv preprint arXiv:1803.01164, 2018.

[13] Tom M Mitchell. Machine learning. McGraw-Hill series in computer science,
Artificial intelligence. McGraw-Hill, New York, 1997. ISBN 0070428077.

[14] Bernard Marr. Artificial intelligence in practice: how 50 successful companies used
AI and machine learning to solve problems. John Wiley & Sons, 2019.

[15] Michele Banko and Eric Brill. Scaling to very very large corpora for natural language
disambiguation. In Proceedings of the 39th annual meeting of the Association for
Computational Linguistics, pages 26–33, 2001.

[16] Wouter Verbeke, Karel Dejaeger, David Martens, Joon Hur, and Bart Baesens. New

https://snl.no/fugler
https://www.iucnredlist.org/
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

86 References

insights into churn prediction in the telecommunication sector: A profit driven data
mining approach. European journal of operational research, 218(1):211–229, 2012.

[17] Francesco Clavorà Braulin and Tommaso Valletti. Selling customer information to
competing firms. Economics Letters, 149:10–14, 2016.

[18] Christopher J.C. Burges Yann LeCun, Corinna Cortes. The mnist database. URL
http://yann.lecun.com/exdb/mnist/. (Accessed: 5.12.2020).

[19] The Sound Understanding group in the Machine Perception Research organization at
Google. Google’s audioset. URL https://research.google.com/audioset/. (Accessed:
16.05.2021).

[20] The freesound database. URL https://freesound.org/. (Accessed: 4.12.2020).

[21] Cornell Lab of Ornithology of the Cornell University. Macaulay library: World’s
largest archive of animal sounds. URL https://www.macaulaylibrary.org/.

[22] Xeno canto foundation. Xeno-canto:bird song database from netherlands. URL
https://www.xeno-canto.org/. (Accessed: 26.11.2020).

[23] Ileana Betancourt and Colleen M McLinn. Teaching with the macaulay library: an
online archive of animal behavior recordings. Journal of Microbiology & Biology
Education: JMBE, 13(1):86, 2012.

[24] K.-B. Strann, R. Rae, and Frivoll. Overvåking av hekkende vadefugler med østlig
utbredelse i palsmyr i goahteluoppal, kautokeino 2009-2012 : Sluttrapport. 968,
2013.

[25] Norsk fugleatlas : hekkefuglenes utbredelse og bestandsstatus i Norge. Norsk
ornitologisk forening ; [Trondheim] : I samarbeidmed Norsk institutt for
naturforskning, Klæbu, 1994. ISBN 8299086825.

[26] Ingrid Grimstad. Detection of jack snipe vocalisation using neural networks.
unpublished, 2020.

[27] The warblr team. Warblr’s offical page, . URL https://www.warblr.co.uk/. (accessed:
4.12.2020).

[28] The warblr team. Warblr’s technology information page, . URL https://www.warblr.
co.uk/our-technology. (Accessed: 4.12.2020).

[29] Ablemagic. Whatbird’s offical page. URL https://whatbird.no/. (accessed: 4.12.2020).

[30] Kristian Selboe. Implementation and adaptation of a system for automatic
classification of birdsong. Master’s thesis, NTNU, 2015.

[31] Cornell Lab of Ornithology and Chemnitz University of Technology. Birdnet offical
page. URL https://birdnet.cornell.edu/. (accessed: 4.12.2020).

[32] Stefan Kahl, Shyam Madhusudhana, and Holger Klinck. Github account where one
can download birdnet’s code. URL https://github.com/kahst/BirdNET. (Accessed:
4.12.2020).

http://yann.lecun.com/exdb/mnist/
https://research.google.com/audioset/
https://freesound.org/
https://www.macaulaylibrary.org/
https://www.xeno-canto.org/
https://www.warblr.co.uk/
https://www.warblr.co.uk/our-technology
https://www.warblr.co.uk/our-technology
https://whatbird.no/
https://birdnet.cornell.edu/
https://github.com/kahst/BirdNET

References 87

[33] Cornell Lab of Ornithology. Cornell birdcall identification. URL https://www.kaggle.
com/c/birdsong-recognition/. (Accessed: 29.04.2021).

[34] Stanley (chief editor) Cramp, K E L Simmons, Duncan J Brooks, N J. Collar,
E Dunn, R Gillmor, P A D Hollom, R Hudson, E M Nicholson, M A Ogilvie, et al.
Handbook of the birds of Europe, the Middle East and North Africa : the birds of
the Western Palearctic : 3 : Waders to gulls, volume 3. Oxford University Press,
Oxford, 1983. ISBN 0198575068.

[35] Jan Eivind Østnes. The norwegian lexicon website on scolopacidae, . URL https:
//snl.no/snipefamilien. (Accessed: 15.03.2021).

[36] Michael Allaby. A Dictionary of Zoology. Oxford University Press,
2014. ISBN 9780191764882. doi: 10.1093/acref/9780199684274.001.0001.
URL https://www.oxfordreference.com/view/10.1093/acref/9780199684274.001.0001/
acref-9780199684274.

[37] IUCN. International union for conservation of nature (iucn) redlist page for the jack
snipe, . URL https://www.iucnredlist.org/species/22693133/86640472. (Accessed:
30.10.2020).

[38] IUCN. International union for conservation of nature(iucn) redlist page for the
spotted redshank, . URL https://www.iucnredlist.org/species/22693207/86682083.
(Accessed: 30.02.2021).

[39] IUCN. International union for conservation of nature(iucn) redlist page for the broad-
billed sandpiper, . URL https://www.iucnredlist.org/species/22693464/155481741.
(Accessed: 30.02.2021).

[40] Nature’s music : the science of birdsong. Elsevier Academic, Amsterdam ;, 2004.
ISBN 1-280-96690-4.

[41] Jan Eivind Østnes. The norwigan lexicon on jack snipe, . URL https://snl.no/
kvartbekkasin. (Accessed: 30.10.2020).

[42] France OMPO/CICB, Paris, editor. The Jack Snipe Lymnocryptes minimus, written
by OLIVER, G-N. 2007. ISBN 978-2-9527375-1-7. Translated from Franc to English,
by Jeanne-Amélie Oliver.

[43] C. K Catchpole and P. J. B Slater. Bird Song: Biological Themes and Variations.
Cambridge University Press, Cambridge, 2008. ISBN 9780521872423.

[44] Almo Farina. Soundscape Ecology: Principles, Patterns, Methods and Applications.
Springer Netherlands, Dordrecht, 2013. ISBN 9400773730.

[45] Oxford Dictionaries. ambient noise. Oxford University Press, 2002.
ISBN 9780199891580. doi: 10.1093/acref/9780199891580.013.0358. URL
https://www.oxfordreference.com/view/10.1093/acref/9780199891580.001.0001/
acref-9780199891580-e-358.

[46] Marcel Escudier and Tony Atkins. signal-to-noise ratio. Oxford University
Press, 2019. ISBN 9780191870866. doi: 10.1093/acref/9780198832102.013.5662.

https://www.kaggle.com/c/birdsong-recognition/
https://www.kaggle.com/c/birdsong-recognition/
https://snl.no/snipefamilien
https://snl.no/snipefamilien
https://www.oxfordreference.com/view/10.1093/acref/9780199684274.001.0001/acref-9780199684274
https://www.oxfordreference.com/view/10.1093/acref/9780199684274.001.0001/acref-9780199684274
https://www.iucnredlist.org/species/22693133/86640472
https://www.iucnredlist.org/species/22693207/86682083
https://www.iucnredlist.org/species/22693464/155481741
https://snl.no/kvartbekkasin
https://snl.no/kvartbekkasin
https://www.oxfordreference.com/view/10.1093/acref/9780199891580.001.0001/acref-9780199891580-e-358
https://www.oxfordreference.com/view/10.1093/acref/9780199891580.001.0001/acref-9780199891580-e-358

88 References

URL https://www.oxfordreference.com/view/10.1093/acref/9780198832102.001.0001/
acref-9780198832102-e-5662.

[47] ISO 9613-2:1996(E). Acoustics — Attenuation of sound during propagation outdoors
— Part 2: General method of calculation. Standard, International Organization for
Standardization, March 1996.

[48] Jack W. Bradbury and Sandra L. Vehrencamp. Principles of animal communication.
Sinauer Associates, Sunderland, Mass, 2nd ed. edition, 2011. ISBN 9780878930456.

[49] Animal Communication and Noise, volume 2 of Animal Signals and Communication.
Springer Berlin Heidelberg : Imprint: Springer, Berlin, Heidelberg, 1st ed. 2013.
edition, 2013. ISBN 3-642-41494-X.

[50] J Tate Mason, Christopher JW McClure, and Jesse R Barber. Anthropogenic noise
impairs owl hunting behavior. Biological Conservation, 199:29–32, 2016.

[51] Xiao-Jing Yang and Hans Slabbekoorn. Timing vocal behavior: lack of temporal
overlap avoidance to fluctuating noise levels in singing eurasian wrens. Behavioural
processes, 108:131–137, 2014.

[52] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to
computational geometry. MIT press, 2017.

[53] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly
Media, Incorporated, Sebastopol, 2019. ISBN 9781492032649.

[54] Andrew M. Colman. data set, 2015. URL https://www.oxfordreference.com/view/10.
1093/acref/9780199657681.001.0001/acref-9780199657681-e-2080.

[55] New oxford american dictionary., 2010.

[56] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting
unreasonable effectiveness of data in deep learning era. CoRR, abs/1707.02968,
2017. URL http://arxiv.org/abs/1707.02968.

[57] Hao Dong, Zihan Ding, and Shanghang Zhang. Deep Reinforcement Learning:
Fundamentals, Research and Applications. Springer Singapore Pte. Limited,
Singapore, 2020. ISBN 9811540942.

[58] Artificial Neural Network Modelling, volume 628 of Studies in Computational
Intelligence. Springer International Publishing : Imprint: Springer, Cham, 1st
ed. 2016. edition, 2016. ISBN 3-319-28495-9.

[59] Igor Livshin. Artificial Neural Networks with Java: Tools for Building Neural
Network Applications. Apress L. P, Berkeley, CA, 1 edition, 2019. ISBN
9781484244203.

[60] Pramod Singh and Avinash Manure. Learn TensorFlow 2. 0: Implement Machine
Learning and Deep Learning Models with Python. Apress L. P, Berkeley, CA, 2020.
ISBN 9781484255605.

https://www.oxfordreference.com/view/10.1093/acref/9780198832102.001.0001/acref-9780198832102-e-5662
https://www.oxfordreference.com/view/10.1093/acref/9780198832102.001.0001/acref-9780198832102-e-5662
https://www.oxfordreference.com/view/10.1093/acref/9780199657681.001.0001/acref-9780199657681-e-2080
https://www.oxfordreference.com/view/10.1093/acref/9780199657681.001.0001/acref-9780199657681-e-2080
http://arxiv.org/abs/1707.02968

References 89

[61] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–256, 2010.

[62] Support vector machine in chemistry. World Scientific, Singapore ;, 2004. ISBN
1-281-93460-7.

[63] Yusuke Sugomori. Deep learning : practical neural networks with Java : Build and
run intelligent applications by leveraging key Java machine learning libraries. Packt,
Birmingham, England, 1st edition. edition, 2017. ISBN 1-78847-171-7.

[64] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321–357, 2002.

[65] Alberto Fernández. Learning from imbalanced data sets, 2018.

[66] Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al. Handling
imbalanced datasets: A review. GESTS International Transactions on Computer
Science and Engineering, 30(1):25–36, 2006.

[67] The museum für naturkunde, berlin. URL https://www.tierstimmenarchiv.de/
webinterface/contents/index.php. (Accessed: 30.11.2020).

[68] Daniel Chandler and Rod Munday. mp3, 2020. URL https://www.oxfordreference.
com/view/10.1093/acref/9780198841838.001.0001/acref-9780198841838-e-1796.

[69] Angus Stevenson. Wav file, 2010. URL https://www.oxfordreference.com/view/10.
1093/acref/9780199571123.001.0001/m_en_gb0992230.

[70] Artsdatabanken. Artsdatabanken sin side. URL https://artsdatabanken.no/.
(Accessed: 4.04.2021).

[71] Tom Schandy. The norwegian lexicon on the bluethroat (blåstrupen). URL https:
//snl.no/bl%C3%A5strupe. (Accessed: 23.05.2021).

[72] Audacity. The official site to by audacity. URL https://www.audacityteam.org/.
(Accessed: 17.10.2020).

[73] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of computer
vision, 115(3):211–252, 2015.

[74] Kuldip Paliwal, James Lyons, and Kamil Wojcicki. Preference for 20-40 ms window
duration in speech analysis. pages 1 – 4, 01 2011. doi: 10.1109/ICSPCS.2010.5709770.

[75] Loris Nanni, Gianluca Maguolo, and Michelangelo Paci. Data augmentation
approaches for improving animal audio classification. Ecological informatics, 57:
101084, 2020. ISSN 1574-9541.

[76] Gianluca Maguolo, Michelangelo Paci, Loris Nanni, and Ludovico Bonan.
Audiogmenter: a matlab toolbox for audio data augmentation. 2019.

https://www.tierstimmenarchiv.de/webinterface/contents/index.php
https://www.tierstimmenarchiv.de/webinterface/contents/index.php
https://www.oxfordreference.com/view/10.1093/acref/9780198841838.001.0001/acref-9780198841838-e-1796
https://www.oxfordreference.com/view/10.1093/acref/9780198841838.001.0001/acref-9780198841838-e-1796
https://www.oxfordreference.com/view/10.1093/acref/9780199571123.001.0001/m_en_gb0992230
https://www.oxfordreference.com/view/10.1093/acref/9780199571123.001.0001/m_en_gb0992230
https://artsdatabanken.no/
https://snl.no/bl%C3%A5strupe
https://snl.no/bl%C3%A5strupe
https://www.audacityteam.org/

90 References

[77] Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks and data
augmentation for environmental sound classification. IEEE signal processing letters,
24(3):279–283, 2017. ISSN 1070-9908.

[78] Tensorflow’s Team. Tensorflow official web page, . URL https://www.tensorflow.org/.
(accessed: 16.05.2021).

[79] PyTorch’s Team. Pytorch official web page, . URL https://pytorch.org/. (accessed:
16.05.2021).

[80] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient
object detection. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10781–10790, 2020.

[81] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift, 2015.

[82] PyTorch. Reproducibility, using pytorch, 2019. URL https://pytorch.org/docs/stable/
notes/randomness.html. (Accessed: 17.10.2020).

[83] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural
networks. arXiv preprint arXiv:1804.07612, 2018.

[84] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. Journal: arXiv preprint arXiv:1207.0580, 2012.

[85] Pytorch Team. The documentation page on bceloss, . URL https://pytorch.org/docs/
stable/generated/torch.nn.BCELoss.html#torch.nn.BCELoss. (accessed: 16.05.2021).

[86] https://scikit learn.org. Scikit-learn’s page on the accurcay function:accuracy_score.
URL https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.
html. (accessed: 13.06.2021).

[87] Torch Contributors. Torch save function documentation page, 2019. URL https:
//pytorch.org/docs/stable/generated/torch.save.html. (Accessed: 15.12.2020).

[88] Stefan Kahl. Birdnet demo, 2019. URL https://birdnet.cornell.edu/api/. (Accessed:
10.10.2020).

[89] Wildlife acoustics. Equipment supplier for the gear to nina, . URL https://www.
wildlifeacoustics.com/. (Accessed: 4.11.2020).

[90] Wildlife acoustics. SMX-NFC Night Flight Call Microphone,
. URL https://www.wildlifeacoustics.com/uploads/user-guides/
SMX-NFC-Night-Flight-Call-Microphone-Specification.pdf. (Accessed: 4.11.2020).

[91] Wildlife acoustics. Song Meter User Manual, . URL https://www.wildlifeacoustics.
com/uploads/user-guides/Song-Meter-Users-Manual.pdf. (Accessed: 4.11.2020).

[92] Wildlife acoustics. Frontex: Acoustic damping, . URL http://www.audio-constructor.
com/index.php?main_page=product_info&cPath=67&products_id=369. (Accessed:
4.10.2020).

https://www.tensorflow.org/
https://pytorch.org/
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html#torch.nn.BCELoss
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html#torch.nn.BCELoss
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://pytorch.org/docs/stable/generated/torch.save.html
https://pytorch.org/docs/stable/generated/torch.save.html
https://birdnet.cornell.edu/api/
https://www.wildlifeacoustics.com/
https://www.wildlifeacoustics.com/
https://www.wildlifeacoustics.com/uploads/user-guides/SMX-NFC-Night-Flight-Call-Microphone-Specification.pdf
https://www.wildlifeacoustics.com/uploads/user-guides/SMX-NFC-Night-Flight-Call-Microphone-Specification.pdf
https://www.wildlifeacoustics.com/uploads/user-guides/Song-Meter-Users-Manual.pdf
https://www.wildlifeacoustics.com/uploads/user-guides/Song-Meter-Users-Manual.pdf
http://www.audio-constructor.com/index.php?main_page=product_info&cPath=67&products_id=369
http://www.audio-constructor.com/index.php?main_page=product_info&cPath=67&products_id=369

References 91

[93] Gyldendal Norsk Forlag AS. Ordnett’s webpage. URL https://www.ordnett.no/.
"Ordnett is a digital language and dictionary service" (Accessed: 17.06.2021).

[94] Pytorch Team. The documentation page on cuda semantics, . URL https://pytorch.
org/docs/stable/notes/cuda.html. (accessed: 16.05.2021).

[95] Creative Commons. Attribution-noncommercial-sharealike 3.0 germany (cc by-nc-
sa 3.0 de), . URL https://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en.
(Accessed: 22.04.2021).

[96] Creative Commons. Attribution-sharealike 3.0 germany (cc by-sa 3.0 de), . URL
https://creativecommons.org/licenses/by-sa/3.0/de/deed.en. (Accessed: 22.04.2021).

[97] Creative Commons. Attribution-noncommercial-noderivs 3.0, . URL https:
//creativecommons.org/licenses/by-nc-nd/3.0/. (Accessed: 22.04.2021).

[98] Creative Commons. Attribution-noncommercial-sharealike 3.0, . URL https://
creativecommons.org/licenses/by-nc-sa/3.0/. (Accessed: 22.04.2021).

[99] Creative Commons. Attribution-sharealike 3.0, . URL https://creativecommons.org/
licenses/by-sa/3.0/. (Accessed: 22.04.2021).

[100] Creative Commons. Attribution-noncommercial-sharealike 4.0 international (cc
by-nc-sa 4.0), . URL https://creativecommons.org/licenses/by-nc-sa/4.0/. (Accessed:
22.04.2021).

[101] Creative Commons. Attribution-noncommercial-noderivatives 4.0 international (cc
by-nc-nd 4.0), . URL https://creativecommons.org/licenses/by-nc-nd/4.0/. (Accessed:
22.04.2021).

https://www.ordnett.no/
https://pytorch.org/docs/stable/notes/cuda.html
https://pytorch.org/docs/stable/notes/cuda.html
https://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en
https://creativecommons.org/licenses/by-sa/3.0/de/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

92

Appendix

A1 Location and time of the recordings
This appendix aims to give information on when and where NINA made the recordings in
2016, 2017 and 2018. As the introduction chapter informed, are all three species mainly
found in the area surrounding and at Finnmarksvidda, in North of Norway. Therefore
was an area in Kautokeino, the western parts of Finnmarksvidda, chosen by NINA to do
the recordings. Figure A1.1 shows a map with six of the eight locations are marked, while
the last two are indicated on the map. In Table A1.1 can you see some details regarding
each location; the coordinates of the recording site given in dd.ddddd°, which year(s) the
recording was carried out there, and potential comments from NINA if there are any. In
Table A1.1 one can also see that location six really were five separate locations but moved
along a road as Figure A1.1 points out. Each site was chosen either to test or because
it was a known or a potential breeding site for one or multiple of the three birds. Table
A1.2 shows an overview of whether the different sites was believed to be a; breeding site
(BS), a potential breeding site (PS), or a test site (TS) for each bird.

Figure A1.1: Map over the area where the recordings were carried out, with marks and
numeration of the recording sits. The map was derived from google maps (at the 4’th of
november).

A1 Location and time of the recordings 93

Table A1.1: Overview of the recording locations with coordinates, year of recordings,
and additional comments from NINA.

Location Latitude °N Longitude °E Years with
recordings

Comment

Loc1 69.08064 22.84273 2016, 2017,
2018

Loc1ud 69.08081 22.84227 2018 20m from Location 1,
without noise cover. Meant
to test the difference in
equipment.

Loc1b 69.08096 22.83392 2018 Supplement to Loc1, for
covering the hole swamp
area.

Loc2 69.15720 22.64518 2016, 2017,
2018

Loc3 69.01016 23.09574 2016, 2017

Loc4 69.03275 22.94640 2016, 2017,
2018

Loc5 68.76405 23.29447 2016 Jack Snipe breeding site.
Much traffic noise.

Loc6a 69.05347 22.88347 2016 Short recording period.

Loc6b 69.02665 22.98874 2016 Short recording period.

Loc6c 69.08185 22.79189 2016 Short recording period

Loc6d 69.10470 22.75046 2016 Short recording period.

Loc6e 69.09732 22.73927 2016 Short recording period.

Loc7 69.02711 22.98377 2017, 2018 ‘Hidden bog’

Loc8 69.03868 23.02890 2017 Potential Jack Snipe site.

94 A1 Location and time of the recordings

Table A1.2: An overveiw over whether the different recording sites were breeding
sites(BS), potential breeding sites (PS), or test sites (TS)

Location Jack Snipe Broad-billed Sandpiper Spotted Redshank
Loc1 BS BS BS
Loc1ud BS BS BS
Loc1b BS BS BS
Loc2 BS PS TS
Loc3 PS TS TS
Loc4 PS PS BS
Loc5 BS BS PS
Loc6a TS TS TS
Loc6b TS TS TS
Loc6c TS TS TS
Loc6d TS TS TS
Loc6e TS TS TS
Loc7 PS BS PS
Loc8 PS TS TS

Table A1.3 , Table A1.4, and Table A1.5 shows when the recordings started and ended
at each site, where each year is represented by one of the tables. The equipment had a
maximum duration it could record at a time, which was around 18 hours and 38 minutes.
Therefore the recordings were not made 100 % continuously, but divided into several files
when longer recordings where done. For recordings of whole days, the first 18 hours and
38 minutes were normally written to one file, and the remaining time of the day were
written to another. For information about the equipment used on the sites, see Appendix
A2.

A1 Location and time of the recordings 95

Table A1.3: The different recording-times on the different locations for 2016.

2016
Location: Date and time (CET)
Loc1 03.06.2016 19:07 - 23:59
Loc1 04.06.2016 18:39 - 19:07
Loc1 05.06.2016 18:39 - 23:59
Loc1 06.06.2016 18:39 - 23:59
Loc1 11.06.2016 18:39 - 23:59
Loc1 12.06.2016 18:39 - 23:59
Loc1 13.06.2016 21:54 - 23:59
Loc1 14.06.2016 18:39 - 23:59
Loc1 15.06.2016 21:54 - 23:59
Loc2 03.06.2016 20:17 - 04.06.2016 18:39
Loc2 07.06.2016 00:00 - 18:39
Loc2 09.06.2016 18:39 - 23:59
Loc3 06.06.2016 18:39 - 23:59
Loc3 07.06.2016 18:39 - 23:59
Loc3 08.06.2016 18:39 - 23:59
Loc3 09.06.2016 20:21 - 23:59
Loc3 10.06.2016 18:39 - 23:59
Loc3 11.06.2016 18:39 - 23:59
Loc3 12.06.2016 18:39 - 23:59
Loc3 14.06.2016 16:31 - 23:59
Loc3 16.06.2016 18:39 - 23:59
Loc4 05.06.2016 18:39 - 23:59
Loc4 06.06.2016 18:39 - 23:59
Loc4 07.06.2016 18:39 - 23:59
Loc4 09.06.2016 18:39 - 23:59
Loc4 13.06.2016 18:39 - 23:59
Loc4 15.06.2016 00:00 - 17.06.2016 11:01
Loc5 04.06.2016 17:39 - 07.06.2016 20:45
Loc5 08.06.2016 00:00 - 12.06.2016 23:59
Loc5 13.06.2016 04:39 - 14.06.2016 01:18
Loc5 14.06.2016 04:59 - 15.06.2016 01:37
Loc5 15.06.2016 11:59 - 23:59
Loc6a 04.06.2016 19:48 - 23:59
Loc6a 05.06.2016 18:39 - 08.06.2016 18:57
Loc6b 09.06.2016 19:55 - 11.06.2016 10:17
Loc6c 11.06.2016 10:52 - 13.06.2016 19:09
Loc6d 13.06.2016 19:34 - 15.06.2016 11:38
Loc6e 15.06.2016 11:40 - 17.06.2016 12:31

96 A1 Location and time of the recordings

Table A1.4: The different recording-times on the different locations for 2017.

2017
Location: Date and time (CET)
Loc1 03.06.17 18:31 - 18.06.17 23:59
Loc2 03.06.17 20:46 - 20.06.17 19:09
Loc3 04.06.17 13:57 - 19.06.17 23:59
Loc4 04.06.17 12:37 - 20.06.17 23:59
Loc7 04.06.17 13:17 - 20.06.17 23:59
Loc8 05.06.17 12:32 - 20.06.17 23:59

Table A1.5: The different recording times for the different locations in 2018.

2018
Location: Date and time (CET)
Loc1D 15.06.18 21:29 - 20.06.18 17:35
Loc1UD 15.06.18 21:29 - 17.06.18 12:31
Loc1v 17.06.18 13:34 - 20.06.18 17:10
Loc2 16.06.18 18:03 - 20.06.18 17:15
Loc4 16.06.18 14:36 - 20.06.18 18:15
Loc7 16.06.18 14:33 - 20.06.18 17:17

A2 Equipment used for the recordings 97

A2 Equipment used for the recordings
The following list and information was provided by NINA, regarding what equipment they
used for carrying out the recordings.

The equipment used on the different sites, for all three years were mostly the same with the
exception of location 6, from 2016 and location 8 in 2017. Here was another microphone
used. Otherwise, the only difference was that all the recording sites, except location 1ud
in 2018 had an additional windscreen/noise-cover added to protect the microphone. All
the equipment NINA used was delivered by Wildelife Acoustics [89], and should been
listed below.

List of the equipment used:

• Plexiglas plate

• SMX-NFC microphone, was the microphone used on the most locations, and was
the one in the images of Figure A2.2 and Figure A2.1. For more information look at
[90].

• SMX-II microphone, was the microphone used on location 6 in 2016, and location 8
in 2017.

• The recorder was a SongMeter Model SM2, for more information look at [91].

• FRONTEX (Acoustic Damping), only used in 2018 at location 1, for more
information look at [92]. + 3D printed plastic roods to put it on.

• 32GB SD card

• 4 alkaline batteries type C (LR4)

• Aluminum sticks, to attach the microphone

The first type of microphone listed, SMX-NFC, was attached to a Plexiglas plate, while the
other was not. Then both the recorder and the microphone was attached to an aluminium
poll, around 3-3.5 meter above ground. Figure A2.1 and Figure A2.2 shows two different
pictures of the setup. Both were taken by John Atle Kaalaas, which have given permission
to use them in this report. Figure A2.2 was from the second location in 2018, were you
can see the windscreen on top. While Figure A2.1 was taken at the seventh location, in
2017.

98 A2 Equipment used for the recordings

Figure A2.1: Photo taken of the set up at location 7 in 2017. (Private picture from
John Atle Kålås, NINA, used in this report with permission from him.)

Figure A2.2: Photo taken of the set up at location 2 in 2018.(Private picture from
John Atle Kålås, NINA, used in this report with permission from him.)

A3 Birds in the area 99

A3 Birds in the area
To get a picture of which birds coexist in the same area as the Jack Snipe, Spotted
Redshank, and Broad-billed Sandpiper (a big part of the the bioacoustic landscape) were
a list of all the birds in the area gathered. To do so was the Norwegian site artsdatabanken
used [70], which in English is called The Norwegian Biodiversity Information Centre[70]).
One of the services at this site is a map that looks at species occurrences in Norway
registered on their site. To narrow down the search, is it possible to apply different
types of filters. Since we are interested in the area of recordings, around the same time
that the recordings were taken was the following filters used; "Kautokeino, Troms and
Finnmark"(location), "May-July"(moths) and "bird" (group of species).

This resulted in a list of 172 items, eight of which were a replica of another item or a
bird family (not a species), leaving 164 bird species. Out of the 164 had all the birds,
everything from 1 to 416 registered sightings. To eliminate the ones that have barely
been observed and perhaps just have flown through were the 61 birds with less than
five recordings disregard, leaving 101 birds. These were then sent to the ornithologist
at NINA, John Atle Kaalaas, which looked through them and grouped them into five
different groups. Each group were grouped based on there anticipated level how dominant
their vocalisations the group of birds is assumed to be in NINA’s recordings in June in
Kautokeino of 2016-2018. Below can one see an explanation of each group and how many
birds belong to the group.

• Group 1: Quite little anticipated activity in the recordings (51 of the birds on the
list).

• Group 2: Little anticipated activity in the recordings (23 of the birds on the list).

• Group 3: They will be heard frequently, but not that often and therefore not have
such a dominant vocalisation (18 of the birds on the list).

• Group 4: The species that dominates the soundscape (7 of the birds on the list).

• Group 5: The species that dominates the soundscape the most (5 of the birds on
the list).

The complete list of the 106 birds can be found in Table A3.1, which list each bird’s
scientific name, common name 3, number of observations and the group it belongs to.
When looking up the Jack Snipe and the Broad-billed Sandpiper we can see that they
belong to group three, while the Spotted Redshank belongs to group four.

3The common name was found by using the Norwegian site ordnett.no[93](a dictionary site by one of
the larger publishing houses in Norway), and mostly looking up the Norwegian common name or the
scientific name. In some cases was there multiple name to choose between, so it might not be 100%
correct.

100 A3 Birds in the area

Table A3.1: An overview of potential birds in the area, collected from [70], divided
into groups depending on how dominant there vocalisations are assumed to be in the
Kautokeino recordings done by NINA.

Scientific name Common name Number of
observations

Group

Phylloscopus Trochilus Willow Warbler 324 5
Tringa Glareola Wood Sandpiper 271 5
Luscinia Svecica Bluethroat 256 5
Anthus Pratensis Meadow Pipit 197 5
Motacilla Flava Yellow Wagtail 209 5
Fringilla Montifringilla Brambling 205 4
Turdus Iliacus Redwing 191 4
Acanthis Flammea Redpoll 180 4
Tringa Erythropus Spotted Redshank 172 4
Numenius Phaeopus Whimbrel 148 4
Gallinago Gallinago Common Snipe 153 4
Calcarius Lapponicus Lapland Bunting 180 4
Pluvialis Apricaria Golden Plover 173 3
Lagopus Lagopus Willow Grouse 151 3
Cuculus Canorus Cuckoo 98 3
Emberiza Schoeniclus Reed Bunting 141 3
Cygnus Cygnus Whooper Swan 261 3
Grus Grus Crane 38 3
Acanthis Hornemanni Arctic Redpoll 31 3
Larus Canus Common Gull 161 3
Oenanthe Oenanthe Wheatear 145 3
Corvus Cornix Crow 133 3
Charadrius Hiaticula Ringed Plover 124 3
Calidris Temminckii Temminck’s Stint 103 3
Turdus Pilaris Fieldfare 102 3
Lymnocryptes Minimus Jack Snipe 86 3
Phoenicurus
Phoenicurus

Redstart 47 3

Calidris Falcinellus Broad-billed
Sandpiper

45 3

Gavia Arctica Black-throated Diver 96 3
Turdus Philomelos Song Thrush 15 3
Sterna Paradisaea Arctic Tern 159 2
Corvus Corax Raven 126 2
Actitis Hypoleucos Common Sandpiper 121 2
Limosa Lapponica Bar-tailed Godwit 77 2
Chloris Chloris Greenfinch 37 2
Tringa Totanus Redshank 36 2
Parus Major Great Tit 28 2

A3 Birds in the area 101

Anthus Trivialis Tree Pipit 27 2
Prunella Modularis Accentor 15 2
Ficedula Hypoleuca Pied Flycatcher 13 2
Tringa Nebularia Greenshank 103 2
Calidris Alpina Red-backed Sandpiper 91 2
Motacilla Alba White wagtail 83 2
Acrocephalus
Schoenobaenus

Sedge Warbler 69 2

Asio Flammeus Short-eared Owl 55 2
Chroicocephalus
Ridibundus

Black-headed Gull 48 2

Charadrius Morinellus Dotterel 26 2
Cinclus Cinclus Eurasian Dipper 16 2
Turdus Torquatus Ring Ouzel 8 2
Phylloscopus Collybita Chiffchaff 7 2
Hirundo Rustica Barn Swallow 7 2
Sylvia Borin Garden Warbler 7 2
Muscicapa Striata Spotted Flycatcher 5 2
Bucephala Clangula Goldeneye 239 1
Mareca Penelope European Wigeon 269 1
Anas Crecca European Teal 222 1
Clangula Hyemalis Long-tailed Duck 165 1
Falco Columbarius Merlin 160 1
Mergus Serrator Red-breasted

Merganser
129 1

Anas Platyrhynchos Mallard 128 1
Anas Acuta Pintail 95 1
Mergus Merganser Goosander 85 1
Melanitta Nigra Black Scoter 84 1
Riparia Riparia Sand Martin, 65 1
Melanitta Fusca Velvet Scoter, 65 1
Falco Tinnunculus Kestrel 54 1
Aythya Marila Scaup 41 1
Gavia Stellata Black-throated Diver 32 1
Anthus Cervinus Red-throated Pipit 28 1
Larus Argentatus Herring Gull 26 1
Plectrophenax Nivalis Snow Bunting 26 1
Mergellus Albellus Smew 24 1
Lagopus Muta Common Ptarmigan 13 1
Bombycilla Garrulus Waxwing 13 1
Poecile Montanus Willow Tit 9 1
Anser Anser Graylag Goose 5 1
Aythya Fuligula Tufted Duck 416 1
Aquila Chrysaetos Golden Eagle 332 1

102 A3 Birds in the area

Phalaropus Lobatus Red-necked Phalarope 194 1
Stercorarius
Longicaudus

Long-tailed Skua 170 1

Calidris Pugnax Ruff 164 1
Buteo Lagopus Rough-legged Hawk 124 1
Pica Pica Magpie 81 1
Passer Domesticus House Sparrow 78 1
Falco Rusticolus Gyrfalcon 58 1
Anser Fabalis Bean Goose 57 1
Motacilla Flava
Thunbergi

Western Yellow
Wagtail

43 1

Delichon Urbicum House Martin 39 1
Alauda Arvensis Skylark 23 1
Poecile Cinctus Siberian Tit 22 1
Lanius Excubitor Great Grey Shrike 22 1
Phylloscopus Borealis Arctic Warbler 18 1
Haliaeetus Albicilla Sea Eagle 17 1
Surnia Ulula Northern Hawk Owl 15 1
Saxicola Rubetra Whinchat 10 1
Vanellus Vanellus Lapwing 10 1
Sturnus Vulgaris European Starling 10 1
Hydrocoloeus Minutus Little Gull 8 1
Dryobates Minor Lesser Spotted

Woodpecker
7 1

Larus Marinus Great Black-backed
Gull

7 1

Circus Cyaneus Hen Harrier 6 1
Passer Montanus Tree Sparrow 5 1
Perisoreus Infaustus Siberian Jay 5 1
Pinicola Enucleator Pine Grosbeak 5 1

A4 Training data 103

A4 Training data
This appendix lists the data from NINA that was reveiwed and labelled to make the
training-set.

Location 1:

• 04.06.2017 00:00-23:59

• 05.06.2017 00:00-23:59

• 06.06.2017 00:00-23:59

• 07.06.2017 00:00-23:59

• 08.06.2017 00:00-23:59

• 09.06.2017 00:00-23:59

• 10.06.2017 00:00-23:59

• 11.06.2017 00:00-23:59

• 12.06.2017 00:00-23:59

• 13.06.2017 00:00-23:59

• 14.06.2017 00:00-23:59

• 15.06.2017 00:00-23:59

Location 3:

• 11.06.2016 18:39-23:59

• 14.06.2016 16:31-23:59

• 05.06.2017 18:39-23:59

• 09.06.2017 18:39-23:59

Location 5:

• 11.06.2016 18:39-23:59

• 11.06.2016 00:00-18:38 **

• 12.06.2016 16:31-23:59

• 11.06.2016 00:00-18:38 **

• 14.06.2016 19:37-23:59

• 15.06.2016 11:59-23:59

Location 6:

• (location 6a) 06.06.2016 00:00-09:00

• (location 6b) 10.06.2016 09:00-18:38

104 A4 Training data

• (location 6d) 14.06.2016 18:39-23:59

• (location 6e) 16.06.2016 18:39-23:59

Location 8:

• 06.06.2017 00:00-18:38

• 07.06.2017 00:00-18:38

** = Added after seeing that BS had an minority of data points in the data-set, which is
why the BS class was of focus when labelling these files.

A5 Code parameters for the system 105

A5 Code parameters for the system
This appendix is meant as supplementary information and overview, to what is already
described in section 3, on how the different version of the system presented in section 4
were built. In not explicitly told other wise were the parameters used to build/test the
system the same. In the following does # symbolise a comment.

For both the models were the audio divided into one second long segments, which was
then transformed into either mel-spectrogram or pure spectrograms.

For the Mel-spectrograms: (Giving the shape 116×116)

Sampling rate= 16 kHz
fmin=500
fmax=6000
n_mels=116
hop_length=138
n_fft=552

For spectrograms: (Giving the shape 224×220)

Sampling rate= 16 kHz
n_fft=552
hop_length=138

After splitting the training data 30% validation 70% training, it was iterated over the
original data (not augmented or down sampled) to extract the standard and mean of the
data, which latter was used to feature scaling the data, see section 3.4.

The random seed set for reproducibility:

random_seed=0

For the data loader used: (pin_memory=True is recommended by PyTorch [94] when
using cuda)

batch_size=16
num_workers=8,
shuffle=True # for training data
shuffle=False # validation
drop_last=False
pin_memory=True

For making both models were the pre-trained version of ResNet34 loaded in, with wights.
To set up the model the both version of the system used:

Drop_out=0.45 # only in the last fully connected layer
Number_of_output_nodes=3

106 A5 Code parameters for the system

In addition to PyTorch’s xavier_uniform_() function to reinitialise the last layers weights
recommended by Sigmoid. In production/testing was the Sigmoid function used at the
end of the model, but in the training BCEWithLogitsLoss was used, and the Sigmoid
function were just used at the data before calculating the accuracy. Nevertheless, due to
that the Mel-spectrogram and spectrogram had different shapes, the first convolutional
layer had to be redefine a bit differently for each.

For the Mel-spectrogram model:

num_channel=1
output_first_layer=64
kernal_size=(7,7)
padding=(1,1)
stride=(1,1)

For the spectrogram model:

num_channel=1
output_first_layer=64
kernal_size=(7,7)
padding=(3,1)
stride=(2,2)

For training the Mel-spectrogram model:

Rounds with the training data
epochs=50

For the optimizer (SDG)
learning_rate=0.005
momentum=0.9
weight_decay=0.012

The scheduler
step_size=4
gamma=0.45

For training the spectrogram model:

Rounds with the training data
epochs=50

For the optimizer (SDG)
learning_rate=0.005
momentum=0.9
weight_decay=0.015

The scheduler
step_size=4
gamma=0.45

A5 Code parameters for the system 107

When it comes to the post-processing step were a duration of 2 data points used as a
minimum duration of a vocalisation i both version of the system (after a bit of testing).
However, the threshold of acceptance, which was set per class, were a bit different for one
system to the other. This threshold was set based on NINA’s data, and what gave best
results in test 1 and test 2(section 3.9).

For the Mel-spectrogram model:

Threshold=[0.9,0.5,0.94] # JS, SR, BS

For the spectrogram model:

Threshold =[0.96,0.8,0.95] # JS, SR, BS

However, when testing the system using data from publicly available dataset the same
threshold was tested. Nevertheless, as we can see in section 4.3.2 were the system tested
using a threshold of 0.5 in every class as well.

108 A6 Data collected from online sources

A6 Data collected from online sources
This appendix is divided into three sections, each belonging to separate databases that
were used to extract recordings from, to be used for testing. Each section will list the
recordings in the matter requested by the cite or the license the data is made available
on. The databases used are the; The Museum für Naturkunde Berlin (tierstimmenarchiv)
[67], Macaulay Library [21] and Xeno-canto [22].

A6.1 The Berlin museum:

Four sound clips were collected from tierstimmenarchiv/the Berlin museum [67]. Below
you can find the recorders name, the filename, and the licence it is published under,
together with a link to the license:

• Recorded by: Krey, Winfried
Filename: Lymnocryptes_minimus_Kr0100_08
Licence: CC BY-NC-SA, [95].

• Recorded by: Krey, Winfried
Filename: Lymnocryptes_minimus_Kr0101_01
Licence: CC BY-NC-SA, [95].

• Recorded by: Krey, Winfried
Filename: Lymnocryptes_minimus_Kr0101_03
Licence: CC BY-NC-SA [95].

• Recorded by: Krey, Winfried
Filename: Limicola_falcinellus_Kr0058_09
Licence: CC BY-SA [96].

A6.2 Macaulay Library

The following recordings were used from the Macaulay Library at the Cornell Lab of
Ornithology[21]:

ML207373, ML121526901, ML207610, ML205668, ML205679, ML205669, ML205683,
ML207611, ML304235, ML207389, ML207382, ML207612, ML304237, ML207615,
ML205674, ML207390, ML207372, ML205676, ML207368, ML205684

A6.3 Xeno-canto

The main source of the "database-test" was Xeno-canto. Xeno-canto is a website for
sharing bird sounds, across the world. All the sounds collected from this site is under one of
three creative commons licenses; Attribution-NonCommercial-NoDerivs [97], Attribution-
NonCommercial-ShareAlike [98], or Attribution-ShareAlike [99]. Which creative common
licenses that each recording fall under, can be found by looking up the sound clip on
xeno-canto’s website [22].

A6 Data collected from online sources 109

Following Xeno-canto’s wishes when using data from their site, one can find all recordings
used listed below with the name of the recorder and the XC-number. By replacing the ...
in "www.xeno-canto.org/.../download" with one of the XC-number, will the url take you
to a download site of that recording.
(For the Broad-billed Sandpiper:)
Recorded by: Patrik Åberg, XC-number:58590 Licence: CC BY-NC-SA 3.0 [98]
Recorded by: Lars Edenius, XC-number:417176 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:564395 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Philippe J. DUBOIS, XC-number:492001 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Tomek Tumiel, XC-number:189033 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Jonas Buddemeier, XC-number:386224 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Antero Lindholm, XC-number:356974 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Stanislas Wroza, XC-number:385901 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Tero Linjama, XC-number:342360 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Patrik Åberg, XC-number:58592 Licence: CC BY-NC-SA 3.0 [98]
Recorded by: Lars Edenius, XC-number:562504 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:562289 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:614620 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Stein Ø. Nilsen, XC-number:298254 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:562569 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Jarmo Pirhonen, XC-number:318951 Licence: CC BY-NC-SA 4.0 [100]

(For the Jack Snipe:)
Recorded by: Albert Lastukhin, XC-number:431130 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Marcin Sołowiej, XC-number:211051 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:554829 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Marcin Sołowiej, XC-number:202908 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Teet Sirotkin, XC-number:554679 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Stein Ø. Nilsen, XC-number:492150 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:556118 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Stein Ø. Nilsen, XC-number:255123 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Gerard Kenter, XC-number:240586 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Uku Paal, XC-number:552331 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Patrik Åberg, XC-number:42189 Licence: CC BY-NC-SA 3.0 [98]
Recorded by: Lars Edenius, XC-number:416429 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Albert Lastukhin, XC-number:431008 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Ilkka Heiskanen, XC-number:216726 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Ulf Elman, XC-number:610671 Licence: CC BY-NC-ND 4.0 [101]
Recorded by: Patrik Åberg, XC-number:27087 Licence: CC BY-NC-SA 3.0 [98]
Recorded by: maciej sobieraj, XC-number:553674 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Patrik Åberg, XC-number:27086 Licence: CC BY-NC-SA 3.0 [98]
Recorded by: Patrik Åberg, XC-number:42188 Licence: CC BY-NC-SA 3.0 [98]
Recorded by: Patrik Åberg, XC-number:166406 Licence: CC BY-NC-SA 3.0 [98]
Recorded by: Tero Linjama, XC-number:342362 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Stein Ø. Nilsen, XC-number:265128 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Lachmann, XC-number:133318 Licence: CC BY-NC-SA 3.0 [98]

110 A6 Data collected from online sources

(For the Spotted redshank:)
Recorded by: Lars Edenius, XC-number:370548 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:370549 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Tero Linjama, XC-number:342884 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:480959 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Peter Boesman, XC-number:281139 Licence: CC BY-NC-ND 4.0 [101]
Recorded by: Stein Ø. Nilsen, XC-number:181668 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Ulf Elman, XC-number:490175 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Ulf Elman, XC-number:490176 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Alan Dalton, XC-number:577272 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:562591 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:504669 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Peter Boesman, XC-number:281140 Licence: CC BY-NC-ND 4.0 [101]
Recorded by: Lars Edenius, XC-number:562287 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:504692 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Uku Paal, XC-number:476690 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:562505 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Albert Lastukhin, XC-number:484261 Licence: CC BY-NC-SA 4.0 [100]
Recorded by: Lars Edenius, XC-number:562506 Licence: CC BY-NC-SA 4.0 [100]

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Ingrid G
rim

stad
Classification of W

ader Birds' Vocalisations using N
eural N

etw
orks

Ingrid Grimstad

Classification of Wader Birds'
Vocalisations using Neural Networks

Master’s thesis in Electronic Systems Design and Innovation
Supervisor: Guillaume Dutilleux
June 2021

M
as

te
r’s

 th
es

is

	Introduction
	The problem
	Previous work
	Previous work with NINA's recordings
	Other previous work

	This report's structure and assumed pre-knowledge

	Background material
	The birds of interest
	Bioacoustics
	 Intro to Machine learning
	Datasets and feature extraction
	Learning types within machine learning
	Neural networks
	Training the model

	Convolutional Neural networks
	The convolutional layers
	Pooling
	Fully connected layers
	Residual neural network

	Transfer learning
	Overfitting and underfitting
	Balanced and unbalanced datsets

	Methodology
	System overview
	A closer look at the data
	Public available data
	The available data from NINA
	The soundscape in NINA's data
	Signal to noise ratio for the vocalisations
	How to utilise each data source

	Labelling of the data
	Pre-processing
	Segmentation and extraction of the training data
	Feature extraction
	Balancing the training set

	Defining NN structure
	Post-processing of model output
	Software and hardware
	Training the model
	Testing

	Results
	The datasets
	Training curves for the models
	Results from the tests
	Test 1 and Test 2
	Test on public available data

	Discussion
	Test 1 and Test 2
	The third test
	The data and its limitations
	The systems
	Processing time and capacity
	Comments to how the system was built
	Is the system able to generalise?

	Comparison to other systems
	Usage of the systems
	Future work

	Conclusion
	References
	Appendix
	Location and time of the recordings
	Equipment used for the recordings
	Birds in the area
	Training data
	Code parameters for the system
	Data collected from online sources
	The Berlin museum:
	Macaulay Library
	Xeno-canto

