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Abstract
Today, the cardiac ultrasound examination is typically performed by a clinician who has
acquired specialized training in the interpretation of ultrasound images. As a result, non-
experts may find it challenging to utilize echocardiography. Receiving instant feedback on
which structures are in the frame during the examination can benefit the user in interpreting
the internal view of the human heart.

This master thesis explores the use of deep learning to automatically detect the different
structures of the heart in cardiac ultrasound images. The object detection network YOLO
version 5 is implemented, trained and assessed on a dataset containing echocardiography
images in the apical two-chambers, four-chambers and long-axis cardiac views. For sim-
plicity, the structures used were the left ventricle, left atrium and mitral valve. The data
was provided from 62 different patients, which included 195 recordings, resulting in a total
of 1260 images with corresponding ground truth annotations. This thesis intends to obtain
a robust object detection model which can be integrated into the ultrasound examination.
Therefore, implementations and analyses are performed in order to find the best model
capable of detecting the cardiac structures in all types of situations.

The results achieved from the best model are a mean average precision of 0.984 for an IoU
equal to 0.5 and 0.631 for an IoU in the interval of 0.5 to 0.95. In addition, the detection
gave a confidence of 82% on LV, 84% on MV and 94% on LA in the apical long-axis
view, 67% on LV, 82% on MV and 69% on LA in the apical two-chambers view and
88% on LV, 77% on MV and 78% on LA in the apical four-chambers view. However, the
model can fail to locate the structures in cases where the image quality is poor and other
structures are in focus. As a conclusion the model shows promising results in detecting
the structures. The performance and robustness can be increased with putting more work
in data preprocessing in addition to experimenting more with data augmentation.
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Sammendrag
I dag utføres ultralydundersøkelse av hjertet vanligvis av en lege som har tilegnet seg
spesialisering i tolkning av ultralydbilder. Som et resultat kan det være utfordrende for
ikke-eksperter å bruke ekkokardiografi. Å motta en rask tilbakemelding på hvilke struk-
turer i hjertet som er på bildet under undersøkelsen, vil være en god hjelp for brukeren til
å tolke hjertets anatomi.

Denne masteroppgaven utforsker bruken av dyp læring for automatisk å oppdage de forskjel-
lige strukturene i hjertet i ultralydbilder. Objektdeteksjonsnettverket YOLO versjon 5 er
implementert, trent og vurdert på et datasett som inneholder ekkokardiografibilder i de
apikale 2-kammer, 4-kammer og langakse visningene. For enkelhets skyld ble de tre struk-
turene brukt: venstre ventrikkel (LV), venstre atrium (LA) og mitralventil (MV). Dataen
var hentet fra 62 ulike pasienter, som inkluderte 195 opptak, noe som resulterte i totalt
1260 bilder med tilsvarende fasitannoteringer (eng: ground truth annotations). Hensikten
med oppgaven er å skaffe en robust objektdeteksjonsmodell som kan integreres i ultraly-
dundersøkelsen av hjertet. Derfor utføres implementeringer og analyser for å finne den
beste modellen som er i stand til å oppdage hjertestrukturene i alle typer scenarier.

Resultatene oppnådd fra den beste modellen er en gjennomsnittlig snittpresisjon (eng:
mean average precision) lik 0.984 for en IoU lik 0.5 og 0.631 for en IoU i intervallet
mellom 0.5 og 0.95. I tillegg, ga resultatet i deteksjonen en konfidens på 82% på LV, 84%
på MV og 94% på LA i den apikale langaksevisningen, 67% på LV, 82% på MV og 69%
på LA i den apikale 2-kammervisningen og 88% på LV, 77% på MV og 78% på LA i den
apikale 4-kammervisningen. Derimot kan modellen mislykkes med å finne strukturene
i tilfeller der bildekvaliteten er dårlig og/eller at andre hjertestrukturer er i fokus. Som
en konklusjon viser modellen lovende resultater for å oppdage de ulike hjertestrukturene.
Ytelsen og robustheten kan økes ved å legge mer arbeid i data prosesseringen, i tillegg til
å eksperimentere mer med data augmentering.
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Chapter 1
Introduction

1.1 Motivation and background

Echocardiography, often referred to as cardiac ultrasound, has been the most widely ac-
cessed medical imagining method for examining cardiac function and anatomy. A com-
monly used cardiac ultrasound method is the Transthoracic echocardiography (TTE). TTE
uses a probe, often termed as a transducer, which is placed on a patient’s chest and cap-
tures the reflections from the human heart and then produces an image [1, Chapter 12.7.5].
The images produced by this technique can be used by clinicians to determining the health
of the heart muscle, identifying abnormalities and diagnosing various cardiac disorders
[2]. For that reason, it is critical that the ultrasound examination generates anatomically
accurate images in order to achieve adequate measures so the clinicians can make the right
diagnosis. These days, the cardiac ultrasound examination is typically performed by a
radiologist. Radiologists are doctors who have received special training in the analysis
of ultrasound images [3]. As a result, non-experts may struggle to utilize echocardiog-
raphy. For starters, accurately positioning the probe might be challenging. Furthermore,
interpreting the structures of the cardiac anatomy from the echocardiograpic image can be
confusing and hard to evaluate. Receiving feedback on which structures are in the frame
during the examination could give valuable guide to the user in interpreting the structures
of the human heart.

In recent years, deep learning (DL) techniques have emerged as an essential aspect in
medical imaging. Multiple articles point out that DL methods can help to improve medical
image analysis and processing. For instance, Kim et al. [4] stated that ”the deep learning is
expected to help radiologists provide a more exact diagnosis, by delivering a quantitative
analysis of suspicious lesions, and may also enable a shorter time in the clinical workflow.”
Furthermore, the Cuocolo et al. [5] also stated that the use of machine learning (ML)
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Chapter 1. Introduction

can aid in early detection and correct interpretation of findings. This indicates that DL
can benefit clinicians in detecting diagnoses earlier, as well as making medical imaging
techniques more robust for non-experts to utilize.

There are different DL approaches that can and have been applied in medical imaging.
Object detection, image segmentation and classification are a few examples. To my knowl-
edge, there are only a few studies on locating the different structures in the human heart
by using object detection. Nevertheless, Yang et al. [6], have shown that using one-stage
object detection one can locate the left ventricle (LV). The authors also stated that ”Left
ventricle detection from multiview echocardiography images can help clinicians diagnose
heart disease more comprehensively and accurately”. This shows that it is important and
need of object detection algorithms to detect the structures in the human heart in cardiac
ultrasound. In addition, Zeng et al. [7] demonstrate promising results in using region de-
tection on various ultrasound images.

1.2 Problem statement

The aim of this master thesis is to explore the use of deep learning method to automatically
locate cardiac structures in echocardiographic images, so non-experts can utilize cardiac
ultrasound. This by using the one-stage object detector You Only Look Once (YOLO)
to draw bounding boxes around the left ventricle (LV), mitral valve (MV) and left atrium
(LA). The object detection algorithm is trained and tested on data annotated by trained
experts in the circulation and medical imaging field. The main objective is to find a ro-
bust enough model that can detect the structures in both ideal and non-ideal scenarios.
Therefore the following implementation and analysis will be addressed:

• Use cardiac ultrasound knowledge to implement new features such that the model is
reliable enough to be used in various ultrasound situations.

• Evaluate different object detection models due to speed-accuracy tradeoff.

• Explore the use of data augmentation to increase the variation in the data and thus
performance of the model.

• Investigate if the model is adequate by testing on different sizes of dataset.

• Check if the model can be used in real world scenarios by applying it on new unseen
data in both standard and nonstandard cardiac views.

1.3 Outline

The first chapter includes the motivation and problem statement for this master thesis. The
theory required for the thesis is covered in Chapter 2. It starts with the cardiac structure and

2



1.3 Outline

function and ultrasound imaging and deep learning, in addition to object detection. The
methodology is presented in Chapter 3, which includes the dataset and data preparation,
as well as preprocessing, implementations, and the architecture of the object detection
model. Chapter 4 provides all of the metric evaluation and detection results from various
object detection model analyses. In Chapter 5, the results are discussed, and future work
is suggested. Lastly, Chapter 6 brings this thesis to a close.

3



Chapter 2
Theory

In this chapter we will go through theory about the human heart, ultrasound imaging,
machine learning, some deep learning metrics and the object detection model YOLO. The
theory about the human heart, echocardiography, deep learning and object detection are
adapted and extended from the theory section of the specialization project [8].

4



2.1 The human heart

2.1 The human heart

The human heart is a muscular organ located between the lungs in the thoracic cavity of
the body, with its main purpose is maintain a constant blood flow throughout the body
[9]. Figure 2.1 illustrates the structure of the human heart. The heart is divided into four
chambers: right atrium, right ventricle, left atrium and left ventricle. The right atrium
receives blood from the veins, and will pump deoxygenated blood through the tricuspid
valve to the right ventricle. The blood is further pumped through the pulmonary valve to
the pulmonary trunk and then into the lungs, where it is filled with oxygen. The oxygenated
blood is then gathered by the left atrium and pumped through the mitral valve to the left
ventricle. Following this, the left ventricle forces the oxygenated blood through the aortic
valve into the aorta, where it is distributed to the rest of the body [10, Chapter 19.1].

Figure 2.1: Illustration of the cardiac structure with the blood flow direction marked with arrows.
Graphic by Wikimedia user Wapcaplet, reproduced under the CC BY-SA 3.0 license [11].

2.1.1 The cardiac cycle and function

The cardiac cycle consist of two phases: diastole and systole phase. The systole phase
is the period when the heart contracts and is followed by the diastole phase, which oc-
curs when the atria and ventricles relax. The muscles in the atria and ventricle contract
rhythmically at a pace that depends on the activity in the rest of the body. The phases can
be further divided into four different events: The atrial systole, ventricular systole, atrial
diastole, ventricular diastole [10, Chapter 19.3].

5



Chapter 2. Theory

The cardiac cycle begins with a relaxation period where both the atria and ventricles are in
rest. The cycle then continues into the atrial systole, followed by the ventricular systole,
atrial diastole and the ventricular diastole. During atrial systole, the atria contracts and
the atrial pressure rises, causing a small amount of blood to fill the ventricles through
the tricuspid and mitral valve, also known as the atrioventricular valves. After the atrial
systole, right before the beginning of ventricular systole, is the period known as the end of
diastole (ED), and the volume of blood remaining in the ventricle is defined as the end of
diastole volume (EDV).

The ventricular systole can be divided into two different phases. First phase is the isovolu-
metric contraction, that takes place while the atrioventricular, aortic and pulmonary valves
are closed. Due to the valves are closed, the blood volume will not change. Nevertheless,
the ventricles contracts, causing the ventricular pressure to rise. The rise in the ventricular
pressure causes the atrioventricular valves to bulge into the atria, resulting in a slightly rise
in both the left and right atrial pressures. The cycle then continues to the second phase
in the ventricular systole: the ventricular ejection. As the blood pressure in the ventri-
cles rises above the pressure in the aorta and pulmonary arteries, the aortic and pulmonary
valves open. The blood is then ejected to the lungs through the pulmonary valve and to
the rest of the body via the aorta. The aortic valve then closes, marking the end of systole
(ES), and the remaining volume of blood in the ventricle is called the end systolic volume
(ESV).

The cycle then progresses to the atrial diastole where the atria relaxes and is then filled
with blood through the pulmonary veins, the superior and the interior vena cava. When
the atrium pressure exceeds the ventricle pressure, the tricuspid and mitral valve open.

Ventricular diastole, such as ventricular systole, can be separated into two phases. The first
is the isovolumetric relaxation, where both the tricuspid and mitral valve is closed. Due to
a pressure fall in the ventricles, blood flows back towards the heart, making the pulmonary
and aortic valve close in order to prevent backflow into the heart. In the next phase,
known as late ventricle diastole, the pressure in the ventricle falls below the pressure
in the atria. At this point the atria start to fill the relaxed ventricles with blood, forcing
the atrioventricular valves to open. The phase ends with the semilunar valves closed,
atrioventricular valves open and both the ventricles and atria in diastole, marking the end
of the cardiac cycle.

6



2.2 Ultrasound imaging

Figure 2.2: Illustration of the cardiac cycle, where the arrows indicate the cycle’s direction and start
marking where the cycle begins. Graphic by Wikimedia user OpenStax College, reproduced under
the CC BY-SA 3.0 license [12].

2.2 Ultrasound imaging

Ultrasound Imaging, also known as diagnostic ultrasound, is a non-invasive medical pro-
cedure that uses images to view the inside of the human body. The images are produced
in real-time by high-frequency sound waves [10, Chapter 1.7]. For examining the hu-
man heart, one uses a type of ultrasound which is known as echocardiography or cardiac
ultrasound.

7



Chapter 2. Theory

2.2.1 B-mode

The ultrasound image can be created in a variety of methods. The most common is the
2D imaging mode B-mode, that stands for brightness modality. The B-mode image is
created by an ultrasound probe that transmit multiple pulses into the tissue one by one
from various angles. Echoes are then generated as these pulses are scattered and reflected.
Some of the echoes are recorded by the transducer as they return back. The intensity of
these echoes will vary with depth and the type of tissue being imaged. The depth, which is
the distance between the transducer and the target, can be determined using the following
equation: d = ct

2 . In which c is the speed of sound, that is set to approximately 1540ms−1

in the human tissue, and t is the time it takes for the echo to return to the transducer. These
echoes are joined together to form a single scan-line, called B-mode line. The 2D B-mode
image is then created by multiple B-mode lines which is generated as the probe is swept
over the patient’s chest [13].

2.2.2 Echocardiography

Echocardiography is an ultrasound technique used to study the human heart. By using
ultrasound one can see how the muscles and valves of the heart function. Transthoracic
Echogardigraphy (TTE) is one of the forms of echocardiography used to evaluate cardiac
function. TTE is performed by placing a probe, often described as a transducer, between
the ribs on the patient’s chest. The transducer generates sound waves that reflects off
the heart. It then records the reflected sound wave echoes, and then generate images, as
described in the previous section. TTE uses various imaging windows, or views, of the
heart to evaluate specific cardiac structures [14]. The most common cardiac views are
apical two-chamber (A2C), apical four-chamber (A4C) and apical long-axis (ALAX), as
well as the parasternal long-axis (PLAX) and parasternal short-axis (PSAX) [15].

(a) A4C view. (b) ALAX view. (c) A2C view.

Figure 2.3: Example of still 2D B-mode images in the three of the standard views. In (a) the LV,
MV and LA is displayed, alongside with the aortic valve, right ventricle and atrium on the left. In
(b) the LV, MV and LA is displayed, alongside with the aortic valve on the right. In (c) the LV, MV
and LA is displayed.
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2.3 Deep learning

2.3 Deep learning

Artificial intelligence (AI) is a type of information technology that changes its own be-
haviour and thus appears intelligent. The goal of AI is to create computer systems that can
adapt from their own experiences and solve complex problems in a variety of scenarios
and environments [16, Chap 1.1]. A subcategory of AI is machine learning (ML). ML
is an artificial intelligence specialization in which statistical methods are used to enable
computers to identify patterns in large quantities of data. Instead of being programmed,
the computer ”learns” by training on a certain amount of data. Furthermore, ML is divided
into three different categories: supervised, unsupervised and enhanced learning. The dif-
ference between these methods is that supervised learns to understand that the input data
predict the output values, unsupervised tries to find the structure of the input values without
the knowledge/access to output values. Lastly, in enhanced learning the model interacts
explicitly with an environment that provides punishment or reward. It can be used in situ-
ations where there are several paths to the goal, and no indication of which is the strongest
[17].

An important approach in ML is deep learning (DL). DL trains multilayered artificial
neural networks (ANN) to solve various tasks such as object detection in images. ANN is
based on the biological neural network in the human brain, where algorithms are inspired
by the organization of nerve cells in the brain. DL has the potential to learn directly from
given data and would need less interference from humans than traditional ML algorithms.
This implies that a DL algorithm can automatically extract features and learn by its errors
[18, Chap 1.2].

2.3.1 Neural network

A neural network (NN) receives data, trains itself to identify patterns in the data, and then
predicts the output [19]. The core of a NN is the neurons, which are data elements that
can receive and transmit numerical values to each other. The neuron can be defined as
a mathematical function as shown in Figure 2.4b. Here the neuron receives input data,
x which is multiplied with a assigned weight, w. The sum is then sent to the neurons,
which are each assigned a potential bias word, b, and then applied to the input sum. The
sum is further sent through an activation function, φ(·), to achieve a non-linear behavior,
and is transferred to the output-vector, y. The activation function describes the output
behaviour by activating it. It exists different kind of activation function, but two of the
most common ones are the Rectified Linear Unit (ReLU) function, shown in (2.1), and the
Sigmoid function, shown in (2.2) [20]. Where in both cases, x is the input value and both
produces an output shape same as the input shape.

ReLU(x) = max(0, x) =

{
x if x ≥ 0

0 if x < 0
(2.1)
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Chapter 2. Theory

σ(x) =
1

1 + e−x
(2.2)

In Figure 2.4a a simple NN is displayed, with one input layer, one hidden layer and an
output layer. As shown in the figure, the two input neurons are fully connected with the
three hidden neurons which are then connected to one output neuron. The information
received at the input is transferred through the hidden layer and then to the output. This
type of NN is known as a feed-forward neural network (FNN), or multilayer perceptron
(MLP), because there is no feedback from the output layer to the input layer. The input
data will therefore only pass through the NN once without looping [19][18, Chap 6].

(a) Neural network. (b) Neuron as a mathematical function.

Figure 2.4: Example of a neural network with one hidden layer and the math of a neuron. The
arrows indicates the direction. The illustrations are reproduced from the Figures in Haykin [21,
Chap I.3, Chap 4.2]

For training a FNN, there are different techniques one can use. One of the simplest and
most used technique is the back-propagation algorithm. The concept of this algorithm is
to proportionally modify each weight in the network based on how much it contributes to
overall error. After several iterations, the error in the weights will minimize, resulting in
a set of weights that improve the predictions. This is done by calculating the gradient of
the error in the weight, by using the three equations: output layer error, hidden layer error
and cost-weights derivative [18, Chap 6.5]. Figure 2.5 shows a visual explanation of the
calculation. Here H and O represents the hidden layer and output layer activation, and X
the input. C ′(Wh) and C ′(W0) is the cost derivative for the weight on the hidden layer
(Wh) and the weight on the output layer (Wo). Furthermore, Eh the hidden layer error
and Eo the output layer error, where R′(Zh) and R′(Zo) is the derivative of the ReLU
activation of the layers’ input Z.
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2.3 Deep learning

Figure 2.5: Visualization of the calculations of the back-propagation in a NN. The illustration is
adapted from [22].

2.3.2 convolutional neural network

The convolutional neural network (CNN) is a deep learning algorithm used in different
tasks as image recognition, object detection, segmentation etc [23]. In for example object
detection, the CNN takes an input image, applies weights and biases and then create rele-
vant image features, which are then extracted. These features are then used for recognizing
patterns in the image, such as edges, textures and contours. The structure of the CNN al-
gorithm is displayed in Figure 2.6. The CNN is built up by input layer, various hidden
layers and an output layer, where the most important hidden layers are the convolutional
layers [24].

Input Image

Convolutional Layer Pooling Layer
Input Layer of a NN

Convolution Pooling Flattening

Figure 2.6: A fully connected CNN consisting of two hidden layers: one Convolutional and one
Pooling Layer, where both have several feature maps. Illustration adapted from Wikimedia by user
Aphex34 under CC BY-SA 4.0 license [25].
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A convolution is a mathematical approach used in image processing to gather information
about the arrangement of pixels in an image using filters, also known as kernels. Simply
defined, a convolution receives an input image and applies a kernel on it before producing
an output image. The kernel is a weighted matrix that is multiplied with the input as it
moves across the pixels in the input image. The pixel values are then multiplied and added
by using kernels. This results in a convolution, that will produce a feature map as an
output. This method is visualized in Figure 2.7, and in Equation (2.3) one can see how the
convolution is defined mathematically [18, Chap 9].

al+1 = σ(bl + wl ∗ al) (2.3)

Here σ(x) is the activation function, bl is the bias and wl is the weight at layer l. In
addition, al is the set of input activations at layer l, and the ∗ is the convolution operation.
al+1 is the output activations from a feature map. A convolutional layer is made up of one
or more kernels, producing multiple feature maps.

Kernel Kernel

Initial image

Feature map

Figure 2.7: Convolution of a 3 x 3 kernel with the initial image, yielding a feature map. Illustration
adapted from Wikimedia user Omegatron under MIT license [26].

A CNN, in addition to the convolutional layers, comprises another layer known as pooling
layer. This layer is typically implemented after the convolutional layers, as seen in Figure
2.6. The pooling layer is implemented for reducing the dimension in the input image,
which results in lower amount of parameters. This is done by downsampling every feature
map, minimizing the height and width while maintaining depth [18, Chap 9.3]. There are
different kinds of pooling functions one can use. Two of the most popular ones are max
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pooling and average pooling. Max pooling returns the maximum value of the input at each
stride, while average pooling returns the average value [27].

2.3.3 Performance metrics

IoU - Intersection over Union

A commonly used metric to evaluate the performance of a deep learning network is the
IoU, which stands for Intersection over Union [28]. IoU will measure the object detector’s
accuracy on a given dataset, by using the formula as shown in Equation (2.4), where AoO
stands for Area of Overlap and AoU is Area of Union. AoO is the intersection between
the ground truth and predicted bounding box, while AoU is the union of the two bounding
boxes. In Figure 2.8, one can see how the AoU and AoO is represented.

IoU =
AoO

AoU
(2.4)

Figure 2.8: Intersection over Union. Here blue is the prediction and pink is the ground truth. The
AoO demonstrated overlap and AoU the union between ground-truth and predictions.

The bounding boxes’ IOU values will be between 0 and 1, where the closer the value is
to 1, the more accurate the predictions are. For example if the IOU score is zero, the two
bounding boxes do not converge, while if the score is one, the two boxes fully intersect.

Confusion Matrix and F1-score

Another metric one can use to evaluate the a deep learning network is the confusion ma-
trix. The metric uses the four elements: True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN). In for example object detection the metrics can be
interpreted as [29]:

• TP: The model identifies an object, which is correct.
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• TN: The model does not identify an object, which is correct.
• FP: The model identifies an object, which is incorrect.
• FN: The model does not identify an object, which is incorrect.

In Figure 2.9, one can see how the relationship between the true class versus the predicted
class by using the four components, and the corresponding metrics.

TP FP

FN TN

True Class
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Figure 2.9: Confusion matrix with corresponding performance metrics. The matrix demonstrates
the true versus the predicted class.

Precision and sensitivity, also known as recall, are two fundamental metrics for computing
other essential metrics in object detection model evaluation. Precision is a classifier’s
ability to recognize just relevant objects, and is calculated by the ratio between the TP and
all the detections. Recall refers to the classifier’s ability to identify all the ground-truth,
and is the ratio between the TP and the ground truth. By using the recall and the prediction,
we can calculate the F1-score, as shown in Equation (2.5) [30].

F1 − score = 2 · Precision · Recall
Precision + Recall

(2.5)

The F1-score varies between 0 to 1, where 1 represents the greatest level of precision.
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mAP - mean Average Precision

The mean Average Precision (mAP) is one of the most used metric for evaluating object
detection models. It calculates the mean of the average precision (AP) of all the given
classes [31]. Firstly, the AP needs to be determined before calculating the mAP. It can be
explained mathematically by using the Equation (2.6). AP is the area under the Precision
Recall (PR) curve, in other words, is the weighted sum of predictions at each point in which
the weight is the increase in recall. The latest precision, Precisions(k), is multiplied with
the discrepancy between the present, Recalls(k), and following recall, Recalls(k + 1).
The number of thresholds is n, and the class is k.

AP =

k=n−1∑
k=0

[Recalls(k)− Recalls(k + 1)] · Precisions(k) (2.6)

The mAP is then computed by the mean of the AP, shown in (2.7), where the number of
classes is n and the average precision of the class, k, is APk.

mAP =
1

n

k=n∑
k=1

APk (2.7)

2.3.4 Overfitting and underfitting

When training a neural network, it is important to analyse the model’s performance by
comparing the training loss to the validation loss. Figure 2.10 depicts three different fits
that can be used to evaluate the performance of the DL algorithm. A model is underfitted
when the validation loss is to close to the training loss, in addition to both losses will not
achieve the optimal loss. As a result, the model will make inadequate predictions on both
training and new data. An overfitted model, on the other hand, will experience an increase
in validation loss during training, leading to a discrepancy between training and validation
loss. When overfitting occurs, the model can learn from erroneous in the data, which
results in inaccurate predictions. Model with a good fit is somewhere between underfit and
overfit, in which the model outputs low errors and is right before the validation set starts
to increase [18, Chap 5.2]. To avoid both underfitting and overfitting one can increase the
data in the dataset. Furthermore, increasing the complexity of the model and epochs can
help to avoid underfit, and decreasing the complexity and epochs can prevent overfit.
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epochs epochs epochs

loss loss loss

Validation

Training

Training

Validation

Validation

Training

Underfitting OverfittingGood fit

Figure 2.10: Underfitting, good fit and overfitting. A model is underfit if the training loss and
validation loss are close to each other. It is a good fit if training loss is slightly lower than validation
loss. A much lower training loss than validation loss indicates an overfit. Here epochs represents the
training steps.

2.4 Object Detection

Object detection is a computer vision task that aims to find and recognize instances of
objects of a specific category within an image. It combines both image classification and
object localization, by finding the presence of an object in an image and placing a bounding
box around the object. The bounding box is then assigned with a label representing the
object’s class [32]. One can divide object detection into two categories: one-stage and
two-stage detectors. The different between these is that the two-stage first select a limited
regions of interest and predict bounding boxes from these regions, while the one-stage
detector predicts bounding boxes by only one run through its network [33].

2.4.1 YOLO

YOLO is a fast real-time one-stage object detection model, and stands for You Only Look
Once. Redmon et al. [34] first published YOLO in 2015, with the YOLOv1 model. This
model managed to predict several object bounding boxes with corresponding class prob-
abilities by only using a single CNN, therefore its name. This type of object detector is
called a one-stage object detector, as it predicts bounding boxes in an image by a single
pass through its network. Since the first publication new versions of the object detection
model have been released, all introducing new features. YOLOv2 [35] was released in
2016, and two years after in April 2018 YOLOv3 [36] was introduced with a new classifier
network improving the predictions and mAP values. In April 2020, Alexey Bochkovskiy
published the fourth version of the YOLO family: YOLOv4 [37]. YOLOv4 outperforms
previous versions and other state-of-the-art object detectors in terms of speed-accuracy
trade-off. The authors of the fourth version also introduced a new data augmentation
and hyperparameters by employing generic algorithms which was a concept developed by
Glenn Jocher. Not only did Jocher contribute new ideas for improving the fourth edition,
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but the same year, in June 2020, his team at Ultralytics team launched the latest version
of YOLO, version 5 (YOLOv5) [38]. This version has not yet been published in any of-
ficial paper. However, Ultralytics demonstrates remarkable improvements in both speed
and accuracy. In addition there are papers exploring the use of YOLOv5, for instant [39]
stated that: ”Experimental results show that YOLOv5 algorithm is superior in almost all
indicators. Especially, YOLOv5 algorithm is superior to Faster R-CNN algorithm in terms
of speed, memory occupancy, and accuracy of object position prediction.”

2.4.2 Architecture

An overview of YOLOv5’s architecture is displayed in Figure 2.11. As seen in the fig-
ure, one can divide the architecture into three parts: Backbone, Neck (PANet) and Head
(YOLO layer) [39]. The Backbone is made up of a CNN that combines and produces
image features at various granularities, while the Neck is made up of a sequence of layers
that will include the image features. By using these features, the Head collects the class
and box prediction steps. YOLOv5 uses a special kind of CNN in both the Backbone and
Neck, called Cross Stage Partial Network (CSPnet). CSP enhance the learning capability
of the CNN by extracting the important features from the input image. As the authors,
Wang et al. [40], stated ”the CSPnet can greatly reduce the amount of computation, and
improve inference speed as well as accuracy.” Additionally, the network reduces memory
costs and allows for the usage of both CPU and mobile GPUs for training the network.
The Backbone also consist of a Spatial Pyramid Pooling (SPP) layer, which obtain both
coarse and fine information by pooling on various kernel sizes at the same time [41].

As one can see in the Figure 2.11, Path Aggregation Network (PANet) forms the neck. The
PANet uses several different features for improving the information flow in the YOLOv5
framework. PANet is made up by a bottom-up path augmentation, adaptive feature pooling
and a fully connected fusion. These are techniques for decreasing the information path
between the lower layers and the top feature, connect feature grids at all feature levels and
for improving the predictions for the object detection [42]. The head of the network is the
output in Figure 2.11, and consists of the YOLO layer. The YOLO layer is the same as is
used in the previous YOLO versions 3 and 4 [36][37]. This layer is the detection part of
the network, which is done with anchor-based detection stages that detects the bounding
box coordinates and the corresponding class predictions.
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Figure 2.11: Overview of YOLOv5’s Architecture, where the backbone is built up by the CSPnet
and SPP layer, the neck is the PANnet and the head/output is the yolo layer containing 1 dimensional
convolutional layers. (Illustration is reproduced from Figure 4 in [43])

2.5 Data Augmentation

A key technique for improving the robustness of the deep learning network, is by using
data augmentation. Data augmentation ensures that the relevant data increases, while ir-
relevant data decreases. In addition to increase the variation of the data, in terms of views
and different scenarios. As a result, the machine learning model will train on more data,
resulting in more accurate predictions. This also prevents the network from learning ir-
relevant patterns, which improves the model’s accuracy. Furthermore, by using more data
augmentation one will reduce and delay overfitting. This results in longer training and
then a higher mean average precision [44].

Below one can see a few of the most popular used data augmentations in object detection:

• Image Flip: Flipping the images either horizontally or vertically or both.

• Image Rotation: Rotating the image with different angles. Here one need to be
careful, due to the dimension of the image can change when rotating the image.

• Image Translation: Translate by moving the image in either y or x direction or both
directions. This force the network to look everywhere in the image, as the objects
can be localized different places in the image.
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• Image Scale: Scaling the image inwards or outwards. When scaling, the image size
will either increase or decrease.

• Image Crop: Random cropping the image and resize the image size so it is similar
to the original image dimensions.

• Image Shear: Shifts parts of the image, similar to a parallelogram.

• Mosaic: Combining four different images into one.

Because certain data augmentations can cause the image size to change, it is important
to be cautious when adjusting the hyperparameters. Interpolation is often used by deep
learning models to ensure that the most of the image is used or to avoid losing essential
parts of the image.

In addition to the most popular data augmentations, one has the data augmentation Ran-
dom Gamma. This augmentation random applies brightness to the image with different
intensities. This is done by the using the Equation (2.8a), where γ is given in (2.8b).

iout = c · iγin (2.8a)

γ = γmin + (γmax − γmin) · xrandom

Here iout is the output intensity and iin is the input intensity. c and γ are both positive
constants, and gamma can vary between given values from gammamin and gammamax.
This equation is called the power-law transformation [45]. Random gamma can be an
important augmentation when it comes to using ML on grayscale images, as it can improve
the object detection model’s performance by giving it more variations in the training data.

During training and testing using YOLOv5, the object detection model creates a dataloader
for loading the data. In this dataloader one can specify different hyperparameters for
using the data augmentation techniques. The dataloader generates augmented views of
the dataset on demand, which are then used for training only once. This means that the
augmented views will never be repeated.
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Method

In this chapter, the methodology and material used are represented. Some of the method-
ology is modified from the specialization project [8]. For detecting the different structures
of the human heart from echocardiography images, relevant data and their correspond-
ing annotations are required. The ground truth annotations are done by clinicians using
an annotation tool from the multipurpose application EchoSearch developed by the the
Department of Circulation and Medical Imaging at NTNU.
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3.1 Data

The data used in this project was retrieved from the data collection HUNT4 from The
Trøndelag Health Study (The HUNT Study). This data was provided from 62 different
patients, which included 195 recordings. The HUNT study is one of the world’s largest
health studies consisting of a unique database of data, clinical measurements and samples
from the county of Trøndelag (NTNU) [46]. Patients are examined here for research pur-
poses. The data obtained is in the form of 2D-echocardiography images. These images are
all in a DICOM file format, which includes recordings of varying lengths as well as addi-
tional meta data. The recording’s frame rate is normally 50 frames per second, however
it might vary depending on the image’s height and width. The images varies in the A4C,
A2C and ALAX cardiac views.

In addition, two additional datasets were created to test how the model performed on both
standard and nonstandard views. The dataset was obtained from the Forshortening2021
study Pettersen et al. [47], which contains 3D echocardiography images. To obtain the
right data for object detection the 3D data is rotated in different ways and then sliced cre-
ating 2D images in different views. Further explained, this is achieved by first specifying
the LV long axis and then generating 360 slices around the axis, one per degree. These
slices are then sent to a classification network, which decides which of these slices cor-
responds to the desired views. In this particular case, the view sliced were A4C, A42C,
A2C, ANS, ALAX and ANE. The 2D images were then categorized into two dataset, stan-
dard viwes: A4C, A2C and ALAX and nonstandard views: A42C, ANS and ANE. Both
datasets contains the total of 158 images each.

(a) A4C (b) A2C (c) ALAX

Figure 3.1: Examples of the standard views in 2D images captured from the 3D data.
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(a) A42C (b) ANS (c) ANE

Figure 3.2: Examples of the nonstandard views in 2D images captured from the 3D data.

3.1.1 Annotation process

As mentioned in the beginning of this chapter, the ground truth annotations were done by
trained experts in the cardiac and medical imaging field. The annotations were created for
segmentation purpose, therefore bounding boxes was drawn around the LA and LV masks.
Furthermore, a bounding box was generated for the MV in the transition between LA and
LV, with two-thirds of the box in LV and one-third in LA. In Figure 3.3 an example of the
ground truth annotations on the A4C, ALAX and A2C views are shown.

ALAX A4C A2C

LV MV LA

Figure 3.3: Example of ground truth on the echocardiographic images made for the object detection.

3.1.2 Data preparation

The data preparation for the object detection included converting the image format as well
as altering the annotation data. The required format of the images are in .jpg/.png and etc.
and the corresponding annotations in .txt-files. The image’s resolution ranges from 275 x
256 to 362 x 256 pixels. When it comes to the annotations in the txt-file, the structure is
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one bounding box annotation per row, with its class-label, bounding box x- and y-center
and their height and width. The bounding box coordinates are normalized by dividing the
bounding box center of x with the width of the image and the center of y with the height of
the image. Furthermore, the class labels are transformed to zero-indexed class numbers.
Figure 3.4 shows an example of how the images with corresponding annotation in txt-file
looks like. The dataset was then divided into training, validation and test sets, where the
images and the corresponding annotations are in different folders. The data was divided
such that 70% of the data for training, 20% for validation and 10% was for testing. This
resulted in a data distribution presented in Table 3.1.

(a) Image in .png (b) Annotations in txt-file

Figure 3.4: 2D B-mode image from HUNT data and corresponding annotations in txt-file. The
annotations in (b) is the following format: <class> <x center> <y center> <width> <height>.

Table 3.1: The HUNT data split into training, validation and test set.

Training Validation Testing Total

902 251 107 1260

When evaluating the object detection model, it is critical to consider if there is adequate
data to train the model on. To test this, an analysis of the entire dataset and two-thirds of
the dataset was performed. Therefore, a new dataset was created by reducing the amount
of data in the training and validation sets to two-thirds of the original size. This yielded
a total of 602 images and corresponding annotations for the training set and 168 for the
validation set.
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3.2 Network - YOLO

YOLOv5 (version 4) was cloned from Ultralytics’ github1. The Python-based object de-
tection model YOLOv5 uses as the open source machine learning library PyTorch. The
network is tested and trained on an NVIDIA Quadro P5000 GPU.

3.2.1 Architecture

As mentioned in 2.4.1 the architecture of YOLOv5 consist of three parts: Backbone, neck
and head.

The head produces predictions for the bounding boxes, object and classes, called box loss,
objectness loss and classification loss. Box loss gives a value for the discrepancy between
the ground truth and predicted bounding box. Objectness provide a value indicating how
probable an object is to exist in a cell, while classification determine whether or not an
object is present in the image and what class the object represent. The network employs
logistic regression for computing the predictions for the objectness loss per bounding box
and binary cross-entropy with logistic loss for the classification predictions [48]. The box
loss is calculated by using the IoU metric. The output from the head is in a form of a vector
as shown in (3.1), where tx, ty , tw and th are the predicted bounding box coordinates and
pro is the objectness loss and prc is the class loss.

[ tx, ty, tw, th, pr0, prc] (3.1)

The predicted bounding box coordinates from the output vector is then used for finding
the true bounding box coordinates. This is done by using the equations and method shown
in Figure 3.5.

The network uses two activation functions: Leaky ReLU and Sigmoid. Leaky ReLU is a
type of rectified linear activation function where it accepts small negative numbers if the
input is below zero [49]. The function is shown in Equation (3.2), where aneg is a parameter
for controlling the angle of the negative slope. The Leaky ReLU activation function is
employed in the hidden layers, while the sigmoid activation function is implemented in
the YOLO layer.

LeakyReLU(x) = max(0, x) + aneg ·min(0, x) =

{
x if x ≥ 0

aneg · x if x < 0
(3.2)

1https://github.com/ultralytics/yolov5/releases/tag/v4.0
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Figure 3.5: Bounding box prediction. Here the pink grid is the image, pw and ph is the width and
height of the bounding box. The blue dotted box represents the anchor box and the green box is the
output box. The figure is reconstructed from Figure 3 in [35, p. 4].

3.2.2 Model

The network structure for YOLOv5 consists of four different models, small, medium, large
and xlarge. The authors of YOLOv5 have tested all the models on the dataset Common
Objects in Context (COCO). The dataset is released by Microsoft for ”advancing the state-
of-the-art in object recognition. [...] This is achieved by gathering images of complex
everyday scenes containing common objects in their natural context.” (Lin et. al, 2015
[50]). The results from training and testing on COCO are given in Table 3.2, and are
retrieved from the authors’, Ultralytics, github [51]. Here a V100 GPU is used with a
batch size of 32 and all the models are tested with the resolution of 640.

Table 3.2: YOLOv5’s (version 4.0) models compared. Here with a batch size of 32, image size of
640. The mAP values are in percent and speed in ms/img.

Model mAP val mAP test mAP50 SpeedV 100 parameters GFLOPS

YOLOv5s 36.8 36.8 55.6 2.2ms 7.3M 17.0

YOLOv5m 44.5 44.5 63.1 2.9ms 21.4M 51.3

YOLOv5l 48.1 48.1 66.4 3.8ms 47.0M 115.4

YOLOv5x 50.1 50.1 68.7 6.0ms 87.7M 218.8

Several conditions must be considered while selecting the model to apply for the object
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detection on our custom dataset. First of all the images in the HUNT dataset have a small
resolution and are therefore small in size. Additionally, the images are in grayscale format,
meaning one can use less parameters when training on the data. Furthermore, the inference
and processing should be fast in comparison to the task’s complexity. Since the COCO
dataset contains the total of 80 classes and images in RGB, the HUNT dataset was tested
on all the different models to see how the network behaves on grayscale images with only
three classes.

3.2.3 Evaluation metrics and loss function

YOLOv5 offers a variety of metrics and losses to evaluate the object detection model’s
performance during training, testing and inference. The loss functions, which are box,
objectness and classification loss, are used for demonstrating how the model performs and
whether overfitting occurs. Furthermore, YOLOv5 use recall, precision, IOU and mAP,
which were represented in the theory chapter 2.3.3, for analyzing the training and testing
of the model. The mAP is represented as mAP@.5, implying that the mean average at IoU
equals 0.5, and mAP@.95, implying that the mean average over various values of IoU in
the range of 0.5 to 0.95 [31]. The values gives us an indication of how stable, precise and
reconcilable the model is. In addition, the confusion matrix is also used to evaluate the
classifier’s performance, including the F1-score for the model’s performance.

3.2.4 Training, testing and inference

Before training the desired YOLOv5 model some configurations and adjustments were
done. First the model’s configuration file, yolov5*.yml, was modified by replacing
the number of classes to three. Thereafter, a configuration file, yolo_HUNT.yml, was
made containing the paths to the train and validation set, the number of classes and the
class names: [LV, LA, MV]. Furthermore the training parameters needs to be specified.
These are the width of the image, batch size, numbers of epochs, the YOLO configurations,
the data, the desired model, desired weights and which device one is using. The following
command is an example on how to start the training on the server containing NVIDIA
Quadro P5000 GPU:

python train.py --data yolo_HUNT.yml --cfg yolov5*.yml --weights ’’
--img 256 --batch-size 64 --epochs 150 --device 0

The weights used in training session was random initialized weights. Furthermore, the
number of epochs were 150 and image width of 256.

The same commands implies for the test (test.py) of the object detection model. How-
ever here the best weights from the training is used. Here one can choose what kind of task
(--task ) one wants to do, here either test how the training went, or check the speed
of the model or study the different model sizes. Furthermore, when doing the inference
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(detect.py) the best weights from the desired training were employed and specified
along with the path to the test set and a confidence threshold (--conf-thres).

3.3 Preprocessing

A problem that occurs several times is that the network predicts several boxes in a class.
To prevent this, YOLOv5 uses a technique called non maximum suppression (NMS). NMS
choose one bounding box from a set of multiple overlapping bounding boxes. The chosen
bounding box is the one with the best prediction. But the algorithm implemented by the
authors of YOLOv5 will still give more than one bounding box per class during testing
and inference. This is probably due to the model believes there is more than one object
per class in the images. In this particular case, we only want one bounding box per class,
since there is for example only one left ventricle in the human heart. Therefore, some
implementation were done for making the NMS to only predict one box per class in an
image. The adjustment done was by making the NMS choose the box with the highest
objectness score, then comparing the box’s IoU with the other overlapping boxes from the
same class. Then choosing the box with highest score and repeat this until all predicted
boxes from a particular class had been considered. Then moving on to the next class. The
result of the improvement is shown in Figure 3.6, where (a) is before and (b) is after.

(a) Before: with multiple bounding boxes per class. (b) After: only one bounding box per class.

Figure 3.6: Before and after NMS improvement resulting in one bounding box for each class.
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3.4 Data Augmentation

Different data augmentation techniques were assessed, implemented and used while train-
ing the model on the dataset. As YOLOv5 have different data augmentations, these were
tested for increasing the variation in the data, which can result in more accurate predictions
in different scenarios.

3.4.1 Mosaic

As mentioned in 2.4.1, the authors of YOLOv4 introduced to a new data augmentation
hyperparameter called Mosaic implemented by Glenn Jocher in 2020, [37]. This augmen-
tation technique was made for improving the mAP on the dataset COCO. The mosaic aug-
mentation is shown to increase the performance of the object detection model, therefore
mosaic was tested on the HUNT data. Figure 3.7 shows how the training batch appears
with and without mosaic augmentation. The Table 3.3 shows an increase in the mAP value
with the IoU between 0.5 and 0.95 for both the training and testing when not using mosaic
augmentation. The same applies for the mAP value for the testing when the IoU is 0.5.
As a result, the mosaic augmentation is not employed for further training of the object
detection model.

(a) With mosaic (b) Without mosaic

Figure 3.7: The figures shows training batches with and without mosaic. Figure (a) one can see that
there is two, three or four images in one, while in (b) there are only one image at the time.
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Table 3.3: The mAP compared for model with (1.0) and without (0.0) mosaic augmentation. Here
the best values are in bold.

Mosaic
Train Test

mAP@.5 mAP@.95 mAP@.5 mAP@.95

0.0 0.9941 0.633 0.9941 0.633
1.0 0.9956 0.6061 0.9816 0.6247

3.4.2 Random Gamma

The random gamma augmentation was implemented into the YOLOv5 network. This
augmentation adds various brightness to the image, making the network train on different
levels of luminance. Random gamma is an important data augmentation when it comes to
grayscale 2D B-mode images. This because applying different brightness and intensities
to the images make the network learn how to predict the structures in the human heart
in various scenarios. And as shown in Table 3.4, the implementation of random gamma
augmentation results in an increase in the mAP values in the training process.

(a) Without γ (b) γmin = 0.75 and γmax = 1.6

Figure 3.8: Training batch without (a) and with (b) Random Gamma.
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Table 3.4: The mAP compared for model with and without random gamma augmentation. Here the
best values are in bold.

Random Gamma
Train Test

mAP@.5 mAP@.95 mAP@.5 mAP@.95

With 0.984 0.631 0.984 0.631
Without 0.983 0.622 0.983 0.622

3.4.3 Hyperparameters

The augmentations which were modified is displayed in the Table 3.5, where the value
shows the final adjustments made to the hyperparameters in the hyp.scratch.yml
file.

Table 3.5: Data augmentation values motified and used for training the object detection model.

Augmentation Value

Shear 0.5 ◦

Scale 0.7

Mosaic 0.0

Translate 0.25

Rotation 15 ◦

Random Gamma γmin = 0.75 γmax = 1.6
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Chapter 4
Results

In this chapter the results from training, testing and inference are presented. First the
results from training with different YOLOv5 models on our dataset are given. Following
that, results from different analysis are presented, demonstrating how the model performs
in various scenarios.
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4.1 YOLOv5 - model comparison

Table 4.1 shows the how the different YOLOv5 models behaves on the HUNT dataset.
Here the resolution of 256 and batch size of 32 is used including the test is done on the
NVIDIA Quandro P5000 GPU. The best mAP values and speed are marked in bold in the
table. The speed in ms/img versus accuracy in mAP@.5 for all the models is displayed in
the graph in Figure 4.1. The graph indicates that as the resolution increases, the accuracy
decrease.

Table 4.1: YOLOv5’s models compared with training on the HUNT dataset. Here with a resolution
of 256 and a batch size of 32. The speed is given in ms per image, and the best results are marked in
bold. The table indicates that the x-large model is more accurate, but the small model is faster.

Model mAP val50 mAP test50 mAP test50−95 SpeedP5000 parameters GFLOPS

YOLOv5s 98.4 98.4 63.1 2.61 ms 7.1M 16.3

YOLOv5m 99.31 99.31 64.47 4.78 ms 21.0M 50.3

YOLOv5l 99.85 99.85 69.35 7.47 ms 46.6M 114.1

YOLOv5x 99.89 99.89 71.65 11.78 ms 87.2M 217.1

Figure 4.1: The YOLOv5 models compared on accuracy versus speed on GPU, when training on
the HUNT dataset. The accuracy is in mAP@.5, meaning the accuracy when IoU is equal to 0.5.
The figure shows that the accuracy decrease when increasing the resolution.
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4.2 Data Augmentation

In this section results from the analysis of with and without data augmentation improve-
ment is represented. The results without data augmentation, predefined weights are used
and hyperparameters customized for the COCO dataset. In the results with data augmenta-
tion, the hyperparameters have been modified and new data augmentations implemented.

4.2.1 Metric evaluation

Table 4.2 shows the overall mAP values for the training and testing with and without data
augmentation. Whereas the results in Table 4.3 shows a comparison of the mAP values for
per class for both with and without data augmentation. In both tables the best predictions
are marked in bold.

Table 4.2: The overall mAP values for training with versus without data augmentation. The best
results are marked in bold.

Training set size mAP@.5 train mAP@.95 train mAP@.5 test mAP@.95 test

With 0.984 0.631 0.984 0.631
Without 0.994 0.62 0.994 0.62

Table 4.3: The overall mAP values per class for training with versus without data augmentation.
The best results are marked in bold.

Class
With Without

Train Test Train Test
mAP@.5 mAP@.95 mAP@.5 mAP@.95 mAP@.5 mAP@.95 mAP@.5 mAP@.95

LV 1 0.721 1 0.721 1 0.728 1 0.728
LA 1 0.67 1 0.67 0.998 0.63 0.998 0.63
MV 0.951 0.502 0.951 0.502 0.984 0.508 0.984 0.508

Figure 4.2 shows the metric from the training process with data augmentation, while Figure
4.3 shows the metrics evaluation for training without data augmentation. Furthermore, the
confusion matrix is compared for both cases in Figure 4.4, alongside with the F1-curve in
Figure 4.5.
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Figure 4.2: Metric evaluation from training with data augmentation with 150 epochs. The training
set compared to the validation set shows a good fit.

Figure 4.3: Metric evaluation from training without data augmentation with 150 epochs. The train-
ing set compared to the validation set shows a slight possibility of overfit during training.
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4.2 Data Augmentation

(a) With data augmentation. Specifies a background FP 100% and FN 2% caused by MV.

(b) Without data augmentation. Specifies a background FP 100% and FN 1% caused by MV. In
addition a background FN 1% caused by LA.

Figure 4.4: Confusion matrix from training with and without data augmentation.
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(a) With data augmentation.

(b) Without data augmentation.

Figure 4.5: F1 - score for with and without data augmentation. A slightly higher score for MV on
the training without data augmentation.
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4.2.2 Ground truth vs. predicted

Figure 4.6 shows how the testing of the model with data augmentation predicts compared
to the ground truth annotation on the validation set.

(a) Ground Truth (b) Prediction

(c) Ground Truth (d) Prediction

(e) Ground Truth (f) Prediction

Figure 4.6: The ground truth versus predicted value with data augmentation.
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The ground truth is also compared to the predicted in Figure 4.7, with the model without
data augmentation on the validation set.

(a) Ground Truth (b) Prediction

(c) Ground Truth (d) Prediction

(e) Ground Truth (f) Prediction

Figure 4.7: The ground truth versus predicted value without data augmentation. In (d) the model
fail to locate LA.
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4.2.3 Inference

The inference on the HUNT dataset with and without data augmentation are compared in
Figure 4.8.

Figure 4.8: Inference with (left) and without (right) augmentation. The cardiac views shown in right
order: ALAX, A2C and A4C. Both fail to locate MV in A4C, and without data augmentation fail to
detect the LV in A4C.
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4.3 Dataset size

This section represent the analysis of training, testing and inference of models with the
whole HUNT dataset compared to two-third of it. Both cases are trained on the data
augmentation modifications presented in the method section. In both tables the best pre-
dictions are marked in bold.

4.3.1 Metric evaluation

The overall mAP values for both the training and testing with the two datasets are displayed
in 4.4. In addition the mAP values for each class in both cases are shown in Table 4.5.

Table 4.4: The overall mAP values for training with two-third versus the whole dataset. The best
results are marked in bold.

Training set size mAP@.5 train mAP@.95 train mAP@.5 test mAP@.95 test

Whole 0.984 0.631 0.984 0.631
2/3 0.993 0.63 0.988 0.606

Table 4.5: The overall mAP values per class for training with two-third versus the whole dataset.
The best results are marked in bold.

Class
Whole dataset 2/3 datatset

Train Test Train Test
mAP@.5 mAP@.95 mAP@.5 mAP@.95 mAP@.5 mAP@.95 mAP@.5 mAP@.95

LV 1 0.721 1 0.721 1 0.752 1 0.728
LA 1 0.67 1 0.67 1 0.66 0.996 0.622
MV 0.951 0.502 0.951 0.502 0.98 0.479 0.967 0.468

The metric evaluation of the training process with the whole and small dataset is shown
in Figure 4.9 and Figure 4.10. In addition both the confusion matrix and the F1-curve
comparison of the two dataset are shown in Figure 4.11 and 4.12.
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Figure 4.9: Metric evaluation from training with the whole dataset and with 150 epochs. The
training set compared to the validation set shows a overall good fit.

Figure 4.10: Metric evaluation from training with the small dataset and with 150 epochs. The
training set compared to the validation set shows a overall good fit.
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(a) The whole dataset. Specifies a background FP 100% and FN 2% caused by MV.

(b) The small dataset. Specifies a background FP 100% and FN 2% caused by MV.

Figure 4.11: Confusion matrix from training with the different dataset sizes.
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(a) The whole dataset.

(b) The small dataset.

Figure 4.12: F1 - score for the two datasets. The score is overall higher for the model trained on the
whole dataset.
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4.3.2 Ground truth vs. predicted

In Figure 4.13 the prediction versus the ground truth annotation of the test of the model
with the whole dataset is shown. Here tested on the validation set.

(a) Ground Truth (b) Prediction

(c) Ground Truth (d) Prediction

(e) Ground Truth (f) Prediction

Figure 4.13: The ground truth versus predicted value on the whole dataset.
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Figure 4.14 shows a comparison of the ground truth and the prediction with the model
tested on 2/3 of the dataset. Here also on the validation set.

(a) Ground Truth (b) Prediction

(c) Ground Truth (d) Prediction

(e) Ground Truth (f) Prediction

Figure 4.14: The ground truth versus predicted value on two-third of the dataset. Shows low pre-
dictions of MV in (b) and (d).
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4.3.3 Inference

The inference on both the whole and 2/3 of the HUNT dataset are compared in Figure
4.15.

Figure 4.15: Inference on the whole (left) and the small (right) dataset. The cardiac views shown
in right order: ALAX, A2C and A2C. The small dataset is unable to fully locate the LV in ALAX.
Further, it gives low predictions on LA and MV in the first image in A2C.
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4.4 Standard and nonstandard cardiac views

This section shows how the object detection model behaves on never seen and new data in
both standard and nonstandard views. Figure 4.16 displays inference with standard views
A4C, A2C and ALAX with the best weights from the training with the whole HUNT
dataset and with data augmentation. Figure 4.17 represents the inference with nonstandard
views named A42C, ANE and ANS, here also with the best weights from training with data
augmentation on the whole HUNT dataset.
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Figure 4.16: Inference of the sliced 3D data with the standard views. The cardiac views shown in
right order: A4C, A2C and ALAX. The model fails to detect LV and LA in the first image in ALAX.
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Figure 4.17: Inference of the sliced 3D data with the nonstandard views. The cardiac views shown
in right order: ANE, ANS and A42C. The model gives low prediction score on LV in the first image
in ALAX.
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Chapter 5
Discussion

In this part of the project thesis the method and results are described and evaluated. First
the different YOLOv5 models are reviewed using the HUNT dataset. Then, an analysis
of how the network behaves on smaller dataset, with and without data augmentation and
on standard and nonstandard views are presented. In the end, the data, alongside the data
preparation, are discussed.
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5.1 YOLOv5 - model comparison

Figure 4.1 shows how the accuracy (mAP@.5) versus the speed (ms/img) is for the dif-
ferent YOLOv5 models. Here one can see that the speed is significant better for the small
model. The accuracy on the other hand, is slightly higher for the larger models. Even
though, the small model’s accuracy is not far behind for a resolution of 256 or 640. There-
fore, comparing the speed versus the accuracy the small model appears to be a better choice
if one needs a fast, but still quite accurate model when training on images with a resolution
of 256.

In Table 4.1, one can see the different YOLOv5 models compared to each other. The
overall mAP values are better for the YOLOv5x, both with an IoU equal to 0.5 and between
0.5 and 0.95. However, the mAP values for the other models are fairly close the accuracy
generated by the x-large model. The amount of parameters are significant larger as we
increase the size of the models. Furthermore, the GFLOPS (giga floating-point operations
per second) values also increase as the models increase. The GFLOPS gives a value of
how many computations the models do and indicates the model’s computational power. A
high value of GLFOPS and parameters makes the model more complex, requiring more
GPU memory.

The HUNT dataset contains images that are small in size and stored in grayscale. Because
the dataset is small, there is a higher risk of overfitting. As a result, complex models with
a large number of parameters should be avoided. The small model, YOLOv5s, is therefore
the best choice when training on the HUNT dataset. If one were to increase the data and
resolution in the dataset, it is probably beneficial to choose a slightly more complex model
with more parameters, like YOLOv5m.

5.2 Data Augmentation

5.2.1 Evaluation metric

The mAP@.5 values in Table 4.2 are greater in both training and testing for the model
without any data augmentation. On the other hand, the mAP@.95 score are better for
the model with data augmentation compared to the model without. The mAP scores per
class, shown in Table 4.3, indicate that the model with data augmentation have better
overall predictions on LA on both training and testing compared to the model without
data augmentation. However, the model with data augmentation appears to have lower
predictions for the MV in comparison to the other model. Furthermore, the predictions for
LV when IoU is 0.5 are the same for the models in both training and testing, where both
score a mAP@.5 equal to 1. The mAP@.95, on the other hand, is slightly better for the
model without augmentation.
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In Figure 4.3, the metrics for the training of the model without data augmentation is shown.
Here it appears that the model is overfitted as the objectness loss’s curve at the validation
set start to increase a bit compared to the objectness loss for the training set. In addition,
the Precision, Recall and both mAP values have a ”rocky” start before it stables out to its
final score, compared to the model with data augmentation, shown in Figure 4.2.

The confusion matrix for the models are quite similar, as seen in Figure 4.4. The matrix
specifies that the background FP for both models are 100% caused by the MV class. The
background FN is also caused for MV in both cases, with an exception of the model
witout augmentation where both LA and MV is the cause. Nevertheless, the values are
only between 1-2%. The background FP and FN can be caused by the way the annotations
are done for the MV. During training, the model may define space within bounding boxes
to be positive for MV, but also area outside of boxes to be negative for that class. Even so,
the true versus the predicted values are high above for 0.98 for all the classes for both of
the models.

The F1-score is shown in Figure 4.5. With the exception of MV, which appears to have
a slightly higher F1-score for the model without augmentation, the score for both models
appears to be relatively equal.

5.2.2 Testing on validation set

When comparing the ground truth versus the predicted bounding boxes with the model
without data augmentation, as shown in Figure 4.7, the prediction score is quite accurate
for all classes. Additionally, the prediction score for MV is occasionally greater than
the prediction score for the model with data augmentation, Figure 4.6. Except for LA
and LV, where the score is the same for both models. Nevertheless, the model without data
augmentation sometimes fails to predict LA, as shown in the image in the middle in Figure
4.7. This may be due to the possibility of overfitting as mentioned in the section over.

5.2.3 Inference

In Figure 4.8, one can see how the two models behave on never seen data from the test
set. The first image, which is in ALAX view, shows that the prediction score for LV for
both models are the same. However, the detection of the LV is more accurate at model with
data augmentation as the bounding box seem to localize the LV better than the other model.
The prediction of the LV on the next image, in the A2C view, shows that both models have
problems locating the whole left ventricle. Here the model without data augmentation
have a lower precision than the one with data augmentation. For the last image, which is
in the A4C view, both models fail to locate the MV as they both believe MV is the aortic
valve (AoV). The model without data augmentation also fails to locate the LV, and rather
detects LV as right ventricle.
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After taking everything into account, the model with the data augmentations is chosen as
the one to proceed with. This model seems to be more robust for detecting the different
structures in the human heart when it comes to the overall mAP@.95 and @mAP.5 for both
LV and LA, as well as the prediction versus the ground truth and prediction and results in
the inference. Not to mention the possibility of overfitting from the model without data
augmentation.

5.3 Dataset size

5.3.1 Evaluation metrics

The best mAP values for both the whole dataset and 2/3 dataset from training and testing
on HUNT data is shown in Table 4.4. Here one can see that the mAP@.5 is slightly greater
on both training and testing for the small dataset compared to the dataset containing all the
data. However when it comes to the mAP@.95, the model trained with whole dataset gets a
higher value than the model with the small dataset. Even so, based on the mAP@.5 values,
the small dataset appears to perform better than the larger dataset. When comparing the
mAP per class, shown in Table 4.5, the models achieve the same score for both LA and LV
in training for IoU equal to 0.5. The same implies for LA in test, but for LV the training
with the whole dataset generates a higher mAP@.5. MV’s mAP@.5, however, is better
for the small dataset.

The mAP@.95 for both the LA and MV have a higher score for the whole dataset com-
pared to the small dataset, with exception to the LV where the small dataset computes a
higher mAP@.95. Nevertheless, this points out that the model with the whole dataset gets
an overall higher mean average precision for a IoU ratio between 0.5 to 0.95.

The metric curves in Figure 4.9 and 4.10, indicates that the model with the whole dataset
has a higher overall recall and precision score. This also implies for the F1-score in Figure
4.12 which shows that the model with the large dataset have a better accuracy over all the
classes than the model with the small dataset. This is especially the case for the MV class.
Since the mAP score is higher for the model with two-thirds of the data, but the recall,
precision, and F1-score are higher for the model with the entire dataset, it means that the
confidence threshold is better for the model with the large dataset. This indicates that as
the confidence threshold increases, the recall value decreases. The confusion metrics in
Figure 4.11 demonstrates that the background FP is a 100% caused by the MV. The same
implies for the background FN, but only by a value of 1% for the small dataset and 2% for
the large. As stated in 5.2.1, this can be due to the ground truth annotations made on the
data or that the network defines space around the MV in the bounding boxes as positive
and space outside of the bounding box as negative.
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5.3.2 Testing on validation set

To get a better understanding of how the model behaves it is important to look on the
predicted bounding boxes versus the ground truth annotations for the validation set. Figure
4.13 shows that the training with the whole dataset generates good predictions for the three
classes: LV, MV and LA. In addition, the predicted bounding boxes appear to be quite
equivalent to the ground truth bounding boxes. The small dataset’s ground truth versus
predicted comparison, shown in Figure 4.14, predicts lower precision in some cases for
MV than the test with the whole dataset. Furthermore, the bounding boxes drawn for MV
in Figure 4.14 (b) is more accurate than the model precision value tells us (MV = 0.5). By
comparing the results obtained from the evaluation metrics and the test on validation set,
it seems that the model with the small dataset’s predictions is not as accurate as the other
model. This because it manages to locate the MV nearly perfectly, but still gives out a low
score. It is probably due to the fact that the recall value decreases for higher confidence as
stated over.

5.3.3 Inference

In Figure 4.15, the inference of the two datasets is presented. This part of the analy-
sis demonstrates how the model performs on new data, which in this case is the HUNT
dataset’s test set. It appears that the model trained on the entire dataset is better at detecting
the different classes. The first image in the figure shows that the small dataset is unable to
locate LV, but still gives a precision of 0.48. This estimate is considerably off when com-
pared to how much of the bounding box actually detects the LV. The large dataset yields
a value of 0.65 for locating the LV on the same image. This value is relatively accurate
because the bounding box does not capture the entire left ventricle and locate some of the
MV.

The next image, the model with the large dataset seems to locate the classes better than the
other model. The LV is drawn more around the left ventricle, including having a higher
prediction score. The LA is also more accurately drawn for the model with the whole
dataset, even though they are quite similarly drawn. The prediction score is also higher
and more accurate than the model with the small dataset. The model with the small dataset
generate a prediction below 0.5 for both MV (0.49) and LA (0.4), which indicates a bad
detection. In addition, the detection of MV for the model trained on the small dataset is
far off, and is localized in the end of the left atrium. In the last image the models seem
to locate the different classes nearly the same. Both detections are quite accurate for both
the LA and MV. By looking close, one can see that the LA is better drawn for the model
with the large dataset and the prediction score for these two classes are slightly higher as
well. When it comes to locating the LV, both models seem to have problems drawing a
bounding box around the whole left ventricle. In addition, the models give out a prediction
score that is higher than what they actually detects. This could be caused by the blur in the
image and the lack of clear view of the different structures.
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Overall, the different results indicate that the model is not robust enough for a small
amount of data. Despite that the metrics are not particularly poor for LV and LA, the
inference indicates that the model needs to be trained on more data when training on this
particular dataset.

5.4 Standard and nonstandard cardiac views

The inference on the standard, Figure 4.16, and nonstandard views, Figure 4.17, shows if
the chosen model with data augmentation trained on the whole dataset is robust enough.
All of the classes are correctly located by the inference on the first two images in the
standard views, which in this case are in A4C view. In the first image, a precision score
of 0.84 on LA is quite good, but looking at the prediction one can see that the bounding
box is not fully drawn over the left atrium. Therefore a score of 0.84 is too high in this
particular case. The LV on the other hand gives a rather accurate score of 0.8 as it appears
to locate the whole left ventricle, but gets some of the mitral valve in its bounding box. The
next image gives good predictions and localizes all the classes quite accurate to the score
given. The third image (A2C view) gives accurate predictions compared to the bounding
boxes drawn. Furthermore, the model manages to detect all the classes, despite the image
being hard to interpret because of the blur. The same occurs for the three first images in
the nonstandard views as well, which are here in the A42C and ANS view.

In the fourth image (A2C and ANS view) both standard and nonstandard detect all the
classes and this with a suitable prediction for the MV (0.82, 0.79) and LV (0.67, 0.60), as
the bounding boxes are not fully drawn. Despite this, the model gives a lower prediction
to the LA than what it actually draws around the left atrium. In the next image (ALAX
view) for the standard view, one can see that the LV is not predicted at all and that the
bounding box for LA is not correct. In the nonstandard one on the other hand (ANE view),
the model predicts all the classes correct for the fourth image. The only issue, is that the
bounding box is not completely drawn over LV and this results in a bad prediction of 0.26,
which indicates a bad detection. Why the model cannot seem to fully localize the left
ventricle can be due to the left ventricle being rather large, as it takes up nearly the entire
echocardiographic image.

The inference of the last image for both the standard and nonstandard dataset, the bounding
boxes are entirely drawn around the MV and LA, and almost so for LV. The predictions
are also quite accurate and reliable. Overall, the inference indicates that the model can
localize the classes when the LA, MV, and LA are in focus and the image quality is high.
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Chapter 5. Discussion

5.5 Data

It is necessary to analyze the data used in training, testing, and inference in order to eval-
uate the performance of the object detection model. The data retrieved from the HUNT
study consist of a total of 1260 images and corresponding annotations. Furthermore, the
echocardiographic images are either in the A4C, A2C or ALAX view, meaning that in
some cases the right atrium, right ventricle and aortic valve is present in the image. This
seems to be a problem in some cases for the A4C, where the models locate the LV as
the right ventricle and the MV as the aortic valve. This also happens to the LA in the
ALAX view in the analysis on the Forshortening2021 dataset, where it is located at the
right atrium. That gives us an indication that the model have either not trained enough
on images in the A4C and ALAX view or that there is not enough variation in the data in
the training, validation and test set. Another reason can be the ground truth annotations.
Even though they turned out quite accurate, there may be some small margins that could
be improved or in some instances there could be too much space in the bounding boxes.
The latter can cause the model to learn undesirable patterns, resulting in false positive
detections.

Looking at the results and discussion for the analysis for the entire dataset versus two-
thirds of the dataset, it appears that more data is possibly required. The data should prob-
ably contain a more variation in angles of the views, as this seems to be a problem for
the model, as stated in the analysis of the standard and nonstandard views in the Forshort-
ening2021 dataset. In addition more variation of the image quality could help the model
to increase its learning ability. In some of the images it can be difficult to interpret the
different structures as there is noise or blur in the image. The model can therefore learn
from this noise, resulting in bad predictions.

5.6 Further work

There is still some adjustment and improvements that should be done in the further work
for improving the model’s performance in both training and inference. For starters, to
avoid potential overfitting and underfitting and achieve more accurate prediction, gathering
more data can be beneficial. The data provided for training should not contain images
with a lot of noise or interference. Additionally, there should be more variations in both
views and the focus point, meaning which chambers that has focus in an image. This
might help to get more accurate detection in the inference. Another improvement on the
data preparation can be the ground truth annotations. As mentioned in the methodology
in 3.1.2, the ground truth are done by clinicians for segmentation purpose. From here
bounding boxes are made for the LA and LV masks, and MV gets a box in the transition
between LA and LV, with 2/3 of the box in LV and 1/3 in LA. Despite the fact that the
annotations were relatively precise, inaccuracies might have occurred. By refining these,
the accuracy of training and inference may increase. It is also worth mentioning that the
data splitting in training, test and validation, can be explored further in terms of splitting
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5.6 Further work

percentage or greater variation of views and frames of the 2D images.

Even though improvement of the NMS in inference made the model only choose one
bounding box for each class, there is still some other implantation one can look into. An
interesting take, could be to give the network information about which view and frame
the images is in. This allows the model to make more accurate predictions while avoiding
being distracted by other parts of the structure of the human heart when detecting the
different classes/structures. Furthermore, this could make it easier to interpret where the
model may fail. Despite the fact that data augmentation has been thoroughly evaluated in
this thesis, it may be useful to explore more tuning of the hyperparameters or to introduce
new data augmentations.

When training the object detection model, it is critical to be cautious and precise while
tuning the different training parameters. Experimenting with the training steps, batch size,
and image width, for example, can be interesting. The image width, is especially an inter-
esting experiment as the resolution of the 2D images are only 256, and by up-scaling the
images while training can be beneficial. However, the model will most likely become more
complex, requiring the use of a larger model. Furthermore experimenting with the infer-
ence parameters can be interesting. By for example increasing the confidence threshold
one can discard bad prediction.

At last, a natural step would be to check how the object detection model behaves on videos
of echocardiographic images. This way one can see how it behaves in real-time. This was
not done in this thesis as it is crucial to have a model that is robust enough on different,
unseen echocardiographic images before testing video segments.
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Chapter 6
Conclusion

In this master thesis, a deep learning method was presented for automatically detection of
the different structures of the human heart in echocardiographic images. The method used
was the real-time object detection algorithm YOLOv5. The algorithm was trained and
tested for locating the left ventricle, left atrium and mitral valve. The acquired data was
retrieved from the HUNT study which contains images in the A2C, ALAX and A4C views.
For improving the adaptability of the model, different data augmentation techniques were
implemented and used while training the model. This proved to be useful as the model’s
performance increased. Furthermore, for testing if the final model is robust enough, two
dataset was created with both standard and nonstandard views.

The metric evaluation in the results, indicates that YOLOv5s produces overall adequate
predictions when training on the echocardiographic images. The model managed to detect
the left ventricle (LV), mitral valve (MV) and left atrium (LA) when they are in focus or
there is no noise or interference in the image. However, the model tends to fail to detect
the LV and MV in images in the apical four-chambers view, where the right ventricle, right
atrium and aortic valve appears. This also occurs for the LA in the apical long-axis view.
The model still manages to detect the structure with good predictions on new, unseen data
in both standard and nonstandard views. Although, the bounding boxes are sometimes not
entirely drawn around the structures. The results showed by implementing and using more
data augmentations can benefit the model to learn from more varying data. Hence, using
more data and more variation of the different views would most definitely be a solution
to the issues addressed. As a result, the model’s learning ability will improve, leading to
better detection on new and unseen data.

In conclusion, the object detection model YOLOv5s can fully detect the different struc-
ture in the human heart in images of high quality and when the desired structures are in
focus. Therefore, more data with better quality and more variation in echocardiographic
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views and viewpoints should be employed to enhance the model’s robustness and over-
all performance. If the model becomes more complex, a larger YOLO model should be
implemented.
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