
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Østen Finnes Holkestad

A deep learning based approach to
detect the common spadefoot toad

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Guillaume Dutilleux

June 2021

M
as

te
r’s

 th
es

is





Østen Finnes Holkestad

A deep learning based approach to
detect the common spadefoot toad

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Guillaume Dutilleux
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems





i

Abstract

The EU’s Habitats Directive states that the common spadefoot toad (Pelobates fuscus
fuscus (P. fuscus)) is in need of strict protection, being placed in the category known
as Annex IV species (European Council 1992) (European Council 2006). This category
states that species must be placed under a strict protection regime (European Council
2021). Therefore non-invasive methods such as acoustic monitoring could be a possible
way to keep count of species in its habitats.

Deep learning is presented as a possible way to develop a detector of the common spade-
foot toad based on its advertisement calls. The data that is used to train the detector
was collected over two years at two sites (Dutilleux and Curé 2020). The two sites act
as breeding grounds for the spadefoot toad as well as a few other anuran species and
the data was as such collected during the breeding periods. The data is transformed to
spectrogram and is used as input to a neural network. Using the convolutional neural net-
work architecture EfficientNet (introduced in (Tan and Le 2020)) the detector developed
in this paper achieves a precision of 93.47% at the expense of getting a true positive rate
of 67.28%. In addition to this, the detector achieves a false positive rate of 0.55%. The
low false positive rate comes from the way the post-processing is done when testing the
model. A comparison with the software detector developed in (Dutilleux and Curé 2020)
is also done. The software detector achieved true positive rates ranging between 53% and
73% and a false positive rate of 1.5%.

A discussion is made on the detection of the common spadefoot toad, and examples of true
and false positives as well as false negatives are presented. The way ground truth times
are extracted from label files is found to not give an exact insight into how the model
actually performs, and possible ways to avoid this in the future is presented.

In addition to a detector used on the advertisement call of the adult specimens, the
report also aims to find if the juvenile specimens vocalize underwater. It has been found
earlier that the juvenile vocalizes in its terrestrial phase (Hagen et al. 2016). Using this
knowledge, a study of whether a deep learning model can find if it vocalizes underwater or
not is performed. A concrete conclusion on whether the juvenile vocalizes underwater or
not is not made, as the model only predicted sounds that were found to be false positives.
The reason for this can come from a few different reasons which are discussed in greater
detail. Juvenile vocalizations underwater should therefore be studied in the future.

This report shows that it is possible to get reliable results both with regards to false
positive and false negative predictions when using a deep learning-based detector on the
advertisement call of the common spadefoot. Therefore the detector can be applied to
long-term recordings in habitats for conservation purposes.



ii

Samandrag

EU sitt Habitat-direktiv seier at løkfrosken (eng. common spadefoot toad, lat. Pelobates
fuscus fuscus (P. fuscus)) treng streng beskytting, og er plassert i direktivet sitt Anneks
IV (European Council 1992) (European Council 2006). Denne kategorien seier nettopp
at arten m̊a plasserast under eit strengt program for å beskytte den (European Council
2021). Derfor kan ikkje-innvaderande metoder som akustisk monitorering vere ein mogleg
m̊ate å overvake arten i sitt habitat.

Djup læring (eng. deep learning) vert brukt som ein mogleg m̊ate å utvikle ein detektor
av løkfrosken (basert p̊a paringsrop til arten). Dataen som er brukt til å trene detektoren
er samla inn over to år p̊a to forskjellige omr̊ade (Dutilleux og Curé 2020). Dei to omr̊ada
er paringsomr̊ade for arten i tillegg til nokre andre anura, s̊a all data var teken opp i heile
paringsperioden. Dataen vart s̊a transformert til spektrogram og brukt som inn-data til
eit nevralt nettverk. Ved å bruke det konvolusjonelle nevrale nettverket EfficientNet (først
introdusert i (Tan og Le 2020)) klarte detektoren å oppn̊a ein presisjon (eng. precision) p̊a
93.47% p̊a kostnad av ein sann positiv-rate (eng. true positive rate) p̊a 67.28%. I tillegg
til dette oppn̊ar detektoren ein falsk positiv-rate (eng. false positive rate) p̊a 0.55%. Den
l̊age falske positiv-raten er eit resultat av post-prosesseringa som vert gjort under testinga
av modellen. Ei samanlikning av detektoren utvikla i denne masteroppg̊ava og software-
detektoren utvikla i (Dutilleux og Curé 2020) vert ogs̊a gjort. Software-detektoren oppn̊ar
sanne positiv-rater p̊a mellom 53% og 73% og ein falsk positiv rate p̊a 1.5%.

Ein diskusjon vert gjort p̊a deteksjonen av løkfrosken, og eksempel p̊a sanne positive, falske
positive og falske negative prediksjonar vert presentert. Måten dei faktiske tidene (eng.
ground truth) frosken lagar lydar vert henta ut er funnen til å ikkje gi eit heilt eksakt
innblikk i korleis modellen faktisk presterer, og moglege m̊atar å unng̊a dette i framtida
vert presentert.

I tillegg til ein detektor som kan brukast p̊a paringsropet til vaksne individ, vil rapporten
ogs̊a sj̊a om ungdomsindivid av frosken kan verte funnen under vatn. Det har vorte funne
tidligare at desse individa vokaliserer i si landbaserte fase av livet (Hagen mfl. 2016). P̊a
bakgrunn av denne kunnskapen vert det gjort ei studie p̊a om ein djup læring-modell kan
finne ut om den vokaliserer under vatn. Det vert ikkje gjort ein konkret konklusjon p̊a
om ungdomsindivid vokaliserer under vatn eller ikkje d̊a modellen berre predikerer falske
positive. Grunnen til dette kan kome fr̊a nokre grunnar som vert diskutert i rapporten.
Vokaliseringane til ungdomsindivida burde derfor undersøkast nærare i framtida.

Denne rapporten viser at det er mogleg å f̊a p̊alitelege resultat b̊ade med tanke p̊a falske
positive og falske negative prediksjonar ved å bruke ein djup læring-basert detektor p̊a
paringsropet til løkfrosken. Derfor vil denne detektoren kunne brukast p̊a langtidsopptak
i forskjellige habitat for vern av arten.



iii

Preface

This report is my master thesis written at the Department of Electronic Systems (IES)
at NTNU, Trondheim. It is the final work in the 5 year study programme Electronics
Systems Design and Innovation (MTELSYS). It has been a rewarding experience working
on this and I have learned a lot that I believe I will have use for later in my career as an
electronics engineer.

I would like to thank my supervisor Guillaume Dutilleux for letting me choose this thesis.
Through good discussions he has given me great insight into the field that is bioacoustics
and I have learned a lot about bioacoustic monitoring. I would also like to thank some of
my fellow co-students for rewarding discussions regarding the technical solutions used in
this report and for giving a greater understanding of the machine learning field.



CONTENTS iv

Contents

1 Introduction 1

1.1 Bioacoustic monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Earlier reasearch on classification of bioacoustic data . . . . . . . . . . . . . 1

1.3 Earlier research on the common spadefoot toad . . . . . . . . . . . . . . . . 2

1.4 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4

2.1 Bioacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 The different call types of the P. fuscus . . . . . . . . . . . . . . . . 4

2.2 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Deep learning and neural networks . . . . . . . . . . . . . . . . . . . 6

2.2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Pooling layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.6 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.7 Regularization in neural networks . . . . . . . . . . . . . . . . . . . 15

2.2.8 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.9 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.10 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Methodology 18

3.1 Equipment and code libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 About the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Soundscape at the sites . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Labeling of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Audio preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Architecture: EfficientNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



CONTENTS v

3.5.1 Data preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.2 Training on EfficientNet . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.1 Ground truth/testing data . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.2 Testing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results 31

4.1 Results from the training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Detection of adult P. fuscus . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Detection of juvenile P. fuscus . . . . . . . . . . . . . . . . . . . . . 32

4.2 Results from the testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Detection of adult P. fuscus . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 True positives in adult detection . . . . . . . . . . . . . . . . . . . . 34

4.2.3 False positives in adult detection . . . . . . . . . . . . . . . . . . . . 36

4.2.4 False negatives in the adult detector . . . . . . . . . . . . . . . . . . 38

4.3 Detection of juvenile P. fuscus . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Discussion 42

5.1 Testing of the adult detection . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 True positives in the adult detector . . . . . . . . . . . . . . . . . . . 42

5.1.2 False positives in the adult detector . . . . . . . . . . . . . . . . . . 43

5.1.3 False negatives in the adult detector . . . . . . . . . . . . . . . . . . 43

5.1.4 Extraction of the ground truth . . . . . . . . . . . . . . . . . . . . . 44

5.1.5 Comparison to software detection . . . . . . . . . . . . . . . . . . . . 44

5.2 Detection of juvenile P. fuscus . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Training of juvenile classifier . . . . . . . . . . . . . . . . . . . . . . 44

5.2.2 Testing of juvenile classifier . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Possible improvements of the data . . . . . . . . . . . . . . . . . . . 46

5.3.2 Adult detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.3 Juvenile detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusion 48



CONTENTS vi

References 49

Appendix 53

A Juvenile sounds used 53

B Annotated times and dates 54



1 INTRODUCTION 1

1 Introduction

1.1 Bioacoustic monitoring

The International Union for Conservation of Nature (IUCN) Red List is a list of all the en-
dangered species in the world (IUCN 2021), currently containing more than 37400 (known)
species. They list among others that 41% of all known anuran speices and 26% of all known
mammals are endangered. Therefore monitoring species could be used in gaining know-
ledge on an endangered species and detect possible unexpected changes in an environment
(Jones et al. 2013, p. 330). Jones and colleagues also points out that monitoring is costly.
Recently-available solutions like the AudioMoth (Hill et al. 2019) could help in making
bioacoustic monitoring available for everyone (Welz 2019). The AudioMoth has for ex-
ample been used in research to develop detection algorithms (Prince et al. 2019) and to
monitor specific species such as the New Forest Cicada native to the UK (Rogers and Zilli
2021).

Monitoring anurans acoustically by their advertisement calls could be an efficient way to
gain insight into how the breeding output is affected by environmental change (Teixeira,
Maron and Rensburg 2019). Setting out recording equipment at breeding sites of anurans
(or any other taxa) allows for more long-time monitoring as human observers can not be
present at these site indefinitely (Höbel 2017). Recording long-time audio will in turn
reduce the probability of missing the presence of the species, as human observers are there
only for a short time. The process of recording for longer periods is also of little to no
disturbance to the species (Bridges and Dorcas 2000).

1.2 Earlier reasearch on classification of bioacoustic data

A vocalization identification tool (RIBBIT) based on the periodic structure found in
anuran calls was developed by Lapp and colleagues (Lapp et al. 2021). They applied
this tool on vocalizations made by the boreal chorus frog (Pseudacris maculata) and the
harlequin frog (Atelopus varius). The tool achieved a precision (true positives over the
sum of true and false positives) of 90% on the boreal chorus frog for a given threshold of
what they call RIBBIT score. The trade-off in this case was that a precision of 90% means
getting a recall of 56% meaning the number of false negatives is almost the same as num-
ber of true positives. (Noda, Travieso and Sánchez-Rodŕıguez 2015) used a combination
of Mel and Linear Frequency Cepstral Coefficients (MFCC & LFCC) with Support Vec-
tor Machines, Hidden Markov Models and random forests to achieve classification rate of
95.38% ± 5.05 on some anuran species. (Strout et al. 2017) used a spectrogram as input to
a convolutional neural network. The network acts as feature extraction, and these features
are then fed into a Support Vector Machine, achieving a mean classification accuracy of
73.57%. (Huzaifah 2017) tried different time-frequency representations of sound events in
the UrbanSound8k dataset and found that Mel-STFT spectrograms performed generally
better than linear-STFT ones. (Alonso et al. 2017) developed an automatic classification
system for 17 different anuran species based on MFCC and a Gaussian Mixture Model,
resulting in accuracies between 96.1% and 100% for the species. No false positive rates
were presented in these papers.



1 INTRODUCTION 2

1.3 Earlier research on the common spadefoot toad

The EU’s Habitats Directive states that the common spadefoot toad (Pelobates fuscus
fuscus (P. fuscus)) is in need of strict protection, being placed in the category known as
Annex IV species (European Council 1992) (European Council 2006). This category states
that species must be placed under a strict protection regime (European Council 2021).
Therefore non-invasive methods such as acoustic monitoring could be a possible way to
keep count of species in their habitats. Nyström and colleagues noted that the toad is
in decline in some of its habitats and performed a classification of 72 ponds in southern
Sweden, thereof 33 inhabiting the species (Nyström et al. 2002). The ponds where the
P. fuscus was detected were found to share a few characteristics in that they were large,
permanent (i.e. does not dry out), eutrophic with high concentrations of oxygen and
having high spring temperatures.

In (Rannap et al. 2015) some Northern European habitats of the P. fuscus are discussed.
407 waterbodies in the Netherlands, Denmark and Estonia were examined by measuring 23
different habitat characteristics. It was discussed that intensive agriculture in the former
two countries were one of the main threats. Whereas in the latter an overgrowing of open
habitats and small freshwater bodies have negatively affected the species. The Danish
consulting company AmphiConsult successfully secured some of the Northern habitats of
the P. fuscus in Denmark and Estonia with its DRAGONLIFE project (Amphiconsult
2015). The project restored the Annex IV status of the toad in Estonia to favorable.

Ten Hagen and colleagues recorded and researched juvenile specimens of the toad and
found that these individuals vocalize before sexual maturity in their terrestrial phase
(Hagen et al. 2016). They found that the juvenile calls could be split into three distinct
groups, and discussed that juvenile vocalizations is a natural trait for P. fuscus. (Dutilleux
and Curé 2020) developed a software detector for the adult common spadefoot toad. The
detector uses peak detection on a pre-processed signal in the time domain, achieving true
positive rates ranging from 53% to 73% and a lower than 1.5% false positive rate.

1.4 Aim of the thesis

As shown in Sections 1.2 and 1.3 the manual monitoring of habitats of the P. fuscus hap-
pens over several years, and only needing to deploy recording equipment and automatically
analyzing the data could therefore be of great help in monitoring species. As the P. fuscus
is also threatened in some of its habitats, monitoring this species is of utmost importance.
The aim of this thesis is therefore to develop a deep learning-based detector of the toad
so as to help in automating the process.

It would therefore be interesting to see if deep learning could improve on the results
achieved in (Dutilleux and Curé 2020), where more traditional signal processing methods
were used to detect the toad. A detector like the one presented in this paper could then
be applied to recordings from different sites in the species’ entire habitat for conservation
purposes. In addition to developing a deep learning-based model for detecting adult
individuals, the report will also present results from a deep learning-based model for
classifying several classes. An exploration to see if such a classifier could be used to detect
juvenile individuals of the spadefoot toad will be presented. Due to the fact that the
juvenile has been found to vocalize during its terrestrial phase (Hagen et al. 2016), an
additional study will be made to see if deep learning-based methods could be used to find
potential underwater vocalizations.



1 INTRODUCTION 3

NOTE: As some of the theory is similar to the one used in the author’s own (unpublished)
specialization project report, any reuse of the text from that report will be colour-coded
in blue and will look like this sample text.



2 BACKGROUND 4

2 Background

The necessary background to understand the results is given in this Section. First a look
into some of the bioacoustic background is given in Section 2.1 followed by the background
needed for the deep learning in Section 2.2.

2.1 Bioacoustics

Performing passive acoustic monitoring of shallow ponds introduces a few challenges; not
all biological life vocalize, high frequencies are attenuated quickly in water, sound propaga-
tion is complex in shallow water and very little is known of particular sounds produced by
individual species at these sites (Linke et al. 2018). Recently however, monitoring species
by passive acoustic monitoring has taken off following the growing trend of automated
data collection and big data (Sugai et al. 2018).

Masking occurs when noise or other sounds interferes with an animal’s ability to produce
or perceive sounds. As other acoustic sources gets louder it will become more difficult
for animals to perceive conspecifics. The degree of masking is dependent on sound level,
frequency band and duration of the sound. It has the greatest impact to species when in
the same frequency band as important communication signals, like the advertisement call.
Some species can either increase the intensity of the call, while others increase/decrease
frequency or some even stops vocalizing which is a great threat to smaller populations
(Discovery of Sound in the Sea (DOSITS) 2020). For example, in ponds where P. fuscus
is present, sounds like rain or other vocalizing species were found to be some sources of
masking. The common spadefoot toad is special in that it does not vocalize in chorus, and
that the vocalization is not broadband (energy mainly being in the range 700Hz-1200Hz)
(AmphibiaWeb 2020; Dutilleux and Curé 2020).

2.1.1 The different call types of the P. fuscus

The most common of the call types of the spadefoot toad is its advertisement call. An
example of a stereotypical advertisement call of the common spadefoot toad is shown in
Figure 1. As seen the call usually consists of two or three (sometimes even more) distinct
”notes” of pulsed vocalizations. The notes can be seen at 0.2 seconds and 0.4 seconds.

The mean length of the advertisement call of the Pelobates fuscus insubricus has been
reported to be 0.506 s (Seglie, Gauna and Giacoma 2013, p. 61). Depending on the
water temperature the average length of the advertisement call of the Pelobates fuscus
fuscus is anywhere between 368.10 ms (24°C) and 881.46 ms (4°C) (Müller 1984, p. 128).
(Schneider 1966, p. 124) found that the call had a length between 310 ms and 336 ms
(with a water temperature of 15°C), with a mean of 318 ms.

The juvenile individuals of the common spadefoot toad have also been found to vocalize in
their terrestrial phase (Hagen et al. 2016). Three distinct call types of different durations
and frequencies were found when analyzing the juvenile and they were named call type, S,
E and P. Call type S were found to be somewhat similar to the adult advertisement call,
as it contains two-three separate notes. However the notes of this call type were shorter
and not clearly pulsed. Examples of the call types on individuals form the Fürstenkuhle
Nature Reserve in Germany can be found in (Hagen et al. 2016, p. 4 of 8).



2 BACKGROUND 5

0.0 0.2 0.4 0.6 0.8

0.10

0.05

0.00

0.05

0.10

Am
pl

itu
de

0.2 0.4 0.6 0.8
Time (s)

0
1000
2000
3000
4000
5000
6000
7000
8000

Fr
eq

ue
nc

y 
(H

z)

Figure 1: Waveform and spectrogram of a stereotypical P. fuscus advertisement call. Time
on x-axis, amplitude on y-axis of waveform and frequency in Hz on spectrogram.



2 BACKGROUND 6

2.2 Deep learning

Most of the theory about deep learning and neural networks is taken from the books Deep
Learning book by Ian Goodfellow and colleagues (Goodfellow, Bengio and Courville 2016)
as well as Dive into Deep learning by Aston Zhang and colleagues (Zhang et al. 2020)
unless otherwise stated. Both books are available for free online.

2.2.1 Deep learning and neural networks

Feedforward neural networks are the quintessential deep learning models (Goodfellow,
Bengio and Courville 2016, p. 164). The goal of these types of networks is to map a
function y = f(x;θ) of some input x to an output y. Assuming that a set of parameters
is named θ then the feedforward network will learn the parameter set that results in the
best function approximation. The process of learning and updating these parameters is
called training. A complete iteration over the complete set of input (dataset) used for
training is called an epoch (Zhang et al. 2020, ch. 3.2.7).

When connecting several of these function consecutively the resulting network is said to
be deeper. If a model learns features in the data and can perform well on previously
unobserved data, it is said to have an ability to generalize. This ability can be measured
with a cost function, which is calculated from a test set collected separately from the
training dataset. This is a function chosen by the user, as it is dependent on use-case.

A fully-connected feedforward neural networks consists of several nodes (or neurons) in
a structure as the simple one in Figure 2. This network in particular contains an input
layer, two hidden layers (layers ”hidden” form the user during training) and an output
layer. A vector x = [x1, x2] is fed into the network. The ”node” containing a single data
point is connected to all nodes in the next layer with connections holding weights.

For example the first node in the first hidden layer h11 is connected to both inputs of
the previous layer. This node input can then be calculated as the linear combination of
the weights connected to the node and the output from the previous layer. Assuming
the connections (weights) to this node can be written as w1 and w2 (shown in Figure 2),
then Equation (1) shows the linear combination of the input and weights. Such a linear
combination is then calculated all the way to the output y = [y1, y2].

h11 = x1 · w1 + x2 · w2 (1)

Classification tasks are usually associated with supervised learning (Mohri, Rostamizadeh
and Talwalkar 2018, p. 6). What this means is that a network is given training examples
with already defined labels, learns the mapping between input and output and makes
predictions on unseen data. The predictions are then compared to the true labels and a
measure of (un)certainty is then calculated. More on this measure can be found in Section
2.2.5.

A binary classification problem is a problem where the desired output is either 1 or 0. The
actual output of a model designed to predict binary classes is then seen as a probability,
meaning the closer the output is to 1, the more confident the model is that the given class
is present (Amazon 2021). A threshold score is chosen to find all predictions that are
above or below it. All predictions with output higher than the threshold is returned as a
detection while all predictions below it is returned as a non-detection.



2 BACKGROUND 7

Input layer

Hidden layer 1

Hidden layer 2

Output layer

x1 x2

h11 h12 h13

h21 h22 h23

y1 y2

w1
w2

Figure 2: A simple structure of a fully-connected network containing an input and output
layer and two hidden layers. The input x1 and x2 is fed through the network layers. Each
layer is a linear combination of weights and inputs of the previous layer.

It is also possible to perform multi-label classification. This is used when a model should
give multiple predictions at the same time (Brownlee 2020). For example if a model should
predict the common spadefoot toad at the same time as a bird sings, it would be possible
to map that specific input with an output that corresponds to the P. fuscus and bird
simultaneously. A bit more on the implementation of this is found in Section 3.2.3.

Training a model bears the risk of over- and underfitting. Goodfellow defines underfitting
as the model not being able to obtain a sufficiently low error value on the training set.
Overfitting occurs when there is a too large gap between the training and testing errors
(Goodfellow, Bengio and Courville 2016, p. 109-110). In other words the model is overfit
when it learns the input-to-output mapping and is not able to generalize for new input.

Hyper-parameters are parameters that configure a model and their values can not be
found during training of the model. These kinds of parameters can for example be set
by inferring from earlier similar problems, performing a search for the best values or by
trial and error. Examples of hyper-parameters that the user can control is the number of
epochs a model is trained for, learning rates in optimization algorithms or the number of
layers/nodes in a layer in a neural network (Brownlee 2017).

Brian Ripley defines training data, validation data and test data in the following way.
Training data is defined as “a set of examples used for learning, that is to fit the parameters
of the classifier”, validation data as “a set of examples used to tune the parameters of a
classifier, for example to choose the number of hidden units in a neural network” and
test data as “a set of examples used only to assess the performance of a fully-specified
classifier” (Ripley 1996, p. 354). The process of making a model is in other words split
into three separate steps; training, validation and testing.

2.2.2 Convolutional Neural Networks

As the name suggests, the main operation performed in Convolutional Neural Networks
(CNNs) is convolution. Generally the convolutional part’s goal in a neural network is



2 BACKGROUND 8

Input Convolutional
block

Feature extraction

Fully-connected

Classification

Output

Figure 3: General structure of a convolutional neural network. Input (e.g. an image) is fed
through a convolutional neural network for feature extracted, classified in a fully-connected
network and then the output is returned.

feature extraction and is then followed by a fully-connected network that does the clas-
sification (Khoshdeli, Cong and Parvin 2017). A general block diagram showing this
structure is shown in Figure 3, where input in the form of an image-like structure is fed
through a convolutional neural network for feature extraction and then that information
is used in a fully-connected network for classification. The network predictions are then
returned at the output.

Assuming a two-dimensional image can be annotated I and a two-dimensional filter (also
called kernel) K the resulting convolution of these two, S, can be defined as in Equation
(2). Notice that the operation is commutative, in that the penultimate term can be equally
written as the final term.

S(i, j) = (I ∗K)(i, j) =
∑
m,n

I(m,n)K(i−m, j − n) =
∑
m,n

I(i−m, j − n)K(m,n) (2)

Figure 4 shows an example of a simple 5-by-5 matrix containing an arbitrary set of binary-
valued data (colored in blue). The figure also shows a 3-by-3 kernel (color red), also with
binary values, which is to be convolved with the data matrix. Figure 5 shows the first
step in the convolution where the purple 3-by-3 area inside the data matrix is the kernel
applied to the data. The resulting 3-by-3 matrix (colored in green) contains the sum of
multiplied values of the kernel and data matrix. Figure 6 shows one of the following steps
where a few more data points have been calculated. The kernel is said to be ”striding”
with a value of 1 through the data matrix in this example. If the stride was 2 for example,
the resulting convolved matrix would have the shape 2× 2. The convolution continues in
this fashion until the green matrix is filled out.

The example explained above contains a simplification of convolution in applied convolu-
tional neural networks. This is because images usually contains more than one channel.
A channel can for example be the red colored channel in an RGB image. In the hidden
layers of a convolutional neural network the channels are often called feature maps as they
contain the learned ”features” produced by different kernels applied to the same image.
Kernels can both be applied in the spatial (height and width) dimension and in the chan-
nel dimension. If the input data contains several input channels ci, then it is needed as
many kernels as there are channels. Concatenating the kernels together is then necessary
(Zhang et al. 2020, ch. 6.4.1).

Depthwise separable convolution takes a normal convolution operation and splits it into
two separate operations. First is the depth-wise convolution which is a convolution per-
formed on a per-channel basis (each channel is kept separate). This can be seen as the



2 BACKGROUND 9

5

5

1 0 0 1 1

0 0 0 1 1

0 1 1 0 0

1 0 0 1 1

1 1 0 1 0

3

3

0 1 0

101

0 1 0

Figure 4: Example of a 5x5 matrix (blue) and a 3x3 kernel (red) that are to be convolved
with each other.

5

5

1x0 0x1 0x0 1 1

0x1 0x0 0x1 1 1

0x0 1x1 1x0 0 0

1 0 0 1 1

1 1 0 1 0

1

3

3

Figure 5: Applying the kernel to the top left 3x3 elements in the data matrix. The
resulting convolution is then added to a new 3x3 matrix (green).

5

5

0x0 0x1 1x0

1 1

1x1 1x0 0x1

1

0x0 0x1 1x0

0

1 1

1 1 0 1 0

1

3

3

1 0 0

0

0

2 2

1 1

Figure 6: Continuation of the convolution of the kernel and data matrix. The kernel
”strides” through the data matrix.



2 BACKGROUND 10

163 149 172

10611190

63 86 99

Figure 7: Example of a simple 3x3 image channel with values in the range 0-255 (as for
example the red color channel in an RGB).

convolution shown in Figures 4-6, as that example only shows one image channel. Such an
operation is then applied to all channels, and a point-wise convolution is then performed
on the resulting image. This operation performs a convolution on every single point/pixel
in the image but doing so over all channels at the same time. The depthwise separable
convolution operation is computationally cheaper than normal convolutions (Bendersky
2018).

2.2.3 Pooling layers

Pooling layers are intermediate layers inbetween convolutional layers, and their purpose
is to mitigate the sensitivity of the convolutional layers and to spatially downsample
representations (Zhang et al. 2020, ch. 6.5). For the sensitivity, imagine that an image
is represented by a matrix X of shape 1024 × 1024 × 3. If the image is moved a single
pixel to the right then the output of a network will be completely different for this picture.
Therefore the pooling layers will detect nearby spatial similarities. Pooling layers acts as
a summary statistic of nearby outputs (Goodfellow, Bengio and Courville 2016, p. 335).

Usually the pooling layers are either a maximum or an average layer. As an example
assume there is a 3x3 image channel as in Figure 7 (for example the red channel in an
RGB image). The first step of applying a 2x2 pooling operation to this image is shown in
Figure 8. The resulting average pooling is shown as the blue matrix and is the average of
all elements in the 2x2 pooling operation, while the maximum pooling operation returns
the largest element in the 2x2 matrix. Figure 9 shows the finished pooling operation for
both average and maximum pooling. For the first step the average of the elements is
(163 + 149 + 90 + 111)/4 = 128.25, which is then promptly added to the first element in
the avg. pooling layer. The maximum in the same is 163.

2.2.4 Backpropagation

Backpropagating in a neuron-like structure was proposed by Rumelhart in 1986 (Rumel-
hart, G. E. Hinton and Williams 1986). What this algorithm aims to do is to calculate
the gradients in the network so that the weights and biases can be updated.

To calculate the backwards pass through a network, the forwards pass must first generate
an output in the final layer of the network. Rumelhart, Hinton and Williams shows that
defining the total error E, the gradient of this error with respect to the input can be used
to propagate the gradient towards the input. The total error E of a layer is defined as in
Equation (3), where c is an index over input-output pairs, j is an index over output units,



2 BACKGROUND 11

163 149 172

10611190

63 86 99

128.25

163
Max.

pooling

Avg. pooling

Figure 8: The first step of applying a 2x2 pooling operation to the 3x3 image. Average
pooling is shown in the resulting blue 2x2 matrix, and maximum pooling is shown in the
green 2x2 matrix.

163 149 172

10611190

63 86 99

128.25

163Max.
pooling

Avg. pooling

172

111 111

134.5

87.5 100.5

Figure 9: The last step of applying a 2x2 pooling operation to the 3x3 image. Average
pooling is shown in the resulting blue 2x2 matrix, and maximum pooling is shown in the
green 2x2 matrix.



2 BACKGROUND 12

yj is the output of node j and dj is the desired output.

E =
1

2

∑
c

∑
j

(yj,c − dj,c)2 (3)

The output of the node is generally fed through a non-linear function, called activation
functions. More on this in Section 2.2.8. If non-linear activation functions are not used, the
whole feed-forward neural network will just be a linear function of its input (Goodfellow,
Bengio and Courville 2016, p. 168). In the original paper for backpropagation, the sigmoid
activation function is used as an example function, and is shown in Equation (4), where
the output of the function for node j is yj and the input is xj . This could be any other
activation as well, as the sigmoid is only used as an example.

yj = σ(xj) =
1

1 + e−xj
(4)

Using sigmoid the gradient of the error E with respect to the input xj is shown to be
expressed as in Equation (5).

δE

δxj
=
δE

δyj
· yj(1− yj) (5)

They show that for a weight from layer i to layer j, wji, the gradient can be expressed as
in Equation (6).

δE

δwji
=
δE

δxj
· yj (6)

Lastly the paper shows that calculating the gradient of the error with respect to the
outputs of the penultimate layer i can be found as in Equation (7). This equation is then
used to propagate the error from the output layer towards the input layer.

δE

δyi
=

∑
j

δE

δxj
· wji (7)

2.2.5 Loss function

The loss (or cost) function is as mentioned in Section 2.2.1 a measure of (un)certainty in
a machine learning model. For a binary problem the Binary Cross-Entropy (BCE) loss
function can be used. This function aims to penalize bad predictions. It is defined as in
Equation 8, where xn is the nth predicted element in the batch, of total size N (more on
batch size in Section 2.2.6), and yn is the corresponding desired output.

l(x, y) = L = [l1, ..., lN ], ln = [yn · logxn + (1− yn) · log(1− xn)] (8)

If the desired target yn = 1 and the prediction goes to zero, the loss will become large due
to logxn in the first term approaching infinity. If yn = 0 and xn = 1 then the second term



2 BACKGROUND 13

goes towards infinity. If however xn = yn = 1 or xn = yn = 0 then the first or second term
goes to zero respectively.

2.2.6 Optimization algorithm

The aim of an optimization algorithm is to minimize the loss of a model. Assuming we
have a set of parameters θ, the loss function will quantify the quality of the model wrt.
these parameters. The goal of the optimization algorithm is then to find the parameters θ
(weights and biases) that minimizes the loss function (Gilon et al. 2021). For a convolu-
tional neural network the weights that are updated in each backwards pass are the kernel
elements. For a fully-connected network the weights between nodes are updated.

The most used optimization algorithms for deep neural networks are the ones based on
stochastic gradient descent (SGD) (Goodfellow, Bengio and Courville 2016, p. 149). These
work by calculating the gradient and moving in the direction of the negative gradient of
the loss function wrt. the weights/parameters (Chen 2020).

An example of an SGD-based optimizing algorithm is Adam (Adaptive moment estim-
ation) (Kingma and Ba 2017). This optimizer combines the gradient descent algorithm
AdaGrad (Duchi, Hazan and Singer 2011) with RMSProp (Tieleman and G. Hinton 2012).
The Adam algorithm updates exponential moving averages of the gradient mt at time step
t and the squared gradient vt where the hyper-parameters β1, β2 ∈ [0, 1) controls the decay
rates of the gradients’ moving averages. In the original paper β1 = 0.9 and β2 = 0.999.
The moving averages are estimates of the 1st moment (mean) and the 2nd moment (the
uncentered variance). The moments mt and vt are defined respectively in Equations (9)
and (10), where gt is the gradient at time step t (Ruder 2016).

mt = β1mt−1 + (1− β1)gt (9)

vt = β2vt−1 + (1− β2)g2t (10)

The original paper introduces bias-corrected moments, m̂t and v̂t, to counteract initial-
ization bias pulling the moments towards zero. These moments are defined in Equations
(11) and (12) respectively.

m̂t =
mt

1− βt1
(11)

v̂t =
vt

1− βt2
(12)

Lastly the parameter update is done as in Equation (13). The term η is known as the
learning rate and acts as the size of the step between each parameter (η = 0.001 in the
original paper). The ε term is chosen to be very small (10−8 in the original paper) and
prevents the denominator term to ever becoming zero (Kingma and Ba 2017).

θt = θt−1 −
η · m̂t√
v̂t + ε

(13)



2 BACKGROUND 14

Parameter space

Loss/cost

Too high learning rate,
misses minima entirely

Figure 10: Parameter updates with a learning rate that is set too high. The updates to
the parameters (illustrated with black arrows) misses the minima of the cost function (in
red) entirely due to the large updates of the parameters.

Parameter space

Loss/cost

Too low learning rate,
slow convergence

Figure 11: Parameter updates with a learning rate that is set too low. The updates of
the parameters (illustrated with black arrows) slowly converges towards the minima of the
cost function (in red).

To avoid missing the minima of the parameter search, it is possible to introduce a learn-
ing rate scheduler. Having a too large learning rate will lead to the parameter update
jumping over the minima, while a too small learning rate will lead to slow training and
sub-optimal performance (Zhang et al. 2020, ch. 11.11). A too high learning rate is illus-
trated in Figure 10 and a too low learning rate is illustrated in Figure 11. The red curve
illustrates some cost function as a function of a given parameter space and the arrows
shows the parameter updates as arrows along the curve. Therefore it could be beneficial
to introduce a scheduling of the learning rate so that the learning slows down as the para-
meter optimization closes in on the minima. A parameter γ is introduced so that every
N number of epochs (chosen by the user) the learning rate is reduced by a factor of γ.

Since optimizers based on SGD relies on the stochastic approximations, it is common to
feed mini-batches of data into a deep learning model (Masters and Luschi 2018). Feeding
a single data point through a network while optimizing with SGD-based algorithms will
lead to the search being influenced by noise. Using mini-batches gives the optimizers a
more generalized view of the data, avoiding noisy input.



2 BACKGROUND 15

2.2.7 Regularization in neural networks

Dropout is a method to introduce regularization and avoid overfitting in neural networks
(Srivastava et al. 2014). Trying to deal with overfitting at test time in large networks
(which are slow due to many operations at run-time) by combining the predictions of
many networks simultaneously is difficult, which is why dropout was introduced. The
method is called dropout because neurons in a network are actually ”dropped out” of the
network during training, i.e., a neuron with its connections is removed.

Batch normalization is also a common method to introduce regularization in a neural
network (Ioffe and Szegedy 2015). Using this method, the input to the batch normalization
layer is standardized. First the mean and standard deviation of the current batch is
computed and the input is then standardized. The standardized input is then scaled by
a factor α and a bias µ is added. α and µ are the parameters that are learned during
training in this layer.

2.2.8 Activation functions

As mentioned in Section 2.2.4 the non-linearity introduced with activation functions will
stop a feed-forward networks from only being a linear function of its input. Following will
be a presentation of the relevant activation functions used in the implementation of the
models in this thesis. The input to an activation function is the summed input of all nodes
in the previous layer.

The linear unit (or identity unit) lets the input pass through as-is. It is simply defined as
y = x (Brownlee 2021).

The Rectified Linear Unit (ReLU) (Goodfellow, Bengio and Courville 2016, p. 171) is
defined mathematically as in Equation (14), where output is y and input is x. This
function is non-linear, and has well-defined derivatives for input values below and over
0. Different implementations may choose to define the derivative at 0 differently as it is
not well-defined in itself. Applying an activation function can be called the detector stage
because the non-linear nature of the functions only ”detects” a specific input (for example
only positive input for the ReLU function) (Goodfellow, Bengio and Courville 2016, p.
335).

y = max(0, x) (14)

The ReLU6 activation function can be first found in (Krizhevsky and Geoffrey Hinton
2010) and is defined as in Equation (15) for an input x and output y. This is very similar
to a regular ReLU but differs from the fact that it returns x only in the interval [0, 6] and
is flat elsewhere. The reason for choosing 6 as a limit in the ReLU was due to its ability
to learn sparse features earlier.

y = min(max(0, x), 6) (15)

The sigmoid (or logistic) activation function has already been defined as in Equation (4).
This function is used to set a boundary on the output of a neuron, squashing the input
which can have a range (−∞,∞) to the range (0, 1) (Zhang et al. 2020, ch. 4.1.2.2).
Applying this will then make the output more numerically stable. The sigmoid activation



2 BACKGROUND 16

10 5 0 5
Summed input

0.0

0.2

0.4

0.6

0.8

1.0
Ou

tp
ut

Sigmoid

10 5 0 5
Summed input

0

2

4

6

8

10
ReLU

10 5 0 5
Summed input

0

2

4

6

8

10 ReLU6

Figure 12: Activation functions as explained in Section 2.2.8. The sigmoid function on
the right squeezes input between 0 and 1. ReLU returns the input for input > 0 and zero
for input < 0. ReLU6 returns the same as ReLU for input < 6 but returns 6 for input
> 6. Output of the activation functions is shown on the y-axis, and summed input into
the function on the x-axis.

can be interpreted as a probability of the output units of a network in binary classification
problems. Figure 12 shows the activation functions as explained above.

2.2.9 Transfer learning

Transfer learning is a re-purposing of already trained models (along with its weights and
biases) of one problem and applying it to another problem. Assuming a problem P1

has a similar distribution as problem P2 it is possible to exploit what has been learned
for the first problem and then improve generalization in the other problem (Goodfellow,
Bengio and Courville 2016, p. 534). As an example Goodfellow explains that this can
be understood as the input being of the same nature in both problems, but the targets
being of different types. The input can for example be images of animals, but in one case
the targets are cats and dogs whereas in another case the targets can be elephants and
giraffes.

2.2.10 Metrics

Different metrics will be used to present the results, and following is a clarification of them.
The metrics stated below applies to a binary problem in which there is either presence or
absence of a case.

If the model predicts presence and there is also presence in the ground truth, this is a
true positive (TP). Predicting presence of a case when it is actually absent in the ground
truth is a false positive (FP). True negative (TN) is a prediction of absence when there
is nothing present and lastly false negative (FN) is a negative prediction when the case is
present in the ground truth.

Precision can be interpreted as a metric of how many of the predictions that were pos-



2 BACKGROUND 17

itive are actually true positives. Recall (also called true positive rate) is the portion of
how many of the relevant cases (e.g. wanted vocalizations) are being correctly predicted
(Google 2020b) (Ghoneim 2019). Precision and recall can be expressed mathematically as
in Equations (16) and (17) respectively.

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

For a detection problem it is interesting to look at the false positive rate (FPR), which is
defined as the total number of false positives divided by the total number of negative cases
(Pico.net 2021). It is the rate of how many negative cases that were falsely predicted as
positive and is shown in Equation (18).

FPR =
FP

FP + TN
(18)

Accuracy is defined as the total number of correct predictions divided by the total number
of predictions made (Google 2020a) (Ghoneim 2019). Mathematically it can be stated as
in Equation (19).

Accuracy =
true predictions

total # of predictions
=

TP + TN

TP + TN + FP + FN
(19)

The total number of predictions and true negatives are expected to be relatively large
compared to the rest of the numbers because the toad does not vocalize continuously and
not in chorus (AmphibiaWeb 2020). It is therefore beneficial to mainly look at precision,
recall and the FPR as indicators of the model performance.



3 METHODOLOGY 18

3 Methodology

This Section includes all the methods and implementations that are used to produce the
results that can be found in Section 4. In Section 3.1 a short introduction to the equipment
and code libraries used in the implementation is given. Following this, an in-depth look
into the data is presented in Section 3.2. A short walk-through of the pre-processing is
found in Section 3.3, while a detailed description of the neural network used is given in
Section 3.4. Lastly the process of training and testing the model is described in Sections
3.5 and 3.6 respectively.

3.1 Equipment and code libraries

Both a desktop computer and laptop were used during the course of this thesis. The
desktop computer used (mainly) for training and testing has an ASUS Nvidia GTX 1070
with 8 GB of VRAM, AMD Ryzen 5 1600X processor, 16GB RAM with Windows 10.
A HUAWEI Matebook X Pro was also used both for some training, testing and pre-
processing. The laptop has Debian 10 Buster and is equipped with an Intel Core i5-
8250U, 8GB RAM, integrated graphics from Intel (UHD Graphics 620) as well as an
NVIDIA MX150 which was not used for testing and pre-processing.

Both computers are running Anaconda’s Spyder version 4.2.1. For all deep learning scripts
the Pytorch library (Paszke et al. 2019) for Python (Python Software Foundation 2020)
were used. Both torchaudio and torchvision of the Pytorch framework was used for pre-
processing of the audio. A comprehensive list of the main Python libraries and versions
used follows below.

• Python 3.8.5 (Python Software Foundation 2020)

• Pytorch 1.7.1 (Paszke et al. 2019)

• torchaudio 0.8.0 (Paszke et al. 2019)

• torchvision 0.9.0 (Paszke et al. 2019)

• librosa 0.8.0 (McFee et al. 2020)

• pandas 1.2.3 (Reback et al. 2021)

• numpy 1.19.2 (Harris et al. 2020)

• scipy 1.6.1 (P. Virtanen et al. 2020)

• efficientnet-pytorch 0.7.1 (https://github.com/lukemelas/EfficientNet-PyTorch)

• scikit-learn 0.24.1 (Pedregosa et al. 2011)

3.2 About the data

This section will mainly be about the data that was used in this thesis. An introduction
of the sites where the recordings were made will follow, as well as any relevant equipment
used when it was collected. A short discussion on the soundscape found at the sites will
follow and lastly a bit about the labeling process of the data will be explained.

https://github.com/lukemelas/EfficientNet-PyTorch


3 METHODOLOGY 19

3.2.1 Data collection

The data used in training and validating the deep learning-based models were collected
over a two year period (2015 and 2016) on two different sites in Northeastern France.
Recordings were taken in the breeding season of the P. fuscus, spanning from (at the
earliest) mid-March to (at the latest) mid-July. Two sites were chosen for the recordings,
Mothern and Sauer’s Delta (named Sauer from here on). They are located on the river
Rhine’s floodplain and can be found 4 kilometers apart (Dutilleux and Curé 2020).

Programmable SM2 Songmeter programmable audio field recorders connected to an HTI-
96 hydrophone were used to monitor the Pelobates Fuscus (both from Wildlife Acoustics,
Maynard, U.S. (Wildlife Acoustics, Inc. 2021)). To ensure coverage of the whole breeding
season, the recorders operated continuously from late March to late June. For the four
campaigns (from here on named Mothern 2015, Sauer 2015, Mothern 2016 and Sauer
2016), SM2 recorders were programmed to record for 5 min every half hour. Audio was
stored at a sampling rate of 16 kHz at 16-bit resolution in WAV format (Dutilleux and
Curé 2020).

Vocalizations of the juvenile Pelobates fuscus were collected from the animal sounds lib-
rary of The Museum für Naturkunde in Berlin (The Museum für Naturkunde 2021a) (The
Museum für Naturkunde 2021b). The juvenile toad recordings that were retrieved from
this archive are all from the paper by (Hagen et al. 2016). The recordings were down-
loaded in MP3 format at a sample rate of 44.1kHz, and are openly available on a Creative
Commons license (CC BY-NC-SA 3.0 DE) (Creative Commons 2021). A full list of the
sounds used can be found in Appendix A.

3.2.2 Soundscape at the sites

The Mothern and Sauer sites contains a rich soundscape. Anurans other than the Pelobates
fuscus can be found in these sites. The Sauer site is a breeding site for species like the
agile frog (Rana dalmatina), the marsh frog (Pelophylax sp.) and the European tree frog
(Hyla Arborea). Mothern contains both the agile frog and the European tree frog, but not
the marsh frog (Dutilleux and Curé 2020).

At least six species of passerine birds were identified in the original paper; the common
blackbird (Turdus merula), the song thrush (Turdus philomelos), the common chaffinch
(Fringilla coelebs), Phylloscopus collybita (Phylloscopidae), Acrocephalus scirpaceus (Ac-
rocephalidae) and Erithacus rubecula (Muscicapidae), as well as the Common cuckoo
(Cuculus canorus (Cuculidae)) (Dutilleux and Curé 2020).

Invertebrates can also be heard making sound in the later dates of the campaigns. Low
frequency noises found in the data can be attributed to factors such as water turbulence,
wind and even creatures moving and touching the equipment.

Due to the sites being relatively close to urban sites, a fair bit of anthropogenic noise
can be heard. Everything from faint human talking, to dogs barking, revving motorcycles
and even train horns were found in the recordings. It is pointed out in (Dutilleux and
Curé 2020) that there is no significant road or rail infrastructure present in a 400 meter
distance from both sites, and that most of the anthropogenic sounds might be heard due
to an atmospheric temperature inversion. Abiotic sounds like rain and droplets hitting
the hydrophone are also heard regularly throughout the campaigns.



3 METHODOLOGY 20

3.2.3 Labeling of the data

Labeling of the data was done manually in Audacity version 2.4.2 (Audacity Team 2020).
Labeling a file in Audacity exports .TXT-files with three columns separated by a tabulator;
one for the label, one for start time of the sample and the last for the ending time of the
sample. This was promptly read with the pandas (Reback et al. 2021) read csv function,
with the tabulator separator specified in the function call.

A general structure of a label file can be seen in Table 1, where the first column contains
the start time, the second contains end time and the last one contains the label. For
detection of the adult Pelobates fuscus binary values were chosen to indicate presence and
absence. For example if a Pelobates fuscus is found in the recordings it was labeled a ’1’
while absence of the toad was labeled ’0’. This resulted in .TXT files that can remind of
the structure seen in Table 1.

Table 1: A simple structure of how a label file can look.

Start time (sec) End time (sec) Label

0.523 1.263 1
4.249 4.910 1

... ... ...

The Mothern 2015 campaign was used for labeling the training and validation data for
adult P. fuscus. The early days of the Sauer 2015 campaign were also used to label the
agile frog. It was ensured that the files used from Sauer 2015 were not included in the
ground truth. Training and testing on the same data will not give an actual insight into
the performance of the model as the trained model will already know the output of the
validation data. A full list of dates and times used to create both the detector and the
multi-label classifier can be found in Appendix B in Table 9 and Table 8 respectively. A
ground truth dataset provided the supervisor of this thesis was also labeled and prepared
for testing the detection model, which is expanded more upon in Section 3.6.1.

Multi-label classification

For detection of the juvenile specimens a multi-label classifier was designed. What this
means is that the prediction of the model can be several of the classes at the same time.
The solution is chosen to be a multi-label classification one due to the fact that many of
the species vocalize at the same time.

For the multi-label classifier a few classes were initially chosen, as they are more present
at the sites than others (Dutilleux and Curé 2020). Table 2 shows the classes that are
used in the final system with a short description of what they are.

Both the agile frog and European tree frog are present at both sites and were therefore
chosen to be included in the classifier. The adult and juvenile specimens of the P. fuscus
were also annotated separately.

It was found unnecessary to label separate bird species as including separate cases would
complicate the number of classes. As the recordings were made under the pond surfaces
with a hydrophone it is not seen as necessary to include separate classes for bird songs.
Thus a general ”bird” label was used when annotating the data.

The ”other” label refers to all sounds that are not the other classes that were chosen
and that deviates from the general background sounds. This includes other wildlife,



3 METHODOLOGY 21

Table 2: Annotations used in the multi-label classifier with short description of what they
mean.

Index Label Description

0 agile Agile frog (Rana dalmatina)

1 bird General class containing bird song

2 inv Invertebrates

3 other Class containing any other non-background sounds

4 pfa Adult common spadefoot toad

5 pfj Juvenile P. fuscus

6 rain Any and all precipitation in a sound clip

7 tree European tree frog (Hyla arborea)

anthropogenic sounds like the ones explained in Section 3.2.2 and abiotic sources like
shock/scratching sounds, clicks etc. Invertebrates were also included in its own class, as
the later months of the recordings contains many cases were for example the adult P.
fuscus vocalizes while an invertebrate is making sounds.

When going through the data, instances were labeled with multiple labels at the same
time. For example a bird could be singing at the same time as an adult P. fuscus vocalizes,
while it is raining. Then this instance is labeled as bird,pfa,rain. An array of length 8 is
instantiated with all values set to zero. For all labels present in a sound clip, the value at
the corresponding index is then set to 1 in the array (refer to Table 2 to see which labels
correspond to the different indices). For the example mentioned before, an array with the
values [0,1,0,0,1,0,1,0] is created.

All instances are then sliced into 1 second clips (with 50% overlap if the file is longer
than 1.5 seconds) and subsequently references to the files with labels, both in array and
text form, are added to a .CSV file for easier reading when training. An example of the
structure of such a file is shown in Table 3.

Table 3: A simple overview of what a .CSV file for multi-label classification can end up
looking like.

Filename Labels Labels (text form)

filename 1 1 [0,1,0,0,1,0,1,0] bird,pfa,rain
filename 1 2 [0,0,0,0,0,1,0,0] pfj
filename 2 1 [0,0,1,1,1,0,0,1] inv,tree,pfa,other
filename 3 1 [1,0,0,1,0,0,0,0] agile,other

... ... ...

The final number of data points for the adult detector contained 2257 positive cases and
4576 negative cases. For the classifier, 280 cases of the juvenile were used and the other
classes were spread out over the remaining 3741 files. The total number of each class used
in the final model is shown in Figure 13. The sum of all the occurrences are not equal to
the number of files, as some sounds are labeled with multiple classes. The total number
of each class is found in Table 4.

Table 4: Count for each of the classifier’s 8 classes.

Class agile bird inv other pfa pfj rain tree

Count 534 1213 560 896 1018 280 703 338



3 METHODOLOGY 22

pfj tree agile inv rain other pfa bird0

200

400

600

800

1000

1200

Cl
as

s c
ou

nt

Figure 13: The count of each of the 8 classes used in the final classifier model. Labels
used can be found in Table 2.

3.3 Pre-processing

3.3.1 Audio preparations

As discussed in Section 2.1.1 the call of the P. fuscus can last on average up to 0.9 seconds.
Due to this fact the audio length chosen to make the dataset is 1 second. After labeling
each case of the P. fuscus in Audacity, the label files are loaded in as pandas (Reback
et al. 2021) DataFrames in Python. The corresponding sections in the .WAV files are
then padded randomly on each side (if it is shorter than one second) or sliced into several
consecutive 1-second files (if longer than one second). A comma-separated values (.CSV)
file is then created containing reference to the audio file name and its corresponding label.
.CSV files were created for both the detection of adult and juvenile specimens.

The audio is loaded with torchaudio’s load function which normalizes the audio in the
range [−1, 1] by default. The spectrogram transform is initialized using torchaudio’s
functionality. Since the input size to the network used is known (224, 224, 3) (3 for
number of channels), it is possible to calculate the number of Fourier bins and hop
length needed when transforming to spectrogram. Since the number of bins produced
by the spectrogram transform is #bins = (N FFT/2) + 1, it can be rearranged to
N FFT = (#bins − 1) · 2 = (224 − 1) · 2 = 446. By default, in torchaudio, the win-
dow size is equal to the number of Fourier points.

Since the sampling rate is constant for all audio (16 kHz = 16000 samples per second) and
all audio is the same length (1 second), the hop length can also be calculated by using
the desired image size. Since the number of wanted windows is known (224), it is possible
to use this information. Multiplying the number of windows (224) with the hop length
almost gives the sample rate. The end of the last window will miss the end of the second
by a length equal to the overlay between two consecutive STFT windows (which in this
case is (446 − hop length)/446)). The hop length needed to get the wanted image size is
found in Equation (20).

hop length · 224− (
446− hop length

446
) = 16000⇒ hop length =

16000

224 + 1
446

≈ 71.43 (20)

By pre-computing the number of Fourier points and hop length any potential major alter-



3 METHODOLOGY 23

ations done to the image by resizing can be avoided. A hop length of 71 was used in the
spectrogram transform, so that the resulting number of points in the time dimension is
226. After transforming the audio to spectrogram the amplitude was transformed to dB.

The audio is bandpass-filtered with a Butterworth filter of order 5. For detection of the
adult P. fuscus the audio is bandpassed between 100Hz and 3500Hz, and concatenated
into three channels as this is the number of input channels needed in the network used.
This frequency range was chosen with trial and error, but it was found that having a too
low highcut frequency resulted in worse predictions. Having a too high frequency might
include bird song or other sounds like rain which masks the vocalization.

For the multi-label classification and possible detection of the juvenile only frequencies
lower than 100Hz were removed, which was achieved with an order 5 Butterworth high-
pass filter. This frequency was chosen due to the juvenile recordings having low frequency
background noise. It is chosen not to remove any of the high frequencies as some of the
vocalizations of the juvenile are broadband. The low-passed spectrogram is, as for the
detection, concatenated into three channels due to the network input needing to be three
channels. More on the network can be found in Section 3.4.

Lastly a resize is done to the ”image” of the spectrogram to ensure that it has shape
224× 224× 3.



3 METHODOLOGY 24

3.4 Architecture: EfficientNet

For training a model, the EfficientNet architecture by Mingxing Tan and Quoc V. Le of
Google Brain was used (Tan and Le 2020). The building blocks used in EfficientNet are
based on a combination of MobileNetV2’s inverted bottlenecks (Sandler et al. 2019) as
well as squeeze-and-excitation blocks (Hu, Shen and Sun 2019) which will be presented in
this section.

The inverted bottleneck architecture can be seen in Figure 14 and in Table 5 (where input
and output are written with their respective shapes). First is an input of shape h×w× c
(h is height, w width and containing c channels) which is convolved point-wise. The
resulting output is an expanded image in the channel dimension by a factor of t. This
expansion will result in the intermediate layers having more channels than the input and
output, acting as a kind of inverted bottleneck. Following is a depth-wise convolution with
a 3-by-3 kernel and a stride of 1. This means the image will keep its height and weight
dimensions and also keep its expanded number of channels tc. Lastly a 2D point-wise
convolution, the number of channels will be reduced from tc to c′. What this achieves is
that instead of letting a single kernel find both cross-channel and spatial features in an
image at the same time, the operation is split into two. The cross-channel correlations and
spatial correlations are then done separately to gain more knowledge while at the same
time using less processing power (Sandler et al. 2019).

Note that the shortcut connection (the connection from ’Input’ to ’Add’ in Figure 14)
is only used if the number of input channels c is equal to the chosen number of output
channels c′. This is because the shapes of the input and output must be identical in order
to add them together. If c 6= c′ the shortcut connection is removed and only the output
of the final 2D point-wise convolution is passed on in the network.

Table 5: Inverted bottleneck residual block as seen in (Sandler et al. 2019). Here k is the
number of input channels, h and w is the height and width of the input respectively, t is
the expansion factor, s is stride and k′ is the wanted output channels.

Input shape Operator Output shape

h× w × c 1x1 Conv2d, ReLU6 h× w × (tc)

h× w × (tc) 3x3 dwise stride=s, ReLU6 h
s ×

w
s × (tc)

h
s ×

w
s × (tc) Linear activation 1x1 Conv2d h

s ×
w
s × c

′

In addition to the inverted bottleneck, EfficientNet uses squeeze-and-excitation optimiza-
tion as seen in (Hu, Shen and Sun 2019). The aim of this block is to weight each channel
adaptively. It works as follows: A squeeze-excitation block takes a convolutional block as
input, where each of these channels are squeezed into a single numeric value by applying a
global average pooling operation on a per-channel basis. To fully capture the channel-wise
dependencies the excitation operation is introduced. This is achieved by introducing two
fully connected layers, where the first one is applied with the ReLU activation function
and the second is applied with the sigmoid activation function. The first fully connected
layers is also applied with a reduction ratio r so as to reduce the dimensionality. The
resulting matrix contains per-channel weights and it is then multiplied with the input
matrix. Figure 15 shows the general squeeze-excitation block as explained.



3 METHODOLOGY 25

Input

ReLU6

2D convolution 1x1

Depthwise convolution 3x3, stride=1

Shape: (h x w x c)

Shape: (h x w x tc)

ReLU6

2D point-wise convolution 1x1

Shape: (h x w x tc)

LinearShape: (h x w x c')

Add

Figure 14: Inverted bottleneck residual block (from (Sandler et al. 2019)) with stride s = 1.
An image of input shape (h,w, c) (height, width, channels) is fed through the bottleneck
block, with a given expansion t in the channel dimension. A depth-wise convolution is
performed on a per-channel basis, keeping the number at the number of expanded channels.
A point-wise convolution is then performed to reduce the number of channels to c′.

Input Shape: (h x w x c)

Global average pooling

Shape: (1 x 1 x c)

Fully connected, ratio r

Shape: (1 x 1 x c/r)

ReLU

Shape: (1 x 1 x c/r)

Fully connected

Shape: (1 x 1 x c)

Sigmoid

Shape: (1 x 1 x c)

Scaling

Output shape (h x w x c)

Figure 15: Squeeze-excitation block from (Hu, Shen and Sun 2019).



3 METHODOLOGY 26

Using the building blocks as explained earlier the simplest EfficientNet, EfficientNetB0,
can be introduced. The structure of the convolutional part of the network is shown in
Table 6. Input images to EfficientNet are defined to have shape (224 × 224 × 3), where
height and width are the two first elements and the number of channels are last. Each
MBConv block contains a squeeze-and-excitation block.

Table 6: EfficientNetB0 structure as introduced in (Tan and Le 2020). The number
behind MBConv in stages 2-8 means the expansion factor t. FC in the last stage stands
for fully-connected.

Stage i Operation Resolution # of channels # of layers

1 Conv 3x3 224 × 224 32 1

2 MBConv1, k3x3 112 × 112 16 1

3 MBConv6, k3x3 112 × 112 24 2

4 MBConv6, k5x5 56 × 56 40 2

5 MBConv6, k3x3 28 × 28 80 3

6 MBConv6, k5x5 14 × 14 112 3

7 MBConv6, k5x5 14 × 14 192 4

8 MBConv6, k3x3 7 × 7 320 1

9 Conv1x1, pooling and FC 7 × 7 1280 1

This network can be made larger (deeper, wider and higher resolution) following a method
the authors calls compound scaling. Using a compound coefficient φ, Equation (21) can
be used to scale the network. Here α, β and γ are constants that can be found with a
grid search, so that α · β2 · γ2 ≈ 2 (i.e. for any φ the number of FLOPS (computational
power) will approximately increase by 2φ) (Tan and Le 2020). The best constants for
EfficientNetB0 are found to be α = 1.2, β = 1.1 and γ = 1.15 (under the constraint
mentioned above). To increase B0 to the larger models, choosing for example φ = 1 will
yield the EfficientNetB1 model while φ = 6 will yield the EfficientNetB6 model.

depth : d = αφ

width : w = βφ

resolution : r = γφ

so that α · β2 · γ2 ≈ 2,

α ≥ 1, β ≥ 1, γ ≥ 1

(21)

The model also contains batch normalization in each of the MBConv blocks, and dropout
with a probability of 0.3 used in the layer before the fully connected layer at the end of
the network.

For a Pytorch implementation of EfficientNet the one by Luke Melas was used which is
available on https://github.com/lukemelas/EfficientNet-PyTorch under an Apache 2.0 Li-
cense (Apache Software Foundation 2004).

Pre-trained models of EfficientNetB0 and EfficientNetB3 were used, where weights and
biases were trained on ImageNet. Due to the pre-trained network having 1000 outputs,
the final fully-connected layer had to be modified to have the correct number of outputs.
EfficientNetB0 was used as an initial test of the library and the final model used was
EfficientNetB3 due to the fact that it has higher accuracies without the need of much

https://github.com/lukemelas/EfficientNet-PyTorch


3 METHODOLOGY 27

more processing power (about twice the parameters). The desktop could not handle any
larger models due to running out of memory. Therefore the B3 was chosen as a middle
ground. EfficientNetB3 has a Top-1 accuracy of 81.6% and a Top-5 accuracy of 95.7%
with 12 million parameters, whereas a model with 7 times the parameters (84 million
parameters, ResNeXt-101 found in (Xie et al. 2017)) has comparable accuracies.

3.5 Training

3.5.1 Data preparations

A custom Pytorch DataSet class is implemented for the detection of the P. fuscus, and the
data is subsequently loaded into memory with the DataLoader class. All pre-processing of
audio explained in Section 3.3 is implemented in the DataSet. The data folder is needed
as an input, with references to all files in the folder with corresponding labels.

3.5.2 Training on EfficientNet

A simple class was made for using the pre-trained EfficientNetB3 model. It is customized
to either have an output of 1 node (for the adult detection) or 8 nodes (number of classes
for juvenile classification). Pre-trained weights for EfficientNet were simply loaded into the
model with the from pretrained function of the library. The last fully connected layer
of the model is replaced to contain the right number of outputs. Originally the output of
the models contains 1000 ouptut nodes, so some more fully-connected layers were added
to get the right amount of output nodes.

More accurately a torch.nn.Sequential replaced the last EfficientNetB3 layer, contain-
ing a fully-connected layer with 1536 input nodes to 512. This is followed by a ReLU
activation and a 0.25 probability dropout, and then another fully-connected layer with
512 input nodes and 128 output nodes. The ReLU activation is then used and a 0.5 prob-
ability dropout layer is added before finishing the model with a fully-connected layer with
128 input nodes and either 1 or 8 output nodes depending on the use-case.

As introduced in Section 2.2.5 a loss function is needed to calculate the certainty of the
model during training. Due to the binary nature of the labels, BCEWithLogitsLoss from
Pytorch is used. This is a variation of the binary cross-entropy loss function described
in Section 2.2.5 (Equation (8)), in that the predictions xn are squeezed with a sigmoid.
Mathematically it is described as in Equation 22. It includes a sigmoid for numeric sta-
bility.

l(x, y) = L = [l1, ..., lN ], ln = [yn · log(σ(xn)) + (1− yn) · log(1− σ(xn))] (22)

A batch size of m = 32 were chosen when training the EfficientNetB3 models, as any
larger batch sizes did not work due to lack of computational resources. (Masters and
Luschi 2018) found that batch sizes between m = 2 and m = 32 performed consistently
better than larger batch sizes.

In every model trained the manual seed is set to 42 with Pytorch, for the sake of reprodu-
cibility. To ensure that results can be reproduced, some other flags were set with Pytorch
as for example the torch.backends.cudnn.deterministic = True which avoids non-
deterministic factors across platforms and Pytorch versions. A random 80-20 train-test



3 METHODOLOGY 28

split (80% train data, 20% validation data) is done when loading the data to ensure the
model trains with randomly chosen data containing all classes. The training data is then
shuffled to ensure that it contains examples from all classes.

Training time is dependent on model complexity and number of epochs. The final model
of the adult P. fuscus (based on a pre-trained EfficientNetB3) is trained on 40 epochs.
Running that on the desktop computer (see Section 3.1 for specs) took about 1 hour and
15 minutes, at around 2 minutes per epoch for a batch size of 32. 40 epochs were found
to yield the best results, and it was found through numerous trials. The learning rate for
the Adam optimizer is chosen to be 0.001 with a learning rate scheduler step size of 15
and a reduction parameter γ = 0.2. Default values of all other parameters are used in the
final model, β1 = 0.9, β2 = 0.999, ε = 10−8.

During training of the model, a part of the complete dataset is also set away for validation
during this process. This is to assess the performance of the model during training. When
iterating through the validation all gradients are stopped from updating because this part
of the dataset should only be used to assess performance and not actually train the model.
The model.eval() flag in Pytorch is set during validation to stop the network from using
regularization methods like dropout and batch normalization.

Classifier for juvenile vocalizations

The juvenile classifier is trained for 60 epochs, and at about 2 minutes per epoch for a
batch size of 32 on EfficientNetB3 this resulted in about 2 hours of training time. The
number of output nodes in the network is changed to 8. No other changes were made
to the network than this. The same settings were used in the training as for the adult
and the same hyper-parameters were set for optimizers, schedulers and loss. However the
model is trained for longer due to the additional complexity of the output of the data.



3 METHODOLOGY 29

3.6 Testing

3.6.1 Ground truth/testing data

600 30-second ground truth files was prepared for detection of adult specimens (Dutilleux
and Curé 2020). The files used to test were taken from the Mothern 2016, Sauer 2015 and
Sauer 2016 campaigns. There are also ground truth data available from Mothern 2015,
but this was not used due to the fact that the detector was trained on data from this
campaign. This ground truth was pre-labeled with a binary value of whether or not the
P. fuscus vocalizes in that file as well as how many vocalizations were present. As the
solution developed in this thesis works on a second-to-second basis, it was found necessary
to manually label the times where vocalizations were found. This was done so that a more
robust ground truth could be used when evaluating the models. Every occurrence of the
P. fuscus was labeled with a ’1’. The labeled instances’ start times were rounded to the
nearest 0.5 second due to the jumping window solution having an overlap of 50%.

However this can lead to some problems which are solvable. Imagine a toad is vocalizing
as in Figure 16. At the first of the two notes it can be seen that the beginning of it is not
included in the time that was rounded to the nearest 0.5 second. The model is predicting
with 0.5 second intervals, so the time step t = 2 in the figure is likely not to be the only
predicted time. The windows that starts at t = 1.5 and t = 2.5 also includes significant
parts of the vocalization, so including these windows in generating the ground truth was
done in the final test script. This is illustrated in Figure 17. So for a single ground truth
time, both the previous and next time steps are added.

Another type of testing is also done where only the rounded ground truth time is compared
to the predicted times, i.e. the previous and next windows are not added as prediction
times.

t=5t=0

Vocalization

t=2

Generated ground truth window, 
length 1 second

t=3

Figure 16: A toad vocalizing close to a time step, but rounding the time to the closest 0.5
seconds will lead to some of the vocalization not being included as a positive in the ground
truth. Time is along the x-axis, and the y-axis is only used to illustrate vocalizations.

The same pre-processing that was done on the training data was also done on the testing
data. This includes creating spectrogram with the same parameters as explained as in
Section 3.3.1.

3.6.2 Testing procedure

Adult individuals

The ground truth audio is sliced into 1 second ”chunks” with 50% overlap. For 30 second
files this gives 59 unique predictions per file (due to the window starting at 29.5 not



3 METHODOLOGY 30

t=5t=0

Vocalization

t=1.5 t=2.5 t=3.5

Additional window Additional window

Figure 17: The time steps before and after the rounded ground truth time are added as
ground truth times, as they also contain significant parts of the vocalization.

being included), for a total of 600 · 59 = 35400 predicitons. If, and only if, two or more
consecutive chunks give positive predictions a boolean is set to true and the prediction
times of the current and previous windows are kept to compare it with the ground truth.
This way false positives were avoided more frequently because single predictions (which
can come from e.g. rain or other clicking sounds) are not included.

The final way that is tested is to use no overlap between consecutive windows, meaning
there is a 1 second hop between predictions. This will lead to a less robust model in
the case of false positives, but will act as a middle ground in the trade-off between false
positives and false negatives. This leads to a total number of 30 predictions per file times
600 files = 18000 predictions.

A sigmoid is applied to the predictions made by the model after training to get it in the
range [0, 1]. It is then possible to interpret the output as a ”probability” or a measure of
confidence. The larger the input is into the sigmoid function the closer the output is to 1.
The value returned from the sigmoid is checked against a threshold, where 0.95 was used
in the final tests.

Performance of the adult detection model is mainly assessed with precision, recall and
the false positive rate (Equations (16), (17) and (18) respectively). This is because of the
assumption that the number of true negatives will outnumber the number of true positives,
false positives and false negatives leading to a high accuracy.

Juvenile individuals

The performance of the juvenile classifier is not assessed with any of the mentioned metrics.
This is due to the fact that it should be used to explore the possibility that it could find
vocalizations underwater without any prior annotation. Therefore testing of the juvenile
was done on the entire Sauer 2015 campaign. It wouldn’t be possible with the time given
to go through the whole campaign to find and label potential vocalizations. All predictions
the model made of the juvenile were instead appended to a .TXT file with the name of
the file it made predictions on as well as the time it predicted potential vocalizations. A
single test run on the complete campaign took around 14 hours.

No overlap was used in the audio windows used when testing the classifier for the juvenile.
This is due to the fact that the classifier should be able to detect all three types of juvenile
calls, which varies in length. Using overlap and checking if two consecutive windows are
positive predictions would lead to potential misses of the vocalizations due to their short
length.



4 RESULTS 31

4 Results

This section will introduce the results from the training and testing of a deep learning-
based detector and a classifier for the adult and juvenile common spadefoot toad respect-
ively. The main results presented will be from the testing, as applying the trained machine
learning models to actual field data is the most interesting. Different metrics for the de-
tector will be presented and will be discussed in greater detail in Section 5.

4.1 Results from the training

Following is a collection of the results gained from training a detector on the adult P.
fuscus vocalizations and a classifier that will try to detect the juvenile toad. The main
results presented from training will be accuracy and loss plots, with a discussion of the
detection of adults and juveniles following in Sections 5.1 and 5.2 respectively.

4.1.1 Detection of adult P. fuscus

The accuracy and loss plots of the model used in detection of the adult common spadefoot
toad are shown in Figures 18 and 19 respectively. Epochs are plotted along the x-axis and
accuracy and loss are plotted on the y-axis. It can be seen that the loss reaches a minimum
on epoch 12, and slowly stabilizes at a slightly higher value after this. The accuracy of the
model approaches 100% for the training and stabilizes at around 98.5% in the validation.

The large spike in validation accuracy and loss at epoch 8 in Figures 18 and 19 might come
from the fact that the batches in that specific epoch contained several mis-classifications.
It could also come from the learning rate being initialized to being too large, but this is
not seen as a problem for the remainder of the report as the model stabilizes later in the
training.

5 10 15 20 25 30 35 40
Epoch

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Training accuracy
Validation accuracy

6 8 10
Epoch

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Figure 18: Accuracy from training a model of P. fuscus detection for 40 epochs on the
left. The figure on the right shows epochs 6 to 10 where the model dipped in accuracy.



4 RESULTS 32

0 5 10 15 20 25 30 35 40
Epoch

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training loss
Validation loss

6 8 10
Epoch

0

2

4

6

8

10

12

14

16

Lo
ss

Figure 19: Loss from training a model of adult P. fuscus detection for 40 epochs on the
left. The figure on the right shows epochs 6 to 10 where the model spiked in loss.

4.1.2 Detection of juvenile P. fuscus

Figures 20 and 21 shows the accuracy and loss for the classifier trained on juvenile vo-
calizations respectively. It seems that the training was much more stable when training
the multi-label classifier than for the detector as there are no random spikes or drops in
neither the loss nor accuracy. Figure 21 shows that the validation loss (in orange) lies close
to the training loss and then gradually becomes flatter and flatter while the training loss
keeps decreasing. The training accuracy approaches 100% while the validation accuracy
stabilizes at around 97%− 98%.

10 20 30 40 50 60
Epoch

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Training accuracy
Validation accuracy

Figure 20: Accuracy from training a model of juvenile P. fuscus classification for 60 epochs.



4 RESULTS 33

0 10 20 30 40 50 60
Epoch

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training loss
Validation loss

Figure 21: Loss from training a model of juvenile P. fuscus classification for 60 epochs.

4.2 Results from the testing

Any times mentioned when presenting examples from testing are presented in French
Winter time (UTC+01). All spectrograms are plotted with time in seconds on the x-axis
and frequency in Hz on the y-axis unless otherwise specified. The range of the time is
[0, 1] second and frequency range is [0, 8000]Hz. In this section the findings of applying
the trained models will be presented. Some of the metrics gained from the detector, as
well as a collection of false positives and false negatives will be presented. Section 4.3 will
present some of the results from testing the detector trained on terrestrial sounds on the
underwater recordings to see if it could be possible to detect the juvenile.

4.2.1 Detection of adult P. fuscus

Three different detectors were tested for the P. fuscus, and they differ in the way the
testing is done. In the first detector (Test 1), only the labeled instances in the ground
truth time were rounded to the nearest 0.5 seconds and added. In the second detector
(Test 2), both the time before and after the labeled instance were added as discussed in
Section 3.6.1. In the third test (Test 3) there is no overlap between the windows, meaning
the test is done on a second-to-second basis. Table 7 shows the different metrics for the
three tests. A more detailed discussion on these results will follow in Section 5.1.

Table 7: The metrics resulting from testing the same model in three different ways. Test
1 was tested with only the labeled ground truth time rounded to the nearest 0.5 seconds.
Test 2 was tested with the times both before and after added as discussed in Section 3.6.1.
Test 3 was done with no overlap between the windows. TP rate is the rate of true positives
(recall).

Test # TP # TN # FP # FN Precision TP rate FP rate

Test 1 1211 32425 1470 294 45.17% 80.47% 4.34%

Test 2 2506 31500 175 1219 93.47% 67.28% 0.55%

Test 3 1084 16246 395 275 73.29% 79.76% 2.37%



4 RESULTS 34

It is apparent from the results in Table 7 that Test 2, using both the time before and
after the ground truth time, yields the lowest number of false positives as well as the
highest number of true positives. However, there is a trade-off between the number of
false positives and the number of false negatives. Test 1 performs better with regards
to the number of false negatives and true negatives with a true positive rate of 80.47%,
where Test 2 has 67.28%. Test 3 seems to perform somewhere between the other two tests.
Unless otherwise stated Test 2 will be the one examples of true/false positives and false
negatives are taken from.

4.2.2 True positives in adult detection

True positives means that the model predicted presence of a vocalization when there are
indeed presence of the toad. Examples of some of the true positives in Test 2 are shown
in Figure 22. Figure 22a shows an example of a true positive where the model detected
the toad where more complex sounds can be seen around it (the notes can be seen at 0.5
and 0.7 seconds around 1kHz). Figure 22b shows true positive predictions where only the
toad vocalized, while Figure 22c shows a correct prediction while the European tree frog
is vocalizing at around 2kHz.



4 RESULTS 35

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000
Fr

eq
ue

nc
y 

(H
z)

(a) TP in Mothern 2016, May 16th at 06:00

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
(H

z)

(b) TP in Sauer 2015, April 7th at 01:00

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
(H

z)

(c) TP in Sauer 2016, May 3rd at 03:00

Figure 22: Examples of some of the true positives in Test 2. (a) shows an example of the
toad vocalizing with more complex surrounding sounds, (b) shows a prediction where only
the toad vocalized, while (c) shows a correct prediction while the European tree frog is
vocalizing.



4 RESULTS 36

4.2.3 False positives in adult detection

False positives means that the model predicted a vocalization when in fact there were
none. Some examples of false positives will be presented, and a discussion of them will
follow in Section 5.1. Figure 23 shows examples of false positives, where Figure 23a is from
the Sauer 2015 campaign on April 30th at 15:00 and Figure 23b is from the Sauer 2016
campaign on May 11th at 02:00. Theses are clear false positives as they do not contain
any vocalizations. Both Figure 23a and Figure 23b shows rain drops hitting the surface
of the pond or the hydrophone which gives false positives.

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
(H

z)

(a) FP in Sauer 2015, April 30th at 15:00.

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
(H

z)

(b) FP in Sauer 2016, May 11th at 02:00.

Figure 23: Examples of false positives from Test 2. Both Figures (a) and (b) shows rain
drops hitting the surface of the pond or the hydrophone which gives false positives.

There are also times when the detector predicts presence, but it is difficult to say whether
it is an actual vocalization or just a sound that resembles the advertisement call. An
example of this is shown in Figure 24, where a potential vocalization is seen at around
0.3 seconds with frequencies close to 1000Hz. The European tree frog can also be seen
vocalizing continuously between 2000Hz and 3000Hz.

It also seems that the detector reports false positives when in fact it should be a true
positive. Examples of this can be seen in Figure 25. Both Figure 25a and Figure 25b
shows a single note of the advertisement call in the last 0.2 seconds. This might come
from the way ground truth times are prepared. More on this can be found in Section 5.1.4.



4 RESULTS 37

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
(H

z)

Figure 24: Example of a reported false positive that is difficult to say if it actually is a vo-
calization or just a sound that resembles the advertisement call. The potential vocalization
can be seen at around 0.3 seconds with frequencies around 1000Hz.

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
(H

z)

(a) FP in Mothern 2016, May 1st at 02:30

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
(H

z)

(b) FP in Mothern 2016, May 2nd at 04:00

Figure 25: Examples of times where the model reported a false positive, when in fact clear
vocalizations can be seen at the end of the spectrograms of both (a) and (b).



4 RESULTS 38

4.2.4 False negatives in the adult detector

A false negative means that the model did not predict a vocalization when in fact there was
one. It means that the model missed a vocalization, so going through the false negative
predictions should contain some sort of note of the toad. Some examples of false negatives
will be presented, and a discussion of them will follow in Section 5.1. Examples of missed
vocalizations can be seen in Figure 26. Figure 26a shows a weak vocalization at about 0.7
seconds with frequencies around 1000Hz, while Figure 26b shows a clearer vocalization
being missed. The low frequency noise in the latter is found to be scratching noise.

Figure 27 shows some examples of reported false negatives that should in fact be a true
negative. These clips contain rain drops and vocalizations of the European tree frog (Hyla
arborea) at around 2kHz. No clear vocalizations of the P. fuscus can be seen in these
windows. Looking closer at the mis-classifications for both these examples there were
vocalizations either in the window directly before (Figure 27b) or both before and after
(Figure 27a).

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
(H

z)

(a) FN in Mothern 2016, Apr 20th at 01:00

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
(H

z)

(b) FN in Mothern 2016, May 2nd at 01:00

Figure 26: Examples of missed vocalizations. (a) shows a weak vocalization at about
0.7 second with frequencies around 1000Hz, while (b) shows a clearer vocalization at 0.8
second being missed. The low frequency noise in (b) is found to be scratching noise.



4 RESULTS 39

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
(H

z)

(a) FN in Mothern 2016, May 14th at 00:00

0.2 0.4 0.6 0.8
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y 
(H

z)

(b) FN in Mothern 2016, May 14th at 00:00

Figure 27: Examples of reported false negatives that should in fact be true negatives. The
European tree frog is seen vocalizing at 2kHz.



4 RESULTS 40

4.3 Detection of juvenile P. fuscus

As mentioned in Section 3.6.2 a detection test of the juvenile was done over entire Sauer
2015 campaign. Due to the recordings being recorded during the juvenile’s terrestrial
phase it was difficult to say whether such a test would return any positive predictions.
Therefore any predictions the model made was written to a .TXT file, and consequently
checked at the end of the 14 hour testing period.

In the final model it was made 2448 predictions over all 5470 5-minute files in the Sauer
2015 campaign. This means the model did 5470 ·5 ·60 = 1641000 predictions. In turn this
gives a juvenile prediction rate of 2448/1641000 ≈ 0.149%.

Going through the positive predictions it looks like they are all false positives. Some
examples of the false positives are shown in Figure 28. Figure 28a shows a spectrogram of
what sounds like something heavy hitting the water surface, Figure 28b sounds like shock
noise of some sort while Figure 28c is a water drop hitting the hydrophone.



4 RESULTS 41

0.2 0.4 0.6 0.8
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y 
(H

z)

(a) Falsely classified as juvenile on May 7th at 18:30

0.2 0.4 0.6 0.8
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y 
(H

z)

(b) Falsely classified as juvenile on May 9th at 11:00

0.2 0.4 0.6 0.8
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y 
(H

z)

(c) Falsely classified as juvenile on June 30th at 21:30

Figure 28: Examples of some of the false positives in the juvenile test.



5 DISCUSSION 42

5 Discussion

This section will be a discussion of the results presented in Section 4. In Sections 5.1 and
5.2 a discussion on the findings of the detector of adults and classifier of the juvenile is
presented respectively. Section 5.1.5 will present a comparison of the results achieved in
this thesis with the software detector presented in (Dutilleux and Curé 2020). Lastly in
Section 5.3 a discussion on potential future improvements is presented.

The EfficientNet architecture was chosen due to achieving much better performance than
earlier ConvNets with the same amount of parameters (such as ResNet and Inception) at
a much lower computational cost. The EfficientNetB3 architecture specifically was chosen
as the final model due to lack of processing power for the larger ones. As the models get
larger there are diminishing returns on the accuracy, so the B3 was deemed sufficient for
the models developed in this report.

5.1 Testing of the adult detection

The discussion of the detection of the adult P. fuscus will be focused on the testing of
the finished model. Section 5.1.1 will be a short discussion of the true positives of the
tests, Section 5.1.2 is a discussion on the false positives and Section 5.1.3 will present a
discussion of the false negatives. In Section 5.1.4 a reflection on the way the ground truth
is extracted from the label files follows, and lastly a comparison with the software detector
from (Dutilleux and Curé 2020) is presented in Section 5.1.5.

Test 1 and Test 2 of the detector was done on the ground truth files with the an overlap of
0.5 seconds. This overlap choice comes from the fact that normal P. fuscus vocalizations on
average lasts about 0.5 seconds as discussed in Section 2.1.1. If two overlapping windows
then returns positive prediction it would mean there is a higher probability that it was
actually a vocalization. In this way false positives were avoided in a much higher rate if
this was not the case.

Test 3 was done with no overlap between predictions. This gave rise to a larger proportion
of false positives than for Test 2, but proved to be a middle ground for precision and recall.
Since the ground truth in Test 3 was only rounded to the nearest second, it would mean
that some of the vocalization might fall outside of the ground truth time. This could then
in turn lead to the model counting false positives when there are in fact a vocalization in
the prediction. The final number of false positives in this test could in reality be a bit
lower than reported.

5.1.1 True positives in the adult detector

Figure 22 shows some examples of true positive predictions of the adult specimen detector.
Figure 22a shows a vocalization occurring while droplets or other clicking sounds are
present. Figure 22b shows a more ”clean” prediction of the detector as only the P. fuscus
can be seen vocalizing. The last example, shown in Figure 22c, contains the European
tree frog vocalizing at the same time as the P. fuscus. From these examples, it seems the
detector is robust against different kinds of shock noises and other species vocalizing.



5 DISCUSSION 43

5.1.2 False positives in the adult detector

Test 1 performed the worst when it comes to false positives, as seen in Table 7, having 8.4
times the number of false positives that Test 2 has.

Figure 23 shows false positives that does not contain vocalizations as expected. Listening
to the first clip (Figure 23a) and looking at the spectrogram it seems that the detector
gave a prediction for rain since only droplets hitting the pond surface/hydrophone could
be heard. In the second clip (Figure 23b) it seems that this prediction was also made due
to a water droplet hitting the hydrophone.

Sometimes it was found difficult to conclude whether a detection should have been counted
as a false positive, as seen in Figure 24. In this case the amplitude of the European tree
frog’s call is larger than that of the potential vocalization, so it is both difficult to hear
and see in the spectrogram whether this was a vocalization or not.

As seen in Figure 25 the model made predictions of the P. fuscus that are counted as
false, when they are in fact true. This comes from the way the ground truth times are
extracted. As an example, look to Figure 16 on the left side of the vocalization. The
window that starts at t = 1 stops right after the toad has started vocalizing. This means
that the model might predict a positive, but the way the model is tested will lead to this
counting as a false positive. What this could mean for the model is that it in reality it
performs slightly better with regards to false positives than actually reported.

5.1.3 False negatives in the adult detector

Test 2 gave the most false negative predictions as seen in Table 7, while Test 3 gave the
fewest (this is seen as a consequence of only making about half the number of predictions
compared to the first two tests).

Sometimes the toad only makes a single note. Due to the model only keeping track of
the prediction times if two or more consecutive windows are positive this could give rise
to false negatives. As this is relatively uncommon however, this is not believed to be the
main cause of false negatives. Only 3 cases of this was found in the ground truth data.

Figure 26 shows some clear examples of vocalizations that were missed. Figure 26a con-
tained a weak vocalization, which might have been the main cause for the model to miss
it. It could be that the dataset contains few weak vocalizations, so that when performing a
train-test split the training data does not contain enough weak vocalizations to be able to
generalize well for weak signals. Figure 26b shows a clearer vocalization than the previous
one, but this signal contains low frequency noise. The missed vocalization can come from
a lack of training examples containing vocalizations with low frequency noise. But it could
also come from the training examples that does not contain vocalizations.

As false negatives are defined as missed detections, it would be expected that all false
negatives should contain part of or entire vocalizations. This is not the case, as is evident
from Figure 27. These windows did not contain the P. fuscus, so they should be counted
as a true negative and not a false negative. This comes as a consequence of adding the
previous and following window of the ground truth one. In some cases the time of the
vocalization might be rounded down. Adding the previous window will then lead to that
window not containing part of the vocalization, thus being counted as a false negative
when in fact it is a true negative. The other case of rounding up and the following window



5 DISCUSSION 44

not containing a vocalization can also happen with this way of testing. Studying the
false positives in Figure 27 confirms that adding both the previous and next window to
the ground truth added windows that did not contain any vocalizations. This is a clear
limitation of doing the testing this way.

5.1.4 Extraction of the ground truth

As discussed above it seems from both the false negatives and false positives that the way
the ground truth times are extracted can be one of the main reasons that the detector
behaves so differently in the two tests (presented in Table 7). This is not surprising due
to the way the actual vocalizations were labeled. Rounding to the nearest discrete time
step will result in some information getting lost, and adding both the previous and next
time steps leads to too many windows being produced in turn increasing the number of
false negatives.

5.1.5 Comparison to software detection

The software detector presented in (Dutilleux and Curé 2020) achieved reliable results
in detecting the adult common spadefoot toad. The aim of that detector was to have
a low enough false positive rate so as to minimize human post-processing time and a
high enough true positive rate so that it is impossible to miss presence during a complete
breeding season. With this in mind the resulting false positive rates were lower than 1.5%
and true positive rates ranging from 53% to 73%.

The detector presented in this thesis achieved different results based on the way it was
tested. It was tested on the same ground truth files that the software detector was tested
on. The software detector was tested on a file-to-file basis, while the detector presented
in this report were tested on a second-to-second basis. The resulting precision ranged
from 45.17% to 93.47% while the true positive rates ranged from 67.28% to 80.47%, out-
performing the software detector for the largest TP rate. The best model with regards
to false positive rates achieved 0.55%, meaning that of all predictions that should have
been negative, only 0.55% were classified as positive. But the FP rate could in fact be
even lower in reality as discussed in Section 5.1.2, due to the fact that some of the false
positives were actually true positives.

From the results presented in Table 7 it can seem that the detector with the lowest false
positive rate (only 1/3 of the FP rate in the software detector) performed almost as well
as the software detector with regards to true positives. The software detector achieved
73% while the deep learning-based one achieved 67.28%.

5.2 Detection of juvenile P. fuscus

5.2.1 Training of juvenile classifier

As seen in Figure 13 and Table 4 it is apparent that the data used in training the classifier
is imbalanced. The juvenile only had a total count of 280 cases, while the largest class
containing bird songs had 1213 cases. This could lead to the juvenile not being represented
enough while training and the model might not learn to generalize the juvenile calls.



5 DISCUSSION 45

5.2.2 Testing of juvenile classifier

Testing possible detections of the juvenile specimen yielded no correct predictions. This
might come from a few reasons. From studying the false positives of the juvenile classifier,
it can look like it mistakes loud shock sounds, turbulent sounds or even rain droplets hitting
the hydrophone for the juvenile vocalizations as shown in Figure 28. It could therefore be
the case that the classifier has learned that the juvenile means loud and sudden noises.

Due to the fact that no true positive predictions were made, it might come from the
fact that the data that was used was recorded on land during the juvenile’s terrestrial
phase. The recordings of the juvenile used to train the classifier were taken in a controlled
environment and the specimens vocalized when fed (Hagen et al. 2016). The original
recordings were also taken at 44.1kHz, so to make it so that the correct frequency range
was used the signal was downsampled to 16kHz, so the spectrograms might have lost some
information that is crucial to the vocalizations. In addition not much pre-processing was
done to the audio other than resampling, transforming to spectrogram and resizing.

Due to the different vocalizations being spread over a large frequency span, it might be
that the vocalizations have been masked in other sounds in the Sauer 2015 campaign
recordings.

It could even be that the juvenile spadefoot toad does not even vocalize underwater at
all, and that is the reason that the model made no true positive predictions. However it
should be noted that the results presented here is not a conclusion that the juvenile does
not vocalize underwater, as it still might be the case.

The aim of the juvenile detection was to explore the possibility of using deep learning-
based methods to find if it vocalizes underwater. Since the detection did not predict any
true positive cases, it is not possible to make a conclusion on whether this is the case or
not.



5 DISCUSSION 46

5.3 Future work

In this section a discussion on possible future work and improvements of the results will
follow.

5.3.1 Possible improvements of the data

The performance of the models are heavily dependent on how good it is to generalize for
the data. Adding more data points would lead to the model getting a better statistical
understanding of the vocalizations. Expanding the dataset can be done in a couple of
different ways. The first is to label more data, while the second one would be to perform
data augmentation. Labeling more data is very straightforward, but time-consuming.
The other way is to artificially expand the dataset with more points by adding augmented
versions of some of the already labeled data. Augmentations that could be relevant for
audio is slight time and frequency shifts, changing the speed of the audio slightly up or
down and adding Gaussian noise.

Loading the data in different ways could be a potential improvement. Because the input
to the pre-trained EfficientNet are RGB images, it could be beneficial to first save the
spectrograms as for example PNG images and then loading the images in the DataLoader.
If this is done then a normalization transform must be applied to the image as the images
that trained the model are expected to be normalized in each of the three color channels.
It could also be interesting to see how a detector model would perform on a stream of
data being loaded, i.e. applying the model to real-time applications.

The image size might also be a point worth looking into. EfficientNet uses a size of 224×224
so that was the one chosen in the final training. However, increasing the size could be a
possible improvement to the system as the vocalizations of the P. fuscus has a very fine
structure in the time dimension. This would however give a trade-off in performance, as
doubling the image size in both directions would lead to a quadrupling in the amount of
data. Sufficient processing power is then needed, and due to a lack of computer memory
it was not tried out for this thesis.

Other types of pre-processing could also be worth trying out. For example (Noda, Travieso
and Sánchez-Rodŕıguez 2015) used a combination of Mel and Linear Frequency Cepstral
Coefficients (MFCC & LFCC) with Support Vector Machines, Hidden Markov Models and
random forests to achieve classification rate of 95.38% ± 5.05. (Strout et al. 2017) used a
spectrogram as input to a convolutional neural network. The network acts as feature ex-
traction, and these features are then fed into a Support Vector Machine, achieving a mean
classification accuracy of 73.57%. (Huzaifah 2017) tried different time-frequency repres-
entations of sound events and found that Mel-STFT spectrograms performed generally
better than linear-STFT ones.

Specifically for the classifier other lengths of input data could be tried. This is due to
some of the classes making sounds for longer than a second. Potentially Recurrent Neural
Networks could be used for a dynamic-length input, which have been used in speech
applications and sound event detection (see for example (Adavanne and T. Virtanen 2017;
Li and Wu 2014; Lim et al. 2018)).



5 DISCUSSION 47

5.3.2 Adult detection

Because some the false positives seemingly should be true positives it could mean the
detector should perform better than reported. Therefore it could be beneficial to re-label
the ground truth on a window-to-window basis (1 second windows with 0.5 second hops) to
get an even better estimate of the actual performance of the model. The current way the
ground truth is extracted from the label files leads to a trade-off between false negatives
and false positives. As mentioned in Section 5.1, the rounding of the ground truth time
to the nearest 0.5 second and then adding both the previous and following window as
ground truth times leads to potential false negatives actually being true negatives and
false positives actually being true positives. If the data is not re-labeled it could be
beneficial to take a closer look into the way the ground truth times are extracted when
testing the model.

Due to the fact that the tests of the detector were only performed on similar audio data
as the data the model was trained on, it is difficult to say how it would perform on data
recorded at other sites with other equipment. The difference in background noise could
give rise to different activations in a neural network, so a possible solution to this could
be to

5.3.3 Juvenile detection

The juvenile detection could be improved quite a lot, given that the data used is recorded
on land. A possible way to achieve more reliable results could be to mask the terrestrial
sounds with the background noise present at the Mothern and Sauer sites. Other kinds of
augmentations could be made to make the sounds closer to the test set. The amplitude
in some of the clips were found to be a lot larger than others, so scaling the amplitudes
could make the sounds closer to the soundscape at Mothern and Sauer.

The bad performance could also come from the fact that the amount of data used for the
juvenile class is underrepresented when training, so that only a few examples were used
per training batch. As mentioned at the start of this section increasing the number of
data points would help the model generalize better for the given class.

As the adult P. fuscus detector was designed as a single-output classifier, this could also
be done for the juvenile. This means that a new dataset could be designed with a 1-0
output. If the design of the juvenile detector is to be remade, adding more data would be
beneficial.



6 CONCLUSION 48

6 Conclusion

This master thesis has presented the results from developing a deep learning-based de-
tector of the adult common spadefoot toad (Pelobates fuscus) based on its advertisement
call. Using a pre-trained architecture, EfficientNet (Tan and Le 2020), the detector with
the fewest false positives achieved a precision of 93.47% with a corresponding recall/true
positive rate of 67.28% and a false positive rate of 0.55%.

Three different tests were made on a prepared ground truth dataset to see how the model
performed. The first test were made with overlapping 1-second windows (50% overlap) and
rounding the ground truth time to the nearest 0.5 second- This test achieved a precision
of 45.17%, recall of 80.47% and a false positive rate of 4.34%. A second test was made
with 50% overlap, but this time both the time before and after the ground truth time were
added. The test achieved a precision of 93.47%, recall of 67.28% and a false positive rate of
0.55%. Both the first two test were made more robust against false positives by checking
if two consecutive predictions were positive. A last test was tried out with no overlap in
windows (one and one second separately at a time) and the ground truth time was rounded
to the nearest second. This test achieved a precision of 73.29%, recall of 79.76% and a
false positive rate of 2.37%, being a middle ground of false positives and false negatives to
the two other tests. A comparison with the software detector developed by (Dutilleux and
Curé 2020) was performed, finding that the deep learning-based detector outperformed
the software one with a three times lower false positive rate for comparable true positive
rates.

In addition to a detector of the adult, a method to detect the juvenile individual was also
tried out. It has been shown in (Hagen et al. 2016) that the juvenile vocalizes during its
terrestrial phase, so training a deep learning model to see if it could detect underwater
vocalizations was done. The resulting predictions that were made were all found to be false
positives, so it is concluded that the model trained on terrestrial vocalizations can not be
used to find juveniles vocalizing underwater. The audio clips of the juvenile used to train
the model have different background noise levels than the recordings used to test, and it
seems that loud shock noises gives some of the same activations in the neural network
that the vocalizations do. However, the results in this thesis is not a definite conclusion
that the juvenile specimen does not vocalize underwater. More research should therefore
be done in the potential juvenile underwater vocalizations.

This thesis has shown that it is possible to get reliable results both with regards to false
positives and false negatives when using a deep learning-based detector on the advert-
isement call of the common spadefoot. Therefore it is possible to apply the detector to
long-term recordings in possible habitats for conservation purposes to find the toad.



REFERENCES 49

References

Adavanne, Sharath and Tuomas Virtanen (2017). ‘Sound event detection using weakly
labeled dataset with stacked convolutional and recurrent neural network’. In: CoRR
abs/1710.02998. url: http://arxiv.org/abs/1710.02998.

Alonso, Jesús B. et al. (2017). ‘Automatic anuran identification using noise removal and
audio activity detection’. In: Expert Systems with Applications 72, pp. 83–92. doi:
10.1016/j.eswa.2016.12.019.

Amazon (2021). Amazon Machine Learning: Binary classification. url: https://docs.aws.
amazon.com/machine-learning/latest/dg/binary-classification.html (visited on 8th June
2021).

AmphibiaWeb (2020). Pelobates Fuscus on AmphibiaWeb. University of California, Berke-
ley, CA, USA. url: https://amphibiaweb.org/species/5270 (visited on 31st May 2021).

Amphiconsult (2015). DRAGONLIFE – Securing Leucorrhinia pectoralis and Pelobates
fuscus in the northern distribution area in Estonia and Denmark (2010-2015) LIFE08
NAT/EE/000257. url: https://amphi.dk/projekter/eu-projekter/dragonlife- securing-
leucorrhinia-pectoralis-and-pelobates-fuscus-in-the-northern-distribution-area-in-estonia-
and-denmark/ (visited on 25th May 2021).

Apache Software Foundation (2004). Apache License 2.0. url: https://www.apache.org/
licenses/LICENSE-2.0 (visited on 30th May 2021).

Audacity Team (2020). Audacity(R): Free Audio Editor and Recorder [Computer applica-
tion]. Version 2.4.2. url: https://audacityteam.org/ (visited on 31st May 2021).

Bendersky, Eli (2018). Depthwise separable convolutions for machine learning. url: https:
//eli.thegreenplace.net/2018/depthwise- separable- convolutions- for- machine- learning/
(visited on 30th May 2021).

Bridges, Andrew S. and Michael F. Dorcas (2000). ‘Temporal Variation in Anuran Call-
ing Behavior: Implications for Surveys and Monitoring Programs’. In: Copeia 2000.2,
pp. 587–592. doi: https://doi.org/10.1643/0045-8511(2000)000[0587:TVIACB]2.0.CO;2.

Brownlee, Jason (2017). What is the Difference Between a Parameter and a Hyperpara-
meter? url: https://machinelearningmastery.com/difference-between-a-parameter-and-
a-hyperparameter/ (visited on 5th June 2021).

— (2020). Multi-Label Classification with Deep Learning. url: https://machinelearningmastery.
com/multi-label-classification-with-deep-learning/ (visited on 13th June 2021).

— (2021). How to Choose an Activation Function for Deep Learning. url: https : / /
machinelearningmastery.com/choose-an-activation- function- for-deep- learning/ (visited
on 5th June 2021).

Chen, John (2020). An updated overview of recent gradient descent algorithms. url: https:
//johnchenresearch.github.io/demon/ (visited on 5th June 2021).

Creative Commons (2021). Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Germany (CC BY-NC-SA 3.0 DE) License. url: https : / / creativecommons . org /
licenses/by-nc-sa/3.0/de/deed.en (visited on 28th May 2021).

Discovery of Sound in the Sea (DOSITS) (2020). Masking in Mammals. url: https://dosits.
org/animals/effects-of-sound/potential-effects-of-sound-on-marine-mammals/masking-
in-mammals/ (visited on 9th June 2021).

Duchi, John, Elad Hazan and Yoram Singer (2011). ‘Adaptive subgradient methods for
online learning and stochastic optimization’. In: Journal of Machine Learning Research
12.Jul, pp. 2121–2159.

Dutilleux, Guillaume and Charlotte Curé (2020). ‘Automated acoustic monitoring of en-
dangered common spadefoot toad populations reveals patterns of vocal activity’. In:
Freshwater Biology 65.1, pp. 20–36. doi: https://doi.org/10.1111/fwb.13111.

http://arxiv.org/abs/1710.02998
https://doi.org/10.1016/j.eswa.2016.12.019
https://docs.aws.amazon.com/machine-learning/latest/dg/binary-classification.html
https://docs.aws.amazon.com/machine-learning/latest/dg/binary-classification.html
https://amphibiaweb.org/species/5270
https://amphi.dk/projekter/eu-projekter/dragonlife-securing-leucorrhinia-pectoralis-and-pelobates-fuscus-in-the-northern-distribution-area-in-estonia-and-denmark/
https://amphi.dk/projekter/eu-projekter/dragonlife-securing-leucorrhinia-pectoralis-and-pelobates-fuscus-in-the-northern-distribution-area-in-estonia-and-denmark/
https://amphi.dk/projekter/eu-projekter/dragonlife-securing-leucorrhinia-pectoralis-and-pelobates-fuscus-in-the-northern-distribution-area-in-estonia-and-denmark/
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://audacityteam.org/
https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/
https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/
https://doi.org/https://doi.org/10.1643/0045-8511(2000)000[0587:TVIACB]2.0.CO;2
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://machinelearningmastery.com/multi-label-classification-with-deep-learning/
https://machinelearningmastery.com/multi-label-classification-with-deep-learning/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://johnchenresearch.github.io/demon/
https://johnchenresearch.github.io/demon/
https://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en
https://dosits.org/animals/effects-of-sound/potential-effects-of-sound-on-marine-mammals/masking-in-mammals/
https://dosits.org/animals/effects-of-sound/potential-effects-of-sound-on-marine-mammals/masking-in-mammals/
https://dosits.org/animals/effects-of-sound/potential-effects-of-sound-on-marine-mammals/masking-in-mammals/
https://doi.org/https://doi.org/10.1111/fwb.13111


REFERENCES 50

European Council (1992). COUNCIL DIRECTIVE 92/43/EEC. url: https ://eur - lex .
europa . eu / LexUriServ / LexUriServ . do ? uri = CONSLEG : 1992L0043 : 20070101 : EN : pdf
(visited on 21st May 2021).

— (2006). Guidance document on the strict protection of animal species of Community in-
terest under the Habitats Directive 92/43/EEC. url: https://ec.europa.eu/environment/
nature/conservation/species/guidance/pdf/guidance en.pdf (visited on 21st May 2021).

— (2021). The Habitats Directive. url: https : / / ec . europa . eu / environment / nature /
legislation/habitatsdirective/index en.htm (visited on 21st May 2021).

Ghoneim, Salma (2019). Accuracy, Recall, Precision, F-Score & Specificity, which to op-
timize on? url: https : / / towardsdatascience . com / accuracy - recall - precision - f - score -
specificity-which-to-optimize-on-867d3f11124 (visited on 27th May 2021).

Gilon, Yosefa et al. (2021). ‘Optimization of neural networks’. In: CS231n: Convolutional
Neural Networks for Visual Recognition. Stanford course on Convolutional Neural Net-
works. url: https://cs231n.github.io/optimization-1/.

Goodfellow, Ian, Yoshua Bengio and Aaron Courville (2016). Deep Learning. http://www.
deeplearningbook.org. MIT Press.

Google (2020a). Classification: Accuracy. url: https://developers.google.com/machine-
learning/crash-course/classification/accuracy (visited on 27th May 2021).

— (2020b). Classification: Precision and Recall. url: https : / / developers . google . com /
machine- learning/crash-course/classification/precision-and-recall (visited on 26th May
2021).

Hagen, Leonie ten et al. (Sept. 2016). ‘Vocalizations in juvenile anurans: Common spade-
foot toads (Pelobates fuscus) regularly emit calls before sexual maturity’. In: Die
Naturwissenschaften 103, p. 75. doi: 10.1007/s00114-016-1401-0.

Harris, Charles R. et al. (Sept. 2020). ‘Array programming with NumPy’. In: Nature
585.7825, pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.1038/
s41586-020-2649-2.

Hill, Andrew P. et al. (2019). ‘AudioMoth: A low-cost acoustic device for monitoring
biodiversity and the environment’. In: HardwareX 6, e00073. issn: 2468-0672. doi:
https://doi .org/10.1016/j .ohx.2019.e00073. url: https://www.sciencedirect.com/
science/article/pii/S2468067219300306.

Höbel, Gerlinde (2017). ‘Social facilitation is a better predictor of frog reproductive activity
than environmental factors’. In: Biotropica 49.3, pp. 372–381. doi: https://doi.org/10.
1111/btp.12437. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/btp.12437.

Hu, Jie, Li Shen and Gang Sun (2019). ‘Squeeze-and-Excitation Networks’. In: CoRR
abs/1709.01507. arXiv: 1709.01507. url: https://arxiv.org/abs/1709.01507.

Huzaifah, Muhammad (2017). ‘Comparison of Time-Frequency Representations for En-
vironmental Sound Classification using Convolutional Neural Networks’. In: CoRR
abs/1706.07156. arXiv: 1706.07156. url: http://arxiv.org/abs/1706.07156.

Ioffe, Sergey and Christian Szegedy (2015). ‘Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift’. In: CoRR abs/1502.03167. arXiv:
1502.03167. url: http://arxiv.org/abs/1502.03167.

IUCN (2021). IUCN Red List: List of endangered species. url: https://www.iucnredlist.org/
(visited on 6th June 2021).

Jones, Julia et al. (Feb. 2013). ‘The ’why’, ’what’ and ’how’ of monitoring for conservation’.
In: Key Topics in Conservation Biology 2, pp. 327–343. doi: 10.1002/9781118520178.
ch18.

Khoshdeli, Mina, Richard Cong and Bahram Parvin (Feb. 2017). ‘Detection of Nuclei in
H&E Stained Sections Using Convolutional Neural Networks’. In: IEEE International
Conference on Biomedical Health Informatics.

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1992L0043:20070101:EN:pdf
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1992L0043:20070101:EN:pdf
https://ec.europa.eu/environment/nature/conservation/species/guidance/pdf/guidance_en.pdf
https://ec.europa.eu/environment/nature/conservation/species/guidance/pdf/guidance_en.pdf
https://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm
https://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm
https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124
https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124
https://cs231n.github.io/optimization-1/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://doi.org/10.1007/s00114-016-1401-0
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/https://doi.org/10.1016/j.ohx.2019.e00073
https://www.sciencedirect.com/science/article/pii/S2468067219300306
https://www.sciencedirect.com/science/article/pii/S2468067219300306
https://doi.org/https://doi.org/10.1111/btp.12437
https://doi.org/https://doi.org/10.1111/btp.12437
https://onlinelibrary.wiley.com/doi/abs/10.1111/btp.12437
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/1706.07156
http://arxiv.org/abs/1706.07156
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://www.iucnredlist.org/
https://doi.org/10.1002/9781118520178.ch18
https://doi.org/10.1002/9781118520178.ch18


REFERENCES 51

Kingma, Diederik P. and Jimmy Ba (2017). ‘Adam: A Method for Stochastic Optimiza-
tion’. In: CoRR abs/1412.6980. arXiv: 1412.6980. url: https://arxiv.org/abs/1412.
6980.

Krizhevsky, Alex and Geoffrey Hinton (2010). ‘Convolutional Deep Belief Networks on
CIFAR-10’. In: url: http://www.cs.utoronto.ca/∼kriz/conv-cifar10-aug2010.pdf.

Lapp, Sam et al. (Feb. 2021). ‘Automated detection of frog calls and choruses by pulse
repetition rate’. In: Conservation Biology n/a.n/a. doi: https://doi.org/10.1111/cobi.
13718. url: https://conbio.onlinelibrary.wiley.com/doi/abs/10.1111/cobi.13718.

Li, Xiangang and Xihong Wu (2014). ‘Constructing Long Short-Term Memory based
Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition’. In: CoRR
abs/1410.4281. url: http://arxiv.org/abs/1410.4281.

Lim, Hyungui et al. (May 2018). ‘RARE SOUND EVENT DETECTION USING 1D CON-
VOLUTIONAL RECURRENT NEURAL NETWORKS’. In: Detection and Classific-
ation of Acoustic Scenes and Events (DCASE).

Linke, Simon et al. (Mar. 2018). ‘Freshwater ecoacoustics as a tool for continuous ecosystem
monitoring’. In: Frontiers in Ecology and the Environment 16. doi: 10.1002/fee.1779.

Masters, Dominic and Carlo Luschi (2018). ‘Revisiting Small Batch Training for Deep
Neural Networks’. In: CoRR. eprint: 1804.07612. url: http://arxiv.org/abs/1804.07612.

McFee, Brian et al. (July 2020). librosa/librosa: 0.8.0. Version 0.8.0. doi: 10.5281/zenodo.
3955228. url: https://doi.org/10.5281/zenodo.3955228.

Mohri, Mehryar, Afshin Rostamizadeh and Ameet Talwalkar (2018). Foundations of Ma-
chine Learning. 2nd ed. MIT Press.

Müller, Burkhard (1984). ‘Bio-akustische und endokrinologische Untersuchungen an der
Knoblauchkröte Pelobates fuscus fuscus (Laurenti, 1768)’. In: SALAMANDRA - Ger-
man Journal of Herpetology 20, pp. 121–142.

Noda, Juan J., Carlos M. Travieso and David Sánchez-Rodŕıguez (2015). ‘Methodology
for automatic bioacoustic classification of anurans based on feature fusion’. In: Expert
Systems with Applications 50, pp. 100–106. doi: 10.1016/j.eswa.2015.12.020.

Nyström, Per et al. (2002). ‘The declining spadefoot toad Pelobates fuscus: calling site
choice and conservation’. In: Ecography 25, pp. 488–498. doi: 10.1034/j.1600-0587.
2002.250411.x.

Paszke, Adam et al. (2019). ‘PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library’. In: Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach et al. Curran Associates, Inc., pp. 8024–8035. url: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Pedregosa, F. et al. (2011). ‘Scikit-learn: Machine Learning in Python’. In: Journal of
Machine Learning Research 12, pp. 2825–2830.

Pico.net (2021). What is a False Positive Rate? url: https://www.pico.net/kb/what-is-a-
false-positive-rate (visited on 27th May 2021).

Prince, Peter et al. (2019). ‘Deploying Acoustic Detection Algorithms on Low-Cost, Open-
Source Acoustic Sensors for Environmental Monitoring’. In: Sensors 19.3. issn: 1424-
8220. doi: 10.3390/s19030553. url: https://www.mdpi.com/1424-8220/19/3/553.

Python Software Foundation (2020). Python Language, version 3.8.5. url: http://www.
python.org (visited on 31st May 2021).

Rannap, Riinu et al. (Dec. 2015). ‘Geographically varying habitat characteristics of a
wide-ranging amphibian, the Common Spadefoot Toad (Pelobates fuscus), in Northern
Europe’. In: Herpetological Conservation and Biology 10, pp. 904–916.

Reback, Jeff et al. (Apr. 2021). pandas-dev/pandas: Pandas 1.2.4. Version v1.2.4. doi:
10.5281/zenodo.4681666. url: https://doi.org/10.5281/zenodo.4681666.

Ripley, Brian D. (1996). Pattern Recognition and Neural Networks. Cambridge University
Press. doi: 10.1017/CBO9780511812651.

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf
https://doi.org/https://doi.org/10.1111/cobi.13718
https://doi.org/https://doi.org/10.1111/cobi.13718
https://conbio.onlinelibrary.wiley.com/doi/abs/10.1111/cobi.13718
http://arxiv.org/abs/1410.4281
https://doi.org/10.1002/fee.1779
1804.07612
http://arxiv.org/abs/1804.07612
https://doi.org/10.5281/zenodo.3955228
https://doi.org/10.5281/zenodo.3955228
https://doi.org/10.5281/zenodo.3955228
https://doi.org/10.1016/j.eswa.2015.12.020
https://doi.org/10.1034/j.1600-0587.2002.250411.x
https://doi.org/10.1034/j.1600-0587.2002.250411.x
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.pico.net/kb/what-is-a-false-positive-rate
https://www.pico.net/kb/what-is-a-false-positive-rate
https://doi.org/10.3390/s19030553
https://www.mdpi.com/1424-8220/19/3/553
http://www.python.org
http://www.python.org
https://doi.org/10.5281/zenodo.4681666
https://doi.org/10.5281/zenodo.4681666
https://doi.org/10.1017/CBO9780511812651


REFERENCES 52

Rogers, Alex and Davide Zilli (2021). The New Forest Cicada Project. url: http://www.
newforestcicada.info/ (visited on 6th June 2021).

Ruder, Sebastian (Jan. 2016). An overview of gradient descent optimization algorithms.
url: https://ruder . io/optimizing- gradient- descent/index.html (visited on 31st May
2021).

Rumelhart, David E., Geoffrey E. Hinton and Ronald J. Williams (1986). ‘Learning rep-
resentations by back-propagating errors’. In: Nature 323, pp. 533–536.

Sandler, Mark et al. (2019). ‘MobileNetV2: Inverted Residuals and Linear Bottlenecks’.
In: CoRR abs/1801.04381. arXiv: 1801.04381. url: https://arxiv.org/abs/1801.04381.

Schneider, Hans (1966). ‘Die Paarungsrufe Einheimischer Froschlurche Mating calls of the
native frogs (DISCOGLOSSIDAE, PELOBATIDAE, BUFONIDAE, HYLIDAE)’. In:
Zeitschrift für Morphologie und Ökologie der Tiere 57, pp. 119–136.

Seglie, Daniele, Andrea Gauna and Cristina Giacoma (Jan. 2013). ‘Description of the male
advertisement call of Pelobates fuscus insubricus (Anura, Pelobatidae), with general
notes on its acoustic repertoire’. In: Bulletin de la Société Herpétologique de France
145-146, pp. 61–72.

Srivastava, Nitish et al. (2014). ‘Dropout: A Simple Way to Prevent Neural Networks
from Overfitting’. In: Journal of Machine Learning Research 15, pp. 1929–1958. url:
https://www.cs.toronto.edu/∼hinton/absps/JMLRdropout.pdf.

Strout, J. et al. (2017). ‘Anuran call classification with deep learning’. In: 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2662–
2665. doi: 10.1109/ICASSP.2017.7952639.

Sugai, Larissa Sayuri Moreira et al. (Nov. 2018). ‘Terrestrial Passive Acoustic Monitoring:
Review and Perspectives’. In: BioScience 69.1, pp. 15–25. issn: 0006-3568. doi: 10.
1093/biosci/biy147. eprint: https://academic.oup.com/bioscience/article-pdf/69/1/15/
27503065/biy147.pdf. url: https://doi.org/10.1093/biosci/biy147.

Tan, Mingxing and Quoc V. Le (2020). ‘EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks’. In: CoRR abs/1905.11946. arXiv: 1905.11946. url: https:
//arxiv.org/abs/1905.11946.

Teixeira, Daniella, Martine Maron and Berndt J. van Rensburg (2019). ‘Bioacoustic monit-
oring of animal vocal behavior for conservation’. In: Conservation Science and Practice
1.8, e72. doi: https://doi.org/10.1111/csp2.72. url: https://conbio.onlinelibrary.wiley.
com/doi/abs/10.1111/csp2.72.

The Museum für Naturkunde (2021a). Archive of animal sounds from The Museum für
Naturkunde. url: https://www.tierstimmenarchiv.de/ (visited on 12th May 2021).

— (2021b). The Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity
Science. url: https://www.museumfuernaturkunde.berlin/en/about/the-museum (vis-
ited on 12th May 2021).

Tieleman, T. and G. Hinton (2012). Lecture 6.5—RmsProp: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning.

Virtanen, Pauli et al. (2020). ‘SciPy 1.5.2: Fundamental Algorithms for Scientific Comput-
ing in Python’. In: Nature Methods 17, pp. 261–272. doi: 10.1038/s41592-019-0686-2.

Welz, Adam (2019). Listening to Nature: The Emerging Field of Bioacoustics. YaleEnvir-
onment360. url: https://e360.yale.edu/features/listening-to-nature-the-emerging-field-
of-bioacoustics (visited on 6th June 2021).

Wildlife Acoustics, Inc. (2021). Wildlife Acoustics Home Page. url: https://www.wildlifeacoustics.
com/ (visited on 27th May 2021).

Xie, Saining et al. (2017). Aggregated Residual Transformations for Deep Neural Networks.
arXiv: 1611.05431. url: https://arxiv.org/abs/1611.05431.

Zhang, Aston et al. (2020). Dive into Deep Learning. https://d2l.ai.

http://www.newforestcicada.info/
http://www.newforestcicada.info/
https://ruder.io/optimizing-gradient-descent/index.html
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://doi.org/10.1109/ICASSP.2017.7952639
https://doi.org/10.1093/biosci/biy147
https://doi.org/10.1093/biosci/biy147
https://academic.oup.com/bioscience/article-pdf/69/1/15/27503065/biy147.pdf
https://academic.oup.com/bioscience/article-pdf/69/1/15/27503065/biy147.pdf
https://doi.org/10.1093/biosci/biy147
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://doi.org/https://doi.org/10.1111/csp2.72
https://conbio.onlinelibrary.wiley.com/doi/abs/10.1111/csp2.72
https://conbio.onlinelibrary.wiley.com/doi/abs/10.1111/csp2.72
https://www.tierstimmenarchiv.de/
https://www.museumfuernaturkunde.berlin/en/about/the-museum
https://doi.org/10.1038/s41592-019-0686-2
https://e360.yale.edu/features/listening-to-nature-the-emerging-field-of-bioacoustics
https://e360.yale.edu/features/listening-to-nature-the-emerging-field-of-bioacoustics
https://www.wildlifeacoustics.com/
https://www.wildlifeacoustics.com/
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1611.05431
https://d2l.ai


A JUVENILE SOUNDS USED 53

Appendix

A Juvenile sounds used

The juvenile P. fuscus sounds that were used from animal sounds archive of the Berlin
Museum für Naturkunde (The Museum für Naturkunde 2021a).

files Pelobates fuscus juvenil LtH 0001 short.mp3 to
Pelobates fuscus juvenil LtH 0005 short.mp3

files Pelobates fuscus juvenil LtH 0007 short.mp3 to
Pelobates fuscus juvenil LtH 0008 short.mp3

files Pelobates fuscus juvenil LtH 0013 short.mp3 to
Pelobates fuscus juvenil LtH 0029 short.mp3

files Pelobates fuscus juvenil LtH 0039 short.mp3 to
Pelobates fuscus juvenil LtH 0114 short.mp3

files Pelobates fuscus juvenil LtH 0116 short.mp3 to
Pelobates fuscus juvenil LtH 0195 short.mp3

files Pelobates fuscus juvenil LtH 0197 short.mp3 to
Pelobates fuscus juvenil LtH 0211 short.mp3

files Pelobates fuscus juvenil LtH 0213 short.mp3 to
Pelobates fuscus juvenil LtH 0214 short.mp3

file Pelobates fuscus juvenil LtH 0218 short.mp3

files Pelobates fuscus juvenil LtH 0224 short.mp3 to
Pelobates fuscus juvenil LtH 0267 short.mp3



B ANNOTATED TIMES AND DATES 54

B Annotated times and dates

Table 8 shows the times used for multi-label classification. The table is read left to right
and downwards.

Table 8: Times that were used to create the multi-label classifier dataset.

Site Date Time Site Date Time

Mothern 11.03.2015 13:00:00 Mothern 12.03.2015 09:00:00

Mothern 13.03.2015 05:30:00 Mothern 13.03.2015 23:00:00

Mothern 14.03.2015 11:00:00 Mothern 15.03.2015 08:00:00

Mothern 18.03.2015 09:30:00 Mothern 19.03.2015 06:00:00

Mothern 20.03.2015 17:00:00 Mothern 27.03.2015 05:00:00

Mothern 28.03.2015 07:30:00 Mothern 29.03.2015 09:30:00

Mothern 31.03.2015 20:00:00 Mothern 01.04.2015 08:00:00

Mothern 01.04.2015 15:00:00 Mothern 03.04.2015 07:00:00

Mothern 04.04.2015 17:30:00 Mothern 05.04.2015 09:00:00

Mothern 06.04.2015 10:00:00 Mothern 07.04.2015 19:00:00

Mothern 08.04.2015 12:00:00 Mothern 08.04.2015 20:00:00

Mothern 09.04.2015 13:00:00 Mothern 10.04.2015 07:00:00

Mothern 11.04.2015 19:00:00 Mothern 12.04.2015 18:00:00

Mothern 13.04.2015 08:00:00 Mothern 13.04.2015 10:30:00

Mothern 14.04.2015 06:00:00 Mothern 15.04.2015 09:00:00

Mothern 17.04.2015 11:00:00 Mothern 18.04.2015 15:00:00

Mothern 19.04.2015 12:00:00 Mothern 20.04.2015 16:30:00

Mothern 21.04.2015 09:00:00 Mothern 22.04.2015 15:00:00

Mothern 23.04.2015 11:00:00 Mothern 23.04.2015 14:30:00

Mothern 24.04.2015 12:00:00 Mothern 25.04.2015 17:30:00

Mothern 26.04.2015 12:30:00 Mothern 27.04.2015 06:00:00

Mothern 28.04.2015 09:30:00 Mothern 28.04.2015 12:00:00

Mothern 29.04.2015 13:00:00 Mothern 01.05.2015 07:30:00

Mothern 02.05.2015 08:30:00 Mothern 03.05.2015 19:00:00

Mothern 04.05.2015 11:00:00 Mothern 05.05.2015 07:00:00

Mothern 06.05.2015 08:00:00 Mothern 07.05.2015 06:00:00

Mothern 08.05.2015 07:00:00 Mothern 09.05.2015 10:00:00

Mothern 10.05.2015 06:30:00 Mothern 11.05.2015 07:00:00

Mothern 12.05.2015 11:00:00 Mothern 14.05.2015 08:00:00

Mothern 15.05.2015 06:00:00 Mothern 16.05.2015 12:00:00

Mothern 02.04.2015 10:00:00 Mothern 16.04.2015 04:30:00

Mothern 30.04.2015 09:30:00 Mothern 17.05.2015 06:00:00

Mothern 02.06.2015 21:00:00 Mothern 20.06.2015 10:00:00

Mothern 18.05.2015 14:00:00 Mothern 19.05.2015 12:30:00

Mothern 20.05.2015 11:00:00 Mothern 21.05.2015 16:00:00

Mothern 22.05.2015 10:00:00 Mothern 23.05.2015 09:00:00

Mothern 24.05.2015 17:30:00 Mothern 25.05.2015 23:00:00

Mothern 26.05.2015 22:00:00 Mothern 27.05.2015 03:00:00

Mothern 28.05.2015 04:00:00 Mothern 29.05.2015 05:00:00

Mothern 30.05.2015 17:00:00 Mothern 31.05.2015 22:30:00

Mothern 01.06.2015 16:30:00 Mothern 03.06.2015 22:00:00

Mothern 04.06.2015 09:00:00 Mothern 05.06.2015 20:00:00



B ANNOTATED TIMES AND DATES 55

Mothern 06.06.2015 22:00:00 Mothern 07.06.2015 06:30:00

Mothern 08.06.2015 08:30:00 Mothern 09.06.2015 15:30:00

Mothern 10.06.2015 09:30:00 Mothern 11.06.2015 15:30:00

Mothern 11.06.2015 18:30:00 Mothern 12.06.2015 11:30:00

Mothern 13.06.2015 10:30:00 Mothern 14.06.2015 13:00:00

Mothern 15.06.2015 15:00:00 Mothern 16.06.2015 20:30:00

Mothern 17.06.2015 14:00:00 Mothern 18.06.2015 14:30:00

Mothern 19.06.2015 13:00:00 Mothern 21.06.2015 12:30:00

Mothern 22.06.2015 14:30:00 Sauer 11.03.2015 19:30:00

Sauer 11.03.2015 20:00:00 Sauer 17.03.2015 20:30:00

Sauer 17.03.2015 21:00:00 Sauer 17.03.2015 21:30:00

Sauer 17.03.2015 22:00:00 Sauer 17.03.2015 22:30:00

Sauer 17.03.2015 23:00:00 Sauer 17.03.2015 23:30:00

Sauer 18.03.2015 01:00:00 Sauer 18.03.2015 01:30:00

Sauer 18.03.2015 19:00:00 Sauer 18.03.2015 20:30:00

Table 9 shows the times that were used to create the detector dataset. The times are
shown in no particular order.

Table 9: Times that were used to create the detector dataset.

Site Date Time Site Date Time

Mothern 14.05.2015 06:00:00 Mothern 13.04.2015 10:30:00

Mothern 11.04.2015 18:30:00 Mothern 22.04.2015 15:00:00

Mothern 14.04.2015 13:00:00 Mothern 15.04.2015 09:00:00

Mothern 17.04.2015 11:00:00 Mothern 21.04.2015 10:00:00

Mothern 05.05.2015 05:30:00 Mothern 07.05.2015 06:00:00

Mothern 09.05.2015 10:00:00 Mothern 11.05.2015 14:30:00

Mothern 19.03.2015 06:00:00 Mothern 04.04.2015 12:30:00

Mothern 04.04.2015 17:30:00 Mothern 03.05.2015 07:00:00

Mothern 15.05.2015 06:00:00 Mothern 12.04.2015 07:30:00

Mothern 12.04.2015 18:00:00 Mothern 13.04.2015 08:00:00

Mothern 03.05.2015 08:30:00 Mothern 04.05.2015 11:00:00

Mothern 23.05.2015 08:00:00 Mothern 23.05.2015 09:00:00

Mothern 24.05.2015 12:00:00 Mothern 14.04.2015 06:00:00

Mothern 12.05.2015 11:00:00 Mothern 05.05.2015 07:00:00

Mothern 14.05.2015 08:00:00 Mothern 11.03.2015 13:00:00

Mothern 12.03.2015 09:00:00 Mothern 13.03.2015 05:30:00

Mothern 14.03.2015 11:00:00 Mothern 15.03.2015 08:00:00

Mothern 18.03.2015 09:30:00 Mothern 04.04.2015 15:00:00

Mothern 11.04.2015 19:00:00 Mothern 18.04.2015 15:00:00

Mothern 19.04.2015 12:00:00 Mothern 20.04.2015 16:30:00

Mothern 21.04.2015 09:00:00 Mothern 13.03.2015 23:00:00

Mothern 20.03.2015 17:00:00 Mothern 27.03.2015 05:00:00

Mothern 23.04.2015 11:00:00 Mothern 23.04.2015 14:30:00

Mothern 24.04.2015 12:00:00 Mothern 25.04.2015 17:30:00

Mothern 26.04.2015 12:30:00 Mothern 27.04.2015 06:00:00

Mothern 30.04.2015 09:30:00 Mothern 01.05.2015 07:30:00

Mothern 02.05.2015 08:30:00 Mothern 28.03.2015 07:30:00



B ANNOTATED TIMES AND DATES 56

Mothern 29.03.2015 09:30:00 Mothern 31.03.2015 20:00:00

Mothern 01.04.2015 08:00:00 Mothern 01.04.2015 15:00:00

Mothern 02.04.2015 10:00:00 Mothern 03.04.2015 07:00:00

Mothern 05.04.2015 09:00:00 Mothern 06.04.2015 10:00:00

Mothern 07.04.2015 19:00:00 Mothern 08.04.2015 12:00:00

Mothern 08.04.2015 20:00:00 Mothern 09.04.2015 13:00:00

Mothern 10.04.2015 07:00:00 Mothern 03.05.2015 19:00:00

Mothern 28.04.2015 09:30:00 Mothern 28.04.2015 12:00:00

Mothern 29.04.2015 13:00:00 Mothern 16.05.2015 12:00:00

Mothern 17.05.2015 06:00:00 Mothern 18.05.2015 14:00:00

Mothern 19.05.2015 12:30:00 Mothern 20.05.2015 11:00:00

Mothern 21.05.2015 16:00:00 Mothern 22.05.2015 10:00:00

Mothern 24.05.2015 17:30:00 Mothern 25.05.2015 23:00:00

Mothern 26.05.2015 22:00:00 Mothern 28.05.2015 04:00:00

Mothern 30.05.2015 17:00:00 Mothern 31.05.2015 22:30:00

Mothern 01.06.2015 16:30:00 Mothern 02.06.2015 21:00:00

Mothern 29.05.2015 05:00:00 Mothern 03.06.2015 22:00:00

Mothern 04.06.2015 09:00:00 Mothern 05.06.2015 20:00:00

Mothern 07.06.2015 06:30:00 Mothern 06.06.2015 22:00:00

Mothern 08.06.2015 08:30:00 Mothern 09.06.2015 15:30:00

Mothern 10.06.2015 09:30:00 Mothern 11.06.2015 15:30:00

Mothern 12.06.2015 11:30:00 Mothern 14.06.2015 13:00:00

Mothern 15.06.2015 15:00:00 Mothern 16.06.2015 20:30:00

Mothern 11.06.2015 18:30:00 Mothern 13.06.2015 10:30:00

Mothern 17.06.2015 14:00:00 Mothern 18.06.2015 14:30:00

Mothern 19.06.2015 13:00:00 Mothern 20.06.2015 10:00:00

Mothern 21.06.2015 12:30:00 Mothern 22.06.2015 14:30:00

Mothern 16.04.2015 04:30:00 Mothern 06.05.2015 08:00:00

Mothern 08.05.2015 07:00:00 Mothern 10.05.2015 06:30:00

Mothern 11.05.2015 07:00:00 Mothern 27.05.2015 03:00:00

Sauer 11.03.2015 19:30:00 Sauer 11.03.2015 20:00:00

Sauer 17.03.2015 20:30:00 Sauer 17.03.2015 21:00:00

Sauer 17.03.2015 21:30:00 Sauer 17.03.2015 22:00:00

Sauer 17.03.2015 22:30:00 Sauer 17.03.2015 23:00:00

Sauer 17.03.2015 23:30:00 Sauer 18.03.2015 01:00:00

Sauer 18.03.2015 01:30:00 Sauer 18.03.2015 19:00:00

Sauer 18.03.2015 20:30:00 - - -



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Østen Finnes Holkestad

A deep learning based approach to
detect the common spadefoot toad

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Guillaume Dutilleux

June 2021

M
as

te
r’s

 th
es

is


	Introduction
	Bioacoustic monitoring
	Earlier reasearch on classification of bioacoustic data
	Earlier research on the common spadefoot toad
	Aim of the thesis

	Background
	Bioacoustics
	The different call types of the P. fuscus

	Deep learning
	Deep learning and neural networks
	Convolutional Neural Networks
	Pooling layers
	Backpropagation
	Loss function
	Optimization algorithm
	Regularization in neural networks
	Activation functions
	Transfer learning
	Metrics


	Methodology
	Equipment and code libraries
	About the data
	Data collection
	Soundscape at the sites
	Labeling of the data

	Pre-processing
	Audio preparations

	Architecture: EfficientNet
	Training
	Data preparations
	Training on EfficientNet

	Testing
	Ground truth/testing data
	Testing procedure


	Results
	Results from the training
	Detection of adult P. fuscus
	Detection of juvenile P. fuscus

	Results from the testing
	Detection of adult P. fuscus
	True positives in adult detection
	False positives in adult detection
	False negatives in the adult detector

	Detection of juvenile P. fuscus

	Discussion
	Testing of the adult detection
	True positives in the adult detector
	False positives in the adult detector
	False negatives in the adult detector
	Extraction of the ground truth
	Comparison to software detection

	Detection of juvenile P. fuscus
	Training of juvenile classifier
	Testing of juvenile classifier

	Future work
	Possible improvements of the data
	Adult detection
	Juvenile detection


	Conclusion
	References
	Appendix
	Juvenile sounds used
	Annotated times and dates

