
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Janine Rugayan

A Deep Learning Approach to Spoken
Language Acquisition

Master’s thesis in Electronic Systems Design
Supervisor: Torbjørn Karl Svendsen

June 2021

M
as

te
r’s

 th
es

is

Janine Rugayan

A Deep Learning Approach to Spoken
Language Acquisition

Master’s thesis in Electronic Systems Design
Supervisor: Torbjørn Karl Svendsen
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Spoken Language Acquisition

Abstract

The process of human spoken language acquisition is still being studied up to this day—
the most popular theory from B.F. Skinner describes the language learning of infants
as a verbal behavior controlled by consequences. This thesis explores the possibility of
applying the same principle to machines by creating a system that simulates spoken
language acquisition using reinforcement learning.

The developed system is mainly comprised of unsupervised word segmentation
and language learning. VectorQuantized Autoregressive Predictive Coding (VQAPC)
model is utilized to implement unsupervised word segmentation. While the language
learning part is implemented using the reinforcement learning method called deep Q
network (DQN). The input to the system is a combined sound file consisted of randomly
shuffled utterances of digits ”zero” to ”nine”, and various background noises. It is akin
to what an infant would hear during the early stages of learning a language. The virtual
agent learns the meanings of the discovered spoken digits through accomplishing the
task of ”reciting” them in ascending order.

Different experiments were executed to test the system. The best results for word
segmentation were achieved using the VQAPCmodel with the WordSeg Adaptor Gram
mar (AG) algorithm. Moreover, increasing the recognition rate of the word segmen
tation was observed to improve the reinforcement learning results only to a certain
degree. Finally, it was found that large action space sizes can hinder DQN model con
vergence.

In summary, the thesis achieved spoken language acquisition in machines in line
with Skinner’s theory by performing unsupervised word segmentation on a long speech
clip and employing reinforcement learning to ground the discovered spoken words.
Moreover, it managed to utilize VQAPC for unsupervised word segmentation and dis
covered factors that can affect reinforcement learning performance.

Keywords: Reinforcement learning, unsupervised word segmentation, deepQ net
work, spoken language acquisition, vectorquantized neural networks

v

Spoken Language Acquisition

Acknowledgment

Firstly, I would like to sincerely thank my supervisor, professor Torbjørn Karl Svendsen
for all the guidance and help he has provided throughout this master thesis. I would
also like to extend my appreciation to Andy Chung and Hermann Kamper for answering
all my queries and sharing their knowledge with me.

Next, I would like to thank Matúš Košút for all the support he has provided me.
You’ve been a rock when things get super stressful. Also, thanks for being a nerd and
helping me when I get errors in my code.

Also, thanks to my second family here in Europe, my friends Kevin, Romeo, Patrick,
Eunice, Marvin, Jorge, and Priye. Thanks for all the adventures we had, and looking
forward to a lot more in the future.

Finally, I would like to thank my family, especially my parents, for their undying
love and support, and my sister for her neverending teasing that makes my life fun.
None of this would have been possible without them.

vi

Spoken Language Acquisition

Contents

List of Figures . xi

List of Tables . xiii

1 Introduction . 1

1.1 Problem Description . 1

1.2 Motivation . 2

1.3 Thesis Scope . 2

1.4 Thesis Outline . 3

2 Theoretical background . 5

2.1 Reinforcement Learning . 5

2.1.1 Markov Process . 6

2.1.2 Markov Reward Process . 6

2.1.3 Markov Decision Process . 8

2.2 QLearning . 10

2.2.1 Tabular Qlearning . 11

2.2.2 Deep QNetwork . 11

2.3 VectorQuantized Autoregressive Predictive Coding 13

2.3.1 Autoregressive Predictive Coding 13

2.3.2 VectorQuantized Autoregressive Predictive Coding 14

2.4 VQ Segmentation . 16

2.5 WordSeg . 18

2.5.1 Transitional Probabilities . 18

2.5.2 Adaptor Grammar . 19

vii

Spoken Language Acquisition

2.6 Embedded Segmental Kmeans Model . 21

3 Related work . 24

4 Methodology . 27

4.1 The Task . 27

4.2 Learning Method . 27

5 Implementation . 29

5.1 Speech Data . 29

5.2 Architecture . 29

5.2.1 Unsupervised Word Segmentation 29

5.2.2 Language Learning . 33

6 Experiments and results . 37

6.1 Modifying the code book size of the VQAPC model 37

6.1.1 Setup . 37

6.1.2 Results . 38

6.2 Simulated word segmentation results . 45

6.2.1 Setup . 45

6.2.2 Results . 46

6.3 VQAPC versus ES kmeans for word segmentation 55

6.3.1 Setup . 55

6.3.2 Results . 55

7 Discussion and Conclusion . 58

7.1 Discussion . 58

7.2 Conclusion . 61

7.3 Future work . 61

Appendices . 66

A Diagrams and Plots . 67

viii

Spoken Language Acquisition

B Tables . 69

ix

Spoken Language Acquisition

List of Figures

1 Model for spoken language acquisition in machines. 2

2 General overview of the system developed for the master’s thesis. . . . 3

3 Reinforcement learning diagram. 5

4 Illustration of MDP transition matrix from Lapan, Deep Reinforcement
Learning HandsOn. 8

5 VQAPC diagram from Chung et.al., VectorQuantized Autoregressive Pre
dictive Coding. 14

6 Embedded segmental Kmeans diagram from Kamper et al., An embedded
segmental Kmeans model for unsupervised segmentation and clustering
of speech. 21

7 Diagram of spoken language acquisition using reinforcement learning. . 28

8 General overview of the system architecture. 30

9 Reinforcement learning results using WordSeg AG for codebook sizes 128,
256, and 512. 39

10 Reinforcement learning results using WordSeg TP for codebook sizes 128,
256, and 512. 42

11 Comparison of all reinforcement learning results for codebook sizes 128,
256, and 512. 44

12 Reinforcement learning results for simulated word segmentation with recog
nition rate from 10% to 100%. 50

13 Reinforcement learning results for simulated word segmentation with recog
nition rate from 10% to 20%. 51

14 Reinforcement learning results for simulated word segmentation with recog
nition rate from 50% to 100%. 52

x

Spoken Language Acquisition

15 Reinforcement learning results for simulated word segmentation with dif
ferent action space sizes. 53

16 Reinforcement learning results for simulated word segmentation with ac
tion space sizes from 1000 to 1300. 54

17 Reinforcement learning results for VQ segmentation and ES kmeans. . . 57

18 System architecture overview showing the main processes and the corre
sponding input and output. 68

xi

Spoken Language Acquisition

List of Tables

1 Default parameters for WordSeg AG. 20

2 Parameters for the VQAPC model initialization and training. 30

3 Parameters for the phone segmentation algorithm. 32

4 Parameters for WordSeg TP segment function. 32

5 Parameters for WordSeg AG segment function 33

6 Hyperparameters for the deep Qnetwork. 35

7 Segmentation results using WordSeg AG and codebook size 128. 38

8 Segmentation results using WordSeg AG and codebook size 256. 38

9 Segmentation results using WordSeg AG and codebook size 512. 40

10 Average of segmentation results using WordSeg AG. 40

11 Summary of segmentation results using WordSeg TP. 40

12 Settings for simulating word segmentation results with varying recogni
tion rates. 45

13 Settings for simulating word segmentation results with varying number
of segments or action space sizes. 46

14 Settings for simulating recognition rates 12% to 18%. 47

15 Mean and standard deviation of reinforcement learning results from the
simulated word segmentation with varying recognition rates. 48

16 Settings for simulating action space sizes 1100 to 1300. 48

17 Mean and standard deviation of reinforcement learning results from the
simulated word segmentation with different action space sizes. 49

18 Segmentation results using ES kmeans for word segmentation. 55

19 Average segmentation results of VQ segmentation and ES kmeans. . . 56

xii

Spoken Language Acquisition

20 Segmentation results using WordSeg AG and codebook size 128. 69

21 Segmentation results using WordSeg AG and codebook size 256. 70

22 Segmentation results using WordSeg AG and codebook size 512. 70

23 Segmentation results using WordSeg TP. 71

24 Segmentation results using ES kmeans for word segmentation. 71

xiii

Spoken Language Acquisition

Abbreviations

ACORNS Acquisition of communication and recognition skills. 25

AG Adaptor grammar. 18, 19, 20, 32, 33, 37, 38, 41, 43, 55, 58, 61

APC Autoregressive Predictive Coding. 13, 14, 15, 31

API application programming interface. 33

ASR automatic speech recognition. 28, 33

BTP backward transitional probabilities. 18, 19

DQN Deep QNetwork. 2, 3, 11, 12, 28, 34, 35, 37, 38, 41, 43, 45, 46, 55, 59, 61

ES Embedded Segmental. 2, 21, 22, 55, 56, 60, 61

FTP forward transitional probabilities. 18, 19, 32

LM Language models. 13

MDP Markov Decision Process. 8, 9

MI mutual information. 18, 19

MP Markov Process. 6

MRP Markov Reward Process. 6, 7, 8, 9

RNN Recurrent Neural Network. 13, 30, 31

SGD stochastic gradient descent. 11, 12, 35, 59

TP Transitional probabilities. 18, 19, 32, 33, 37, 41, 58, 59

VQ vector quantization. 3, 15, 16, 30, 31, 32, 55, 56, 58, 60, 61

VQAPC VectorQuantized Autoregressive Predictive Coding. 3, 13, 14, 15, 16, 29,
37, 60, 61

xiv

Spoken Language Acquisition

1 Introduction

Human spoken language acquisition is still being researched up to this date. A the
ory that has been widely accepted is B.F. Skinner’s verbal behavior. It explains how
children can learn a language from scratch. It extends his general theory of condi
tioning called operant conditioning, wherein the organism releases an operant even
without perceiving a stimulus. The operant or response is learned by the organism
through reinforcement. A basic example is an infant that needs to drink milk. It learns
to say ”want milk” due to repeated occurrences of receiving milk whenever it utters
the phrase. The verbal behavior is conditioned through the reward received by the
infant.

Based on Skinner’s theory, verbal behavior can be considered just like any other
behavior wherein the outcome controls it. It is established through positive reinforce
ment or rewards, or it is diminished by negative reinforcement or punishments [1].

Can we use the same principle to teach robots a language? This master’s thesis
explores the possibility.

1.1 Problem Description

Two main facets have to be dealt with to delve into spoken language acquisition in
machines, and Figure 1 shows a general model for it.

First, it is necessary to have the ability to discover words from a continuous speech
in an unsupervised manner. The idea is to mimic the scenario of infants constantly
hearing speech and eventually picking up some of the words on their own. The next
thing to do is to make sense of these words. The second facet of the endeavor is
establishing an approach that would attach meanings to the discovered words. The
machine’s task is to identify which word segments are valid, learn what they mean,
and discard the nonvalid segments.

1

Spoken Language Acquisition

Figure 1: Model for spoken language acquisition in machines.

1.2 Motivation

To this date, there is no governing theory that explains human spoken language acqui
sition, and the equivalent research in machines is an emerging field itself. There has
been much work when it comes to simulating language learning from text. However,
it is pretty uncommon to find one that executes it directly from speech signals.

As previously mentioned, the master’s thesis adopts Skinner’s theory of reinforcing
verbal behavior to simulate language learning in machines. The thesis aims to develop
a system that would effectively segment continuous speech in an unsupervised man
ner and simulate language learning using reinforcement learning. The objective is to
examine the process of spoken language acquisition in machines and the factors that
can influence its performance.

1.3 Thesis Scope

The paper Spoken Language Acquisition Based on Reinforcement Learning and Word
Unit Segmentation [2] from the Tokyo Institute of Technology is the inspiration for the
thesis. They have proposed to implement the two parts of the model in Figure 1 in the
following ways:

(i) Word discovery is implemented using Embedded Segmental (ES) Kmeansmodel [3]
to segment the combined speech file in an unsupervised way.

(ii) Language learning is implemented using reinforcement learning through the Deep
QNetwork (DQN) algorithm [4] which combines Qlearning and a deep neural
network.

2

Spoken Language Acquisition

Figure 2: General overview of the system developed for the master’s thesis.

The master’s thesis involves the modification of these two parts. A general overview
of the system developed is illustrated in Figure 2.

For the word discover part, the thesis implements a segmentation method based on
vector quantization (VQ). A novel architecture called VectorQuantized Autoregressive
Predictive Coding (VQAPC) [5] is used to train a vectorquantized neural network.
The trained model would be used for feature extraction of the speech signal, while the
model’s codebook is used to perform phone segmentation and assign code indices to
each phone segment. Subsequently, word segmentation is performed with the Word
Seg package [6] using the phone segment indices as input.

For the language learning part, a new task is defined for the agent wherein it needs
to enumerate in ascending order the digits ”zero” until ”nine”. As such, the definitions of
the agent and the environment for the DQN algorithm are modified. It should be noted
that the speechtotext recognition block in Figure 2 transforms an audio waveform
into its symbolic equivalent, which is text. It does not attach any meaning to the words.

1.4 Thesis Outline

The rest of the thesis is organized in the following manner. Section 2 presents the the
oretical background discussing concepts related to reinforcement learning and vector
quantized neural networks. Related works follow it in section 3. Then, the details for
the methodology, such as the task and the learning method, are elaborated in sec

3

Spoken Language Acquisition

tion 4. The implementation is discussed in section 5, wherein crucial parameters are
highlighted. Then, various experiments are documented in section 6. The setup for
each experiment is defined and followed by the presentation of the results. Finally, a
concluding discussion is given in section 7, along with some proposals for future work.
There are supplementary diagrams and tables included in the appendices.

4

Spoken Language Acquisition

2 Theoretical background

2.1 Reinforcement Learning

Figure 3: Reinforcement learning diagram.

Reinforcement learning allows the improvement of machine performance over time.
It is an approach wherein intelligent programs, called agents, perform actions in a
known or unknown environment [7].

The agent and the environment are the two major components of reinforcement
learning. The agent interacts with the environment through performing actions and
gathering observations. It’s aim is to solve a problem and perform the solution in
the most efficient way. On the other hand, the environment is everything outside the
agent. It provides observations and feedback to the agent. It can be 2dimensional or
3dimensional worlds, or gamebased scenarios [8].

The environment provides either positive or negative feedback to the agent depend
ing on the action it performed. Through continuous interaction with the environment,
the agent adapts and learns based on the feedback it has received [7].

Other components of reinforcement learning are actions, rewards and observations.
These are illustrated in Figure 3. Actions, which can either be discrete or continuous,

5

Spoken Language Acquisition

are the things that can be executed in the environment by the agent. While rewards and
observations are communication channels between the agent and the environment.

Rewards is a way for the environment to provide feedback to the agent about the
success of its latest activity. It is a scalar value that can be negative or positive. The
agent obtains rewards whenever it interacts with the environment, or they can be
given by the environment during specific timestamps. The goal of the agent is to
accumulate the largest total reward through the series of actions it executes. This is
what motivates the learning process of the agent. While the second communication
channel for the agent is observations, through which the environment provides the
agent information about what is happening around it [8].

The following sections discuss concepts that form the theoretical foundation of re
inforcement learning. It starts with the simplest one, Markov Process, which, when
expanded to include rewards, turns into a Markov reward process. Another layer of
complexity is added by including actions in the Markov reward process, transforming
it to a Markov Decision Process.

2.1.1 Markov Process

The Markov Process (MP), also known as the Markov chain, is a system that conforms
to the Markov property. Any observations made of the system is referred to as states.
While state space is the set of all the possible states for the system. In MP, the state
space needs to be finite. Over time, a sequence of observations forms a chain of states
which is referred to as history.

The Markov property states that from any observable state, the future dynamics of
the system is dependent only on the state itself. As such, the property requires unique
and distinguishable states. By fulfilling the Markov property, the future dynamics of
the system can be modelled with just one state, and not requiring the whole history.
A transition matrix is used to summarize the transition probabilities between states
into a square matrix. The size of the matrix is NxN , where N denotes the number
of states. In row i and column j of the matrix, each cell holds the probability of the
system moving from state i to state j [8].

2.1.2 Markov Reward Process

The MP model is expanded by adding value to the transitions form one state to another.
In this way, rewards are introduced, and the simple MP becomes a Markov Reward
Process (MRP).

6

Spoken Language Acquisition

In particular, there are two components added to the model, namely reward and
discount factor. Reward is just a number which can be large or small, positive or nega
tive. It can take on different types of representation. However, the most common way
is to present it as a matrix like the transition matrix. Row i and column j contains the
rewards for changing over from state i to state j [8].

On the other hand, the discount factor γ (gamma) is a single number that depicts
the agent’s foresightedness. Its value can range from 0 to 1. To understand its purpose,
a return value at time t for every episode is to be examined. Return is calculated using
the formula [8]:

Gt = Rt+1 + γRt+2 + ... =

∞∑

k=0

γkRt+k+1. (2.1)

Equation 2.1 computes the return for every time step as a sum of succeeding or
future rewards. However, rewards that are k time steps away from the starting point t
are multiplied by the discount factor γ raised to k. Inspecting the function of γ, it can be
seen that if γ = 1, then the return value Gt would just be equal to the sum of all future
rewards. This means that the agent can perfectly see any future rewards. Conversely,
if γ = 0, then the return value Gt would just be the immediate reward without any
consideration for any future rewards. The agent has complete shortsightedness. In
functional applications, the values for the discount factor is commonly set in between 0

and 1, like 0.9 or 0.99. The discount factor can be thought of as a measure of how much
the agent looks into the future when estimating the future return. As γ gets closer to
1, more of the future steps are taken into consideration [8].

The return value is not very practical because it is defined for every chain observed
from the MRP. As such, it can extensively diverge even for the same state. A much more
practical quantity is the value of state. It is defined as the mathematical expectation
of return for any state [8], where:

V (s) = E[G|St = s]. (2.2)

Equation 2.2 shows that the value of state V (s) for every state s is the expected or
average return acquired by going through the MRP.

7

Spoken Language Acquisition

2.1.3 Markov Decision Process

In order to transform MRP into a Markov Decision Process (MDP), actions are added
into the model. The first consideration is to have a finite set of actions, also referred
to as the agent’s action space.

An extra dimension is required for the transition matrix in order to include action.
The agent is no longer an uninvolved observer of the state transitions, but now has
the power to choose with action to take at every time step [8].

Figure 4: Illustration of MDP transition matrix from Lapan, Deep Reinforcement Learn
ing HandsOn.

To better visualize the addition of the action dimension, Figure 4 shows a 3dimensional
transition matrix. The depth dimension encompasses the possible actions (k) the agent
can choose to take. The height dimension is the source state (i), and the width is the
target state (j). When the agent chooses an action, the probabilities of the target states
can be altered. By having a 3D transition matrix, the MDP can cover all the intricacies
of the environment and its range of possible feedback to the agent’s actions.

Furthermore, to completely turn MRP into a MDP, the reward matrix is updated
as well with the addition of actions, like that of the transition matrix. As such, the
attainable reward is dependent on the agent’s state and the action it has chosen to
end up in this state [8].

Another main concept for MDP and reinforcement learning is the policy. It is defined
as the set of rules that determine how the agent acts in the environment. It determines
the amount of return obtained by the agent. So, it is vital that a good policy is found
since it ensures that the agent’s goal of accumulating the largest return is achieved.

8

Spoken Language Acquisition

The formal definition of policy is as follows:

π(a|s) = P [At = a|St = s], (2.3)

wherein it is the probability distribution over actions given every possible state [8].
If the policy is constant, the MDP reduces to MRP. The transition and reward matrices
will not have the action dimension.

9

Spoken Language Acquisition

2.2 QLearning

The reinforcement learning method used for this project is Qlearning. Its basic prin
ciple is encompassed by the Bellman Equation defined as

V0 = max
aϵA

Es∼S [rs,a + γVs], (2.4)

where V0 is the value of the state, rs,a is the reward, γ is the discount factor, and
Vs is the value of the next state [8]. Equation 2.4 characterizes the ideal value of the
state V0 as the action which maximizes the immediate expected reward rs,a plus the
discounted onestep longterm reward Vs. These values of the state not only provides
the best attainable reward but also the best policy that achieves this reward. With the
knowledge of every state’s value, the agent will be able to map the actions that will
lead to earning the largest possible reward.

In Qlearning, the value of action Q(s, a) is considered. It indicates the total reward
that can be earned in state s by executing action a. It is defined by the equation,

Q(s, a) = Es′∼S [rs,a + γVs′], (2.5)

wherein the Qvalue is equivalent to the expected immediate reward rs,a plus the
discounted longterm reward γVs′ for the target state [8]. By using the Bellman ap
proximation, the resulting Qvalues are frequently very similar because the current
state and the target state are only one step apart. The Qvalue of the stateaction pair
can also be expressed via itself through the following equations [8]:

Vs = max
aϵA

Qs,a (2.6)

Q(s, a) = rs,a + γmax
a′ϵA

Q(s′, a′). (2.7)

The value of state can defined using the value of action as seen in Equation 2.6,
wherein it is equivalent to the action that maximizes the Qvalue. Using this same
principle for the value of the destination state, it is seen in Equation 2.7 that the
Qvalue of the stateaction pair can be expressed via itself.

10

Spoken Language Acquisition

2.2.1 Tabular Qlearning

One method of Qlearning is tabular Qlearning wherein a mapping of the states and
their corresponding Qvalues are stored in a table. The algorithm starts with an empty
table for the Qvalues. Then, during each interaction with the environment, the agent
acquires the data for the state, action, reward, and new state. At this point, the agent
decides which action to take. Then the Qvalues are updated using the Bellman ap
proximation with the learning rate α incorporated as follows [8]:

Qs,a ← (1− α)Qs,a + α(r + γmax
a′ϵA

Qs′,a′). (2.8)

The learning rate allows the old and new Qvalues to be combined. Its value can
range from 0 to 1. As seen in Equation 2.8. The old Qvalues are incorporated as (1−
α)Qs,a. While the new Qvalues are incorporated as α(r+ γmax

a′ϵA
Qs′,a′). Simply replacing

the old Qvalues with the new ones can cause training to become unstable. The whole
process is repeated until the condition for convergence is met [8]. However, tabular
Qlearning struggles when the state space is very large. For this case, deepQ learning
is more suitable .

2.2.2 Deep QNetwork

In deep Qlearning, values are mapped to stateaction pairs using a nonlinear repre
sentation, which is approximated and trained using deep neural networks [8]. Hence
forth, it is referred to as Deep QNetwork (DQN). For a successful training, the epsilon
greedy method, replay buffer, and target network need to be implemented.

Firstly, the epsilongreedymethod solves the exploration versus exploitation dilemma.
The epsilongreedy algorithm makes it possible for the agent to switch between de
ciding randomly and deciding based on the policy Qnetwork [8]. At the beginning of
training when the Qvalues are still not finetuned, it is better for the agent to act
randomly as it allows the gathering of information about the environment states in
a uniformly distributed manner. However, as the training progress, the Qvalues are
more calibrated, and makes it more efficient to decide based on this rather than acting
randomly.

Next, the replay buffer enables the implementation of the stochastic gradient de
scent (SGD) algorithm for updating the Qvalues [8]. The training data available for
the SGD update does not fulfill the requirement of being independent and identically
distributed. The data samples are gathered during the same episode, thus, making

11

Spoken Language Acquisition

them very close to each other. Moreover, the training data available does not have
the same distribution as the sample data of the optimal policy, but instead has a
distribution based on the current policy. The replay buffer mitigates this problem by
storing past experiences from different episodes, and using this buffer as source for
the training data instead of sampling it from the latest experience.

Lastly, the target network makes training of the neural networks more stable by
using a copy of the policy network for the target Qvalues [8]. As mentioned previously,
the Qvalues in the Bellman approximation are usually very similar because they are
only one step apart. By synchronizing the target network with the policy network only
once every N steps, the target network will have Qvalues that are N steps apart from
the policy network Qvalues.

The whole DQN algorithm used in this project is based on the paper of Mnih et
al. [4]. It uses two deep neural networks to estimate the Qvalues. One is used for the
policy Qnetwork, and the other is used for the target network. The policy Qnetwork
Q is used to decide which action to take. It has weights denoted by θ. On the other
hand, the target network Q̂ is used to generate the target Qvalues for learning. It
has weights denoted by θ−. Every X number of updates, the weights θ from the policy
network Q are copied to the target network Q̂.

y = r + γmax
a′ϵA

Q̂(s′, a′; θ−) (2.9)

L(θ) = (y −Q(s, a; θ))2 (2.10)

Equation 2.9 [2] above denotes the Bellman approximation of the target Qvalue,
where the reward for the current action a is r, the discount factor is γ, and the ex
pected state and action for the next step are s′ and a′, respectively. SGD is used to
update the weights θ of the policy network Q. The goal is to minimize the loss given
in Equation 2.10 [2] as the difference between the target Qvalue y, and the current
Qvalue.

12

Spoken Language Acquisition

2.3 VectorQuantized Autoregressive Predictive Coding

VQAPC is a model from Chung et al. that produces encoded representations wherein
the amount of information contained can be modified based on the size of the codebook
that quantizes the speech signal [5]. As the name implies, it is based on Autoregressive
Predictive Coding (APC), with the addition of having quantization layers.

2.3.1 Autoregressive Predictive Coding

APC is an architecture developed to facilitate unsupervised learning of speech repre
sentations. It focuses on predicting the spectrum of a future frame. Language mod
els (LM) for text highly influences its methodology. Given a sequence of N tokens
(t1, t2, ..., tN), a LM assigns a probability to the entire sequence. This probability is de
rived by modeling the probability of token tk as:

P (t1, t2, ..., tN) =
N∏

k=1

P (tk|t1, t2, ..., tk−1), (2.11)

wherein t1, t2, ..., tk−1 are the previous tokens prior to tk. Training is done by mini
mizing the negative loglikelihood which is defined as,

N∑

k=1

−logP (tk|t1, ..., tk−1; θt, θrnn, θs), (2.12)

wherein θt, θrnn, and θs are the parameters for optimization. The lookup table for
mapping tokens into a vector is denoted by θt. On the other hand, the history of token
sequences up to the current time step is summarized by a Recurrent Neural Network
(RNN) denoted by θrnn. Finally, at the output of each RNN time step, a Softmax layer
is appended to estimate the probability distribution over the tokens. This is denoted
by θs [9].

The concept of neural LM described above is the inspiration for APC. The acoustic
sequence’s temporal information is modeled by a RNN. However, the lookup table is
not required in APC because each frame in the speech data is considered as one token
tk, instead of considering each word or character. These frames are then fed directly
into the RNN θrnn. Furthermore, the Softmax layer is replaced by a regression layer θr
because there is no fixed set of target tokens. This results to using linear mapping at
each time step as the RNN output tries to match the target frame. In summary, the
parameters to optimize in APC are θrnn and θr [9].

13

Spoken Language Acquisition

The APC model is set to predict n frames into the future instead of just predicting
the next one. It ensures that the model has a more universal structure, and not focus
on the localized information. The speech signal’s feature vectors (x1, x2, ..., xT) is the
input to the model. For each feature vector xt from the sequence, the model outputs a
prediction yt. These two vectors have the same dimension. Optimization of the model
is implemented by minimizing the L1 loss denoted as:

T−n∑

i=1

|xi+n − yi| , (2.13)

wherein (x1, x2, ..., xT) is the sequence of input feature vectors, (y1, y2, ..., yT) is the
predicted sequence, and T is the sequence length [9]. It is illustrated in Equation 2.13
that L1 loss is the difference between the target future frame and the predicted frame.

2.3.2 VectorQuantized Autoregressive Predictive Coding

Figure 5: VQAPC diagram from Chung et.al., VectorQuantized Autoregressive Pre
dictive Coding.

By adding quantization layer(s) to APC, the VQAPC architecture is achieved. As
discussed earlier, APC uses an autoregressive neural model gAR to capture the temporal
information of the acoustic sequence. Features can be extracted by taking the hidden
representations of gAR after it is trained.

14

Spoken Language Acquisition

To create VQAPC, consider gAR is made up of L layers, and the lth layer is denoted
as g(l)AR. Each g

(l)
AR layer is able to produce a sequence of hidden vectors h

(l) based on the
input feature vector sequence to gAR. In addition, a VQ layer is appended after any of
the g

(l)
AR layers. This transforms elements of the hidden vectors into an equivalent one

based on a codebook. For example, at time t, the hidden vector element h(l)
t becomes

z
(l)
t which is one of the elements in codebook c1, ..., cV . The next layer g

(l+1)
AR receives

the resulting quantized hidden vectors as the input. The feedforward process then
continues. An example is shown in Figure 5, where the VQ layer is inserted after the
first layer. VQAPC is trained the same way as APC wherein the objective is to minimize
the L1 loss [5].

To determine the discrete codebook variables, GumbelSoftmax with the straight
through estimator [10] is used such that it can be done in a fully differentiable way.
Explicitly, the hidden vector h(l)

t is mapped to a vector r ϵ RV using a linear layer. During
testing, the codebook variable is chosen by taking the largest element in vector r.
During training, the ith code variable ci is selected with a probability pi denoted as:

pi =
e(ri+vi)/τ

∑V
j=1 e

(rj+vj)/τ
, (2.14)

where v = −ln(−ln(u)) ϵ RV . By sampling µ(0, 1) uniformly, the value of u is obtained.
On the other hand, the approximation’s closeness to argmax is determined by the value
of τ . The code ck is chosen during the forward pass based on k = argmaxipi. While the
true gradients of the GumbelSoftmax outputs are used during the backward pass [5].

15

Spoken Language Acquisition

2.4 VQ Segmentation

The previously discussed VQAPC model is utilized to extract the feature vectors of
speech signals. In order to perform segmentation on the continuous sequence of fea
ture vectors, a constrained optimization problem is to be resolved.

One way to implement segmentation is to divide the continuous speech represen
tation based on minimizing the sum of the squared Euclidean distances between the
feature vectors and the representative code of each segment. However, if this is the
only criterion followed, then the best segmentation would be to place each feature
vector into its own segment, and assign it the code which is closest to the feature
vector. Likewise, it ends up functioning as a standard VQ layer. As such, a constraint
in the form of duration penalty is introduced to encourage longer and fewer segments.
Additionally, a maximum limit on the number of contiguous frames or feature vectors
in the segment is put into place.

The VQ segmentation algorithm looks for the optimal segmentation that would min
imize the error function, argmins1:ME(z1:T , s1:M), where (z1, z2, ..., zT) signifies the se
quence of feature vectors, and (s1, s2, ..., sM) are the segments produced. Each segment
si is an aggregation of |si| feature vectors from the sequence z1:T , and it is assigned
a corresponding code vector ẑsi from the VQ codebook. The following equation elabo
rates on the error function to be minimized:

E(z1:T , s1:M) =
∑

siϵs1:M

∑

zjϵsi

[∥zj − ẑsi∥2 + λpen(|sj |)]. (2.15)

As seen from Equation 2.15, a penalty term is added to the squared Euclidean
distance between the feature vector and the code vector of the segment it belongs to.
The term pen(|sj |) is the penalty for |sj | frames in the segment. While, λ denotes the
penalty weight [11].

Finding the reasonable segment lengths and minimizing this error function is a
constrained optimization problem. It is solved using dynamic programming. Forward
variables αt is defined as mins1:MtE(z1:t, s1:Mt) which is the optimal segmentation’s error
up to step t. The following equation is used to calculate this:

αt =
t

min
j=1

αt−j +

K
min
k=1

∑

ziϵzt−j+1:t

[
∥zi − ek∥2 + λpen(j)

]

 . (2.16)

16

Spoken Language Acquisition

It is done recursively and starts with α0 = 0. While the succeeding αt for step t =

1, ..., T−1 are calculated according to Equation 2.16. For each αt, the resulting arg min is
noted. Then, from the final position t = T and moving towards t = 0, optimal boundaries
are chosen repeatedly. This process achieves the overall optimal segmentation [11].

17

Spoken Language Acquisition

2.5 WordSeg

WordSeg is an opensource software package that is aimed towards the standardiza
tion of unsupervised word segmentation from text by allowing the easy reproduction
of results, and stimulating the growth of cumulative science in this field of study. It has
two main use cases. First, it can be used for the development of another unsupervised
word segmentation algorithm. Second, it can be used by linguists and other cognitive
scientists for their study of early language acquisition [12].

The package accepts as input a prepared text containing the phonemized or syllabi
fied version of the original text or transcription. Afterwards, the segmentation process
is modelled based on the chosen segmentation algorithm. There are six algorithms
available in the package. Lastly, the package also includes evaluation tools to assess
the performance of algorithms [6].

This section discusses Transitional probabilities (TP) and Adaptor grammar (AG),
which are two types of word segmentation algorithms from the WordSeg package.
Each one is used separately to perform experiments in section 6. They are utilized for
unsupervised word segmentation with various input scenarios, and the results from
each algorithm is examined and compared.

2.5.1 Transitional Probabilities

TP is a sublexical algorithm which primarily bases its word segment boundaries on
local cues like the occurrence of particular sound sequences around word boundaries.
It works by differentiating among phone or syllable sequences which are approximately
internally cohesive [12].

There are three ways to calculate TP. For a given sequence XY, the forward transi
tional probabilities (FTP), backward transitional probabilities (BTP), and mutual infor
mation (MI) can be calculated. The FTP is acquired by taking the frequency of XY and
dividing it by the frequency of X. The BTP is acquired by taking the frequency of XY
and dividing it by the frequency of Y. Lastly, the MI for XY is denoted by:

log2

(
frequency XY

(frequency X)(frequency Y)

)
(2.17)

Moreover, there are two options for identifying word boundaries. The first option is
a relative threshold which uses relative dips in TP to determine the word boundaries.
For example in the phone sequence ABCD, a boundary is assumed to occur between

18

Spoken Language Acquisition

B and C if the TP for sequence AB and CD are higher than that of BC. The second
option is an absolute threshold which uses the average TP of the entire corpus as the
limit for boundary detections. For both of these options, it is not required to have any
knowledge of the word boundaries [12].

WordSeg package’s TP accepts as input a prepared text file containing the phonem
ized or syllabified version of the original transcript. The segment function of TP starts
with creating the test units using the prepared text input. If there is no train text,
the test units are used as the train units. Afterwards, the transition probabilities are
estimated using the train units. This is done by first calculating and counting all the
unigrams and bigrams in the sequence. Next, it calculates the transitional probabilities
using the train units based on the chosen dependency, which can be FTP, BTP, or MI.

Then, the prepared text input is segmented using the calculated transitional proba
bilities for all the bigrams. It takes the test units and identifies word boundaries based
on the chosen threshold, which can be relative or absolute. This is done continuously
until all the units are inspected. Finally, the segment function returns a set of phones
or syllables grouped together as words [6].

2.5.2 Adaptor Grammar

AG is a lexical algorithm wherein deduced probabilities of how a set of ”grammar” rules
is used for the creation of the corpus posits the manner by which the corpus will be
parsed [12]. For example, there are particular words that would more likely appear
consecutively and the algorithm exploits this. It parses the whole utterance again such
that there is a minimum number of recombinable units.

By default, the package is able to generate the simplest and most universal grammar
which is generated through various rewrite rules. One of the rules is that ”sentences
are one or more words”, and another is that ”words are one or more basic units”. Lastly,
one is a set of rewrite rules that describes the basic units for all the possible terminals.

Furthermore, there are three subprocesses that comprise the segmentation of the
corpus using this algorithm. First, the corpus is parsed based on a set of rules and
subrules. This would be done for a number of iterations to account for senseless or
wrong parses. Moreover, the first and last iterations are dropped, and only one in a
few will be retained. The next subprocess can be considered as the actual segmenta
tion process wherein the parses from the first subprocess are applied once more to
the corpus. Finally, the third subprocess uses minimum Bayes risk to find the most
prevalent sample segmentations and use this as basis for choosing the solution [12].

19

Spoken Language Acquisition

There are many parameters that can be set for AG, but it has default values that
were based on experiments done on English, Japanese and French adult and child
corpora. The parameters are shown in Table 1.

Parameter Value
number of runs 8

number of sweeps per run 2000
number of sweeps
that are pruned

100 at the beginning and end,
9 in every 10 in between

PitmanYor a parameter 0.0001
PitmanYor b parameter 10000
Rule probability (theta) estimated using Dirichlet prior

Table 1: Default parameters for WordSeg AG.

These settings are based on what was commonly found in adaptor grammar papers.
Number of runs is the amount of times the algorithm is executed before finalizing on
the word boundaries. Number of sweeps per run is the number of iterations done for
each execution of the algorithm. The PitmanYor values are for the PitmanYor process
which controls the balance between creating and reusing the subrules [12].

The AG segment function starts with creating the test text from the prepared text
input. If there is no train text, the test text is used as the train text. First, the function
sets up to ignore the first parses produced by the algorithm, and ensures that a differ
ent random seed is used for each run. Then, the algorithm generates grammar from
the set of phones in the prepared text input and saves it in a temporary file. Using
this grammar file, along with the test text and train text, the algorithm is executed
repeatedly based on the declared number of runs and number of iterations for each
run. Due to the lower accuracy of the first iterations of AG, these are dropped. After
each run, the counter for the number of parses produced is updated. At the end of
executing all runs, the function returns the chosen segmentation based on the most
common parses produced [6].

20

Spoken Language Acquisition

2.6 Embedded Segmental Kmeans Model

Figure 6: Embedded segmental Kmeans diagram from Kamper et al., An embedded
segmental Kmeans model for unsupervised segmentation and clustering of speech.

In the paper of Gao et al. [2], unsupervised word segmentation is implemented
using the ES Kmeans model which uses hard clustering and segmentation to segment
and cluster unlabelled speech in an unsupervised manner.

The objective of the model is to break up a sequence of acoustic frames y1:M =

y1,y2, ...,yM (i.e., MFCCs) into wordlike segments, and to collect them into assumed
word types. If the position of word boundaries are already known, like as shown at
the bottom of Figure 6, then an approach to compare these variablelength vector
sequences is required in order to cluster them [3].

The ES Kmeans model adopts an acoustic word embedding approach [13, 14, 15]
to cluster the segments. Each variablelength speech segment is mapped using an em
bedding function fe to a embedding vector xϵRD situated in a fixeddimensional space.
To illustrate, word segment with feature vectors yt1:t2 is mapped to an embedding vec
tor xi = fe(yt1:t2), represented as the colored horizontal figures in Figure 6. The central
concept here is that acoustically similar speech segments should be situated close to
each other in RD [3]. Moreover, the model uniformly downsamples any segment such

21

Spoken Language Acquisition

that each one is represented by the same quantity of vectors, which are then flattened
to acquire the embedding [13].

A set of vectors X = {xi}Ni=1 is formed after embedding all the segments in the
data set. The next step is to group together these segments into K hypothesized word
types using Kmeans, illustrated at the top of Figure 6. In standard Kmeans, the sum
of squared Euclidean distances to each cluster mean is minimized:

minz

K∑

c=1

∑

xϵXc

∥x− µc∥2 , (2.18)

where the cluster means is denoted by {µc}Kc=1, all vectors belonging to cluster c is
denoted by Xc, and the cluster to which xi is assigned to is denoted by the elements
of z [3]. This method can only be used if the segmentation is already established.
However, this is not the case. Depending on the current segmentation, the set of
embeddings X may vary. Given a data set of S utterances, Q = {qi}Si=1 represents the
segmentations, where the boundaries of utterance i is specified by qi. The embeddings
under the current segmentation is represented by X(Q).

The goal of the ES Kmeans algorithm is to mutually optimize the segmentation Q

and the cluster assignments z as:

min
Q,z

K∑

c=1

∑

xϵXc∩X(Q)

len(x) ∥x− µc∥2 . (2.19)

A score per frame is assigned as equal to the score achieved by the segment to
which the frame belongs to. This suggests the influence of segment duration on the
segment scores, thereby resulting to Equation 2.19 showing len(x)∥x − µc∥2 as the
score of embedding x. The term len(x) signifies the number of frames in the acoustic
sequence used to calculate embedding x [3].

In summary, Kamper et al. describes the ES Kmeans algorithm as

The overall ES Kmeans algorithm starts with randomly assigned word boundaries.
It then optimizes Equation 2.19 by going back and forth between optimizing the
segmentation Q while keeping the cluster assignments z and means {µc}Kc=1 fixed
(top to bottom in Figure 6), and then optimizing the cluster assignments and means
while keeping the segmentation fixed (bottom to top in Figure 6) [3].

When the cluster assignments are fixed, then the optimization goal in Equation 2.19

22

Spoken Language Acquisition

transforms to:

min
Q

∑

xϵX(Q)

len(x) ∥x− µ∗
x∥2 = min

Q

∑

xϵX(Q)

d(x), (2.20)

where µ∗
x is the mean of the current cluster to which x belongs to, and d(x) is the

score of embedding x [3]. Equation 2.20 is optimized by finding the boundaries q

for each utterance that results to the minimum total score of X(Q), the embeddings
under the current segmentation. The optimal segmentation is found by using dynamic
programming which implements the shortestpath algorithm (Viterbi).

Conversely, when the segmentationQ is fixed, the optimization goal in Equation 2.19
transforms to:

min
z

K∑

c=1

∑

xϵXc∩X(Q)

len(x) ∥x− µc∥2 . (2.21)

Standard Kmeans is adopted to find the best assignment of the embeddings to clus
ters when the means {µc}Kc=1 are fixed [3]. Since the distance between an embedding
and its assigned cluster means will never increase, the reassignments are expected to
further optimize Equation 2.19.

Eventually, the cluster assignments z are fixed, then the means are updated:

µc =
1∑

xϵXc
len(x)

∑

xϵXc

len(x)x ≈ 1

Nc

∑

xϵXc

x, (2.22)

where Nc is the quantity of embeddings currently belonging to cluster c. The mean
of cluster c is also expected to further optimize Equation 2.19. The approximation in
Equation 2.22 is used since it equates to the exact calculation when the duration for
all the segments is identical [3].

23

Spoken Language Acquisition

3 Related work

The thesis is analogous to the research about the grounded language acquisition prob
lem, which pertains to finding a way to learn the meaning of a language predicated
on its application to the physical world [16]. Without any substantial interpretation,
human language is just a collection of symbols. It acquires its value when it is learned,
understood, and utilized in the physical world where humans exist. The related works
presented in this chapter aim to perform embodied language learning through virtual
agents.

The work of Matuszek conveyed that natural language processing and robotics could
improve their efficiency and efficacy if language learning is considered a grounded lan
guage acquisition problem. It argued that using concrete applications of the language
improves the way it is learned and that robots perform better when the world where
they run in is depicted and disambiguated by language. The paper revolved around
a case study wherein unconstrained natural language is used by people to teach a
robot. Statistical machine learning approaches were formulated such that the robot
learns about the objects and tasks in its environment and attains semantics of the
language through constant interaction with users [16].

Virtual environments are commonly used as a tool to ground linguistic tokens. Sinha
et al. created 2D and 3D environments wherein an agent is tasked to navigate to an
object in the environment and follow natural language instructions. They developed
an attention mechanism for combining the visual and textual information received by
the agent such that it learns to accomplish the given tasks, and it achieves language
grounding [17].

Likewise, Hermann et al. presented an agent that learns the language by success
fully completing a set of tasks in a 3D environment. The agent received written in
structions and was trained through a combination of reinforcement and unsupervised
learning. It earned positive rewards if it efficiently worked in the environment while
concurrently learning the meanings of phrases and their relationship to the visual cues
observed. Additionally, they found that new words were learned faster when some
words were already learned [18].

24

Spoken Language Acquisition

Yu et al. used a 2D mazelike world to teach a virtual agent the language based
on two cases. The agent followed navigation instructions and answered questions.
The agent had visual information of its surroundings and the textual instructions or
questions from a virtual teacher. It received rewards based on the actions it took. These
components led the agent to learn about the visual representation of the simulated
world, the language, and the action control, all at the same time. Moreover, they
found that the agent can predict the meaning of new words or word combinations
after learning [19].

All of the previously mentioned work is grounding language using text as the input.
On the contrary, the thesis aims to simulate spoken language acquisition. Roy pro
posed to do this by applying an architecture that would process multisensory data. A
computational model called CELL (CrossChannel Early Lexical Learning) was formu
lated. It learns words by training on untranscribed microphone and camera input and
forming a dictionary of audiovisual items. The lexical items were acquired by discov
ering words from continuous speech, acquiring visual categories, and developing the
connection between the word and visual models [20].

Similarly, Yu et al. used multisensory inputs and developed a system that mimics
the way adults teach children names of objects. Users introduced objects, where they
are located, and how they are used. The multimodal learning system collected visual
and speech data from the users and automatically learned to construct a mapping
between the words and the objects. Furthermore, it learned to put the visual features
of the objects into categories by using the corresponding linguistic information as
guide [21].

Chauhan et al. tackled spoken language grounding with a learning and categoriza
tion approach. There are no predefined sets of words and meanings in their architec
ture, which leaves it openended. Through constant interaction with a user, the virtual
agent obtained new words and their corresponding meanings. Much like the research
mentioned above, their work revolved around naming objects. The virtual agent was
equipped with a camera and a microphone while a user presents objects and uses
speech to introduce them. Using the multisensory input, the agent learned the mean
ing of the words. Additionally, their approach was able to exploit the homogeneity of
word categories for organizing the object categories [22].

On the other hand, the Acquisition of communication and recognition skills (ACORNS)
project, funded by the European Commission, aspired to simulate human language
learning in artificial agents by utilizing the memoryprediction model of natural intelli

25

Spoken Language Acquisition

gence for speech processing. With this model, speech representations with rich detail
are first stored in the lower levels of the neocortex. In contrast, speech patterns are
saved at higher levels. When sensory inputs consistent with parts of the pattern are
detected, the brain ’predicts’ and activates the complete pattern. It is also through
this approach that new patterns may be detected and saved in the memory. It was
intended for the project to come up with a new way to develop virtual agents that can
learn humanlike verbal communicative behavior [23].

All of the work discussed so far was implemented in a supervised manner in one way
or another and did not genuinely correspond to the way humans learn language from
an early age. However, another paper from the Tokyo Institute of Technology can simu
late spoken language acquisition in an approach that coincides with B.F. Skinner’s the
ory. Zhang et al. proposed a spoken language acquisition system that uses images to
make unsupervised learning more focused and implement pretraining. Their method
made the reinforcement learning process more efficient. The soundimage ground
ing concept was inspired by how infants learn by observing the world around them.
Their experiments showed that the reinforcement learning’s speed is improved and
that the software robot successfully acquired spoken language from spoken prompts
with dialogues and images [24].

26

Spoken Language Acquisition

4 Methodology

4.1 The Task

The spoken language acquisition task exhibits the application of Skinner’s verbal be
havior to machines. The agent is given an ordering task to utter the ten digits in
ascending order, from ”zero” to ”nine”.

The agent’s initial condition is that it has not ”spoken” any of the digits for the task. It
is given a long speech clip containing some noise, and the utterances for ”zero”, ”one”,
”two”, ”three”, ”four”, ”five”, ”six”, ”seven”, ”eight”, and ”nine”. It needs to identify
valid words from the speech clip. If the agent utters the correct digit, the environment
responds by acknowledging the spoken word. Otherwise, the environment does not
respond. The correctness of the utterance depends on what has been spoken already by
the agent. For example, during the initial stage, the correct digit that the environment
will recognize is ”zero”. On the other hand, if the agent has already uttered ”zero”,
then the correct utterance accepted by the environment is ”one”. This scheme goes on
until the agent has uttered ”nine”, the last digit in the sequence.

In summary, the agent must independently learn to choose the correct digit to
”speak” based on its current state such that it utters all the ten digits in ascending
order most efficiently.

4.2 Learning Method

The process of spoken language acquisition can be summarized in three major steps:
forming observations, processing the observations, and grounding the observations.
The methodology from Gao et al. [2] is used as a guide for this section. The agent and
environment descriptions are tailored for the task defined in section 4.1.

The environment is an empty list, wherein an agent needs to fill up with digits from
”zero” to ”nine”. The agent’s state refers to how much of the digit list it has filled up.
An action is each instance the agent ”speaks” to the environment. The initial condition
for the agent is akin to that of a newborn child wherein it does not have any existing
knowledge of the language.

27

Spoken Language Acquisition

Firstly, the agent’s observation of the environment is represented by the long speech
input it receives. This observation is comparable to what babies usually hear when they
start learning a language. Then, the agent processes this observation by identifying
possible words and segments the long speech input. This stage is implemented using
an unsupervised word segmentation based on vector quantization. Lastly, the agent
needs to ground the observations through reinforcement learning. The interaction of
the agent with the environment is realized through the DQN. The learning loop runs
until the agent can perform the task efficiently by correctly choosing the words to
”speak” based on its current state.

Figure 7: Diagram of spoken language acquisition using reinforcement learning.

The learning loop initializes with the segmented words as the DQN algorithm’s action
space. The agent makes an ”utterance” to the environment with a segmented word
chosen based on a DQN which is still in exploration phase, meaning that decisions are
made randomly.

The environment responds to each utterance by providing feedback. The automatic
speech recognition (ASR) in the environment is responsible for recognizing the agent’s
”spoken” word. The identified word is forwarded to a feedback evaluation algorithm
that determines how the agent’s state will or will not change.

The agent then evaluates the reward obtained based on the received feedback and
on its current state. The reward calibrates the DQN such that better decisions are
made. Therefore, as the agent ”speaks” more, the DQN gets more refined, and the
agent gets to decide more based on the policy instead of just doing it randomly. Each
episode terminates once the agent has enumerated all the digits ascending from ”zero”
to ”nine”.

28

Spoken Language Acquisition

5 Implementation

5.1 Speech Data

The speech samples used for testing the system are from the Google Speech Com
mands data set1 (version 2). It is made up of onesecondlong utterances of 35 English
words spoken by thousands of different people. It also contains a collection of various
background noises.

A combined sound file using speech samples from the data set is created. It is
comprised of a total of 500 utterances. There are 50 speech samples for each of the
following words ”zero”, ”one”, ”two”, ”three”, ”four”, ”five”, ”six”, ”seven”, ”eight”,
and ”nine”. In addition, 50 short segments of background noise from the data set are
inserted as well. All of these audio segments are shuffled randomly and concatenated
into one file.

The combined sound file is used as the input speech signal for the experiments in
section 6.1 and section 6.3.

5.2 Architecture

The system is comprised of two main parts, namely unsupervised word segmentation
and language learning (see Figure 8). The word segmentation part is further subdivided
into feature extraction, phone segmentation, and word segmentation. The detailed
diagram of the system architecture is shown in Figure 18 under Appendix A.

5.2.1 Unsupervised Word Segmentation

Feature Extraction

The feature vectors of the input speech signal are extracted using a trained VQAPC
model. The reference used for model training is the code repository2 for [5]. Lib
riSpeech dataset’s trainclean360, which contains 360 hours of ”clean” speech, is
used for training. While devclean, which is the development set containing ”clean”

1http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz
2https://github.com/iamyuanchung/VQAPC

29

Spoken Language Acquisition

Figure 8: General overview of the system architecture.

speech, is used for validation. Training is run in a machine with two GPUs, and both of
them are utilized.

Models with codebook sizes 128, 256, and 512 are trained for 2000 epochs. The
parameters used for model initialization and training are listed in Table 2.

Parameters Value
rnn_num_layers 3
rnn_hidden_size 512
rnn_dropout 0.1
rnn_residual True
codebook_size 128, 256 or 512
code_dim 512

gumbel_temperature 0.5
apply_VQ False, False, True
optimizer adam
batch_size 32
learning_rate 0.0001
epochs 2000
n_future 5

Table 2: Parameters for the VQAPC model initialization and training.

The model is set to have three RNN layers. The hidden layer size is 512. In com
parison, the input layer size is 80, which is equivalent to the input feature dimension.
Of the three network layers, the VQ layer is appended after the third one as indicated

30

Spoken Language Acquisition

by (False, False, T rue) under the apply_V Q parameter. It is found that inserting the VQ
layer after the third RNN layer gave the most improvement over the regular APC in
terms of phone error rate [5]. It is also worth noting that the model is set to predict 5
frames into the future.

While the codebook size is varied for each model trained, the vector dimension
is fixed at 512. Both the codebook size and vector dimension control the amount of
information that the VQ layer lets through [5]. The effect of varying codebook sizes
on the downstream tasks of the system is investigated in the succeeding chapter.

Once the model is trained, it is used for feature extraction. First, the input speech
signal is divided into portions with a maximum duration of 10 seconds. It is necessary
to do this preprocessing due to the input duration limit found when running the trained
models for feature extraction.

Next, the 80dimension log Mel spectrogram of each portion is generated. The spec
trogram is normalized to zero mean and unit variance per portion processed. The fbank
function of the torchaudio.compliance.kaldi module3 is utilized to create the log Mel
spectrograms. The frame shift is set to 10 milliseconds, and the window type is set
to ”hamming”. The module makes it possible to perform Kaldi4 operations with tor
chaudio. The function used matches the output of Kaldi’s computefbankfeats. It is
important to do this since the model is trained on LibriSpeech dataset’s log Mel spec
trograms that were extracted using Kaldi scripts5. It is found that going with the same
method results to better feature extraction performance than doing it otherwise.

Finally, the pretrained model is loaded and set to evaluation mode. The learned
codebook of the model is obtained by taking the weights of the VQ layer. Then, the 80
dimension log Mel spectrograms are used as input to the trained model. The resulting
RNN hidden representation of the last layer during the forward pass is taken and
considered as the feature vectors of the speech signal. These feature vectors and
the model’s corresponding codebook are used in the subsequent phone segmentation
algorithm.

The execution done by Kamper et al. in [11] is used as a reference for implementing
the phone and word segmentation.

3https://pytorch.org/audio/stable/compliance.kaldi.html
4https://github.com/kaldiasr/kaldi
5https://github.com/iamyuanchung/AutoregressivePredictiveCoding

31

Spoken Language Acquisition

Phone Segmentation

Phone segmentation is implemented by following the VQ segmentation algorithm pre
sented in section 2.4. The parameters set for the phone segmentation are shown in
Table 3.

Parameter Value
minimum number of frames 0
maximum number of frames 100
duration penalty weight 36

Table 3: Parameters for the phone segmentation algorithm.

The maximum number of frames is set to 100, limiting the number of continuous
frames contained in one phone segment. Each frame is a feature vector representing 10
milliseconds of the speech utterance. On the other hand, the duration penalty weight
value dictates the significance of having longer segments. If the value is high, then
the resulting phone segments become longer. It should be noted that the values for
both of these parameters are chosen as seen fit based on the development data.
Experimentation is done on a small sample of the input speech signal in order to
decide on these parameter values.

The representative code for each phone segment is assigned based on which code
from the codebook generates the lowest summed distance with respect to the feature
vectors in the given phone segment.

Word Segmentation

The code indices assigned for the phone segments are concatenated into a prepared
text which serves as input for the word segmentation algorithm. The WordSeg pack
age [6] is used for word segmentation. The chosen algorithms from the package are
TP and AG. They are run independently to perform various experiments in section 6.
The results from both algorithms are compared.

Parameter Value
threshold relative
dependency FTP

Table 4: Parameters for WordSeg TP segment function.

The parameters used when calling the segment function of TP are listed in Table 4.
The test units are created from the prepared text input. Since there is no train text,

32

Spoken Language Acquisition

the test units are used as train units. The chosen dependency and threshold values
are both default settings of the algorithm. By choosing relative threshold, the function
takes four units at a time and checks for the TP of the bigrams. If a relative dip is
found, then the midpoint of the bigram with the lower TP is taken as a word boundary.
The process is done continuously until all the units are inspected. At the end of running
the algorithm, the segment function returns a list of code indices grouped as words.
[6].

Parameter Value
nruns 8
njobs 3
args ”n 2000”

Table 5: Parameters for WordSeg AG segment function

On the other hand, the parameters used when calling the segment function of the
AG algorithm are listed in Table 5. The test text is created from the prepared text input.
Since there is no train text, then the test text is used as the train text. The parameter
nruns uses the default value. It indicates the number of times the AG algorithm is
executed. While njobs signifies the number of subprocesses to run in parallel. The
last parameter is for additional arguments. In this case, ”n” defines the number of
iterations per run and is set to 2000 by default. At the end of executing the algorithm,
the segment function returns a list of code indices grouped as words [6].

After running a WordSeg algorithm, the list of phone code indices grouped into word
candidates is used to find the word boundaries. Then, the list of boundaries is used for
splitting the sound file. The resulting speech segments are then fed to the next part
of the system.

5.2.2 Language Learning

Speechtotext recognition

SpeechRecognition6 python package is used to execute the ASR. It is a wrapper that
supports several engines and application programming interface (API) and comes with
a default API key for the Google SpeechtoText API7, which is used for this project.

The speech segments are fed into the ASR and may result in valid or nonvalid
recognized words. A word is considered valid if it is relevant to the task defined in

6https://pypi.org/project/SpeechRecognition/
7https://cloud.google.com/speechtotext

33

Spoken Language Acquisition

section 4.1, which means any of the digits from ”zero” to ”nine”.

A dictionary records the total number of segments and each valid word with the
corresponding quantity of recognized words. It is used as input to the reinforcement
learning part, which essentially grounds the discovered words. Speechtotext recogni
tion only transforms speech signals into their symbolic equivalent and does not attach
any meaning to them.

DQN

The implementation code8 from Gao et al. [2] is used as reference for implementing
the DQN algorithm.

The input to the DQN is the dictionary containing the total number of segments
and each valid word with their corresponding quantity. The total number of segments
signifies the action space size or the number of actions available to the agent. On the
other hand, the quantity of each valid word is used as the number of actions that
represent ”speaking” that word.

The agent and environment class definitions are defined based on the task described
in section 4.1. The agent is initialized with an empty list signifying that it has not
”spoken” any digits. The environment is initialized with the input dictionary to the
DQN. The act of speaking is simulated by the agent performing an action in the DQN.
Every time the agent ”speaks” or performs an action, the environment responds by
acknowledging valid words or actions and ignoring any nonvalid ones. If the agent
”speaks” the correct digit, the environment responds by acknowledging to the agent
that it has indeed ”spoken” the digit. If it ”speaks” incorrectly, the environment does
not give any feedback.

The reward r(t) for each time the agent performs an action is calculated as:

r(t) = SL(t)− SL(t− 1), (5.1)

where SL(t) and SL(t− 1) stand for the satisfaction level of the agent at its current
and previous states, respectively. The agent’s state refers to how much of the list it
has filled up. The agent’s satisfaction level is given by the negative of the Levenshtein9

distance between the current list and the target list. The target list is the digits ”zero”
to ”nine” in ascending order. The Levenshtein distance is simply a measure of the

8https://github.com/tttslab/spolacq
9https://folk.idi.ntnu.no/mlh/hetland_org/coding/python/levenshtein.py

34

Spoken Language Acquisition

difference between the current digit sequence and the target digit sequence.

Additionally, when the agent does not gain any reward for the action performed,
then the reward value is set to go down further at r(t) = −10. It serves as a punishment
to discourage the agent from performing actions that do not merit any reward.

The agent performs a set of actions from the initial state until the target list is
reached. This set of actions comprise one episode. The DQN learning loop is designed
such that the agent performs 50 episodes over 100 random seeds.

Hyperparameter Value
batch_size 128
gamma 0.5
eps_start 0.9
eps_end 0.05
eps_decay 200
target_update 10

Table 6: Hyperparameters for the deep Qnetwork.

The hyperparameters set for the DQN are shown in Table 6. The hyperparameters
batch_size and gamma are used for optimizing the model. The batch_size value refers
to the size of the sample taken from the replay memory, which stores past experiences
from different episodes. The sample taken from this buffer is used as training data
for the SGD update. On the other hand, the gamma value pertains to the discount
factor used in calculating the expected Qvalues. The value is chosen such that the
future reward does not outweigh the current step’s reward. It ensures that the model
converges and does not deviate too much during the initial stages when the Qvalues
are still random.

The hyperparameters eps_start, eps_end, and eps_decay are used to implement
the epsilongreedy method, which solves the exploration versus exploitation dilemma.
Whenever the agent needs to select an action, the epsilon threshold is calculated as:

eps_threshold = eps_end+ (eps_start− eps_end)
(
e−

steps_done
eps_decay

)
. (5.2)

If the threshold is overcome, the action will be selected based on maximizing the
expected reward; otherwise, the action is selected randomly.

As seen from Equation 5.2, the epsilon threshold changes based on the number of
steps done or number of actions. The value of the term e−steps_done/eps_decay goes from 1

35

Spoken Language Acquisition

and decreases to minimal values as more steps are done, hence, the epsilon threshold
value becomes infinitely small.

The value of the eps_decay hyperparameter affects the epsilon threshold calculation
as well. When the eps_decay value is lower, the epsilon threshold value decreases
faster as more steps are done. Conversely, when it is higher, the epsilon threshold
value decreases slower as more steps are done.

Lastly, the target_update hyperparameter defines the episode interval at which the
target network copies the weights from the policy network. Updating the target net
work once every N steps makes the training of the neural networks more stable.

36

Spoken Language Acquisition

6 Experiments and results

Three experiments are exploring different aspects of the system, namely the re
lationship of the VQAPC codebook size to the system performance, the relationship
of word segmentation results to reinforcement learning results, and how the system
fares in comparison to an existing one. This chapter introduces each experiment and
describes the hypotheses to be tested. Afterward, the setup is elaborated, and the
results are presented.

6.1 Modifying the code book size of the VQAPC model

This experiment examines the word segmentation and reinforcement learning results
versus different codebook sizes used for the VQAPC model. The following hypothesis
is tested:

H1 Increasing the codebook size positively affects the word segmentation results and
the reinforcement learning results.

6.1.1 Setup

The input to the system is the combined sound file previously described in section 5.1
which contains utterances of the digits from ”zero” to ”nine”. The experiment is run
using models with codebook sizes 128, 256, and 512. In line with this, the system
implementation changes in the following ways:

• Feature extraction uses a VQAPC model which will change depending on the
chosen code book.

• Phone segmentation uses the chosen code book for segmenting the feature vector
sequence and assigning the representative code to each segment.

Furthermore, for the word segmentation algorithm, the experiment uses WordSeg
AG and TP independently. When using WordSeg AG, the whole system runs five times.
While for WordSeg TP, it runs once. The reason for this is AG uses a different random
seed for each run which results in different parses. For each of these runs, the DQN

37

Spoken Language Acquisition

learning loop executes 50 episodes over 100 random seeds. Lastly, the DQN hyperpa
rameters are unchanged.

6.1.2 Results

The word segmentation result tables present the number of segments produced, the
number of valid words recognized, and three other metrics. The recognition rate is
the percentage of recognized valid words out of the actual quantity in the input. Over
segmentation is the rate by which the system produces more words or segments than
the actual amount in the input. Finally, the table provides the ratio of recognized valid
words to the number of segments.

The reinforcement learning result figures show the number of actions executed for
each episode of the learning loop. The quantity for each episode is the average number
of actions over the 100 random seeds. It should be noted that for results relating to
WordSeg AG, the figures show the average considering all the five runs.

The results are presented by category of word segmentation algorithm used. First,
the results using WordSeg AG are examined. Table 7, Table 8 and Table 9 present
the word segmentation results for codebook sizes 128, 256 and 512, respectively.
While, Table 10 summarizes the results of the three codebook sizes by presenting the
average from all five runs. For a detailed breakdown on the quantity of recognized
words, appendix B can be referred to.

Results Run 1 Run 2 Run 3 Run 4 Run 5
Number of segments 251 243 249 249 239
Recognized valid words 77 65 76 72 66
Recognition rate 15.40% 13.00% 15.20% 14.40% 13.20%
Over segmentation 49.80% 51.40% 50.20% 50.20% 52.20%

Valid words / segments 30.68% 26.75% 30.52% 28.92% 27.62%

Table 7: Segmentation results using WordSeg AG and codebook size 128.

Results Run 1 Run 2 Run 3 Run 4 Run 5
Number of segments 478 478 486 480 483
Recognized valid words 157 159 165 160 163
Recognition rate 31.40% 31.80% 33.00% 32.00% 32.60%
Over segmentation 4.40% 4.40% 2.80% 4.00% 3.40%

Valid words / segments 32.85% 33.26% 33.95% 33.33% 33.75%

Table 8: Segmentation results using WordSeg AG and codebook size 256.

38

Spoken Language Acquisition

(a) Result of 50 episodes.

(b) Result of first 15 episodes.

Figure 9: Reinforcement learning results using WordSeg AG for codebook sizes 128,
256, and 512.

39

Spoken Language Acquisition

Results Run 1 Run 2 Run 3 Run 4 Run 5
Number of segments 453 455 453 457 454
Recognized valid words 152 150 152 145 153
Recognition rate 30.40% 30.00% 30.40% 29.00% 30.60%
Over segmentation 9.40% 9.00% 9.40% 8.60% 9.20%

Valid words / segments 33.55% 32.97% 33.55% 31.73% 33.70%

Table 9: Segmentation results using WordSeg AG and codebook size 512.

Results code size 128 code size 256 code size 512
Number of segments 247 481 455
Recognized valid words 72 161 151
Recognition rate 14.40% 32.20% 30.20%
Over segmentation 50.60% 3.80% 9.00%

Valid words / segments 29.15% 33.47% 33.19%

Table 10: Average of segmentation results using WordSeg AG.

As seen from Table 10, using codebook size 256 generates the most number of seg
ments and achieves the highest recognition rate among the three codebook sizes. This
observation is surprising since it is assumed that size 512 would be the one generating
the best segmentation results. Although, the results from both sizes 256 and 512 are
very close. In addition, the system under segments the combined sound file, and the
results appear to be consistent across all five runs for all the codebook sizes.

The plots in Figure 9 illustrate how the agent has performed during reinforcement
learning. Compared to the results of codebook size 128, it shows the agent took 37%
fewer actions in the first episode when codebook size 512 is used. While, when code
book size 256 is used, it shows the agent took 44% fewer actions in the first episode.
Closer inspection of Figure 9b shows that during the initial episodes, results of sizes
256 and 512 appear to coincide and maintain a small margin from the results of size
128.

Results code size 128 code size 256 code size 512
Number of segments 231 424 411
Recognized valid words 75 111 118
Recognition rate 15.00% 22.20% 23.60%
Over segmentation 53.80% 15.20% 17.80%

Valid words / segments 32.47% 26.18% 28.71%

Table 11: Summary of segmentation results using WordSeg TP.

40

Spoken Language Acquisition

For the next section, Table 11 summarizes the word segmentation results when
WordSeg TP is used. For a detailed breakdown on the quantity of recognized words,
Table 23 in appendix B can be referred to.

It is apparent from Table 11 that using codebook size 512 achieves the highest
recognition rate. While the most number of segments is obtained when using codebook
size 256. Again, only a small difference is observed between the results of codebook
sizes 256 and 512. With all three sizes, the system under segments the combined
sound file.

Comparing the data from Table 11 and Table 10, it shows that recognition rates are
lower when using WordSeg TP compared to AG. However, for the case of codebook
size 128, there is not much difference in the recognition rates when using either of the
two word segmentation algorithms. Furthermore, all codebook sizes produced lower
number of segments when using TP.

The plots in Figure 10 represents the agent’s performance when using the word
segmentation results under WordSeg TP. In general, it shows the agent took the least
number of actions when codebook size 128 is used. Interestingly, Figure 10b shows in
the first episode that the agent took around 12% more actions with codebook size 128
compared to size 512. On the other hand, it shows the agent took the most number
of actions when codebook size 256 is used.

Finally, Figure 11 shows all the cases in one plot. Prominent peaks are occurring
at episodes 12, 22, 32, and 42. It can be noted that the agent is initialized the same
way each time an episode starts. The peaks may be explained by the interval at which
the target network synchronizes with the policy network. The DQN hyperparameters
in Table 6 show the target network getting updated every 10 episodes. The peaks seem
to occur after these updates.

Figure 11 also shows that using codebook size 256 with WordSeg AG starts the
learning loop with the lowest number of actions taken during the first episode. While
in the later episodes, the plot shows that the lowest number of actions are taken when
using codebook size 128 with WordSeg TP.

In summary, hypothesis H1 is tested to be true to some degree only. Results show
that increasing the codebook size has positive effects on the recognition rate of the
word segmentation results. It is strictly observed when increasing the codebook size
from 128 to 256. However, when going from codebook size 256 to 512, the difference
between their recognition rates is not that significant. When using WordSeg TP, size

41

Spoken Language Acquisition

(a) Result of 50 episodes.

(b) Result of first 15 episodes.

Figure 10: Reinforcement learning results using WordSeg TP for codebook sizes 128,
256, and 512.

42

Spoken Language Acquisition

512 achieves slightly better recognition rate. While the opposite is observed when
using WordSeg AG.

Nonetheless, hypothesis H1 cannot be justified for the reinforcement learning re
sults. There are instances in the experiments wherein the lower codebook size case
managed to achieve better reinforcement learning results. It is observed that there
seems to be a correlation between the ratio of recognized valid words to the number
of segments and the performance in the reinforcement learning part. Interestingly,
cases with higher ratios develop to have generally lower number of actions. It is to be
remarked that this relationship is only anecdotal and not to be considered as generally
applicable to other DQN implementations.

43

Spoken Language Acquisition

(a) Result of 50 episodes.

(b) Result of first 15 episodes.

Figure 11: Comparison of all reinforcement learning results for codebook sizes 128,
256, and 512.

44

Spoken Language Acquisition

6.2 Simulated word segmentation results

This experiment simulates different word segmentation results and investigates the
corresponding response of the reinforcement learning algorithm. The following hy
potheses are tested:

H2 A high recognition rate in the word segmentation has a positive effect on the
reinforcement learning results.

H3 Increasing the DQN action space size may result in the deterioration of the agent’s
performance during the learning loop.

6.2.1 Setup

Two cases are considered based on the hypotheses mentioned above. The first case
tackles hypothesis H2 which involves simulating word segmentation results with vary
ing recognition rates. It is implemented by changing the number of recognized valid
words while the total number of segments produced remains constant. Table 12 sum
marizes ten different settings considered for the simulation of the word segmentation
results.

Property 1 2 3 4 5 6 7 8 9 10
Number of
segments 500 500 500 500 500 500 500 500 500 500

Number of
recognized
valid words

50 100 150 200 250 300 350 400 450 500

Recognition
rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Valid words
/ segments 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Table 12: Settings for simulating word segmentation results with varying recognition
rates.

The number of segments produced is fixed at 500 for each setting. At the same time,
the total number of recognized valid words is incremented from 50 until 500. Each digit
from ”zero” to ”nine” is assigned equal amounts of recognized words. Moreover, it is
considered that there is a total of 500 valid words in the hypothetical speech signal.
As a result, the recognition rate changes from 10% to 100%. Likewise, the ratios of
recognized valid words to the number of segments have the same resulting values. A
dictionary representing each scheme is created and used as input to the reinforcement

45

Spoken Language Acquisition

learning algorithm. The learning loop iterates 50 episodes over 100 random seeds, and
the DQN hyperparameters are unchanged.

On the other hand, the second case tackles hypothesis H3 which involves simu
lating word segmentation results with varying action space sizes. It is implemented
by changing the number of segments while the number of recognized valid words re
mains constant. Table 13 summarizes nine different settings for simulating the word
segmentation results. The number of segments denotes the action space size for the
DQN.

Property 1 2 3 4 5 6 7 8 9
Number of
segments
(action space

size)

200 300 400 500 600 700 800 900 1000

Number of
recognized
valid words

200 200 200 200 200 200 200 200 200

Recognition
rate 40% 40% 40% 40% 40% 40% 40% 40% 40%

Valid words
/ segments 100% 67% 50% 40% 33% 29% 25% 22% 20%

Table 13: Settings for simulating word segmentation results with varying number of
segments or action space sizes.

The number of recognized valid words is set to 200, while the number for segments
produced is incremented from 200 to 1000. A total of 500 valid words is considered in the
hypothetical speech signal. As such, the recognition rate is fixed at 40%. On the other
hand, the ratio of recognized valid words to the number of segments decreases from
100% to 20%. A dictionary representing each action space size is created and used as
input to the reinforcement learning algorithm. The learning loop iterates 50 episodes
over 100 random seeds, and the DQN hyperparameters are unchanged.

6.2.2 Results

The reinforcement learning result figures show the number of actions executed for
each episode of the learning loop. It should be noted that the quantity shown for each
episode is the average number of actions over the 100 random seeds. The mean and
standard deviation of the number of actions over the 50 episodes are calculated as
well.

46

Spoken Language Acquisition

The reinforcement learning results for the first case are shown in Figure 12. As the
recognition rate decreases, the agent takes more actions during the initial episodes of
the reinforcement learning.

Property 11 12 13 14
Number of segments 500 500 500 500

Number of recognized valid words 60 70 80 90
Recognition rate 12% 14% 16% 18%

Valid words / segments 12% 14% 16% 18%

Table 14: Settings for simulating recognition rates 12% to 18%.

For recognition rates 40% and below, a more significant increase in the number
of actions throughout the episodes is observed as the recognition rate decreases. As
there is a big gap between the results of 10% and 20%, additional simulations are
done in this range. Table 14 summarizes the settings used. Figure 13 shows that as
you decrease the recognition rate from 20%, more variability in the number of actions
is observed. Additionally, it shows that the model fails to converge when the rate is
12% and lower.

For recognition rates 50% to 100%, Figure 14 shows that the initial episodes follow
the general observation of increasing number of actions as the rate decreases. In
terestingly, the models eventually converge at approximately the same episode and
within a small range for the number of actions.

Table 15 lists down the mean and standard deviation values calculated for the re
inforcement learning results of the first case. In general, the mean value increases
as the recognition rate decreases. However, it does not change linearly. When the
rates decrease from 100% to 50%, mean values slowly increase. While mean values
rapidly rise when rates are falling from 40% to 10%. This observation supports the
convergence perceived in the plots for higher recognition rates (50% and above). The
standard deviation values also show an increasing behavior for decreasing recognition
rates. It supports the observed increase in variability of the number of actions as the
recognition rate decreases.

Overall, hypothesis H2 is valid for the conditions described in the experiment setup.
Higher recognition rates do improve the reinforcement learning performance. Although,
it is observed that the overall improvement becomes less significant at some point.
From recognition rates 50% and above, substantial improvements are only apparent
in the initial episodes of the learning loop. It is important to note that the underlying

47

Spoken Language Acquisition

Recognition rate Mean Standard deviation
10% 1521.04 405.67
12% 986.02 307.90
14% 514.16 239.30
16% 291.60 202.38
18% 268.18 199.05
20% 169.66 159.59
30% 88.04 99.91
40% 68.80 73.66
50% 56.76 57.70
60% 53.24 46.11
70% 49.42 39.06
80% 48.12 35.34
90% 46.78 30.00
100% 46.52 29.42

Table 15: Mean and standard deviation of reinforcement learning results from the
simulated word segmentation with varying recognition rates.

condition for this observation is that the number of segments produced is equal to the
total number of valid words in the hypothetical speech signal. Additionally, 20% is the
lower limit found for the recognition rate such that the reinforcement learning results
are acceptable.

Turning now to the second case, Figure 15 shows that increasing the action space
size results in a general increase in the number of actions throughout all the episodes.
It also indicates a notable increase in the variability of the number of actions as the
action space size increases.

Property 10 11 12
Number of segments
(action space size) 1100 1200 1300

Number of recognized valid words 200 200 200
Recognition rate 40% 40% 40%

Valid words / segments 18% 17% 15%

Table 16: Settings for simulating action space sizes 1100 to 1300.

Additional simulations using more extensive action space sizes examine the limits
for obtaining acceptable reinforcement learning results. Table 16 summarizes the set
tings used. Figure 16 shows that starting from 1100, not only is there more variability in
the number of actions, but also elevated propensity for the model not to converge. This

48

Spoken Language Acquisition

observation becomes more evident as the action space size increases. On the other
hand, Table 17 shows that both the mean and standard deviation values increase as
the action space size increases, which supports the general trend observed in the plots.

Action space size Mean Standard deviation
200 38.78 29.77
300 46.30 43.15
400 58.48 61.04
500 68.80 73.66
600 105.14 100.60
700 106.92 108.49
800 144.04 131.37
900 160.02 152.38
1000 242.60 159.49
1100 458.10 188.27
1200 604.84 199.49
1300 832.98 214.39

Table 17: Mean and standard deviation of reinforcement learning results from the
simulated word segmentation with different action space sizes.

Hence, hypothesis H3 is true for the condition stated in the experiment set up a
recognition rate of 40% for a hypothetical speech signal with 500 valid words. Results
show that increasing the action space size causes negative effects on the reinforcement
learning results in varying degrees. For action space sizes until 1000, the number of
actions throughout the episodes increases as the action space size increases. While,
for sizes larger than 1000, significant deterioration in the agent’s performance is evident
through the overall increase in the number of actions and the model’s failure to reach
and maintain convergence.

49

Spoken Language Acquisition

(a) Result of 50 episodes.

(b) Result of first 15 episodes.

Figure 12: Reinforcement learning results for simulated word segmentation with recog
nition rate from 10% to 100%.

50

Spoken Language Acquisition

(a) Result of 50 episodes.

(b) Result of first 15 episodes.

Figure 13: Reinforcement learning results for simulated word segmentation with recog
nition rate from 10% to 20%.

51

Spoken Language Acquisition

(a) Result of 50 episodes.

(b) Result of first 15 episodes.

Figure 14: Reinforcement learning results for simulated word segmentation with recog
nition rate from 50% to 100%.

52

Spoken Language Acquisition

(a) Result of 50 episodes.

(b) Result of first 15 episodes.

Figure 15: Reinforcement learning results for simulated word segmentation with dif
ferent action space sizes.

53

Spoken Language Acquisition

(a) Result of 50 episodes.

(b) Result of first 15 episodes.

Figure 16: Reinforcement learning results for simulated word segmentation with action
space sizes from 1000 to 1300.

54

Spoken Language Acquisition

6.3 VQAPC versus ES kmeans for word segmentation

This experiment compares the performance of the system to an existing one that uses
ES kmeans for the word segmentation algorithm. It examines the word segmentation
and reinforcement learning results from these two systems.

6.3.1 Setup

The input to both systems is the same combined sound file previously described in
section 5.1 which contains utterances of numbers zero to nine.

Results using codebook size 512 with WordSeg AG from section 6.1 is used as the
representative of the system. It is referred to as VQ segmentation in the results.

The existing system from Gao et al. [2] is used for generating the results for the
ES kmeans algorithm case. It is run five times, with the learning loop iterating 50

episodes over 100 random seeds. The DQN hyperparameters are unchanged.

6.3.2 Results

The word segmentation and reinforcement learning results are presented in the same
way as in section 6.1. For a detailed breakdown on the quantity of recognized words
for ES kmeans, Table 24 in appendix B can be referred to.

Table 18 shows that the ES kmeans algorithm segments the combined sound file to
around 50% more words. To compare it with VQ segmentation, Table 19 summarizes
the results of both algorithms by presenting the average from all 5 runs. It is inspected
that ES kmeans achieved much higher recognition rate compared to VQ segmentation.

Results Run 1 Run 2 Run 3 Run 4 Run 5
Number of segments 736 712 741 746 736
Recognized valid words 285 290 279 274 278
Recognition rate 57.00% 58.00% 55.80% 54.80% 55.60%
Over segmentation 47.20% 42.40% 48.20% 49.20% 47.20%

Valid words / Segments 38.72% 40.73% 37.65% 36.73% 37.77%

Table 18: Segmentation results using ES kmeans for word segmentation.

As exemplified in section 6.1, there is an observed relationship between the ra
tio of recognized valid words to number of segments and the reinforcement learning
results. Word segmentation results with higher ratios tend to be followed by better
performance in the reinforcement learning part. Seeing in Table 19 that ES kmeans

55

Spoken Language Acquisition

Results
VQseg

(code size 512
w/ WordSeg AG)

ES kmeans

Number of segments 455 735
Recognized valid words 151 282
Recognition rate 30.20% 56.40%
Over segmentation 9.00% 47.00%

Valid words / segments 33.19% 38.37%

Table 19: Average segmentation results of VQ segmentation and ES kmeans.

attained a higher ratio, it is anticipated to have better reinforcement learning results.
Figure 17 reveals that with ES kmeans the agent took 22% less actions in the first
episode compared to the VQ segmentation case. Surprisingly, Figure 17b shows that
in episodes 3 to 5, VQ segmentation achieved lesser number of actions. In the subse
quent episodes, the resulting number of actions for ES kmeans are generally lower,
but not by a huge margin.

In summary, the system using ES kmeans algorithm achieves better results in both
word segmentation and reinforcement learning. Thus, there is room for improvement
for the implementation of VQ segmentation.

56

Spoken Language Acquisition

(a) Result of 50 episodes.

(b) Result of first 15 episodes.

Figure 17: Reinforcement learning results for VQ segmentation and ES kmeans.

57

Spoken Language Acquisition

7 Discussion and Conclusion

7.1 Discussion

The experiment testing hypothesis H1 demonstrated that bigger codebook sizes pro
duce higher recognition rates for the word segmentation results. It was significantly
evident when comparing codebook size 128 with either 256 or 512. However, the
resulting recognition rates were very close between codebook sizes 256 and 512.

It is anticipated that bigger codebook sizes would result in better accuracy. The
goal of VQ segmentation is to minimize the error function in Equation 2.15 which
compares the squared Euclidean distance between the feature vectors and the code
vector assigned to each phone segment. If the codebook is large, each phone segment
would be assigned its corresponding code more accurately such that the error function
is minimized. Better distinction between phone segments improves word discovery.

Referencing back to Equation 2.15, the duration weight value assigned for the
penalty term also affects the results of the segmentation. As previously discussed
in subsection 5.2.1, the duration weight value of 36 is chosen based on experiment
ing with the development data. The results show that it was a good choice since a
reasonable amount of valid words were produced.

A possible explanation for the closeness of results between codebook sizes 256 and
512 is the small vocabulary size of the input speech signal. The combined sound file is
comprised of only ten different words, which means that there will not be a large set
of phonemes to identify. The model with a codebook size of 256 is adequate for the
combined sound file based on the results.

Moreover, the experiment on hypothesis H1 showed that bigger codebook sizes did
not necessarily conclude with better reinforcement learning results. Instead, anecdotal
evidence suggested that higher ratios of recognized words to the number of segments
indicated improved reinforcement learning performance. It was shown that the choice
for the word segmentation algorithm also mattered. As presented in Table 10, higher
ratios were found with the results of codebook sizes 256 and 512 when WordSeg AG is
used. Conversely, codebook size 128 had the higher ratio when WordSeg TP is used,

58

Spoken Language Acquisition

as shown in Table 11. The smaller codebook size took advantage of the TP algorithm
in that less variety in the phone sequences was able to produce fewer segments that
contained a viable amount of valid words.

In reality, the recognition rate is the frequency of recognizing the spoken words
intended to be learned. The total number of segments or action space size can be
thought of as our world where one constantly hears speech and noise. Only a portion
of this world would have the target spoken words, and the rest would be noise or
irrelevant spoken words that can cause confusion and hinder language learning. In
applying spoken language acquisition to machines, it would make sense to consider
optimization based on both the recognition rate and the action space size.

The simulated word segmentation experiment examined how the word segmenta
tion results affect the reinforcement learning performance. Hypothesis H2 dealt with
the recognition rate. It was proven that having a higher recognition rate does improve
the reinforcement learning performance as long as the total number of segments pro
duced remains the same. However, there was a limit found to the improvement that
can be attained. At some point in increasing the recognition rate, significant improve
ments only manifested in the initial episodes of the DQN learning loop.

On the other hand, hypothesis H3 dealt with the number of segments produced or
equivalently the action space size for the DQN. The experiment tested that increasing
the action space size while the recognition rate is held constant causes more unsat
isfactory reinforcement learning results. Up to a certain extent of increasing the size,
the deterioration was limited to an increased number of actions. However, after some
threshold, increasing the size also caused the model convergence to fail.

It should be recalled that DQN is implemented with the epsilongreedy method to
deal with the exploration versus exploitation dilemma. During the beginning of the
learning loop, the agent is in exploration mode and acts randomly. As the learning
loop progresses, the agent goes into exploitation mode and acts based on the policy
network. When the action space is much larger than the number of valid actions, the
agent has a higher chance of choosing more nonvalid actions and developing the
wrong policy network. Eventually, the model may not converge.

Conversely, when the action space size is small, it is easier for the agent to choose
the correct actions and develop the most efficient policy network. It should also be
noted that the replay buffer stores the past experiences of the agent and uses a sample
from this buffer to implement the SGD update of the policy network weights. If the
buffer is mainly filled up with past experiences based on nonvalid actions, then there

59

Spoken Language Acquisition

is a higher chance that the policy network will not be appropriately developed.

This experiment demonstrated how the recognition rate and action space size in
dependently influence the reinforcement learning results. Improving the recognition
rate to a level that facilitates successful reinforcement learning seemed to be sufficient
enough. In addition, the action space size limit needed to be watched out to ensure
model convergence. As previously discussed, looking into the ratio of recognized valid
words to action space size can offer additional insights on the possible constraints of
grounding spoken language in machines using reinforcement learning.

The last experiment compared VQ segmentation and ES kmeans algorithm. It
demonstrated that there is still room for improvement with the current VQ segmen
tation setup. The system using ES kmeans achieved better results in both word seg
mentation and reinforcement learning. However, there was not a huge gap between
the number of actions of the two cases during the later episodes of the learning loop.

Unsupervised word segmentation in this thesis relies on the VQAPC model to cap
ture the acoustic differences in the speech signal. As such, the extent to which the
model is trained will affect the results. The thesis uses models that were trained for
2000 epochs. It is possible that training them further can help improve the word seg
mentation results. It can be recalled that VQ segmentation breaks down the combined
sound file into phone segments. Then, an algorithm from the WordSeg package is used
to detect words from the sequence of phones. Therefore, word discovery is highly de
pendent on the quality of the phone segments.

On the other hand, ES kmeans starts with random word boundaries and then goes
back and forth, mutually optimizing the segmentation and cluster assignments. The
goal is to group acoustically similar speech segments. One remark on this method is
that some knowledge on the speech signal is required to declare a sufficient number
of K hypothesized words that the algorithm uses as a basis for the clustering.

Comparing the two segmentation methods, it is apparent that there is more flexi
bility in the way ES kmeans assigns the word boundaries. However, even though VQ
segmentation may be more rigid in its approach, it has the advantage of not requiring
any hypothesis on the number of words in the speech signal. A theory that can explain
why ES kmeans worked better is that it was able to work around the rather long silent
gaps in between the utterances in the combined sound file. The VQAPC model may
not necessarily have a good representation of these silences in its codebook since it
trained on a massive amount of continuous speech.

60

Spoken Language Acquisition

7.2 Conclusion

One of the significant contributions of this work is utilizing the VQAPC model for
unsupervised word segmentation. By training the model using the LibriSpeech dataset
for 2000 epochs, it effectively extracted the feature vectors of the speech signal and
generated a codebook capable of producing acceptable results with VQ segmentation.
Based on the comparison done with an existing system using ES kmeans algorithm,
results revealed that there is still room for improvement.

On the other hand, the DQN reinforcement learning algorithm was successfully uti
lized for the language learning task defined in this thesis. It proved to be an effective
tool in simulating grounded language acquisition. The agent’s verbal behavior was es
tablished through positive rewards gained by accomplishing the task of ”speaking” the
digits in ascending order.

Various experiments were performed that tested both the word segmentation and
reinforcement learning performance of the system. Through them, it was discovered
that the best results for word segmentation were achieved when the VQAPC model is
used with WordSeg AG. However, having the best word segmentation results was not
enough to ensure the best reinforcement learning results. It was found that looking
into other parameters, such as the ratio of recognized valid words to the total number
of segments, gave a better idea of how the language learning performance would be.
It should be noted that these were based on anecdotal evidence particular to the task
and DQN setup in this thesis. However, it can shed some additional insight for other
reinforcement learning implementations of similar nature.

In summary, the thesis achieved spoken language acquisition in machines in line
with Skinner’s theory by performing unsupervised word segmentation on a long speech
clip and employing reinforcement learning to ground the discovered spoken words.
Moreover, it was able to utilize the novel VQAPC model for unsupervised word seg
mentation and managed to discover factors that can influence the reinforcement learn
ing performance.

7.3 Future work

For the word segmentation part, the VQAPC model can be trained for more epochs
and see if significant improvements in the results can be achieved. Moreover, another
speech corpus containing labels for phonetic boundaries can be used to validate the
system’s performance at the phone segmentation level.

61

Spoken Language Acquisition

It would also be interesting for the reinforcement learning part to see an implemen
tation that deals with a more extensive vocabulary and more complicated tasks for the
agent. Additionally, multisensory input for the system can also be considered. Cur
rently, the system is only working with speech signals and establishing their meanings
through tasks performed in a virtual environment. Visual input can also be included,
leading to a more wellrounded way to learn the language.

62

Spoken Language Acquisition

Bibliography

[1] Brown, H. D. 2006. Principles of Language Learning and Teaching. Pearson
Education, 5th edition.

[2] Gao, S., Hou, W., Tanaka, T., & Shinozaki, T. 2020. Spoken language acquisition
based on reinforcement learning and word unit segmentation. In ICASSP 2020
2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 6149–6153. doi:10.1109/ICASSP40776.2020.9053326.

[3] Kamper, H., Livescu, K., & Goldwater, S. 2017. An embedded segmental kmeans
model for unsupervised segmentation and clustering of speech. In 2017 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU), 719–726.
doi:10.1109/ASRU.2017.8269008.

[4] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., &
Hassabis, D. February 2015. Humanlevel control through deep reinforcement
learning. Nature, 518(7540), 529–533. doi:10.1038/nature14236.

[5] Chung, Y.A., Tang, H., & Glass, J. 2020. VectorQuantized Autoregressive Pre
dictive Coding. In Proc. Interspeech 2020, 3760–3764. URL: http://dx.doi.org/
10.21437/Interspeech.2020-1228, doi:10.21437/Interspeech.2020-1228.

[6] Bernard, M. October 2018. bootphon/wordseg: wordseg0.7.1. URL: https:
//doi.org/10.5281/zenodo.1471532, doi:10.5281/zenodo.1471532.

[7] Nandy, A. & Biswas, M. 2018. Reinforcement learning with Open AI, TensorFlow
and Keras Using Python. Number 1. doi:10.1007/978-1-4842-3285-9.

[8] Lapan, M. 2018. Deep Reinforcement Learning HandsOn: Apply modern RL
methods, with deep Qnetworks, value iteration, policy gradients, TRPO, AlphaGo
Zero and more. Packt Publishing Ltd.

[9] Chung, Y.A., Hsu, W.N., Tang, H., & Glass, J. 2019. An Unsupervised Au
toregressive Model for Speech Representation Learning. In Proc. Interspeech

63

Spoken Language Acquisition

2019, 146–150. URL: http://dx.doi.org/10.21437/Interspeech.2019-1473, doi:
10.21437/Interspeech.2019-1473.

[10] Jang, E., Gu, S., & Poole, B. 2017. Categorical reparametrization with gumble
softmax. In International Conference on Learning Representations (ICLR 2017).
OpenReview. net.

[11] Kamper, H. & van Niekerk, B. 2020. Towards unsupervised phone and word
segmentation using selfsupervised vectorquantized neural networks. CoRR,
abs/2012.07551. URL: https://arxiv.org/abs/2012.07551, arXiv:2012.07551.

[12] Bernard, M., Thiolliere, R., Saksida, A., Loukatou, G. R., Larsen, E., Johnson, M.,
Fibla, L., Dupoux, E., Daland, R., Cao, X. N., et al. 2020. Wordseg: Standardizing
unsupervised word form segmentation from text. Behavior research methods,
52(1), 264–278. doi:10.3758/s13428-019-01223-3.

[13] Levin, K., Henry, K., Jansen, A., & Livescu, K. 2013. Fixeddimensional acoustic
embeddings of variablelength segments in lowresource settings. In 2013 IEEE
Workshop on Automatic Speech Recognition and Understanding, 410–415. doi:
10.1109/ASRU.2013.6707765.

[14] Levin, K., Jansen, A., & Van Durme, B. 2015. Segmental acoustic indexing for zero
resource keyword search. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 5828–5832. doi:10.1109/ICASSP.2015.
7179089.

[15] Kamper, H., Wang, W., & Livescu, K. 2016. Deep convolutional acoustic word
embeddings using wordpair side information. In 2016 IEEE International Con
ference on Acoustics, Speech and Signal Processing (ICASSP), 4950–4954. doi:
10.1109/ICASSP.2016.7472619.

[16] Matuszek, C. 2018. Grounded language learning: Where robotics and nlp meet
(invited talk). Proceedings of the International Joint Conference on Artificial In
telligence. URL: https://par.nsf.gov/biblio/10066404.

[17] Sinha, A., Akilesh, B., Sarkar, M., & Krishnamurthy, B. 2019. Attention based
natural language grounding by navigating virtual environment. In 2019 IEEE
Winter Conference on Applications of Computer Vision (WACV), 236–244. doi:
10.1109/WACV.2019.00031.

64

Spoken Language Acquisition

[18] Hermann, K. M., Hill, F., Green, S., Wang, F., Faulkner, R., Soyer, H., Szepesvari,
D., Czarnecki, W. M., Jaderberg, M., Teplyashin, D., Wainwright, M., Apps, C.,
Hassabis, D., & Blunsom, P. 2017. Grounded language learning in a simulated
3d world. CoRR, abs/1706.06551. URL: http://arxiv.org/abs/1706.06551, arXiv:
1706.06551.

[19] Yu, H., Zhang, H., & Xu, W. 2018. Interactive grounded language acquisition and
generalization in a 2d world. CoRR, abs/1802.01433. URL: http://arxiv.org/
abs/1802.01433, arXiv:1802.01433.

[20] Roy, D. 2003. Grounded spoken language acquisition: experiments in word learn
ing. IEEE Transactions on Multimedia, 5(2), 197–209. doi:10.1109/TMM.2003.
811618.

[21] Yu, C. & Ballard, D. H. 2004. On the integration of grounding language and
learning objects. In AAAI, volume 4, 488–493.

[22] Chauhan, A. & Lopes, L. S. 2011. Using spoken words to guide openended
category formation. Cognitive processing, 12(4), 341–354.

[23] Boves, L., ten Bosch, L., & Moore, R. 2007. Acorns towards computational
modeling of communication and recognition skills. In 6th IEEE International Con
ference on Cognitive Informatics, 349–356. doi:10.1109/COGINF.2007.4341909.

[24] Zhang, M., Tanaka, T., Hou, W., Gao, S., & Shinozaki, T. 2020. SoundImage
Grounding Based Focusing Mechanism for Efficient Automatic Spoken Language
Acquisition. In Proc. Interspeech 2020, 4183–4187. URL: http://dx.doi.org/10.
21437/Interspeech.2020-2027, doi:10.21437/Interspeech.2020-2027.

65

Appendices

66

Spoken Language Acquisition

A Diagrams and Plots

67

Spoken Language Acquisition

Figure 18: System architecture overview showing the main processes and the corre
sponding input and output.

68

Spoken Language Acquisition

B Tables

Results Run 1 Run 2 Run 3 Run 4 Run 5
Number of segments 251 243 249 249 239

zero 12 11 11 12 8
one 8 7 11 7 6
two 9 8 7 8 8
three 11 8 9 10 7
four 6 6 6 7 6
five 6 6 6 4 7
six 8 6 9 8 8
seven 7 5 6 8 7
eight 3 3 3 2 2
nine 7 5 8 6 7

Recognized valid words 77 65 76 72 66
Recognition rate 15.40% 13.00% 15.20% 14.40% 13.20%
Over segmentation 49.80% 51.40% 50.20% 50.20% 52.20%

Valid words / Segments 30.68% 26.75% 30.52% 28.92% 27.62%

Table 20: Segmentation results using WordSeg AG and codebook size 128.

69

Spoken Language Acquisition

Results Run 1 Run 2 Run 3 Run 4 Run 5
Number of segments 478 478 486 480 483

zero 22 23 23 22 24
one 19 20 19 21 20
two 15 15 17 16 15
three 12 13 16 14 16
four 13 14 15 13 13
five 15 16 16 15 14
six 11 11 10 11 11
seven 17 19 18 18 19
eight 9 6 8 7 7
nine 24 22 23 23 24

Recognized valid words 157 159 165 160 163
Recognition rate 31.40% 31.80% 33.00% 32.00% 32.60%
Over segmentation 4.40% 4.40% 2.80% 4.00% 3.40%

Valid words / segments 32.85% 33.26% 33.95% 33.33% 33.75%

Table 21: Segmentation results using WordSeg AG and codebook size 256.

Results Run 1 Run 2 Run 3 Run 4 Run 5
Number of segments 453 455 453 457 454

zero 22 20 22 21 21
one 16 14 14 15 15
two 19 19 20 20 20
three 10 11 11 11 11
four 20 21 21 19 20
five 13 13 13 12 13
six 13 12 12 11 13
seven 14 16 14 14 15
eight 7 7 8 6 8
nine 18 17 17 16 17

Recognized valid words 152 150 152 145 153
Recognition rate 30.40% 30.00% 30.40% 29.00% 30.60%
Over segmentation 9.40% 9.00% 9.40% 8.60% 9.20%

Valid words / segments 33.55% 32.97% 33.55% 31.73% 33.70%

Table 22: Segmentation results using WordSeg AG and codebook size 512.

70

Spoken Language Acquisition

Results code size 128 code size 256 code size 512
Number of segments 231 424 411

zero 10 17 14
one 8 13 12
two 7 10 9
three 8 7 12
four 10 12 12
five 6 13 12
six 4 9 5
seven 11 13 12
eight 6 4 11
nine 5 13 19

Recognized valid words 75 111 118
Recognition rate 15.00% 22.20% 23.60%
Over segmentation 53.80% 15.20% 17.80%

Valid words / segments 32.47% 26.18% 28.71%

Table 23: Segmentation results using WordSeg TP.

Results Run 1 Run 2 Run 3 Run 4 Run 5
Number of segments 736 712 741 746 736

zero 40 41 40 41 41
one 33 35 32 33 33
two 26 26 26 25 26
three 28 28 30 27 28
four 29 31 29 29 29
five 26 26 24 26 26
six 25 25 20 18 23
seven 34 35 35 30 32
eight 16 16 15 17 13
nine 28 27 28 28 27

Recognized valid words 285 290 279 274 278
Recognition rate 57.00% 58.00% 55.80% 54.80% 55.60%
Over segmentation 47.20% 42.40% 48.20% 49.20% 47.20%

Valid words / Segments 38.72% 40.73% 37.65% 36.73% 37.77%

Table 24: Segmentation results using ES kmeans for word segmentation.

71

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Janine Rugayan

A Deep Learning Approach to Spoken
Language Acquisition

Master’s thesis in Electronic Systems Design
Supervisor: Torbjørn Karl Svendsen

June 2021

M
as

te
r’s

 th
es

is

