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Abstract

A typical microcontroller unit (MCU) has limited capabilities for processing and
displaying graphics, due to power and size constraints. An increasing demand for
rich graphical user interface (GUI) applications in battery powered systems moti-
vates microcontroller vendors to include additional hardware to accelerate graphics
processing. The goal of this master thesis was to analyze the graphics processing
capability of a typical microcontroller and to explore different architectures for im-
proving performance. A RISC-V ISA based simulator of a generic, heterogeneous,
and multi-core system on chip (SoC) with shared memory and I/O written using
SystemC + TLM provided the hardware environment needed for the analysis and
exploration. LVGL which is a embedded graphics library was used for writing the
application code for this hardware simulator.

The main phases of the thesis were - setting up the hardware simulator environ-
ment, setting up a benchmarking framework on the application code, doing base-
line performance analysis and arriving at possible areas for improvement, design-
ing architectural improvements and exploring various scenarios. The two improve-
ments which were analyzed and performed were adding direct memory access
(DMA) capability to the basic display controller, and designing a hardware ac-
celerator for offloading fill and blend operations from the CPU, also with DMA.
When these two were used together for drawing different scenes, an average 68%
reduction in the cycles was obtained compared to the cycles taken to render it in
the baseline scenario, thus increasing the processing speed of the application. In
addition to this reduction, an average of 18% of the cycles taken were saved, thus
freeing up the CPU to do something else during these cycles.

Keywords: MCU, RISC-V, Hardware Accelerator, TLM, Graphics Processing
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Chapter 1
Introduction

This chapter first talks about the motivation for selecting this topic, then the objec-
tive of the thesis, the methodology followed, contribution made by the author and
ends with an overview of the chapters in the report.

1.1 Motivation and Objective

GUIs are omnipresent in today’s world. Computers are conventional devices which
can drive excellent quality graphics, but they are general-purpose and power-hungry.
The demand for rich GUIs in battery powered systems like watches, smartphones,
medical devices, handheld gaming devices to name a few is on the rise [16]. Many
of these specialized devices employ MCUs because they cost less, are not power
intensive, and are relatively less complex compared to general-purpose computers.
Typically, MCUs have limited capabilities for driving graphics owing to the power
and size constraints. Therefore, MCUs with graphics capabilities is a niche and
developing market [9].

A theoretical study [19] was done as a part of the specialization project during Fall
2019 which discussed and compared the various hardware architectures which can
be used for accelerating graphics processing performance in MCUs along with the
various kinds of software libraries which can be used to write the GUI code. Of
the various graphics libraries compared in the project, LVGL was concluded to be
best suited for use in research because it is free, open-source, lightweight, and has
support for hardware acceleration. LVGL is therefore used for writing graphics
application code in this thesis.

1
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The aim of this thesis is to keep the specialization project as a theoretical founda-
tion and develop upon it. The thesis focuses on analysis of the graphics processing
capability of a typical MCU and seeks to explore various architecture topologies
for improving the same. A simulator of a SoC is needed for performance analysis
and architectural exploration. A RISC-V ISA based simulator written in SystemC
+ TLM is used and the reason for this choice is elaborated in the background chap-
ter. To explain briefly, Nordic Semicondutor currently uses the ARM ISA which
is licensed. RISC-V on the other hand is free, open source, and royalty-free [4].
It has huge potential for use in research and education due to its simple, modular
and extensible nature. SystemC + TLM is used to write the simulator because it is
highly suited for use in SoC modelling and architectural exploration owing to its
high level of abstraction [7]. Having a RISC-V based simulator model in SystemC
+ TLM which can run the same software code as ARM makes it the perfect choice
for use in this thesis.

The thesis primarily seeks to be a study backed by simulation results which aims
to understand graphics subsystem in microcontrollers first, set up the system on a
simulator, add a benchmarking framework to it, and then analyze its performance
along with exploring various architectures to improve the graphics processing per-
formance.

1.2 Methodology

The first part of the project was literature review. The search engines used for
this purpose were NTNU’s Oria, Scopus, ACM digital library, Google Scholar,
and IEEE Xplore. The thesis can be broadly divided into three phases - setting up
phase, benchmarking phase, and architectural exploration phase.

The setting up phase consists of setting up the simulator and running the LVGL
graphics library for writing GUI code on it. The benchmarking phase consists of
setting up timing information for the hardware components of the simulator and
benchmarking the application code running on the simulator. The benchmark-
ing phase encompasses the baseline analysis phase where the graphics processing
performance is analyzed on a baseline architecture and the areas for improving
the performance are identified. This phase also provides us a quantitative way to
analyze the improvement in performance. The architecture exploration phase con-
sists of designing architectural improvements and exploring various architectural
topologies for improving the graphics processing performance.
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1.3 Contributions

The contributions made by the author are:

• Explaining how to set up a RISC-V based simulator of a SoC which is con-
figurable and represents a modern day, generic, heterogeneous, and multi-
core SoC systematically. The code listings are also added in the appendix
and they can be referred to understand the process better. Here, the simula-
tor is used for graphics processing analysis, but it can also be used for other
types of analyses.

• Setting up timing in the TLM models of hardware components in the simula-
tor. This helps to mirror a real-life situation where there are different kinds of
components with different latencies connected together in a SoC and quan-
tify the time spent in doing different operations. This general methodology
can be referred to set up timing in other TLM models.

• Here, the graphics application code is benchmarked to understand which
operations act as a bottleneck on the simulation speed. The methodology
can also be followed to benchmark other kinds of application code.

• The graphics processing performance is analyzed in a baseline architecture
configuration and then improvements are identified, designed, and explored.
The ease of adding new components, changing the topologies, and adding la-
tencies to perform architectural exploration on TLM models is demonstrated
here.

1.4 Report Structure

Chapter 1 - Introduction
Chapter 1 introduces the thesis along with its motivation and objective. The method-
ology adopted in this thesis has then been described along with the contribution
made by the author. The chapter concludes with the report structure.

Chapter 2 - Background
Chapter 2 provides the background theory needed to read this report. It first ex-
plains the graphics subsystem in a MCU environment and also introduces the
graphics software libary LVGL which will be used for writing GUI code. The
chapter also explains why a RISC-V ISA based simulator of a SoC written using
SystemC + TLM is used in the thesis by providing relevant background.
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Chapter 3 - System Setup
Chapter 3 provides a detailed account of how the SoC simulator was set up, the
graphics subsystem of a typical MCU emulated on it, and a simple graphics test
written using LVGL was run on it. The chapter is divided into sub-chapters as
needed to break up the process and for easy understanding.

Chapter 4 - Benchmarking
Chapter 4 is an integral one. The first part explains the concept of timing in TLM
models and the next part explains how timing is set up in the TLM models of
the hardware components which make up the simulator. The middle part explains
how the benchmarking framework is set up to analyze the breakdown of the cycles
taken to draw a scene to the display. The last two parts of the chapter are results
and discussion where the baseline performance is analyzed by drawing different
scenes to the display and the bottleneck operations which hog the most cycles are
identified for improvement.

Chapter 5 - Architectural Exploration
Chapter 5 begins by presenting the design of two architectural improvements -
Adding DMA to the display controller model, and a hardware accelerator model
for accelerating blend and fill drawing operations, also with DMA. These improve-
ments are then explored under various scenarios in the results section and the ob-
servations are summarized in the discussion section.

Chapter 6 - Conclusion
Chapter 6 summarizes the entire work done and concludes the thesis by presenting
the future scope of the work.



Chapter 2
Background

This chapter helps to establish the theoretical knowledge needed to understand the
report. The first part provides an overview of graphics subsystem in a MCU by
explaining its high-level architecture. It also introduces the GUI software library
LVGL which is used for application code development in this thesis. The next
part explains modelling systems using SystemC + TLM and its advantages. The
final part talks about the RISC-V ISA and why it is used in processors. The first
parts provide relevant background knowledge, but the last two parts along with
providing knowledge answer why a RISC-V ISA based simulator written using
SystemC + TLM is used in this thesis.

5
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2.1 Graphics Subsystem

Figure 2.1: The data flow to rendering graphics in a graphics subsystem

The basic flow to displaying graphics is as shown in the figure 2.1. The application
code can be run on the CPU or a specialized hardware unit. The code is usually
written using a GUI software library. When the code runs, the graphical instruc-
tions build the image in the frame buffer which is a memory unit. The display
controller is responsible for picking up the image built from the frame buffer and
driving it to a display panel which displays it [15].

2.1.1 Components

The primary components which make up a graphics subsystem are the microcon-
troller, software, frame buffer, display controller, and the display panel which are
described briefly in the following subsections.

Microcontroller

Figure 2.2: General architecture of a MCU
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Figure 2.2 shows the general architecture of an MCU. The system bus is connected
to the Flash Memory, RAM, DMA (optional) and General Purpose Input Output
(GPIO) units. Units for interfacing with the outside world, called the peripheral
units are connected through a peripheral bridge which is connected to the system
bus via a bridge. The application code is run on the CPU, but it can also be made to
run on a dedicated hardware unit. The graphical instructions build the image in the
frame buffer. The frame buffer is a memory unit which can be present internally
in the MCU or be external to the MCU [3].

Software

The application code which runs on the microcontroller is called the software. It is
usually written using a GUI software library. A GUI library has callback functions
to the driver of the hardware units if present. The library helps to set up the GUI
by implementation of APIs for drawing fundamental shapes, 2D image processing
and providing support for hardware acceleration of graphics functions [3].

Frame Buffer

It is also known as the Graphic Random Access Memory (GRAM). The frame
buffer is a volatile memory space that is used for storing the final image that is
shown on the screen. Its size depends on the resolution of the display and the color
depth.

Frame buffer size (Bytes) = Number of Pixels x Color Depth (Bits)/8

Example: For a display at 24 bpp color depth and resolution of 480x272, the frame
buffer memory required is 480x272x24/8 = 391,680 Bytes (392 kB)

It can be stored in the microcontroller RAM, in an external RAM or integrated in
the display controller. Double buffering (having two frame buffers) is commonly
used to avoid a glitch called tearing which occurs when two frames are displayed
simultaneously. In double buffering, one buffer is used for drawing to compose
the next image while the other stores the current image and is driven to display
[20].

Display Controller

The purpose of the display controller is to transfer the contents of the frame buffer
to the display panel. In this way, it continuously refreshes the display panel and
the frequency with which this is done is called the refresh rate. If the screen is
refreshed 60 times in a second, then the refresh rate is 60Hz. The display controller
can be present either in the MCU or external to the MCU [20].
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Display Panel

The display panel is driven by the display controller and it displays the final image.
The data is driven to it by the controller from the frame buffer by formatting it.
The data output to the panel has many signals for synchronization. Display panels
come in many varieties and sizes, and they are chosen depending on the preference
of the system [20].

2.1.2 Configurations

The components of a graphics subsystem can be connected together in different
configurations. The most common configurations are:

Figure 2.3: Configuration 1: Display module with frame buffer and display controller

The configuration in figure 2.3 is used in MCUs which do not have built-in graph-
ics support. The frame buffer and the display controller are both located on a
display module and connected to the MCU through it. A serial interface like SPI
is used for the transfer of data from the MCU to the display module.

Figure 2.4: Configuration 2: MCU with frame buffer and display controller present on-
chip

As compared to the previous configuration, the configuration in figure 2.4 has both
the frame buffer and display controller present on the MCU and connected to an
external display panel. This configuration can lead to significant savings in terms
of memory accesses as having an internal frame buffer maximizes performance and
minimizes bandwidth limitations for the display controller. A parallel interface like
RGB is used for the transfer of data from the MCU to the display module.
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Another advantage is that on-the-fly custom transformations of pixel data is possi-
ble when the controller is on the chip. It is also a configuration preferred by some
customers as they can buy a simple display panel cheaply and there is no need to
buy one with both the frame buffer and controller.

Figure 2.5: Configuration 3: MCU with display controller on-chip and external frame
buffer

The configuration in figure 2.5 is similar to the one above and offers the same
advantages. The only difference is the frame buffer can be external in case of
storage constraints on the chip.

2.1.3 GUI library - LVGL

The GUI library which is used for application code development in this thesis is
LVGL [12]. It is a graphical library which helps to create embedded GUI. Some
of its key features are:

• Open-source and free under the MIT license.

• Hardware-independent and can be used without any MCU or display.

• Written in C but also compatible with C++.

• Made of building blocks like lists, blocks, charts, images and also supports
advanced graphics like animations, opacity, anti-aliasing, etc.

• All the graphic elements are fully customizable.

• Supports multi input devices and multi displays.

• Has a very less memory footprint and is scalable.

• Can also support OS, external memory and GPU.
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The reason it is used in this thesis is because it is open-source, completely free,
easy to use, hardware-independent, and supports external memory and GPU. It can
start an embedded GUI design by running it on its PC simulator environment. This
offers a major advantage of writing and testing real LVGL applications without the
need for embedded hardware. There are plenty of tutorials, examples, themes, and
documentation which facilitates its ease of use and GUI designing. The structure
of LVGL is as shown in figure 2.6 [27].

Figure 2.6: Structure of LVGL [27]

Application creates the GUI and handles the tasks. It is written using the LVGL
API which makes calls to the functions of the LVGL library or directly to the
drivers.

LVGL is the layer with which the application communicates to create the GUI. It
registers the input and display device drivers using a Hardware Abstraction Layer
(HAL).

Drivers contains functions which make calls to functions that drive the display, to
hardware accelerator/GPU, or to the display controller.

2.2 SystemC + TLM modelling

The SoC designs today are complex with multiple heterogeneous processors, on-
chip buses and caches, peripheral control devices, and hardware accelerators for
dedicated functions. There are a growing number of Intellectual Property (IP)
blocks that interact through bus technologies or networks on chip (NoC). Using
the traditional RTL modelling for design and verification takes too much effort
for development, provides slow simulation, and it is not ready early in the design
flow for architectural exploration and early hardware/software integration. Until
the final chip is ready, software cannot be written for the system which slows down
the development cycle and increases the time-to-market.
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This makes RTL costly and has limited debugging capabilities. One solution to
these limitations is raising the abstraction level and creating models which have
less details compared to the RTL models. To address these limitations of RTL,
SystemC transaction level models are used widely for SoC design and verifica-
tion. The system functionality is represented using the concept of transaction that
is, operations and interactions between the components by hiding the low level
implementation details [26] [25].

SystemC [2] is a system level design and verification language built on top of
C++. It allows modelling and execution of both hardware and software at different
levels of abstraction. The high level of abstraction enables faster and more pro-
ductive analysis, design, and redesign of architectural trade-offs compared to the
RTL level. TLM [28] is a transaction based methodology approach and is based
on C++ and SystemC. TLM provides an abstraction level in which the behavior
of the functional blocks in the system is separated from the communication. The
focus is on communication and it is performed by passing a high level data struc-
ture called transaction between the blocks through abstract channels or interfaces.
Transaction level models use software function calls to model the communication
between the blocks in a system in contrast to the RTL models where signals are
used [11].

Figure 2.7: Implementation and simulation speeds at different levels of abstraction

TLMs have multiple abstraction levels from cycle accurate to un-timed models as
shown in figure 2.7 . Initially, designers use higher level models with minimum
details and these models can then be refined over time to include more information
as the design cycle progresses.
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Figure 2.7 also shows how the implementation and simulation speed increases
with higher level of abstraction. The main concept in TLM is abstracting away the
communication on the buses by using transactions. Instead of modelling all the bus
writes and monitoring changes in their states, only logical operations like reading,
writing, etc done by the buses are considered in the model. These abstractions
increase the simulation speed by many orders of magnitude [1].

Figure 2.8: Representation of the flow of a TLM transaction from Initiator to Target

A transaction is an atomic exchange of data between the initiator or master and tar-
get or slave. The transactions are forwarded from the master to the slave. Example
of a master is the CPU and a slave is Memory. The initiator initiates and issues
the transaction through an initiator socket and a target is always ready to receive it
through a target socket. The transactions are routed by the interconnects to their
destination using the address. This corresponds to the classical concept in bus pro-
tocols [17]. The initiator communicates with the target using a transport interface
and the target needs to implement the transport method. This is done by having
the target register a callback method with the socket. This concept is represented
in figure 2.8.
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Some components have only initiator sockets, some have only target sockets, and
some have both initiator and target sockets. The type of information which is
exchanged via a transaction depends on the bus protocol being used. Generic
payload is the class type used for the transaction objects which are passed through
the interfaces and these objects have attributes that are typically found in memory-
mapped bus protocols. Some are common to all protocols like:

• Type or command is the direction of data exchange, if it is read or write

• Address which determines the target and the register or component address

• Data that is sent and received

• Type of transfer like single word transfer or burst transfer

• Response status like success or failure

In RTL everything is synchronized using clocks and are synchronous in nature,
whereas TLM models do not use clocks and are asynchronous in nature. In TLM,
the synchronization happens when data is communicated between components.
By modeling at this level early in the design cycle, designers can perform archi-
tectural exploration and find an optimal architecture before committing to the low-
level details of a complete implementation. The TLMs can also be reused during
functional verification to ensure that the design is equivalent to the RTL imple-
mentation [7] [10]. In conclusion, SystemC + TLM offers many advantages as
mentioned above and is highly suitable for use in SoC modelling and architectural
exploration thus making it the right choice to be used in this thesis.

2.3 RISC-V ISA

Custom SoCs are becoming ubiquitous and it is rare to find an electronics product
which does not have an on-chip processor. The semiconductor industry today has
been revolutionized by open source products from networking standards, to soft-
ware to operating systems. Similarly, having an open ISA will enable greater inno-
vation in processor architectures as a result of the free-market competition.

Many companies have patents on their ISAs which prevents others from using it
without a license. The negotiations for obtaining a license can take a long time
and it is also very expensive. This makes it very inaccessible to the academia and
research sector which could have greatly contributed to the improvement of the
ISA. On the other hand, a shared open core design translates to faster innovation,
shorter time to market, low cost from reuse, transparency and processors becoming
more affordable for smaller devices.
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RISC-V was developed with the goal of creating a universal instruction set which
is open and free to all users [4]. RISC-V [21] is a royalty-free and open-source
general-purpose ISA used for designing processor architectures which builds and
improves upon the original RISC architectures. It has a common base set ISA and
a toolchain that can handle both the base ISA and customized instructions defined
by a SoC architect. Some of its key advantages are [30]:

1. Enabling SoC architects in customizing processor architecture is one of its
biggest advantages which differentiates it from the other ISAs in the mar-
ket. Specific application issues can be solved by adding various customiza-
tions like hardware accelerators, custom instructions, different cache sizes
all without breaking compatibility and causing fragmentation.

2. The base ISA is very simple and modular. The instruction coding is very
regular and does not have complicated memory instructions. This simplifies
the implementation and keeps it architecture clean as a result of which RISC-
V cores are smaller than ARM and x86 cores [22].

3. As the ISA is open, the designs can be optimized for different scenarios like
low power, performance, security, etc. It provides higher control over the
hardware implementation and fewer compromises.

4. It is a frozen ISA which means that the base instructions are frozen and
optional extensions when added are also frozen. This leads to stability of
the ISA and provides solid foundation to preserve the software investments.
Software development can be done more confidently because the software
written for RISC-V will run on all similar cores of RISC-V forever.

Though the ISA is incomplete and its ecosystem is in its early stages of develop-
ment, it is very promising. On one hand, its structure of a small base ISA makes
it suitable for research and education while also making it capable of being a suit-
able ISA for inexpensive and low-power embedded devices. On the other hand, the
option of adding a variety of extensions allows it to form a powerful ISA which
could be used for general-purpose and high-performance computing.



Chapter 3
System Setup

This chapter describes in detail how the SoC simulator used in this thesis was set
up and a simple graphics test was run on it. A RISCV-ISA based SoC simulator has
been used in this thesis which has been structured as per our requirements. This
simulator is written using SystemC + TLM. A base RISCV-ISA simulator written
in SystemC + TLM provides important components needed for our simulator. The
description of this base simulator is provided in one of the sections. How our sim-
ulator is customized and structured is also described in the next section followed
by simple testing to check its sanity.

The next section of this chapter is emulating a graphics subsystem in our simulator.
To emulate a simple graphics subsystem, the GUI code is written using a graphics
library and run on the CPU model, a frame buffer is prepared in the RAM model
and a display controller gets the data from the frame buffer and outputs it to a
display unit. The graphics library used for writing the GUI code is LVGL. It is
set up in our simulator by first running it in its own simulator environment, then
compiling it using native GCC of the PC (x86) and then finally compiling it using
GCC for RISC-V. The display is emulated by using a library which prints the data
in the frame buffer to a bmp file and a simple display controller is modelled in
SystemC + TLM.

15
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3.1 Base Simulator

The RISCV-ISA simulator [18] which was used as the starting point for setting up
the system was found on GitHub and is licensed under the GNU General Public
License [8] giving permission for private use and modification. This simulator is
coded in SystemC + TLM thus making it suitable for this thesis as discussed in
the background chapter. The structure of the simulator is explained in the figure
3.1.

Figure 3.1: Structure of the base RISCV-ISA Simulator [18]

It is to be noted that this is how the components are connected in the simulator and
in our model, this configuration of connection is not used as is. This configuration
is used as an example and our simulator is connected along similar lines. Also not
all the components in this simulator are used in our model and only the necessary
ones are picked out, modified if needed and connected.
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CPU is a top-level initiator model and encompasses the Registers, Instruction, and
Execute models. The Registers model implements register files, PC register, and
CSR registers. The software to be run on the CPU is stored in the Memory (loaded
as a hexfile) and it has read and write capability. The Instruction model fetches
the instruction to be decoded through the instruction bus (instr bus) and decodes
it. If the instruction requires any data to be read from or written to the Memory, it
is fetched using the data bus and the Execute model executes it.

The CPU model is an ISA based processor and it has capability to decode and
execute three kinds of instructions:

• Compressed instructions having a C extension

• Multiplication and Division instructions having a M extension

• Atomic instructions having an A extension

BusCtrl is an interconnect model and a bus manager. It has target sockets for con-
necting initiator models like the CPU and initiator models for connecting target
models like the Memory, Trace, and Timer. It only forwards transactions to the
correct target without modifying the transactions. Trace is a simple trace periph-
eral which creates a xterm window for printing out the received data and timer
is a simple real-time IRQ programmable counter peripheral. There are also some
helper classes like the Performance model used for storing the performance indi-
cators of simulation and Log class for logging.

All of these components are connected together as shown in the figure 3.1 in the
Simulator Top file. This simulator was studied to get a basic understanding of
modelling a SoC in SystemC + TLM. The simulator package also comes with
many tests which can be run to test various criteria and it provided a good starting
point to understand how the tests are written and run on the simulator.

3.2 Customized simulator

The simulator which is used throughout this thesis is connected as shown in figure
3.2 to start with. A few modifications are made to it as the thesis progresses which
are described when they are done. It derives its components from the base sim-
ulator described in the previous section, in-house Nordic Semiconductor models
and some models developed specially for this thesis. The simulator is structured to
model a generic, heterogeneous, and multi-core system with shared memory and
I/O.
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Our simulator has 3 domains namely the Shared domain, App domain, and App1
domain. All the domains have their own Top file in which the component models
are instantiated and connected. The App domain is the one which will be used
for running the application code on. The shared domain acts like a global domain
with shared memory and I/O, and all the other domains are connected to it. The
App1 domain is not used in this thesis. It is connected to show that the simulator
is easily configurable and extendable where new components and domains can be
added with ease.

Figure 3.2: Structure of the Customized Simulator used in this thesis

In the Simulator Top file, the three domains are instantiated and connected. The
CPU model and the Memory model (renamed here as Ram) are taken from the base
simulator along with the helper models Performance and Log. The IRQ model, the
Interconnect model, and the Bridge models have been developed in-house.

Each domain has a CPU with a Cache and IRQ. The CPU is a master or initiator
model connected to the Interconnect through its Cache. The Memory model is
renamed as the Ram model and used here. Two instances of Ram are connected in
each domain where instance 0 is the ROM and instance 1 is the RAM. The Ram
instances are connected as slaves or targets to the Interconnect. The Interconnect
is a bus manager to which any number of master and slave components can be
connected and it forwards the transaction without modifying it. It is similar to the
BusCtrl model in the base simulator, but is designed differently.
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The transactions are initiated in the CPU model and forwarded either to the Ram
model or to the Bridge through the Interconnect depending on the target address.
Bridge0 and Bridge1 are Bridge models having one initiator socket and one target
socket. They are used for forwarding transactions out of the domain (Bridge0 con-
nected as a target to the Interconnect) or for receiving transactions forwarded from
other domains (Bridge1 connected as an initiator to the Interconnect). The App do-
main is the Application domain and used for running majority of the applications.
The App1 is a replica of the Application domain. The Shared domain is connected
to both App and App1 domains. Programs can be run on all the three domains.
This functionality is tested by running a simple print test on all the CPUs.

Figure 3.3: Result of the print test being run on the App domain CPU

The program ran successfully on all the three CPUs and the snapshot of the the test
running on the App domain is shown in figure 3.3. The first line in the screenshot
is the name of the test running and the second line is the name of the domain in
which it is running.
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3.3 Graphics subsystem on the simulator

The graphics subsystem in a MCU and its components were described in detail in
the background chapter. This section describes how it will be set up in our SoC
simulator. First, we need a software graphics library which is used for writing
the GUI code by making calls to its API. The graphics library chosen to be used
in this thesis is the LVGL library and it is described in the background chapter.
Understanding the library is the first part in setting it up to run our simulator which
is done by running LVGL in its own simulator environment. Next, LVGL was
ported to run on the native GCC of the PC (x86) to understand the process of
porting. The last part is emulating the entire graphics subsystem on the simulator
and porting LVGL to run on our simulator. All these are explained in following
sub-sections.

3.3.1 Running LVGL on its simulator environment

LVGL has the feature of running in its own simulator environment without the
need for any development board [24]. This is a very useful feature as it allows one
to write and experiment with real LVGL applications. Other advantages of having
this feature are it makes the LVGL code hardware independent, cross-platform
compatible, and portable.

The PC simulator was set up on Windows using Visual Studio. Everything was set
up and only the main file had to be run by uncommenting the test to be run which
can be chosen. There are a variety of tests to check the working of different LVGL
objects, LVGL themes, LVGL fonts, etc. The simulator uses SDL [23] which is a
cross platform libray for simulating the display and the input.

Figure 3.4: Steps to port LVGL for use in a project
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The entire method for using LVGL was studied, the figure 3.4 illustrates the steps.

1. The first step is to download or clone its Github repository [13]. It should
be copied to the project directory and then in the configuration file, only
the modules and functions which will be used are enabled. Only enabling
the parts of the library which will be used helps in keeping a small memory
footprint of the library.

2. Next step is to initialize the library and its components.

3. Drivers make calls to functions that drive the display/input/file systems and
also to hardware accelerators defined for specific functions. The drivers
which are used must be designed, templates for which are provided in the
library and they have to be modified according to the system being used. The
three primary steps in the design of drivers is the initialization of the driver,
definition of the driver, and finally registration of the driver. Drivers have
two fields namely data fields and callback functions which must be defined.

4. Next part is the GUI code development. The LVGL repository has lot of
examples for using different kinds of objects, themes, and applications. The
examples can be used directly or new code can be written as required. The
code is written by creating different kinds of objects like lists, widgets, im-
ages and defining their attributes like position, size, color, style, etc. The
GUI functions are called and the final part is calling the task handler of the
library periodically by using a timer interrupt to handle the tasks.

3.3.2 Porting LVGL to native GCC of the PC (x86)

Using the knowledge obtained by running the library in its simulator environment,
LVGL was set up on native GCC of the PC in this part. In the simulator, SDL is
used for simulating the display and input layers. The linux environment which was
used for doing the simulations in this thesis did not have access to SDL. Assum-
ing that the GUI we are making is static is nature, an input device would not be
required. The display must still be present so that the GUI is output somewhere.
Therefore, as an alternative to SDL for technical reasons, the display was emulated
by writing the image which is in the frame buffer to a BMP (bitmap) image file.
To do this a library called QDBMP [14] which stands for ”Quick N Dirty BMP li-
brary” was used. This is a minimalistic C library which is used for handling BMP
image files. The QDBMP header and C files are added to the work folder.
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The LVGL repository was cloned to the work folder and a simple makefile was
written for compiling the various source code files in the library. A main file was
written where initialization was done and a simple GUI function for creating some
objects of different shapes and colors was defined and called. A display driver is
written which has the data field as the frame buffer and a callback function to flush
the contents of the frame buffer to the QDBMP file.

The frame buffer is screen sized meaning it is the size of the display screen and
equal to resolution to the screen. The LVGL code is run on the CPU model which
writes pixel data to the internal frame buffer and after it has finished preparing
the frame, the display driver callback function writes it a BMP image file pixel by
pixel by using functions from the QDBMP library.

3.3.3 Porting LVGL to run on the simulator

A graphics subsystem in a MCU as seen in the figure 2.1 is made up of - CPU,
software, frame buffer, display controller, and display panel. The figure 3.5 illus-
trates how the entire graphics subsystem was emulated on our simulator. The GUI
application code was written using the LVGL library. The same procedure like in
porting LVGL to native GCC of the PC was followed. The application code is com-
mon for all the domains. We can choose which CPU the application code runs on
by giving the test name and the domain name as command line arguments.

Figure 3.5: Graphics subsystem on the SystemC + TLM simulator
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Instead of compiling it on native GCC of the PC(x86), to run it on our simulator
it is compiled on GCC for RISC-V. It is compiled to the hex format, loaded to the
RAM model and run on the CPU model. When the application is run on the CPU,
it prepares the frame in the frame buffer which is stored in the RAM model . The
CPU decodes the instructions and if the instruction requires read or write it has the
capability to perform it.

Once the entire GUI has been prepared in the frame buffer, the callback function
in the display driver to flush the contents of the buffer to the display is called.
The CPU then transfers the data from the frame buffer to the display controller by
writing the RGB data and 2D coordinates of the pixels one by one to the registers of
the display controller. The baseline display controller is modelled using SystemC
+ TLM and connected to the simulator as shown in figure 3.5. It has one target
socket which receives the pixel data in the form of transactions. It is connected as
a target to the interconnect model which is a bus manager model for forwarding the
transactions by address decoding. It has two registers one for the pixel address and
one for the pixel data which can be read or written into. The pixel address register
stores the 2D coordinates of the pixel and pixel data register stores the RGB color
data of the pixel. The controller model implements a transport function. When
the controller model sees that data has been written to both its registers, it uses
the QDBMP functions to place the pixel in the BMP image file which emulates a
display panel.
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Chapter 4
Benchmarking

The simulator has both hardware and software parts. The simulator is made up
of various hardware components modelled in SystemC + TLM like CPU, RAM,
Bridge, etc. The software which runs on the simulator is the application code
written using LVGL. Every operation takes some amount of cycles to complete be
it a simple line drawing operation done by LVGL or a transaction moving from the
CPU to the RAM through a interconnect.

The first section is explaining the timing concepts in TLM models followed by
a section on setting up a suitable concept of timing in the hardware models of
the simulator. The third section is setting up a benchmarking framework for the
application code running on the simulator. The next section is the results section
where the application code is run on the simulator for drawing different scenes
on the display and the total cycles taken by the CPU is broken down to cycles
taken for individual operations. The final section is the discussion section which
analyzes and discusses the results presented in the previous section. Potential areas
for improvement are identified by doing baseline performance analysis.

This chapter is integral as it helps us to understand which operations hog most
cycles and gives a concept of time to the simulator as a whole. Otherwise, the
simulation would complete in an infinitesimally small amount of time and would
not mirror real-life situations well. It also helps to establish a baseline which can
be compared with when architectural improvements are done on the simulator in
the next chapter.
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4.1 Timing concept in TLM models

Understanding the timing concepts and styles in TLM models is important in order
to set up timing on our simulator. The types of timing styles in TLM models
are briefly described first and the timing style which is used in our simulator is
explained in detail.

4.1.1 Types of timing styles in TLM models

1. Loosely-timed: The timing is provided at the level of the individual transact-
ion. It makes use of the blocking transport interface. This interface has only
two timing points - the initiators call to b transport which carries the transac-
tion request (beginning of the request) and the return from the target which
carries the response (beginning of the response). This style supports the
temporal decoupling concept in which the individual SystemC processes are
allowed to run ahead in their own local time wrap without advancing the
actual simulation time until they reach a time when they should synchronize
with the rest of the system. This style is ideal for use in our simulator since
it uses (b transport) and is explained in detail in the next subsection.

2. Approximately-timed: This is supported by the non-blocking transport in-
terface which provides timing annotation for multiple phases and points dur-
ing the life of a transaction. The transaction is broken down into many
phases and this is used when working with particular hardware protocols.
This style is detailed and slow to simulate and is not ideal for use in our
simulator.

3. Untimed style: TLM has no explicit support for this as they have no value
since all models need a concept of time. Loosely timed models with zero
timing annotation can be used as untimed models. Here, b transport is only
used to send the data to the target and does not carry any information about
response times [29].

4.1.2 Loosely-timed coding style and temporal decoupling

In loosely-timed style, the initiator communicates with the target using a blocking
transport interface, the target implements the transport method and registers it as a
callback with its target socket so that when the initiator calls the method it receives
it. The initiator initiates transactions and forwards to the interconnect which routes
the transaction to the correct target depending on the address embedded in the
transaction.
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Transaction argument is passed through reference using the b transport function
and has no return value. The target receives and responds to the transaction. It
can perform some actions to modify the attributes of the transaction and finally it
returns the transaction response status to the initiator. The b transport of the target
executes in the context of a thread process in initiator module and when it returns,
the control is unwound through the call chain back to the initiator [29].

Another argument which is passed through reference using the b transport function
is the timing annotation which is the local time offset. The timing annotation is
active on both the call to and the return from the transport method. Since it is sent
as a reference, this means that the receiving function in target can directly modify
it and that change is reflected on the sender side.

sc time stamp returns the current simulation time of the system. The recipient
of a transaction is required to behave as if it had received the transaction at ef-
fective local time = sc time stamp() + local time offset. There are two ways
in which synchronization of the local time offset with the system simulation time
returned by sc time stamp() can be achieved.

Explicit synchronization

Figure 4.1: Blocking transport synchronized explicitly
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In explicit synchronization, wait can be called explicitly on both the initiator and
the target side. Untimed models can easily be implemented by setting the timing
parameter in the transport calls to zero as shown in figure 4.1 where the transport
method returns immediately. Wait can be called explicitly on the target side to
represent the response time of the target. The wait models the time taken by the
target to process the transaction and it waits for this time to return. We can observe
that the simulation time is advanced when the wait is called and on return from the
target, the time parameter is reset to 0.

Figure 4.2: Blocking transport with temporal decoupling synchronized explicitly

Temporal decoupling is the running of the initiator thread ahead of the simulation
time as shown in figure 4.2. The transport method passes a non-zero value for the
time argument. The initiator and the target can each increase the value of the time
argument to further advance the local time offset. The time argument is returned
untouched to the initiator from the target if it is not incremented on the target side.
Adding the time returned by the call to the simulation time can give the time at
which the transaction completes, but the simulation time itself does not advance.
For the time argument to be added to the simulation time, wait must be called
either on the target or initiator side. After the wait is called, the local time offset
must be reset to zero. A disadvantage of using temporal decoupling like this is that
an initiator thread can hog the processing time indefinitely until wait is explicitly
called [5].
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Implicit synchronization

Loosely-timed models can also progress in the absence of explicit synchronization
points. In SystemC a single synchronized view of time is present which is used
by all the threads. When time quantum is used, the initiator can only run ahead
as far as the end of the quantum before implicitly calling wait to synchronize with
the SystemC simulation time. This is called temporal decoupling and it allows
each initiator thread to keep its own local view of time and it can run ahead of the
simulation time until it has to synchronize with the other threads. This concept is
illustrated in figure 4.3 [6].

Figure 4.3: Illustration of temporal decoupling concept with time quantum

The system global quantum time is the time unit on which all the threads syn-
chronize. Here, the system global quantum is taken as 100ns, so all the threads
synchronize on 100ns, 200ns, 300ns and so on. The thread global quantum is the
time unit on which a particular thread synchronizes. Both the system global quan-
tum and the thread global quantum are taken to be 100ns. The current system time
stamp is assumed to be 210ns. Both the threads can advance from the system time
stamp and the time by which they advance is called the local time offset which is
30ns for thread 1 and 70ns for thread 2. The time remaining for both the threads
until the end of the quantum as relative to the current system time is called local
quantum and is equal to 90ns.The local effective time which is the sum of the cur-
rent system time and the local time offset of the thread is 240ns for thread 1 and
280ns for thread 2.



30

Figure 4.4: Blocking transport with temporal decoupling synchronized implicitly

Synchronization happens implicitly when temporal decoupling is used with time
quantum as shown in the figure 4.4. A quantum is the greatest amount of time
that a thread can differ from the system simulation time. Once, the local time
of the thread exceeds the quantum, the wait is called implicitly in the thread to
synchronize with the system time and the local time is reset to zero.

The temporally decoupled initiator advances its local time offset until the time
quantum is exceeded. This happens when the transport method returns from the
target with a local time offset of 110ns which exceeds the quantum 100ns. So, wait
is called implicitly in the initiator thread for the time unit 110ns and the simulation
time advances to 210ns. We can also observe that when wait is called, the local
time offset is reset to 0ns.
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4.2 Timing model implemented on the simulator

The loosely-timed style with temporal decoupling and time quantum is imple-
mented in our simulator. The advantages of this is:

• It allows multiple system initiators to progress ahead of the system time and
they synchronize due to the presence of the time quantum.

• The performance of loosely-timed models with blocking interfaces is im-
proved and bottlenecks in processing are avoided. It ensures that a thread
does not hog all the processing time and synchronizes with the simulation
time regularly.

• Easy to implement. Latency is given as an argument in the constructor while
initialising new objects of a target and when the transaction gets routed to
the target, this latency is added to the delay sent from the initiator and gets
reflected in the total simulation time when it is synchronized each quantum.

The methodology for setting up the timing model involves two parts - set up in the
initiator and set up in the target. Both are described using code snippets compiled
from various files. The snippets are not complete and are complied from various
files to show the general methodology.

Set up in initiator

1 /* In header file */
2 #include "tlm_utils/tlm_quantumkeeper.h"
3 tlm_utils::tlm_quantumkeeper qk; // Declaring a time keeping

thread
4

5 /* In constructor */
6 qk.set_global_quantum(sc_time(1, SC_US)); // Update the global

quantum
7 qk.reset(); // Reset the local time offset to 0
8

9 /* Function initiating transactions to targets */
10 void CPU::single_step(int benchmark)
11 {
12 sc_time delay;
13

14 delay = qk.get_local_time(); // Returns the current local time
offset

15 instr_bus->b_transport(*trans, delay); // Annotate b_transport
with local time

16 qk.set(delay); // Update qk with time consumed by target
17
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18 // qk.inc( sc_time(100, SC_NS) ); // Further time consumed by
initiator

19 if (qk.need_sync()) // Check local time offset against quantum
20 {
21 qk.sync(); // Updation of the global time sc_time_stamp
22 }

Listing 4.1: Code snippet showing setting up timing in an initiator

The code listing 4.1 above shows how timing is set up in the CPU initiator, the
same methodology is followed in all the initiators. In this example, the timing
thread is declared as qk in the header file of the CPU model. The global quantum
is updated to the required value, taken to be 1us and the local time offset is zeroed
by calling the reset function in the constructor function of the CPU called when a
new object of CPU is initialized.

In the function which initiates transactions to the target, the SystemC time vari-
able, delay, is updated with the local time offset of the CPU thread using the
get local time method and then the blocking transport function of the target is
called with the transaction and timing arguments. The timing annotation of the
b transport function is active on both the call to and the return from the transport
method. The timing argument can be updated in the target to indicate its response
time and on return, using the set method, qk is updated with the time consumed in
the target.

There is also an option to further increase the time consumed by the initiator by
using the inc method. On return from every transaction, the local time offset of
the thread checked against the quantum using the need sync method. If it is equal
to or greater than the quantum, wait is implicitly called and the system simulation
time is updated using the sync method.

Set up in target

1 /* In header file */
2 const sc_time LATENCY;
3

4 /* In constructor */
5 Ram::Ram(sc_module_name name, sc_time latency)
6 : sc_module(name), socket("socket"), LATENCY(latency)
7 {
8 socket.register_b_transport(this, &Ram::b_transport); //

Registering callback for incoming interface method call
9 }

10

11 /* Function receiving the transactions from the initiator*/
12 void Ram::b_transport(tlm::tlm_generic_payload & trans, sc_time &

delay)
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13 {
14 delay += LATENCY; // Updating the delay with the latency of

the target

Listing 4.2: Code snippet showing setting up timing in a target

The code listing 4.2 above shows how timing is set up in the RAM target, and the
same methodology is followed in all the targets. Latency is given in the construc-
tor as an argument while initialising new objects of the target. In the b transport
method of the target, which is called when it receives transactions from the initia-
tor, this latency is added to the local time offset of the initiator thread calling the
target.

It was observed that having a small quantum helps keep the system simulation time
more accurate by frequent synchronization but at the same time adds an overhead
on the system. This is because when the quantum is small, frequent calls are made
to the wait function to synchronize which causes the control to be switched back
to the SystemC simulation kernel. This context switch can be expensive in terms
of simulation performance. On the other side, having a large quantum reduces the
overhead as the synchronization is not as frequent, but the system simulation time
might not be as accurate. If the quantum is big, code can execute full speed for a
long time without having to stop frequently for SystemC kernel context switch. All
the initiators in the simulator have a global quantum of 1us which can be changed
and the latency of the targets is configurable.
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4.3 Benchmarking framework for the application code

The software running on the simulator is written using the LVGL GUI library.
The GUI is created using the 30+ widgets present in the library which can be
customized and drawn on the screen using the various drawing functions in the
library. The LVGL repository has programs to test the drawing of its widgets.
5 widgets were arbitrarily chosen and tested. The total cycles taken to produce
these widgets on the display was calculated. The total cycles is the sum of the
CPU executing 1 instruction per clock cycle and the cycles consumed by waiting
for the read/write transactions to the bus/memory. The total cycles consists of 3
components:

1. Cycles taken to render the frame, that is draw the frame in the frame buffer

2. Cycles taken to flush the contents of the frame from the frame buffer to the
display via the display controller

3. Cycles taken to do miscellaneous operations other than the drawing and
flushing operations, cycles taken due to the waits in the components, etc

All these 3 components were calculated to understand the breakdown of the total
cycles spent in producing the widget on the screen. Out of these three, the cycles
taken to render the frame was studied in detail. The aim here is to benchmark the
cycles taken to perform various operations by the application code on our simula-
tor, so that the operations which hog the most cycles can be found.

The methodology for setting up a benchmarking framework in the application
code is described using the example of one drawing function - drawing an arc.
LVGL has various drawing functions, each of these are benchmarked by adding a
csr write instruction at the entry and exit of the function. CSR is a register in the
CPU for storing additional information. A unique value is written to this register
both when the function is entered and when it is exited.

1 void lv_draw_arc(lv_coord_t center_x, lv_coord_t center_y,
uint16_t radius, const lv_area_t * mask,

2 uint16_t start_angle, uint16_t end_angle, const
lv_style_t * style, lv_opa_t opa_scale)

3 {
4 uint32_t value = 0x0009;
5 csr_write(CSR_MCYCLE, value);

Listing 4.3: Code snippet showing adding a csr instruction in an LVGL draw function

The code snippet 4.3 shows a value of 0x0009 written to the CSR when the arc
drawing function is entered and a value of 0x0010 is written when the function is
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exited (not shown here in the snippet). There are many CSR registers in the CPU
and one register having the address CSR MCYCLE is used for benchmarking all
the drawing functions. Different values are written to this register for identifying
if it is the start/end of which function.

Next, the CPU model is modified so that it reacts to these csr writes. We can see
how the timing implemented in the simulator and explained in the previous section
is used in this snippet. qk is the timing thread which holds the timing information
and the function get current time returns the sum of the SystemC simulation time
and the local time offset thereby giving the effective local time for accuracy. The
cycle time is the time taken by the CPU to process one instruction and it is assumed
to be 10ns in our simulator.

1 uint32_t csr_temp;
2 sc_time cycle_time(10, SC_NS);
3

4 csr_temp = register_bank->getCSR(CSR_MSTATUS); // Read the CSR
register

5

6 else if (csr_temp == 0x0009) {
7 draw_arc_num+=1;
8 draw_arc_start = qk.get_current_time()/cycle_time;
9 if(lvgl_print) cout << "START arc" << endl;

10 register_bank->setCSR(CSR_MSTATUS, 0x0); //Reset the CSR
register

11 }
12 else if (csr_temp == 0x0010) {
13 draw_arc_total = qk.get_current_time()/cycle_time -

draw_arc_start;
14 draw_arc_sumtotal+= draw_arc_total;
15 if(lvgl_print) cout << "CYCLES arc:" << dec << (int)

draw_arc_total << endl;
16 register_bank->setCSR(CSR_MSTATUS, 0x0); //Reset the CSR

register
17 }

Listing 4.4: Code snippet showing the CPU model reacting to the CSR write instruction

The code snippet 4.4 shows how the CSR register is read and if it contains the
value 0x0009, it signifies the start of the arc draw and the current CPU cycle is
calculated by dividing the current effective time by the cycle time. When it reads
the value 0x0010 signifying the end of the arc draw, the total cycles spent in this
drawing function is calculated. In both the cases, a message is printed to the log
file at the entry and exit of the function along with clearing the CSR register.
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These prints written in a text file are input to a python script which parses this data
and produces a compact data set which contains information about the hierarchy
of functions called, that is which drawing function called which other drawing
function along with the total times it was called and total cycles spent.

Figure 4.5: Output by the python parser script when the arc widget is drawn

The figure 4.5 shows the raw data produced when an arc widget is drawn on the
display. From the figure 4.5, we see that for drawing an arc widget, rectangle and
arc drawing functions are called. The rectangle draw function further calls draw
fill and the arc draw function calls draw fill, draw pixel, sqrt, and atan2 functions.
In 2 instances, the rectangle draw does not call any other draw function. In case
of the arc draw functions, it means that the draw fill operation was called by it 109
times and that took 44780 cycles to complete, draw pixel was called 286 times and
it took 55140 cycles to complete and so on. The arc draw overall took 213236
cycles to complete including the cycles spent in the other draw and math functions
called by it.

This compact data set which is produced by the python parser script is used to
draw the relevant diagrams, tables and graphs to make better sense of it. These
illustrations are presented in the next section.
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4.4 Results

In case of each widget, the image of the widget which is produced on the display
is presented with a numerical breakdown of the total cycles taken to produce the
widget on the display. It is made of three components, cycles taken to render the
frame in the frame buffer, flush the frame from the buffer to the display via the
display controller and other miscellaneous operations which do not fall into the
other two categories. Next, this numerical breakdown is represented in a graphical
format in the form of a pie chart to represent the % of the total cycles taken by
each of the 3 components mentioned above.

The cycles taken to render the frame in the buffer is further broken down to the
hierarchy of drawing operations in a table. It is split into various categories of
drawing operations and the table seeks to explain which lower order operations
are called by which higher order operations. The different orders of drawing op-
erations can be easily distinguished using the colors. In every order, the cycles
spent in it is the sum of the cycles spent in the lower order functions called by it.
The cycles and the % of total cycles spent in each of the drawing operation is also
shown. Miscellaneous means the difference of the total cycles taken to render and
the total cycles spent in drawing operations. Residual means the cycles spent in
a drawing operation but not in the drawing operations called by it, it is the differ-
ence between the cycles spent in a drawing operation and the cycles spent in the
drawing operations called by it.

In all the widgets, the frame buffer is stored in the local RAM and the size of the
frame buffer is equal to the size or resolution of the display. The resolution of the
display is taken as 480 * 320 where 480 is the horizontal resolution and 320 is the
vertical resolution. The color depth is taken as 32 bits meaning 4 bytes are needed
to store each pixel. The total cycles is equal to the sum of the delays of every
instruction cycle and 1 cycle latency when the local RAM is accessed each time.
Each cycle is taken to be 10ns.
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Widget 1 - Image

Figure 4.6: Image of the Image widget
produced on the display

Operation Number of cycles
Render frame 1205967
Flush frame 5073470
Miscellaneous 1911918
Total 8191355

Table 4.1: Numerical breakdown of cy-
cles taken to produce the Image widget

The first widget which was drawn was the image widget as shown in figure 4.6.
The table 4.1 shows the numerical breakdown of the total cycles taken to produce
the image widget on the display.

Figure 4.7: Graphical breakdown of cycles taken to produce the Image widget

This numerical breakdown is represented in a graphical format as shown in figure
4.7 to denote the % of the total cycles taken by each of the 3 components. It can be
observed that flushing the frame to the display takes the highest number of cycles
at 62% of the total cycles and the frame rendering takes the least number of cycles
at 15%.
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Drawing operation Number of times Number of cycles % of total cycles
Advanced 1165792 96.67

Rectangle 3 1062688 88.12
Basic 1062194 88.08

Draw fill 1 1062194 88.08
Residual 494 0.04

Image 1 103104 8.55
Basic 98926 8.20
Draw map 1 98926 8.20
Residual 4178 0.35

Miscellaneous 40175 3.33
TOTAL 1205967 100.00

Table 4.2: Breakdown of drawing operations in rendering the frame - Image widget

The cycles taken to render the frame in the buffer is further broken down to the
hierarchy of drawing operations called to render the image widget as shown in
table 4.2. It can be seen that to draw the widget as shown in the figure 4.6, 2
advanced drawing operations - rectangle and image are needed. Rectangle draw
calls the basic drawing function - draw fill, and image draw calls the basic drawing
function - draw map. We can observe that the draw fill, a basic drawing operation
called by rectangle draw takes around 88% of the total rendering cycles thereby
hogging the most cycles.
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Widget 2 - Arc

Figure 4.8: Image of the Arc widget
produced on the display

Operation Number of cycles
Render frame 1304852
Flush frame 5073469
Miscellaneous 1911917
Total 8290238

Table 4.3: Numerical breakdown of cy-
cles taken to produce the Arc widget

The next widget which was drawn was the arc widget as shown in figure 4.8. The
table 4.3 shows the numerical breakdown of the total cycles taken to produce the
arc widget on the display.

Figure 4.9: Graphical breakdown of cycles taken to produce the Arc widget

This numerical breakdown is represented in a graphical format as shown in figure
4.9 to denote the % of the total cycles taken by each of the 3 components. It can be
observed that flushing the frame to the display takes the highest number of cycles
at 61% of the total cycles and the frame rendering takes the least number of cycles
at 16%.
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Drawing Operation Number of times Number of cycles % of total cycles
Advanced 1276033 97.79

Rectangle 3 1062797 81.45
Basic 1062196 81.40

Draw fill 1 1062196 81.40
Residual 601 0.05

Arc 1 213236 16.34
Basic 99920 7.66

Draw fill 109 44780 3.43
Draw pixel 286 55140 4.23
Math 42958 3.29

Sqrt 124 27994 2.15
Atan2 175 14964 1.15

Residual 70358 5.39

Others 28819 2.21
TOTAL 1304852 100.00

Table 4.4: Breakdown of drawing operations in rendering the frame - Arc widget

The cycles taken to render the frame in the buffer is further broken down to the
hierarchy of drawing operations called to render the arc widget as shown in table
4.4. It can be seen that to draw the widget as shown in the figure 4.8, 2 advanced
drawing operations - rectangle and arc are needed. Rectangle draw calls the basic
drawing function - draw fill. Arc draw calls the basic drawing functions - draw
fill and draw pixel, and math operations - sqrt and atan2. We can observe that the
draw fill which is a basic drawing operation is called by both the advanced drawing
operations and around 85% of the total rendering cycles is spent in this drawing
operation thereby hogging the most time.
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Widget 3 - Check Box

Figure 4.10: Image of the Checkbox
widget produced on the display

Operation Number of cycles
Render frame 1619708
Flush frame 5073470
Miscellaneous 1911918
Total 8605096

Table 4.5: Numerical breakdown of cy-
cles taken to produce the Checkbox wid-
get

The next widget which was drawn was the check box widget as shown in figure
4.10. The table 4.5 shows the numerical breakdown of the total cycles taken to
produce the check box widget on the display.

Figure 4.11: Graphical breakdown of cycles taken to produce the Checkbox widget

This numerical breakdown is represented in a graphical format as shown in figure
4.11 to denote the % of the total cycles taken by each of the 3 components. It
can be observed that flushing the frame to the display takes the highest number of
cycles at 59% of the total cycles and the frame rendering takes the least number of
cycles at 19%.
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Drawing operation Number of times Number of cycles % of total cycles
Advanced 1264303 78.06

Rectangle 5 1134547 70.05
Basic 1116032 68.90
Draw pixel 100 19894 1.23

Draw fill 56 1096138 67.68
Residual 18515 1.14

Label 1 129756 8.01
Basic 117077 7.23
Draw letter 9 117077 7.23

Residual 12679 0.78

Miscellaneous 355405 21.94
TOTAL 1619708 100.00

Table 4.6: Breakdown of drawing operations in rendering the frame - Checkbox widget

The cycles taken to render the frame in the buffer is further broken down to the
hierarchy of drawing operations called to render the check box widget as shown
in table 4.6. It can be seen that to draw the widget as shown in the figure 4.10,
2 advanced drawing operations - rectangle and label are needed. Rectangle draw
calls the basic drawing functions - draw fill and draw pixel. Label draw calls the
basic drawing function - draw letter. We can observe that the draw fill which is
a basic drawing operation takes around 68% of the total rendering cycles thereby
hogging the most time.
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Widget 4 - Chart

Figure 4.12: Image of the Chart widget
produced on the display

Operation Number of cycles
Render frame 3958866
Flush frame 5073469
Miscellaneous 1912018
Total 10944353

Table 4.7: Numerical breakdown of cy-
cles taken to produce the Chart widget

The next widget which was drawn was the chart widget as shown in figure 4.12.
The table 4.7 shows the numerical breakdown of the total cycles taken to produce
the chart widget on the display.

Figure 4.13: Graphical breakdown of cycles taken to produce the Chart widget

This numerical breakdown is represented in a graphical format as shown in figure
4.13 to denote the % of the total cycles taken by each of the 3 components. It can be
observed that flushing the frame to the display takes the highest number of cycles
at 46% of the total cycles followed by the the frame rendering at 36%.
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Drawing operation Number of times Number of cycles % of total cycles
Advanced 3921577 99.06

Line 16 1012239 25.57
Basic 705091 17.81
Draw pixel 2032 434200 10.97

Draw fill 274 270891 6.84
Residual 307148 7.76

Rectangle 4 2909338 73.49
Basic 2862509 72.31
Draw pixel 100 19892 0.50

Draw fill 237 2842617 71.80
Residual 46829 1.18

Miscellaneous 37289 0.94
TOTAL 3958866 100

Table 4.8: Breakdown of drawing operations in rendering the frame - Chart widget

The cycles taken to render the frame in the buffer is further broken down to the
hierarchy of drawing operations called to render the chart widget as shown in ta-
ble 4.8. It can be seen that to draw the widget as shown in the figure 4.12, 2
advanced drawing operations - rectangle and line are needed. Both of them call
the basic drawing functions - draw fill and draw pixel. We can observe that the
draw fill which is a basic drawing operation called by both line draw and rectan-
gle draw takes around 79% of the total rendering cycles thereby hogging the most
time.
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Widget 5 - Color Picker (CPicker)

Figure 4.14: Image of the Cpicker wid-
get produced on the display

Operation Number of cycles
Render frame 8300608
Flush frame 5073470
Miscellaneous 1911918
Total 15285996

Table 4.9: Numerical breakdown of cy-
cles taken to produce the Cpicker widget

The last widget which was drawn was the cpicker or color picker widget as shown
in figure 4.14. The table 4.9 shows the numerical breakdown of the total cycles
taken to produce the cpicker widget on the display.

Figure 4.15: Graphical breakdown of cycles taken to produce the Cpicker widget

This numerical breakdown is represented in a graphical format as shown in figure
4.11 to denote the % of the total cycles taken by each of the 3 components. It can
be observed that rendering the frame takes the highest number of cycles at 54% of
the total cycles followed by flushing the frame to the display at 33%.
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Drawing operation Number of times Number of cycles % of total cycles
Advanced 8168982 98.41

Rectangle 5 1867160 22.49
Basic 1759879 21.20

Draw fill 291 1610456 19.40
Draw pixel 708 149423 1.80
Residual 107281 1.29

Triangle 120 6301822 75.92
Basic 4173593 50.28

Draw fill 5063 4173593 50.28
Residual 2128229 25.64

Math 22096 0.27
Trigo sin 488 22096 0.27

Miscellaneous 109530 1.32
TOTAL 8300608 100.00

Table 4.10: Breakdown of drawing operations in rendering the frame - Cpicker widget

The cycles taken to render the frame in the buffer is further broken down to the
hierarchy of drawing operations called to render the cpicker widget as shown in
table 4.10. It can be seen that to draw this widget as shown in the figure 4.8,
2 advanced drawing operations - rectangle and triangle are needed. In addition
to this, the math function trigo sin is called independently and not from a higher
order drawing function like in the arc widget rendering. Rectangle draw calls the
basic drawing functions - draw fill and draw pixel. Triangle draw calls the basic
drawing function - draw fill. We can observe that the draw fill which is a basic
drawing operation called by both rectangle draw and line draw takes around 70%
of the total rendering cycles thereby hogging the most time.
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4.5 Discussion

In the results section, 5 widgets were drawn and the results were illustrated. The
table 4.11 shows the % of the total cycles taken for rendering and flushing the
frame for all the 5 widgets.

Widget Flush frame Render frame
Image 62% 15%
Arc 61% 16%
Checkbox 59% 19%
Chart 46% 36%
Cpicker 33% 54%

Table 4.11: % of the total cycles taken to render and flush the frame for each widget

Considering the breakdown of cycles, we observe that the % of cycles taken to
flush the frame to the display from the frame buffer via the display controller
ranges from 33% in the cpicker widget to 62% of the total cycles in the image
widget.

We know that the frame buffer is located in the memory which has a latency of 1
cycle. Flushing the frame involves reading the memory pixel by pixel by the dis-
play controller and transferring them to the display. The display controller cannot
directly access the memory, so the CPU has to move the data from the memory to
the display controller. This consumes the CPU cycles and not a good use of the
processing time of the CPU.

Instead if the display controller had DMA, it can read and write to the memory
directly which would increase the processing speed of the application and save
the CPU cycles thereby freeing up the CPU and allowing it to do something else
instead of transferring data from the memory to the display controller.

From the table, it can be also be seen that the % of cycles taken to render the frame
increases from 15% in the image widget to 54% in the cpicker widget. Thus, we
can observe that as the complexity of the frame being rendered increases, the % of
cycles to render also increases and can act as a bottleneck to the overall processing
speed. This is the reason why benchmarking the rendering of the frame in detail is
important, it helps us identify which drawing operations hog the most cycles and
therefore make most sense to be accelerated.
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We can observe that there are 3 categories of drawing functions - advanced, basic
and math. There are 6 advanced drawing functions for drawing an arc, image,
label, line, rectangle and triangle. There are 4 basic drawing functions which are
further called by these advanced drawing functions for putting a pixel at a position
(draw pixel), filling an area (draw fill), drawing a letter (draw letter) and drawing
a color map or image (draw map) in the buffer. In addition to these, there are
also some math operations like square root (sqrt), trigonometric sin (trigo sin), arc
tangent of two numbers (atan2)and bezier curve (bezier).

The widgets call the advanced drawing functions which further make calls to the
basic drawing functions. The math functions can be called by the advanced draw-
ing functions like the arc draw which called sqrt and atan2 or independently like
the cpicker widget called trigo sin.

LVGL has more than 30+ widgets and analyzing all of them would have been
a tedious and lengthy task. So 5 were arbitrarily chosen so that almost all the
drawing functions are covered and reasonable conclusions could be drawn.

Drawing Operation Draw Pixel Draw fill Draw letter Draw map
Arc Yes Yes - -
Image - - - Yes
Label - - Yes -
Line Yes Yes - -
Rectangle Yes Yes - -
Triangle - Yes - -

Table 4.12: Basic drawing operations called by the advanced drawing operations in LVGL

The table 4.12 shows which all basic drawing functions can be called by the ad-
vanced drawing functions. It is to be noted that rectangle draw can call draw fill
and draw pixel, but it does not do so in all situations. Either one or both or none
can be called while drawing the rectangle. The same is true for all the advanced
drawing functions.

In case of all the 5 widgets, we observe that the draw operation which hogs the
most cycles is the draw fill ranging from 68% of the total rendering cycles in case
of the arc widget to 88% of the total rendering cycles in case of the image widget.
While rendering, the memory has to be accessed to read and write to the frame
buffer. Therefore, to truly offload the operation from the CPU and accelerate it,
DMA is needed even in this case.
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In conclusion, the two architectural improvements which can be done in which
application speed can be improved and CPU cycles saved are:

1. Adding DMA capability to the Display Controller

2. Accelerating the draw fill operation which hogs the most cycles when the
frame is rendered by means of a hardware accelerator having DMA capabil-
ity.

These 2 improvements are done and explored further in the next chapter.



Chapter 5
Architectural Exploration

In the previous chapter, the benchmarking was set up for the simulator and the
application code running on it. Based on the results, two potential improvements
for improving the processing speed and saving the CPU cycles were discussed.
One was adding DMA capability to the display controller model and the other was
designing a hardware accelerator model with DMA for accelerating the drawing
operations which hog the most CPU cycles. The design of these two architectural
improvements is explained in the first two sections. The third section is the results
sections where these architectural improvements are explored on the simulator un-
der different configurations of the system. The chapter ends with the discussion
section which discusses the results in the previous section.
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5.1 Improvement 1 - Display Controller with DMA

LVGL has a function which flushes the contents of the frame buffer to the specific
area on the display. This function is called after the frame has been rendered in
the buffer. This function has 2 parameters, the area parameter which contains
the reference to the area on the the frame buffer from where to pick the pixels
one by one and a color parameter containing the reference to the colors of the
pixels. The area parameter is a structure which has components to represent the
area coordinates - 2 x coordinates and 2 y coordinates, and the color parameter
which has components to represent the RGB color values.

In the previous display controller design as seen in the figure 3.5, the CPU transfers
the data from the frame buffer which is located in the RAM to the display controller
by writing to its registers - pixel data and pixel address. The 2D coordinates of the
pixel are written to the pixel address register and the RGB color of the pixel is
written to the pixel data register. Once the data is written to both the registers,
the display controller calls the QDBMP function to place the pixel in the BMP
file emulating the display. So, first the data for a pixel is written to the registers
of the display controller by the CPU and then the display controller writes to the
display that is, the BMP file. This process repeats in a loop, pixel by pixel until the
entire area is flushed to the display. In this design, the display controller model is
connected as a target to the interconnect model.

Figure 5.1: Graphics subsystem with display controller having DMA
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The old design is modified as shown in figure 5.1 to add DMA capability. 4 new
registers are added, one register for storing the x coordinates of the area (area lo),
one register for storing the y coordinates of the area region (area hi), one register
for storing the reference to the pixels in the buffer (data), and one read only reg-
ister to indicate if the display controller is busy (busy). This display controller is
connected both as an initiator and target to the interconnect.

When the flush function is called, the CPU writes to the registers of the display
controller once and it is then free to do something else. When the display controller
sees that data has been written to its 3 registers, it sets the busy register high and
starts flushing the pixels to the screen one by one. It has the reference to the
pixels in the data register, it can therefore read the colors of the pixels one by one
directly from the RAM (containing the frame buffer) unlike the old design where
the CPU had to read the data from RAM and then write to the registers of the
display controller. Since it is connected as an initiator to the interconnect, it sends
the transactions to the interconnect which routes the transaction to the RAM target
by decoding the address.

Once the display controller is done flushing, it sets the busy register low to indicate
that is done flushing out all the pixels. On the LVGL side, after the CPU writes to
the registers of the display controller, it keeps polling the busy register and when it
is cleared, it exits the loop. The number of cycles the CPU spends in this loop is the
number of the cycles it is free to do something else like work on another process.
In the case of our design, the CPU does not do anything else when it is free and
stays in the loop. But, in reality the DMA would actually send an IRQ to the CPU,
so the CPU does not have to poll the busy register. If an OS was executing on the
CPU, some other processes may be executing in the meantime and the OS would
switch back to the graphics process when the DMA IRQ comes.
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5.2 Improvement 2 - Hardware Accelerator

It was concluded in the previous chapter that the draw fill function hogs most of
the frame rendering time. The draw fill function in LVGL uses 2 static functions -
blend and fill.

In the blend function, the source and destination memories are looped over their
entire length. For every memory location, the source color is blended with the des-
tination color using the opacity and the resulting color returned by the lv color mix
function is written to the destination buffer. The code snippet 5.1 shows the
lv color mix function which is a mix of multiplications and additions in terms
of calculations. These calculations must be moved from the application code to
the SystemC code to accelerate them.

1 static inline lv_color_t lv_color_mix(lv_color_t c1, lv_color_t c2
, uint8_t mix)

2 {
3 lv_color_t ret;
4 #if LV_COLOR_DEPTH != 1
5 /*LV_COLOR_DEPTH == 8, 16 or 32*/
6 LV_COLOR_SET_R(ret, (uint16_t)((uint16_t) LV_COLOR_GET_R(c1) *

mix + LV_COLOR_GET_R(c2) * (255 - mix)) >> 8);
7 LV_COLOR_SET_G(ret, (uint16_t)((uint16_t) LV_COLOR_GET_G(c1) *

mix + LV_COLOR_GET_G(c2) * (255 - mix)) >> 8);
8 LV_COLOR_SET_B(ret, (uint16_t)((uint16_t) LV_COLOR_GET_B(c1) *

mix + LV_COLOR_GET_B(c2) * (255 - mix)) >> 8);

Listing 5.1: Code snippet of the lv color mix function in LVGL

In the fill function, the entire fill area is looped over using the x and y coordinates
and the area is filled with the color by writing to the destination buffer. Both these
functions are accelerated by moving the logic which performs these operations
from the application code to the SystemC code, since the hardware accelerator
model is implemented in SystemC.

The display driver in LVGL has the option to include GPU callback functions
which can be called instead of the software functions if the MCU has a hardware
accelerator/GPU. The callback functions are made to call the accelerator by writing
to its registers and the functionality is defined in the accelerator.

In the design in the previous section, the application code is run on the CPU, and
the CPU renders or makes the frame in the frame buffer. In this section, a hardware
accelerator is designed as shown in 5.2 to offload the blend and fill operations from
the CPU to the accelerator thus freeing up the CPU to do something else.
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Figure 5.2: Graphics subsystem with display controller having DMA and hardware accel-
erator to offload some application code from the CPU

As shown in figure 5.2, the hardware accelerator is connected both as an initiator
and target to the interconnect. The accelerator not only offloads a part of the ap-
plication code from the CPU, it also has DMA to read and write from the RAM
memory directly via the interconnect which decodes the address and routes the
transactions initiated by the accelerator to the RAM. It has 4 registers for storing
the data needed for blend operation and 1 register to indicate that it is busy doing
the blend operation. Similarly, it has 5 registers for storing the data needed for fill
operation and 1 register to indicate that it is busy doing the fill operation.

Blend and fill are added as GPU callback functions in the LVGL display driver.
The LVGL library is written in such a way that if the GPU interface is active (this
can be set in the LVGL’s configuration header file), then instead of using software
drawing functions, the GPU callback functions are called instead when the frame
is being rendered.
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When the blend function is called, the references to the destination and src mem-
ory, and the values of length and opacity are written by the CPU to the blend reg-
isters of the accelerator. When all these registers are written into, the blend busy
register is set and the blending operation begins. The color values of the source
and destination are read from the RAM. The source and destination colors are then
mixed using the opacity ratio and the resulting color is written to the destination
(that is the frame buffer which is in the RAM). After the entire blending operation
is over, the blend busy register is cleared.

The fill function also works similarly. When the fill function is called, the reference
to the destination buffer, and the values of the destination width, area coordinates,
and fill color are written by the CPU to the fill registers of the accelerator. When
all these registers are written into, the fill busy register is set and the fill operation
begins. The area of fill is looped over and the fill color is written to the destination
buffer (that is the frame buffer which is in the RAM memory). After the entire fill
operation is over, the fill busy register is cleared.

On the LVGL side, after the CPU writes to the registers of the blend or the fill
function, it keeps polling the busy register and when it is cleared, it exits the loop.
The number of cycles the CPU spends in this loop is the number of the cycles
it is free to do something else like work on another process. In the case of our
design, the CPU does not do anything else when it is free and stays in the loop. As
mentioned in the previous section, in reality, the accelerator would send an IRQ
to the CPU, so that it does not have to poll the busy register and in case an OS is
executing on the CPU, other processes can be executing in the meantime.
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5.3 Results

The architectural improvements done in the first two subsections are explored in
this section. 4 architectural configurations are explored:

1. Baseline - We start with the baseline architecture like in the figure 3.5 with
the application code running on the CPU which prepares the frame buffer
and afterwards reads the data from the buffer and transfers to the display
controller which drives it to the display.

2. DC with DMA - Next, the display controller with DMA as shown in figure
5.1 is used which can pick up the data from the frame buffer directly.

3. Accelerator - Next, the accelerator as shown in figure 5.2 is connected with
the baseline display controller (unlike in figure 5.2 where it is connected
with a DMA display controller). The accelerator offloads some part of frame
rendering (fill and blend operations) from the CPU.

4. DC with DMA + Accelerator - Finally, both the architectural improve-
ments - display controller with DMA and the accelerator are connected to-
gether as shown in figure 5.2.

Two scenarios are further explored and discussed:

1. Drawing the same widget by varying the frame buffer configuration and
architectural configuration.

2. Drawing different widgets by keeping the frame buffer configuration fixed
and varying the architectural configuration.

5.3.1 Same widget with varying frame buffer configurations

The chart widget’s performance is explored in the different architectural configu-
rations by varying the frame buffer location and latency. 3 configurations of the
frame buffer are explored:

1. Local FB1 - Frame buffer in the local RAM (with a latency of 1 cycle) of
the CPU on which the application code is run.

2. Local FB2 - Frame buffer in the local RAM (with a latency of 2 cycles) of
the CPU on which the application code is run.

3. Shared FB - Frame buffer in the shared RAM (with a latency of 1 cycles)
of the local cores. A latency of 5 cycles is taken for the transaction moving
from the local core to the shared core through the bridge model.
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Architecture Local FB1 Local FB2 Shared FB
Baseline 0% 0% 0
DC with DMA 45% 44% 46%
Accelerator 23% 22% 23%
DC with DMA + Accelerator 68% 66% 69%

Table 5.1: The % reduction in total cycles relative to the baseline architecture in the chart
widget, under different frame buffer and architecture configurations

The table 5.1 shows the % of reduction in the total cycles relative to the total
cycles of the baseline architecture, under different architectural and frame buffer
configurations for the chart widget. Since the % reductions are with respect to the
baseline architecture, the row of baseline is 0%. We can observe that in all the three
cases of the frame buffer, the % reduction of total cycles relative to the baseline
is almost the same with very slight variation. The average % reductions obtained
when using the DC with DMA alone is 45%, when using accelerator alone is 23%,
and when using both of them together we get 68% which is the sum of using the
two improvements individually.

Architecture Local FB1 Local FB2 Shared FB
Baseline 0% 0% 0%
DC with DMA 3% 3% 12%
Accelerator 3% 3% 12%
DC with DMA + Accelerator 11% 13% 50%

Table 5.2: % of total cycles saved in different widgets under same frame buffer configu-
ration and different architecture configurations

In addition to the reduction in total cycles relative to the baseline architecture, some
of the cycles are also saved when the DC with DMA or the accelerator are active.
The table 5.2 shows the % of total cycles saved, under different architectural and
frame buffer configurations for the chart widget. It is seen that when the latency
of the local frame buffer is increased, the % savings increases slightly from 11%
to 13% in case of using both the architectural improvements. The savings is more
dramatic and reaches 50% when the buffer is in the shared core. This drastic
change can be attributed to the increased delay cycles due to the latency in moving
via the bridge from the local to the shared core. Every transaction moving via
the bridge takes 5 clock cycles thus significantly adding to the total cycles, but
a good % of these total cycles are saved due to the DMA capability of both the
architectural improvements.
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5.3.2 Different widgets with the same frame buffer configuration

3 different widgets with varying percentages of render and flush cycles making up
the total cycles taken to draw them on the display are explored under the same
frame buffer configuration. The frame buffer is in the local RAM with a latency of
1 cycle.

1. Chart - The chart widget has flush cycles making up 46% and the render
cycles making up 36% of the total cycles taken to draw it on the display, as
seen in the figure 4.13. Fill drawing operation makes up 79% of the total
rendering cycles.

2. Checkbox - The checkbox widget has flush cycles making up 59% and the
render cycles making up 19% of the total cycles taken to draw it on the
display, as seen in the figure 4.11. Fill drawing operation makes up 68% of
the total rendering cycles.

3. Arc - The arc widget has flush cycles making up 61% and the render cycles
making up 16% of the total cycles taken to draw it on the display, as seen in
the figure 4.9. Fill drawing operation makes up 85% of the total rendering
cycles.

Architecture Arc Checkbox Chart
Baseline 0% 0% 0%
DC with DMA 59% 58% 45%
Accelerator 11% 9% 23%
DC with DMA + Accelerator 70% 67% 68%

Table 5.3: The % reduction in total cycles relative to the baseline architecture in the
different widgets, under different architecture configurations and same frame buffer con-
figuration

The table 5.3 shows the % of reduction in the total cycles relative to the baseline
architecture, under different architectural for the different widgets for the same
frame buffer configuration. The % reduction in total cycles when using both the
architectural improvements is almost the same. The total % reduction is the sum
of % reduction when using both the improvements individually.

We can observe that for the arc, the DC with DMA contributes 59% while the %
reduces slightly to 58% in the checkbox and decreases to 45 % in the chart. This
is because of the % of flush cycles making up the total cycles decreases from 61%
in arc to 59% in checkbox to 46% in chart.
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On the other hand, the % of render cycles making up the total cycles increases from
16% in arc to 19% in checkbox to 36% in the chart. Therefore, the contribution
of the accelerator to the total reduction increases from 11% in the arc to 23% in
the chart. The one anomaly is the 9% contribution by the accelerator in case of the
checkbox though the % of render cycles is greater in the checkbox than the arc.
The contribution is expected to be greater than that of the arc which is 11%. To
understand this, we need to look at the % of render cycles spent in the draw fill
operation. The accelerator is designed to offload only the draw fill operation from
the CPU. Though the % of render cycles is more in the checkbox than the arc, the
% of render cycles spent in the draw fill operation in checkbox is 68% whereas in
the arc it is 85%.

Architecture Arc Checkbox Chart
Baseline 0% 0% 0%
DC with DMA 5% 4% 3%
Accelerator 2% 2% 3%
DC with DMA + Accelerator 12% 11% 11%

Table 5.4: % of total cycles saved in different widgets under same frame buffer configu-
ration and different architecture configurations

The table 5.4 shows the % of total cycles saved when drawing the different wid-
gets, under different architectural configurations for the same frame buffer config-
uration. It can observed that the difference is not very drastic for the three widgets
under all architectural configurations. This is because they all use the same frame
buffer configuration.

5.4 Discussion

Reduction in the total cycles relative to the baseline

When rendering the same widget, relative to the total cycles taken to produce the
widget on the display in the baseline architecture, significant reduction in the total
cycles was obtained. The reductions did not change much even when frame buffer
configuration was varied from the local RAM with 1 cycle latency, to local RAM
with 2 cycles latency and shared RAM with 1 cycle latency plus 5 cycles latency
for movement from the local to the shared core.
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A 68% reduction is obtained when using both the DC with DMA and accelera-
tor. The average (of the three frame buffer configurations) total reduction 68% is
the sum of the reductions due to the DC with DMA and accelerator when used
individually at 45% and 23% respectively.

When rendering different widgets, the total reduction was the same with an aver-
age (of the three different widgets) of 68%, but the contributions by the DC with
DMA and accelerator individually varied based on the % of render and flush cycles
making up the total cycles. As the % of flush or render cycles making up the total
cycles increases, the % of reduction due to the DC with DMA or accelerator alone
also increases respectively. Even if the % of render cycles is high, the contribution
of the accelerator to the total reduction depends on the % of these render cycles
spent in the draw fill operation which the accelerator is designed to offload.

Savings in the total cycles

While rendering the same widget, the % of total cycles saved increases when the
wait cycles in the bus/memory increases. This was observed when the % of to-
tal cycles saved jumped from 11% to 50% when the frame buffer location was
changed from the local to the shared memory. The average of all the three frame
buffer configurations was 25%.

While rendering different widgets by using the same frame buffer location in the
local RAM, it was observed to be almost constant with no major jumps with an
average(of the three widgets) of 11%.

Summary

To summarize, using both the DC with DMA and accelerator together gives sig-
nificant reduction in the total cycles needed to render a GUI on the screen with an
average of 68% reduction relative to the total cycles in the baseline architecture,
where both these improvements are not used. This reduction in the total cycles
leads to increase in the processing speed of the application. Not only are the total
cycles significantly reduced, an average of 18% of the total cycles are also freed
and the CPU is free to do do anything else like prepare for the next instruction, or
switch processes or work on another task. In a nutshell, the two architectural im-
provements done have the dual benefit of speeding up the application and freeing
up some cycles.
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Chapter 6
Conclusion

This thesis successfully did what it set out to do in the beginning, that is ana-
lyze and improve the graphics processing performance in a typical microcontroller
environment. This was achieved through three phases - setting up the simulator,
setting up a benchmarking framework and doing baseline performance analysis,
and finally architectural improvement and exploration phase.

The first part of the thesis was the setting up phase. To analyze the performance,
a RISC-V ISA based simulator of a generic, heterogeneous, and multi-core SoC
with shared memory and I/O was set up using SystemC + TLM. LVGL - a GUI
library used for writing application code was ported to run on the simulator set up.
The entire graphics subsystem was emulated on the simulator complete with the
frame buffer in the RAM model, the GUI code written using LVGL running on the
CPU model, a simple display controller model to which the contents of the frame
buffer are driven to by the CPU model and which further outputs these contents to
a BMP image file emulating a display.

The next natural phase was setting up a benchmarking framework for the simulator,
so that the graphics processing performance can be quantified. Timing concepts
in TLM models were studied and timing was set up in the hardware models of the
simulator to emulate latencies of real-life hardware components. The application
code was benchmarked to analyze the time taken by the various drawing operations
in rendering a GUI scene.
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Detailed baseline performance analysis was done by breaking down the total cy-
cles taken to produce different GUI scenes on the display. This helped to note the
operations which hogged the most cycles and therefore had potential for improve-
ment. It was observed that flushing the frame from the buffer to the display by the
baseline display controller took 33-62% of the total cycles and rendering the frame
in the buffer by the CPU took between 15-54% of the total cycles. The draw fill
operation took 68-88% of the rendering cycles. As the complexity of the frame
being rendered increased, the % of render cycles making up the total cycles also
increased with a corresponding decrease in the % of flush cycles.

Based on the results from the baseline performance analysis, two architectural im-
provements were designed. They were adding DMA capability to the display con-
troller model and designing an accelerator model (also with DMA capability) for
offloading the blend and fill operations from the CPU model. These architectural
improvements were explored under various scenarios - same GUI scene with dif-
ferent frame buffer configurations and different GUI scenes with same frame buffer
configuration. TLM modelling enabled efficient architectural exploration. Com-
ponents could easily be added and defined at a high level of abstraction, topologies
could easily be altered and explored. Doing the same in RTL modelling would
be tedious and slow. Loosely timed TLM modelling could reproduce the behavior
of RTL modelling while accelerating the simulation upto 100x [1], thus enabling
the creation of early prototypes for software development and design space explo-
ration.

To conclude, the architectural improvements were identified by setting up the sim-
ulator with a benchmarking framework and analyzing the baseline graphics perfor-
mance. The improvements were then designed and analyzed by comparing to the
baseline performance. They helped to speed up the application by providing an av-
erage 68% reduction in the total cycles compared to baseline cycles and also freed
up an average of 18% of the total cycles, thus freeing up the CPU to do another
task during these free cycles.

Coming to the limitations of the thesis, adding additional hardware to a chip de-
sign is a trade off between device cost increasing with increased die area, and the
performance increase provided to the customer. Also, the development effort of
specialized hardware might be prohibitive for a project, depending on the com-
plexity. The accelerators provided here should be relatively small in terms of area,
and of medium complexity in terms of design effort. Detailed analysis of the de-
sign effort and area estimates falls outside the scope of this thesis.



6.1 Future Work

This thesis has huge scope for future work. Two architectural improvements were
explored in this work. Other potential architectural improvements which can be
explored are: offloading the critical cycle-intensive tasks from the CPU to a co-
processor and having custom RISC-V instructions for handling graphics opera-
tions in the simulator.

Other operations which have the potential for being accelerated could also be
identified in LVGL and added to the accelerator. The architectural improvements
could also be explored under more scenarios of the system, like changing the dis-
play resolution, CPU clock frequency, adding delays to other components and so
on.

In this thesis, the improvements were explored on a SystemC + TLM simulator
environment. In the future, the most promising improvement found in the archi-
tectural exploration phase can be implemented as synthesizable HDL code.
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Appendix A
Code Files

A.1 LVGL Files

A.1.1 Display Driver
1 /**
2 * @file lv_port_disp_templ.h
3 * @brief Display driver header file
4 * @author Chinmayi Nadig
5 * @date September 2020
6 * Master’s Thesis in Electronic Systems Design
7 * Supervisors - Martin Olsson, Trond Ytterdal
8 */
9

10 /*Copy this file as "lv_port_disp.h" and set this value to "1" to
enable content*/

11 #if 1
12

13 #ifndef LV_PORT_DISP_TEMPL_H
14 #define LV_PORT_DISP_TEMPL_H
15

16 #ifdef __cplusplus
17 extern "C"
18 {
19 #endif
20

21 /*********************
22 * INCLUDES
23 *********************/
24 #include "lvgl/lvgl.h"
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25

26 /*********************
27 * DEFINES
28 *********************/
29

30 /**********************
31 * TYPEDEFS
32 **********************/
33

34 /**********************
35 * GLOBAL PROTOTYPES
36 **********************/
37

38 void lv_port_disp_init(void);
39 void lv_port_disp_flush(lv_disp_drv_t *disp_drv, const lv_area_t *

area, lv_color_t *color_p);
40

41 /**********************
42 * MACROS
43 **********************/
44

45 #ifdef __cplusplus
46 } /* extern "C" */
47 #endif
48

49 #endif /*LV_PORT_DISP_TEMPL_H*/
50

51 #endif /*Disable/Enable content*/

Listing A.1: Display Driver header file

1 /**
2 * @file lv_port_disp_templ.c
3 * @brief Display driver source file
4 * @author Chinmayi Nadig
5 * @date September 2020
6 * Master’s Thesis in Electronic Systems Design
7 * Supervisors - Martin Olsson, Trond Ytterdal
8 */
9

10 /*Copy this file as "lv_port_disp.c" and set this value to "1" to
enable content*/

11 #if 1
12

13 /*********************
14 * INCLUDES
15 *********************/
16 #include "lv_port_disp.h"
17 #include <stdio.h>
18 /*********************
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19 * DEFINES
20 *********************/
21

22 /**********************
23 * TYPEDEFS
24 **********************/
25

26 /**********************
27 * STATIC PROTOTYPES
28 **********************/
29 static void disp_init(void);
30 #if LV_USE_GPU
31 static void gpu_blend(lv_disp_drv_t *disp_drv, lv_color_t *dest,

const lv_color_t *src, uint32_t length, lv_opa_t opa);
32 static void gpu_fill(lv_disp_drv_t *disp_drv, lv_color_t *dest_buf

, lv_coord_t dest_width, const lv_area_t *fill_area,
lv_color_t color);

33 #endif
34

35 /**********************
36 * STATIC VARIABLES
37 **********************/
38

39 /**********************
40 * MACROS
41 **********************/
42 #define CSR_MCYCLE 0x300 // Address of the CSR register used for

benchmarking
43

44 /* Registers of the Display controller (without DMA) */
45 #if LV_USE_DC
46 volatile unsigned int *pixel_address = (unsigned int *)0x0C00000C;
47 volatile unsigned int *pixel_data = (unsigned int *)0x0C000010;
48 #endif
49

50 /* Registers of the Display controller (with DMA) */
51 #if LV_USE_DC_DMA
52 volatile unsigned int *dc_area_lo = (unsigned int *)0x0C000000;
53 volatile unsigned int *dc_area_hi = (unsigned int *)0x0C000004;
54 volatile unsigned int *dc_data = (unsigned int *)0x0C000008;
55 volatile unsigned int *dc_busy = (unsigned int *)0x0C000014;
56 #endif
57

58 /* Registers of the Accelerator */
59 #if LV_USE_GPU
60 /* Blend registers */
61 volatile unsigned int *blend_src = (unsigned int *)0x0D000000;
62 volatile unsigned int *blend_dest = (unsigned int *)0x0D000004;
63 volatile unsigned int *blend_length = (unsigned int *)0x0D000008;
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64 volatile unsigned int *blend_opa = (unsigned int *)0x0D00000C;
65

66 /* Fill registers */
67 volatile unsigned int *fill_dest_buf = (unsigned int *)0x0D000010;
68 volatile unsigned int *fill_area_lo = (unsigned int *)0x0D000014;
69 volatile unsigned int *fill_area_hi = (unsigned int *)0x0D000018;
70 volatile unsigned int *fill_dest_width = (unsigned int *)0

x0D00001C;
71 volatile unsigned int *fill_color = (unsigned int *)0x0D000020;
72

73 /* Busy registers */
74 volatile unsigned int *blend_busy = (unsigned int *)0x0D000024;
75 volatile unsigned int *fill_busy = (unsigned int *)0x0D000028;
76 #endif
77

78 /* Declaration of the frame buffer in shared memory */
79 // static lv_color_t buf1_1[LV_HOR_RES_MAX * LV_VER_RES_MAX]

__attribute__ ((section (".globalram")));
80

81 /**********************
82 * GLOBAL FUNCTIONS
83 **********************/
84

85 void lv_port_disp_init(void)
86 {
87 /*-------------------------
88 * Initialize your display
89 * -----------------------*/
90 disp_init();
91

92 /*-----------------------------
93 * Create a buffer for drawing
94 *----------------------------*/
95

96 static lv_disp_buf_t disp_buf_1;
97

98 static lv_color_t buf1_1[LV_HOR_RES_MAX * LV_VER_RES_MAX];
// Declaration of the frame buffer in local

memory
99 lv_disp_buf_init(&disp_buf_1, buf1_1, NULL, LV_HOR_RES_MAX *

LV_VER_RES_MAX); // Initialize the display buffer
100

101 /*-----------------------------------
102 * Register the display in LittlevGL
103 *----------------------------------*/
104

105 lv_disp_drv_t disp_drv; /*Descriptor of a display driver

*/
106 lv_disp_drv_init(&disp_drv); /*Basic initialization*/
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107

108 /*Set up the functions to access to your display*/
109

110 /*Set the resolution of the display*/
111 disp_drv.hor_res = 480;
112 disp_drv.ver_res = 320;
113

114 /*Used to copy the buffer’s content to the display*/
115 disp_drv.flush_cb = lv_port_disp_flush;
116

117 /*Set a display buffer*/
118 disp_drv.buffer = &disp_buf_1;
119

120 #if LV_USE_GPU
121 /*Optionally add functions to access the GPU. (Only in

buffered mode, LV_VDB_SIZE != 0)*/
122

123 /*Blend two color array using opacity*/
124 disp_drv.gpu_blend_cb = gpu_blend;
125

126 /*Fill a memory array with a color*/
127 disp_drv.gpu_fill_cb = gpu_fill;
128 #endif
129

130 /*Finally register the driver*/
131 lv_disp_drv_register(&disp_drv);
132 }
133

134 /* Flush the content of the internal buffer the specific area on
the display

135 * You can use DMA or any hardware acceleration to do this
operation in the background but

136 * ’lv_disp_flush_ready()’ has to be called when finished. */
137 void lv_port_disp_flush(lv_disp_drv_t *disp_drv, const lv_area_t *

area, lv_color_t *color_p)
138 {
139 /* CSR write to indicate end of frame rendering */
140 uint32_t value = 0x00C2;
141 csr_write(CSR_MCYCLE, value);
142

143 /* CSR write to indicate the start of frame flushing */
144 value = 0x00B1;
145 csr_write(CSR_MCYCLE, value);
146

147 #if LV_USE_DC_DMA
148 /* Writing to the registers of display controller. Pixel area

(high and low bytes) and the pixel data */
149 *dc_area_lo = area->x2 << 16 | area->x1;
150 *dc_area_hi = area->y2 << 16 | area->y1;
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151 *dc_data = color_p;
152

153 /* Adding CSR writes to count the CPU cycles saved by calling
the display controller with DMA */

154 value = 0x000C;
155 csr_write(CSR_MCYCLE, value);
156

157 /* Polling the busy register of the display controller till it
is cleared to exit the loop */

158 volatile int i = 1;
159 while (i)
160 {
161 i = *dc_busy;
162 }
163

164 value = 0x000D;
165 csr_write(CSR_MCYCLE, value);
166

167 #endif
168

169 #if LV_USE_DC
170 /* The most simple case (but also the slowest) to put all

pixels to the screen one-by-one */
171 int16_t x;
172 int16_t y;
173 for (y = area->y1; y <= area->y2; y++)
174 {
175 for (x = area->x1; x <= area->x2; x++)
176 {
177 /* Writing to the registers of display controller.

Both pixel data and address */
178 *pixel_data = color_p->ch.red << 16 | color_p->ch.

green << 8 | color_p->ch.blue;
179 color_p++;
180 *pixel_address = y << 16 | x;
181 }
182 }
183 *pixel_address = 0xffffffff;
184 #endif
185

186 /* IMPORTANT!!!
187 * Inform the graphics library that you are ready with the

flushing */
188 lv_disp_flush_ready(disp_drv);
189

190 /* CSR write to indicate the end of frame flushing */
191 value = 0x00B2;
192 csr_write(CSR_MCYCLE, value);
193 }
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194

195 /**********************
196 * STATIC FUNCTIONS
197 **********************/
198

199 /* Initialize your display and the required peripherals. */
200 static void disp_init(void)
201 {
202 printf("In disp init function\n");
203 }
204

205 /*OPTIONAL: GPU INTERFACE*/
206 #if LV_USE_GPU
207

208 /* If your MCU has hardware accelerator (GPU) then you can use it
to blend to memories using opacity

209 * It can be used only in buffered mode (LV_VDB_SIZE != 0 in
lv_conf.h) */

210 static void gpu_blend(lv_disp_drv_t *disp_drv, lv_color_t *dest,
const lv_color_t *src, uint32_t length, lv_opa_t opa)

211 {
212

213 /* Writing to the registers of the accelerator */
214 *blend_dest = dest;
215 *blend_src = src;
216 *blend_length = length;
217 *blend_opa = opa;
218

219 /* Adding CSR writes to count the CPU cycles saved by calling
the blend function of the accelerator */

220 uint32_t value = 0x000E;
221 csr_write(CSR_MCYCLE, value);
222

223 /* Polling the blend busy register of the accelerator to exit
the loop

224 * It is cleared when the accelerator is done with blending */
225 volatile int i = 1;
226 while (i)
227 {
228 i = *blend_busy;
229 }
230

231 value = 0x000F;
232 csr_write(CSR_MCYCLE, value);
233 }
234

235 /* If your MCU has hardware accelerator (GPU) then you can use it
to fill a memory with a color

236 * It can be used only in buffered mode (LV_VDB_SIZE != 0 in
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lv_conf.h)*/
237 static void gpu_fill(lv_disp_drv_t *disp_drv, lv_color_t *dest_buf

, lv_coord_t dest_width,
238 const lv_area_t *fill_area, lv_color_t color)
239 {
240

241 /* Writing to the registers of the accelerator */
242 *fill_dest_buf = dest_buf;
243 *fill_dest_width = dest_width;
244 *fill_area_lo = fill_area->x2 << 16 | fill_area->x1;
245 *fill_area_hi = fill_area->y2 << 16 | fill_area->y1;
246 *fill_color = color.ch.alpha << 24 | color.ch.red << 16 |

color.ch.green << 8 | color.ch.blue;
247

248 /* Adding CSR writes to count the CPU cycles saved by calling
the fill function of the accelerator */

249 uint32_t value = 0x0021;
250 csr_write(CSR_MCYCLE, value);
251

252 /* Polling the fill busy register of the accelerator to exit
the loop

253 * It is cleared when the accelerator is done with filling */
254 volatile int i = 1;
255 while (i)
256 {
257 i = *fill_busy;
258 }
259

260 value = 0x0022;
261 csr_write(CSR_MCYCLE, value);
262 }
263

264 #endif /*LV_USE_GPU*/
265

266 #else /* Enable this file at the top */
267

268 /* This dummy typedef exists purely to silence -Wpedantic. */
269 typedef int keep_pedantic_happy;
270 #endif

Listing A.2: Display Driver source file

A.1.2 Main file
1 /**
2 * @file main.c
3 * @brief LVGL main file
4 * @author Chinmayi Nadig
5 * @date September 2020
6 * Master’s Thesis in Electronic Systems Design
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7 * Supervisors - Martin Olsson, Trond Ytterdal
8 */
9

10 /*********************
11 * INCLUDES
12 *********************/
13 #include "lvgl/lvgl.h"
14 #include "lv_conf.h"
15 #include "lv_port_disp.h"
16 #include "lv_ex_conf.h"
17 #include "lv_examples/lv_examples.h"
18 #include "lv_examples/lv_apps/benchmark/benchmark.h"
19 #include "lv_examples/lv_tests/lv_test.h"
20

21 extern int printf(const char *format, ...);
22

23 /*********************
24 * DEFINES
25 *********************/
26 #define CSR_MCYCLE 0x300
27 /**********************
28 * TYPEDEFS
29 **********************/
30

31 /**********************
32 * STATIC PROTOTYPES
33 **********************/
34 static void gui_create(void);
35

36 /**********************
37 * STATIC VARIABLES
38 **********************/
39

40 /**********************
41 * MACROS
42 **********************/
43

44 /**********************
45 * GLOBAL FUNCTIONS
46 **********************/
47

48 int main(int argc, char **argv)
49 {
50

51 (void)argc; /*Unused*/
52 (void)argv; /*Unused*/
53 printf("test hello\n");
54

55 /*Initialize LittlevGL*/
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56 lv_init();
57 printf("lvgl initialized\n");
58

59 /*Initialize the HAL (display, input devices, tick) for
LittlevGL*/

60 lv_port_disp_init();
61 printf("HAL initialized\n");
62

63 /* CSR write to indicate the start of frame rendering */
64 uint32_t value = 0x00C1;
65 csr_write(CSR_MCYCLE, value);
66

67 /* Create a demo */
68 gui_create();
69 printf("GUI created\n");
70 lv_task_handler();
71 return 0;
72 }
73

74 /**********************
75 * STATIC FUNCTIONS
76 **********************/
77

78 static void gui_create(void)
79

80 {
81

82 /* Uncomment depending on which widget you want to draw */
83

84 /* Create a default arc widget*/
85 // lv_obj_t * arc1 = lv_arc_create(lv_disp_get_scr_act(NULL),

NULL);
86 // lv_obj_set_pos(arc1, 10, 10);
87

88 /* Create a default checkbox widget*/
89 //lv_obj_t * cb1 = lv_cb_create(lv_disp_get_scr_act(NULL),

NULL);
90

91 /* Create a default chart widget*/
92 // lv_obj_t * chart1 = lv_chart_create(lv_disp_get_scr_act(

NULL), NULL);
93 // lv_chart_series_t * dl1_1 = lv_chart_add_series(chart1,

LV_COLOR_RED);
94 // dl1_1->points[0] = 0;
95 // dl1_1->points[1] = 25;
96 // dl1_1->points[2] = 0;
97 // dl1_1->points[3] = 50;
98 // dl1_1->points[4] = 0;
99 // dl1_1->points[5] = 75;
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100 // dl1_1->points[6] = 0;
101 // dl1_1->points[7] = 100;
102 // dl1_1->points[8] = 0;
103 // lv_chart_series_t * dl1_2 = lv_chart_add_series(chart1,

LV_COLOR_BLUE);
104 // dl1_2->points[0] = 100;
105 // lv_chart_refresh(chart1);
106

107 /* Create a default image widget*/
108 lv_test_img_1();
109

110 /* Create a default color picker widget*/
111 // lv_test_cpicker_1();
112 }

Listing A.3: GUI code main file

A.2 Simulator Files

A.2.1 Common header file
1 /**
2 * @file Defines.h
3 * @brief Common macros
4 * @author Chinmayi Nadig
5 * @date September 2020
6 * Master’s Thesis in Electronic Systems Design
7 * Supervisors - Martin Olsson, Trond Ytterdal
8 */
9

10 /* App domain registers */
11 #define printk_app 0x0B000100
12 #define exit_app 0x0B000130
13 #define startPC_app 0x0B000000
14

15 /* App1 domain registers */
16 #define printk_app1 0x07000100
17 #define exit_app1 0x07000130
18 #define startPC_app1 0x07000000
19

20 /* Shared domain registers */
21 #define printk_shared 0x0A000100
22 #define exit_shared 0x0A000130
23 #define startPC_shared 0x0A000000
24

25 /* Baseline display controller registers */
26 #define PIXEL_ADDRESS 0x0C00000C
27 #define PIXEL_DATA 0x0C000010
28
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29 /* Display controller with DMA registers */
30 #define DC_AREA_LO 0x0C000000
31 #define DC_AREA_HI 0x0C000004
32 #define DC_DATA 0x0C000008
33 #define DC_BUSY 0x0C000014
34

35 /* Blend registers of the accelerator */
36 #define ACC_BLEND_SRC 0x0D000000
37 #define ACC_BLEND_DEST 0x0D000004
38 #define ACC_BLEND_LENGTH 0x0D000008
39 #define ACC_BLEND_OPA 0x0D00000C
40 #define ACC_BLEND_BUSY 0x0D000024
41

42 /* Fill registers of the accelerator */
43 #define ACC_FILL_DEST_BUF 0x0D000010
44 #define ACC_FILL_AREA_LO 0x0D000014
45 #define ACC_FILL_AREA_HI 0x0D000018
46 #define ACC_FILL_DEST_WIDTH 0x0D00001C
47 #define ACC_FILL_COLOR 0x0D000020
48 #define ACC_FILL_BUSY 0x0D000028

Listing A.4: Common macros of the system

A.2.2 Parser script for benchmarking
1 #
2 #file benchmark.py
3 #brief Parser script for producing compact data sets
4 #author Chinmayi Nadig
5 #date September 2020
6 #Master’s Thesis in Electronic Systems Design
7 #Supervisors - Martin Olsson, Trond Ytterdal
8 #
9

10 import pprint
11 f = open ("cpicker.txt", "r") # Choose which widget’s log file to

open
12 func_adv = {}
13 func = []
14 datas = []
15 depth = 0
16 i = 0
17 for line in f: # Read line by line
18 i = i + 1
19 if line[0:5] == "START":
20 depth = depth+1
21 if depth == 1:
22 func_adv[line[6:-1]] = {}
23 func.append(line[6:-1])
24
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25

26 elif line[0:5] == "CYCLE":
27 cycles = int(line[:-1].split(’:’)[1])
28

29 if len(func) > 1:
30 if func[depth-3] in func_adv[func[depth-4]]:
31 func_adv[func[depth-4]][func[depth-3]][’num’] =

func_adv[func[depth-4]][func[depth-3]][’num’] + 1
32 func_adv[func[depth-4]][func[depth-3]][’cycles’] =

func_adv[func[depth-4]][func[depth-3]][’cycles’] + cycles
33

34 else:
35 func_adv[func[depth-4]][func[depth-3]] = {}
36 func_adv[func[depth-4]][func[depth-3]][’num’] = 1
37 func_adv[func[depth-4]][func[depth-3]][’cycles’] =

cycles
38

39 else:
40 func_adv[func[0]][’num’] = 1
41 func_adv[func[0]][’cycles’] = cycles
42

43 depth = depth-1
44 func.pop()
45 if depth == 0:
46 datas.append(func_adv)
47 func_adv = {}
48 else:
49 print ("got nothing")
50

51 pp = pprint.PrettyPrinter(depth=6)
52 pp.pprint(datas)

Listing A.5: Parser script for benchmarking

A.2.3 Display Controller Model
1 /*!
2 \file Disp_Controller.h
3 \brief Top level header file of the display controller
4 \author Chinmayi Nadig
5 \date September 2020
6 Master’s Thesis in Electronic Systems Design
7 Supervisors - Martin Olsson, Trond Ytterdal
8 */
9

10 #ifndef __DISP_CONTROLLER_H__
11 #define __DISP_CONTROLLER_H__
12

13 #include <iostream>
14 #include <fstream>
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15

16 #define SC_INCLUDE_DYNAMIC_PROCESSES
17

18 #include "systemc"
19 #include "Defines.h"
20

21 #include "tlm.h"
22 #include "tlm_utils/simple_target_socket.h"
23 #include "tlm_utils/simple_initiator_socket.h"
24 #include "tlm_utils/tlm_quantumkeeper.h"
25

26 using namespace sc_core;
27 using namespace sc_dt;
28 using namespace std;
29

30 /**
31 * @class Disp_Controller
32 * @brief Display Controller model which can be used with and

without DMA
33 *
34 */
35 class Disp_Controller : sc_module
36 {
37 public:
38 /*TLM-2 sockets, defaults to 32-bits wide, base protocol */
39 tlm_utils::simple_target_socket<Disp_Controller> target_socket;
40 tlm_utils::simple_initiator_socket<Disp_Controller> data_bus;
41

42 /**
43 * @brief Constructor
44 * @param name module name
45 * @param latency latency of the module
46 */
47 Disp_Controller(sc_module_name name, sc_time latency =

SC_ZERO_TIME);
48

49 /**
50 * @brief TLM-2.0 socket implementation
51 * @param trans TLM-2.0 transaction
52 * @param delay transaction delay time
53 */
54 virtual void b_transport(tlm::tlm_generic_payload &trans,

sc_time &delay);
55

56 /**
57 * Access data memory to get data for LOAD OPs
58 * @param addr address to access to
59 * @param size size of the data to read in bytes
60 * @return data value read
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61 */
62 uint32_t readDataMem(uint32_t addr, int size);
63

64 /**
65 * Acces data memory to write data for STORE ops
66 * @brief
67 * @param addr addr address to access to
68 * @param data data to write
69 * @param size size of the data to write in bytes
70 */
71 void writeDataMem(uint32_t addr, uint32_t data, int size);
72

73 /**
74 * @brief Display controller flushing thread
75 */
76 void flush_loop();
77

78 private:
79 tlm_utils::tlm_quantumkeeper qk; /* Time keeping thread */
80 const sc_time LATENCY; /* Latency of the module */
81

82 sc_uint<32> pixel_address; /* Register for storing 2D
coordinates of pixel */

83 sc_uint<32> pixel_data; /* Register for storing color data of
pixel*/

84

85 sc_uint<64> dc_area; /* Register for storing the frame buffer
area coordinates */

86 sc_uint<32> dc_data; /* Register for storing reference to the
frame buffer*/

87 sc_uint<32> dc_busy; /* Register to indicate the controller is
busy flushing */

88

89 uint8_t r, g, b; /* Variables for storing the RGB color
data */

90 uint16_t x1, x2, y1, y2; /* Variables for storing the area
coordinates */

91 uint16_t x, y; /* Variables for storing the pixel
coordinates */

92 sc_uint<32> color; /* Variable for storing the color value
read from the frame buffer */

93 };
94

95 #endif

Listing A.6: Display Controller header file

1 /*!
2 \file Disp_Controller.cpp
3 \brief Top level source file of the display controller
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4 \author Chinmayi Nadig
5 \date September 2020
6 Master’s Thesis in Electronic Systems Design
7 Supervisors - Martin Olsson, Trond Ytterdal
8 */
9 #include "qdbmp.h"

10 #include "Disp_Controller.h"
11 BMP *bmp;
12 SC_HAS_PROCESS(Disp_Controller);
13 Disp_Controller::Disp_Controller(sc_module_name name, sc_time

latency) : sc_module(name), target_socket("target_socket"),
data_bus("initiator_socket"), LATENCY(latency)

14 {
15

16 target_socket.register_b_transport(this, &Disp_Controller::
b_transport);

17 qk.set_global_quantum(sc_time(100, SC_NS)); // Replace the
global quantum

18 qk.reset(); // Re-calculate the
local quantum

19 SC_THREAD(flush_loop);
20 }
21

22 void Disp_Controller::b_transport(tlm::tlm_generic_payload &trans,
sc_time &delay)

23 {
24

25 tlm::tlm_command cmd = trans.get_command();
26 sc_dt::uint64 addr = trans.get_address();
27 unsigned char *ptr = trans.get_data_ptr();
28 unsigned int len = trans.get_data_length();
29 delay += LATENCY; // Updating the local time offset with the

latency of the component
30 uint32_t value = 0x0000;
31

32 if (cmd == tlm::TLM_WRITE_COMMAND)
33 {
34 memcpy(&value, ptr, len);
35 switch (addr)
36 {
37 case PIXEL_ADDRESS:
38 pixel_address.range(31, 0) = value;
39 x = (unsigned long)pixel_address.range(15, 0);
40 y = (unsigned long)pixel_address.range(31, 16);
41 if (value == 0x00000000)
42 {
43 bmp = BMP_Create(480, 320, 32); // Create a blank BMP

image with the specified dimensions and 32 bit depth
44 }
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45 if (value == 0xffffffff)
46 {
47 BMP_WriteFile(bmp, "file1.bmp"); // Writing to the BMP

image file
48 BMP_CHECK_ERROR(stdout, -1);
49 }
50 break;
51

52 case PIXEL_DATA:
53 dc_data.range(23, 0) = value;
54 r = (unsigned char)dc_data.range(23, 16);
55 g = (unsigned char)dc_data.range(15, 8);
56 b = (unsigned char)dc_data.range(7, 0);
57 BMP_SetPixelRGB(bmp, x, y, r, g, b); // Setting the value of

the pixel in the BMP image file
58 break;
59

60 case DC_AREA_LO:
61 dc_area.range(31, 0) = value;
62 x2 = (unsigned long)dc_area.range(31, 16);
63 x1 = (unsigned long)dc_area.range(15, 0);
64 break;
65

66 case DC_AREA_HI:
67 dc_area.range(63, 32) = value;
68 y2 = (unsigned long)dc_area.range(63, 48);
69 y1 = (unsigned long)dc_area.range(47, 32);
70 break;
71

72 case DC_DATA:
73 dc_data.range(31, 0) = value;
74 bmp = BMP_Create(480, 320, 32); // Create a blank BMP image

with the specified dimensions and 32 bit depth
75 dc_busy.range(31, 0) = 1; // Setting the dc_busy

register high
76 break;
77

78 default:
79 cout << "Attempting to write to wrong register" << endl;
80 }
81 }
82 else if (cmd == tlm::TLM_READ_COMMAND)
83 {
84

85 switch (addr)
86 {
87 case PIXEL_ADDRESS:
88 value = pixel_address.range(31, 0);
89 break;
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90

91 case PIXEL_DATA:
92 value = pixel_data.range(31, 0);
93 break;
94

95 case DC_AREA_LO:
96 value = dc_area.range(31, 0);
97 break;
98

99 case DC_AREA_HI:
100 value = dc_area.range(63, 32);
101 break;
102

103 case DC_DATA:
104 value = dc_data.range(31, 0);
105 break;
106

107 case DC_BUSY:
108 value = dc_busy.range(31, 0);
109 break;
110

111 default:
112 cout << "Attempting to read wrong register" << endl;
113 }
114 memcpy(ptr, &value, len);
115 }
116

117 trans.set_response_status(tlm::TLM_OK_RESPONSE);
118 }
119

120 void Disp_Controller::flush_loop()
121 {
122 cout << "Disp_Controller flush thread" << endl;
123 while (true)
124 {
125 int i = 0;
126 while (!dc_busy) // Waits until the dc_busy register is set
127 sc_core::wait(10, SC_NS);
128 /* The most simple case (but also the slowest) to put all

pixels to the screen one-by-one */
129 for (y = y1; y <= y2; y++)
130 {
131 for (x = x1; x <= x2; x++)
132 {
133 color = readDataMem(dc_data + i * 4, 4); // Reading the

color of the pixel from the frame buffer
134 r = color.range(23, 16);
135 g = color.range(15, 8);
136 b = color.range(7, 0);
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137 BMP_SetPixelRGB(bmp, x, y, r, g, b); // Setting the value
of the pixel in the BMP image file

138 i++;
139 }
140 }
141 if (dc_busy)
142 dc_busy = 0; // Clearing the dc_busy

register
143 BMP_WriteFile(bmp, "file1.bmp"); // Writing to the BMP image

file
144 BMP_CHECK_ERROR(stdout, -1);
145 }
146 }
147

148 uint32_t Disp_Controller::readDataMem(uint32_t addr, int size)
149 {
150 uint32_t data;
151 tlm::tlm_generic_payload trans;
152 sc_time delay = qk.get_local_time(); // Current local time

offset assigned to delay
153

154 trans.set_command(tlm::TLM_READ_COMMAND);
155 trans.set_data_ptr(reinterpret_cast<unsigned char *>(&data));
156 trans.set_data_length(size);
157 trans.set_streaming_width(4); // = data_length to indicate no

streaming
158 trans.set_byte_enable_ptr(0); // 0 indicates unused
159 trans.set_dmi_allowed(false); // Mandatory initial value
160 trans.set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);
161 trans.set_address(addr);
162

163 data_bus->b_transport(trans, delay); // Annotate b_transport
with local time

164

165 qk.set(delay); // Update qk with time consumed by target
166 if (qk.need_sync()) // Check local time against quantum
167 qk.sync(); // Updation of the global time
168

169 if (trans.is_response_error())
170 {
171 cout << "Failed to read " << dec << size << " bytes from data

memory @0x" << hex << addr << ": 0x" << data << ", status: "
<< dec << trans.get_response_status() << endl;

172 SC_REPORT_WARNING("Memory", "Read memory");
173 }
174 return data;
175 }
176

177 void Disp_Controller::writeDataMem(uint32_t addr, uint32_t data,
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int size)
178 {
179 tlm::tlm_generic_payload trans;
180 sc_time delay = qk.get_local_time(); // Current local time

offset assigned to delay
181

182 trans.set_command(tlm::TLM_WRITE_COMMAND);
183 trans.set_data_ptr(reinterpret_cast<unsigned char *>(&data));
184 trans.set_data_length(size);
185 trans.set_streaming_width(4); // = data_length to indicate no

streaming
186 trans.set_byte_enable_ptr(0); // 0 indicates unused
187 trans.set_dmi_allowed(false); // Mandatory initial value
188 trans.set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);
189 trans.set_address(addr);
190

191 data_bus->b_transport(trans, delay); // Annotate b_transport
with local time

192

193 qk.set(delay); // Update qk with time consumed by target
194 if (qk.need_sync()) // Check local time against quantum
195 qk.sync(); // Updation of the global time
196

197 if (trans.is_response_error())
198 {
199 cout << "Failed to write " << dec << size << " bytes to data

memory @0x" << hex << addr << ": 0x" << data << ", status: "
<< dec << trans.get_response_status() << endl;

200 SC_REPORT_WARNING("Memory", "Write memory");
201 }
202 }

Listing A.7: Display Controller source file

A.2.4 Accelerator Model
1 /*!
2 \file Accelerator.h
3 \brief Top level header file of the accelerator
4 \author Chinmayi Nadig
5 \date September 2020
6 Master’s Thesis in Electronic Systems Design
7 Supervisors - Martin Olsson, Trond Ytterdal
8 */
9

10 #ifndef __ACCELERATOR_H__
11 #define __ACCELERATOR_H__
12

13 #include <iostream>
14 #include <fstream>
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15

16 #define SC_INCLUDE_DYNAMIC_PROCESSES
17

18 #include "systemc"
19 #include "Defines.h"
20

21 #include "tlm.h"
22 #include "tlm_utils/simple_target_socket.h"
23 #include "tlm_utils/simple_initiator_socket.h"
24 #include "tlm_utils/tlm_quantumkeeper.h"
25

26 using namespace sc_core;
27 using namespace sc_dt;
28 using namespace std;
29

30 /**
31 * @class Accelerator
32 * @brief A hardware accelerator model for blend and fill

operations
33 *
34 */
35 class Accelerator : sc_module
36 {
37 public:
38 /*TLM-2 sockets, defaults to 32-bits wide, base protocol */
39 tlm_utils::simple_target_socket<Accelerator> target_socket;
40 tlm_utils::simple_initiator_socket<Accelerator> data_bus;
41

42 /**
43 * @brief Constructor
44 * @param name module name
45 */
46 Accelerator(sc_module_name name, sc_time latency = SC_ZERO_TIME)

;
47

48 /**
49 * @brief TLM-2.0 socket implementation
50 * @param trans TLM-2.0 transaction
51 * @param delay transaction delay time
52 */
53 virtual void b_transport(tlm::tlm_generic_payload &trans,

sc_time &delay);
54

55 /**
56 * Access data memory to get data for LOAD OPs
57 * @param addr address to access to
58 * @param size size of the data to read in bytes
59 * @return data value read
60 */
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61 uint32_t readDataMem(uint32_t addr, int size);
62

63 /**
64 * Acces data memory to write data for STORE ops
65 * @brief
66 * @param addr addr address to access to
67 * @param data data to write
68 * @param size size of the data to write in bytes
69 */
70 void writeDataMem(uint32_t addr, uint32_t data, int size);
71

72 /**
73 * @brief Accelerator blending thread
74 */
75 void blend_loop();
76

77 /**
78 * @brief Accelerator filling thread
79 */
80 void fill_loop();
81

82 private:
83 tlm_utils::tlm_quantumkeeper qk; /* Time keeping thread */
84 const sc_time LATENCY; /* Latency of the module */
85

86 sc_uint<32> blend_dest; /* Register for storing reference to
the blend destination memory */

87 sc_uint<32> blend_src; /* Register for storing reference to
the blend source memory */

88 sc_uint<32> blend_length; /* Register for storing length of
blending */

89 sc_uint<8> blend_opa; /* Register for storing opacity of
blending */

90

91 sc_uint<32> fill_dest_buf; /* Register for storing the
reference to the fill destination buffer */

92 sc_uint<64> fill_area; /* Register for storing area
coordinates of fill area */

93 sc_uint<16> fill_dest_width; /* Register for storing fill
destination buffer width */

94 sc_uint<32> fill_color; /* Register for storing fill color

*/
95

96 sc_uint<32> fill_busy; /* Register to indicate the accelerator
is busy filling */

97 sc_uint<32> blend_busy; /* Register to indicate the accelerator
is busy blending */

98

99 /* Variables for storing the RGB color data */
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100 uint8_t r, g, b, a;
101 uint8_t dest_r, dest_g, dest_b;
102 uint8_t src_r, src_g, src_b;
103 uint32_t color;
104

105 uint8_t i, opa, length; /* Variables for storing opacity &
length of blending */

106 uint16_t x1, x2, y1, y2; /* Variables for storing the area
coordinates */

107 uint16_t x, y; /* Variables for storing the pixel
coordinates */

108

109 sc_uint<32> src_data, dest_data; /* Variables for storing color
values read from the frame buffer */

110 };
111

112 #endif

Listing A.8: Accelerator header file

1 /*!
2 \file Accelerator.cpp
3 \brief Top level source file of the accelerator
4 \author Chinmayi Nadig
5 \date September 2020
6 Master’s Thesis in Electronic Systems Design
7 Supervisors - Martin Olsson, Trond Ytterdal
8 */
9

10 #include "Accelerator.h"
11

12 SC_HAS_PROCESS(Accelerator);
13 Accelerator::Accelerator(sc_module_name name, sc_time latency) :

sc_module(name), target_socket("target_socket"), data_bus("
initiator_socket"), LATENCY(latency)

14 {
15 target_socket.register_b_transport(this, &Accelerator::

b_transport);
16 qk.set_global_quantum(sc_time(100, SC_NS)); // Replace the

global quantum
17 qk.reset(); // Re-calculate

the local quantum
18 SC_THREAD(blend_loop);
19 SC_THREAD(fill_loop);
20 }
21

22 void Accelerator::b_transport(tlm::tlm_generic_payload &trans,
sc_time &delay)

23 {
24

93



25 tlm::tlm_command cmd = trans.get_command();
26 sc_dt::uint64 addr = trans.get_address();
27 unsigned char *ptr = trans.get_data_ptr();
28 unsigned int len = trans.get_data_length();
29 delay += LATENCY; // Updating the local time offset with the

latency of the component
30

31 uint32_t value = 0x0000;
32

33 if (cmd == tlm::TLM_WRITE_COMMAND)
34 {
35 memcpy(&value, ptr, len);
36 switch (addr)
37 {
38 case ACC_BLEND_DEST:
39 blend_dest.range(31, 0) = value;
40 break;
41

42 case ACC_BLEND_SRC:
43 blend_src.range(31, 0) = value;
44 break;
45

46 case ACC_BLEND_LENGTH:
47 blend_length.range(31, 0) = value;
48 length = (unsigned int)blend_length.range(31, 0);
49 break;
50

51 case ACC_BLEND_OPA:
52 blend_opa.range(7, 0) = value;
53 opa = (unsigned int)blend_opa.range(7, 0);
54 blend_busy.range(31, 0) = 1; // Setting blend_busy

register high
55 break;
56

57 case ACC_FILL_AREA_LO:
58 fill_area.range(31, 0) = value;
59 x2 = (unsigned long)fill_area.range(31, 16);
60 x1 = (unsigned long)fill_area.range(15, 0);
61 break;
62

63 case ACC_FILL_AREA_HI:
64 fill_area.range(63, 32) = value;
65 y2 = (unsigned long)fill_area.range(63, 48);
66 y1 = (unsigned long)fill_area.range(47, 32);
67 break;
68

69 case ACC_FILL_DEST_BUF:
70 fill_dest_buf.range(31, 0) = value;
71 break;
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72

73 case ACC_FILL_DEST_WIDTH:
74 fill_dest_width.range(15, 0) = value;
75 break;
76

77 case ACC_FILL_COLOR:
78 fill_color.range(31, 0) = value;
79 r = fill_color.range(23, 16);
80 g = fill_color.range(15, 8);
81 b = fill_color.range(7, 0);
82

83 color = r << 16 | g << 8 | b;
84

85 fill_busy.range(31, 0) = 1; // Setting the fill_busy
register high

86

87 break;
88 }
89 }
90 else if (cmd == tlm::TLM_READ_COMMAND)
91 {
92

93 switch (addr)
94 {
95 case ACC_BLEND_BUSY:
96 value = blend_busy.range(31, 0);
97 break;
98

99 case ACC_FILL_BUSY:
100 value = fill_busy.range(31, 0);
101 break;
102

103 default:
104 cout << "Attempting to read wrong register" << endl;
105 }
106 memcpy(ptr, &value, len);
107 }
108

109 trans.set_response_status(tlm::TLM_OK_RESPONSE);
110 }
111

112 void Accelerator::blend_loop()
113 {
114 cout << "Accelerator blend thread" << endl;
115 while (true)
116 {
117 while (!blend_busy) // Waits until the blend_busy register

is set
118 sc_core::wait(10, SC_NS);
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119

120 for (i = 0; i <= length + 1; i++)
121 {
122 src_data = readDataMem(blend_src + i * 4, 4); //

Reading the color of the source pixel from frame buffer
123 dest_data = readDataMem(blend_dest + i * 4, 4); //

Reading the color of the destination pixel from frame buffer
124

125 src_r = src_data.range(23, 16);
126 src_g = src_data.range(15, 8);
127 src_b = src_data.range(7, 0);
128

129 dest_r = dest_data.range(23, 16);
130 dest_g = dest_data.range(15, 8);
131 dest_b = src_data.range(7, 0);
132

133 r = (uint32_t)(((uint16_t)((uint16_t)dest_r * opa +
src_r * (255 - opa)) >> 8) & 0xFF);

134 g = (uint32_t)(((uint16_t)((uint16_t)dest_g * opa +
src_g * (255 - opa)) >> 8) & 0xFF);

135 b = (uint32_t)(((uint16_t)((uint16_t)dest_b * opa +
src_b * (255 - opa)) >> 8) & 0xFF);

136

137 color = r << 16 | g << 8 | b;
138 writeDataMem(blend_dest + i * 4, color, 4); // Writing

the blended color to the destination pixel in frame buffer
139 }
140

141 if (blend_busy)
142 blend_busy = 0; // Clearing the blend_busy register
143 }
144 }
145

146 void Accelerator::fill_loop()
147 {
148 cout << "Accelerator fill thread" << endl;
149 while (1)
150 {
151 while (!fill_busy) // Waits until the fill_busy register

is set
152 sc_core::wait(10, SC_NS);
153

154 fill_dest_buf += fill_dest_width * 4 * y1; // Go to the
first0 line

155 for (y = y1; y <= y2; y++)
156 {
157 for (x = x1; x <= x2; x++)
158 {
159 writeDataMem(fill_dest_buf + x * 4, color, 4); //
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Writing to the pixel in the frame buffer
160 }
161 fill_dest_buf += fill_dest_width * 4; // Go to the

next line
162 }
163 if (fill_busy)
164 fill_busy = 0; // Clearing the fill_busy register
165 }
166 }
167

168 uint32_t Accelerator::readDataMem(uint32_t addr, int size)
169 {
170 uint32_t data;
171 tlm::tlm_generic_payload trans;
172

173 sc_time delay = qk.get_local_time(); // Current local time
offset assigned to delay

174

175 trans.set_command(tlm::TLM_READ_COMMAND);
176 trans.set_data_ptr(reinterpret_cast<unsigned char *>(&data));
177 trans.set_data_length(size);
178 trans.set_streaming_width(4); // = data_length to indicate no

streaming
179 trans.set_byte_enable_ptr(0); // 0 indicates unused
180 trans.set_dmi_allowed(false); // Mandatory initial value
181 trans.set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);
182 trans.set_address(addr);
183

184 data_bus->b_transport(trans, delay); // Annotate b_transport
with local time

185

186 qk.set(delay); // Update qk with time consumed by target
187 if (qk.need_sync()) // Check local time against quantum
188 qk.sync(); // Updation of the global time
189

190 if (trans.is_response_error())
191 {
192 cout << "Failed to read " << dec << size << " bytes from

data memory @0x" << hex << addr << ": 0x" << data << ", status
: " << dec << trans.get_response_status() << endl;

193 SC_REPORT_WARNING("Memory", "Read memory");
194 }
195 return data;
196 }
197

198 void Accelerator::writeDataMem(uint32_t addr, uint32_t data, int
size)

199 {
200 tlm::tlm_generic_payload trans;
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201

202 sc_time delay = qk.get_local_time(); // Current local time
offset assigned to delay

203

204 trans.set_command(tlm::TLM_WRITE_COMMAND);
205 trans.set_data_ptr(reinterpret_cast<unsigned char *>(&data));
206 trans.set_data_length(size);
207 trans.set_streaming_width(4); // = data_length to indicate no

streaming
208 trans.set_byte_enable_ptr(0); // 0 indicates unused
209 trans.set_dmi_allowed(false); // Mandatory initial value
210 trans.set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);
211 trans.set_address(addr);
212

213 data_bus->b_transport(trans, delay); // Annotate b_transport
with local time

214

215 qk.set(delay); // Update qk with time consumed by target
216 if (qk.need_sync()) // Check local time against quantum
217 qk.sync(); // Updation of the global time
218

219 if (trans.is_response_error())
220 {
221 cout << "Failed to write " << dec << size << " bytes to

data memory @0x" << hex << addr << ": 0x" << data << ", status
: " << dec << trans.get_response_status() << endl;

222 SC_REPORT_WARNING("Memory", "Write memory");
223 }
224 }

Listing A.9: Accelerator source file

A.2.5 Domain Top files
1

2 /*!
3 \file Top_App.h
4 \brief Top level header file of the app domain
5 \author Chinmayi Nadig
6 \date September 2020
7 Master’s Thesis in Electronic Systems Design
8 Supervisors - Martin Olsson, Trond Ytterdal
9 */

10

11 #ifndef __TOP_APP_H__
12 #define __TOP_APP_H__
13

14 #include <iostream>
15 #include <fstream>
16
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17 #define SC_INCLUDE_DYNAMIC_PROCESSES
18

19 #include "systemc"
20

21 #include "tlm.h"
22 #include <signal.h>
23 #include <unistd.h>
24 #include "tlm_utils/simple_initiator_socket.h"
25 #include "tlm_utils/simple_target_socket.h"
26 #include "CPU.h"
27 #include "Ram.h"
28 #include "Interconnect.h"
29 #include "Bridge.h"
30 #include "Log.h"
31 #include "Irqmapper.h"
32 #include "Cache.h"
33 #include "Disp_Controller.h"
34 #include "Accelerator.h"
35

36 using namespace sc_core;
37 using namespace sc_dt;
38 using namespace std;
39

40 // RAM0 & 1
41 #define APPS1_R1_START_ADDR 0x0B000000
42 #define APPS1_R1_END_ADDR 0x0BFFFFFF
43 #define APPS2_R1_START_ADDR 0x2B000000
44 #define APPS2_R1_END_ADDR 0x2BFFFFFF
45

46 // BRIDGE FROM APP
47 #define APPS3_R1_START_ADDR 0x00000000
48 #define APPS3_R1_END_ADDR 0x0affffff
49 #define APPS3_R2_START_ADDR 0x0E000000
50 #define APPS3_R2_END_ADDR 0x2affffff
51 #define APPS3_R3_START_ADDR 0x2C000000
52 #define APPS3_R3_END_ADDR 0xffffffff
53

54 // DISPLAY CONTROLLER
55 #define APPS4_R1_START_ADDR 0x0C000000
56 #define APPS4_R1_END_ADDR 0x0Cffffff
57

58 // ACCELERATOR
59 #define APPS5_R1_START_ADDR 0x0D000000
60 #define APPS5_R1_END_ADDR 0x0Dffffff
61

62 /**
63 * @class Top_App
64 * @brief This class instantiates all necessary components
65 * of the app domain and connects their ports
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66 *
67 */
68 class Top_App : sc_module
69 {
70 public:
71 /* Declaring objects of the components */
72 CPU *cpu;
73 Irqmapper *irqmap;
74 Bridge *bridge_to_app;
75 Cache *cache;
76

77 Ram *ram0;
78 Ram *ram1;
79 Bridge *bridge_from_app;
80

81 Disp_Controller *disp_c;
82 Accelerator *acc;
83 Interconnect *bus;
84

85 /* Initialize program counter value */
86 int start_PC = APPS1_R1_START_ADDR;
87

88 /**
89 * @brief Constructor
90 * @param name Module name
91 *
92 */
93 Top_App(sc_module_name name);
94

95 /**
96 * @brief Destructor
97 */
98 ˜Top_App();
99 };

100 #endif

Listing A.10: App domain top header

1

2

3 /*!
4 \file Top_App.cpp
5 \brief Top level source file of the app domain
6 \author Chinmayi Nadig
7 \date September 2020
8 Master’s Thesis in Electronic Systems Design
9 Supervisors - Martin Olsson, Trond Ytterdal

10 */
11

12 #include "Top_App.h"
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13

14 SC_HAS_PROCESS(Top_App);
15 Top_App::Top_App(sc_module_name name) : sc_module(name)
16 {
17 /* Instantiating the objects of the components */
18 cpu = new CPU("cpu");
19 irqmap = new Irqmapper("irqmap");
20 bridge_to_app = new Bridge("bridge_to_app", sc_time(0, SC_NS))

;
21 cache = new Cache("cache", 0);
22

23 ram0 = new Ram("ram0", sc_time(10, SC_NS));
24 ram1 = new Ram("ram1", sc_time(10, SC_NS));
25 bridge_from_app = new Bridge("bridge_from_app", sc_time(50,

SC_NS));
26 disp_c = new Disp_Controller("disp_c");
27

28 acc = new Accelerator("acc");
29 bus = new Interconnect("Interconnect");
30

31 /* Connecting the ports of the components */
32 bus->connect_socket<Ram>(ram0->socket, APPS1_R1_START_ADDR,

APPS1_R1_END_ADDR);
33 bus->connect_socket<Ram>(ram1->socket, APPS2_R1_START_ADDR,

APPS2_R1_END_ADDR);
34 bus->connect_socket<Bridge>(bridge_from_app->target_socket,

APPS3_R1_START_ADDR, APPS3_R1_END_ADDR);
35 bus->add_address(APPS3_R2_START_ADDR, APPS3_R2_END_ADDR);
36 bus->add_address(APPS3_R3_START_ADDR, APPS3_R3_END_ADDR);
37 bus->connect_socket<Disp_Controller>(disp_c->target_socket,

APPS4_R1_START_ADDR, APPS4_R1_END_ADDR);
38 bus->connect_socket<Accelerator>(acc->target_socket,

APPS5_R1_START_ADDR, APPS5_R1_END_ADDR);
39

40 bus->connect_socket<Cache>(cache->memory_socket);
41 cpu->instr_bus.bind(cache->cpu_instr_socket);
42 cpu->exec->data_bus.bind(cache->cpu_data_socket);
43 irqmap->irq_line.bind(cpu->irq_line_socket);
44 bus->connect_socket<Bridge>(bridge_to_app->initiator_socket);
45 bus->connect_socket<Accelerator>(acc->data_bus);
46 bus->connect_socket<Disp_Controller>(disp_c->data_bus);
47 }
48

49 Top_App::˜Top_App()
50 {
51 delete cpu;
52 delete irqmap;
53 delete bridge_to_app;
54
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55 delete ram0;
56 delete ram1;
57 delete bridge_from_app;
58 delete disp_c;
59 }

Listing A.11: App domain top source file

1

2 /*!
3 \file Top_Shared.h
4 \brief Top level header file of the shared domain
5 \author Chinmayi Nadig
6 \date September 2020
7 Master’s Thesis in Electronic Systems Design
8 Supervisors - Martin Olsson, Trond Ytterdal
9 */

10

11 #ifndef __TOP_SHARED_H__
12 #define __TOP_SHARED_H__
13

14 #include <iostream>
15 #include <fstream>
16

17 #define SC_INCLUDE_DYNAMIC_PROCESSES
18

19 #include "systemc"
20

21 #include "tlm.h"
22 #include <signal.h>
23 #include <unistd.h>
24 #include "tlm_utils/simple_initiator_socket.h"
25 #include "tlm_utils/simple_target_socket.h"
26 #include "CPU.h"
27 #include "Ram.h"
28 #include "Interconnect.h"
29 #include "Bridge.h"
30 #include "Log.h"
31 #include "Cache.h"
32 #include "Disp_Controller.h"
33 #include "Irqmapper.h"
34 #include "Accelerator.h"
35

36 using namespace sc_core;
37 using namespace sc_dt;
38 using namespace std;
39

40 // RAM 0 & 1
41 #define SHAREDS1_R1_START_ADDR 0x0A000000
42 #define SHAREDS1_R1_END_ADDR 0x0AFFFFFF
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43 #define SHAREDS2_R1_START_ADDR 0x2A000000
44 #define SHAREDS2_R1_END_ADDR 0x2AFFFFFF
45

46 // BRIDGE TO APP
47 #define SHAREDS3_R1_START_ADDR 0x0B000000
48 #define SHAREDS3_R1_END_ADDR 0x0BFFFFFF
49 #define SHAREDS3_R2_START_ADDR 0x2B000000
50 #define SHAREDS3_R2_END_ADDR 0x2BFFFFFF
51

52 // BRIDGE TO APP1
53 #define SHAREDS4_R1_START_ADDR 0x07000000
54 #define SHAREDS4_R1_END_ADDR 0x07FFFFFF
55 #define SHAREDS4_R2_START_ADDR 0x27000000
56 #define SHAREDS4_R2_END_ADDR 0x27FFFFFF
57

58 // DISPLAY CONTROLLER
59 #define SHAREDS5_R1_START_ADDR 0x0C000000
60 #define SHAREDS5_R1_END_ADDR 0x0CFFFFFF
61

62 // DISPLAY CONTROLLER
63 #define SHAREDS6_R1_START_ADDR 0x0D000000
64 #define SHAREDS6_R1_END_ADDR 0x0DFFFFFF
65

66 /**
67 * @class Top_Shared
68 * @brief This class instantiates all necessary components
69 * of the shared domain and connects their ports
70 *
71 */
72 class Top_Shared : sc_module
73 {
74 public:
75 /* Declaring objects of the components */
76 CPU *cpu;
77 Irqmapper *irqmap;
78 Bridge *bridge_from_app;
79 Bridge *bridge_from_app1;
80 Cache *cache;
81

82 Bridge *bridge_to_app;
83 Bridge *bridge_to_app1;
84 Ram *ram0;
85 Ram *ram1;
86

87 Disp_Controller *disp_c;
88 Accelerator *acc;
89 Interconnect *bus;
90

91 /* Initialize program counter value */
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92 int start_PC = SHAREDS1_R1_START_ADDR;
93

94 /**
95 * @brief Constructor
96 * @param name Module name
97 *
98 */
99 Top_Shared(sc_module_name name);

100

101 /**
102 * @brief Destructor
103 */
104 ˜Top_Shared();
105 };
106 #endif

Listing A.12: Shared domain top header

1

2

3 /*!
4 \file Top_Shared.cpp
5 \brief Top level source file of the shared domain
6 \author Chinmayi Nadig
7 \date September 2020
8 Master’s Thesis in Electronic Systems Design
9 Supervisors - Martin Olsson, Trond Ytterdal

10 */
11 #include "Top_Shared.h"
12

13 SC_HAS_PROCESS(Top_Shared);
14 Top_Shared::Top_Shared(sc_module_name name) : sc_module(name)
15 {
16 /* Instantiating the objects of the components */
17 bridge_from_app = new Bridge("bridge_from_app");
18 bridge_from_app1 = new Bridge("bridge_from_app1", sc_time(0,

SC_NS));
19 cpu = new CPU("debug");
20 irqmap = new Irqmapper("irqmap");
21 cache = new Cache("cache", 0);
22

23 bridge_to_app = new Bridge("bridge_to_app");
24 bridge_to_app1 = new Bridge("bridge_to_app1", sc_time(0, SC_NS

));
25 ram0 = new Ram("ram0", sc_time(10, SC_NS));
26 ram1 = new Ram("ram1", sc_time(10, SC_NS));
27

28 disp_c = new Disp_Controller("disp_c");
29 acc = new Accelerator("acc");
30 bus = new Interconnect("Interconnect");

104



31

32 /* Connecting the ports of the components */
33 bus->connect_socket<Ram>(ram0->socket, SHAREDS1_R1_START_ADDR,

SHAREDS1_R1_END_ADDR);
34 bus->connect_socket<Ram>(ram1->socket, SHAREDS2_R1_START_ADDR,

SHAREDS2_R1_END_ADDR);
35 bus->connect_socket<Bridge>(bridge_to_app->target_socket,

SHAREDS3_R1_START_ADDR, SHAREDS3_R1_END_ADDR);
36 bus->add_address(SHAREDS3_R2_START_ADDR, SHAREDS3_R2_END_ADDR)

;
37 bus->connect_socket<Bridge>(bridge_to_app1->target_socket,

SHAREDS4_R1_START_ADDR, SHAREDS4_R1_END_ADDR);
38 bus->add_address(SHAREDS4_R2_START_ADDR, SHAREDS4_R2_END_ADDR)

;
39 bus->connect_socket<Disp_Controller>(disp_c->target_socket,

SHAREDS5_R1_START_ADDR, SHAREDS5_R1_END_ADDR);
40 bus->connect_socket<Accelerator>(acc->target_socket,

SHAREDS6_R1_START_ADDR, SHAREDS6_R1_END_ADDR);
41

42 bus->connect_socket<Bridge>(bridge_from_app->initiator_socket)
;

43 bus->connect_socket<Bridge>(bridge_from_app1->initiator_socket
);

44 bus->connect_socket<Cache>(cache->memory_socket);
45 cpu->instr_bus.bind(cache->cpu_instr_socket);
46 cpu->exec->data_bus.bind(cache->cpu_data_socket);
47 irqmap->irq_line.bind(cpu->irq_line_socket);
48 bus->connect_socket<Accelerator>(acc->data_bus);
49 bus->connect_socket<Disp_Controller>(disp_c->data_bus);
50 }
51

52 Top_Shared::˜Top_Shared()
53 {
54

55 delete cpu;
56 delete irqmap;
57 delete bridge_from_app;
58 delete bridge_from_app1;
59 delete cache;
60

61 delete bridge_to_app;
62 delete bridge_to_app1;
63 delete ram0;
64 delete ram1;
65 }

Listing A.13: Shared domain top source file

A.2.6 Overall Top file
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1 /*!
2 \file Simulator.cpp
3 \brief Top level simulation entity
4 \author Chinmayi Nadig
5 \date September 2020
6 Master’s Thesis in Electronic Systems Design
7 Supervisors - Martin Olsson, Trond Ytterdal
8 */
9

10 #if !defined(MTI_SYSTEMC)
11 #pragma message("sccom not detected, compiling Simulator.cpp")
12 #pragma comment(lib, "systemc.h")
13

14 #define SC_INCLUDE_DYNAMIC_PROCESSES
15

16 #include <fstream>
17

18 #include "systemc"
19 #include "tlm.h"
20 #include "tlm_utils/simple_initiator_socket.h"
21 #include "tlm_utils/simple_target_socket.h"
22 #include <signal.h>
23 #include <unistd.h>
24 #include <iostream>
25 #include <string>
26 #include <sstream>
27 #include "Defines.h"
28

29 #include "Logger.h"
30 #include "CPU.h"
31 #include "Ram.h"
32 #include "Interconnect.h"
33 #include "Trace.h"
34 #include "Timer.h"
35 #include "Bridge.h"
36 #include "Top_App1.h"
37 #include "Top_Shared.h"
38 #include "Top_App.h"
39

40 using namespace sc_core;
41 using namespace sc_dt;
42 using namespace std;
43

44 int benchmark = 0;
45 int total_cpu = 0; //Number of CPUs input in the command line
46 string cpus;
47 string cpu[100];
48 string test;
49 fstream logfile;
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50

51 /**
52 * @class Simulator
53 * This class instantiates all necessary domains, connects its

ports and starts
54 * the simulation.
55 *
56 * @brief Top simulation entity
57 */
58 SC_MODULE(Simulator)
59 {
60 CPU *pointer_to_cpu;
61 int printk_addr;
62 int exit_addr;
63 int start_PC;
64 int cycle_counter = 0;
65

66 Top_Shared *shared;
67 Top_App *app;
68 Top_App1 *app1;
69

70 char cmd = 0;
71 void cpu_watch()
72 {
73 cout << "Entered cpu watch" << endl;
74 while (1)
75 {
76 pointer_to_cpu->single_step(benchmark);
77 sc_core::wait(10, SC_NS);
78 cycle_counter += 1;
79 sc_time cycle_time(10, SC_NS);
80

81 if (((pointer_to_cpu->register_bank->getPC()) == printk_addr
) && !(pointer_to_cpu->halted))

82 {
83 cout << hex << static_cast<unsigned char>(pointer_to_cpu->

register_bank->getValue(10, false));
84 }
85 else if ((pointer_to_cpu->register_bank->getPC()) ==

exit_addr)
86 {
87 if ((pointer_to_cpu->register_bank->getValue(10, false))

== 0xCAFFE000)
88 {
89

90 cout << "-I TEST OK" << endl;
91 cout << "*********************************************"

<< endl;
92 pointer_to_cpu->register_bank->dump();
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93 cout << "Instruction cycles: " << dec << cycle_counter
<< endl;

94 cout << "Total cycles: " << dec << (int)(pointer_to_cpu
->qk.get_current_time() / cycle_time) << endl;

95 //cout << "End time: " << sc_time_stamp() << endl;
96 cout << " End time: " << dec << pointer_to_cpu->qk.

get_current_time() << endl;
97 pointer_to_cpu->perf->dump();
98

99 cout << "*********************************************"
<< endl;

100 cout << "Time taken to render the GUI in the frame
buffer" << endl;

101 cout << "*********************************************"
<< endl;

102 cout << "Number of times: " << dec << pointer_to_cpu->
render_num << endl;

103 cout << "Total CPU cycles taken: " << dec << (int)
pointer_to_cpu->render_sumtotal << endl;

104

105 cout << "*********************************************"
<< endl;

106 cout << "Time taken to flush from DC to display" << endl
;

107 cout << "*********************************************"
<< endl;

108 cout << "Number of times: " << dec << pointer_to_cpu->
dc_flush_num << endl;

109 cout << "Total CPU cycles taken: " << dec << (int)
pointer_to_cpu->dc_flush_sumtotal << endl;

110

111 cout << "*********************************************"
<< endl;

112 cout << "Display Controller with DMA" << endl;
113 cout << "*********************************************"

<< endl;
114 cout << "Number of times: " << dec << pointer_to_cpu->

dc_dma_num << endl;
115 cout << "Total CPU cycles saved: " << dec << (int)

pointer_to_cpu->dc_dma_sumtotal << endl;
116

117 cout << "*********************************************"
<< endl;

118 cout << "Accelerator - blend operation " << endl;
119 cout << "*********************************************"

<< endl;
120 cout << "Number of times: " << dec << pointer_to_cpu->

acc_blend_num << endl;
121 cout << "Total CPU cycles saved: " << dec << (int)
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pointer_to_cpu->acc_blend_sumtotal << endl;
122

123 cout << "*********************************************"
<< endl;

124 cout << "Accelerator - fill operation" << endl;
125 cout << "*********************************************"

<< endl;
126 cout << "Number of times: " << dec << pointer_to_cpu->

acc_fill_num << endl;
127 cout << "Total CPU cycles saved: " << dec << (int)

pointer_to_cpu->acc_fill_sumtotal << endl;
128

129 if (benchmark)
130 {
131

132 cout << "*********************************************
" << endl;

133 cout << "LVGL Benchmarking - Math functions" << endl;
134 cout << "*********************************************

" << endl;
135 cout << "lv_trigo_sin total cycles: " << dec << (int)

pointer_to_cpu->trigo_sin_sumtotal << endl;
136 cout << "lv_trigo_sin number of times: " << dec <<

pointer_to_cpu->trigo_sin_num << endl;
137

138 cout << "lv_bezier3 total cycles: " << dec << (int)
pointer_to_cpu->bezier3_sumtotal << endl;

139 cout << "lv_bezier3 number of times: " << dec <<
pointer_to_cpu->bezier3_num << endl;

140

141 cout << "lv_atan2_letter total cycles: " << dec << (
int)pointer_to_cpu->atan2_sumtotal << endl;

142 cout << "lv_atan2 number of times: " << dec <<
pointer_to_cpu->atan2_num << endl;

143

144 cout << "lv_sqrt total cycles: " << dec << (int)
pointer_to_cpu->sqrt_sumtotal << endl;

145 cout << "lv_sqrt number of times: " << dec <<
pointer_to_cpu->sqrt_num << endl;

146

147 cout << "*********************************************
" << endl;

148 cout << "LVGL Benchmarking - BASIC drawing functions"
<< endl;

149 cout << "*********************************************
" << endl;

150

151 cout << "lv_draw_px total cycles: " << dec << (int)
pointer_to_cpu->draw_px_sumtotal << endl;
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152 cout << "lv_draw_px number of times: " << dec <<
pointer_to_cpu->draw_px_num << endl;

153

154 cout << "lv_draw_fill total cycles: " << dec << (int)
pointer_to_cpu->draw_fill_sumtotal << endl;

155 cout << "lv_draw_fill number of times: " << dec <<
pointer_to_cpu->draw_fill_num << endl;

156

157 cout << "lv_draw_letter total cycles: " << dec << (int
)pointer_to_cpu->draw_letter_sumtotal << endl;

158 cout << "lv_draw_letter number of times: " << dec <<
pointer_to_cpu->draw_letter_num << endl;

159

160 cout << "lv_draw_map total cycles: " << dec << (int)
pointer_to_cpu->draw_map_sumtotal << endl;

161 cout << "lv_draw_map number of times: " << dec <<
pointer_to_cpu->draw_map_num << endl;

162

163 cout << "*********************************************
" << endl;

164 cout << "LVGL Benchmarking - ADVANCED drawing
functions" << endl;

165 cout << "*********************************************
" << endl;

166 cout << "lv_draw_arc total cycles: " << dec << (int)
pointer_to_cpu->draw_arc_sumtotal << endl;

167 cout << "lv_draw_arc number of times: " << dec <<
pointer_to_cpu->draw_arc_num << endl;

168

169 cout << "lv_draw_img total cycles: " << dec << (int)
pointer_to_cpu->draw_img_sumtotal << endl;

170 cout << "lv_draw_img number of times: " << dec <<
pointer_to_cpu->draw_img_num << endl;

171

172 cout << "lv_draw_label total cycles: " << dec << (int)
pointer_to_cpu->draw_label_sumtotal << endl;

173 cout << "lv_draw_label number of times: " << dec <<
pointer_to_cpu->draw_label_num << endl;

174

175 cout << "lv_draw_line total cycles: " << dec << (int)
pointer_to_cpu->draw_line_sumtotal << endl;

176 cout << "lv_draw_line number of times: " << dec <<
pointer_to_cpu->draw_line_num << endl;

177

178 cout << "lv_draw_rect total cycles: " << dec << (int)
pointer_to_cpu->draw_rect_sumtotal << endl;

179 cout << "lv_draw_rect number of times: " << dec <<
pointer_to_cpu->draw_rect_num << endl;

180
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181 cout << "lv_draw_triangle total cycles: " << dec << (
int)pointer_to_cpu->draw_triangle_sumtotal << endl;

182 cout << "lv_draw_triangle number of times: " << dec <<
pointer_to_cpu->draw_triangle_num << endl;

183

184 cout << "*********************************************
" << endl;

185 }
186

187 //sc_stop();
188 break;
189 }
190 else if ((pointer_to_cpu->register_bank->getValue(10,

false)) == 0xDEADD000)
191 {
192 cout << "-I TEST FAILED!" << endl;
193 break;
194 //SC_REPORT_ERROR("Exit function", "main returned 1");
195 }
196 }
197 }
198 }
199

200 SC_CTOR(Simulator)
201 {
202

203 /* Instantiating the domain objects */
204 app = new Top_App("app");
205 app1 = new Top_App1("app1");
206 shared = new Top_Shared("shared");
207

208 /* Connecting the top level domains via the bridges */
209 app->bridge_from_app->initiator_socket.bind(shared->

bridge_from_app->target_socket);
210 shared->bridge_to_app->initiator_socket.bind(app->

bridge_to_app->target_socket);
211 app1->bridge_from_app1->initiator_socket.bind(shared->

bridge_from_app1->target_socket);
212 shared->bridge_to_app1->initiator_socket.bind(app1->

bridge_to_app1->target_socket);
213

214 /* Selecting which CPU the program should run on based on the
command line arguments*/

215 string filename;
216 for (int i = 0; i < total_cpu; i++)
217 {
218 if (cpu[i] == "app")
219 {
220 filename = "gap/tests/" + test + "/" + cpu[i] + "/" + test
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+ ".ihex";
221 cout << filename << endl;
222 app->ram0->readHexFile(filename);
223 pointer_to_cpu = app->cpu;
224 start_PC = startPC_app;
225 printk_addr = printk_app;
226 exit_addr = exit_app;
227 pointer_to_cpu->register_bank->setValue(Registers::sp, 0

x00000000);
228 pointer_to_cpu->register_bank->setPC(start_PC);
229 SC_THREAD(cpu_watch);
230 }
231

232 else if (cpu[i] == "app1")
233 {
234 filename = "gap/tests/" + test + "/" + cpu[i] + "/" + test

+ ".ihex";
235 cout << filename << endl;
236 app1->ram0->readHexFile(filename);
237 pointer_to_cpu = app1->cpu;
238 start_PC = startPC_app1;
239 printk_addr = printk_app1;
240 exit_addr = exit_app1;
241 pointer_to_cpu->register_bank->setValue(Registers::sp, 0

x00000000);
242 pointer_to_cpu->register_bank->setPC(start_PC);
243 SC_THREAD(cpu_watch);
244 }
245

246 else if (cpu[i] == "shared")
247 {
248 filename = "gap/tests/" + test + "/" + cpu[i] + "/" + test

+ ".ihex";
249 cout << filename << endl;
250 shared->ram0->readHexFile(filename);
251 pointer_to_cpu = shared->cpu;
252 start_PC = startPC_shared;
253 printk_addr = printk_shared;
254 exit_addr = exit_shared;
255 pointer_to_cpu->register_bank->setValue(Registers::sp, 0

x00000000);
256 pointer_to_cpu->register_bank->setPC(start_PC);
257 SC_THREAD(cpu_watch);
258 }
259

260 else
261 std::cout << "Entered an incorrect cpu name" << endl;
262 }
263 }
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264

265 ˜Simulator()
266 {
267 logfile.close();
268 cout << "Simulator destructor" << endl;
269 //delete shared; // Including these leads to additional CPU

dumps being printed on terminal.
270 //delete app;
271 //delete app1;
272 delete pointer_to_cpu;
273 }
274 };
275

276 Simulator *top;
277

278 void intHandler(int dummy)
279 {
280 delete top;
281 sc_stop();
282 exit(-1);
283 }
284

285 /* Parsing and processing the command line arguments */
286 void process_arguments(int argc, char *argv[])
287 {
288

289 int c;
290 int debug_level;
291 Logger *log;
292

293 log = Logger::getInstance("Log_top.txt");
294 log->setLogLevel(Logger::ERROR);
295 while ((c = getopt(argc, argv, "D:T:C:b:?")) != -1)
296 {
297 switch (c)
298 {
299 case ’D’:
300 { /* Select the level of logging */
301 debug_level = atoi(optarg);
302 switch (debug_level)
303 {
304 case 4:
305 log->setLogLevel(Logger::TRACE);
306 break;
307 case 3:
308 log->setLogLevel(Logger::INFO);
309 break;
310 case 2:
311 log->setLogLevel(Logger::WARNING);
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312 break;
313 case 1:
314 log->setLogLevel(Logger::DEBUG);
315 break;
316 case 0:
317 log->setLogLevel(Logger::ERROR);
318 break;
319 default:
320 log->setLogLevel(Logger::INFO);
321 }
322 break;
323 }
324 case ’b’:
325 {
326 /* Benchmark the LVGL drawing operations */
327 benchmark = atoi(optarg);
328 cout << "LVGL benchmarking mode activated" << endl;
329 break;
330 }
331 case ’T’:
332 {
333 /* Select which test to run */
334 test = std::string(optarg);
335 cout << test << endl;
336 break;
337 }
338 case ’C’:
339 {
340 /* Select which CPU to run the test on */
341 cpus = std::string(optarg);
342 cout << cpus << endl;
343 stringstream ss(cpus);
344 string cpus_token;
345 while (getline(ss, cpus_token, ’,’))
346 { //the comma seperated list of cpus is broken and

individual cpu names are stored in cpu array
347 cpu[total_cpu] = cpus_token;
348 total_cpu++;
349 }
350 break;
351 }
352 case ’?’:
353 std::cout << "Call ./gaptlm -D<debuglevel> (0..4) -T <test>

(printk/graphics/..) -C<CPUs seperated by commas> (app, app1,
shared..)" << std::endl;

354 break;
355 }
356 }
357 }
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358

359 int sc_main(int argc, char *argv[])
360 {
361

362 /* Capture Ctrl+C and finish the simulation */
363 signal(SIGINT, intHandler);
364

365 /* SystemC time resolution set to 1 ns*/
366 sc_set_time_resolution(1, SC_NS);
367

368 /* Parse and process program arguments.*/
369 process_arguments(argc, argv);
370

371 top = new Simulator("top");
372 cout << "Constructor successful!" << endl;
373 sc_start();
374 return 0;
375 }
376

377 #endif //MTI_SYSTEMC

Listing A.14: Overall top source file where all the domains are connected
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