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Abstract

This thesis aims to compress firmware to reduce the amount of necessary flash memory.
In order to do this an architecture for encoding and decoding of the LZSS compression
algorithm is presented. The encoding module is based on the use of an application-
specific CAM design. The CAM allows for fast searching and matching of data by
parallel access. By utilizing masking registers to remove redundant comparisons, the
design can lower its power dissipation. The decoding process has been pipelined in
order to minimize the time it takes for decompression.

The design has been evaluated based on area and compression time for different
buffer sizes. Power consumption has also been qualitatively discussed. The results are
based on benchmarks from the Calgary Corpus, which is a widely test set for data
compression. The design has been tested and verified using Systemverilogs object-
oriented testing and assertion-based verification.



Page II

Sammendrag

Denne oppgaven utforsker muligheten for å komprimere fastvare for å redusere den
nødvendige størrelsen av ikke-volatilt minne. For å gjøre dette presenteres arkitektur for
koding og dekoding av LZSS-komprimeringsalgoritmen. Modulen for koding av data er
basert p̊a bruken av en applikasjonsspesifikk variant av CAM. CAM er en minne-enhet
som tillater rask søk og sammenligning av data ved gjennom parallell aksessering. Ved
å bruke maskeringsregistere kan unødvendige sammenligninger av data reduseres, som
igjen reduseres effektbruken til designet. Dekodingsprosessen bruker en ekstra buffer
for å redusere tiden det tar å dekomprimere data. Designet har blitt evaluert basert p̊a
størrelse av designet og komprimeringstiden for ulike buffer-størrelser. Effektbruk har
ogs̊a blitt kvalitativt diskutert. Resultatene er basert p̊a test-data fra Calgary Corpus.
Designet har blitt testet og verifisert ved SystemVerilogs test- og verifikasjonsmetoder.
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1 Introduction

The newest emergence of this computing era is the desire to connect all sorts of devices
to the internet, known as the Internet-of-Things (IoT). With an ever-growing market,
analysts from Ericsson estimate that the number of IoT devices with cellular connection
has grown to 400 million in 2016, with projections up to 1.5 billion by 2022 [3].

IoT-systems range among home automation, transportation and manufacturing.
The development of IoT-systems poses several challenges, like the increasing hetero-
geneity of devices, privacy and scalability[4].

Another challenge IoT-devices encounter is security and the ever-facing threat of
being attacked by malicious software. These devices are especially vulnerable due to
its nature of wireless communication and minuscule design. The IoT end nodes can
e.g. be providing critical information about the operational characteristics and posi-
tion of a car. Medical devices collect sensitive information about patients health care.
Personal information about the users daily routines can be extracted from smart home
installations. All examples where it is vital that there is no leakage of information to
any unwanted third party.

Frequent firmware updates are a necessity to handle discovered exploits and vulnera-
bilities. The firmware is usually kept in Electrically Ereasable Programmable Read-only
Memory (EEPROM) or flash memory. This requires twice the amount of storage, since
you would need to store the new firmware before deleting the old one. IoT end nodes
intend to be cost effective and obtain a low power consumption, and we want to avoid
the need for unnecessary memory storage when doing firmware updates. A solution
for this is to compress the firmware sent to the device and decompress on-chip. This
decompression is costly, both in terms of processing power and energy consumption.
To offload the processor of this, an accelerator can be used to compress and decompress
the data. An accelerator is generally more energy-efficient in performing its specific
task than a general-purpose processor, as it can perform the task quicker and sooner
enter power-saving modes.

Additionally, the ability to compress and decompress data with a low energy cost
could open new possibilities to save power by transmitting less data and save storage
cost by compressing on-chip user data. Many of the modern compression programs,
such as gzip and 7zip, uses the DEFLATE compression algorithm. This is again built
up by the LZSS algorithm and Huffman coding. The LZSS algorithm is the most time-
consuming part due to the need for searching operations through large buffers. The
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goal of this thesis is to analyze a hardware implementation of the LZSS compression
algorithm for use in integrated circuits.

Necessary background information needed for the LZSS algorithm, the CAM ar-
chitecture which the implementation is based on will be presented in chapter 2. This
chapter also introduces the metrics which will be qualitatively discussed later in the
thesis.
Chapter 3 contains the methods used for testing and verifying the implementation.
The discussion of different implementation techniques with different trade-offs will be
given in chapter 4.
Chapter 5 shows the results based on the metrics presented in chapter 2.
Chapter 6 discusses the implementation based on the results from chapter 5 and further
improvements on the testing and implementation of the design. Some thoughts of what
can be done in the future will also be given.
Finally, chapter 7 will give some conclusive remarks.
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2 Background

2.1 Data Compression Theory

Shannon’s source coding theorem, introduced in the article ”A Mathematical Theory
of Communication” [5], states that the limit of compressing data using optimal coding
is given by equation 1. This is known as Shannon’s entropy. Shannon’s entropy is
a measure of how much information a string of symbols contains. It can give us an
estimate of the minimum number of bits per symbol required to represent a given
stream of symbols.

H(X) = −
n∑

i=1
P (xi) logb P (xi) (1)

Where b is the base of the logarithm, X is a discrete random variable and P(X) is the
probability mass function.

This is given an infinite data stream of independent and identically-distributed (i.i.d)
random variables. You need to know the probability distribution of the data in order to
find the entropy, and in practical data compression this is something you rarely know.
We usually only observe a subset of the input stream at a time. The symbols are often
dependent of each other as well, especially in text compression.

Data compression consists of reducing the number of bits required to represent some
information. A compression algorithm which loses information about the original data is
called lossy. Through different transformations these algorithms can exploit redundancy
in the data due to lack of human perception. These algorithms have generally higher
compression rate, but can not be used in for firmware compression as it is essential
to be able to restore the original representation when decompressing again. Lossless
compression identifies and eliminates statistical redundancy in the data. No information
about the original data is lost and can be decoded back to its original form.

2.2 Lempel-Ziv compression

Abraham Lempel and Jacob Ziv published in 1977 a paper a new compression algorithm.
[6] As an abbreviation of their names and publishing year, the algorithm is called LZ77.
LZ77 is a dynamic dictionary encoding, meaning that the input stream is encoded by a
position or data in a dictionary which updates based on the new input. For the LZ77
this dictionary consists of a search buffer and a look-ahead buffer. The search buffer
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contains previously encoded symbols. The encoding scheme can be seen in figure 1.
The look-ahead buffer contains the next sequence of symbols to be encoded. To start
encoding you search backwards through the search buffer for a match with the first
symbol in the look-ahead buffer. If there is a match, check the second symbols following
the symbols in each buffer and so on. The sequence of symbols in the look-ahead buffer
that matched will now be encoded as the length and offset representing it, as well as
the next character. This will from now on be referred to as a token and is denoted as
〈length, offset, character〉, or simply 〈3, 4, C(∗)〉 where * is substituted with the next
character. Length is the number of matching symbols, offset is the distance between
the two first two matching symbols and character is the following symbol in the look-
ahead buffer after the matching sequence. If there are no matches for the symbol it
will be outputted as an ”empty” token 〈0, 0, C(∗)〉. An uncoded symbol is known as a
literal. Another thing to mention is that matches are not limited to the length of the
search buffer in the original algorithm. They can extend into the look-ahead buffer.
As for decoding, this does not introduce any problem as the encoded stream would
look either way look equal, and the decoder simply extends the copying of symbols as
far as the match length suggests. The algorithm does not require any prior knowledge
of statistical properties of the symbols to be encoded. This is known as a one-pass
algorithm and means that it, opposite of some statistical based algorithms, does not
need to go through the input sequence before starting the encoding.

Now we have a stream of tokens and literals. The decoding scheme works as shown
in figure 2. To decode the token 〈3, 4, C(b)〉 we first look a the flag bit each word has
been denoted by to tell whether it is to be interpreted as a literal or not. If it is a literal
we simply output this symbol and move on to the next. Else we move a copy pointer
into the previous decoded symbols, to the place indicated by the offset, and copy the
number of symbols that the match length number tells us to the output. We need a
buffer at the output with the same size as the look-ahead buffer in the encoding phase
to be able to copy these symbols.

Storer and Szymanski [7] later improved on this algorithm. Instead of encoding a
literal with an ”empty” token 〈0, 0, C(∗)〉, they simply set a flag indicating that this
symbol was to be decoded as a literal. The empty token would consist of the offset and
length being set to 0 and the character set to the current literal. This requires more
bits to represent the symbol than just the literal and a flag.

Another improvement introduced by LZSS is to discard matches which would have
produced more bits as an encoded token than just send the literals to the output. The
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Figure 1: LZ77 encoding

optimal minimum length of the string which is being encoded will vary by the size of
the sliding window, the symbol-frequency and the size of the alphabet. However, the
usual minimum length is often chosen to be 4 when encoding ASCII-code, as coding
strings with a size of 3 bytes or less will give us a compressed version which is the same
size or larger than the literal. This will give us 1 byte for length and 2 bytes for offset.
For ASCII text 1 symbol can be represented by 1 byte. The look-ahead buffer can then
be 28 = 256 bytes long, limited by the 1 byte representing the length. Now again, for
the LZSS improvement the next character would be replaced by a flag bit indicating
that the data should be interpreted as an offset/length-pair.

Higher compression rate does not give longer decompression time for LZSS as some
other compression algorithms. In fact, higher compression levels gives a slightly faster
decompression rate since there are fewer bits for the decompressor to process.
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Figure 2: Decoding token 〈3, 4, C(b)〉. Edited from [1].

2.3 Hardware Acceleration

Hardware acceleration is the performing a task on dedicated hardware rather than
software running on a general-purpose Central Processing Unit (CPU). The intention
is to decrease latency and increasing throughput.

A hardware implementation of an algorithm can be implemented in two different
ways, either as custom instructions or as hardware peripherals. It’s then either as
an extension of the CPU or outside the CPU, as a hardware peripheral. Figure 3
shows the implementation of custom instructions and figure 4 shows the implementation
of a hardware peripheral.To be able to completely relieve the load off the CPU, the
compression accelerator can be given its own direct memory-mapping to the memory.
Operations that could be performed in a few cycles should be implemented as a custom
instruction as it creates less overhead. For a peripheral you typically have to execute
at least a few instructions to write to the control registers, status registers, and data
registers and one instruction to read the result. This takes of course longer time, but
the CPU is then free to perform other tasks while the peripheral is working.

To be able to evaluate the effectiveness of an accelerator we need to look at its
execution time compared to the software implementation. The total execution time of
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Figure 3: Accelerator implemented as custom logic

an accelerator can be written as

taccel = tin + tx + tout (2)

where tx is the execution time of the accelerator-core and tin and tout are the delays of
fetching data from memory and storing back again. For an accelerator to be effective
taccel must be shorter than the time it takes for an equivalent software implementation.
In addition, there are other constraints that need to be considered such as area, power
usage and pin layout.

Figure 4: Accelerator implemented as hardware peripheral

There are accelerators within cryptography, graphics and artificial intelligence. A
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common approach to improve the throughput of an algorithm through hardware acceler-
ation is to look for possibilities of exploiting parallelism. For lossless data compression,
and especially the LZSS-algorithm, this is tricky as the encoding of each symbol is de-
pendent on the previously encountered symbols. This creates data-dependencies which
would result in incorrect encoding and a compressed file which is unreadable.

An idea could be to divide the file to be compressed into N blocks and then compress
these blocks independent of each other. This would increase throughout by N . A
drawback is that the area increases by each new block, since for each block it is necessary
with control registers, counters, etc. to be able to detect matches. Another drawback
is that the compression ratio decreases, since larger matches will not be found with
smaller look-ahead and search buffers.

Even though each symbol cannot be encoded completely independently there are
parts of the encoding, such as the searching and matching of symbols, which can be run
in parallel. An efficient way to search through many symbols in parallel is to implement
a CAM-based architecture.

2.4 Content-addressable Memory (CAM)

CAM is a memory unit suitable for high-speed searching applications. Different from
the traditional Random-access Memory (RAM), CAM takes a data value as an input
and compares it to the content its search lines. If there is a match with any of the
search lines of the CAM, then it outputs the address of this search line as well as a
valid bit indicating that it found a match. The most power consuming part of the
CAM is the comparison mechanism of match lines. Figure 5 shows the architecture of
a general-purpose CAM.

This memory unit can search through the entire memory and compare all search
lines in a single clock cycle. This is independent of the buffer size and length of the
search line. The drawback is the power dissipation.

Static Random-access Memory (SRAM)-based storage is most commonly used for
CAMs cells. Each of the cells contain either a network of NAND or NOR logic. The
design difference here impacts the speed and power dissipation of the design. The
NAND-cell is slower, but uses significantly less power. In the following figures 6a and
6b D denotes the stored bit, SL the search line, and ML the match line.

The NOR-cell uses four transistors for comparison. In figure 6b these are marked as
M1-M4. The M1/M3-pair and M2/M4-pair work as pull-down path from the match-line.
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Figure 5: A standard CAM architecture for NAND cells.[2]

(a) Typical NAND-based CAM cell.[8] (b) Typical NOR-based CAM cell.[8]

Figure 6: Cell architecture

If there is either no match with the stored bit or the search line is low, then the match
line will be pulled to ground. Multiple NOR cells are connected together in parallel,
and only if all of them matches will there be an asserted match line.

The NAND-cell only uses three transistors for the comparison, marked as M1, MD

and MD̄ in figure 6a. MD and MD̄ work as pass transistors to the node B. For either
SL = 0, D = 0 (MD̄ is on) or SL = 1, D = 1 (MD is on) the M1 transistor is turned on.
Any other combination results in M1 turned off. All the NAND-cells are then connected
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serially. In both of these figures the transistors used for read and write operations are
omitted.

2.5 Metrics

2.5.1 Power

Dynamic power consumption is given by

PD = α · f · 1/2C · V 2
DD (3)

where α is the switching factor, f is the frequency, C is the capacative load and VDD

is the supply voltage.
The switching factor α and how to lower this to reduce dynamic power consumption

will have the largest focus during the discussion of the design. Other techniques such
as block-level clock gating, must be evaluated in compliance with the larger system,
and is out the scope of this thesis.

2.5.2 Compression Ratio

The compression ratio is given as shown in equation 4.

Compression ratio = Uncompressed size
Compressed size

(4)

Higher compression ratios are desired, as this give lower output file sizes.

2.5.3 Area

The area of the design implemented will be measured in amounts of Lookup Tables
(LUTs) and Flip-flops (FFs) and number of muxes used.
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3 Methodology

3.1 Design Methodology

The design will be written in the Hardware Descriptive Language (HDL) SystemVerilog.
The design will be simulated in Vivado 2018.2 using the Vivado Simulator. The Vivado
Simulator does not fully support SystemVerilog Assertion (SVA). Questa Simulator
from Mentor Graphics will be used instead for verification. This is only for the formal
verification of the design and will not affect the synthesized design.

3.2 Testing Methodology

3.3 Test and Verification Methodology

3.4 Benchmarking

3.4.1 Calgary Corpus

Calgary corpus was created in 1987 by Ian Witten, Tim Bell and John Cleary from the
University of Calgary.[9] The corpus consists of 14 files totaling 3,141,622 bytes. Calgary
Corpus is normally not widely used today due to its small size. However, this applies to
testing developing compression programs for personal computers. For microcontrollers,
where the firmware size is generally below 1 MB, Calgary Corpus works great. There
are other corpora such as Canterbury [10] and Silesia [11]. As shown in table 1 Calgary
Corpus consists of several different test models, including English text, programming
source codes and numbers. While this thesis mainly focuses on compression of firmware
source code, the accelerator is general-purpose and can be used for e.g compression of
sensor data or miscellaneous data sent to the main memory of the microcontroller.

To be able to compare to other implementations of compression algorithms it is
essential that the testing data is the same. If this was not the case then the test input
could be manipulated to fit the algorithm under test, and we would only achieve a
non-comparable compression rate.

The results from the benchmark are usually added to a weighted average of all the
models.

The generator consists of clock generation and drivers for reset signals and valid
data valid signals.
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Table 1: Table over Calgary Corpus benchmarks

Model Size(bits) Description
BIB 111,261 ASCII text in UNIX ”refer” format - 725 bibliographic

references.
BOOK1 768,771 unformatted ASCII text - Thomas Hardy: Far from the

Madding Crowd
BOOK2 610,856 ASCII text in UNIX ”troff” format - Witten: Principles

of Computer Speech.
GEO 102,400 32 bit numbers in IBM floating point format - seismic

data.
NEWS 377,109 ASCII text - USENET batch file on a variety of topics.
OBJ1 21,504 VAX executable program - compilation of PROGP.
OBJ2 246,814 Macintosh executable program - ”Knowledge Support

System”.
PAPER1 53,161 UNIX ”troff” format - Witten, Neal, Cleary: Arithmetic

Coding for Data Compression.
PAPER2 82,199 UNIX ”troff” format - Witten: Computer (in)security.
PIC 513,216 1728 x 2376 bitmap image (MSB first): text in French

and line diagrams.
PROGC 39,611 Source code in C - UNIX compress v4.0.
PROGL 71,646 Source code in Lisp - system software.
PROGP 49,379 Source code in Pascal - program to evaluate PPM com-

pression.
TRANS 93,695 ASCII and control characters - transcript of a terminal

session.

The stimulus is divided into two parts. First is the Calgary Corpus presented in
section 3.4.1 which is needed to be able to benchmark the design under test against
other compression methods. This is a large testbench covering multiple input data
scenarios, but it’s also static and we have no explicit control over the input. That is
why we also need directed stimulus for testing corner cases. This tests scenarios we
know often contain bugs, such as asserting signals when they are not suppose to, under-
and overflow of array contents, and etc. These tests are also dangerous as they often
just confirm that your thought-process is right, and not trying to actually make the
system fail.

The best way to find bugs in a system is to use random testing. However, it
is impractical to write every possible data value for any scenario. For increasingly
large system the simulation time grows to the point where it is impossible to test
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everything. So we need constraints to limit the test input. This is where we can utilize
SystemVerilogs object-oriented features to make test classes for directed random testing.

One thing to be aware of is that SystemVerilogs randomize()-method is only pseudo-
random and that the seed for each ”process” based on each simulation stays the same.
In this context is the program-block, every thread, object, function or task call each has
a separate process. So when we use the randomize-method on the stimulus objects the
initial results from the simulation are random, but then every new simulation iteration
from the same testbench will produce the same results. This method is also imple-
mentation dependent, meaning that the stimulus generated can vary between different
simulators.[12]. This is to ensure random stability. Random stability make sure that
the errors are easily reproduced, which lowers debugging time.

The standard setup for testing and verify a design in SystemVerilog is shown in
figure 7.

Figure 7: Block diagram of the test and verification method.

Generator

This module generates the stimulus.
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Driver

The Driver applies the generated stimulus to the Design Under Test (DUT).

DUT

This is the current module that is being tested. For our case it is either the encoding
or decoding module. The submodules have not been tested separately.

Scoreboard

The scoreboard receives the expected and actual values and see if they match.

Monitor

The monitor contains all the immediate assertions used to verify the DUT.

The code for testing and verifying the design is given in the appendix.



4 IMPLEMENTATION Page 20

4 Implementation

Figure 8: Top module of the LZSS encoding.

The design is based of a reference code written in C by Haruhiko Okumura[13].
Storer and Szymanski never implemented their algorithm, so this is the closest to a
reference code that is available. LZSS encoder top module is shown in figure 8.

4.1 Search buffer

The search buffer is implemented as a byte-addressable packed 2D array. This 2D array
has a row-major matrix order, this applies obviously to both the shifting direction and
the matching direction. Every array in the design is implemented as little-endian. It
could be an idea to infer the general-purpose CAM template XAPP1151[14] from Xilinx
for this project. There are several restrictions for our design to rather create a special-
purpose CAM. The CAM used in this design has some modifications to the standard
design presented in chapter 2.4. First off the replacement policy is First-In-First-Out
(FIFO). Using the template CAM we could keep track of the least recently written
address and then overwrite the data on this address with the next symbol data. This
write operation takes 16 clock cycles. Using a shift register instead enables us to write
the new data in 1 clock cycle. The operating speed of the shift register is constant
regardless of the buffer size, if we discard the clock growth load. The drawback is
that a shift register uses a lot more power since it can possibly toggle all FFs in one
shift-operation.
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There will never be a need to read from the CAM, except for matching, but the
sequential order of the symbols in the CAM is essential for the LZSS encoding to work.
Since we are not going to write to specific parts of the CAM there is no need for a
decoder to decide where to write.

The whole CAM must also be shiftable in order for the FIFO replacement policy to
work. One thing to be aware of then is the boundary conditions of each row. Since the
whole CAM is to be shiftable we must shift from the last column in each row into the
first column in the next row. The same applies to the matching and in particular the
implementation of the match_matrix.

Before every match, barring the first one, we check whether the symbol to the left
got a match in the previous matching cycle. If it did not, we simply do not compare
this word as it would not result in a matching string anyway. By doing this for every
word we can create a mask for the entire CAM. This reduces number of word necessary
to compare drastically and we can save a lot of power. For the situation where there are
more than one matches with the longest length we need an priority encoder to choose
which offset to output. This is discussed closer in chapter 4.2.1.

4.2 Encoding

One way to encode the input stream is to find the first matching string and then
output this and shift the number times equal to the offset. This would however only
be marginally faster performing the matching sequentially. Its still necessary to count
the number of consecutive matches to be able to determine the length of the matching
string. This would take a number of clock cycles equal to the match length to count.
What becomes obvious then is that a long string quickly requires a large tree-structure of
AND-ports to check if the string matches. A better alternative is only look for matches
for one look-ahead buffer symbol at a time. The search for a match for the symbol
can be done in parallel for every symbol in the search buffer. To reduce the amount of
comparisons required, which reduces switching activity, we can use a masking registers.
This is implemented as following. Every time a match between the look-ahead buffer
and the search buffer is found, the representing bit in the match\_matrix is set. When
we in the following clock cycle try to match the next symbol in the look-ahead buffer,
only the symbols following a previous match, i.e. search_buffer[i][j-1], will be
checked. If the match matrix shows a match on the Least Significant Byte (LSB) of
the search buffer rows, then we should check for a match on the Most Significant Byte
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(MSB) of the next row. The first symbol in the search buffer must be checked by itself,
since there is no previous symbol that could have been matched. This is only necessary
to do when the match length is 0, as this is the only time when this symbol can match.
Another special case is if there is a match at the end of the search buffer. We can not
abort the comparing and say that this is the longest match, as we might find longer
matches simultaneously at other positions in the search buffer. The matching procedure
is shown in figure 9.

Figure 9: Matching scheme for the LZSS encoding.

In order for the for-loops to be synthesized into multiple parallel assignments of the
match matrix they need to be able to be statically unrolled.

As mentioned in chapter 2 the lower limit of a matching sequence resulting in a
token is 4 symbols. The upper limit is the fact that the match length is stored in 8 bit
array, which would result in a max length for the look-ahead buffer of 256 symbols.

4.2.1 Priority encoder and offset calculation

For the case where there are multiple matches for the longest match length we have
to decide which to choose. As long as the match length and offset can be represented
by 1 and 2 bytes, respectively, it does not matter which match to choose. However,
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for simplicity we choose the match with the lowest match offset. For this we need a
priority encoder which gives us the row and column in the first set bit in the match
matrix. It is important that the priority encoder is parameterizable in order to be able
to change the sizes of the search buffer at configuration time. This is implemented by
traversing through the match matrix until we find the first set bit. This is implemented
as a combinational circuit, and shown as code in the appendix. Since SystemVerilog
does not support break in nested loops we need to set a flag in the inner loop which
activates a break in the outer loop. A problem is that the method for checking that
we have found the longest match is to see if all the bits in the match matrix are 0.
Then the information of where the matches end is lost. There are two possibilities for
solving this and compute the offset of the match. We can either use an extra copy of
the match matrix on the previous clock cycle and then compute the offset from this
matrix. The other option is to compute the offset for every match when match length is
above 3. When the match_matrix then is 0, we use the previous computed offset. The
advantage of this method is that we reduce the number of FFs used compared to the
other method, but it requires many unnecessarily computations and the critical path
becomes longer.

The LZSS decoder reads the offset as distance into the decode buffer so we need to
translate the (row,col)-position into a distance into the search buffer. This is simply
done by multiplying the row number with the search buffer width and then adding the
number of columns in the match is. This matching symbol is the last in the sequence,
and the offset is given by the first matching symbol. So we must subtract the offset of the
last matching symbol by the match length to get the correct offset. For timing purposes
this is done by subtracting the column position given by the priority encoder with the
match length. This will give the correct offset, but we need to take in consideration the
case where a match stretches over 2 rows. It is important to remember that the search
buffer rows are little-endian and that the offset will be given as if it is big-endian. This
means that an offset of 1 is the upper left-most symbol in the search buffer.

This gives us the shortest offset, but it will not give any improvement on speed
during decoding. As long as the offset is under 256, and we can represent it with one
byte there will not be any difference in compression ratio either.
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4.2.2 Finite-state-machine

The state machine used for control signals of the encoding module is a Moore type.
It is using one-hot state encoding for lower switching activity. This gives lower power
consumption, and smaller likelihood for glitches. It does however use more flip flops
than a binary encoding. A diagram of the different states and their transitions is shown
in figure 10.

Figure 10: State machine for the encoding module.

4.3 Decoding

The LZSS decoding top module is shown in figure 11. In the decode module we need
a decode buffer for storing the previous encountered symbols. When there is a token
to decode, we copy ”length” number of symbols in the decode buffer starting from the
position indicated by the offset. The sequence that is copied will be sent to the output
one symbol at a time. The sequence will also be copied to the MSB of the decode
buffer. The decode buffer therefore needs to be a Serial-In-Parallel-Out (SIPO) buffer
to be able to output from the buffer without shifting through it. By having another
buffer for before the output to store the copied symbol sequence we can pipeline the
design. We can then shift in the sequence to the decode buffer and output one symbol
per clock cycle. The alternative would be to output directly from the decode buffer and
then shift the sequence back to the beginning of the decode buffer again. This saves
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Figure 11: Top module of the LZSS decoding.

area, but uses twice as long time to decode and output a token. The literals will be
sent directly to the output and shifted in the decode buffer. This is shown in figure 12.

In order to implement this we need to assign the content of the decode buffer to the
output buffer. This buffer will act as Parallel-In-Serial-Out (PISO) shift register.

4.4 Handshaking

Between the encoding module and decoding module it has been implemented a simple
single clock-domain handshaking protocol consisting of a data_valid and data_ready
signal. Only when both signals are asserted will there be a transfer of data. data_ready
can be set independently, but data_valid is only set when the data_ready is asserted
and data is ready. If data_valid is asserted for more than one clock cycle it is to be
considered a new packet. This is shown in figure 13.

The handshaking protocol is implemented between the encoding and decoding mod-
ules and between the DUT and the testbench. This is to ensure we encode every symbol
in the input stream.

4.5 Testing and benchmarking

The benchmarking is done through the files mention in chapter 3.4.1. The encoded
symbols are written to new files. These can then be read by the decoding module for
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Figure 12: LZSS decoding.

benchmarking and functional verification. The compression ratio can not be computed
from the sizes of these files, as they contain meta data about line breaks and etc. The
encoded symbols are also written to the file as binary where each of the 1s and 0s and
coded as 8-bit number. Instead the compression ratio is computed by ratio of symbols
read from the benchmark files and symbols outputted from the encoding module plus
the literal bit per symbol.
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Figure 13: Ready/Valid handshaking protocol.

5 Results

For the remaining results the look-ahead buffer length will be fixed to the search buffer
width. Figure 14 shows the different compression ratios for the different buffer sizes.
The look-ahead buffer size is here fixed at the size of the search buffer width.
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Figure 14: Encoding: Compression ratio vs. search buffer length

Figure 15 shows the different compression speeds for the different buffer sizes.
Table 2 includes the area of each synthesized design, as well as the information

presented in the two graphs above.
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Figure 15: Encoding: Compression time vs. search buffer length

Table 2: Table over compression ratio and time for different buffer sizes

Search
buffer
width

Search
buffer
depth

Look-
ahead
buffer
length

Compression
time [ms]

Compression
ratio

Area

7 8 8 324 1.40 472 LUTs, 682 FFs and 8
muxes

10 12 12 324 1.63 982 LUTs, 1290 FFs and 14
muxes

14 18 18 288 1.86 1799 LUTs, 2526 FFs and 24
muxes

26 32 32 265 2.50 5422 LUTs, 7858 FFs and 32
muxes

30 40 40 259 2.78 8910 LUTs, 11234 FFs and
44 muxes

6 Discussion

As expected, figure 14 shows that the compression ratio increases with a larger search
buffer. The maximum match length for a token is limited by the length of the look-
ahead buffer. The way the design is implemented there can not be a token with length
longer than the search buffer width. That is why the look-ahead buffer length and the
search buffer width have been kept equal during the benchmarking. An increase of the
search buffer depth makes it more likely to find a matching token. An increase of the
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search buffer width gives the possibility of finding tokens with longer lengths.
Figure 15 shows that the compression speed slightly decreases as larger buffers are

used. This is unexpected since the initial thought would be that the encoder would use
longer time searching for longer matches. However, for any match or literal the encoder
uses two clock cycles to enter and exit the COMPARE-state. One to assign matching
symbol positions in the match_matrix and then one to check if the match_matrix is
all 0’s. Then it enters the SHIFT-state to send out the token or literal to the output.
This process is the same no matter how long of a match has been found. The number
of times we have to switch state per symbol outputted decreases the longer the buffers
are. So long matches will have fewer of these transition cycles per encoded symbol, and
will therefore encode the symbols faster. Whenever there is a match length between
0 and 3 the design will enter the SHIFT state and shift the buffers one slot to the
left. Then the next symbol will be compared. An improvement might be to check if
the first symbol matched with over half of the symbols in the search buffer. If it did
then it would not be worth checking the next symbol in the look-ahead buffer as we
have already checked it with most of the symbols in the search buffer. We would then
output the literal while in the SHIFT state. This way there would be no need to enter
the COMPARE state again for the next symbol and we would save 3 or 6 clock cycles,
depending on if it is 2 or 3 symbols.

Another slight improvement is to stop matching if there is only a match in one of
the last three symbols of the search buffer. This only applies if this is the first matching
try, i.e. trying to match the first symbol in the look-ahead buffer. At this point there
can not be any long enough matches to be found. The returns of any attempt to avoid
this are diminishing as the search buffer size increases.

Both look-ahead buffer and search buffer is initialized with unknown values ”X”.
If they had been initialized to 0’s we would have created a false symbol history which
would not concur with the input stream. compare_valid,which enables the COMPARE
state, is only set when all values of the look-ahead buffer are known. For simulation
purposes this is fine, but for synthesis this must be fixed. This can be done by having a
initialization period with a counter that keeps track of valid input in the search buffer.
This is to avoid trying to match the content of the look-ahead buffer with unknown
values. When the counter reaches the size of the search buffer the initialization period
is over. Another solution would be to have an invalid symbol which we know would not
match. This would however limit the alphabet size.
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6.1 Further work

A naturally step further to expand on this project would be to implement further
encoding with e.g. Huffman coding. This is how the DEFLATE program compresses.
Implementing the corresponding file format is important to ease the use of the design.
Another interesting idea would be to compare this design to a design using the general-
purpose CAM which outputs addresses. It would be necessary to keep track of the
how long each symbol has been in the search buffer, and implement a Least Recently
Used (LRU) replacement policy. If the same method of only checking a symbol at a
time is to be used there have to be a way to ensure the sequential order is kept. Say
you have a matching symbol and want to check the next one for a longer sequence.
The next symbol you would need to check then is the one that has been in the search
buffer one stage longer. Opposite of the sequential locality of this design there would
be a time-sequential order. Since there would not be a need to use a shift register for
the buffers the switching activity drastically drop which decreases the dynamic power
consumption.

Another parameter which will the interesting to inspect is to increase the symbol
length of our design. Multiple symbols will then be matched at the same time, which
will increase the throughput. The backside of this method is the decrease in resolution
of finding matches for each increase in symbol length. A symbol length of 5 bytes could
potentially miss the longest match by 4 symbols. The design is parameterized to utilize
this, but it has not been tested or verified its functionality.

An idea would be to combine the decode and encoding module together. This
way we could reuse the the look-ahead buffer to be utilized as the decode buffer as
well. This would increase the complexity of the design, and could there could be some
floorplanning issues related to this design.

This design could be split into multiple parallel instantiations of the encoding/de-
coding modules as discussed in chapter 2.3. How this would compare to just one
instantiation with the same area constraint could also be interesting test.
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7 Conclusion

This thesis presents a hardware implementation of the encoding and decoding of the
LZSS compression algorithm. The encoding module is based on an application-specific
CAM. By implementing a the match_matrix to keep track of previous symbols that
matched several redundant comparisons can be removed. This lowers the power dissi-
pation due to the fall of switching activity in the CAM. The results show a decrease
in compression time for higher buffer sizes. This is surprising, but can be explained by
excessive state transition when outputting literals. The compression ratio increases as
buffer sizes increases. The is due to the possibility of finding longer matches, which in
turn increases compression ratio. The decoding module is implemented using an extra
buffer before the output to pipeline the decoding. This is to reduce the time it takes
to decompress. Both the encoding and decoding module have been tested and verified
to work as intended.
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A Appendix

The code for the design, testbench and verification can be found at https://github.
com/halvho/LZSS-hardware-implementation.

https://github.com/halvho/LZSS-hardware-implementation
https://github.com/halvho/LZSS-hardware-implementation
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