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Abstract

With the rise in popularity of media like podcasts and live streaming of concerts, it is of
interest to study ways to improve the listening experience and automate audio post-processing.
One particularly interesting enhancement is that of fully automated audio mixing. Such an
enhancement would eliminate the need of an audio engineer and possibly lead to a solution
that automatically generates audio in stereo or even more complex 3D-sound formats in real-
time. However, to make this possible, information about the microphone position is necessary,
thus resulting in the need for a positioning system. It is reasonable to study a sound-based
positioning system that considers this already existing infrastructure consisting of Commercial-
Off-The-Shelf (COTS) microphones.

This thesis aimed to study a range of measurement signals in the audible frequency range.
Estimation of single source-to-receiver distances at fixed positions was studied. Furthermore,
estimation of the position of microphones relative to a loudspeaker-array at fixed positions in
3D, and the azimuth Angle of Departure (AoD) was conducted.

For the single source-to-receiver distance estimations, results were obtained both from simu-
lations and measurements. The measurement signals were different sequence lengths of the
Maximum Length Sequence (MLS), which is one of the Pseudo Noise (PN) sequences. In the
simulations, a simple Room Impulse Response (RIR) simulator was used as the acoustic mea-
surement channel. Different source-to-receiver distances and reverberation times were studied.
A moving average filter with a different number of signal averages was studied to determine the
number of averages required to detect correct source-to-receiver distance. In measurements, the
number of signal averages, and signal lengths were studied.

For position and AoD estimations, results were obtained through simulations with a detailed
RIR obtained from CATT-acoustics simulation software. In the simulations, a range of PN-
sweeps and PN-sequences with different lengths were studied as measurement signals. Kasami
and Gold sequences were used for their low cross-correlation properties, leading to continuous
estimations from all loudspeakers in the loudspeaker-array. For these estimations, a range of
signal averages, signal lengths, AoDs, and source-to-receiver distances were studied.

A study of moving microphones was conducted through source-to-receiver distance measure-
ments. In the measurements, a microphone was placed on a turntable, and continuous source-
to-receiver distance estimates were conducted by utilizing different measurement signals with
different lengths.

In estimations of single source-to-receiver distances in fixed positions, both measurements and
simulations presented that distances up to 5 m could be correctly estimated with 2047 samples
long MLS without the use of a moving average filter, as long as a correct threshold of detection
was utilized. In results obtained from AoD estimations, it was presented that estimates where a
moving average filter averaging five periods of the measured signal resulted in an AoD estimate
that, on average, deviated with < 1◦ from the correct angle. However, when the moving average
filter consisted of < 4 periods/cycles, deviations of ∼ 2.5◦ from the correct angle were observed.
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PN-sweeps were far less prone to time variance caused by movement than MLS, but for both
signal types, the implementation of moving average filter resulted in many estimates outside
the window of interest (minimum and maximum source-to-receiver length). Source-to-receiver
distance estimates where uncoded sweep signals and moving average filter was used, yielded
good results, and all estimates where within the window of interest. The same was true for
PN-sweeps coded with short sequences (≤ 255). Therefore, it can be concluded that PN-sweeps
coded with short sequences should be utilized if the microphones are non-stationary.

The primary motivation for utilizing measurement signals in the audible frequency range was
to use the already existing infrastructure with COTS microphones. However, because of factors
like the dynamic range and self-noise, it can be concluded that a system like the one presented
in this thesis would not work with all COTS microphones.
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Sammendrag

Med den stadig økende populariteten knyttet til lydinnspilling i medier som podcast og livestre-
aming av konserter, er det av interesse å studere metoder som kan forbedre lytteopplevelsen,
samt automatiseringen av postprosesseringen for disse bruksomr̊adene.

En spesielt interessant forbedring er full automatisert lydmiksing. En slik forbedring vil poten-
sielt eliminere behovet for en lydtekniker, og kan føre til en løsning som automatisk genererer
lyd i stereo eller mer komplekse 3D-lydformater i sanntid. For å muliggjøre dette er det imid-
lertid nødvendig med informasjon om mikrofonplassering, hvilket resulterer i behovet for et
posisjoneringssystem. Det er rimelig å studere et lydbasert posisjoneringssystem som benytter
seg av denne allerede eksisterende infrastrukturen best̊aende av kommersielle hyllevare (COTS)
mikrofoner.

Dette prosjektet tok sikte p̊a å studere m̊alesignaler i det hørbare frekvensomr̊adet. Det ble
utført estimeringer av: kilde-til-mottaker avstand mellom én høyttaler og én mikrofon i faste
posisjoner, mikrofonplassering i forhold til et “høyttaler-array” p̊a faste posisjoner i 3D, og
azimuth avgangsvinkel (AoD).

For estimering av kilde-til-mottaker distanse ble resultater innhentet fra b̊ade simuleringer og
m̊alinger, hvor m̊alesignalene brukt til denne estimeringen var forskjellige sekvenslengder av
Maximum Length Sequence (MLS) som er en av Pseudo Noise (PN) sekvensene.

I simuleringene ble en simpel Rom Impulsrespons (RIR)-simulator benyttet som den akustiske
m̊alekanalen. Ulike distanser mellom kilde og mottaker, samt forskjellige etterklangstider ble
undersøkt. Et glidende gjennomsnittsfilter med ulikt antall periodegjennomsnitt ble studert for
å bestemme antall et periodegjennomsnitt som var nødvendig for å oppdage korrekt kilde-til-
mottaker distanse. I m̊alinger ble ogs̊a antall periodegjennomsnitt og signallengder studert i ett
rom.

For posisjons-, og AoD-estimering ble resultater innhentet fra simuleringer med en detaljert
RIR som ble generert med simuleringsprogrammet CATT-acoustics. I disse simuleringene ble
et utvalg av PN-sveip og PN-sekvenser med ulik lengde studert som m̊alesignaler. Kasami-, og
Gold-sekvenser ble benyttet p̊a bakgrunn av deres lave krysskorrelasjonsegenskaper som mulig-
gjorde kontinuerlig estimering. For disse estimeringene ble et utvalg av periodegjennomsnitt,
signallengder, AoD og kilde-til-mottaker distanser studert.

En studie av tidsvarians for̊arsaket av bevegelige mikrofoner ble gjennomført. I disse m̊alingene
ble kontinuerlig kilde-til-mottaker estimering utført av en mikrofon plassert p̊a et roterende
bord. Disse estimatene ble utført for en rekke ulike sekvenstyper og -lengder.

Resultater fra m̊alinger og simuleringer for én høyttaler og én mikrofon i faste posisjoner pre-
senterte at distanser opp til 5 m kunne estimeres korrekt med 2047 punktprøver lange MLS
uten bruk av et glidende gjennomsnittsfilter, s̊a lenge en riktig deteksjonsterskel ble benyttet.

I resultatene fra AoD-estimatene ble det presentert at estimater der et glidende gjennomsnitts-
filter best̊aende av gjennomsnittet av 5 perioder av signalet, resulterte i en estimert vinkel som
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i gjennomsnitt avviket med < 1◦ fra korrekt vinkel. N̊ar det bevegelige gjennomsnittsfilteret
bestod av < 4 perioder, ble avvik p̊a ∼ 2.5◦ fra korrekt vinkel observert.

PN-sveip var langt mindre p̊avirket av tidsvarians enn MLS, men for begge signaltypene resul-
terte implementeringen av glidende gjennomsnittsfilter i en høy prosentandel av tapt deteksjon.
Estimering av kilde-til-mottaker distanse der ikke-kodede sveipsignaler og glidende gjennom-
snittsfilter ble brukt, gav gode resultater. Det samme gjaldt for PN-sveip kodet med korte
sekvenser (≤ 255). Det kan derfor konkluderes at PN-sveip kodet med korte sekvenser burde
benyttes dersom mikrofoner ikke skal være i stasjonære posisjoner.

Hoved̊arsaken til å bruke m̊alesignaler i det hørbare frekvensomr̊adet var å benytte den allerede
eksisterende infrastrukturen med COTS mikrofoner. P̊a grunn av faktorer som det dynamiske
omr̊adet, og selvstøyen til mikrofoner, kan det imidlertid ikke konkluderes med at et system
som er presentert i denne oppgaven vil være brukenes med alle COTS mikrofoner.
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Abbreviations

AoD Angle of Departure

BW Band Width

COTS Commercial Off-The-Shelf

DFT Discrete Fourier Transform

DSP Digital Signal Processing

FFT Fast Fourier Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

IR Impulse Response

KS Kasami Sequence

MLS Maximum Length Sequence

PN Pseudo Noise

PSD Power Spectral Density

RIR Room Impulse Response

RMS Root Mean Square

SNR Signal to Noise Ratio

SPL Sound Pressure Level

ToA Time of Arrival
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1. Introduction

Indoor positioning and navigation is a growing industry, and the number of products for this
purpose has grown significantly in the last couple of years. These products are typically used for
asset tracking, indoor navigation, and many more. As opposed to outdoor positioning, where
the Global Positioning System (GPS) is utilized, there exists no broadly adopted method for
the indoor. This lack of a standardized method leads to the use of multiple sensors like; image
(Artificial Vision), infrared, ultrasound, radiofrequency, inertial and magnetic, and also audible
sound are being used for the purpose [1].

With the rise in popularity of media like podcasts and live streaming, it is of interest to study
ways to improve the listening experience and to automate the process of audio post-processing.
One particularly interesting enhancement is that of fully automated audio mixing. Such an
enhancement would eliminate the need of an audio engineer, and possibly leading to a solution
that automatically generates audio in stereo or even more complex 3D-sound formats in real-
time. However, to make this possible, information about microphones’ position is necessary,
thus resulting in the need for a positioning system. It is reasonable to study a sound-based
positioning system that considers this already existing infrastructure.

There are few commercial products that are based on this already existing technology, but a
number of sound-based systems such as Active Bat [2], Cricket [3], Dolphin [4] and 3D-Locus [5]
have previously been documented. These systems are based on ultrasound as the measurement
signal; thus, Commercial-Off-The-Shelf (COTS) audio components cannot be used. For wide
consumer adoption, interoperability with established technology and infrastructure is key.

In order to utilize COTS components as receivers, the measurement signal needs to be within
the audible frequency range. Mandal et al. present such a system named Beep in his thesis [6].
The paper reports that the signal used for positioning caused annoyance and would not work in
a real application, especially where sound recordings are being conducted as the measurement
signal would be audible in the recordings. Therefore, it is reasonable to study a measurement
signal which is either inaudible or at least not causing user annoyance.

1.1. Motivation and goal

This thesis aims to study a range of measurement signals buried in noise and study position
estimation obtained by utilizing these signals. A study of estimations of source-to-receiver
distance, azimuth angle, x-, y-, and z-coordinate will be presented for stationary microphone
positions in the line of sight; furthermore, results of measurements of moving microphones will
be presented. All discussions and assumptions regarding audibility and perceivable sound will
be based on the author’s subjective opinion. The results will be presented both as results
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obtained from simulations and measurements. Because of unforeseen challenges caused by the
Covid-19 pandemic resulting in reduced access to laboratory facilities as well as problems with
equipment that was planned to be used for measurements, the result for 3D positioning will
only be presented for simulations. It should be stressed that the results presented in this thesis
are not fixed but serves as a tool for comparison between the cases. However, the results will
be thoroughly discussed to enlighten possible improvements or errors. The goal of this thesis is
not to come up with a definitive answer, but to draw a picture of the characteristics.

This thesis is a continuation of a project thesis written by the author in autumn 2019. The
project acted as a feasibility study for this thesis and some parts presented here are directly
copied from the project thesis.

1.2. Thesis structure

In chapters 2, 3, and 4, the theory regarding human hearing, the acoustic measurement chain,
and the measurement signals will be presented. Chapter 5 presents the theory of how positioning
will be estimated, and chapter 6 presents some theory regarding signal processing concepts
utilized in this thesis. In chapter 7, the method for how the experiments were conducted will
be presented. In chapters 8 and 9, the results will be presented and discussed. In chapter 10,
this thesis will be concluded, followed by the appendices.
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2. Human hearing

Audibility is a crucial concept of this project, and to understand this term, a short explanation of
the human hearing is necessary. An in-depth explanation of human hearing and psychoacoustics
can be found in [7], which forms the basis of the theory presented in this section.

Figure 2.1.: Fletcher-Munson curves, where each curve shows frequencies which are perceived
as equally loud – they result in the same loudness level [phon]. Loudness level is
defined, such that the loudness level for a sinusoidal at 1 kHz is identical to the
sound pressure level for the sinusoidal. The values presented in this figure were
obtained from ISO 226 standard [8]

The audible frequency range of the human ear is roughly 20 Hz - 20 kHz and the frequency
response of the ear appears to be non-flat. This non-flatness can be illustrated when contours of
equal loudness are drawn. These contours represent all harmonic sounds that will be perceived
as equally loud by an average subject for a specified Sound Pressure Level (SPL). The equal
loudness contours, also known as the Fletcher-Munson curves, can be seen in figure 2.1, where
the lowest curve corresponds to the threshold of audibility. This threshold is the weakest sounds
a human with normal hearing can perceive. Each curve corresponds to a loudness level in phon1.
The figure also shows that the human hearing performs best at frequencies between 3 kHz and
4 kHz; this is caused by the first resonance frequency of the ear canal [7].

1Phon is a unit of loudness level for pure tones originally introduced by scientist Heinrich Barkhausen
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It is important to note that even though these contours are commonly available and standard-
ized, the sensitivity of the human hearing can vary a lot with the listener’s age, health, and
prior exposition to loud sounds. The same holds for the audible frequency range; some people
will perceive sounds below and above these frequencies.

Different filters for different sound levels are used to correct for the sensitivity of hearing. The
most known examples of such filters are the A-weighting, C-weighting, and Z-weighting. The
A-weighting corresponds roughly to 40 phons, C-weighted corresponds to 100 phons, and the
Z-weighted corresponds to no-weighting. The different frequency weighting curves can be seen
in figure 2.2. The A-weighting and C weighting filters are defined in IEC 61672-1 standard [9].

Figure 2.2.: Frequency weighting curves for the A-, C- and Z-weighting filters.
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3. The acoustical measurement chain and
room reverberation

To understand what can be expected from the different parts of a typical acoustical measurement
chain, it’s crucial to understand how all parts respond to signals that are transmitted through
the system. The system response to signals is denoted by the systems Impulse Response (IR).
IR has been previously explained in many signal-processing textbooks from where the theory
presented here was obtained [10, 11, 12].

The IR of a Linear Time-Invariant (LTI) system is defined as the response of the system to a
unit sample excitation, i.e., the response of the system when the input is a Dirac delta function,
δ[n] [10]. The Dirac delta function is defined as seen in equation 3.1.

δ[n] ,

{
0 if n 6= 0

1 else
(3.1)

An LTI system can be seen in figure 3.1, where x[n] is the input signal, h[n] is the systems
IR and y[n] is the output of the system. In the system presented in the figure the output y[n]
is given by the convolution of x[n] with h[n]. The convolution operator ∗ is defines as seen in
equation 3.2.

y[n] = x[n] ∗ h[n]

=
N−1∑
k=0

h[k]x[n− k]
(3.2)

Figure 3.1.: Schematic representing of an LTI system with x[n] as input, y[n] as output, and
h[n] as the impulse response of the system.

Loudspeakers, microphones, and rooms are all dynamic systems with unique IR. These systems
are often assumed to be LTI [11], which means that a sound signal transmitted and received in
a room will be modified by the impulse response of:
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• The loudspeaker used to generate the sound.

• The microphone used to record the sound.

• The room in which the signal is generated.

• Other parts like the microphone and loudspeaker amplifiers, analog-to-digital converters,
etc. (these are often assumed to be close to ideal, and their influence is often ignored).

Mathematically, this can be expressed as seen in equation 3.3 where x[n] is the input signal,
h[n] is the IR of the dynamic system where the index denotes the specific system, and y[n] is
the output signal, i.e., the measured signal.

y[n] = x[n] ∗ hroom[n] ∗ hloudspeaker[n] ∗ hmicrophone[n] (3.3)

To simplify this expression, a variable for the entire LTI system, hchannel, can be expressed as
presented in equation 3.4

hchannel[n] = hroom[n] ∗ hloudspeaker[n] ∗ hmicrophone[n] (3.4)

This yields the following expression for the measured signal y[n]:

y[n] = hchannel[n] ∗ x[n] =
∞∑
k=0

hchannel[k]x[n− k] (3.5)

3.1. Typical impulse responses of the acoustical measurement chain

As previously mentioned in chapter 2, the hearing range of human spans between 20 − 20 ·
103 Hz, which implies that equipment made for sound recording and reproduction is made to
operate in that frequency range. This means that the IR of audio equipment will have bandpass
characteristics, as represented in figure 3.2. These characteristics will vary between the different
systems (microphones, sound cards, loudspeakers, etc.).

Figure 3.2.: A Dirac pulse convolved with a LTI system with bandpass characteristics.
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Figure 3.3.: The impulse response of a room where the input was a Dirac delta pulse at sample
0 and the IR was measured by a microphone at a distance from the impulse source.
tToA is the time-of-arrival, i.e the travel time of the impulse, and tReflection is the
time of arrival difference between the direct sound and the first reflection.

A schematic representation of an IR of a room is presented in figure 3.3. This figure shows
the Room Impulse Response (RIR) as measured by a microphone if a Dirac delta pulse was
transmitted at sample 0. The time between the impulse and the direct sound is denoted by the
Time of Arrival (ToA), tToA, of the signal.

The RIR can be broken into three parts: the direct sound, early reflections, and reverberation.
The direct sound is the first impulse that arrives at the source. The early reflections are the
first specular reflections from surfaces like walls, floors, and ceilings. The reverberation is a
collection of reflected sounds that blend and overlap [13]. The direct sound in a room will
generally decrease with 6 dB for each doubling of the distance from the source [14].

For small rooms, the level of reverberation is assumed to be constant everywhere in the room,
according to the classic model [14]. Thus at a distance from the source, the direct sound will
equal the constant reverberation level [15]. This distance is called the critical distance or room
radius.

As presented in figure 3.3, the sound generated in a room will have an exponential decay. By
analyzing the slope of the decay of the reverberation time, T60, can be calculated. T60 denotes
the time it takes for the SPL to decrease by 60 dB.

For an in-depth explanation of reverberation time and room impulse response, see [14, 15] from
where the theory presented in this chapter was obtained.
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3.2. Room impulse response modeling

To simulate an acoustical channel, a model of a typical RIR needs to be constructed. The
sound pressure in a room can be expressed as shown in equation 3.6, where A is the amplitude
of the signal, w(t) is a sample function from a stationary white Gaussian noise with N (0, 1)1.
The assumption of a normal distribution is a reasonable model for reverberation, as stated by
Schroeder [16]. The exponential denotes the decay of the sound pressure where t is time, and
τ is the exponential time constant. It’s also important to note that this model is only for the
reverberation part/“tail” of the RIR, and the model presented in this section doesn’t contain
early specular reflections.

p(t) = Ae
−t
τ · w(t) (3.6)

To find an expression for τ , an expression for the expectation of sound pressured square need
to be obtained as presented in equation 3.7, where the expectation of w(t) is obtained from
equation 3.8, where E(·) is the expectation operator.

E
(
p2(t)

)
= A2e

−2t
τ · E

(
w(t)2

)
(3.7)

E
(
w(t)2

)
= var(w(t)) = 1 (3.8)

Utilizing equation 3.7 and 3.8 the following expression for the expectation of p2 is obtained:

E
(
p2(t)

)
= A2e

−2t
τ (3.9)

As previously stated, T60 is the time it takes for the SPL to decrease by 60 dB, and can be
mathematically written as presented in equation 3.10, where Lp(t) is the SPL, Lp,start is the
SPL at time t = 0, and the last fraction models the decay.

Lp(t) = Lp,start −
60 · t
T60

(3.10)

Lp(t) can be obtained by utilizing equation 3.11.

Lp(t) = 10 log

 E
(
p2
)

E
(
p2ref

)
 = 10 log

(
A2 · e

−2t
τ

p2ref

)
= 20 log

(
A

pref

)
− t

τ
· 20 log(e1) (3.11)

Readers may notice that equation 3.11 has the same form as equation 3.10. This can be utilized
to get an expression for τ as presented in equation 3.12.

1N (µ, σ) is the Gaussian distribution with mean µ and variance σ.
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t

τ
log(e1) =

60 · t
T60

⇒ 1

τ
=

3

log(e1)
· 1

T60
≈ τ =

T60
6.91

(3.12)

In addition to the reverberation tail, a direct sound can be added to the model. The model will
then contain a direct sound, pdirect, followed by the reverberation tail as presented in equation
3.6. The direct sound amplitude is expressed below, where r is the distance between the source
and receiver.

A = pdirect =
1

r
(3.13)

Interested readers are referred to [10, 11, 12] for more information on the topic.
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4. Room impulse response measurement
methods

Until the 1980s RIR measurements were conducted by utilizing impulsive sources such as bal-
loons, high power amplifier-loudspeaker systems driven with short pulses, and blank pistols.
These techniques showed to have poor performance in terms of directivity of the source, re-
peatability of the measurements, and proper distribution of energy over the entire frequency
range [17].

The development of Digital Signal Processing (DSP) made it possible to analyze signals in the
frequency domain employing the Discrete Fourier Transform (DFT) and was later improved by
the Fast Fourier Transform (FFT) [18]. With this new technology, new measurement techniques
based on stochastic signal theory were possible. The most popular method was the dual-channel
FFT analyzer based on random excitation signals to determine the systems Transfer function
(TF) [19, 20]. The problem with such signals was the stochastic nature of these excitation
signals, which required averaging of multiple periods to get a reliable estimate of the RIR.

In the 1990s, new techniques utilizing periodic signals became popular, especially the Maxi-
mum Length Sequence (MLS) approach. The main reason for the popularity was the efficient
deconvolution through the Hadamard transform [21, 22]. As processors became faster, the effi-
ciency of the Hadamard transform wasn’t as crucial as before, which opened the doors for new
measurement techniques like the swept-sine [23].

The pursuit of the best RIR measurement signal has been the primary goal of many research
papers released in the last couple of years [24]. In this thesis, both pseudo-random signals and
swept-sine signals will be studied.

In the following sections of this chapter, the theory regarding three types of Pseudo-Noise
(PN) sequences will be presented: The Maximum Length Sequence (MLS/m-sequence), Gold
Sequence (GS), and Kasami Sequence (KS). Followed by theory regarding linearly swept sine
signals, and finally, the theory behind the advantage of combining PN-sequences and swept sine
signals will be presented.

4.1. Maximum length sequence

Pseudo-random or pseudo noise sequences are a group of periodic signals which seem random-
like but are generated by mathematically precise rules, and statistically, the signals satisfy the
requirements of a truly random sequence in the limiting sense [25]. In much of the littera-
teur on periodic sequences, the terms pseudo-random sequences, pseudo-noise sequences, and
m-sequences are used synonymously [26]. However, since the ’60s the term pseudo-random
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sequence and pseudo-noise sequence have also been used to describe non-maximal-length se-
quences. The term pseudo-noise sequence and pseudo-random sequence will, in this thesis, be
used for all periodic sequences with pseudo-random phase.

Figure 4.1.: Figure shows the magnitude and phase spectrum of a MLS.

Maximum length sequences (MLS) are a special case of a binary sequence. MLS has a perfectly
flat magnitude spectrum (except at 0 Hz) and a pseudo-random phase. As previously stated,
the term pseudo-random is used to emphasize that the phase is not purely random since the
signal is periodic, and every repetition of the signal has the same phase, but the requirements
of a truly random sequence are satisfied. The magnitude spectrum and phase spectrum are
presented in figure 4.1.

To benefit from all the properties of PN-sequences, they need to be treated as periodic signals.
The period of MLS is 2m − 1 samples, where m ∈ Z. The m-term determined the period of the
sequence; this is why the MLS is also known as the m-sequence [17].

4.1.1. Synthesis of MLS

Even though the synthesis of the MLS is in practice straightforward, the theory is rather com-
plicated. An MLS is a binary sequence that satisfies a linear recurrence whose characteristic
polynomial is primitive [27]. As the name implies, a binary sequence is a two-values sequence;
in computer-logic, the values are typically {0,1}. A primitive polynomial is an irreducible poly-
nomial of degree m, which is the minimum polynomial of the primitive root in GF(2m), where
GF denotes the Galois field. Interested readers are referred to [28] for more information on the
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Galois field and other number theory concepts.

A binary polynomial p(x) of degree m can be defined as presented in equation 4.1, where
p0 = pm = 1 and the other polynomials take on values 0 and 1. It’s important to note that the
degree of the polynomial also denotes the sequence length given by 2m − 1.

p(x) = p0x
m + p1x

m−1 + . . .+ pm−1x+ pm (4.1)

It is conventional to represent this polynomial as a binary vector ~p as presented in equation 4.2.

~p = [p0, p1, . . . , pm] (4.2)

In literature the binary vector is often expressed in octal notation. For example the primitive
polynomials x5+x3+x2+1 and x5+x4+1, are represented by the binary vectors ~p = [101101]2
and ~p = [110001]2, respectively and the octal notation for these polynomials is 558 and 618
respectively, where the subscript denotes the notation.

A binary sequence u generated by p(x) can be obtained if equation 4.3 is fulfilled for all integers
i, where ⊕ denotes the modulo 2 addition (XOR-operation).

p0ui ⊕ p1ui−1 ⊕ p2ui−2 ⊕ . . .⊕ pmui−m = 0 (4.3)

By replacing i with i + m in equation 4.3, and utilizing the fact that p0 = 1 the following is
obtained:

ui+m = pmui ⊕ pm−1ui+1 ⊕ . . .⊕ p1ui−m−1 (4.4)
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(a)

(b)

Figure 4.2.: Figure showing a maximal-length sequence generator LFSR. (a) corresponds to
polynomial p(x) = x5 + x3 + x2 + 1 (558). (b) corresponds to polynomial p(x) =
x5 + x4 + 1 (618). ⊕ is the XOR operation.

This yields that the sequence u can be generated by an m-stage binary Linear-Feedback Shift
Register (LFSR) with feedback tap connected to the j’th element cell if pj = 1 for j ∈ 〈0,m].
LFSR’s for the two primitive polynomials p(x) = x5 + x3 + x2 + 1 and p(x) = x5 + x4 + 1 are
presented in figure 4.2 (a) and (b) respectively.

Table 4.1.: List of primitive polynomials for order m. List was obtained from [21].

m p(x) m p(x)

1 x+ 1 11 x11 + x2 + 1
2 x2 + x+ 1 12 x12 + x7 + x4 + x3 + 1
3 x3 + x+ 1 13 x13 + x4 + x3 + 1
4 x4 + x+ 1 14 x14 + x12 + x11 + x+ 1
5 x5 + x2 + 1 15 x15 + x+ 1
6 x6 + x+ 1 16 x16 + x5 + x3 + x2 + 1
7 x7 + x+ 1 17 x17 + x3 + 1
8 x8 + x6 + x5 + x+ 1 18 x18 + x7 + 1
9 x9 + x4 + 1 19 x19 + x6 + x5 + x+ 1
10 x10 + x3 + 1 20 x20 + +x3 + 1

If the binary sequence u is a periodic sequence generated by a LFSR, p(x), then for all integers
i, T iu is also a sequence generated by p(x); where T i denotes the cyclic shift operator. Such an
LFSR is therefore capable of generating 2m different sequences, but the trivial “all 0” sequence
must not be included, which yields that the number of sequences generated by an LFSR is
2m − 1.
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A sequence generated by a LFSR is an MLS, if the period of the generated sequence is 2m − 1,
thus not all combinations yield an MLS. As previously stated LFSR produces an MLS if, and
only if, p(x) is a primitive polynomial [29]. A list of primitive polynomials p(x) obtained from
[21] is presented in table 4.1.

In most cases the binary sequence is transmitted as positive and negative pulses [21]. Conven-
tionally the positive and negative pulses are obtained by replacing each 0 of the original binary
sequence with a +1 and each 1 with a -1. This mapping can be done by utilizing a function χ
as presented in equation 4.5.

χ(α) = (−1)−α for α ∈ {0, 1} (4.5)

4.1.2. Correlation properties

Figure 4.3.: Figure showing the auto-correlation of MLS with period L = 2047

One of the most important MLS properties is its close to optimal auto-correlation [29], meaning
its autocorrelation approaches a dirac delta pulse. The auto-correlation rxx of an MLS is
mathematically expressed in equation 4.6 where L is the sequence length/period, and l is the
shift/lag parameter. The derivation of this formula is out of this thesis scope, the reader is
referred to [17, 29].

rxx[l] =

{
1 if l = 0

− 1
L if l 6= 0

(4.6)

The auto-correlation of an MLS with period L = 2047 is presented in figure 4.3, as can be seen
from the figure a clear peak at sample zero can be observed as well as some truncation effects
surrounding the correlation peak [30].
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Figure 4.4.: Figure showing 5 cycles of 2047 samples long MLS cross-correlated with 1 cycle of
the same MLS.

In this thesis, the purpose is to conduct continuous measurements. Continuous measurements
can be done by utilizing an infinite number of cycles of MLS, where one cycle corresponds to
one period of the MLS. The introduction of multiple repeated cycles is advantageous; as stated
in [30], the truncation effects surrounding the correlation peaks are removed. This can be seen
in figure 4.4 where 5 cycles of 2047 sample long MLS are cross-correlated with 1 cycle/period
of the same MLS.

4.2. Gold sequence

Even though the auto-correlation properties of the MLS are nearly optimal, the cross-correlation
between different sequences varies [21]. In this thesis, the cross-correlation properties are of
utmost importance as four continuous source-to-receiver distances will be estimated in parallel;
it is important to separate each of the four measurements.
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Figure 4.5.: Figure showing a GS generated by a preferred pair of m-sequences, namely: se-
quence u and sequence v.

In this thesis, two classes of periodic sequences with good cross-correlation properties will be
studied, namely: Gold Sequences GS ’s and Kasami Sequences KS ’s. GS ’s are a special class
of MLS and were first presented by Robert Gold in his paper in 1967 [31]. These sequences are
shown to yield the theoretical minimum cross-correlation that can be expected from periodic
MLS [21].

GS’s are obtained by modulo-2 addition of an MLS pair. Figure 4.5 is a block diagram of a GS
generator where u is one MLS generated by an LFSR with polynomials= x5 + x2 + 1 and v is
another MLS generated by an LFSR with polynomials= x5 + x4 + x3 + x2 + 1. In figure 4.5, u
and v are not arbitrary sequences generated by arbitrary polynomials, they are a specific pair
of sequences and they are often called a preferred pair of MLS. For two sequences with period
L = 2m − 1 to be a preferred pair the following criteria most be satisfied [21]:

• m is not divisible by 4 (m = 2 or m is odd).

• v = u[q], where: q is odd, q = 2k + 1 or q = 22k − 2k + 1, and v is obtained by sampling
q′th symbol of u.

• gcd(n, k)1=

{
1 for n ≡ 1 mod 2

2 for n ≡ 2 mod 4

The preferred pairs of MLS has a three valued cross-correlation ru,v as presented in equation
4.7, where L is the sequence length and t[n] is defined as presented in equation 4.8.

ruv[l] =

{
− t[n]

L
,− 1

L
,
t[n]− 1

L

}
(4.7)

t[n] =

{
1 + 2

n+1
2 for n odd

1 + 2
n+2
2 for n even

(4.8)

1Greatest common denominator
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A list containing polynomials of several preferred pairs is presented in table 4.22.

Table 4.2.: List of preferred pairs of polynomials for MLS generating.
m L Preferred polynomial 1 Preferred polynomial 2

5 31 x5 + x2 + 1 x5 + x4 + x3 + x2 + 1
7 127 x7 + x3 + 1 x7 + x3 + x2 + x+ 1
9 511 x9 + x4 + 1 x9 + x6 + x4 + x3 + 1
11 2047 x11 + x2 + 1 x11 + x8 + x5 + x2 + 1
13 8191 x13 + x4 + x3 + x1 + 1 x13 + x12 + x10 + x9 + x7 + x6 + x5 + x+ 1

One preferred pair of MLS can generate 2m + 1 unique GS’s because the generator utilizes all
phases of either u or v this is presented in equation 4.9 where T i is the cyclic shift operator
and G[u, v] denotes the GS. It’s also important to note that both u and v are also GS’s (i.e the
preferred pairs of MLS are also referred to as GS’s).

Figure 4.6.: Figure showing the auto-correlation ru,u of GS u, and the cross-correlation ru,v
between GS u and v both with 2047 samples length.

G[u, v] =
{
u, v, u⊕ v, u⊕ T · v, u⊕ T 2v, . . . , u⊕ TL−1 · v

}
(4.9)

The auto-correlation ru,u and cross-correlation ru,v are presented in figure 4.6 for 2047 samples
sequence length. It’s important to note that the advantages of utilizing multiple cycles and
canceling the truncation effects of PN-sequences do not apply to GS ’s generated by the modulo
2 addition.

4.3. Kasami sequence

Kasami sequences KS’s are defined for even values of m, and there are two classes of KS’s,
namely: small set of KSs, and large set of KS’s [25, 21]. In this thesis, only the small set of KS

2These preferred pairs were found in [32]
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’s are considered.

Figure 4.7.: Figure showing the auto-correlation ru,u of Kasami sequence u, and the cross-
correlation ru,w between Kasami sequence u and w both with 4095 samples length.

A small set of KS’s is a set of 2m/2 unique sequence each with length L = 2m − 1. KS’s utilize
the same methodology of modulo two additions of two sequences as previously presented in
section regarding GS’s. However KS’s are obtained by utilizing a MLS, u, with length L and
decimating this sequence by 2m/2 + 1. The decimation of MLS results in a new MLS v with
length L = 2m/2+1. KS’s are then obtained as presented in equation 4.10, where T is the cyclic
shift operator and w is a sequence of Mcycles cycles of v sequences, where Mcycles is calculated
as presented in equation 4.11.

K[u,w] =
{
u,w, u⊕ w, u⊕ T · w, u⊕ T 2w, . . . , u⊕ TL−1 · w

}
(4.10)

Mcycles =
2m − 1

2m/2 + 1
(4.11)

The cross-correlation of KS’s can be calculated as presented in equation 4.12, where ru,w de-
notes the cross-correlation and s[n] is calculated as presented in equation 4.13 [21]. The auto-
correlation of one Kasami sequence and cross-correlation between two unique KS’s is presented
in figure 4.7.

ru,w[l] = {−1,−s[n], s[n]− 2} (4.12)

s[n] = 1 + 2m/2 (4.13)
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4.4. Sequence length

Özdamar and Bohórquez proposed an expression for the SNR of MLS, SNRmls, in [33]. The
expression is presented in equation 4.14, where σ2n denotes the noise variance, σ2s denotes the
signal variance, and L is the MLS period/length.

SNRMLS = 2

√
(1 + L) · σ

2
s

σ2n
(4.14)

Figure 4.8.: Figure showing wrap around effects caused by late reverberation that add onto next
room impulse measurement, where T60 = 0.6 second and the measurement period
was 2047/44100 ≈ 0.046 seconds.

Since in this thesis continues measurements are conducted, continues RIR’s will be obtained.
Room reverberation will therefore play a significant role when it comes to the so-called wrap-
around effects. When T60 is longer than the measurement period:

Tperiod =
L

Fs
(4.15)

where Fs is the sampling frequency,and Tperiod is the measurement period, late reverberations
will linger into the next RIR estimate, thus one RIR estimate will wrap-around and add to the
next. This is presented in figure 4.8.

By studying equation 4.14 it can be seen that an increase in signal length/period increases SNR.
This fact, combined with the wrap-around effects, points to the conclusion that longer sequences
are favorable. However; as stated in many papers: time-variance causes errors to MLS based IR
measurements [34, 24, 35, 36]. Long sequences yield a long measurement window, which again
results in a longer window where time variance caused by factors like temperature changes,
source and receiver movement, and other, can occur.
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4.5. Impulse response measurements with sweeps

Müller and Massarani presented different methods for acoustical IR measurements, and they
concluded that measurements utilizing sweep signals, some times also known as chirps, are more
tolerant of time variance and harmonic distortion as compared to PN-sequences [24]. In this
thesis, linear (LIN) sweeps will be studied as a possible measurement signal for a proposed
system. The following theory about LIN sweeps is heavily based on [17, 24, 37].

4.5.1. Linear sweep

Linear sweeps are considered a “white” excitation signal within the desired frequency range.
The term linear refers to the linear change of instantaneous frequency as a function of time, and
can be mathematically shown as presented in equation 4.16 where fLIN is the linearly changing
instantaneous frequency that changes with time t, f1 and f2 are respectively the desired lower
and upper frequencies, and T is the duration of the sweep.

fLIN (t) =
2π(f2 − f1)

T
t+ 2πf1 (4.16)

Equation 4.16 can further be simplified by introducing the bandwidth (BW): BW = f2 − f1,
this is presented in equation 4.17

fLIN (t) = 2π
BW

T
t+ 2πf1 (4.17)

A sweep factor can be used to convey the rate of instantaneous frequency change. This factor is
constant for LIN sweeps and can be calculated as presented in equation 4.18, where µ is the sweep
factor. For non-linear sweeps the time varying sweep factor µ(t) can be calculated by taking
the derivative of the frequency as presented in equation 4.19 where f(t) is the instantaneous
angular frequency.

|µ| = BW

T
(4.18)

µ(t) =
df(t)

dt
(4.19)

Angular frequency is a derivative of phase, thus the argument of a linear sweep can be calculated
by taking the antiderivative of the angular frequency as presented in equation 4.20, where
φLIN (t) is the time varying phase of the LIN sweep, and φ0 is the initial phase.
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φLIN (t) = φ0 +

∫ t

0
2πfLIN (t)dt

= φ0 +

∫ t

0
2π
BW

T
t+ 2πf1dt

= φ0 +

[
2π
BW

T

t2

2
+ 2πf1t

]t
0

= π
BW

T
t2 + 2πf1t+ φ0

= |µ|πt2 + 2πf1t+ φ0

(4.20)

The waveform of a LIN sweep can be obtained by inserting φLIN as argument of a sine function
as presented mathematically in equation 4.21 where s(t) is the sweep signal and a(t) is the
sweep amplitude.

s(t) = a(t)sin
(
|µ|πt2 + 2πf1t+ φ0

)
(4.21)

The obtained waveform is presented in figure 4.9 where a(t) = 1, T = 1, φ0 = 0, f1 and f2 are
20 Hz and 20 kHz respectively.

Figure 4.9.: Figure showing the waveform of a LIN sweep. The sweep duration is 1 second and
the frequency sweeps from 20 Hz - 20 kHz. Only the first 40 ms are presented in
the figure.

The magnitude spectrum of s(t) is presented in figure 4.10. It can be seen from the figure; the
magnitude is flat between 100 Hz and 20 kHz except for some ringing at the bandwidth edges.
This flat spectrum can intuitively be explained by the fact that the instantaneous frequency
changes linearly, this yield that each frequency component is equally excited. Even though f1
was set to 20 Hz, the spectrum does not become flat until around 100 Hz. This is a result of
too short sweep-duration T .
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Figure 4.10.: Figure showing the magnitude spectrum of a LIN chirp, the frequencies of interest
are in the range between 20 Hz and 20 kHz. The signal is not windowed. The
frequencies under 100 Hz do not have enough time to evolve, and the ringing at
the start and end of the frequency range is caused by the sudden start and stop
of the signal in the time domain.

Synthesizing sweep signals in the time domain result in artifacts and leakage effects in the
frequency domain when using DFT. This is caused by the assumption of periodic signal when
doing DFT, a sudden start and stop of the signal yield discontinuities resulting in ringing and
overshoot of the spectrum at the ends of the frequency range of interest seen in figure 4.10.
However, these artifacts can be minimized by utilizing a window function like Hann, Hamming,
Tukey, etc.

Figure 4.11.: Figure showing the auto-correlation of LIN sweep s(t).

The auto-correlation of a LIN sweep s(t) can mathematically expressed as presented in equation
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4.22, where rss(t) is the auto-correlation [37].

rss(t) =
√
BW · T

sin
(
πBWt

(
1− |t|T

))
πBWt

cos (2πf0t) (4.22)

The auto-correlation rss(t) is presented in figure 4.11, the “sidelobes” surrounding the auto-
correlation peak can be reduced by utilizing a window function, however; this results in a
reduction of maximal amplitude.

4.6. PN-sweep

As previously stated, PN-sequences have good cross-correlation properties, especially when
considering Gold and KS ’s, as well as excellent auto-correlation properties; however, the se-
quences are sensitive to time variance. Sweep signals, on the other hand, are almost immune
to time-variance; thus, the advantage of combining the two methods is that by coding multiple
sweep signals with different uncorrelated PN-sequence, multiple RIR estimates can be obtained
simultaneously. The combination makes it possible to simultaneously conduct multiple mea-
surements and gain higher immunity to time-variance compared to the PN-sequences [38]. The
combination of these two measurement signals will, from now on, be referred to as PN-sweep.

Figure 4.12.: Schematic representation of a sweep coded with a 4’th order MLS.

PN-sweeps are obtained by multiplying a sine-sweep with a PN-sequence (e.g., MLS). The PN-
sequence is binary with amplitude −1 and 1, a change in PN-sequence amplitude results in a
180◦ phase-shift of the sine-sweep; this is presented in figure 4.12.

Since the PN-sweep is a combination of both a swept sine and a PN-sequence, the resulting
auto-correlation and cross-correlation will also be a product of that. The auto-correlation of a
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PN-sweep and cross correlation of two PN-sweeps each consisting of a 10 ms long LIN sweep
with frequency sweep from 2 kHz up to 20 kHz coded with a 9’th order GS is presented in figure
4.13.

Figure 4.13.: Figure showing the auto-correlation of PN-sweep and the cross-correlation between
two different PN-sweeps.
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5. Audio-based positioning

In this chapter, the theory utilized in the thesis for distance and position estimation will be
presented.

5.1. Single source to receiver measurements

Historically the first modern localization applications were the underwater sonar and radar [1].
In sonar, the distance from faraway objects at a certain angle is estimated by the travel time
necessary for a sound wave to go from the source to the target and back. The travel time is
often called the Time of Arrival (ToA).

One of the goals of this thesis is to calculate the source-to-receiver distance between one loud-
speaker and one microphone; this can be done by measuring the ToA as presented in figure
5.1.

Figure 5.1.: Schematic representation of distance measurements between a loudspeaker and a
microphone using audio signals. The * denotes that the audio signal has been
convolved with the channel, in this case the channel is the impulse response of the
room.

Assuming that sound travels at a constant speed, the distance in meters, d, as a function of
ToA in second, tToA, and sound speed in the air cair in m/s can be seen in equation 5.1.

d = tToA · cair (5.1)

However in the digital domain the ToA will be calculated by an integer number of samples,
nToA. Distance estimator d̂ in this domain can be calculates as seen in equation 5.2 where Fs
is the sampling frequency in Hz.
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d̂ =
nToA
Fs
· c (5.2)

5.2. 3D positioning

The main goal of this thesis is to study a sound-based 3D-localization system. In this section,
the localization of receivers relative to a source and the source’s choice will be explained.

In this thesis, the source was assumed to be a spherical speaker array consisting of 4 speaker
elements in a tetrahedron configuration. The placement of the four elements (numbered 1 to 4)
on the sphere is schematically presented in figure 5.2.

Figure 5.2.: Figure showing a schematic representation of a tetrahedron configuration of a four-
element spherical speaker array. The numbers denote speaker placement, and O
denotes the origin/center of the sphere.

In the late 1960s, Olson documented a comprehensive analysis of the influence of the diffraction
around rigid boxes (speaker enclosure geometries) [39]. The analysis showed that the spherical
shape had the flattest frequency response of all the tested geometries. This is one of the biggest
advantages of utilizing a spherical enclosure as this shape will “color” the measurement signal
the least, as well as this geometry allows simple implementation of the tetrahedron speaker
configuration. Furthermore, the omnidirectionally of the source will only depend on the radius
of the sphere. It is important to note that in this thesis, the free-field case will be studied, and
distance estimates for diffraction around enclosures will not be studied.
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5.2.1. Multiple sources to receiver distance estimation

The symmetry of the tetrahedron configuration yields a simple mathematical expression for
calculating the ToA between the center of the spherical enclosure and a given microphone. This
can be shown by considering a microphone mj and a speaker element si, their position relative
to the origin/center of the speaker enclosure can be expressed on vector form as presented in
equation 5.3 where the index denotes the x-, y-, and z-coordinates.

~si =

 si,x
si,y
si,z

 , ~mj =

 mj,x

mj,y

mj,z

 (5.3)

The source-to-receiver distance between source si and receiver mj can be expressed as a vector
~xi,j , this vector can be calculates as presented in equation 5.4.

~xi,j = ~si − ~mj (5.4)

The estimated ToA between speaker element i and microphone j can be calculated by utilizing
equation 5.5 where T̂i,j is the ToA estimate and cair is the sound speed in air in m/s.

T̂i,j =
|~xi,j |
cair

(5.5)

Now considering the 2D situation presented in figure 5.3 |~xi,j | can be calculated by considering

the two right-triangles. The first right-triangle consists of ~si, ~g, and ~h, and the second consists
of ~mi, ~xi,j , and ~h where ~g is the scalar projection of ~si on ~mj , and ~h denotes the shortest path
between vector mj and the source.
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Figure 5.3.: Figure showing schematic representation of a 2D localization situation.

Using the Pythagorean theorem |~xi,j | can be calculated as presented in equation 5.6 and the
scalar projection can be calculated by the means of the dot product as presented in equation
5.7.

|~xi,j |2 = (|~mj | − |~g|)2 + |~h|2 (5.6)

|~g| = ~si ·
~mj

|~mj |
(5.7)

In this thesis the approximation presented in equation 5.8 will be true in all cases. By utilizing
this approximation and combining equation 5.6 and 5.7, the source-to-receiver distance can be
calculated as presented in equation 5.9.

~mj >> ~si −→ ~h ≈ 0 (5.8)

|~xi,j |2 ≈ (|~mj | − ~si ·
~mj

|~mj |
)2 ⇒ |~xi,j | ≈ (|~mj | − ~si ·

~mj

|~mj |
) (5.9)

Now lets study the case of the spherical speaker array consisting of 4 elements in tetrahedron
configuration. Assuming plane waves (~mj >> ~si) and symmetry of the tetrahedron speaker
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array the mean of the four ToA’s will denote the ToA from the spheres origin. The estimated
mean ToA from the four speaker elements to one microphone can be obtained by calculated the
mean of both sides of equation 5.5 as presented in 5.10 where i denotes the speaker element.

1

4

4∑
i=1

T̂i,j =
1

4c

4∑
i=1

|~xi,j | (5.10)

By utilizing the approximation in 5.9 in equation 5.10 the following is obtained:

1

4

4∑
i=1

T̂i,j ≈
1

4c

4∑
i=1

(
|~mj | − ~si ·

~mj

|~mj |

)
(5.11)

By further simplification the following expression is obtained:

1

4

4∑
i=1

T̂i,j ≈
1

4c

(
4∑
i=1

|~mj | −
4∑
i=1

~si ·
~mj

|~mj |

)
⇒ 1

c
~|mj | −

~mj

4 · |~mj |

4∑
i=1

~si (5.12)

Because of symmetry the sum of the speaker element vectors can be calculated to be:

4∑
i=1

~si =

 0
0
0

 (5.13)

By utilizing this and solving for |~mj | an estimate of the source-to-receiver distance can be
calculated as:

| ~̂mj | =
c

4

4∑
i=1

T̂i.j (5.14)

5.2.2. Direction of arrival estimation

As the estimate of the source-to-receiver distance has been calculated, it’s time to calculate an
estimated Angle of Departure (AoD) of the microphone relative to the origin of the speaker
array. In this thesis, only the AoD in the x,y-plane is of interest. The AoD θ relative to the
center of spherical speaker array is presented in figure 5.4.
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Figure 5.4.: Figure showing schematic representation of the azimuth angle in respect to the
origin of the speaker array.

To obtain an estimate of the azimuth θ̂, simple trigonometrical operations can be utilized as
presented in equation 5.15, where | ~̂mj | is the estimated source-to-receiver distance presented in
equation 5.14 and m̂j,y is the y-coordinate estimate.

θ̂ = arcsin

(
m̂j,y

| ~̂mj |

)
(5.15)

In this operation the angle θ is wrapped in range [−90◦,90◦], to find the estimated unwrapped
angle θ̂unwrapped (angle in range [0◦,360◦]) the following condition is applied:

θ̂unwrapped =

{
180◦ + θ̂ for m̂j,x < 0

θ̂ for m̂j,x ≥ 0
(5.16)

To solve equation 5.15 an expression for the microphone coordinates needs to be found. This
can be done by defining a vector containing 4 estimates of ToA (one for each speaker element).
The ToA vector is defined as:

~̂Tj =


T̂1,j
T̂2,j
T̂3,j
T̂4,j

 (5.17)

A matrix denoting the position of each speaker element in respect to the origin of the spherical
enclosure can be expressed as presented in equation 5.18 where S̃ denotes the position matrix
1. The rows of the matrix on the right hand side of the equation denote the speaker element
and the columns denote x, y and z coordinates respectively. |~si| is the distance to the speaker

1It is important to note that this matrix assumes that all speaker elements are in free-field.
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element from origin.

S̃ = |~si| ·


1 1 1
1 −1 −1
−1 1 −1
−1 −1 1

 (5.18)

~̂mi,j can be calculated by adapting equation 5.5 and 5.9 to matrix form as presented in equation

5.19, here it is important to note that the inverse matrix S̃−1 cannot be calculated directly but
it can be calculated as a Moore-Penrose pseudoinverse matrix.

~̂mj = |~mj | · (S̃−1 · (|~mj | − c · ~̂Tj)) (5.19)

5.3. Retrieving the time of flight from room impulse response
estimates

Since the system’s sampling frequency is finite, the direct sound might be recorded at non-
integer time-steps of the RIR. This yields that the spacial resolution of the system is bounded
as expressed below.

dmin =
1

Fs
· cair (5.20)

cair ≈ 331.6 + (0.606 · Ttemp) (5.21)

where: dmin is the smallest measurable distance, Fs is the sampling frequency and cair is the
speed of sound where cair can be calculated as presented in equation 5.21 where Ttemp is the
air temperature. This means that all microphone positions within dmin will result in a direct
sound at the same sample. Since the sampling frequency is fixed, the sampling frequency can
be increased in post processing, this technique is called upsampling. In this thesis upsampling
will be done by means of 1D linear interpolation as presented in figure 5.5.
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Figure 5.5.: Figure showing a 1 Hz sine wave sampled with a sampling frequency of Fs = 5 Hz
and the same signal upsampled by factor 10 resulting in a sampling frequency of
Fs = 50 Hz.

The interpolation presented in the figure would result in a minimum distance that is ten times
smaller than the original sampled signal.
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6. Signal processing

6.1. Signal-to-noise ratio

The signal-to-noise ratio (SNR) is defined as the ratio between, power of a signal Psignal, and
power of noise Pnoise. This ratio in dB is represented mathematically in equation 6.1 where
Asignal and Anoise are respectively, the root mean square (RMS) values of signal and noise.

SNR = 10 log(
Psignal
Pnoise

) = 20 log(
Asignal
Anoise

) (6.1)

For simulation purposes it is desirable to set the SNR. This can be done by calculating a scaling
factor as presented in equation 6.2 where SNRscaling is the scaling factor, SNR is the desired
SNR, and Anoise is the RMS value of the noise signal.

SNRscaling = 10
SNR
20 ·Anoise (6.2)

When the scaling factor is obtained the signal needs to be scaled as presented in equation 6.3,
where soriginal is the signal which is being scaled, and Asignal is the RMS value of signal soriginal.

sscaled = soriginal ·
SNRscaling
Asignal

(6.3)

To represent the audible SNR with a single number, an A-weighted SNR, SNRA, was used in
previous studies like the one presented in [40]. SNRA is obtained by first filtering the signal
and noise with an A-weighting filter and using these filtered values to calculate the RMS of
both signal and noise. These RMS values are then utilized in equation 6.1 however resulting in
SNRA.

6.2. Signal detection

Some form of noise distorts all practically and simulated measurements. Correlation can be
used to detect the known measurement signal embedded in noise. The objective of correlation
is to measure the degree to which two signals are similar. In [10] two types of correlations are
defined, namely the cross-correlation and auto-correlation as presented in equation 6.4 and 6.5
respectively. The cross-correlation is a measure of the degree of similarity between two different
signals, e.g., two signals: x[n] and y[n]. The expression for the cross-correlation between these
two signals is the sequence rxy[l]. The auto-correlation is a measure of the degree of similarity
between the same signal, e.g., x[n], and is expressed as the sequence rxx[l]. In both cases, the
index l is the shift/lag parameter.
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ryx[l] =
∞∑

n=−∞
y[n]x[n− l] = y[l] ∗ x[−l] (6.4)

rxx[l] =
∞∑

n=−∞
x[n]x[n− l] = x[l] ∗ x[−l] (6.5)

By utilizing the definition of the received signal y[n] from equation 3.5 and the cross-correlation
definition from equation 6.4 the following expression for the cross-correlation between the trans-
mitted and received signal can be obtained:

ryx[l] = y[l] ∗ x[−l] = hchannel[l] ∗ (x[l] ∗ x[−l]) = hchannel ∗ rxx[l] (6.6)

This means that the cross-correlation between x[n] and y[n] is determined by the auto-correlation
of the input signal convolved with the IR of the channel. If rxx is a Dirac delta pulse y[n] would
be equal to hchannel.

6.3. Matched filtering

A practical implementation of cross-correlation is the matched filter. Matched filtering is a
process for detecting a known piece of a signal embedded in noise, as explained in [41]. The main
task of a matched filter is to maximize the SNR. Figure 6.1 shows a schematic representation
of a known signal s[n], embedded in noise n[n], which is passed through a matched filter.

Figure 6.1.: Schematic representation of a signal, s[n], embedded in noise, n[n], passed through
a matched filter. Index h denotes that the signal was convolved with the filter.

If the input signal, s[n], is a known signal with good auto-correlation properties (close to a
Dirac delta pulse), and n[n] is white noise, then matched filter theory states the maximum SNR
at the output will occur when the filter has an impulse response that is the time-reverse of the
known signal s[n]. This means that the impulse response of the matched filter hmatched[n] is
defined as:

hmatched[n] = s[L− n] (6.7)

where L is the length of the known signal.
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It’s important to note that s[n] can be a continuous periodic signal, and hmatched[n] could be
one period of such signal. In this case, maximum SNR would be obtained when the phase of
s[n] would be the same as hmatched[n].

As defined in equation 6.5, the convolution of a signal with the time-reversed of the same signal
results in the auto-correlation sequence.

6.4. Pulse compression

Inaudible measurement sound can be achieved by utilizing sound signals that are either “hid-
den”/masked by the acoustical background noise in the room where the measurements are
conducted (SNR < 0), or by using sound with levels below the threshold of audibility. The
former alternative can be achieved by utilizing pulse compression.

Figure 6.2.: Example showing how matched-filtering brings out a signal buried in noise.

The signals need to be designed so that the width of the signal passed through a matched
filter is smaller than the width obtained by a standard sinusoidal pulse, hence the name of this
technique: pulse compression. As stated in [42].

The pulse compression aspect of the matched filter results in a good probability of detection
for signals well below the noise floor, and this can be seen in figure 6.2 where the signal buried
in noise was a LIN sweep, and the SNR was −13 dB [43, ch.11]. From the figure, a peak at
the output of the matched filter can be observed; this peak corresponds to the start time of the
LIN sweep.
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6.5. Signal averaging

Signal averaging is a method used in signal processing to increase SNR. Signal averaging is used
when periodic signals in random uncorrelated noise are used. By aligning corresponding samples
of a periodic signal and summing these time-aligned samples, the amplitude will increase with
the number of aligned periods. However, if the noise is random and has zero mean, the RMS
will increase with the root of the number of sums [44].

This can be mathematically presented by considering a sampled signal s[n] which consists of a
periodic signal x[n], and random uncorrelated noise n[n] as presented in equation 6.8.

s[n] = x[n] + n[n] (6.8)

If N additions of the signals are done the summed signal can be expressed as:

N∑
n=1

s[n] =
N∑
n=1

x[n] +
N∑
n=1

n[n] (6.9)

The periodic signal component for sample point i is the same at each repetition if the signal is
stable and the summations are aligned perfectly. This yields:

N∑
n=1

x[n] = N · x[n] (6.10)

Considering the noise component the summation after many repetitions will result in the RMS
of the noise. This is presented in equation 6.11.

N∑
n=1

s[n] =
√
Nσ2n =

√
N · σn (6.11)

By comparing the result of equation 6.10 and 6.11 it can be seen that the amplitude of the
known signal will increase as a function of N, and the noise signal will increase with the square
root of N. This fact yields the following expression for the SNR obtained after averaging N
periods of the signal:

SNRAV G =
N · x[n]√
N · σn

=
√
N · SNR (6.12)

where SNRAV G is the SNR obtained from averaging and SNR is without averaging. It can be
seen that the SNR will increase with the square root of the number of sums.

6.6. Power spectral density

In information theory, additive white Gaussian noise (AWGN) is often used as a model to mimic
the behavior of many random processes that are found in nature [45]. However, AWGN has a
flat frequency, which is rarely a good representation of acoustical background noise [46].
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It’s impossible to make a model that describes the background noise in all rooms as they vary
in size, acoustical properties, and have different sources of noise. Therefore, it is essential to
estimate the frequency content of each specific room’s background noise and use it as a model.
This can be done by assuming that the background noise is a stationary random process.
However, this is just an assumption as transient noise like footsteps, speech, and knocking
sound will occur in most rooms. A good way to estimate the noise content of a room is to
estimate its power spectral density.

Power spectral density (PSD) is the measure of the density of power in a stationary random
process, X(t) per unit of frequency [10]. Using the Wiener-Khinchin theorem the PSD for a
wide sense stationary random process can be calculated as:

Sxx(f) =

∫ ∞
−∞

rxx(τ)e−j2πfτdτ (6.13)

where Sxx is the power density, and rxx(τ) is the auto-correlation process of signal X(t) given
by:

rxx(τ) = E [X(t)X(t− τ)] (6.14)

where E(·) denotes the expectation operator. Equation 6.13 is only valid for wide-sense sta-
tionary process as its auto-correlation function is only a function of the time lag τ and not
the absolute time t. Thus in most practical cases the PSD needs to be estimated. A popular
approach for PSD estimation is the periodogram. Using the periodogram approach the PSD
can be calculated as presented in equation 6.15, where Ŝxx(f) is the estimated PSD, N is the
window size, and X(f) is the frequency content of X(t) obtained by utilizing the FFT of the
signal with the window size N . This equation is derived in chapter 14 in [10], and will therefore
not be derived in this report.

Ŝxx(f) =
1

N
|X(f)|2 (6.15)

A popular averaging method used for PSD is the Bartlett method, which involves three steps.
First, the N-point sequence is subdivided into K non-overlapping segments, each having length
M. The K segments are then averaged to obtain the Bartlett power spectrum estimate. Inter-
ested readers are referred to [10, sec. 14.2.1] for full derivation.

6.6.1. Auto-regressive process

Figure 6.3 is an idealized frequency plot of an MLS buried in background noise. As can be seen
from the figure, the SNR will vary between frequency banks. This is unfavorable as a lower SNR
yields a lower probability of detection. By filtering the measurements signal to “mimic” the
background noise, a more even SNR for all frequency banks would be achieved, thus maximizing
the probability of detection.

37



Figure 6.3.: Schematic representation of MLS buried in acoustical background noise.

An auto-regressive process (AR-process) is a way of modeling weak stationary processes as a
output signal x[n], from a causal LTI system hAR[n], which is subject to white noise w[n]. I.e:

x[n] = hAR[n] ∗ w[n] (6.16)

In an AR-processes, hAR[n] is an all-pole filter that can be described as:

HAR(z) =
1

1 +
∑p

k=1 akz
−k =

1

A(z)
(6.17)

where HAR(z) is the Z-transorm of hAR[n], a is the filter coefficient, p denotes the filter order,
and z is the Z-operator. To find the filter coefficients for a given AR order (a given number
of filter coefficients) the Yule-Walker equation can be used [10, sec. 12.2.2]. The Yule-Walker
equation is presented in 6.18 where γxx is the auto-correlation sequence of x and a are the filter
coefficients.

γxx(0) γxx(−1) γxx(−2) · · · γxx(−p)
γxx(1) γxx(0) γxx(−1) · · · γxx(−p+ 1)

...
...

...
...

γxx(p) γxx(p− 1) γxx(p− 2) · · · γxx(0)

 ·


1
a1
...
ap

 =


γxx(1)
γxx(2)

...
γxx(p)

 (6.18)

To efficiently solve this equation, the Levinson-Durbin Algorithm can be utilized [47].
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7. Experiments

7.1. Detecting the direct sound arrival time using a simple room
simulator

In a first experiment, a simulator, simulating a single source-to-receiver measurement situation
consisting of one loudspeaker and one microphone, was programmed in MATLAB. In this sim-
ulator, the source and receiver, as well as the entire measurement chain, were assumed to be
ideal. A block diagram of the simulator is presented in figure 7.1. In the following sections,
each of the blocks of the simulator will be explained.

Figure 7.1.: Block diagram of source-to-receiver measurement simulator.

The signal x[n] was a signal consisting of N -number of cycles of MLS with L sequence length.
The MLS was generated by utilizing the builtin mls-function in MATLAB1. The signal x[n] was
then convolved with filter hpre[n] by utilizing the conv -function in MATLAB.

Filter hpre[n] was constructed by convolving two filters, as presented in figure 7.2, namely:
hshaping and hHP .

Figure 7.2.: Block diagram showing the construction of filter hpre[n]

The filter hshaping was a 2’nd order filter obtained by utilizing the aryule-function in MATLAB
and was a filter that shaped the measurement signal to mimic the frequency spectrum of the
background noise. This function generates filter coefficients of the p’th order AR-process by
utilizing the Levinson-Durbin algorithm as previously presented in section 6.6.1. The AR-model

1URL to MLS-function: https://se.mathworks.com/help/audio/ref/mls.html
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was of the stationary part of the recorded background noise, nrecorded. The stationary part was
found by listening to the recording through uncalibrated headphones. Stationary is defined as
parts of the recording where no transient noise, like sound of footsteps, and knocking, occurred.
Filter hHP was a 1’st order high-pass Butterworth filter with a cut-off frequency at 500 Hz 2.
The reason for the high-pass filter is to firstly filter the signal to match the frequency response
of the loudspeaker, and secondly to filter the DC-offset caused by hshaping[n]. The Z-transform
of hshaping[n] and hHP [n] had the form as presented in equation 7.1 and 7.2 respectively, where
ai and bi coefficients were obtained by the respective MATLAB-functions, and H(z) denotes
the Z-transform of the respective filter.

Hshaping(z) =
1

1 + a1,shaping · z−1 + a2,shaping · z−2
(7.1)

HHP (z) =
b0,HP + b1,HP · z−1

1 + a1,HP · z−1
(7.2)

This yields that the Z-transformed hpre[n], Hpre(z), was obtained by solving the following
equation:

Hpre(z) = Hshaping(z) ·HHP (z)

=
b0,HP + b1,HP z

−1

1 + (a1,shaping + a1,HP )z−1 + (a1,shapinga1,HP + a2,shaping)z−2 + a1,HPa2,shapingz−3

(7.3)
Filter hpre[n] was then obtained by utilizing impz -function3 in MATLAB by inserting the ai and
bi values of Hpre(z). The signal obtained from convolving x[n] with hpre[n] was then convolved
with hroom[n] which was a simulated RIR resulting in signal s[n]. The RIR was simulated by
utilizing a MATLAB function by professor Peter Svensson at Norwegian University of Science
and Technology (NTNU). This function is based on the theory presented in section 3.2 and can
be seen in appendix A.

Noise, nrecorded[n], was then added to s[n]. nrecorded[n] was a recorded background noise. Two
unique background noise recordings were utilized as noise in the simulator. The background
noises were recorded in:

• A quiet library where people read but no speaking occurred during recording

• An empty conference room with ventilator noise

The background noises were recorded in mono with a Zoom H4N pro digital recorder, at a 44.1
kHz sampling frequency. To define imperceivable measurement signal at a source-to-receiver
distance of 1 m, a hroom[n] with 1 m source-to-receiver was generated. A .wav file containing
s[n] + nrecorded was then created. This audio file was listened to, and s[n] was scaled until
it was imperceptible in casual listening. Scaling was done as previously described in section

2This filter was constructed by utilizing butter -function in MATLAB
3Note: the impz-function approximates an Infinite Impulse Response (IIR) to be a Finite Impulse Response

(FIR) by utilizing the MATLAB filter-function https://se.mathworks.com/help/signal/ref/impz.html.
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6.3, resulting in an imperceivable SNR. When imperceivable SNR was obtained, five scaling
factors of the measurement signal x[n] were found empirically. The five scaling factors were a
range from a scaling factor which yielded an imperceivable s[n], to 3 dB lower SNR than the
imperceivable s[n].

The sum s[n] + nrecorded[n] was then convolved with filter hpost[n] as presented in figure 7.3,
where hHP [n] is the same high-pass Butterworth filter as previously, and h′shaping[n] is the
inverse of the previously presented shaping filter. Also here convolution was done by utilizing
the filter-function. The Z-transform of this filter had the following form:

H ′shaping(z) = 1 + a1,shaping · z−1 + a2,shaping · z−2 (7.4)

where the coefficients are the same as previously presented in equation 7.1.

Figure 7.3.: Block diagram showing the construction of filter hpost[n]

The Z-transform of filter hpost[n] was obtained by solving:

Hpost(z) = H ′shaping(z) ·HHP (z) (7.5)

The signal on the output of hpost[n] was then convolved with a matched filter, hmatched[n], by
utilizing the filter-function. This filter was obtained by taking the time inverse of one cycle of the
MLS, x[n], as previously described in section 6.3. As a result, the output of the matched-filter
was N number of RIR estimates ĥroom[n] (i.e., the same number of estimates as the number of
MLS cycles). Each estimate had the same number of samples as the MLS length L.

The output of the matched-filter was finally convolved with a moving average filter, haveraging[n],
by utilizing the conv -function. The filter was constructed as presented in equation 7.6, where
M is the number of averages, and L corresponds to the period of the known signal (i.e., the
same as the length of one cycle of x[n]).

haveraging[n] =
1

M

M−1∑
m=0

δ[n−mL] =
1

M
· (δ[n] + δ[n− L] + · · ·+ δ[n− (M − 1) · L]) (7.6)

This averaging filter was expressed in the Z-domain by doing a Z-tranform of equation 7.6. This
is presented in equation 7.7, where Haveraging(z) is the filter in Z-domain.
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Haveraging(z) =
1

M
·
M−1∑
m=0

z−Lm (7.7)

This equation was solved by utilizing the sum of geometric series:

Haveraging(z) =
1

M
·
M−1∑
m=0

z−Lm =
1

M
·
M−1∑
m=0

(
1

z−L

)m
=

1

M
· 1− z−LM

1− z−L
(7.8)

The filter haverage[n] was then obtained by utilizing the impz-function in MATLAB. The output
of the filter was y[n].

7.1.1. Monte Carlo simulations

Monte Carlo simulations were conducted to verify the results. The purpose of the Monte Carlo
simulations was first to study the number of signal averages (number of periods of the received
signal that are averaged by the moving average filter) that were required to detect correct ToA
for several source-to-receiver distances and reverberation times and secondly study a threshold
of detection for the same parameters.

The simulations were conducted by utilizing 500 different parts of the recorded background
noises, and utilizing the simulator previously presented in figure 7.1. The part of the background
noise recordings used as nrecorded[n] was changed for each of the 500 iterations of the Monte
Carlo simulation, resulting in 500 different measurement situations. The lowest number of signal
averages in each iteration that yielded the correct ToA was saved. A correct ToA was the exact
sample at which the direct sound occurred in hroom[n]. The ToA was estimated as presented
in equation 7.9, where n̂ToA is the ToA estimate expressed in samples, and y[n] is the output
of the simulator presented in figure 7.1. This estimate was based on the theory presented in
section 5.1.

n̂TOF = arg max
n

|y[n]| (7.9)

The code for the Monte Carlo simulation used to find number of averages can be seen in
Appendix B.

Monte Carlo simulations with 500 iterations were conducted to determine a threshold of de-
tection. For each Monte Carlo simulation, an attempt was made to estimate the ToA. For an
estimate to be calculated, an impulse response peak needed to exceed a threshold, so the ToA
was:

n̂TOF =

arg max
n

|y[n]| if max |y[n]|
y∗RMS

>= Threshold

not calculated if max |y[n]|
y∗RMS

< Threshold
(7.10)

where y∗RMS is the RMS-value calculated without the 4 samples around the peak. For each
iteration, there were three possible outcomes:

1. nTOF was estimated, and correct (identical to direct sound of hroom[n])
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2. nTOF was estimated, but incorrect.

3. nTOF could not be estimated.

The counts of these three types of results lead to (1) the probability of correct detection, pCD,
(2) the probability of incorrect detection, or false alarm, pFA, and (3) the probability of a missed
detection, pMD. These probabilities were computed for a number of threshold values. The code
for this simulation can be seen in Appendix C.

7.2. Detecting the direct sound arrival time - measurements

A practical test was conducted in an empty conference room with noise from a ventilator to
verify the results obtained from simulations. The room was located at the acoustics laboratory
at NTNU. A block diagram showing the principle of the measurements is presented in figure
7.4. The two filters hpre[n], hpost[n], and haverage[n] are the same as previously defined.

Figure 7.4.: Block diagram showing the the measurement chain used for the field measurements,
where d is the distance between the source/loudspeaker and receiver/microphone.

As can be seen from figure 7.4, one microphone and one loudspeaker placed at a distance d from
each other were utilized to conduct the measurements. The loudspeaker and microphone were
connected to a sound-card and a trigger signal, which was connected directly from the output of
the sound-card to an input. The sound-card was connected to a computer running Audacity4.
Audacity did the recording and playback of the measurement signal.

The measurements were split into three stages:

• Stage 1: Pre-processing

4A free open source audio software URL: https://www.audacityteam.org/
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• Stage 2: Conducting the measurements

• Stage 3: Post-processing

These three stages will be explained in the following sections, and the equipment utilized to
conduct the measurements is listed in table 7.1.

Table 7.1.: Equipment used to conduct the measurements

Equipment Manufacturer Type

Microphones BSWA 216

Microphone amplifier BSWA 4000

Sound Card Roland Studio-capture UA-1610

Loudspeaker Adam Audio A5X

Software Audacity Version 2.3.3

Software Mathworks MATLAB Version R2018b

Sound calibrator Norsonic Nor1256

7.2.1. Stage 1: Pre-processing

In the first phase, background noise in the room was recorded using the sound card and the
microphone. When a recording was obtained for the room, the filtering of the measurements
signal was done. The measurement signal contained multiple cycles of an MLS.

The measurement signals were filtered by hpre[n] in the same manner as for the simulator. When
filtering was completed, an audio-file of xfiltered[n] was generated by utilizing the MATLAB’s
audiowrite function. The audio-file was a 16-bit .wav format file.

The code for pre-processing can be seen in Appendix D.

7.2.2. Stage 2: Conducting the measurements

Figure 7.5.: Pictures of the measurement setup in the conference room showing microphone and
loudspeaker placement.

Measurements were conducted for 5 m source-to-receiver distance. A laser distance meter
was used to measure the distances. The source-to-receiver distance was measured from the
microphone directly between the mid-range woofer and the tweeter of the loudspeaker. The

44



microphone was placed on a stand directly in front of the loudspeaker in line of sight. The
loudspeaker was placed on a stand, see figure 7.5.

Figure 7.6.: Figure showing the three measurement positions. Note figure is not to scale.

The distance from the floor to between the mid-range woofer and the tweeter was 1.2 meters.
The microphone was extended to match the height of the loudspeaker. The microphone and
loudspeaker placements during the measurement can be seen in figure 7.6.

At first, the generated audio-file of xfiltered[n] was transmitted with a loud volume to the loud-
speaker, and a recording of the microphone signal was done simultaneously. This recording of
the loud measurement signal was done to determine the SPL at the receiver for a given amplifi-
cation of the builtin sound-card amplifier. Recordings of the calibrator were also conducted to
determine the digital value corresponding to 94 dB SPL. When the loud recording was obtained,
a new recording/measurement was conducted. This time, the sound card’s amplification was
reduced until the measurement signal was not perceivable by the author of this report at 1 m
from the source, i.e., the measurement signal was masked by the background noise in the room.

The measurements were conducted for a range of SNRs.

7.2.3. Stage 3: Post-processing

When all the measurements were completed, the audio-files obtained were imported to MAT-
LAB. The audio files were then filtered by hpost[n], hmatched[n], and haverage[n]. The matched
filter coefficients were the time inverse of the MLS used as x[n]. The trigger signal xtrigger[n]
was utilized to separate y[n] into single measurement situations where each peak of the trigger
denoted tToA = 0.

The ToA estimate expressed in samples was obtained by up-sampling y[n], by a factor of 16, by
utilizing the interp-function in MATLAB. This resulted in a new variable yupSampled[n]. The
ToA estimate was then calculated as presented in equation 7.11 where t̂ToA is the ToA estimate,
FS is the sampling frequency, and upFactor is the up-sampling factor.
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t̂ToA =
1

Fs · upFactor
arg max

n
|yupSampled[n]| (7.11)

The distance was then calculated as follows:

d̂ = t̂ToA · c (7.12)

where c is the sound speed in air (343 m/s).

Also in these measurements a range of threshold was studied as previously presented in equation
7.10, however, here utilizing equation 7.11 instead of the sampled ToA estimate n̂ToA[n].

The code used for post-processing can be seen in appendix E.

7.3. Estimating the direction of arrival using detailed room simulator

A 3D localization system was simulated in MATLAB. Figure 7.7 presents the block diagram of
the simulator.

Figure 7.7.: Block diagram of the 3D simulator.

The measurement signals in this simulator were either pure PN-sequences (Gold or Kasami) or
PN-sweeps. Gold sequences were utilized for odd orders sequence lengths, and Kasami sequences
were utilized for even orders sequence lengths. The sweep signals were generated according to
the theory presented in 4.5.1. Each of the 4 PN-sweeps was coded with a unique Kasami or Gold
sequence. This resulted in four measurement signals denoted x1[n] to x4[n] in the block-diagram.
Each measurement signal contained multiple cycles of the respective sequence/sweep.

The PN-sweep signals were time-delayed with respect to each other. This was done by appending
zeros in-front of signals x2[n] to x4[n]. The number of zeros appended corresponded to T/4, T/2,
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and 3T/4 for x2[n], x3[n], and x4[n] respectively, where T denotes the period of the PN-sweep5.
This was done to make the sound generated by the four signals played simultaneously sound
more like “noise”. The sweeps used in the PN-sweeps were generated by utilizing equation 4.21
in section 4.5.1, where the values of f1 were either 2 kHz or 5 kHz, and f2 was 20 kHz.

Gold and Kasami sequences were obtained by utilizing the MATLAB functions in Appendix F.
These functions were developed based on the theory presented in chapter 4.

Each measurement signal was then individually filtered by hpre[n], which was the same as
presented previously, except two cut-off frequencies of the high-pass filter were studied here,
namely; 2 kHz and 5 kHz. This was done to make the simulations more realistic, and match the
frequency response of a real loudspeaker array where small loudspeaker elements are utilized.

In this thesis, a simulated loudspeaker array was utilized. The array consisted of four-point
sources in free-field (no loudspeaker box) in a tetrahedron configuration, as previously presented
in figure 5.2. The elements were spaced 200 mm apart. Each loudspeaker element to receiver
distance resulted in a unique RIR, which are denoted hroom,1[n] to hroom,4[n] in the block-
diagram. Thus for each receiver position, four unique RIR’s were utilized. The receivers were
ideal point sources.

The RIRs were simulated in the room acoustics simulation software CATT-acoustics6. The
CATT-acoustics settings are attached in appendix G. The absorption of the walls, ceiling, and
the floor was set arbitrarily until a T60 of about 0.6 seconds was obtained. Four different sources
were utilized at different positions in the simulated room to test different arrival angles. One
of the sources was at 1 m source-to-receiver distance and was used to determine imperceivable
measurements signal in the same manner as for the simplified RIR.

All signals on the outputs of the RIR’s, named s1[n] to s4[n] where then added together. The
recorded background noise nrecorded[n] was also added to the signals. The measurement signals
x[n] were scaled until s[n] was deemed imperceivable by the author. When an imperceivable
measurement signal was obtained the power of x[n] was further scaled down by 3 dB.

All the added signals and noise were then filtered by hpost[n], which was the same as previously
defined, but also here the cut-off frequency of the high-pass filter was adjusted. Finally, four
signals, y1[n] to y4[n], containing 4 RIR estimates were obtained by filtering the whole signal with
four individual matched filters (one for each measurement signal), and averaging the outputs of
the filters with a moving average filter as previously defined.

Finally signals y1[n] to y4[n] were utilized to estimate the receiver positions in respect to the
loudspeaker array center. The ToA of each loudspeaker element to microphone position were
estimated by up-sampling each y[n] and utilizing equation 7.117. The ToA estimates were then
utilized in equations 5.14 and 5.19 to obtain an estimated microphone position. the MATLAB
function pinv was used to solve equation 5.19. The angle was finally calculated by utilizing
equation 5.15.

5This was done only to the first cycle of each signal, resulting in all cycles having the same time-delay in respect
to each other for the entire measurement signal.

6URL to CATT-acoustics website: https://www.catt.se/
7y[n] consisted of multiple cycles and was therefore split into many single estimates by utilizing a trigger to

determine time = 0 seconds of each estimate.
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Monte Carlo simulations with 500 iterations were conducted. In these simulations, a more
straightforward threshold of detection was used. If the source-to-receiver distance in any coor-
dinate (x, y, or z) was longer than 15 m, the estimate was discarded, and a missed detection
was saved.

7.4. Detecting the direct sound arrival time for a moving receiver -
measurements

A study of moving microphones was conducted to determine which measurement signal would
be best suited in a final system. A range of different lengths of PN-sequences, sine-sweeps, and
PN-sweeps was studied by utilizing the system presented in figure 7.8.

Figure 7.8.: Figure is a schematic representation of the measurement setup utilized to study
moving microphones.

A turntable was utilized to rotate a microphone placed on a stand and a loudspeaker placed at
distance d from the table center. The microphone was extended at different lengths from the
table center, and the rotation speed of the microphone was calculated as presented in equation
7.13, where vmicrophone is the rotation speed of the microphone, trotation is the time it takes for
the table to rotate 360◦, and r is the distance at which the microphone was extended from the
table center.

vmicrophone =
2π · r
trotation

(7.13)

The measurements were conducted by rotating the microphone at a constant rotation speed at

48



different extensions and playing a continuous stream of measurement signals of different types
and lengths through the loudspeaker. The measurement signals were constructed in MATLAB
by utilizing the audiowrite-function, and the signals were constructed in the same manner as
previously, however, no pre-filtering was done. The measured signal from the microphone and
a measured trigger signal, which was obtained by simply connecting one output of the sound
card directly to an input, were passed through a matched filter, which was constructed of the
time inverse of one cycle of x[n]. The distance was then estimated as previously presented in
equation 7.12.

The measurements were conducted in an empty conference room with noise from a ventila-
tor. The room was located at the acoustics laboratory at NTNU and material used for these
measurements are presented in table 7.2

Table 7.2.: Equipment used to conduct the measurements

Equipment Manufacturer Type

Microphones BSWA 216

Microphone amplifier BSWA 4000

Sound Card Roland Studio-capture UA-1610

Loudspeaker Adam Audio A5X

Software Audacity Version 2.3.3

Software Mathworks MATLAB Version R2018b

Turntable Norsonic NOR265
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8. Results

In this chapter, the results obtained from the experiments will be presented. Firstly the results
of the signal shaping filter will be presented, followed by results obtained from the simple
room simulator, and the field measurement conducted to estimate the arrival time. Then the
results obtained from the detailed room simulator utilized to estimate the direction of arrival
and receiver coordinates, and finally, the results obtained from measurements of the moving
receiver.

8.1. Measurement signal shaping

As described in the experiments chapter, the measurement signal was shaped to mimic the
frequency spectrum of the background noise in the given rooms.

Figure 8.1.: Figure presents results of the shaping filter hshaping[n].

The effect of the shaping filter is presented in figure 8.1. The top graph presents the shaped
signal s[n] (the same as previously presented in figure 7.1) and the measured background noise
nrecorded[n], and the bottom graph presents signal s[n] filtered by hpost[n] and background noise
filtered with hpost[n]. As can be seen from the top graph, the shaped MLS follows the background
noise’s spectral shape with little deviation. It can be seen that the magnitude of the recorded
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(a)

(b)

Figure 8.2.: Figure showing two histograms where histogram (a) shows the distribution of
recorded background noise, and histogram (b) shows the distribution of recorded
background noise filtered with the inverse shaping filter h′shaping[n]. Note that the
scaling of x-axis differ between the two figures

background noise is reduced with ∼ 3 dB per frequency decade. This reduction corresponds
to “pink”-noise characteristics, which is often used to generalize acoustical background noise.
From the bottom graph, it can be seen that background noise filtered with the inverse shaping
filter results in a “whitened” noise signal, which oscillates around −12 dB. The histograms of
the background noise and filtered background noise are presented in figure 8.2 (a) and (b),
respectively. By studying the histograms, it can be seen that by filtering the background noise
with the inverse shaping filter, the noise becomes white and Gaussian with ∼ 0 mean.

8.2. Direct sound arrival time - simple room simulator

The mean number of signal averages required to detect correct ToA (the correct ToA was the
correct direct sound sample) obtained from Monte Carlo simulations are presented in figure 8.3,
where results for two different background noise recording and two different signal lengths are
presented. As can be seen from the figure, when the source-to-receiver distance increases, so
does the number of averages, navg[−], required to detect correct ToA. It can also be observed
that 4095 samples long MLS requires roughly half of the necessary averages compared to 2047
samples long MLS. The results are for an A-weighted SNR of −12 dB at 1 m source-to-receiver
distance. The signal was imperceivable for the author at −9 dB A-weighted SNR.
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Figure 8.3.: Figure presents the mean number of averages necessary to detect correct source-to-
receiver distance for two different nrecorded[n] and L.

The results presented in figure 8.3 only show the mean number of signal averages required
to detect correct source-to-receiver distance without any form of threshold of detection (all
estimates are over threshold). It was therefore decided to study a specific case of the results
presented in figure 8.3 to analyze how a threshold of detection would influence the required
number of averages to detect the direct sound correctly. The threshold of detection for 5 m
source-to-receiver with 0.9 s reverberation time, with the background noise recorded in the
conference room as the noise signal is presented in figure 8.4 and 8.5.

Figure 8.4.: Figure showing the probability of correct detection pCD and probability of false
alarm pFA for a range of thresholds of detection for a 2047 samples long measure-
ment signal and a 5 m source-to-receiver distance with conference room background
noise.

The probability of correct detection pCD and the probability of false alarm pFA are presented
in figure 8.4, and as can be seen from the figure the probability of correct detection increases
drastically, and the probability of false alarm decreases when the number of signal averages
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increases. Figure 8.5 presents the probability of missed detection pMD for the same situation as
in figure 8.4. As observed in figure 8.5, pMD increases at a lower threshold for a lower number of
signal averages. By studying the two figures, it can be seen that utilization of a moving average
filter with three averages and a threshold of detection at 12 dB, pFA approaches 0% and pCD is
around 97%. It is important to note that without averaging and a threshold of detection at 13
dB, pCD is around 40% and pFA is around 0%, which yields that in 1 second of measurement
around 8 correct distance estimates are obtained.

Figure 8.5.: Figure showing the probability of missed detection pMD for a range of thresholds of
detection for a 2047 samples long measurement signal and a 5 m source-to-receiver
distance with conference room background noise.

Figure 8.6.: Figure showing mean number of averages, navg[−] that is required to detect correct
direct sound pulse.

It is also important to note that the number of averages required to detect correct source-to-
receiver distance will depend on the reverberation of the room in which the measurements are
conducted. The effect of reverberation is presented in figure 8.6, where the conference room
background noise was utilized as a noise signal, and a 2047 samples long MLS was used as
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the measurement signal. As can be observed from the figure, the number of averages required
increases both as a product of source-to-receiver distance and reverberation time.

8.3. Direct sound arrival time - measurements

The estimated RIR of the room where the measurements were conducted is presented in 8.7.
These estimates were obtained using multiple MLS cycles and transmitting the signal with 17
dB A-weighted SNR. Figure (a) and (b) were obtained by utilizing 4095 samples and 2047
samples long MLS, respectively. The wrap-around effect causes the noise-like signal before the
direct sound pulse in both (a) and (b). It can be observed that the noise-like signal has a smaller
amplitude for the 4095 samples long estimate as compared to 2047 samples, which is logical
as the wrap-around effects will be smaller for the longer sequence. The estimate where 2047
samples were utilized will be used as a reference in the results presented in this section, and the
estimated source-to-receiver distance of the reference RIR is ∼ 5.05 m (ToA ∼ 14.7166 ms).

(a)

(b)

Figure 8.7.: Estimated RIR with 4095 samples long MLS (a), and 2047 samples long MLS (b).
Figure (b) is used as reference in the following figures.
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The mean ToA obtained from measurements for a range of A-weighted Sound Pressure Levels
(SPLA) is presented in figure 8.8. For each SPLA, the presented results are a mean of ∼ 4000
ToA estimates. As can be observed from the figure, the most significant deviation from reference
occurs at 6 dB SPLA, and for all levels under 8 dB, largest deviations are observed for the non-
averaged signal. At 6 dB SPLA, the non- averaged signal deviates with ∼ 0.34 ms, which yields
an error of ∼ 0.12 m for 343.3 m/s sound speed. It can also be observed that the deviation
decreases with the number of averaged cycles. The SPLA was based on measurements of the
measurement signal several dB above the noise floor and was calculated only ones during the
measurements.

Figure 8.8.: Figure showing mean of 4000 ToA measurements for a range of SPLs.

The mean measured ToA for 5 dB SPLA for a range of detection thresholds is presented in
figure 8.9. As can be observed from the figure the deviation approaches ∼ 0 at 14 dB, 15 dB,
and 16 dB threshold of detection for 3, 2, and none cycles averaged respectively. Outliers in the
measurement data-set cause the increase in deviation at ∼ 13 dB threshold of detection for the
non-averaged signal.

Figure 8.9.: Figure shows mean of 4000 ToA measurements for a range of thresholds of detection.
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Because of factors like temperature fluctuations, inaccuracies in the distance measurements, and
other uncertainties, a measure of how good the estimated ToA is, can be the standard deviation
as presented in figure 8.10. As can be observed from the figure, the signal where 3 cycles are
averaged has a maximum standard deviation of ∼ 1.1 ms, which corresponds to ∼ 0.378 m.
Also here the curves approach ∼ 0 for 14 dB, 15 dB and 16 dB thresholds of detection. When
the threshold of detection increases, the standard deviation decreases, resulting in the mean
estimated ToA approaching reference.

The probability of missed detection pMD is presented in figure 8.11. By comparing figure 8.9,
8.10, and 8.11 it can be observed that by choosing a threshold of detection at 16 dB, the standard
deviation, and deviation from reference approach zero for all three cases. For the non-averaged
measurements 16 dB threshold of detection results in pMD =∼ 50%, which results in ∼ 10
estimated distances per second.

Figure 8.10.: Figure shows standard deviation of 4000 ToA measurements for a range of thresh-
olds of detection.

Figure 8.11.: Figure shows probability of missed detection of 4000 ToA measurements for a
range of thresholds.
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8.4. Direction of arrival and position estimates using detailed room
simulator

The simulated room, microphone positions, and loudspeaker element positions from CATT-
acoustics are presented in figure 8.12. The microphones numbered 1 to 4 are colored blue in the
figure, and the loudspeaker elements are red. Microphones 01, 02, 03, and 04 will be referred
to as Mic 1, Mic 2, Mic 3, and Mic 4.

Figure 8.12.: Simulated room, loudspeaker positions and microphone positions. Microphones
are blue, and loudspeaker are red. Figure obtained from CATT-acoustics

The result will be presented for two PN-sweep lengths; namely, 8176 samples and 10220 samples.
Each of the PN-sweeps was coded with a unique 511 samples long Gold sequence. Two PN-
sequence lengths will be presented, namely; 4095 samples long Kasami sequences, and 8191
samples long Gold sequences. Other sequence lengths were studied, but shorter sequences had
a very high probability of missed detection and are therefore not presented here. The same two
nrecording noise signals as for the simple room simulator were studied, but also here the results
obtained were similar between the “Conference” and “Library” background noise; thus only the
conference background noise will be utilized in the results presented here. In this simulator, only
one kind of threshold was used, which was a maximum source-to-receiver distance threshold. If
a source-to-receiver distance was greater than 15 m, the estimate was rejected, and a missed
detection was counted.

57



(a)

(b)

Figure 8.13.: Figure showing pMD for two cases, (a) presets pMD for PN-sweeps with sequence
lengths L = 8176 sample, and L = 10220, and (b) presents PN-sequences (Kasami
and Gold) with length, L = 4095, L = 8191. In both (a) and (b) two band-widths
are presented, namely; 2kHz-20kHz and 5kHz-20kHz.

The probability of missed detection, pMD, for PN-sweeps with periods L = 8176, and L =
10220 (for the sweeps L denotes the number of samples in a single sweep period), and for PN-
sequences (Kasami and Gold) with sequence length, L = 4095, and L = 8191, are presented
in figure 8.13 (a) and (b) respectively. In the two figures two different bandwidths (BW) can
be observer namely; 2 kHz - 20 kHz, and 5 kHz - 20 kHz. For PN-sweeps, the BW was set as
previously presented in the experiments chapter, and the BW of the PN-sequences was obtained
by changing the cut-off frequency of the high-pass filter. The signals with BW = 2 kHz−20
kHz were deemed imperceivable by the author at SNRA = −8 dB and for BW = 5 kHz−20
kHz the signal was imperceivable at SNRA = −11 dB. It is important to note that the SNRs
were calculated for the entire audible frequency range of the noise.

As can be observed from the figures by reducing the bandwidth of the PN-sweep, pMD was
reduced significantly, and for both 8176 samples long, and 10220 samples long sweeps the
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probability of missed detection approached 0 at navg = 15. For the PN-sequences, the reduction
of bandwidth resulted in little reduction of pMD. The probability of missed detection for the
8191 samples long Gold sequence with bandwidth 2 kHz - 20 kHz has the lowest values of all
the signals presented for this bandwidth.

The lowest pMD was obtained for PN-sweeps with bandwidth 5k Hz- 20 kHz; it was decided
to study the two PN-sweeps further. Figure 8.14 presents the mean estimated AoD. The mean
is of all Monte Carlo iteration estimates. As can be observed from the figure for both signal
lengths, the estimate deviate by a couple of degrees from the correct AoD when navg = 2, and
the 8176 and 10220 samples long sequences cross the correct AoD at navg = 4 and navg = 3
respectively. As can be seen, the 10220 samples long PN-sweep deviates more than the 8176
samples long PN-sweep from the correct AoD for navg ≤ 4, but it is also important to note that
both signals deviate by a maximum of 1◦ from the correct AoD for navg ≥ 4.

Figure 8.14.: Mean estimated Angle of Departure (AoD) for MIC 4, by utilizing 8176 and 10220
samples long PN-sweeps with a frequency bandwidth = 5 kHz - 20 kHz, all sweeps
utilized were coded with an unique Gold sequence.

The standard deviation is presented as a measure to determine how well the system operates
for a range of averages of the moving average filter. The standard deviation of the two signals
for a range of averages can be seen in figure 8.15. As can be seen from the figure, the deviation
has a large decrease for navg > 2. The lowest standard deviation for both signal lengths is at
navg = 20 and the standard deviation is ∼ 1◦.
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Figure 8.15.: Standard deviation for MIC 4 AoD estimate, for 8176 and 10220 samples long
PN-sweeps with a frequency bandwidth = 5 kHz - 20 kHz, all sweeps utilized were
coded with an unique Gold sequence.

Figure 8.16.: Microphone position estimate by utilizing 500 Monte Carlo simulation iterations,
and multiple cycles of an 8176 samples PN-sweep, and a moving average filter
where five periods of the sweep are averaged.

The position estimate obtained from Monte Carlo simulations in 2D is presented in figure 8.16,
where five signal averaging has been used for the PN-sweep with L = 8176. As can be seen from
the figure, a little deviation from the correct position can be seen at Mic 1, and the deviations
increase as a function of source-to-receiver distance; thus, the largest deviations can be observed
for estimates of Mic 4. As can be seen from the figure, a deviation from the correct position of
∼ 1.5 m is estimated for Mic 4 (yellow diamonds). However, it is important to note that most
estimates are within a couple of cm deviation from the correct position.
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8.5. Estimates of direct sound arrival time with moving microphones

Measurements of moving microphones were conducted to study how time-variance influences
the distance estimates. Many signal lengths and types were studied, but only the PN-sweep
and LIN-sweep will be presented here.

The estimated source-to-receiver distance for a microphone moving at 0.84 m/s and 0.42 m/s
are presented in figure 8.17 (a) and (b) respectively. The measurements were conducted by
transmitting many cycles of the measurement signals to the loudspeaker, thus conducting con-
tinuous measurements. The figure presents results for 8176 samples long PN-sweep coded with
511 samples long MLS. The reference signal was 1000 samples long, not coded sweep. The
received signal was averaged in post-processing by utilizing a moving average filter.

(a)

(b)

Figure 8.17.: Figure showing estimated source-to-receiver distance for moving microphone. The
microphone moves with a speed of 0.84 m/s (a) and 0.42 m/s (b). The measure-
ment signal was 8176 samples long PN-sweep coded with 511 samples long Gold
code. The estimates were averaged in post-processing by a moving average filter.
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As can be seen from the figure, the non-averaged PN-sweep gives a good estimate at both
microphone rotation speeds with little deviation from reference. For 0.42 m/s, the measurement
signal where five periods were averaged also follows the reference signal curve, however, with a
lag. As can be observed from graphs (a) and (b), the number of estimates presented for navg = 5
and navg = 10 is lower than the number of estimates of the non-averaged case. The reason for
this is that estimates outside the window of interest (estimates larger or smaller than the limits
of the figures) were not included.

Figure 8.18 shows the influence of averaging. As can be seen, the unaveraged estimate looks
like a sine wave for the entire 30 seconds measurement; the change at 15 seconds is caused by
a change of direction of the turntable. The not-averaged case estimates are also very evenly
spaced as can be observed the increase in the number of averages of the moving average filter
results in a distorted estimate, and uneven spacing between estimates. It is also important to
note that all three graphs show similar estimates when the change in source-to-receiver distance
is small (peaks of the sine-wave).

Figure 8.18.: Figure showing distance estimate of microphone moving at 0.84 m/s and the mea-
surement signal was an un-coded 8176 samples long sweep. The graph from top
to bottom represented not-averaged, navg = 5, and navg = 10 estimates.

PN-sweeps were generally more affected by time-variance as compared to un-coded sweeps.
MLS with the same sequence length as the PN-sweeps were significantly affected by time-
variance, especially when averaged. PN-sweeps coded with shorter PN-sequences resulted in
better robustness to time variance than longer sweeps coded with longer sequences.
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9. Discussion

In this chapter, a discussion of the results presented in the previous chapter will be presented.
First, each of the experiments will be discussed separately, followed by a discussion of the entire
concept, future work, and possible implementation of such a system.

9.1. Measurement signal shaping

As could be observed in figure 8.1, the recorded background noise had almost perfectly pink
characteristics. The shaped signal s[n], on the other hand, followed the 3 dB magnitude reduc-
tion per decade but oscillated a lot more than the recorded background noise. The reason for
this might be that the simulated RIR with which the measurement signal (MLS) was convolved
to obtain s[n] might not have entirely flat magnitude since a finite normally distributed signal
is utilized to generate the reverberation tail.

The imperfect white characteristics of the recorded noise filtered with the inverse shaping filter
might be caused by the low order of the AR-model that was utilized to obtain the filter coef-
ficients. It might be assumed that the filtered background noise would become “whiter” if a
higher-order AR-model would be utilized for the inverse shaping filter.

In all measurements where the shaping filter was utilized, the filter coefficients were obtained
only once during the simulations/measurements; thus, if changes in the background noise were
present during the measurements/simulations, the signal would not be shaped to match these
changes. However, on the other hand, if the coefficient were to be obtained to often, the signal
shaping could result in a signal that is shaped by transients, or noise sources that are not always
part of the background noise, which again could result in amplification at some frequencies which
could potentially make the measurement signal more audible.

By utilizing a second-order AR-model to obtain the filter coefficients, the model would follow
the shape of the frequency spectrum but would not “fit” the spectrum to match details like
ventilator noise or other noise sources that have a specific frequency range. It can be discussed
that a higher-order AR-model could be used to determine if any tonal noise sources are present,
and then utilizing these sources to mask the measurement signal. However, this approach could
result in an audible measurement signal if the noise sources used for masking would suddenly
disappear, and is therefore not recommended.

Furthermore, it might be discussed if an AR-model is the right approach since the frequency
spectrum of the noise has almost perfectly pink characteristics. For the swept signal, a loga-
rithmic sweep could be used without any shaping filter at all.
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9.2. Direct sound arrival time - simple room simulator

As could be previously observed in figure 8.3 for distances up to ∼ 11 m, the 4095 MLS length
needs roughly half the number of signal averages as compared to 2047 samples long MLS. This
means that the number of samples necessary to detect correct source-to-receiver distance is
roughly the same for 2047 samples long MLS and 4095 samples long MLS, because if, e.g.,
navg = 4 for 2047 and navg = 2 for 4095 then 8188 samples are necessary to detect correct
distance for 2047 samples long MLS, and 8190 samples are necessary for 4095 samples long
MLS.

When the source-to-receiver distance was greater than 11 m, the shorter MLS needed roughly
three times the number of signal averages compared to the longer MLS. This might be caused
by the wrap-around effects, as the shorter MLS will result in a more significant part of the
reverberation tail being wrapped-around.

The maximum distance that is possible to measure will depend on the MLS length. For 2047
samples long MLS, the maximum source-to-receiver distance that could be measured would be
∼ 15.9m. For distances longer than that, the direct sound would also wrap-around to the next
estimate. In this thesis, 15 m was used as an absolute maximum distance of the system. In
most cases, 15 m would be sufficient for an indoor system used for sound recording.

From simulations, it can be seen that for distances up to ∼ 5 m, signals, where the moving
average filter was not utilized, can still yield correct source-to-receiver distance estimates. If
the right threshold is utilized, the probability of false alarm is also negligible. This means that
in applications where a couple of estimates per second is sufficient, the moving average filter
could be omitted.

In the results, one single case was studied in detail, namely; 5 m source-to-receiver distance with
T60 = 0.9 seconds, these parameters were studied as 5 m was considered to be a representative
distance for most use-cases, and the reverberation represents a “worst case” scenario.

It can be concluded that the system will be influenced by both the source-to-receiver distance as
well as reverberation. In a product, a maximum distance for the system is more straightforward
to define than a maximum reverberation, as most people have an intuitive understanding of
distance rather than reverberation.

The simulations were conducted with a simple RIR simulation, which made it possible to define
a correct and a wrong estimate. It is important to note that if wrong distances were estimated,
the estimates were utterly random, e.g., if 5 m was the correct distance, a wrong distance
estimate could be any distance between 0 m and 15 m.

9.3. Direct sound arrival time - measurements

As seen in section 8.3, the reference distance obtained from sound measurements was calculated
to be 5.05 m, but the distance measured with a laser distance meter was 5.008 m. Multiple
factors can cause this deviation of ∼ 4 cm, but the two factors that are most likely to cause this
error are; the measurement conducted with the laser meter was to the geometrical center of the
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loudspeaker and not the acoustical center, which can yield an error, and the reference distance
is calculated by assuming 20◦C air temperature. The room was most likely colder than that,
which results in a slower sound speed, which again can result in the distance error (estimated
distance is longer than actual distance).

As could be observed in figure 8.8, the SPL that yielded the most significant deviation from
reference was at 6 dB A-weighted SPL. This indicates that even though the SPL generated by
the loudspeaker was constant, the SPL of background noise was varying. The A-weighted SPL
of the background noise was measured to be 28 dB, but this measurement was conducted only
ones during the tests. This fact can indicate that a constant measurement of the background
noise level should have been conducted to continuously adapt the volume of measurement signal
to obtain a constant SNR.

One possible error in figure 8.8 might be the fact that the SPL was calculated to be 8 dB
A-weighted SPL, by studying the datasheet of the microphone utilized to conduct the measure-
ments it can be seen that the self-noise of the microphone is at ∼ 25 dB A-weighted SPL. This
means that the measurement signal is well under the self-noise of the microphone. The SPL was
calculated by transmitting a loud measurement signal through the loudspeaker and calculating
the A-weighted SPL of this signal. The volume of the measurement signal was then adjusted in
the sound card software until the measurement signal was not perceivable at 1 m distance. The
reduction in dB was then used to determine the SPL of the imperceivable measurement signal.
Here it was assumed that the reduction given by the sound card software was correct, which
might not be the case. However, since the microphone’s self-noise is only expressed as a single
A-weighted value, it is hard to determine if the measurement signal was under the self-noise for
all frequencies. This should be further studied.

A further interesting fact is that he SPL of the acoustic background noise presented in thi thesis
might also be lower than presented in the results, since the self-noise of the microphone might
be higher than the actual acoustic noise.

It can also be discussed that the mean of all ∼ 4000 estimates might not be the most represen-
tative measure. By studying figure 8.9 it can be seen that a threshold of detection at 13 dB
resulted in a more significant deviation from reference than at 12 dB. This was caused by the
fact that some correct estimates were under the threshold, and a wrong distance estimate (∼ 7
m) was over the threshold. This resulted in the wrong estimate affecting the average. It can
be discussed that the median of the data would be a correct representation of the data because
the distribution of the estimated distances was not Gaussian.

9.4. Direction of arrival and position estimates using detailed room
simulator

The choice of the array size used in the simulations was made by testing many different sizes.
When a smaller distance between the loudspeaker elements was utilized, the AoD estimates
deviated by a couple of degrees from correct AoD. However, the reason for this deviation is
unknown, but it is assumed that the resolution of CATT acoustics causes this deviation. When
the array size was smaller, the ToA estimates from the four loudspeakers deviated only by
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a couple of samples, while for larger array size, the ToA difference between the speakers was
several samples in difference, which results in each sample being less important for the estimate.

The array was four omnidirectional loudspeaker elements in free-field, which is not a realistic
assumption as diffraction caused by the loudspeaker enclosures and loudspeaker elements will
be present in real measurements. Diffraction will cause different deviations in source-to-receiver
distances for different frequencies. Also, the radiation pattern of a real loudspeaker array would
not be omnidirectional, as most loudspeakers become more directional for higher frequencies.

The autocorrelation peak of the PN-sweep signals is dependant on the sweep length in samples;
therefore, in theory, utilizing longer PN-sweeps would yield a better probability of detection.
However, when the sweep signals were longer than ∼ 11000 samples, the measurement signal
became very tonal, resulting in a more perceivable signal than the shorter sweeps. This is why
longer PN-sweeps were omitted in this thesis. For PN-sequences (Gold, Kasami, and MLS), the
audibility was similar for all samples length since these sequences have noise-like characteristics,
but the shorter sequences were utilized in this thesis to compare the results with the two types
of measurement signals, and since longer sequences were assumed to be more prone to time
variance.

As seen in figure 8.14, the estimates where longer sweeps were utilized deviated more from the
correct AoD than the estimates obtained with shorter sweeps. By studying both signals in
estimations where no noise was present showed that both signal lengths performed in the same
way, this indicated that the “better” estimate obtained by the shorter sweep is random. It is
however important to note that AoD estimates would still be within ∼ 1◦.

The frequency range that was studied in the results was 5 kHz - 20 kHz. This frequency range
resulted in a significantly better probability of detection for PN-sweeps than when 2 kHz - 20
kHz was used because this range was less audible for the author. However, as previously stated,
the loudspeaker’s directionality will be frequency-dependent and will be more directional for
higher frequencies. Furthermore, shorter wavelengths will also be more prone to obstacles.

As can be observed from figure 8.16 all position estimates deviate by a factor from the correct
position. This deviation is most likely caused by the Matrix-equation used to calculate the x, y,
and z coordinates. By only utilizing the x, y, and z coordinates to estimate the AoD and utilize
the mean ToA to estimate the source-to-receiver distance, a combination of this to estimates
could be used to determine the position of the microphone, which could potentially be a better
approach since the source of the error caused by the matrix equation will only be a part of the
angle estimate and not the distance estimate.

For 8176 samples, long PN-sweep with moving average filter consisting of navg < 4 a large
standard deviation and a deviation of∼ 2.5◦ from correct AoD was observed. This can indicate
that to estimate a correct AoD at 5 m source-to-receiver distance, a moving average filter
consisting of navg > 4 should be utilized. Furthermore the number of missed detection was
< 50% for navg < 4.

The estimator presented was dependent on four correct ToA estimates to estimate position. If
one or more of the four estimates was wrong (a couple of samples), a long source-to-receiver dis-
tance was estimated; therefore, a threshold of the maximum distance of 15 m was implemented.
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However, since this was the only threshold, the estimations’ confidence is only based on the
number of averages of the moving average filter. Nevertheless, by studying the 2D estimate
presented in figure 8.16, it can be observed that the maximum deviation was just a couple of
cm, this might be sufficient in some applications.

In this thesis, only the azimuth angle was studied, but in theory, the same results can be
expected for the elevation angle, as for this estimation, the x- and z-coordinate estimates would
be utilized the estimation of these coordinates showed good results.

9.5. Estimates of direct sound arrival time with moving microphone

Multiple measurement signals were tested with the turntable. The results showed that the PN-
sweeps were far less prone to time variance than MLS, but in both cases, the implementation
of moving average filter resulted in a high percentage of missed detection. Missed detection
was when estimates that were not in the region of interest (1.3m - 2.9m for 0.84 m/s speed,
and 1.7m - 2.5m for 0.42 m/s speed) were calculated. By reducing the microphone’s rotation
speed, the probability of missed detection for navg = 5 was also reduced. Therefore, it can be
concluded that if the moving object’s speed is not too high, the position can be estimated even
with navg = 5, but with some error.

PN-sweep coded with 255 long MLS were also studied as a part of this thesis, only for the
moving microphone measurements. The results for PN-sweeps coded with 255 samples long
MLS for the moving microphone were very similar to the results obtained for uncoded sweeps;
this means that they followed the movement similarly as presented in figure 8.18. The length
of the code, which was utilized to code the sweeps, will be the decisive factor if it were to be
used with not stationary microphones. Shorter codes result in better movement estimation, but
shorter codes also result in higher crosscorrelation.

Distance estimation for moving microphones was only done with measurement signals with SPL
well above the background noise level. It should be, therefore, further studied how movement
combined with low SNR affects the estimations.

9.6. Audibility

The author determined the audibility in this thesis; however, in all estimations, except for the
moving receivers, the SNR was 3 dB below the authors’ perceivability. Therefore, it can be
concluded that the measurement signal would be imperceivable for most people, as the author
has normal hearing and is 25 years old. When listening to recordings and in field-measurements,
the author knew how the measurement signal sounded and knew what to listen for, it might be
assumed that for people that do not have previous knowledge of how the measurement signal
sound would probably not notice it as easy as the author did, thus resulting in a higher SNR
that could be utilized in a final system.

Audibility was in this thesis only expressed in terms of A-weighted SNR, which is a single number
measure. The in-audible SNR should be further studied in a range of frequencies (octave bands
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or 1/3 octave bands) and a broader range of background noises.

9.7. Comparison and real-world application

When studying the one source and one receiver case, it was presented that for distances up
to 5 m, the use of a moving average filter was unnecessary as long as a threshold of detection
was correctly implemented. In the positioning case, however, none such threshold of detection
was implemented since the estimator dependent on 4 ToA estimates; thus if any of the four
estimates were under threshold no estimation was obtained, and a maximum source-to-receiver
distance threshold was therefore considered to be the best solution in this case. This means
that the number of averages is the decisive factor in the AoD estimates when considering the
estimate’s confidence.

By considering the effects of moving average filters on moving microphones, it can be concluded
that a final system should not implement such filters, or at least as few periods as possible should
be averaged, especially when PN-sequences are used. A combined solution might be considered
in a final product where four time-delayed PN-sweep signals are sent through one loudspeaker
are used for source-to-receiver estimation and using a different technology like Bluetooth for
AoD estimates. In such a solution, the signals would be less affected by movement as long as
the sweeps are coded with short PN-sequences (≤ 255 samples), and a threshold of detection
could be implemented. By combining different technologies, the solution would be more robust
as different technologies have different noise signals which are not necessarily correlated with
each other.

The reason for utilizing measurement signals in the audible frequency range was to make the
system less dependent on the equipment used. However, when studying the results obtained
from measurements, the A-weighted SPL of the imperceivable measurement signal was ∼ 8
dB, and speech signals can be assumed to have an A-weighted SPL of up to ∼ 96 dB at
0.5 m between the speaking person and microphone. This means that a microphone with a
dynamic range of > 88 dB would have to be implemented, and if this system was used with an
instrument, an even more extensive dynamic range would be necessary. Furthermore, the noise
floor of a typical condenser microphone is in the range of 20 − 30 dB A-weighted SPL. This
means that in some rooms, the background noise in the room would be under the microphone’s
self-noise. However, it can be discussed if the microphone’s self-noise could be used as a measure
of impermeability. By using the noise floor of the microphone, the signal would be masked by
the microphone’s self-noise in the recordings, but would possibly be perceivable by the users of
the system since the background noise might be under the self-noise. The annoyance in this
approach is unknown and should be further studied. This approach would also assume that
the self-noise of all microphones utilized would be the same, which again might not be the
case. Therefore, it can be concluded that the users of a system like the one presented in this
thesis could not simply choose any COTS microphone and assume that the system would work
because of the deviations in noise floor and dynamic range. Therefore, it can be discussed if an
approach utilizing ultrasound would be more comfortable and cheaper to implement; however,
this is only speculations, and an assessment should be made.

In this thesis, moving microphones were only studied with constant speed and signals well above
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the noise floor. Therefore, the result might not be representative for signals under the noise
floor and should be further studied. In all cases presented here, the microphones were in line
of sight, in reality; however, people wearing lavalier microphones may cover the microphones.
The result of covering and “natural” movement should be further studied. Furthermore, in all
measurements and simulations, the only source of the noise was background noise and micro-
phone self-noise; in reality, noise generated by the system user would be present, i.e., noise from
speech, instruments, etc.

All results presented in this thesis were post-processed, and the processing time was not taken
into account. In a real-world application, this processing would have to be done in real-time
and large parts of the code would have to be optimized to obtain real-time processing.

A higher level estimator like the Kalman-filter could also be utilized in a final system to make
the system more robust against errors.
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10. Conclusion

In estimations of single source-to-receiver distances in fixed positions, both measurements and
simulations presented that distances up to 5 m could be correctly estimated with 2047 samples
long MLS without the use of a moving average filter, as long as a correct threshold of detection
was utilized. In results obtained from AoD estimations, it was presented that estimates where a
moving average filter averaging five periods of the measured signal resulted in an AoD estimate
that, on average, deviated with < 1◦ from the correct angle. However, when the moving average
filter consisted of < 4 periods/cycles, deviations of ∼ 2.5◦ from the correct angle were observed.

PN-sweeps were far less prone to time variance caused by movement than MLS, but for both
signal types, the implementation of moving average filter resulted in many estimates outside
the window of interest (minimum and maximum source-to-receiver length). Source-to-receiver
distance estimates where uncoded sweep signals and moving average filter was used, yielded
good results, and all estimates where within the window of interest. The same was true for
PN-sweeps coded with short sequences (≤ 255). Therefore, it can be concluded that PN-sweeps
coded with short sequences should be utilized if the microphones are non-stationary.

The primary motivation for utilizing measurement signals in the audible frequency range was
to use the already existing infrastructure with COTS microphones. However, because of factors
like the dynamic range and self-noise, it can be concluded that a system like the one presented
in this thesis would not work with all COTS microphones.
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A. MATLAB function for room IR generating

1 f unc t i on impres = creexpimpres ( f s , Nsamp , T60 ,V, d i s t ) ;
2 % impres = creexpimpres ( f s , Nsamp , T60 ,V, d i s t ) ;
3 %
4 % Create an impulse re sponse with an i d e a l l y
5 % exponent i a l decay . Re la te s to the d i r e c t sound
6 % at 1 m d i s t ance .
7 % I f the op t i on a l parameter ’ d i s t ’ i s given , a d i r e c t sound i s added
8 % as a p e r f e c t pu l s e and the exponent i a l part s t a r t s a f t e r t h i s .
9

10 c = 343 ;
11 impres = randn (Nsamp , 1 ) ;
12 t = [ 0 : Nsamp−1]/ f s ;
13 tau = T60 / 6 . 9 1 ;
14 expwin = exp(−t / tau ) ’ ;
15 c l e a r t
16 impres = impres .∗ expwin ;
17 c l e a r expwin
18 s c a l e = sum( impres . ˆ 2 ) /(100∗ pi ∗T60/V) ;
19 impres = impres / s q r t ( s c a l e ) ;
20 i f narg in == 5 ,
21 ncut = f l o o r ( d i s t /c∗ f s ) ;
22 impres ( 1 : ncut ) = ze ro s ( ncut , 1 ) ;
23 impres ( ncut ) = 1/ d i s t ;
24 end

74



B. MATLAB code for Monte Carlo average
simulator

1 % Code wr i t t en by Mikolaj Jaworski f o r master t h e s i s 2020 .
2 % This code i s a Monte Carlo s imu la t i on f o r d i f f e r e n t source−to−

r e c e i v e r
3 % d i s t a n c e s f o r three d i f f e r e n t background no i s e measurements .
4

5 c l e a r a l l
6 c l c
7 c l o s e a l l
8

9 %% Constants %%
10 room . speed = 343 ; % d e f i n e s the speed o f sound in the room , c .
11 room . r e v e r b e r a t i o n = 1 . 2 ; % d e f i n e s sound r e v e r b e r a t i o n in the room ,

T60 .
12 room . volume = 300 ; % d e f i n e s the room volume
13 room . d i s t ance = [ 3 : 2 : 1 5 ] ; % source−to−r e c e i v e r d i s t ance
14 room . samples = 2ˆ14 ; % d e f i n e s how many samples the IR o f the room

conta in s
15 %% imports %%
16 [ n o i s e . background , sampling . r a t e ] = audioread ( ’ Conference . wav ’ ) ; %

imports background no i s e
17 sampling . per iod = 1/ sampling . r a t e ; % sampling per iod
18 no i s e . background = no i s e . background ( sampling . r a t e ∗1 : end ) ; % s i g n a l

s t a r t at 1 sec
19 %% Change thee s e v a r i a b l e s %%
20 name = ’ con f e r ence ’ ; % room in which background no i s e r e co rd ing was

conducted
21 L = [ 2 0 4 7 , 4 0 9 5 ] ; % vecto r conta in ing d i f f e r e n t M−sequence l eng th s
22 L = L(2) ; % m−sequence l ength c h o i s e f o r Monte Carlo
23 N = 20 ; % Number o f averages
24 s i g n a l l e n g t h = 2∗N∗L+2000+room . samples −1; % legnth o f no i s e s i g n a l
25

26 m o n t e c a r l o s i z e = 500 ; % number o f Monte Carlo i t e r a t i o n s
27

28 x . s i n g l e = mls (L) ; % One c y c l e o f M−sequence
29

30 % Switch f o r choos ing s i g n a l s c a l i n g which y i e l d unperce ivab l e
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s i g n a l at 1m
31 % the f i r s t argument o f the vec to r i s unperce ivab l e f o r the author .

For
32 % each element o f the vec to r a damping o f −1dB i s done . E. g f o r the

hal lway
33 % reco rd ing the SNR. s c a l i n g e lements r e s u l t in the f o l l o w i n g A−

weighted
34 % SNR’ s : [−9dB,−10dB,−11dB,−12dB ] at 1m source−to−r e c e i v e r d i s t ance .
35 %
36 switch name
37 case ’ con f e r ence ’
38 s t a t i o n a r y s t a r t = 3 ;
39 s t a t i o n a r y s t o p = 6 ;
40 SNR. s c a l i n g = [0 . 00005685 , 0 . 00005063 , 0 . 00004515 , 0 . 00004025 ] ;
41 case ’ l i b r a r y ’
42 s t a t i o n a r y s t a r t = 5 ;
43 s t a t i o n a r y s t o p = 8 ;
44 SNR. s c a l i n g = [0 . 0000635 , 0 . 00005658 , 0 . 000050475 , 0 . 00004495 ] ;
45 end
46 %% F i l t e r des ign %%
47 h . room = ze ro s ( l ength ( room . d i s t ance ) , room . samples ) ; % Matrix

conta in ing d i f f e r n t RIR
48

49 f o r i = 1 : l ength ( room . d i s t anc e )
50 % func t i on gene ra t ing d i f f e r e n t RIR ’ s by Peter Svensson
51 h . room ( i , : ) = creexpimpres ( sampling . rate , room . samples ,

. . .
52 room . r eve rbe ra t i on , room . volume , room .

d i s t anc e ( i ) ) ;
53 end
54

55 Butteworth order = 1 ; % High−pass f i l t e r order
56 c u t o f f f r e q u e n c y = 500 ; % High−pass f i l t e r cut−o f f f requency
57 AR order = 2 ; % AR−model order
58

59 % Def ines s t a t i o n a r t no i s e ( none t r a n s i e n t s in no i s e s i g n a l )
60 s t a t i o n a r y n o i s e . s t a r t = s t a t i o n a r y s t a r t ∗ sampling . r a t e ;
61 s t a t i o n a r y n o i s e . stop = s t a t i o n a r y s t o p ∗ sampling . r a t e ;
62 no i s e . backgroundStat ionary = no i s e . background ( s t a t i o n a r y n o i s e . s t a r t

: . . .
63 1 : s t a t i o n a r y n o i s e .

stop ) ;
64

65 b . averag ing = ze ro s (1 ,L∗N+1) ;
66 b . averag ing (1 ) = 1 ;
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67 b . averag ing ( end ) = −1;
68

69 a . averag ing = ze ro s (1 ,L+1) ;
70 a . averag ing (1 ) = 1 ;
71 a . averag ing ( end ) = −1;
72

73 h . averag ing = impz (b . averaging , a . averag ing ) ;
74

75 h . matched = x . s i n g l e ( end :−1:1) ;
76

77 a . a ryu l e = aryu l e ( no i s e . backgroundStationary , AR order ) ; % AR
c o e f f i c i e n t s

78 h . a ryu l e = impz (1 , a . a ryu l e ) ;
79 h . a r y u l e I n v e r s e = impz ( a . aryule , 1 ) ;
80

81 [ b . butter , a . butte r ]= butte r (1 ,2∗ c u t o f f f r e q u e n c y / sampling . rate , ’ high
’ ) ; % HP c o e f f i c i e n t s

82 h .HP = impz (b . butter , a . butte r ) ;
83

84 h . pre = conv (h .HP, h . a ryu l e ) ; % d e f i n e s h pre f i l t e r
85 h . post = conv (h . a ryu l e Inve r s e , h .HP) ; % d e f i n e s h post f i l t e r
86 %% Measurement s i g n a l genera tor%%
87 x . mu l t ip l e = x . s i n g l e ; % Makes a vec to r conta in ing mul t ip l e c y c l e s

o f MLS
88

89 f o r i = 1 :N−1
90 x . mu l t ip l e = [ x . mu l t ip l e ; x . s i n g l e ] ;
91 end
92

93 % Zero padding to minimize t runcat i on e f f e c t s .
94 ze ro pad ing = ze ro s (N∗L , 1 ) ;
95 x . mu l t ip l e = [ ze ro pad ing ; x . mu l t ip l e ; z e r o s (2000 ,1) ] ;
96

97 % f i l t e r s MLS
98 x . f i l t e r e d = conv (h . pre , x . mu l t ip l e ) ;
99

100 x . f i l t e r e d = x . f i l t e r e d .∗SNR. s c a l i n g (4 ) ; % chooses SNR 3dB below
authors p e r c e i v a b i l i t y

101

102 s . c l ean = ze ro s ( l ength ( room . d i s t anc e ) , s i g n a l l e n g t h ) ;
103 f o r i = 1 : l ength ( room . d i s t anc e )
104 s . c l ean ( i , : ) = conv ( x . f i l t e r e d , h . room ( i , : ) ) ;
105 end
106

107 % Def ines a l l v a r i a b l e s used f o r Monte Carlo s imu la t i on s
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108 max of bank = ze ro s ( mont e ca r l o s i z e ,N, l ength ( room . d i s t anc e ) ) ;
109 va lue o f bank = ze ro s ( mont e ca r l o s i z e ,N, l ength ( room . d i s t anc e ) ) ;
110 c o r r e c t v a l u e = ze ro s ( monte ca r l o s i z e , l ength ( room . d i s t ance ) ) ;
111 co r r ec t bank = ze ro s ( mont e ca r l o s i z e , l ength ( room . d i s t ance ) ) ;
112

113 % Makes a matrix conta in ing Monte Carlo number o f d i f f e r e n t no i s e
s i g n a l s .

114 no i s e . monteCarlo = ze ro s ( s i g n a l l e n g t h , m o n t e c a r l o s i z e ) ;
115 f o r i = 1 : m o n t e c a r l o s i z e
116 no i s e . monteCarlo ( : , i ) = no i s e . background ( i : 1 : i+s i g n a l l e n g t h −1) ;
117 end
118

119 %% Post−p r o c e s s i n g c l ean s i g n a l %%
120 y . c l ean = f i l t e r (h . post , 1 , y . c l ean ) ;
121 y . c l ean = f i l t e r (h . matched , 1 , y . c l ean ) ;
122

123 y . averagedClean = conv (h . averaging , y . c l ean ) ;
124

125 a v e r a g i n g s t a r t = N∗L+round ( ( room . d i s t anc e ( i ) /room . speed ) ∗ sampling .
r a t e )−1;

126 ave rag ing s top = 2∗N∗L+round ( ( room . d i s t anc e ( i ) /room . speed ) ∗ sampling .
r a t e )−1;

127

128 y . averagedClean = y . averagedClean ( a v e r a g i n g s t a r t : 1 : ave rag ing s top ) ;
129

130 %% Noise s i g n a l whitening f i l t e r %%
131

132 no i s e . whitenedPlaceho lder = ze ro s ( s i g n a l l e n g t h+length ( ze ro pad ing ) ,
m o n t e c a r l o s i z e ) ;

133 no i s e . whitened = ze ro s ( s i g n a l l e n g t h , m o n t e c a r l o s i z e ) ;
134 no i s e . averaged = ze ro s ( averag ing s top−a v e r a g i n g s t a r t +1,

m o n t e c a r l o s i z e ) ;
135

136 %% Post−p r o c e s s i n g no i sy s i g n a l %%
137 f o r j = 1 : m o n t e c a r l o s i z e
138 f o r i = 1 : l ength ( room . d i s t anc e )
139 % f i l t e r s s [ n]+ one o f the recorded no i s e s i g n a l s with

h post [ n ]
140 y . no i sy = f i l t e r (h . post , 1 , s . c l ean ( i , : ) ’ . . .
141 + no i s e . monteCarlo

( : , j ) ) ;
142

143 y . no i sy = f i l t e r (h . matched , 1 , y . no i sy ) ;
144 y . averaged = conv (h . averaging , y . no i sy ) ;
145 % Sca l i ng done to p lace c o r r e c t d i r e c t sound at f i r s t sample
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.
146 a v e r a g i n g s t a r t = N∗L+f l o o r ( ( room . d i s t ance ( i ) /room . speed ) ∗

sampling . r a t e ) ;
147 ave rag ing s top = 2∗N∗L+f l o o r ( ( room . d i s t ance ( i ) /room . speed ) ∗

sampling . r a t e ) ;
148

149 y . averaged = y . averaged ( a v e r a g i n g s t a r t : 1 : ave rag ing s top ) ;
150

151 % for−loop f o r f i n d i n g max value o f each bank
152 f o r i i = 1 :N
153 [ max value , max sample ] = max( y . averaged ( ( i i −1)∗L+1: i i ∗L

+1) . ˆ 2 ) ;
154 max of bank ( j , i i , i ) = max sample ;
155 va lue o f bank ( j , i i , i ) = max value ;
156 end
157

158 % for−loop f o r f i n d i n g averag ing bank that y i e l d c o r r e c t
va lue

159 f o r i i = 1 :N
160 [ max value , max sample ] = max( y . averaged ( ( i i −1)∗L+1: i i ∗L

+1) . ˆ 2 ) ;
161 i f max sample == L
162 co r r ec t bank ( j , i ) = i i ;
163 c o r r e c t v a l u e ( j , i ) = max value ;
164 break
165 end
166 end
167 end
168 end
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C. MATLAB code for Monte Carlo threshold
simulator

1 % Code wr i t t en by Mikolaj Jaworski f o r master t h e s i s 2020 .
2 % This code i s a Monte Carlo s imu la t i on f o r d i f f e r e n t source−to−

r e c e i v e r
3 % d i s t a n c e s f o r three d i f f e r e n t background no i s e measurements . The

purpose
4 % of t h i s s imu la tor i s to f i n d the number o f e r r o r s at d i f f e r e n t

t h r e s h o l d s
5 % of d e t e c t i o n .
6

7 c l e a r a l l
8 c l o s e a l l
9 c l c

10 %% imports %%
11 [ n o i s e . background , sampling . r a t e ] = audioread ( ’ L ibrary . wav ’ ) ; %

imports background no i s e
12 sampling . per iod = 1/ sampling . r a t e ; % sampling per iod
13 no i s e . background = no i s e . background ( sampling . r a t e ∗1 : end ) ; % s i g n a l

s t a r t at 1 sec
14 name = ’ l i b r a r y ’ ; % room in which background no i s e r e co rd ing was

conducted
15

16 % Switch f o r choos ing s i g n a l s c a l i n g which y i e l d unperce ivab l e
s i g n a l at 1m

17 switch name
18 case ’ con f e r ence ’
19 s t a t i o n a r y s t a r t = 3 ;
20 s t a t i o n a r y s t o p = 6 ;
21 SNR. s c a l i n g = [0 . 00005685 , 0 . 00005063 , 0 . 00004515 , 0 . 00004025 ] ;
22 case ’ l i b r a r y ’
23 s t a t i o n a r y s t a r t = 5 ;
24 s t a t i o n a r y s t o p = 8 ;
25 SNR. s c a l i n g = [0 . 0000635 , 0 . 00005658 , 0 . 000050475 , 0 . 00004495 ] ;
26 end
27

28 % Def ines s t a t i o n a r t no i s e ( none t r a n s i e n t s in no i s e s i g n a l )
29 s t a t i o n a r y n o i s e . s t a r t = s t a t i o n a r y s t a r t ∗ sampling . r a t e ;
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30 s t a t i o n a r y n o i s e . stop = s t a t i o n a r y s t o p ∗ sampling . r a t e ;
31 no i s e . backgroundStat ionary = no i s e . background ( s t a t i o n a r y n o i s e . s t a r t

: . . .
32 1 : s t a t i o n a r y n o i s e .

stop ) ;
33

34 load data 3D plot . mat % Loads data opta ined from Monte Carlo to f i n d
number o f averages

35

36 T60 = r e v e r b e r a t i o n ;
37 r = d i s t anc e ;
38 n r e s u l t s = cor r ec t bank ;
39

40 i = 6 ; % Changed to f i n d thr e sho ld at d i f f e r e n t source−to−r e c e i v e r
d i s t a n c e s

41 %% Constants %%
42 room . speed = 343 ; % d e f i n e s the speed o f sound in the room , c .
43 room . r e v e r b e r a t i o n = 0 . 9 ; % d e f i n e s sound r e v e r b e r a t i o n in the room ,

T60 .
44 room . volume = 300 ; % d e f i n e s the room volume
45 room . d i s t ance = d i s t anc e ( i ) ; % source−to−r e c e i v e r d i s t ance
46 room . samples = 2ˆ14 ; % d e f i n e s how many samples the IR o f the room

conta in s
47

48 Number of averages = n r e s u l t s (3 , i ) ; % Number o f averages found by
means o f Monte Carlo

49 L = 2047 ; % MLS length
50

51 m o n t e c a r l o s i z e = 400 ; % number o f Monte Carlo i t e r a t i o n s
52

53 x . s i n g l e = mls (L) ; % One c y c l e o f MLS
54

55 th r e sho ld = [ 1 : 0 . 1 : 1 0 ] ; % Threshold f o r monte c a r l o
56

57 %% Var iab l e s %%
58 % func t i on gene ra t ing d i f f e r e n t RIR ’ s by Peter Svensson
59 h . room = creexpimpres ( sampling . rate , room . samples , room .

r eve rbe ra t i on , . . .
60 room . volume , room .

d i s t anc e ) ;
61 %% F i l t e r des ign %%
62 h . p l a c eho ld e r = ze ro s (L , 1 ) ;
63 h . p l a c eho ld e r (1 ) = 1 ;
64

65
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66 b . averag ing = ze ro s (1 ,L∗N+1) ;
67 b . averag ing (1 ) = 1 ;
68 b . averag ing ( end ) = −1;
69

70 a . averag ing = ze ro s (1 ,L+1) ;
71 a . averag ing (1 ) = 1 ;
72 a . averag ing ( end ) = −1;
73

74 h . averag ing = impz (b . averaging , a . averag ing ) ;
75

76 h . matched = x . s i n g l e ( end :−1:1) ;
77

78 Butteworth order = 1 ; % High−pass f i l t e r order
79 c u t o f f f r e q u e n c y = 500 ; % High−pass f i l t e r cut−o f f f requency
80 AR order = 2 ; % AR−model order
81

82 a . a ryu l e = aryu l e ( no i s e . backgroundStationary , AR order ) ; % AR
c o e f f i c i e n t s

83 [ b . butter , a . butte r ]= butte r (1 ,2∗ c u t o f f f r e q u e n c y / sampling . rate , ’ high
’ ) ; % HP c o e f f i c i e n t s

84

85 h . a ryu l e = impz (1 , a . a ryu l e ) ; % Def ine s AR−model f i l t e r
86 h . a r y u l e I n v e r s e = impz ( a . aryule , 1 ) ; % Def ines i n v e r t e r AR−model

f i l t e r
87 h .HP = impz (b . butter , a . butte r ) ; % Def ine s high−pass f i l t e r
88

89 h . pre = conv (h .HP, h . a ryu l e ) ; % d e f i n e s h pre f i l t e r
90 h . post = conv (h . a ryu l e Inve r s e , h .HP) ; % d e f i n e s h post f i l t e r
91 %% Signa l genera tor
92 x . mu l t ip l e = x . s i n g l e ; % Makes a venctor conta in ing mul t ip l e c y c l e s

o f MLS
93

94 f o r i = 1 : ( m o n t e c a r l o s i z e +2∗Number of averages+3∗2−1)
95 x . mu l t ip l e = [ x . mu l t ip l e ; x . s i n g l e ] ;
96 end
97

98 % Zero padding to minimize t runcat i on e f f e c t s .
99 number of pads = 1000 ;

100 x . mu l t ip l e = [ z e r o s ( number of pads , 1 ) ; x . mu l t ip l e ; z e r o s (
number of pads , 1 ) ] ;

101

102 %% Signa l f i l t e r i n g %%
103 x . f i l t e r e d = conv (h . pre , x . mu l t ip l e ) ; % MLS f i l t e r i n g
104 x . s c a l e d = x . f i l t e r e d .∗ SNR. s c a l i n g (1 ) ; % Sca l i ng to make s i g n a l

i n p e r c e i v a b l e at 1m
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105

106 s . c l ean = conv ( x . sca l ed , h . room ) ; % Convolution o f i n p e r c e i v a b l e
s i g n a l with RIR

107 n o i s e l e n g t h = length ( s . c l ean ) ; % Finds the l ength o f no i s e = s i g n a l
108

109 no i s e . background = no i s e . background ( 1 : n o i s e l e n g t h ) ; % Makes a
vec to r conta in ing recorde background no i s e

110

111 s . no i sy = no i s e . background+s . c l ean ; % Clean s i g n a l added no i s e .
112

113 % Post−p r o c e s s i n g o f c l ean s i g n a l
114 y . c l ean = conv (h . post , s . c l ean ) ; % F i l t e r e d with i n v e r s e AR and HP

f i l t e r s
115 y . c l ean = conv ( y . c lean , h . matched ) ; % Matched f i l t e r i n g
116 y . c l ean = conv ( y . c lean , h . averag ing ) ; % S igna l averag ing
117 % Some samples o f the s i g n a l are d i s ca rded because o f i n s t a b i l i t y

caused
118 % by f i l t e r i n g , averag ing and other f a c t o r s
119 y . c l ean = y . c l ean ( number of pads+(3+Number of averages ) ∗L : end−(

number of pads+(3+Number of averages ) ∗L) ) ;
120

121 % Post−p r o c e s s i n g o f t r i g g e r s i g n a l
122 y . t r i g g e r = conv (h . post , x . s c a l e d ) ; % F i l t e r e d with i n v e r s e AR and HP

f i l t e r s
123 y . t r i g g e r = conv ( y . t r i g g e r , h . matched ) ; % Matched f i l t e r i n g
124 y . t r i g g e r = conv ( y . t r i g g e r , h . averag ing ) ; % S igna l averag ing
125 % Some samples o f the s i g n a l are d i s ca rded because o f i n s t a b i l i t y

caused
126 % by f i l t e r i n g , averag ing and other f a c t o r s
127 y . t r i g g e r = y . t r i g g e r ( number of pads+(3+Number of averages ) ∗L : end−(

number of pads+(3+Number of averages ) ∗L) ) ;
128

129 % Post−p r o c e s s i n g o f s i g n a l added with no i s e
130 y . no i sy = conv (h . post , s . no i sy ) ; % F i l t e r e d with i n v e r s e AR and HP

f i l t e r s
131 y . no i sy = conv ( y . noisy , h . matched ) ; % Matched f i l t e r i n g
132 y . no i sy = conv ( y . noisy , h . averag ing ) ; % S igna l averag ing
133 % Some samples o f the s i g n a l are d i s ca rded because o f i n s t a b i l i t y

caused
134 % by f i l t e r i n g , averag ing and other f a c t o r s
135 y . no i sy = y . no i sy ( number of pads+(3+Number of averages ) ∗L : end−(

number of pads+(3+Number of averages ) ∗L) ) ;
136

137 [ row , column ] = f i n d ( y . t r i g g e r > 0 .9∗max( y . t r i g g e r ) ) ; % Finds
t r i g g e r samples

83



138

139 measurement s i tuat ions = ze ro s ( l ength ( row ) ,L) ; % matrix conta in ing
a l l monte c a r l o i t e r a t i o n s

140

141 f o r i = 1 : l ength ( row )
142 measurement s i tuat ions ( i , : ) = y . no i sy ( row ( i ) : row ( i )+L−1) ;
143 end
144

145 m o n t e c a r l o s i z e = length ( row ) ; % Def ine s number o f Monte Carlo s i z e
146

147 % Def ines c o r r e c t sample and value used to c a l u c l a t e number o f
e r r o r s

148 [ c o r r e c t v a l u e , c o r r e c t i n d e x ] = max( y . c l ean ( row (1) : row (1)+L−1) ) ;
149 f a l s e a l a r m = ze ro s ( l ength ( th r e sho ld ) ,1 ) ; % Makes a vec to r to

conta in number o f f a l s e alarm
150 mis s ed de t e c t i on = ze ro s ( l ength ( th r e sho ld ) ,1 ) ; % Vector conta in ing

f a i l e d d e t e c t i o n s
151 c o r r e c t d e t e c t i o n = ze ro s ( l ength ( th r e sho ld ) ,1 ) ; % Vector conta in ing

c o r r e c t d e t e c t i o n s
152

153

154 %% Monte Carlo s imu la t i on %%
155 f o r i = 1 : m o n t e c a r l o s i z e
156 f o r i i = 1 : l ength ( th r e sho ld )
157 y . rms = measurement s i tuat ions ( i , : ) ;
158 [ value , index ] = max( measurement s i tuat ions ( i , : ) ) ;
159 i f index<3
160 y . rms ( 1 : index +4) = [ ] ;
161 e l s e
162 y . rms ( index −2: index +2) = [ ] ;
163 end
164 y . rms = rms ( y . rms ) ;
165 i f va lue /y . rms < th r e sho ld ( i i )
166 mis s ed de t e c t i on ( i i , 1 ) = mi s s ed de t e c t i on ( i i , 1 ) +1 ;
167 e l s e
168 i f index == c o r r e c t i n d e x
169 c o r r e c t d e t e c t i o n ( i i , 1 ) = c o r r e c t d e t e c t i o n ( i i , 1 )

+1;
170 e l s e
171 f a l s e a l a r m ( i i , 1 ) = f a l s e a l a r m ( i i , 1 ) + 1 ;
172 end
173 end
174 end
175 end
176 %% F i l e sav ing %%
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177 f i leName = [ ’ Thresho ld T60 09 Distance ’ , num2str ( room . d i s t anc e ) , ’m L
’ , . . .

178 num2str (L) , ’ Number of averages ’ , num2str ( Number of averages ) , ’
. mat ’ ] ;

179

180 save ( f i leName , ’ f a l s e a l a r m ’ , ’ m i s s ed de t e c t i on ’ , ’ c o r r e c t d e t e c t i o n ’ ,
. . .

181 ’ m o n t e c a r l o s i z e ’ , ’
Number of averages ’ )
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D. MATLAB code for signal preprocessing

1 c l c
2 c l e a r a l l
3

4 c l o s e a l l
5 %% Var iab l e s %%
6 % Background no i s e r e co rd ing with 44100 kHz sampling ra t e
7 [ n o i s e . background , sampling . r a t e ] = audioread ( ’ Opptak Bakgrunn . wav ’ ) ;
8 no i s e . background = no i s e . background ( : , 1 ) ;
9

10 % Stat ionary part o f background no i s e
11 s t a t i o n a r y n o i s e . s t a r t = 3∗ sampling . r a t e ;
12 s t a t i o n a r y n o i s e . stop = 6∗ sampling . r a t e ;
13

14 no i s e . backgrounStat ionary = no i s e . background ( s t a t i o n a r y n o i s e . s t a r t :
. . .

15 1 : s t a t i o n a r y n o i s e .
stop ) ;

16 L = [ 2 0 4 7 , 4 0 9 5 ] ; % The two s i g n a l l eng th s u t i l i z e d
17 L = L(1) ; % Def ine s which s i g n a l l ength to generate
18

19 AR order = 2 ; % Order o f AR−model
20

21 f c u t o f f f i r H P = 500 ; % High−pass f i l t e r cut−o f f f requency
22 %% Generate M−sequence %%
23 x . s i n g l e = mls (L) ;
24 x . s i n g l e = x . s i n g l e . ∗ 0 . 1 ; % Sca l i ng done because o f c l i p p i n g when

converted to . wav
25

26 x . mu l t ip l e = x . s i n g l e ;
27

28 numberOfSamples = 200 ∗ sampling . r a t e ; % Ca l cu l a t e s number o f
samples corre spond ing to 200 seconds

29 numberOfMsequences = round ( numberOfSamples/L) ; % Finds number o f
sequences

30

31 f o r i = 1 : numberOfMsequences−1
32 x . mu l t ip l e = [ x . mu l t ip l e ; x . s i n g l e ] ;
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33 end
34

35 x . mu l t ip l e = [ z e r o s (2000 ,1 ) ; x . mu l t ip l e ; z e r o s (2000 ,1) ] ; % zeropadding
36

37 %% F i l t e r des ign %%
38 a . a ryu l e = aryu l e ( no i s e . backgroundStationary , AR order ) ; % AR

c o e f f i c i e n t s
39 [ b . butter , a . butte r ]= butte r (1 ,2∗ c u t o f f f r e q u e n c y / sampling . rate , ’ high

’ ) ; % HP c o e f f i c i e n t s
40

41 b . pre = b . butte r ;
42 a . pre = [ 1 , a . butte r (2 )+a . a ryu l e (2 ) , a . butte r (2 ) ∗a . a ryu l e (2 )+a . a ryu l e

(3 ) , . . .
43 a . butte r (2 ) ∗a .

a ryu l e (3 ) ] ;
44 h . pre = impz (b . pre , a . pre ) ;
45 %% Pre−p r o c e s s i n g o f s i g n a l used in measurements %%
46

47 x . f i l t e r e d = f i l t e r (b . pre , a . pre , x . mu l t ip l e ) ; % HP f i l t e r i n g
48

49 %% Generate wave− f i l e s %%
50 % Generates . wav f i l e f o r use in measurements .
51 aud iowr i t e ( s t r c a t ( num2str (L) , ’ x msequence . wav ’ ) , x . f i l t e r e d , sampling .

r a t e )
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E. MATLAB code used for signal
postprocessing

1 % Mikolaj Jaworski 2020
2 % Master t h e s i s
3 % Code f o r post p r o c e s s i n g o f measured RIR with d i f f e r e n t SNR’ s
4

5 c l c
6 c l e a r a l l
7

8 c l o s e a l l
9 %% Var iab l e s %%

10

11 % Recorded background no i s e used f o r AR−model i s imported
12 [ n o i s e . background , sampling . r a t e ] = audioread ( ’ Opptak Bakgrunn . wav ’ ) ;
13 no i s e . background = no i s e . background ( : , 1 ) ;
14

15 % Stat ionary part o f background no i s e i s de f i n ed
16 s t a t i o n a r y n o i s e . s t a r t = 3∗ sampling . r a t e ;
17 s t a t i o n a r y n o i s e . stop = 6∗ sampling . r a t e ;
18

19 no i s e . backgrounStat ionary = no i s e . background ( s t a t i o n a r y n o i s e . s t a r t :
. . .

20 1 : s t a t i o n a r y n o i s e . stop ) ;
21

22 SNR = −4; % SNR based on w r i t e r s p e r c e i v a b i l i t y
23 N=3; % Number o f averages
24 % Importing measurements from t r i g g e r and microphone
25 [ x . measured , sampling . r a t e ] = audioread ( ’ 2047 x msequence −4.wav ’ ) ;
26

27 x . t r i g g e r = x . measured ( : , 2 ) ; % Tr igger i s one o f two s t e r e o channe l s
28 x . measured = x . measured ( : , 1 ) ; % Microphone s i g n a l i s one o f two

s t e r e o channe l s
29

30 x . measured = x . measured .∗−1; % F l i p s phase because o f wrong phase at
speaker

31

32 x . t r i g g e r = x . t r i g g e r ( 1 : sampling . r a t e ∗60) ; % Uses 1 minute o f
r e co rd ing f o r s imu la t i on s
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33 x . measured = x . measured ( 1 : sampling . r a t e ∗60) ;
34

35 upSampling = 16 ; % up sampling f a c t o r
36 sampling . rateUp = sampling . r a t e ∗upSampling ; % up sampled sampling

ra t e
37 sample s inc luded = 5 ; % Number o f samples used to es t imate time o f

a r r i v a l
38

39 L = [ 2 0 4 7 , 4 0 9 5 ] ; % MLS l eng th s
40 L = L(1) ; % Def ine s which per iod o f MLS i s used
41

42 th r e sho ld = [ 1 : 0 . 1 : 1 0 ] ; % Threshold f o r monte c a r l o
43

44

45 AR order = 2 ; % AR−model order
46

47 f c u t o f f f i r H P = 500 ; % cut−o f f f requency high−pass f i l t e r
48

49 x . s i n g l e = mls (L) ; % one c y c l e o f MLS used in matched f i l t e r
50 %% F i l t e r des ign %%
51 a . a ryu l e = aryu l e ( no i s e . background , AR order ) ; % AR−model f i l t e r
52

53 [ b . butter , a . butte r ]= butte r (1 ,2∗125/ sampling . rate , ’ high ’ ) ; % HP
f i l t e r

54

55 b . matched = x . s i n g l e ( end :−1:1) ; % Matched f i l t e r
56

57 b . averag ing = ze ro s (1 ,L∗N+1) ;
58 b . averag ing (1 ) = 1 ;
59 b . averag ing ( end ) = −1;
60

61 a . averag ing = ze ro s (1 ,L+1) ;
62 a . averag ing (1 ) = 1 ;
63 a . averag ing ( end ) = −1;
64

65 h . averag ing = impz (b . averaging , a . averag ing ) ;% Averaging f i l t e r
66 h . matched = b . matched ; % Matched f i l t e r
67 h .HP = impz (b . butter , a . butte r ) ; % High−pass f i l t e r
68 h . y u l e I n v e r s e = impz ( a . aryule , 1 ) ; % i n v e r s e AR−model
69

70 h . post = conv (h . yu l e Inver s e , h .HP) ; % F i l t e r post microphone
71 %% s i g n a l f i l t e r i n g %%
72 y . t r i g g e r = conv ( x . t r i g g e r , h . post ) ;
73 y . t r i g g e r = conv ( y . t r i g g e r , h . averag ing ) ;
74 y . t r i g g e r = conv ( y . t r i g g e r , h . matched ) ;
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75

76 y . measured = conv ( x . measured , h . post ) ;
77 y . measured = conv ( y . measured , h . averag ing ) ;
78 y . est imated = conv ( y . measured , h . matched ) ;
79

80 %% Measurement s i t u a t i o n de f ined %%
81 % Some t r i g g e r s are d i s ca rded because o f in−s t a t i o n a r y caused by
82 % f i l t e r i n g , averag ing and other f a c t o r s
83 [ t r i g g e r ] = f i n d ( y . t r i g g e r >0.9∗max( y . t r i g g e r ) ) ; % Finds s t a t i o n a r y

t r i g g e r s
84

85 %% Up−sampling %%
86 monteCarloSize = length ( t r i g g e r ) ; % Monte−Carlo s i z e same as number

o f measurement s i t u a t i o n s
87 est imatedTimeOfArrival = ze ro s ( monteCarloSize , l ength ( th r e sho ld ) ) ; %

est imated TOA
88 % Number o f missed d e t e c t i o n s cause by s i g n a l s under th r e sho ld
89 mis s ed de t e c t i on = ze ro s ( l ength ( th r e sho ld ) ,1 ) ;
90

91 % Monte Carlo s imu la t i on s
92 f o r i = 1 : monteCarloSize
93 f o r i i = 1 : l ength ( th r e sho ld )
94

95 y . monteCarlo = y . est imated ( t r i g g e r ( i ) : t r i g g e r ( i )+L−1) ;
96 time . normalSampling = 1/ sampling . r a t e ∗ [ 0 : l ength ( y . monteCarlo

) −1];
97

98 [ value , index ] = max( y . monteCarlo ) ;
99 y . rms = y . monteCarlo ;

100

101 % Excludes max va lues from rms c a l c u l a t i o n s
102 i f index < sample s inc luded
103 y . rms ( 1 : index +2) = [ ] ;
104 e l s e i f index > L − 3
105 y . rms ( index −2:end ) = [ ] ;
106 e l s e
107 y . rms ( index −2: index +2) = [ ] ;
108 end
109

110 y . rms = rms ( y . rms ) ; % c a l u c l a t e s rms o f no i s e seround peak
111

112 % I f peak i s under th r e sho ld missed d e t e c t i o n i s added and
none

113 % TOA est imate i s obta ined f o r t h i s i t e r a t i o n
114 i f va lue /y . rms < th r e sho ld ( i i )
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115 mis s ed de t e c t i on ( i i , 1 ) = mi s s ed de t e c t i on ( i i , 1 ) +1 ;
116 e l s e
117 % I f statement f i n d s o u t l i e r s
118 i f index > L − ( sample s inc luded +1)
119 est imatedTimeOfArrival ( i , i i ) =0;
120 e l s e i f index < sample s inc luded
121 est imatedTimeOfArrival ( i , i i ) =0;
122 e l s e
123 % Makes a smal l window surrounding the maximum peak
124 y . forUpSampling = y . monteCarlo ( index−

sample s inc luded : . . .
125 index+

samples inc luded
−1) ;

126 % Makes the same window f o r time
127 time . forUpSampling = time . normalSampling ( index −

. . .
128 sample s inc luded : index+

samples inc luded −1) ;
129 % Up−sampling
130 y . upSampled = i n t e r p ( y . forUpSampling , upSampling ) ;
131 % Makes a new time vec to r with upSampling t imes

b e t t e r r e s o l u t i o n
132 temp = length ( time . forUpSampling ) ∗upSampling ;
133 time . upSampled = 1/ sampling . rateUp . ∗ ( 0 : temp−1) ;
134 % Find max o f up−sampled peak
135 [ ˜ , index ] = max( y . upSampled ) ;
136 % Estimates TOA based on maxima o f up−sampled peak

added
137 % s i n c e peak i s r a r e l y at 0 seconds the time at

which the
138 % window i s generated i s added . The 10000

m u l t i p l i c a t i o n
139 % f a c t o r i s the re because o f MATLAB’ s rounding o f

f l o a t i n g
140 % point a r i thmet i c
141 est imatedTimeOfArrival ( i , i i ) = time . upSampled ( index )

∗10000 + time . forUpSampling (1 ) ∗10000;
142 end
143 end
144 end
145 end
146

147 %% F i l e sav ing %%
148 f i leName = [ ’ Estimator ’ , ’ L ’ , num2str (L) , ’ Number o f averages ’
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. . .
149 , num2str (N) , ’ SNR ’ , num2str (SNR) , ’ . mat ’

] ;
150 save ( f i leName , ’SNR ’ , ’ m i s s ed de t e c t i on ’ , ’ est imatedTimeOfArrival ’ ,

. . .
151 ’

monteCarloSize
’ , ’N ’ )
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F. MATLAB functions for PN-sequence
generation

1 f unc t i on [ sequence , L]=genMLS( poly )
2 % Function f o r gene ra t ing maximum length sequences (MLS)
3 % Function input :
4 % poly = a vec to r conta in ing p r i m i t i v e polynomial o f

order m
5 % Function output :
6 % sequence = The generated MLS
7 % L = Sequence l ength
8 % Two example showing input vec to r s t r u c t u r e :
9 % The p r i m i t i v e polynomial : xˆ5 + xˆ2 + 1 should be de f ined as : [ 5

2 0 ]
10 % The p r i m i t i v e polynomial : xˆ7 + x + 1 should be de f ined as : [ 7 1

0 ]
11 % − Created by Mikolaj Jaworski , 2020 .
12 L=2ˆpoly (1 )−1;
13 % Converts polynomial v e c t o r s to binary r e p r e s e n t a t i o n .
14 % examples o f conver s i on :
15 % [ 5 2 0 ] = [ 1 0 1 0 0 1 ]
16 % [ 7 1 0 ] = [ 1 1 0 0 0 0 0 1 ]
17 temp=ze ro s (1 ,max( poly ) +1) ;
18 f o r i =1: l ength ( poly )
19 temp ( l ength ( temp )−poly ( i ) ) =1;
20 end
21 poly=temp ;
22

23 % Def ines the i n i t i a l s t a t e o f the Linear Feedback S h i f t Reg i s t e r (
LFSR)

24 x=[1 z e ro s (1 , l ength ( poly )−2) ] ;
25 y=ze ro s (1 ,L) ;
26 f o r i =1:L
27 y ( i )=x ( end ) ; % y i s the v a r i a b l e conta in ing the sequence ;
28 x i=mod(sum( x .∗ poly ( 2 : end ) ) ,2 ) ; % XOR operat ion
29 x ( 2 : end )=x ( 1 : end−1) ;
30 x (1 )=x i ;
31 end
32 sequence = y ;
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1 f unc t i on [ goldSequence ] = genGold ( numberOfSequences , L)
2 % Function that gene ra t e s Gold sequences with sequence per iod = 2047
3 % samples . This func t i on takes in d e s i r e d number o f unco r r e l a t ed

sequences
4 % (minimum 2) and outputs a matrix where each row corresponds to a
5 % sequence . This func t i on was wr i t t en by Mikolaj Jaworski in 2020 .
6

7 % Minimum number o f sequences i s 2
8 i f numberOfSequences < 2
9 f p r i n t f ( ’Number o f sequences most be greated than 2\n ’ ) ;

10 re turn
11 e l s e i f numberOfSequences > 2049
12 f p r i n t f ( ’Number o f sequences most be greated sma l l e r than 2049 \

n ’ ) ;
13 re turn
14 e l s e i f (L ˜= 2047) && (L ˜= 8191) && (L ˜= 511)
15 f p r i n t f ( ’The p r e f e r r e d sequence l ength i s not a l lowed in t h i s

func t i on \n ’ ) ;
16 re turn
17 e l s e
18 i f L == 2047
19 % p r e f e r r e d p a i r s o f po lynomia l s
20 poly1 = [11 8 5 2 0 ] ;
21 poly2 = [11 2 0 ] ;
22 e l s e i f L == 8191
23 % p r e f e r r e d p a i r s o f po lynomia l s
24 poly1 = [13 4 3 1 0 ] ;
25 poly2 = [13 12 10 9 7 6 5 1 0 ] ;
26 e l s e i f L == 511
27 poly1 = [ 9 4 0 ] ;
28 poly2 = [ 9 6 4 3 0 ] ;
29 end
30 % sequence per iod based on polynomial
31 n = poly1 (1 ) ;
32

33 % uses genMLS func t i on to generate two MLS’ s based on the
p r e f e r r e d

34 % p a i r s
35 [ u ,˜ ]=genMLS( poly1 ) ;
36 [ v , L]=genMLS( poly2 ) ;
37 % Makes a matrix f o r Gold sequence s to rage
38 goldSequence = ze ro s ( numberOfSequences , L) ;
39 % Store s the two p r e f e r r e d p a i r s
40 goldSequence ( 1 , : ) = u ;
41 goldSequence ( 2 , : ) = v ;
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42

43 % Checks how many sequences are to be generated
44 i f L < 3
45 % I f only more that two sequences are des i r ed , the se sequences

are
46 % generated by mod 2 add i t i on o f dequence u and the c y c l i c s h i f t

o f
47 % sequence v
48 e l s e
49 f o r i = 3 : numberOfSequences
50 k = i −3;
51 x = mod(u+c i r c s h i f t (v , k ) ,2 ) ;
52 goldSequence ( i , : ) = x ;
53 end
54 end
55

56 [ row , c o l ] = s i z e ( goldSequence ) ;
57 % For−loop that changes a l l 1 ’ s with −1’ s and a l l 0 ’ s with 1 ’ s .
58 f o r i i = 1 : row
59 f o r i = 1 : c o l
60 i f goldSequence ( i i , i ) == 1
61 goldSequence ( i i , i ) = −1;
62 e l s e i f goldSequence ( i i , i ) == 0
63 goldSequence ( i i , i ) = 1 ;
64 end
65 end
66 end
67 end
68 end
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1 f unc t i on kasamiSequence = genKasami ( numberOfSequences , L)
2 % Function that gene ra t e s Kasami sequences with sequence per iod =

4095
3 % samples . This func t i on takes in d e s i r e d number o f unco r r e l a t ed

sequences
4 % (minimum 2) and outputs a matrix where each row corresponds to a
5 % sequence . This func t i on was wr i t t en by Mikolaj Jaworski in 2020 .
6

7 i f L == 4095
8 poly = [12 7 4 3 0 ] ; % Polynoimia l f o r m−sequence gene ra t ing
9 e l s e i f L == 1023

10 poly = [10 3 0 ] ;
11 end
12 n = poly (1 ) ; % Order o f polynomial
13 decimator = (2ˆ( n/2)+1) ; % Order o f dec imation
14

15 u= genMLS( poly ) ; % Generates one MLS
16 v = downsample (u , decimator ) ; % Decimates the generated MLS
17

18 kasamiSequence = ze ro s ( numberOfSequences , L) ; % Makes a matr ic f o r
sequence s to rage

19

20 v = v ’ ;
21 u = u ’ ;
22

23 v mu l t i p l e = v ;
24

25 f o r i = 1 : decimator−1
26 v mu l t i p l e = [ v mu l t i p l e ; v ] ;
27 end
28

29 kasamiSequence ( 1 , : ) = u ;
30 kasamiSequence ( 2 , : ) = v mu l t i p l e ;
31

32 i f numberOfSequences < 3
33

34

35 e l s e
36 f o r i = 3 : numberOfSequences
37 k = i −3;
38 w = c i r c s h i f t (v , k ) ;
39 w mult ip le = [w ] ;
40 f o r i i = 1 : decimator−1
41 w mult ip le = [ w mult ip le ;w ] ;
42 end
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43 kasamiSequence ( i , : ) = mod(u+w mult iple , 2 ) ;
44 end
45

46 end
47

48 [ row , c o l ] = s i z e ( kasamiSequence ) ;
49

50 % For−loop that changes a l l 1 ’ s with −1’ s and a l l 0 ’ s with 1 ’ s .
51 f o r i i = 1 : row
52 f o r i = 1 : c o l
53 i f kasamiSequence ( i i , i ) == 1
54 kasamiSequence ( i i , i ) = −1;
55 e l s e i f kasamiSequence ( i i , i ) == 0
56 kasamiSequence ( i i , i ) = 1 ;
57 end
58 end
59 end
60 end
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G. Catt acoustics settings

G.1. General settings

Project : no project info Creator : CATT-Acoustic v9.1e (build 1.01) / TUCT v2.0e:1.02
(prerelease)

Date/Time : 2020-07-02 13:13:38

General

no of planes : 6

surface area : 476.00 m2

mean abs. : 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5

mean scatt. : 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

no of src. : 1 (incl. array elements : 1)

no of rec. : 4

bkg noise : 45.0 38.0 32.0 28.0 25.0 23.0 21.0 19.0 dB (given average) 35.8 dBA (NCB:28)

res. noise : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 dB (for noisemap ) 7.2 dBA (NCB:0)

head dir. : source

room considered open (pending a full Predict SxR calculation).

Air

rel. humidity : 50

temperature : 20.0 ◦C

sound speed : 343.3 m/s

density : 1.200 kg/m3

cha. impedance : 412.0 kg/m2s

absorption : 1.125E-04 3.208E-04 6.492E-04 1.131E-03 2.498E-03 7.692E-03 2.734E-02 9.249E-
02 1/m (125-16k Hz)

no audience maps defined.

SOURCE-id (POS m) DIRECTIVITY (AIMPOS m) ROTATION MAPRAYFACTOR Directivity-
file date/time:
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A0 ( 0.100 4.100 1.450 ) OMNI.SD0 ( 0.100 5.100 1.450 ) 0.0· 1.000

Lp1m a : 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 dB (125-16k Hz)

Incoherent source

A1 ( 0.100 3.900 1.250 ) OMNI.SD0 ( 0.100 4.900 1.250 ) 0.0· 1.000

Incoherent source

Lp1m a : 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 dB (125-16k Hz)

Incoherent source

A2 ( -0.100 4.100 1.250 ) OMNI.SD0 ( -0.100 5.100 1.250 ) 0.0· 1.000

Lp1m a : 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 dB (125-16k Hz)

Incoherent source

A3 ( -0.100 3.900 1.450 ) OMNI.SD0 ( -0.100 4.900 1.450 ) 0.0· 1.000

Lp1m a : 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 dB (125-16k Hz)

Incoherent source

RECEIVERS (pos m) (aimpos m) [aimvector m] individual noise:

01 ( 1.000 4.000 1.350 ) ( -0.100 3.900 1.450 ) [ -0.992 -0.090 0.090 ]

02 ( 2.500 6.500 1.500 ) ( -0.100 3.900 1.450 ) [ -0.707 -0.707 -0.014 ]

03 ( -2.000 6.000 1.200 ) ( -0.100 3.900 1.450 ) [ 0.668 -0.739 0.088 ]

04 ( -5.000 2.500 1.600 ) ( -0.100 3.900 1.450 ) [ 0.961 0.275 -0.029 ]

G.2. Room geometry

;MASTER.GEO

;PROJECT=Project

;Constant declaration

LOCAL h = 3 ;room height in m

LOCAL w = 16 ;room width

LOCAL d = 10 ;room depth

ABS walls ¡53 53 53 53 53 53¿ L ¡10 10 10 10 10 10¿ 255 255 0 ;

ABS floor ¡01 01 01 01 01 01¿ L ¡10 10 10 10 10 10¿ 0 255 0 ;

CORNERS

;floor corners
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1 -w/2 0 0

2 -w/2 d 0

3 w/2 d 0

4 w/2 0 0

;ceiling corner

11 -w/2 0 h

12 -w/2 d h

13 w/2 d h

14 w/2 0 h

PLANES

[1 floor / 4 3 2 1 / floor ]

[2 ceiling / 11 12 13 14 / walls ]

[3 first wall / 1 11 14 4 / walls ]

[4 second wall / 3 13 12 2 / walls ]

[5 third wall / 2 12 11 1 / walls ]

[6 fourth wall / 4 14 13 3 / walls ]
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