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Abstract

Digital twins have emerged as an important tool being used in the industry for monitoring equip-

ment. Data generated from a physical device or a process provides an opportunity to apply machine

learning algorithms for anomaly detection and prediction. The insights gained by this analysis can

be very useful in monitoring the physical condition of the device. The main goal of this thesis is to

implement a data driven condition monitoring system for a moka pot and detect anomalies in the

coffee preparation process. A data acquisition system was set up to generate data from the brewing

process. A comprehensive dataset was generated which included data from ideal and anomalous

iterations. Both supervised and unsupervised machine learning algorithms were trained and tested

on the dataset for detecting anomalies in the process. With an accuracy score of 88%, an anomaly

detection system with a reasonable performance has been implemented, demonstrating the use of

the generated dataset.
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Chapter 1

Introduction

1.1 Motivation

Digital Twins are becoming increasingly important in many industries such as manufacturing,

healthcare etc. They enable the use of data coupled with machine learning methods to provide

solutions to engineering problems such as anomaly detection and condition monitoring. This study

aims to demonstrate a data driven approach to detect anomalies in a process. The process chosen for

this study is the preparation of coffee in a moka pot. The moka pot or simply known as the moka,

is the most popular instrument used to brew coffee in Italy. Bialetti industries, the inventor and a

leading manufacturer of the moka, claims to have manufactured more than 200 million moka pots [1].

This stands as a testament to the popularity of this coffee brewing method. The preparation of coffee

in a moka machine is a complex thermodynamic process and the output greatly depends on multiple

parameters such as heat supply, initial water content, initial coffee weight and the condition of the

pot itself. A significant variation in any of these parameters have a considerable impact on the quality

of coffee produced. The existence of such anomalies in the process and the convenience with which

required data can be generated from the moka system, makes it an ideal candidate to carry out this

study. Moreover, there have been very few studies on the moka. Experimental analysis and use of

machine learning methods may lead to improvements in the process and may pave the way for some

optimisations in the pot itself. However, there is no readily available dataset related to the operation

and functioning of the moka. This thesis aims to provide a structured dataset which could be used to

develop anomaly detection systems for the moka. Faults arising from the sensor system itself can be

hard to deal with and these faults interfere with the performance of anomaly detection algorithms.

This experimental setup can be used to produce such behaviour and appropriate detection schemes

can be tested to detect such faults in addition to the existing process anomalies. Exploratory work

on anomaly detection in the coffee preparation process could provide insights for applying similar
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detection methods to monitor larger and more complex industrial processes.

1.2 Thesis Scope

The goal of this thesis is to implement a digital twin of a moka pot. Specifically, it is to explore

the possibility of applying machine learning methods and develop a data driven system to detect

anomalies in the coffee preparation process. The unavailability of data required for building such

a system was addressed by producing the dataset. To generate a useful dataset, it was needed

to understand the physics behind the functioning of the moka pot and it was also necessary to

identify the possible faults in coffee preparation process. A data acquisition system, presented in

the specialization project with the same title as this thesis [2], was improved to accommodate more

sensors. This work involved interfacing hardware from National Instruments and also developing

the virtual instrument on Labview. Using this setup, a labelled time series dataset containing data

representing ideal and every anomalous condition was generated. Some machine learning methods

that could be used to detect anomalies in the brewing process were identified and applied on the

generated dataset. Their performance of detecting anomalies have been summarised, demonstrating

a proof of concept for a data driven condition monitoring system for the moka.

1.3 Thesis Structure

The thesis is structured as follows:

• Chapter 2 provides fundamental background information about the moka pot. It gives an

overview of digital twins, mentions some use-cases of digital twins in the industry and also

explains the methodology followed for implementing the digital twin of a moka.

• Chapter 3 explains the concepts related to time series data and presents theory for the ana-

lytical methods applied on the generated dataset.

• Chapter 4 describes the hardware setup and the Labview virtual instrument designed for the

experiment. It also describes the procedure followed and the conditions under which the ideal

and anomalous data was generated.

• Chapter 5 deals with the time series analysis performed on the data. It provides a detailed

description of the dataset generated and also provides some visualizations to understand the

data. It also explains each method tried on the dataset to detect anomalies.

• Chapter 6 describes the performance of each method applied and contains a discussion on the

results obtained.

2



• Chapter 7 provides a conclusion for the work and possible future work that can be carried out

building upon this thesis.
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Chapter 2

The Moka Pot and Digital Twins

This gives some background on the equipment under focus - the moka pot. This chapter also

includes sections defining digital twins, mentioning their applications and also providing the imple-

mentation methodology followed in this thesis.

2.1 Description of the Moka Pot

The moka is one of the most popular instruments used to brew coffee, especially in the country of

Italy where the moka was invented. The most popular model of the moka pot is the "Moka Express"

by Bialetti industries [1]. It is produced in the 1, 3, 6, 9 and 12 cup variants. For our experiments,

the 12 cup version is used. The bigger size of the 12 cup version enables the easy application of

sensors on the pot. The moka structurally consists of 2 chambers. The lower boiler chamber which

holds the water before the brewing process and the top chamber which holds the coffee after the

brewing process. A funnel equipped with the filter plate fits snugly into the boiling chamber and

then the top chamber is screwed onto the boiler chamber. The length of the funnel is such that it

does not touch the base. The boiler has a pressure release valve for safety purposes and the top

chamber has a spout through which the coffee flows. The figure 2.1 illustrates the parts of the moka.

2.2 The Coffee Preparation Process

The process to prepare coffee in a moka contains the following steps:

1. Water needs to be filled into the bottom chamber such that that safety valve is not covered. In

the model used for the experiments, there is a reference line provided in the bottom chamber

up to which water must be filled.

2. Coffee grounds should be poured into the funnel and loosely packed and not tamped. Care
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needs to be taken not to over fill the coffee and also the grounds should not be too fine, so

that the filter plate is not clogged.

3. The top chamber needs to be fixed on to the lower chamber, creating a tight seal so that no

steam escapes.

4. A consistent medium heat is supplied to the the pot till enough pressure is created for the

water to flow from the bottom chamber, through the funnel and wet the coffee grounds.

5. The process continues until the coffee starts flowing through the spout into the top chamber.

The flow of coffee is consistent and finally some residual steam passes through the spout,

marking the end of the process.

Figure 2.1: Parts of moka pot a. top chamber b. gasket c. filter plate d. funnel e. bottom/boiling chamber
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2.3 Moka Pot Physics

To gain intuition about the process and to better interpret data that will be generated in the

experiments, it would be useful to understand the physics that governs the brewing process. There

has been an attempt to provide a theoretical explanation for the working in [3]. This paper uses

Darcy’s law of linear filtration to explain the pressure required by the water to pass through the

coffee grounds. Saturated water vapour exists above the surface of the water in the boiler chamber.

When heat is switched on, the water vapour heats and expands. This applies pressure on the water.

When this pressure exceeds atmospheric pressure and the filtration pressure offered by the coffee

grounds, coffee starts flowing through the spout, into the top chamber. The water assumes the

flavour and aroma of coffee when it comes in contact with the coffee grains and dissolves some of the

aromatic oils. Studies [4] have shown the strength and taste of coffee is dictated by parameters like

the duration of contact between the water and coffee grains, the pressure and temperature at which

the extraction happens, the coffee grain size etc. Darcy’s law of linear filtration which governs the

filtration pressure is defined by the following equation.

P = P0 + Pf

where P0 is the atmospheric pressure and Pf is filtration pressure which is defined by the equation

Pf =
mηh

kSρt

where m is mass, η is viscosity coefficient, h is the height of the column through which the water

rises, ρ is the density of water and S is the surface area of the funnel, k is the filtration coefficient,

t is the time taken by the water to pass through the coffee.

2.4 Prior Work on the Moka Pot

There is very limited literature available on the experimental analysis of the moka. There were

two resources that provided some good guidance for the work in this thesis. Some experimental

work was performed by Gianino [3] on the moka. The experimental setup described in that paper

consists of two thermocouples, one in the spout and one inside the boiling chamber of the moka. By

finding the difference in temperatures measured by these thermocouples, the difference in saturated

vapour pressure has been calculated. This provides an estimation of the filtration pressure required

by the water to flow through the coffee grounds. Further analysis has been performed to find the

filtration coefficient of the coffee grounds based on the time the water takes to pass through it. This

work provides the explanation to the physics behind the brewing process.

The work of Navarini Et al. [5] inspired the experimental setup used in this thesis. Their setup

includes 12 thermocouples, 1 pressure sensor and a level detection circuit. This work highlights the
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need of collection of temperatures from various locations of the pot in order to correctly model the

behaviour of the pot during the brewing process. This study also highlights the role of the dry

air in the boiling chamber in the brewing process. A structure has been provided for the brewing

process by dividing the process into two phases. The duration where the flow of coffee is smooth

and consistent into the top chamber is called the "regular extraction phase" and the second phase is

named the "strombolian phase" which begins when the level of water is below the funnel’s bottom

tip. This phase is accompanied by immense evaporation and can be identified by the gurgling sound

produced by the pot during this phase.

2.5 Possible Faults in the Coffee Preparation Process

To generate a comprehensive dataset to represent the ideal and anomalous conditions of the

coffee preparation, it is necessary to identify what constitutes an anomaly. Faults in the physical

process reflect as anomalies in the data. A survey on effects of physical parameters like pressure,

temperature and coffee grain size on the quality of coffee produced, is provided in [4]. The following

section lists all the identified faults in the process which affect the physical parameters that affect

the quality of coffee.

1. Faulty Heating

Heat supply is an important component in the coffee preparation using the moka. The heat

provided should be consistent and also not too high. High heat is attributed to over extraction

of coffee which leads to sub optimal flavours. Another possible fault in the heat supply is an

inconsistent supply. When the supply of heat is inconsistent, the smooth flow of coffee through

the spout does not occur. The extraction happens irregularly and has a negative impact on

the output of coffee.

2. Incorrect quantity of Water

It is highly recommended that the initial amount of water in the boiling chamber should be

below the safety release valve. If the water covers the valve, this would make the valve non-

functional which could lead to accidents like boiler explosion. If an insufficient amount of water

is added, it affects the ratio of water to coffee used and this impacts the final output of the

coffee. Less water often leads to underdeveloped flavour in coffee [4].

3. Coffee based faults

As in the case of water, the amount of coffee added should be equal to the recommended

amount for the model of moka used. The coffee grounds should fill the funnel but should not

be tamped. Having lesser coffee in the funnel than prescribed is also a fault and leads to a

lack of flavour in coffee. The grind of coffee should also be carefully chosen, as a super fine
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grind leads to clogging of the filter plate and may lead to explosion of the boiler if the safety

valve malfunctions.

4. Leak Faults

To successfully get the required brew in a moka pot, the condition of the pot should be perfect.

A worn out gasket or a malfunctioning safety valve, leads to leak of steam, which reduces the

built up pressure and this harms the process. The leak could also arise from not screwing

the top chamber on to the bottom chamber tightly. These faults in maintaining a proper seal

throughout the brewing process, leads to the extraction taking longer and also sub-optimal

output.

5. Sensor based Faults

It is a possibility that anomalies may arise from the sensor system itself. Even if the process

may be conducted in perfectly ideal conditions, anomalies in data may occur due to errors in

the sensor readings. Such faults can arise from displacement or disorientation of sensors and

reduce the performance of anomaly detection algorithms which get all the data from these

sensors.

2.6 Digital Twins

This section explains some of the terms related to digital twins, how they are used in the industry.

It also explains the some generic steps that can be followed to implement a digital twin and also

how it has been applied to the moka pot.

2.6.1 Industry 4.0

Major technological advancements have been mainly observed in leaps, known as ‘industrial

revolutions’ [6]. Increased use of mechanisation and steam power to drive machines was termed

the first industrial revolution, use of mass production lines for manufacturing and electrification of

these production lines was termed as the second revolution. Automation of manufacturing processes

by using programmable devices was the third and finally now , the fourth industrial revolution or

"industry 4.0" in popular terminology, is the emergence of interconnected cyber-physical systems to

make the manufacturing process more intelligent. Digital twin technology is a very important tool

in the industry 4.0 paradigm.

2.6.2 Definition

A digital twin is the digital representation of a physical device with a continuous exchange of

information between the device and its digital replica. The important ideas defining the digital twin
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technology was first described in the works of Dr.Grieves [7]. He defines a digital twin as a collection

of all information that can completely describe a product. Any information that can be extracted

from the physical device, must be available in its digital twin.

The name "digital twin" was coined by him. He also defined other important terms such as “digital

twin prototype” which contains information required to make the physical entity of the digital model,

“digital twin instance” which is a digital twin of a specific device or a process. It holds all information

of the physical device or the process like a list of components in the device or list of sub-processes

in the process. It also holds real time information such as the operational state of the process,

typically derived from sensor data. In addition to this, more advanced implementations can also

include predictions about the probable future states of the device or process.

2.6.3 Applications

The advent of machine learning algorithms and extensive use of data have made the implement-

ation of digital twins very practical. They are being used in many industries for better visualization

of data, condition monitoring and predictive maintenance. Digital twins have been used as tools for

condition monitoring in healthcare, aerospace industry [8] and oil and gas industry [9].

The aerospace industry was one of the early adopters of this technology. NASA included digital

twins in their technological roadmap. [8]. With high risks involved, there is a need for dynamic

diagnostic mechanisms. Having a digital twin of components in a spacecraft, enables the team to

obtain information to predict failures and also to diagnose existing problems remotely.

The healthcare industry is evolving to make treatment of patients more tailored to each individual

patient [10]. This demands better utilization of patient records and more sophisticated monitoring

methods. Digital twins are being considered as a possibility to fulfill these requirements. The real

time condition monitoring of patients is possible by having a body worn sensor system on the patient

and having a digital twin of the patient. This makes it possible for a doctor to remotely examine a

patient by examining the digital twin. Figure shows an architecture for a digital twin based elderly

health management system adapted from [10].

2.6.4 Implementation Methodology Adapted for Moka

The methodology used to implement a digital twin is highly dependent on the specific application

scenario and the information it needs to capture. Parrott and Warshaw, 2017 [11] have described

some general steps to implement a digital twin. The steps have been adapted for the implementation

of a digital twin for the moka. The steps are described as follows

1. Building a data acquisition system with a wide variety of sensors to capture relevant data

which is useful for the application. In our case, inspired by [5] the pressure and temperature
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Figure 2.2: A digital twin based healthcare management system

data is identified as critical information. Thus, the data acquisition system is equipped with

nine thermocouples and one pressure sensor.

2. Communication channels must be setup between the physical and the virtual domains. Since

there is no intention of having a real time feedback to the physical device in this study, there

is uni-directional communication from the physical domain to the digital domain via the data

acquisition devices and the Labview virtual instrument developed for this experiment.

3. The next step is called "aggregation". This involves data collection, formatting and storage.

The data should be suitable for application of analytical tools. This is performed in our

Labview virtual instrument.

4. Understanding the data by visualization and application of analytical tools. Some machine

learning algorithms were applied on the generated dataset. Our study involves analysing data

to detect anomalies in the process.

5. Interpreting the analysis to gain insights into the conditions of the physical device. In our

case, to detect if there are any faults occurring in the process and if there is a fault, identifying

which fault is affecting the process.

6. This step is named as "act" because this step involves taking action based on the insights from

the previous step. This typically involves having a feedback loop to the physical device from
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the digital domain. Since our study is limited to just anomaly detection, no feedback loop for

correction was implemented in this experiment.
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Chapter 3

Time Series Analysis

3.1 Introduction

Data is generated in this experiment with nine temperature sensors and one pressure sensor.

The data is recorded over multiple iterations of coffee preparation on the moka and each recorded

sample has an associated time stamp. The data from each sensor is considered to be a univari-

ate time series and can be analysed independently. The other possibility is that the data from

all sensors are grouped together to form a multivariate time series. More formal definitions of uni-

variate and multivariate time series are adapted from [12] and examples for both are provided below.

Univariate Time Series - A univariate time series is a set of real values that have an order

defined by their associated time stamp. It can be represented as X = [x1, x2....xN] where xN is the

value of X at time N.

The readings from a single pressure sensor can be considered a univariate time series and is visualised

in the figure 3.1

Figure 3.1: An example of univariate time series. Data from a single pressure sensor
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Multivariate Time Series - A multidimensional time series of M dimensions consists of M uni-

variate time series where all time series share the same time vector. It can be represented as Y=[X1,

X2....XM] where X1, X2....XM are univariate time series. The readings acquired from a data acquis-

ition system equipped with multiple sensors working together can be considered as a multivariate

time series and is depicted in the figure 3.2

Figure 3.2: An example of multivariate time series. Data from multiple temperature sensors

3.2 Labelling of a Time Series Dataset

Time series can be labelled in multiple ways depending on the application. One method is to

label segments in a long time series. Usually, there is a label allocated to the data sample at each

time stamp. This type of labelling is useful in activity recognition applications. A very basic example

is illustrated in the figure below. A thermocouple is used to determine if the user’s hand is resting

on a platform. If the hand is detected, the sample is labelled with a ’1’ and when there is no hand

on the platform, the sample is labelled as ’0’. The data and its binary label is plotted in the figure

3.3.

Figure 3.3: Plot of temperature data and binary label. Each recorded sample has a binary label

Another labelling method is that a label is associated with the whole time series. This can be a
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univariate or a multivariate time series. This method of labelling is followed, to annotate the dataset

generated in our experiment. This method is useful for time series classification applications. 3.4

shows an example illustrating the method.

Figure 3.4: Plot of two labelled time series. Each time series has a label

3.3 Anomalies in Time Series Data

An anomalous observation is one which deviates from the expected behaviour. These anomalies

can occur due to noise, faulty equipment or it may be generated due to a deviation in the physical

behaviour of the device under observation. [13] provides a review on anomaly detection in the context

of time series data. The anomalies can be categorised into three types based on their occurrence.

They are point anomalies, sub-sequence anomalies and whole time series anomalies and each type

is defined and illustrated in this section.

Point anomalies are defined as individual anomalous observations which deviate from the other

observations in the same time series. The data at a particular time stamp is very dissimilar when

compared to other data points in the time series. The figure 3.5 illustrates a point anomaly.

Figure 3.5: Illustration of a point anomaly
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Sub-sequence anomalies are said to occur when few consecutive observations put together

display a significant deviation in the normal behaviour observed in the time series. Figure 3.6 shows

a sub-sequence anomaly where a group of points exhibit anomalous behaviour but each individual

point is not an anomalous reading.

Figure 3.6: Example of sub-sequence anomaly

Whole time series anomaly is when the whole time series is generated in an anomalous

setting. An entire time series can be considered as an outlier and classified as an anomaly when

compared to other time series data. This is achieved by using similarity metrics which are discussed

in the subsequent sections. Whole time series anomaly is depicted in the figure 3.7

Figure 3.7: Whole time series anomaly

3.4 Distance Measures for Time series

This subsection explains the distance measures used in the anomaly detection methods employed

in this thesis.
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3.4.1 Euclidean Distance

This is a very common measure of distance between two vectors and is widely used in time series

applications as well. The distance is calculated using the following formula

Dist(X1, X2) = =
√

Σni (X1i −X2i)2

where X1 and X2 are two univariate time series as defined in section 3.1. This distance measure

requires both the vectors to be of the same length.

3.4.2 Dynamic Time Warping

Dynamic time warping is a popular approach and can be considered as an extension to euclidean

distance. If there is a misalignment in data, the euclidean distance measure penalises it because

distance is calculated only between the samples of two time series at the same time stamp. But with

the dynamic time warping approach, small misalignments do not cause a remarkable increase in the

distance between the two time series. This measure can be used to measure dissimilarity between

two time series of unequal lengths. The method to calculate dynamic time warping distance between

two time series X1 and X2 with lengths I and J respectively as mentioned in [14] with euclidean

distance as the local cost measure is summarised as follows.

1. Construct a distance matrix with euclidean distances between each pair points of X1 and X2.

The dimension of this distance matrix is IxJ and each element of the distance matrix is calcu-

lated by the following rule.

C(i, j) = dist(X1i, X2j)

where i ε [1:I] and j ε [1:J].

2. A warping path is found in the distance matrix which reduces the overall distance between the

two time series. The warping path is defined as w = (w1,w2...wL) where wl = (il, jl) with i ε

[1:I] and j ε [1:J]. The warping path calculation is constrained with the following conditions

• The first constraint is referred to as boundary condition. It constraints the first element

in the warping path w1, to be cell(1,1) in the distance matrix, and the last element in the

warping path wl to be the cell(I,J).

• The indices of the warp path must be a non decreasing sequence. This constraint is called

as monotonic condition.

• Elements of w are chosen such that there is just one step traversal in the distance matrix

for two consecutive elements in w.
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3. The total distance is calculated as a sum of the elements on the warping path.

An example of the distance matrix and the calculation of warp path is shown the figure 3.8. Two

time series of different lengths are used and to calculate the warping path, every cell of the distance

matrix needs to be filled in the classical approach.

Figure 3.8: Distance matrix with the calculated warp path

3.4.3 FastDTW

The classical DTW approach explained previously, has a quadratic time and memory complexity

and the data generated in our experiment is quite sizeable with length of each iteration running in

tens of thousands of samples. Thus, it is impractical to use the classical approach to calculate the

distance between the time series. FastDTW is an approach developed in [15] which produces an

approximate alignment that is close to the optimal alignment provided by the classical approach.

This is done at a linear time and space complexity which is much faster and less memory intensive

compared to the classical approach. An overview of the FastDTW approach is given below.

1. Reduce the length of the time series by taking the average of two adjacent pairs of points. The

new length is half the length of the original time series. Repeatedly run this step to generate

time series of multiple resolutions.

2. Calculate the warp path on a lower resolution data and use this to estimate the path in the

higher resolution. At the lowest resolution, classical DTW is used to calculate the warp path.

3. Use the projected warp path obtained from the lower resolution and find a more optimum path

in the higher resolution by running a constrained DTW algorithm where distance calculations

are done only for the cells in the projected warp path and the ones in the neighbourhood of
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this path. The neighbourhood is controlled by a parameter which is referred to as radius. For

radius equal to the length of the time series, the FastDTW approach generalizes to the classical

DTW approach.

4. Step 2 and 3 are recursively run to get the warp path from the lowest resolution to the actual

resolution of the time series.

This approach negates the need to fill up the whole cost matrix as required by the classical DTW

approach and only the necessary distances are calculated and filled according to the estimations

made on the lower resolution data. The figure 3.9 adapted from [15] shows the projection of warp

path from the lower resolution to a higher resolution and illustrates the reduction in the number

of calculations required to compute the approximate warp path. The dark shaded cells represent

the projected path and the lightly shaded squares represent the neighbourhood which are included

in the refinement of path calculations. The unshaded cells need not be calculated at all, thereby

reducing the number of calculations.

Figure 3.9: The projection of warp path from lower resolution to higher resolution

3.5 Detection of Whole Time Series Anomalies

As mentioned earlier in section 3.2, this project has the goal of generating a dataset with a

single label for each iteration of coffee preparation. Thus, detection of whole time series anomalies

becomes the topic of interest. There are two main approaches to detect whole time series anomalies

as suggested by [13]. They are dissimilarity based methods and feature based methods and are

explained as follows.

3.5.1 Dissimilarity Based Methods

The intuition behind this method is that time series data generated under anomalous conditions

are dissimilar to data generated under ideal conditions. Some of the measures that can be used
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to determine the degree of similarity or dissimilarity between two data vectors and that have been

used in this thesis have been explained in section 3.4. These methods could be performed in the

supervised approach like the nearest neighbour classifier, where labelled data is used for training

a model or also in unsupervised methods where data labels need not be provided and the model

makes use of the inherent dissimilarity in the data, to group similar data together. The unsupervised

approaches include methods such as K-means clustering and Hierarchical Clustering. [16] provides

a review on clustering algorithms for time series data. The approaches have been explained in the

following subsections.

3.5.1.1 K-means Clustering

The K-means algorithm is one of the most popular and simple clustering algorithms used to

assign each data point into one of K clusters. K is an input parameter required for the algorithm.The

overview of the algorithm is as follows.

1. K random points are initialised as centroids of the clusters.

2. Distance is calculated between each data point and every centroid.

3. Each data point is assigned to the cluster whose centroid is located closest to the point(distance

is minimum). Euclidean distance is a popular distance measure used in this calculation and is

used in this thesis as well.

4. After each data point is assigned its cluster, the new cluster centroids are calculated by finding

the mean of all points belonging to the cluster.

5. Steps 2,3 and 4 are repeated until the cluster centroids do not show variation.

3.5.1.2 Hierarchical Clustering

Another method of clustering used to cluster raw time series data is hierarchical clustering. As the

name suggests, this clusters the data in a hierarchical fashion, grouping most similar data points into

smallest of the clusters and then grouping the smaller clusters into bigger clusters. Agglomerative

and divisive approaches can be adopted to implement this algorithm. In the Agglomerative approach,

each data point is considered to be a cluster and then most similar clusters are merged together as

we move higher in the hierarchy. In the divisive approach, the data points are grouped together into

one cluster and then divided into smaller clusters as we move lower in the hierarchy. Agglomerative

approach is used in this study.
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3.5.1.3 Nearest Neighbour Classifier

Nearest neighbour classifier is one of the simplest supervised approaches. In time series clas-

sification problems, it is used to test different distance measures and works as a decent baseline

method [17]. It works as follows.

1. The distance between the sample under test and every sample in the training data is calculated.

2. The samples with the least distance to the test sample are its neighbours. Generally, an input

parameter N decides the number of nearest neighbours under consideration.

3. The most common label among the neighbours is given to the test data point. In case of

1-Nearest Neighbour classifier, only one neighbour is considered and the label associated with

that neighbour is assigned to the test data point.

3.5.2 Feature Based Methods

Time series data is generally very high dimensional. The amount of data that needs to be

processed depends on various factors such as the sampling rate used to produce data, the duration

for which the data was recorded, number of sensors used in the data acquisition system, etc. One

way to avoid the high processing times is to extract relevant features which represent the data in a

lower dimensional space. These features are fed to a conventional classifier such as a support vector

machine. An SVM based classifier is explained below.

3.5.2.1 SVM Classifier

Support vector machine is a very popular tool used for classification. This algorithm finds an

optimal hyper-plane which separates two classes. This hyper-plane is found such that the distance

is maximum between the two classes of data. Since this is primarily, a binary classifier, in order

to classify data into more than two classes, strategies like one vs one approach is used. In this

approach, an SVM classifier is trained for each pair of labels. Thus, for a k-class problem, (k)(k-1)/2

binary classifiers are trained. During the testing phase, all the binary classifiers classify the sample

between the two classes that they are trained for, and a voting is conducted for obtaining the final

class label. An SVM classifier is used for monitoring the condition of a tool in [18] and the SVM

algorithm can be briefly described in the following steps with the help of figure 3.10 .

• Given a dataset with labels y ε {+1, -1}. Find hyper-planes such that xi.w+b ≥ +1 when

yi=+1 and xi.w+b ≤ -1 when yi=-1. xi is a data point and w is the weight vector and b is

bias. These hyper-planes are called the support vectors and are named as H1 and H2 in the

illustration.
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• The goal is to identify a decision function which is a hyper-plane H with equation xi.w+b=0

which correctly classifies the samples into their respective classes and also maximises the

margin. The margin is the sum of d+ and d− shown in the figure and is found to be 2/||w||

where ||w|| is the euclidean norm of vector w.

• To maximise the margin, we need to minimise ||w|| with the linear constraint yi(xi.w+b)-1≥0.

The problem is typically solved using the Lagrangian method.

• To enable non linear classification, the input space is mapped to a higher dimensional space

where the decision function transforms into a linear hyper-plane. This transformation is called

the kernel trick and provides flexibility to the SVM algorithm. Some of the typical kernels are

linear, polynomial and radial basis functions. The implementation of SVM classifier used in

this thesis has an RBF kernel which has the following formula.

K(x1,x2) = exp
(
− ||x1−x2||2

2σ2

)
where x1 and x2 are two samples and σ is a parameter.

Figure 3.10: Illustration of an SVM classifier

3.5.3 Stacking of Univariate Classifiers

To deal with the multivariate nature of the generated data, a combination of univariate classifiers

has been tested. [19] proposes a stacking structure where the multivariate time series is split into its

univariate components and univariate classification is used on that data. In their proposed structure,

K nearest neighbours with the DTW dissimilarity measure is used as the univariate classifier. The

decisions from these classifiers are fed to a Naive Bayes classifier or an SVM classifier to get the

final multivariate classification of data. A similar structure has been tried in our study where a

univariate classifier is trained on data from a single sensor. Since there are ten sensors in the data

acquisition equipment, ten classifiers are trained individually. But instead of having a 2nd level of
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classification, a majority voting scheme was used to find the final classifier output. Structure of the

ensemble tested in the study is illustrated in figure 3.11.

Figure 3.11: Ensemble of univariate classifiers to deal with multivariate data

3.6 Evaluation of Models

Once the models have been trained, they need to be tested with unseen data. With a very

limited amount of data available, the leave one out cross validation technique seems to be the most

suitable method for the evaluation of approaches on this dataset. The leave one out cross validation

technique has been used to obtain a mean accuracy score and F1 score of the models. This measure

is used to evaluate how the models have performed over the dataset. In this study, the unsupervised

approaches are also evaluated. In such cases, the labels in the dataset are used only for evaluation

purposes when testing the unsupervised approaches.

3.6.1 Leave One Out Cross Validation

The leave one out cross validation method is used when the data available is scarce. This applies

to our case. In this approach, all data points except one is used as training data to train a model

and the remaining data point is used as a test sample. The method is repeated such that each data

point in the dataset is the test sample in one of the train-test splits. The performance is evaluated

over all the train-test splits and then a mean performance measure is calculated to give an overall

performance of the model under evaluation for the given dataset. The figure 3.12 shows an example

of the training-test splits generated by LOOCV algorithm. There are four samples in the data and

one sample is used as a test sample in each split.
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Figure 3.12: Leave one out cross validation over a dataset with four samples

3.6.2 Accuracy Score

Accuracy of a model gives a measure of the correctness of prediction by a classifier. It is calculated

by the following formula.

Accuracy Score =
Correct Predictions

Total Number of Predictions

3.6.3 F1 score

When dealing with imbalanced datasets, accuracy score may not be the best performance meas-

ure. For example, considering a dataset with 10 samples with 8 negatives and 2 positive samples. A

classifier which predicts all samples as negative will have a high accuracy score of 0.8. In such cases

it is necessary to quantify the detector’s capability to correctly identify the positive samples. This

can be achieved by using F1 score as a performance measure.

The F1 score is a harmonic mean of two measures called precision and recall. The precision defines

the ability of the classifier to avoid false positives. When the number of false positives in the pre-

dictions increase, the precision of the classifier decreases. Similarly, recall defines the ability of the

classifier to correctly identify all the positive cases. The formula to calculate precision, recall and

the F1 score is given below.

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

F1 Score = 2 .
Precision . Recall
Precision + Recall
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Chapter 4

Experiment

4.1 Overview

To generate data required for this study, a suitable data acquisition system was setup. The main

motivation for this setup was derived from the study of Navarini et al. [5]. To model the functioning

of the moka pot, three main parameters are used, namely, the temperatures on the surface of the

moka pot at various locations, the internal temperature of the moka and also pressure inside the

boiling chamber. To capture this data, 9 thermocouples and 1 pressure sensor were interfaced with

data acquisition devices from National Instruments and a Labview virtual experiment was created

to handle the incoming data and store it in the required format in CSV files. This data was used for

further analysis which is explained in the subsequent chapter. This chapter describes the hardware

setup, the Labview virtual experiment and the methodology used to generate data .

4.2 Hardware Description

This section gives a detailed description of important hardware components used in the setup.

The components include the moka pot, the heat source, thermocouples, pressure sensor, data ac-

quisition equipment from National Instruments.

1. Moka Pot

The Moka Express from Bialetti Industries is one of the most popular models of moka and is

widely used by consumers. Owing to this popularity, this particular model was chosen for the

study. A 12 cup moka was chosen for easy application of sensors. The boiler capacity is 775ml

and one this pot typically produces 12 shots(1 shot=30ml) of coffee.

2. Electric Stove

A generic electric kitchen stove was used as the source of heat for coffee preparation. This
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Figure 4.1: The experimental setup

is typically used by a general consumer of the moka. The stove contains multiple heating

levels which was convenient to produce data on different heat settings. Another stove was

used to generate a class of anomalous readings. This stove maintained a constant stove top

temperature, rather than a consistent heat supply as required by the moka.

3. Thermocouples

Thermocouples have a junction formed by two electrical conductors which produce a voltage

depending on the temperature. Depending on the combination of metals used to form this

junction, they are categorised into different types and have different properties such as range,

cost and stability. Two types of thermocouples used in this setup were the type-K and type-T.

The external thermocouples were of type T and the internal thermocouples were of type K.

The junction of T-type thermocouples are made of copper-constantan(a copper-nickel alloy).

They have a range of -270 to +370 degrees Celsius. Both conductors used in the preparation

of this thermocouple are non magnetic and there is no abrupt change in the characteristics of

the thermocouple over the range of use.

K-type thermocouples contain a junction made of two alloys, they are nickel-chromium and

nickel-Alumel alloys. They have a higher range of –270 to +1260 degrees Celsius. Due to their

low cost and wide range of temperature, they are the most commonly used general purpose

thermocouples.
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Figure 4.2: Structure of a thermocouple - adapted from [20]

4. NI-9213 Thermocouple Module

The NI-9213 [21] is a data acquisition device specifically designed for conditioning of signals

from thermocouples. Data can be acquired from 16 independent channels. There are two

timing modes for operation, a high resolution mode with 1 sample/second or the high speed

mode with a maximum sample rate of 75 samples/second.

In order to capture the absolute temperature from a thermocouple, it is necessary to know

the temperature of the cold junction so that it can be relatively scaled. This is called cold

junction compensation. Figure 4.2 is a diagram of a thermocouple structure for reference. The

NI-9213 module provides cold junction compensation internally, thus making it convenient to

measure absolute temperature data from thermocouples. The typical error in measurement

for temperatures ranging from 0-200 degrees is +/- 1 degree for both types of thermocouples.

5. Pressure Sensor

The pressure sensor used in the experiment belongs to the XTME-190(M) series, produced by

Kulite [22]. This transducer can be safely used in temperatures of up to 232 degrees Celsius,

which makes it safe to be used inside the moka pot for the experiments as the expected

temperature range is well below the rated temperature of the sensor. It has a piezoresistive

element to change its resistance according to the pressure applied. The sensor has an inbuilt

full-bridge configuration as illustrated in the figure. Thus, to acquire data from the sensor,

the activation voltage must be supplied and the voltage must be measured from the other

terminals. This is achieved by using the NI-9237 module [23].

6. NI-9237 Bridge Measurement Module

To measure the pressure from a pressure transducer, a Wheatstone bridge setup is used,

with one of the resistances being sensitive to pressure. Excitation voltage is provided across

two terminals of the bridge and voltage is measured off the other two terminals. This data

acquisition module provides the necessary activation voltage for the measurement to occur.

If the internal timer is used, the minimum data rate is 1.613k samples/second. The unit of

measurement is Volts/Volt. i.e the output is the ratio of measured input voltage and the

excitation voltage. The reading needs to be scaled in the user application to get the pressure
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Figure 4.3: A full bridge setup for measurement of pressure

reading. The typical error in measurement is rated at 0.2% of the reading.

7. NI cDAQ-9174 Chassis

The NI cDAQ-9174 chassis enables the use of multiple data acquisition modules and connects

to a single USB port on the host PC. It provides features for triggering and synchronisation

between the modules that are attached to the chassis. It also provides digital routes for

managing the data flow from the modules to the host PC.

4.3 Labview Virtual Instrument

A virtual instrument was created in Labview for interfacing the data acquisition hardware with

the host PC. This virtual instrument provides a user interface to control data collection. It enables

the control of data flow from the sensors through the data acquisition devices and stores them into

CSV files in the required format. For each iteration of the coffee preparation process, the virtual

instrument creates a CSV file with a name provided by the user and also updates a file containing

labels.

4.3.1 Front Panel/User Interface

The front panel provides the user interface to control the hardware and also allows to enter

information about the data acquisition. It has a waveform display which allows the user to see the

acquired data in real time. Figure 4.4 shows the front panel of the virtual instrument. The user can

control sampling frequency, select the data acquisition channels and also enter the expected range

of measurements for more accurate analog to digital conversions. The user can provide a name for

the file in which the generated data is stored. The user can also type in the details of the conditions

under which the data was collected. This information is updated in the label file.
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Figure 4.4: Front panel of the virtual instrument

4.3.2 Highlights of the Block Diagram

The block diagram represents the flow of data and also the operations performed on the data.

It is the graphical source code. The graphical code must be written carefully to get the desired

functionality out of the hardware. It also needs to make use of inputs from the front panel which is

fed by the user. Some important features of this block diagram is explained in this section.

1. To have a synchronised measurement of all sensors, channels from both the data acquisition

modules are placed in the same task. Even though they have different virtual channels(units,

scaling information and physical channels), placing them in the same task allows the NI-

DAQmx driver to synchronise the modules. The figure 4.5 shows the section of the block

diagram where different measurement channels are defined and are associated with the same

task.

2. As mentioned in 4.2, the sampling rates of the module used for acquiring thermocouple data

and the module used for acquiring pressure data are different. The bridge based DAQ module

samples at a minimum rate of 1613Hz, while the thermocouple DAQ module samples at a

maximum rate of 75Hz. When two such modules are mounted on the same chassis and are a

part of the same task as in our case, the NI-DAQmx driver carries out the data acquisition

at the rate of the faster device and simply returns duplicate samples from the slower module.

In our case, the whole system runs at a minimum rate of 1613Hz. To overcome the problem

of unnecessary logging of data and to log data at 50Hz, an additional data logging loop was

created which is shown in figure 4.6.
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Figure 4.5: Multi-device task to enable synchronization across different hardware modules

Figure 4.6: The data logging loop
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Figure 4.7: Updating the Label.csv file with the conditions under which data was recorded

3. To enable a systematic data collection process, the label file is updated for each coffee prepar-

ation with the conditions under which the coffee was prepared.

4.4 Data Collection Methodology

4.4.1 Process Conditions for Data Generation

Preparation of coffee in a moka pot has many process parameters. They are initial water

quantity, the weight of coffee grounds, heat supply and the condition of the pot. Identi-

fying the ideal process conditions to make the perfect cup of coffee is a challenge. The process is

not standardised and an ideal cup of coffee is a subjective definition depending on individual pref-

erences. There is no scientific literature that defines perfect process conditions that produce the

ideal cup of coffee. Keeping that in mind, the ideal conditions are considered to be those which do

not have any faults mentioned in section 2.5. To produce a fault free iteration, coffee was prepared

according to the procedure defined in section 2.2. To generate anomalous data, faults described in

section 2.5 were injected one after the other. This fault injection produced data under six different

anomalous conditions, namely insufficient water, insufficient coffee, high heat, inconsistent

heat, leaks in the pot, sensor based faults. The table 4.1 contains the conditions under which

data was generated and the corresponding label assigned in the generated dataset.
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ideal water coffee HH IH seal sensor

Water Quantity(ml) 630-640 <550 630-640 630-640 630-640 630-640 630-640

Coffee Grinds Weight(g) 45-50 45-50 <30 45-50 45-50 45-50 45-50

Heat Supply CSM CSM CSM CSH IS CSM CSM

Leak No No No No No Yes No

Sensor Faults No No No No No No Yes

Table 4.1: Conditions under which data was generated and their corresponding labels

To produce data for insufficient water anomaly, the initial amount of water added to the boiling

chamber was significantly lesser. Similarly for insufficient coffee anomaly, the amount of coffee

grounds added to the funnel was much lesser than the quantities used for ideal iterations. The

high heat anomaly was generated by preparing coffee on the highest heat setting of the stove. This

setting was named consistent supply high(CSH) whereas the lower setting used to produce the ideal

scenario was named consistent supply medium(CSM). Similarly the inconsistent heat anomaly was

generated by using a second stove which did not provide a continuous supply of heat. This was

named inconsistent supply(IS). To have a leak in the pot, the top chamber of the pot was not

screwed on properly. This condition of the pot was used to produce data for seal anomaly. And

finally, the sensor based anomalies were introduced in the external temperature data by disturbing

the sensors and intentionally detaching and reattaching the sensors during the brewing process.

4.4.2 Procedure for Data Collection

To generate a structured dataset from the setup using the designed virtual instrument, a sys-

tematic procedure was followed which included the following steps.

1. The name of the file was entered in the user interface of the Labview program. This is the

file in which the acquired sensor data is saved. The naming format used to save data is

"moka_iteration_number.csv".

2. Weight of water and the coffee grounds was measured and entered into their respective fields

in the user interface.

3. Other fields such as the heat setting, leaks in the pot, occurrence of sensor fault were filled.

These fields were updated in the label file along with the iteration number by the Labview

program.

4. The virtual instrument was started to record data from all sensors till the completion of the

brewing process.
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Chapter 5

Data Analysis

5.1 Dataset Description

In order to create a data driven anomaly detection system of the coffee making process, a dataset

was generated by the experiment described in chapter 4. Every iteration of the coffee making process

on the moka generates a multivariate time series with 10 attributes. Each attribute represents data

from a single sensor out of 9 temperature sensors and 1 pressure sensor. The data was logged at

50Hz from each sensor and the locations of these sensors are shown in the Figure 5.1.

The data generated for each iteration was saved in a CSV file with the iteration number included

in the name of the file. Each file has 11 columns with time stamp as the first column and the rest

is the raw sensor data with each column representing data from 1 sensor. The dataset contains

64 such files representing 64 iterations of coffee preparation. There are 40 ideal iterations where

no faults were induced in the process and 24 anomalous iterations, with 4 iterations each for 6

types of anomalies . The structure of the dataset is summarised in the table 5.1. The temperature

sensor readings have been validated with a standard laboratory thermometer. But the data from the

pressure sensor could not be correctly scaled to obtain accurate pressure readings. Thus, to eliminate

the uncertainties in the magnitude of the readings, the pressure data was max-min normalised over

the whole dataset and saved in the files.

There is also another file called Label.csv which contains the label of each iteration as defined in

table 5.1. It also contains the conditions under which the data was generated for each iteration. The

format of the raw data and the label.csv file is shown if figure 5.2. The water quantity and coffee

quantity columns contain numeric values, leak in pot and sensor faults are denoted by a binary label.

The heat supply column holds symbols CSM, CSH or IS representing consistent supply medium,

consistent supply high or inconsistent supply respectively. The label column holds one of the labels

mentioned in table 5.1 depending on process conditions of the iteration.
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Figure 5.1: Location of sensors on the moka pot

Case Label Number of Iterations

Ideal Conditions ideal 40

Insufficient Water water 4

Insufficient Coffee coffee 4

High Heat HH 4

Inconsistent Heat IH 4

Leaks in Pot seal 4

Sensor Faults sensor 4

Table 5.1: Structure of the generated dataset along with the labels
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(a)

(b)

Figure 5.2: (a) Sensor data from each iteration (b) Format of Label.csv file

5.2 Data Visualization

For better understanding of the data and to design feature based classifiers for anomaly detection,

it is important to visualise the generated data. A python script was written for generating the plots

of required data. This section presents some important plots which give a good representation of

the generated data and some intuitions behind the brewing process using the moka.

Figure 5.3: Plot of a single ideal iteration of coffee preparation

The Figure 5.3 shows the multivariate time series generated by one coffee preparation process.
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Figure 5.4: Comparison of internal temperatures

The temperature readings are on the Celsius scale and the pressure data is normalised to remove

uncertainties in the scaling of readings from the sensor.

More interesting graphs for getting insights on anomaly detection is presented in Figures 5.4, 5.5

and 5.6. These graphs make a comparison between data generated from an ideal iteration and one

iteration from each anomalous setting. To represent internal temperature data, one of the internal

thermocouples(IT 1) is used. The data from ET6 thermocouple is plotted as external temperature

data. The location of the ET6 thermocouple is such that, when hot water enters into the coffee

grounds, there is a significant rise in the temperature measured by this sensor.

It needs to be noted that sensor anomalies are not analysed with the other anomalies because they

exist in only in one of the sensors. Thus, in most of our univariate analysis, it would not be identified.

Sensor anomalies are dealt separately.

Some practical observations from the graphs are listed below.

1. The process duration is different for each iteration and is considerably lesser in the case of

HH, IH, water, coffee anomalous conditions. For seal anomaly, it is considerably more. This

is justified because, in case of HH and IH, the heat supplied is higher than the ideal condition

making the process faster. In case of coffee and water anomalies, since lesser material is used,

the process is quicker. But in the case of seal anomaly, there is a leakage. This leads to some

steam pressure being wasted and there is a delay in the output.

2. The HH anomalous case has the highest internal temperature, external temperature and pres-

sure.
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Figure 5.5: Comparison of external temperatures

3. From figure 5.4, we can see that the IH anomalous case reaches a high temperature very fast

due to the high heat supply . But once it reaches there, the supply is inconsistent. Thus there

are peaks and troughs in the pressure data as well as internal temperature data.

4. When the initial water quantity is less(water anomaly), the internal temperature (figure 5.4)

increases rapidly, even though the heat supply used is same as the ideal case.

5. When less coffee is used(coffee anomaly), the process happens as if it was an ideal case till the

brewing process starts. i.e the water reaches the coffee chamber. Since there are less coffee

grounds to flow through, the water flows faster and the process gets over quickly.

6. When there is a leak in the pot(seal anomaly), the pressure curve is much flatter and the

maximum pressure reached is quite low compared to other conditions. This can be seen in

figure 5.6.

5.3 Anomaly Detection Methods

This section explains the anomaly detection methods that were applied on the dataset. The

sensor anomaly data is not included in this analysis and is dealt with separately and is described

in section 5.4. The methods are categorised based on the type of input data used (univariate or

multivariate) and also if the labels are used in the training process(supervised and unsupervised).

The methods applied are mentioned in table 5.2. To implement these methods standard libraries

available in python like sklearn, sci-py were used.
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Figure 5.6: Comparison of normalized pressure data

Univariate Data Multivariate Data

Supervised Approaches 1-Nearest Neighbour
Ensemble 1-Nearest Neighbour

SVM with Engineered Features

Unsupervised Approaches
K-means Clustering

Hierarchical Clustering

Table 5.2: The approaches tried for detecting anomalies

Keeping the same taxonomy mentioned in section 3.5, the dissimilarity based methods are ex-

plained first, and then the feature based method is described.

5.3.1 Clustering

1. K-Means Clustering

• The K-Means clustering algorithm was applied on raw sensor data. Data from the pressure

sensor was considered for analysis.

• Data from shorter iterations were appended with 0s to make all time series into equal

length.

• Euclidean distance measure was used for the clustering algorithm.

• To just detect the anomalies, 2 cluster centers were used to cluster the data. To detect

which anomaly had occurred, 6 clusters were used to cluster the data. This was done to
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test whether the data from 5 types of anomalies under consideration and data from ideal

iterations would form their own clusters.

2. Hierarchical Clustering

• The implementation from the sklearn library was used for analysis.

• Input data is same as for K-means algorithm. i.e the pressure data was considered from

each iteration and data from shorter iterations are appended with 0s to make all data

vectors have equal length.

• Ward linkage method and euclidean distance measure was used for clustering

• Scipy library was used for constructing a dendrogram to represent the hierarchy of nat-

urally occurring clusters in the dataset.

5.3.2 Nearest Neighbour Classifier

1. Nearest Neighbour with Euclidean Distance Measure

• A nearest neighbour classifier was trained and tested independently on raw data from

each sensor. Thus 10 nearest neighbour classifiers were trained.

• Data was scaled to have zero mean and unit standard deviation.

• An ensemble of all the univariate classifiers was implemented as mentioned in the Figure

3.11.

2. Nearest Neighbour with DTW Distance Measure

• As mentioned before, the time and memory complexity of calculating DTW distance for

long time series data is very high. Thus, the data was downsampled by a factor of 30

before applying the algorithm to calculate the distances.

• A faster and more approximate approach called FastDTW was used instead of the classical

DTW algorithm.

• To implement the ensemble, univariate classifiers were trained for the pressure data, data

from one internal and one external temperature sensor. Then a majority voting between

the three classifiers decided the final decision of the combined classifier.

5.3.3 SVM Classifier

To test a feature based classifier on the dataset, features were carefully selected after data visual-

ization and also by using some of the intuition gained during the data generation process. Figure 5.5

shows that the ideal and anomalous iterations vary greatly with respect to the process duration. The
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maximum temperatures and pressure reached during the process, could also provide some interesting

information. After some considerations, the following features were selected and are explained using

the figure 5.7.

• Total Duration - The total time each iteration takes, is one of the important differentiating

factors between the ideal and anomalous iterations.

• Brew start time - The time at which the water enters the coffee grains is recorded as the

brew start time . We can observe that there is a significant rise in temperature measured

by ET6 at this point. To extract this feature, the data from ET6 was differentiated and a

threshold was applied for the increase in slope. The first point where a sudden significant

increase in slope is detected in the ET6 data is considered to be the brew start point.

• Brew Duration - The time duration from the brew start time till the end of iteration. As

mentioned before in the observations from the data visualisation, the coffee iteration differs

from ideal iteration only after the brewing starts. Thus, this feature was used in the classifier.

• Maximum Pressure - The maximum pressure reached in the iteration.

• Maximum Internal Temperature - The maximum temperature inside the boiling chamber

for each iteration.

Figure 5.7: Illustration of Brew start and end points

Since the generated dataset is unbalanced with 40 ideal iterations and 24 anomalous itera-

tions(just 20 excluding the sensor faults), higher weights were assigned to anomalous classes to

give more importance to classify the anomalous data correctly.
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5.4 Detection of Sensor Based Anomalies

Sensor anomalies are those which arise from faults in the sensors or the data acquisition system

itself. It is quite challenging to detect these faults as the anomaly detection algorithms rely on the

data from the sensors. The sensor anomaly data was excluded from the previous analysis because

of the following reasons.

• The sensor faults are injected only in the external thermocouples. Moreover, it is not present

in all the senors in a given iteration. Thus, when performing univariate analysis on any sensor

other than the faulty sensor, it is impossible to detect such anomalies.

• The feature based classifier depends on the sensor data to be reliable for extracting the brew

start time and duration. If faults exist in the data acquisition system, this will severely affect

the performance of the algorithm.

Figure 5.8: Anomalous data due to fault in sensor ET 5

The figure 5.8 shows a plot of the temperature readings of an iteration where faults were intro-

duced in sensor ET 5. It can be seen that such faults may occur at any given point of time and need

not have a particular template.

There are four iterations of sensor anomaly data and the anomalies exist only in external thermo-

couples. Thus, to test a simple detection method, data from the external thermocouples from these

iterations were used. Since there are five external thermocouples in the setup, there are 20 univariate

time series being considered. Other than the sensor faults, these iterations were performed under

ideal conditions. Thus, the detection problem is reduced to a simple binary classification problem.

The data from faulty sensors are considered to be anomalous data and the data from other sensors
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are considered as ideal.

A simple observation was used to make a detection system for the sensor anomalies. The temper-

ature data from the process in an ideal iteration always has a positive slope and tends to increase.

Only when the sensor has a fault, there is significant negative slope in the regions where there is no

contact between the thermocouple and the moka pot. This observation was tested and the accuracy

of such a simple system was 100% with no false positives or false negatives. But this score is not a

good judge of the detection system, since the problem was reduced to a very simple binary classific-

ation problem. Due to the lack of time, only a primitive detection system has been tried to detect

sensor based anomalies in the generated dataset. More robust methods need to be applied to detect

such anomalies along with the anomalies caused by the process faults. This is mentioned as one of

the possible future work.
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Chapter 6

Results and Discussion

6.1 Performance of Anomaly Detection Methods

This section presents the performance of anomaly detection algorithms tested on the dataset.

The leave one out cross validation method was used for evaluating the accuracy score and f1 score

of the predictions. In the case of unsupervised methods, the labels were used just for evaluation

purposes and not for training the data. There were two types of evaluation undertaken for each

method. The first approach is where the algorithm had to identify which anomaly is being detected.

i.e each anomaly had its own label. This score is denoted as Accuracy(0-5). The second approach was

just to test its anomaly detection performance where all the anomalies were provided the same label.

Since it just contains a binary label for data, the accuracy calculated with this approach is denoted

as Accuracy(1/0). F1 score is a better performance measure for the anomaly detection system as

the generated dataset is imbalanced. The F1 score of each detection method is also included in the

table 6.1 and is denoted by F1 Score(1/0).

Method Accuracy(0-5) Accuracy(1/0) F1 Score(1/0)

NN-Euclidean Distance 0.7-0.8 0.73-0.83 0.6-73

NN-DTW Distance 0.55-0.7 0.58-0.73 0.41-0.64

Stacked NN-Euclidean Distance 0.83 0.85 0.756

Stacked NN-DTW Distance 0.73 0.72 0.56

SVM Classifier 0.87 0.88 0.8

K-Means Clustering 0.1 0.85 0.77

Hierarchical Clustering 0.05 0.87 0.79

Table 6.1: Accuracy scores and F1 scores of anomaly detection algorithms
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Figure 6.1: Confusion Matrix of SVM classifier output

Figure 6.2: Confusion Matrix of Stacked NN-Euclidean Distance classifier output
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Figure 6.3: Dendrogram of data from pressure sensor
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6.2 Discussion

Detection of anomalies in the coffee preparation process was achieved with a maximum accuracy

score of 0.88. The SVM classifier with an input of engineered features was found to be the most

suitable classifier to detect anomalies. The accuracy scores and the F1 scores of the NN-Euclidean

distance and NN-DTW distance classifiers are given as a range because they represent scores from

univariate classifiers trained for each sensor data.

The accuracy scores of the clustering methods are highly competitive in case of detecting the an-

omalies, but when it comes to identifying the anomalies, they perform very poorly. The reason for

this poor performance can be seen in the dendrogram of the data shown in figure 6.3. The anomal-

ous iterations are similar to each other , and thus it was possible to get a good anomaly detection

accuracy with simple clustering algorithms. But it is clear from the dendrogram that it is difficult

to identify which anomaly had occurred in the process.

The SVM classifier performs the best even when the F1 score is used as the performance measure.

This is representative of the fact that the classifier has a decent precision score and a recall score.

Its predictions have less false positives and false negatives when compared to other methods.

Another interesting observation is that the classifiers employing euclidean distance measure outper-

form the classifiers employing dynamic time warping distance measure. This could be explained by

the fact that in the generated dataset, the ideal iterations and anomalous iterations produce data

of similar shape. This can be seen in figures 5.5, 5.4 and 5.6. The main difference between the ideal

and anomalous data lies in the duration of the process(the time axis). The dynamic time warping

algorithm minimises the penalty which occurs due to small phase shifts in data. This causes the

separation between ideal and anomalous readings even lesser, reducing the accuracy of predictions

of the methods employing the DTW distance. Thus, the euclidean distance measure is more suitable

in this case.

Considering the nearest neighbour classifiers, the multivariate classification achieved by stacking the

univariate classifiers outperforms each individual univariate classifier.

The confusion matrix for the two best performing classifiers, the SVM classifier and the stacked

nearest neighbour classifier, have been presented in figure 6.1 and figure 6.2 respectively. It can be

seen that the biggest weakness of both the classifiers is their inability to identify the seal anomaly

data. The SVM classifier identifies only one instance and the nearest neighbour classifier identifies

none, and in both the cases there have been three false positives for the seal anomaly where an

ideal case has been wrongly classified as seal anomaly data. To generate the seal anomaly data, the

top chamber was not screwed on to the bottom chamber tightly, to create some leak. It is hard to

control the amount of leak and the behaviour produced by the moka is found to be different in each

iteration. This makes it harder for the classifier to identify the seal anomaly. This is also evident in

the dendrogram of the data 6.3 where the seal anomaly is found very similar to the ideal cases.
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The application of machine learning methods on the generated dataset and their performance to

detect physical faults in the process, demonstrates the validity of the generated dataset to be used

in building a condition monitoring system for the moka.

The data is generated from sensors on the physical entity i.e the moka. Analysis is performed in the

digital domain to gain insights on the condition of the moka. This data driven condition monitoring

system can be seen as a part of a digital twin implementation of the moka pot.
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Chapter 7

Conclusion and Future Work

7.1 Summary

The main goal of this master thesis was to demonstrate the application of digital twin technology

for a moka pot. This was achieved by implementing a data driven anomaly detection system for the

coffee preparation process using the moka. The tasks that were involved to complete this project

were the setting up a data acquisition system, generation of the required dataset and application of

machine learning methods for anomaly detection.

Data acquisition devices from National Instruments were interfaced with the sensors and a Labview

virtual instrument was designed to handle data from the data acquisition hardware. After defining

the conditions for ideal and faulty conditions of the brewing process, the data acquisition system

was used to generate a relevant dataset which represents both ideal and anomalous iterations of

coffee preparation.

Both supervised and unsupervised machine learning algorithms were applied on the dataset to de-

tect anomalies and a comparison was made with respect to their performance. By performing this

analysis, the utility of the generated dataset has been proved. An SVM classifier which was fed with

some engineered features performed the best among the methods that were tried.

7.2 Future Work

This master thesis can be a foundational study for application of data driven methods on the

moka. It is focussed on finding anomalies in the coffee making process, but the study does not include

the effect of parameters like water quantity, coffee quantity and the heat supply on the quality of the

coffee produced. Due to the challenging circumstances, a refractometer could not be procured for
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this study. A refractometer measures the total dissolved solids in the coffee. Interesting inferences

can be made on the coffee with this measure and is recommended to be included in future studies

on the moka. A regression model to predict the total dissolved solids in coffee with the physical

parameters of the iteration as the inputs, could be an interesting topic of study.

The implementation of digital twins vary greatly and is mainly dependent on the application. In this

study, an offline anomaly detection system was sufficient as real time feedback was not implemented.

A study with an online condition monitoring system with real time feedback to make changes during

the process is also a possibility.

The detection of sensor faults in this study is done separately and the method used is primitive. A

more robust algorithm which would detect the sensor faults along with the other faults would be

interesting. Algorithms for early detection of anomalies can also be tested on the dataset and this

study could lead interesting results for prediction of failure in the process.

One of the biggest limitations of this study is the improper scaling of the pressure sensor data.

With the correct values of pressure, a study can be performed which analyses the risks involved in

the process. The boiling chamber in the moka experiences 1-2 bars of pressure according to the

experiments carried out by [5]. The safety valve on the moka ensures that an additional pressure

in the moka is released to avoid any accidents. But an improper functioning valve could lead to

accidents. Successfully predicting the failure of the valve could be an interesting topic of study.
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Appendix A

Python Code

This chapter contains all the python code used in the thesis. It includes scripts for plotting data

and also python code of the machine learning methods applied on the dataset. All the libraries used

in codes are listed below.

1 import numpy as np

2 import pandas as pd

3 import seaborn as sn

4 import matplotlib.pyplot as plt

5 from numpy import genfromtxt

6 from datetime import datetime

7 from sklearn.preprocessing import StandardScaler

8 from scipy.spatial import distance

9 from scipy import signal

10 from fastdtw import fastdtw

11 from sklearn.neighbors import KNeighborsClassifier

12 from sklearn.cluster import KMeans

13 import scipy.cluster.hierarchy as shc

14 from sklearn.cluster import AgglomerativeClustering

15 from sklearn.svm import SVC

16 from sklearn.model_selection import LeaveOneOut

17 from sklearn.metrics import accuracy_score , f1_score

18 from sklearn.metrics import confusion_matrix

Listing A.1: Libraries imported across all codes

The following function plots the multivariate time series data of the required iteration.

1 def plot_temp(name_of_csv):

2 data = genfromtxt(name_of_csv , delimiter=’,’)

3 data = data[1:, :]

4 data = np.array(data)

5 datat = genfromtxt(name_of_csv , delimiter=’,’, dtype=’unicode ’)
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6 timestamps = []

7 datat = datat [1:, :]

8 datat = np.array(datat)

9 form = "%H:%M:%S.%f"

10 for i in datat[:, 0]:

11 timestamp = i

12 timestamps.append(datetime.strptime(timestamp , form))

13 times = []

14 for i in timestamps:

15 time = i-timestamps [0]

16 time = time.total_seconds ()

17 times.append(time)

18

19 times = np.array(times)

20 print(times[0], times [1])

21 print(len(timestamps))

22

23 plt.figure ()

24 plt.suptitle(’Data from ’+name_of_csv [25:-4], fontsize =14)

25 axes = plt.gca()

26 axes.set_xlim ([0, 1300])

27 axes.set_ylim ([0, 150])

28 plt.grid()

29 plt.subplot (311)

30 plt.title("Internal Temperatures", fontsize =14)

31 plt.ylabel("Temp(C)", fontsize = 14)

32 plt.xlabel("Time(s)", fontsize =14)

33 axes.set_xlim ([0, 3000])

34 axes.set_ylim ([0, 110])

35 line1 , = plt.plot(times , data[:, 1], ’b’)

36 line2 , = plt.plot(times , data[:, 2], ’g’)

37 line3 , = plt.plot(times , data[:, 3], ’r’)

38 line4 , = plt.plot(times , data[:, 4], ’y’)

39 plt.legend ([line1 , line2 , line3 , line4],

40 [’IT0’, ’IT1’, ’IT2’, ’IT3’], loc=4, fontsize=’large’)

41 plt.subplot (312)

42 plt.title("External Temperatures", fontsize =14)

43 plt.ylabel("Temp(C)", fontsize =14)

44 plt.xlabel("Time(s)", fontsize =14)

45 axes.set_xlim ([0, 3000])

46 axes.set_ylim ([0, 110])

47 line5 , = plt.plot(times , data[:, 5], ’b’)

48 line6 , = plt.plot(times , data[:, 6], ’g’)

49 line7 , = plt.plot(times , data[:, 7], ’r’)

50 line8 , = plt.plot(times , data[:, 8], ’y’)
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51 line9 , = plt.plot(times , data[:, 9], ’grey’)

52 plt.legend ([line5 , line6 , line7 , line8 , line9],

53 [’ET4’, ’ET5’, ’ET6’, ’ET7’, ’ET8’], loc=4, fontsize=’large’)

54 plt.subplot (313)

55 plt.title(’Internal Pressure ’, fontsize =14)

56 plt.ylabel("Normalised P", fontsize =14)

57 plt.xlabel("Time(s)", fontsize =14)

58 axes.set_xlim ([0, 3000])

59 axes.set_ylim ([0, 110])

60 line10 , = plt.plot(times , data[:, 10], ’r’)

61 plt.subplots_adjust(hspace =0.45 , top=0.92, right =0.98, bottom =0.07 , left =0.07)

62 plt.legend ([ line10], [’Normalised P’], loc=4, fontsize=’large ’)

Listing A.2: Code to plot data from a single iteration of coffee preparation

For some of the univariate analysis performed on the dataset, it was required to extract data of

a single sensor from the whole dataset. This script also appends the shorter time series with 0s and

saves the extracted data in a CSV file. Each row in the file will have data from a single iteration of

the required sensor.

1 def extract_univariate_data(sensor_name):

2 sensor_num = {’IT0’: 1, ’IT1’: 2, ’IT2’: 3, ’IT3’: 4, ’ET4’: 5, ’ET5’: 6, ’ET6’:

7, ’ET7’: 8, ’ET8’: 9, ’P’: 10}

3 X_train = genfromtxt(’final_dataset/Moka_iteration_0.csv’, delimiter=’,’)

4 X_train = X_train [1:, sensor_num[sensor_name ]]

5 leng = X_train.shape [0]

6 for i in range(1, 64):

7 X = np.zeros(leng)

8 s = ’final_dataset/Moka_iteration_ ’ + str(i) + ’.csv’

9 data = genfromtxt(s, delimiter=’,’)

10 data = data[1:, sensor_num[sensor_name ]]

11 X[:data.shape [0]] = data

12 X_train = np.vstack ((X_train , X))

13 print(i)

14 print(X_train.shape)

15 file_name = "univariate_dataset/unscaled" + sensor_name + ".csv"

16 np.savetxt(file_name , X_train , delimiter=",")

Listing A.3: Isolates univariate data of the required sensor from the whole dataset and stores in a

new file

The following code is a primitive detection mechanism for sensor faults

1 detection_labels = np.array ([])

2 for i in range (56 ,60):

3 X_data = genfromtxt(’final_dataset/moka_iteration_ ’+str(i)+’.csv’, delimiter=’,’)

4 X_data = X_data [1:, 5:10]
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5

6 for j in range (0,5):

7 slope = np.diff(X_data[:,j])

8 y = np.array(np.where(slope <( -0.5)))

9 if y.size == 0:

10 detection_labels = np.append(detection_labels , 0)

11 else:

12 detection_labels = np.append(detection_labels , 1)

13 print(detection_labels)

14 accu = accuracy_score(detection_labels ,labels)

15 f1 = f1_score(detection_labels ,labels)

16 print("accuracy=",accu ,"F1score=",f1)

Listing A.4: Simple sensor fault detection mechanism

The following code snippet generates the dendrogram showed in figure 6.3

1 X_data_2 = genfromtxt(’univariate_dataset/P.csv’, delimiter=’,’)

2 X_data_2 = X_data_2 [:60, :]

3 print(X_data_2.shape)

4 final_label = genfromtxt(’final_dataset_rescaled_2/final_label_2.csv’, delimiter=’,’,

dtype=’unicode ’)

5 final_label_without_sensor = (final_label [1:61, :])

6 print(final_label_without_sensor.shape)

7 plt.figure ()

8 plt.subplots_adjust(hspace =0.45 , top=0.92, right =0.98, bottom =0.09 , left =0.07)

9 plt.title("Dendrogram of Pressure Data Generated by HC", fontsize =18)

10 dend = shc.dendrogram(shc.linkage(X_data_2 , method=’ward’), leaf_font_size =14, labels

=final_label_without_sensor [:, -1])

11 plt.show()

Listing A.5: Generate dendrogram of data

The following code snippets are the implementations of classifiers and the clustering methods men-

tioned in the report.

1 def euclidean_nearest_neighbour(s):

2 X_data = genfromtxt(s, delimiter=’,’)

3 X_data = X_data [:60 ,:]

4 loo = LeaveOneOut ()

5 loo.get_n_splits(X_data)

6 neigh = KNeighborsClassifier(n_neighbors =1)

7 accuracy=np.array ([])

8 predictions = np.array ([])

9 test_labels = np.array ([])

10 for train_index , test_index in loo.split(X_data):

11 #Split train data and test data to have one test sample

12 X_train , X_test = X_data[train_index], X_data[test_index]
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13 y_train , y_test = Y_bin[train_index], Y_bin[test_index]

14 #y_train , y_test = Y[train_index], Y[test_index]

15 #Scaling done one only on train data

16 trained_scaler = StandardScaler ().fit(X_train)

17 # Trained scaler is applied on test data point as well

18 X_train = trained_scaler.transform(X_train)

19 X_test = trained_scaler.transform(X_test)

20 neigh.fit(X_train , y_train)

21 y_pred = neigh.predict(X_test)

22 predictions = np.append(predictions , y_pred)

23 test_labels = np.append(test_labels , y_test)

24 mean_accuracy = accuracy_score(test_labels , predictions)

25 f1 = f1_score(test_labels , predictions)

26 print("Accuracy =", mean_accuracy , "F1=", f1)

27 return predictions.astype(int), mean_accuracy

28 #The following code is to stack the predictions of univariate classifiers and perform

majority voting

29

30 all_pred = np.vstack ((Pred_P , Pred_IT0 ,Pred_IT1 ,Pred_IT2 ,Pred_IT3 ,Pred_ET4

31 ,Pred_ET5 ,Pred_ET6 ,Pred_ET7 ,Pred_ET8))

32 y_ensemble = np.array ([])

33 for i in range (0,60):

34 counts = np.bincount(all_pred[:,i])

35 y_ensemble = np.append(y_ensemble , (np.argmax(counts)))

36 print("Accuracy of Ensemble = ", accuracy_score(Y_bin , y_ensemble))

37 print("F1 of Ensemble = ", f1_score(Y_bin ,y_ensemble))

Listing A.6: Euclidean distance based NN classifier

1 Distances = np.zeros ((64 ,64))

2 for i in range (0 ,63):

3 X_data_1 = genfromtxt(’final_dataset/moka_iteration_ ’+str(i)+’.csv’, delimiter=’,

’)

4 X_data_1 = X_data_1 [1:, 7]

5 X_data_1 = signal.decimate(X_data_1 , q=30)

6 print(i)

7 for j in range(i, 64):

8 X_data_2 = genfromtxt(’final_dataset/moka_iteration_ ’+str(j)+’.csv’)

9 X_data_2 = X_data_2 [1:, 7]

10 X_data_2 = signal.decimate(X_data_2 , q=30)

11 distance , path = fastdtw(X_data_1 , X_data_2 , dist=euclidean)

12 Distances[i][j] = distance

13 Distances[j][i] = distance

14 np.savetxt("Fast_DTW_distances_ET_6_final.txt", Distances , delimiter = ’,’)

15

16 def find_neighbours_DTW(name_distance_file , Y):
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17 Y_pred = np.array ([])

18 distance_matrix = np.genfromtxt(name_distance_file , delimiter = ’,’)

19 distance_matrix = np.vstack (( distance_matrix [:60, :60]))

20 nearest_neighbours = np.array ([])

21 for i in range (0,60):

22 data = distance_matrix[i, :]

23 #Find nearest element with non zero distance

24 neigh = np.where( data==np.min(data[np.nonzero(data)]))

25 nearest_neighbours = np.append(nearest_neighbours , neigh)

26 for i in nearest_neighbours.astype(int):

27 Y_pred = np.append(Y_pred , Y[i])

28 return Y_pred.astype(int), accuracy_score(Y, Y_pred)

29

30 # Stacking the decisions and performing majority voting

31 all_pred = np.vstack ((Y_pred_P , Y_pred_IT_0 , Y_pred_ET_6))

32 y_ensemble = np.array ([])

33 for i in range (0,60):

34 counts = np.bincount(all_pred[:,i])

35 y_ensemble = np.append(y_ensemble , (np.argmax(counts)))

36 print("Accuracy of Ensemble = ", accuracy_score(y_ensemble , Y_bin))

37 print("F1 score of Ensemble = ", f1_score(y_ensemble , Y_bin))

Listing A.7: DTW distance based NN classifier

1 # Snippet for K-means Clustering of Data

2

3 loo = LeaveOneOut ()

4 loo.get_n_splits(X_data)

5 predictions = np.array ([])

6 test_labels = np.array ([])

7 for train_index , test_index in loo.split(X_data):

8 X_train , X_test = X_data[train_index], X_data[test_index]

9 y_train , y_test = Y[train_index], Y[test_index]

10 kmeans = KMeans(n_clusters =2, random_state =1).fit(X_data)

11 y_pred = kmeans.predict(X_test)

12 predictions = np.append(predictions , y_pred)

13 test_labels = np.append(test_labels , y_test)

14 #print(y_test , y_pred)

15 mean_accuracy = accuracy_score(test_labels , predictions)

16 f1 = f1_score(test_labels , predictions)

17 print("Accuracy =", mean_accuracy , "F1=", f1)

18

19 # Snippet for Hierarchical Clustering of Data

20 cluster = AgglomerativeClustering(n_clusters =2, affinity=’euclidean ’, linkage=’ward’)

21 y_hc_pred = cluster.fit_predict(X_data_2)

22 print(y_hc_pred)
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23 accu = accuracy_score(y_hc_pred , labels_4)

24 f1 = f1_score(y_hc_pred , labels_4)

25 print("Accuracy =", accu ,"F1=", f1)

Listing A.8: KMeans and Hierarchical Clustering

1 # Code for Feature Extraction

2 feature_array = np.array(["Iteration","Total Time(s)","Brew Start Time(s)","Brew

Duration(s)","Max Pressure","Max Int Temp"])

3 for i in range(0, 60):

4 s = ’final_dataset_rescaled_2/Moka_iteration_ ’ + str(i) + ’.csv’

5 data = np.genfromtxt(s, delimiter = ",", dtype = "unicode")

6 tot_time = (data.shape [0] -1)/50

7 ET_6 = data [1:,7]

8 ET_6 = ET_6.astype(float)

9 ET_6 = np.diff(ET_6)

10 y = np.where(ET_6 >0.15)

11 brew_start = np.array(y)[0][0]/50

12 P = data [1: ,10]

13 P = P.astype(float)

14 max_p = np.max(P)

15 IT_1 = data [1:,2]

16 IT_1 = IT_1.astype(float)

17 max_it1 = np.max(IT_1)

18 brew_duration = tot_time - brew_start

19 feature_array = np.vstack (( feature_array , np.array([s[25:-4], tot_time ,

brew_start , brew_duration , max_p , max_it1 ])))

Listing A.9: Feature extraction

1 # Snippet for SVM classifier

2

3 loo = LeaveOneOut ()

4 loo.get_n_splits(X_feat)

5 #weights_class = {0: 10, 1: 10, 2: 10, 3: 2, 4: 10, 5: 10}

6 #clf = SVC(decision_function_shape=’ovo ’, gamma = ’scale ’, class_weight=weights_class

)

7 clf = SVC(decision_function_shape=’ovo’, gamma = ’scale’)

8 accuracy=np.array ([])

9 predictions = np.array ([])

10 test_labels = np.array ([])

11 for train_index , test_index in loo.split(X_feat):

12 #print("TRAIN:", train_index , "TEST:", test_index)

13 X_train , X_test = X_feat[train_index], X_feat[test_index]

14 y_train , y_test = Y_bin[train_index], Y_bin[test_index]

15 #y_train , y_test = Y[train_index], Y[test_index]

16 trained_scaler = StandardScaler ().fit(X_train)
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17 X_train_scaled = trained_scaler.transform(X_train)

18 X_test_scaled = trained_scaler.transform(X_test)

19 clf.fit(X_train_scaled , y_train)

20 y_pred = clf.predict(X_test_scaled)

21 #print(accuracy_score(y_test , y_pred))

22 predictions = np.append(predictions , y_pred)

23 test_labels = np.append(test_labels , y_test)

24 mean_accuracy = accuracy_score(test_labels , predictions)

25 f1 = f1_score(test_labels , predictions)

Listing A.10: SVM classifier
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Appendix B

Temperature Measurement Tests

The measurement from internal thermocouples have been validated with a standard laboratory

thermometer. The temperature measured by the thermometer and our thermocouples were found

to be in agreement. The setup was tested in an ice bath, in water left at room temperature and in

boiling water. The images of the thermometer reading are shown in figures B.1 and B.2 and the

corresponding graphs of thermocouple measurement are shown in figure B.3.

In all the three cases, the difference in measurements is less than 1 degree Celsius. The thermometer

reading in the ice bath, room temperature water and boiling water is between 0-1 degrees, 17-18

degrees and 98-99 degrees respectively.
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(a) (b)

Figure B.1: Thermometer readings -a) In ice bath b) In room temperature water

Figure B.2: Thermometer reading in boiling water
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(a)

(b)

(c)

Figure B.3: Measurement of Thermocouples(a) In Ice bath (b) In room temperature water (c) In

boiling water
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