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Abstract

The use of left ventricle Ejection Fraction (EF) in diagnosing heart failure is well established
in clinical cardiology. In the past few years, clinicians have started using myocardial strain for
diagnosing more often as well. The digitization of hospital databases and the collection of large
amounts of echocardiographic data have opened up the possibility for application of machine
learning algorithms to automate labor-intensive tasks for clinicians such as data annotation and
to assist clinicians with the diagnostic process. This work attempts to contribute to the latter.

This work has used a dataset of 199 patients, a part of the IMPROVE study, which is an
ongoing cardiology study. In the dataset, there were 60 patients with ST Elevation Myocardial
Infarction, 39 with Non-ST Elevation Myocardial Infarction, 70 with other heart diseases, and
30 control patients. The dataset is also labeled by heart failure, and there were 100 patients
with heart failure and 99 patients without. For each patient there were given three Global
Longitudinal Strain curves, and 18 Regional Longitudinal Strain curves from the 4-Chamber,
2-Chamber and Apical-Long-Axis views yielded with transthoracic echocardiography. Each left
ventricle segment was also given a label according to the wall motion score, indicating the degree
of dysfunction of each segment.

Three binary target variables are considered: Heart failure (Yes / No), patient diagnosis
(Healthy / Unhealthy), and regional myocardial segment indication (Normal / Abnormal).
The bulk of the work has been towards testing if Time-series Clustering (TSC) and Artificial
Neural Network (ANN) could be applied to predict the three target variables when applied on
longitudinal strain curves. To benchmark the TSC model, regular clustering of point values
was performed on peak systolic strain of the longitudinal strain curves in combination with EF.
To benchmark the Artificial Neural Network (ANN), eleven different supervised classifiers were
trained on peak values of longitudinal strain curves in combination with EF. The models were
evaluated with accuracy, sensitivity, specificity, and Diagnostic Odds’ Ratio (DOR).

It was a clustering model applied to peak systolic global longitudinal strain in combination
with EF that performed best at predicting heart failure among patients. The model attained
an accuracy of 0.76, a sensitivity of 0.81, a specificity of 0.72, and a DOR of 10.85. However, it
was found that all the models were outperformed by a simple EF threshold classifier set at 45%,
which attained an accuracy of 0.77, sensitivity of 0.86, specificity of 0.69 and DOR of 13.48.
The model that performed best at predicting patient diagnosis was the K Nearest Neighbors
classifier trained on a combination of peak systolic global and regional longitudinal strain values.
It attained an accuracy of 0.93, a sensitivity of 0.95, a specificity of 0.82, and a DOR of 84.53.
The model that performed best at predicting the indication of regional myocardial segments
was the ANN. It attained an accuracy of 0.74, a sensitivity of 0.74, a specificity of 0.75, and a
DOR of 8.38.

It was found that future work to be done on this topic could include dimensionality reduction of
the multiple strain curves used to represent the patients for the time-series clustering model. The
architecture of the ANN was found to be too complex for the dataset at hand, so improvement
could be gained by reducing the complexity of the architecture. The supervised classifiers were
applied with fairly standard hyperparameters as they were meant to serve as a benchmark for
the ANN, so further work could be put into optimizing the hyperparameters of the classifiers
for the dataset at hand.
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Sammendrag

Venstre-ventrikkels ejeksjonsfraksjon (EF) har lenge blitt brukt som en indikator p̊a hjertetil-
stand av pasienter i klinisk kardiologi. De siste årene har bruken av myokardiell tøyning til
diagnostikk ogs̊a blitt mer utbredt. Digitaliseringen av sykehus sine databaser, og innsamling
av store mengder ekkokardiografiske data har åpnet opp for muligheten for å anvende maskin-
læringsalgoritmer for å automatisere tidkrevende arbeidsoppgaver som datamerking, samt for
bruk av maskinlæringsalgoritmer for å stille diagnoser. Denne oppgaven forsøker å bidra til den
sistnevnte anvendelsen.

Dette arbeidet bruker et dataset som best̊ar av 199 pasienter, og er del av IMPROVE studien
som er en p̊ag̊aende kardiologisk studie. I datasettet er det 60 pasienter med ST-elevasjonsinfarkt,
39 pasienter med non-ST-elevasjonsinfarkt, 70 pasienter med andre hjerte-og karsykdommer
og 30 friske kontrollpasienter. Datasettet er ogs̊a delt i forhold til hvilke pasienter som har
hjertesvikt, hvorav 100 pasienter med hjertesvikt og 99 pasienter uten hjertesvikt. For hver
pasient har datasettet inneholdt tre globale longitudinale tøyningskurver, og 18 regionale longi-
tudinale tøyningskurver. Disse kurvene er hentet fra de tre ultralydsnittene, 4-kammer snittet,
2-kammer snittet og det apikale-langaksesnittet, som er tilgjengelig ved transthorakal ekkokar-
diografi. Hvert venstre-ventrikkels segment ble ogs̊a gitt en ”Wall motion score” som gir et
inntrykk av graden av funksjonssvikt i segmentet.

Det er tre binære m̊alvariabler som vurderes i dette arbeidet: Hjertesvikt (Ja/Nei), Pasienthelse
(Frisk/Syk), og tilstand til venstre-ventrikkelssegmenter (Normal/Unormal). Hoveddelen av ar-
beidet ble gjort for teste om tidsrekkeklynging og kunstige nevrale nettverk kan brukes for å
predikere de tre m̊alvariablene ved anvendelse p̊a longitudinale tøyningskurver. For å danne et
sammenligningsgrunnlag for tidsrekkeklyngemodellen ble klynging av punktverdier gjennomført
p̊a punkter ekstrahert fra de longitudinale tøyningskurvene under systolen i kombinasjon med
EF. For å danne et sammenligningsgrunnlag for det kunstige nevrale nettverket ble det anvendt
elleve forskjellige veiledede klassifiseringsalgoritmer p̊a punktverdier ekstrahert fra de longitu-
dinale tøyningskurvene i kombinasjon med EF. Modellene ble evaluert p̊a deres nøyaktighet,
sensitivitet, spesifisitet og med en indeks ved navn ”Diagnostic Odds Ratio” (DOR).

Klyngemodellen anvendt p̊a punktverdier av tøyningskurver og EF var modellen som gjorde
det best p̊a å predikere hjertesvikt blant pasienter. Modellen oppn̊adde en nøyaktighet p̊a 0.76,
en sensitivitet p̊a 0.81, en spesifisitet p̊a 0.72, og en DOR p̊a 10.85. Det skal bemerkes at alle
modellene ble utklassert av en enkel terskel-vurderingsalgoritme som foruts̊a at alle pasienter
med en EF under 45% hadde hjertesvikt. Terskelvurderingsalgoritmen oppn̊adde en nøyaktighet
p̊a 0.77, en sensitivitet p̊a 0.86, en spesifisitet p̊a 0.69, og en DOR p̊a 13.48. Modellen som gjorde
det best p̊a å predikere pasienthelse var en veiledet klassifiseringsalgoritme som heter ”K Nearest
Neighbors”. Den brukte en kombinasjon av punktverdier fra globale og regionale longitudinale
tøyningskurver, og oppn̊adde en nøyaktighet p̊a 0.93, en sensitivitet p̊a 0.95, en spesifisitet p̊a
0.82, og en DOR p̊a 84.53. Det kunstige nevrale nettverket var modellen som gjorde det best p̊a
å predikere tilstanden til venstreventrikkelssegmenter. Den oppn̊adde en nøyaktighet p̊a 0.74,
en sensitivitet p̊a 0.74, en spesifisitet p̊a 0.75, og en DOR p̊a 8.38.

Det konkluderes med at fremtidig arbeid gjort p̊a dette temaet kan se p̊a metoder for å redusere
antall kurver brukt for å representere hver enkelt pasient, spesielt for tidsrekkeklyngemod-
ellen. Arkitekturen til det kunstige nevrale nettverket viste seg å være for komplekst for dette
datasettet, s̊a fremtidig arbeid kan ogs̊a g̊a p̊a å redusere kompleksiteten til arkitekturen. De
veiledede klassifiseringsalgoritmene ble brukt med ganske standardiserte hyperparametre, siden
de i utgangspunktet kun var ment som et sammenligningsgrunnlag for det kunstige nevrale
nettverket. Videre arbeid kan ogs̊a bli gjort p̊a å tilpasse disse algoritmene mer til problemet,
og det tilgjengelig datasettet.
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Preface

This work is not a direct continuation of the project assignment done in the fall of 2019. The
project assignment was done for Kongsberg Digital and consisted of a literature review on the
use of time-series clustering for automatic classification of wind turbines. Some of the theory
and some of the models of time-series clustering were transferable.
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Chapter 1
Introduction

Machine learning is a subcategory of artificial intelligence. Machine learning models differ from
other types of artificial intelligence by the fact that they are not given a set of explicit rules on
how the input data is related to the target variables. Instead they are given an objective, which is
often to predict the target variable, with as little error as possible. The machine learning models
then use the objective, and large amounts of data, ”learn” how to best fulfill the objective.
Machine learning is heavily applied in the fields of computor vision, speech recognition and
natural language processing. Machine learning models can be divided into supervised learning,
unsupervised learning and semi-supervised learning. Machine learning models that fall under
the category of supervised learning need a dataset that is labeled, meaning that it needs to know
what answer is correct. Unsupervised machine learning models do not require alabeled dataset.
Semi-supervised machine learning models use a combination of supervised and unsupervised
learning.

Echocardiography is a diagnostic tool applied in cardiology to assess the cardiovascular state of
a patient. It uses ultrasound imaging to create two or three dimensional images of a patients
heart which can be put together into videos and viewed in real-time. Since the ultrasound
videos contain a lot of information, it is common to extract more information-dense curves
and parameters from the videos. Specifically, parameters such as Ejection Fraction (EF) is
extracted to assess whether a patient is experiencing heart failure, and longitudinal strain
curves of specific heart segments are extracted to assess the state of individual segments. Strain
curves can also be further concentrated by only assessing their peak and trough values. In
this work EF, longitudinal strain curves and peak longitudinal strain values are used as input
variables. Three binary variables are considered as target variables: Heart failure (Yes/No),
patient diagnosis (Healthy/Unhealthy), and segment indication (Normal/Abnormal).

1.1 Motivation

Machine learning models have been successfully applied in computer vision contests such as
the annual challanges hosted by ImageNet, where in 2015 contestants trained their models to
differentiate between 20000 image classes, and used a dataset of 15 million images. Contestants
scored if the correct label was among the top five predictions that the model outputed, and
the best score attained was a classification error rate of 16.4%1. Companies such as Tesla, and
Google have also stated that they apply machine learning models in the computor vision of
their autonomous cars, without going into the specifics of how well they perform. In speech
recognition, it is also machine learning models that perform best at recognizing individual

1http://image-net.org/challenges/LSVRC/2015/results
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phonemes in recorded speech. The digitization of hospital databases, and collection of large
amounts of echocardiographic data have opened up the possibility for application of machine
learning algorithms to automate labor intensive tasks for clinicians such as data annotation and
to assist clinicians with the diagnostic process. Machine learning models may even contribute
to the discovery of new clinical parameters that can better predict the condition of patients
with a heart condition.

1.2 Objective

The main part of the work has been towards testing whether Time-series Clustering (TSC) and
Artificial Neural Network (ANN) could be applied to predict the three target variables when
applied on longitudinal strain curves. To benchmark the TSC model, regular clustering of point
values or Peak-value Clustering (PVC) was performed on peak values of the longitudinl strain
curves in combination with EF. To benchmark the Artificial Neural Network (ANN) eleven
different supervised classifiers were trained on peak values of longitudinal strain curves in com-
bination with EF. Since this work will test both supervised and unsupervised machine learning
models, and strain curve and peak-strain datasets, one can say that the work is exploring the
two-by-two grid of combinations illustrated in figure 1.1.

Figure 1.1: This is an illustration of the combinations of strain datasets and machine learning
algorithms which will be tested in this work.

The objectives of this work can be summarized in the form of three questions:

Objectives

1. Can a machine learning model be used to predict one of the three target variables
assessed in this work using peak strain values or longitudinal strain curves?

2. Which type of machine learning is best suited for predicting the aforementioned
target variables, supervised or unsupervised learning models?

3. Which type of input data works best for a machine learning model to predict the
target variables, a dataset consisting of longitudinal strain curves or a dataset that
consists of peak strain values in combination with EF?

1.3 Structure

The structure of this work is as follows: Chapter 2 will explain the theory behind echocar-
diography, the technology used in ultrasound imaging, and outline the different heart diseases
presented. Chapter 3 describes the theory behind the machine learning models used. Chapter
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4 reviews the most recent work done on the topic. Chapter 5 explores the dataset. Chapter 6
details how every model in this work is configured, trained and evaluated. Chapter 7 presents
the results of the individual models tested. A discussion of the results will be made in chapter
8 and a conclusion is given in chapter 9.
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Chapter 2
Myocardial Imaging and Echocardiography

This chapter will describe the basic structure of the heart muscle, give an introduction to
ultrasound imaging and echocardiography, explain how longitudinal strain curves and Ejection
Fraction (EF) are estimated, and give the definition of the different types of heart failure and
myocardial infarction encountered in this work. The theory in this chapter on ultrasound
imaging and echocardiography is mostly based on the work of Asbjørn Støylen, provided in
his website ”Strain rate imaging”1 which is a collection of online articles on the physics and
technology behind ultrasound imaging as used in echocardiography. The different online articles
are referred to individually as separate works, to make it easier to find the exact source of the
citation.

2.1 Basic Cardiology

The heart is an autonomous muscle that is responsible for pumping oxygenated blood from
the lungs into the rest of the body and pumping unoxygenated blood from the rest of the
body into the lungs. The heart can be divided into four separate chambers: The right atrium,
the left atrium, the right ventricle, and the left ventricle. The right chambers are responsible
for pumping unoxygenated blood from the body into the lungs, while the left chambers are
responsible for pumping oxygenated blood from the lungs into the rest of the body. In both the
right and left chambers, the blood flows first through the atria, and then through the ventricles
before exiting the heart. One heart cycle is the period it takes the heart muscles to make a
full contraction and relaxation. The period of the heart cycle where the heart relaxes and fills
with blood is called the diastole, and the period of the heart cycle when the heart contracts and
pumps blood throughout the body is called the systole. Cardiology is the branch of medicine
that deals with the heart, and parts of the vascular system [1]. Cardiologists are doctors that
specialize in the field of cardiology. Echocardiography is a diagnostic tool used in cardiology to
make images of muscle tissue in the heart called myocard, using ultrasound technology.

2.2 Introduction to Ultrasound Imaging and Echocardiography

Ultrasound imaging is a diagnostic tool that is popular because it can give videos in real-time, it
is relatively inexpensive and has a lower associated health-risk compared to imaging alternatives
[2]. In this section two dimensional B-mode ultrasound imaging will be detailed, where the B
stands for brightness. The frequency of the sound waves used in ultrasound imaging are in
the range of 1 - 12 MHz, and the frequency chosen for wave pulses will decide the size of
the objects that the method can resolve [3]. Ultrasound imaging works by emitting pulses of

1http://folk.ntnu.no/stoylen/strainrate/
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ultrasound waves at myocardial tissue, the pulses are partially reflected by the different tissue
structures, and are then sampled by a receiver upon return at the source that transmitted them,
as illustrated in figure 2.1.

Figure 2.1: An illustration of how ultrasound pulses are partially reflected by many barriers
of tissue. The horisontal arrows represent the pulses, where the relative sizes represent the
amplitude of the pulse, and the vertical lines represent different structures of tissue. The figure
is inspired by figure 2 in [3].

Sound waves will have different velocities depending on what medium it is traveling in. This
ratio of velocities in the different mediums is what decides what amount of an incident wave is
reflected when it hits a transition between two mediums. Since the velocities of the ultrasound
waves in different mediums are known, and the time it takes for a transmitted pulse to return can
be measured, one can calculate the distance to the tissue structure that reflected the transmitted
pulse using equation (2.1).

distance =
time

2× velocity
(2.1)

By plotting the intensity of the reflected pulses as a function of the distance to the point
from which they are reflected, one gets what is called a B-mode line. Images created by two-
dimensional ultrasound imaging are polar plots of several B-mode lines that together make up a
two-dimensional intersectional image of a tissue structure. The procedure consists of emitting a
pulse, creating a B-mode line by the sampled reflections, rotating the transmitter, and repeating.
This procedure is illustrated in figure 2.2.

Figure 2.2: Illustration of how a two dimensional ultrasound image is put together by several
individual B-mode lines. This figure is inspired by the graphical illustrations in figure 7 in [3].

The specific method of echocardiography used to collect the data used in this thesis is called
transthoracic echocardiography. In this method, ultrasound images are produced by sending ul-
trasound waves through the ribs of a patient, from outside the body by locating the transmitter-
receiver on the chest of the patient. The transthoracic echocardiography method is constricted
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by the ribs such that there are only three intersectional images that can be extracted from the
heart. These three intersections are referred to as views, and the corresponding terms are the
4-Chamber (4CH) view, 2-Chamber (2CH) view and the Apical-Long-Axis (APLAX) view, and
examples of ultrasound images in all three views are given in figure 2.3.

(a) 4CH (b) 2CH (c) APLAX

Figure 2.3: Examples of ultrasound images taken from the three views: (a) 4-Chamber (4CH),
(b) 2-Chamber (2CH) and (c) Apical-Long-Axis (APLAX). Note that these images are flipped
vertically because the ultrasound images are taken from below the heart.

It is commonplace among clinicians to focus on the state of health of the left ventricle of the
heart. In clinical procedure, the left ventricle is divided into 16, 17, or 18 segments. This work
will follow the 18-segment model, as that is the model chosen by the clinician who has annotated
the images. Figure 2.4 illustrates the 18 different segments of the left ventricle, and how they
can be seen in the different views. The names of the different segments are shown in table 2.1,
where the segment numbers correspond to the numbers in figure 2.4. When referring to the
entire intersection of the left ventricle that is visible from a particular view, it will be referred
to as the global segment.

(a) 4CH (b) 2CH (c) APLAX

Figure 2.4: An illustration of the 18-segment model of the heart. It shows which segment can be
seen in which view. Like in figure 2.3 the images are flipped vertically. Note that the boundaries
drawn on the figure are only meant to be illustrative, and are not the actual boundaries of the
regional segments.

2.3 Myocardial Strain Estimation and Ejection Fraction

Strain is a relative measure of deformation, of physical objects. Since strain is relative, it has
no unit and is measured in percentages in this work. The concept of strain is complex and is
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Segment nr. Segment name

1 Basal Septal
2 Mid Septal
3 Apical Septal
4 Apical Lateral
5 Mid Lateral
6 Basal Lateral
7 Basal Inferior
8 Mid Inferior
9 Apical Inferior
10 Apical Anterior
11 Mid Anterior
12 Basal Anterior
13 Basal Posterior
14 Mid Posterior
15 Apical Posterior
16 Apical Anteroseptal
17 Mid Anteroseptal
18 Basal Anteroseptal

Table 2.1: A table matching the segment numbers shown in figure 2.4, with the segment name.

well established in other scientific fields such as structural engineering. When estimating strain
of linear segments, one can use the Lagrangian formula defined in (2.2) [4]. Let Lr be the length
of the segment at the reference time, let t be the time one wishes to measure the strain at, let
the length of the segment at t be denoted Lt and ε(t) be the strain.

ε(t) =
Lt − Lr
Lr

(2.2)

This work will primarily be concerned with the longitudinal strain of segments in the left
ventricle. The longitudinal strain occurs due to changes in the length of a myocardial segment.
The two other types of strain that can be calculated with two-dimensional echocardiography are
transmural strain, which is due to changes in the thickness of the myocard and circumferential
strain, which are due to changes in the circumference of the entire structure [4]. To estimate
the strain of a particular segment, one must first define the boundaries of all the segments.
There are many ways of doing this, but the most accurate method is for a clinician to draw the
segment borders by hand. The clinician that annotated the dataset used in this work segmented
the images using the commercial tool ECHOPAC which is developed by GE HealthCare2. The
longitudinal strain of a segment is then the relative difference in length of a segment in image
frame t compared to a reference image. The length of a segment is illustrated with the centerline
of the vertical segment borders in figure 2.5. The centerline is highlighted in red in figure 2.5a,
and blue in 2.5b. As strain is a relative measure, one needs to define a reference length from
which the other strain values are calculated with regard to. This could be the length of the
segment during the first frame, the length of the segment when it is at its longest, the length
of the segment when it is at its shortest, or the length of the segment in any other ultrasound
image. The strain of a segment in the reference image will then be 0%, and the strain of the
segment in the other images will be a percentage relative to the reference image.

2https://www.gehealthcare.com/products/ultrasound/vivid/echopac
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(a) GLS estimation (b) RLS estimation

Figure 2.5: Illustration meant to assist in the understanding of what longitudinal strain is. Note
that the segment borders drawn on these images are only illustrative, and are not the actual
segment borders used to estimate the strain. (a) shows the strain estimation of the global
segment, and (b) shows the strain estimation of the regional segments.

The IMPROVE dataset included computed strain curves, but it remains unclear exactly how
they were computed. There are multiple ways of computing the strain of a segment, for example,
the tissue Doppler and speckle tracking methods. As the name implies, the tissue Doppler
method utilizes the Doppler effect. The Doppler effect can be concisely summarized by stating
that when a wave is reflected by an object that has a velocity component that is radial with
regard to the direction of the wave propagation, the frequency of the reflected wave will be
changed with regard to the incident wave. The frequency will increase if the direction of the
radial velocity component is opposite from the wave propagation direction, and it will decrease if
the radial velocity component is in the same direction as the wave propagation. The magnitude
of the frequency change can then be used to estimate the velocity of the moving object. Tissue
Doppler then estimates the radial velocities of partitions of tissue to create a vector field of
velocities [5]. There are different ways of calculating strain from the velocity field, one option is
to integrate the velocity field to track the displacement of the tissue partitions, but a method
that requires less computation is to estimate the strain rate using equation (2.3) [6]. Here v1
and v2 are the instantaneous velocities of the tissue partitions, and ∆x is a constant length. The
strain is then estimated by integrating the strain rate over the total duration of the deformation.

∂ε

∂t
=
v2 − v1

∆x
(2.3)

The speckle tracking method is based on the fact that the spatial distribution of grey spots
in an ultrasound image is inherently random. Specific regions of grey spots are referred to as
speckle patterns, and each speckle pattern is unique. Since the speckle patterns are unique,
their displacement can be tracked from one frame of the ultrasound video to another [6]. By
then using the recorded longitudinal displacements of speckle patterns within a segment and
equation (2.2), one can estimate the longitudinal strain of a segment.
By collecting all the strain values of a segment from the different ultrasound images into a time
series, one gets a strain curve. If the strain curve consists of strain values estimated from a
global segment as depicted in figure 2.5a, the curve is called a Global Longitudinal Strain (GLS)
curve. If the strain values are estimated from one of the six regional segments, as depicted in
figure 2.5b, the curves are called Regional Longitudinal Strain (RLS) curves. In diagnostic
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procedure, it is common to extract specific values from the longitudinal strain curves. Typical
strain values extracted are the peak value during the systole, the peak value during the diastole,
trough values during the systole, and trough values during the diastole. Figure 2.6 shows what
a typical longitudinal strain curve looks like. Blue dots on the strain curve illustrate the peak
and trough strain values during systole. Red dots on the strain curve illustrate the peak and
trough strain values during diastole. The color shading under the curves illustrates whether the
heart cycle is in systole (blue), or diastole (red). In this work, one specific strain value will be
tested as input data for classification models; the value that is extracted is the trough of the
strain curve during the systole. This extracted strain value will be referred to as peak systolic
strain.
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Figure 2.6: Example of a longitudinal strain curve. Red dots indicate peak and trough values,
and the shading below the curves indicate whether the heart cycle is in systole (blue) or diastole
(red). The blue dots indicate the peaks and troughs in strain during systole, and the red dots
illustrate the peaks and troughs in strain during diastole.

The Ejection Fraction (EF) of the left ventricle is is a parameter that is well established as
an indicator of heart failure [6]. Similar to segment strain EF is a relative measure, it is the
relative difference in the volume of the left ventricle when it is fully relaxed, and when it is fully
contracted. EF is numerically computed using the two-dimensional intersectional images of the
three ultrasonic views provided by transthoracic echocardiography, and the algorithm used that
is regarded as one of the most accurate method is called the Biplane method [6] or Biplane
Simpson method. [7] Marwick, Yu, and Sun [6] state that EF values below 45% are regarded
as abnormal, and should warrant further inspection of a patient with regard to the possibility
of heart failure.

2.4 Heart Failure and Myocardial Infarction

Heart failure is the term used to describe when the heart muscle is unable to pump sufficient
volumes of blood to the other muscles and organs in the body [8]. So in a sense, heart failure
can be considered as a degree of severity rather than a diagnosis. The heart diseases that are
encountered in this work will mostly fall within the category of myocardial infarction, which
is also known as heart attack. Myocardial infarction is encountered in two varieties ST Eleva-
tion Myocardial Infarction (STEMI) and Non-ST Elevation Myocardial Infarction (NSTEMI).
STEMI gets its name from the elevation of the ST segment of an electrocardiogram of a pa-
tient, which is a test performed on patients suspected of experiencing myocardial infarction [9].
NSTEMI then gets its name from the fact that the ST segment is not elevated in an electro-
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cardiogram. STEMI is associated with a full blockage in one of the arteries supplying the heart
with blood, and NSTEMI is often associated with a partial blockage in one or several coronary
arteries [10]. Therefore, in many cases, the NSTEMI diagnosis does not require the same acute
medical treatment that the STEMI diagnosis does. The heart diseases encountered that do not
fall within the STEMI, or NSTEMI categories were not given a specific label and are hence
labeled as OTHER.

One of the issues with using low EF values to diagnose heart failure alone is that there is a
significant subgroup that does not show low EF values. Some patients that have heart diseases
experience a growth in the muscle tissue around the heart. This is called hypertrophy. The ad-
ditional muscle reduces the absolute volume of the left ventricle. A reduced range of contraction
will not be visible in the EF, because the volume of the relaxed heart muscle is also reduced.
When heart failure occurs, without being evident in the EF values, it is referred to as HFPEF.

Wall motion score is a visual measure of the transmural strain of the myocard segments, and
can also be an indication of the degree of dysfunction of a particular segment [5]. Wall motion
scores are given as specific labels that are given here in descending order of severity: dyskinetic,
akinetic, hypokinetic, and normal. While the labels mentioned so far are used to indicate
decreased transmural strain of segments, the label ”hyperkinetic” has been used to indicate
increased transmural strain, and the label ”aneurysmal” has been used. It is not entirely clear
as to what aneurysmal is meant to indicate, but it could stem from the word ”aneurysm”,
which means dilation of an artery [11]. The collective term that will be used for these labels
throughout this work is segment indication since terms outside the regular wall motions scores
are used.

2.5 Chapter Summary

In this chapter, the basic structure of the heart muscle is detailed, the technology behind
ultrasound imaging and echocardiography is introduced, the estimation of longitudinal strain
curves and EF is explained, and the definition of the different heart diseases encountered in this
work are given. The heart is made up of two atria (left and right) and two ventricles (left and
right), the right atrium and ventricle are responsible for pumping unoxygenated blood into the
lungs, and the left atrium and ventricle are responsible for pumping oxygenated blood from the
lungs into the rest of the body. B-mode ultrasound images are made by transmitting pulses
of ultrasound waves, which are reflected by myocardial tissue and are sampled at the receiver.
Transthoracic echocardiography is a method of echocardiography used to obtain ultrasound
images of the heart. It is performed by placing the transmitter/receiver at the ribs of a patient
and provides three intersectional images of the heart 4CH, 2CH, and APLAX. The strain of the
different segments of the left ventricle is estimated by drawing the boundaries of the segments
using ECHOPAC, and calculating strain using equation (2.2). EF is the measure of the relative
difference in the volume of a fully relaxed left ventricle heart muscle, and a fully contracted
one. The most common heart diseases encountered in this work are STEMI, and NSTEMI, any
other diseases were not labeled in the dataset, and will hence be labeled as OTHER. Segment
indication is the collective term used for the labels of wall motion scores that are visual measures
of the transmural strain of segments, as well as the labels hyperkinetic and aneurysmal.
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Chapter 3
Machine Learning Theory

This section will act as a theory section for the machine learning models used. Machine learning
models are a subset of artificial intelligence models. Machine learning models extract rules
from data, which can then be applied to classify, or estimate components of another dataset
called the target variable. What makes machine learning models different from other artificial
intelligence models, is that the rules for making predictions on the target variable are not
given to the model explicitly. Instead, the models are given data and subsequently extract the
rules for making predictions themselves. Machine learning algorithms are formally divided into
supervised learning, unsupervised learning and semi-supervised learning. Supervised learning
models require labeled datasets to extract information from the dataset, and are usually used
to perform classification or regression tasks. Unsupervised learning algorithms do not require
labeled datasets. There also exist hybrid models called semi-supervised learning that use a
combination of labeled and unlabelled datasets. Two sections of this chapter are dedicated to
the two most central machine learning models encountered in this work; clustering and ANN.
Section 3.1 will give the theoretical background of the similarity measures, and the clustering
algorithm used. Section 3.2 will explain the basic building blocks of ANN, the different layers
in a ANN, and how they are trained. In the paragraph below, the definition of a time series is
given, which is the definition that is used throughout this work.

What Is a Time Series?

A time series is defined as a set of observations {xt} recorded at a specific time t. A discrete-
time series is a time series where the set of times when observations are made (T0) is discrete
[12]. A multivariate time series can be viewed as a set of vectors {xt} where each set of vector
elements {xit} is an individual time series. This means that the elements of the same vector
[x1t , x

2
t , ..., x

N
t ] are separate observations. A GLS curve extracted from an ultrasound video from

the 4CH view of a patient can be considered a univariate time series. In contrast, the GLS
curves extracted from the ultrasound videos of all the three views for a single patient can be
considered a multivariate time series.

3.1 Clustering

There are three types of Time-series Clustering (TSC), whole-series TSC, subsequence TSC
and time-point TSC. Whole-series TSC is when multiple ”whole” time series are clustered
with respect to each other. Subsequence TSC comprises the clustering of subsequences of the
same time series with respect to each other. The defining difference between whole-series and
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Figure 3.1: Illustration of the three approaches to whole-series TSC, and their components.
The illustration is inspired by figure 2 in Aghabozorgi, Shirkhorshidi, and Wah [13].

subsequence TSC is that whole-series TSC clusters multiple time series while subsequence TSC
clusters different subsequences of the same time series. When performing time-point TSC the
goal is to cluster individual observations of a time series with regard to to each other. In
this review we will only consider work using whole-series TSC, so when the phrase time-series
clustering is used, one can assume that whole-series TSC is what is being referred to.

Whole series TSC can broadly be divided into three main approaches: the raw-data based
approach, the feature-based approach, and the model-based approach. In the raw-data based
approach, one measures the similarity between the raw time series themselves and clusters them
based on this. When clustering raw time series, the majority of the work goes into the selection
of similarity metric and clustering algorithm, and one clusters the time series with regard to
similarity in time or similarity in shape [13]. In the feature-based approach, one also clusters
time series with regard to similarity in time and shape, but the work is somewhat shifted away
from the choice of similarity metric and over to the choice of representation. Either to extract
more relevant information from the time series or to reduce the computational complexity of
the similarity measurement. In the model-based approach, the goal is most often to cluster time
series with regard to the underlying data generating process [14]. The underlying assumption
being that two time series that appear different, might still have been generated by the same
process.
The common denominator of the three approaches to TSC mentioned is that they are all made
up of three distinct parts: representation method, similarity measurement, and clustering al-
gorithm. This is illustrated in figure 3.1. Another key aspect of the TSC model is what the
objective is. It is broadly considered to be three objectives one can cluster with regard to:
similarity in time, similarity in shape, and similarity in change [13]. When calculating the
similarity between all combinations of time series, the resulting similarity metric is stored in
what is called a dissimilarity matrix. The choice of similarity metric is important in a raw-data
approach as it decides which aspects of the time series will be used to measure (dis)similarity.
It has a significant impact on the time-complexity of the clustering system. PVC has a similar
approach as raw-data based TSC, the dissimilarities between data points are measured, and are
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(a) Sample-wise Euclidean distance. (b) DTW distance.

Figure 3.2: An illustration of the difference between sample-wise Euclidean distance between
time series, and DTW distance between time series.

passed on to the clustering algorithm. In the subsection below, the dissimilarity measures used
in the clustering models of this work are described.

3.1.1 Dissimilarity Metric

When clustering point-values, the choice of metric used to measure dissimilarity between the
data objects are usually some sort of distance measure. The choices of distance measures are
varied and plentiful. Options include: Euclidean distance, Manhattan distance, and Minkowski
distance. In the PVC models, the Euclidean distance is used because it is the easiest to interpret
geometrically. It is defined in equation (3.1) for two data objects x, and y of N dimensions.

ED(x, y) =

√√√√ N∑
i=1

(xi − yi)2 (3.1)

In the raw-data based approach to TSC, choice of dissimilarity metric is paramount and is
chosen based on what objective of the TSC is, and the different lengths of the time series to
be compared. When clustering with regard to similarity in shape, the similarity metric can be
lock-step (one-to-one) or elastic (one-to-many) [13]. An example of a lock-step measure is the
use of Euclidean distance to measure the distance between time series sample-wise. However,
this becomes problematic when the time series are not of equal length. Dynamic Time Warping
(DTW) distance is a powerful alternative for Euclidean distance to measure the shape-based
distance between two time series. To understand how the DTW distance works as a dissimilarity
metric, one can imagine that it warps one time series such that the two series are equal in length,
and then measures the Euclidean distance between them. This is illustrated in figure 3.2. DTW
is probably most famous from speech recognition, where it is applied to find out which phoneme1

in a dictionary of phonemes is the optimal fit to a recorded sound. To calculate the DTW
distance between two time series x and y of length n and m respectively. First an (n × m)
matrix is constructed called the Local Cost Matrix (LCM). Element LCM(i, j) is the sample-
wise quadratic distance between xi and yi ((xi − yi)2). The next step is to create a warping
path P = {p1, p2, ..., pL} across the LCM. The warping path must fulfill three conditions: the
boundary condition, the continuity condition, and the monotonicity condition.

1. Boundary: The path must begin and end in the corners of the LCM. p0 = LCM(1, 1),
pL = LCM(n,m)

1Phoneme is a term from speech recognition and refers to the largest unit of sound for which the frequency
spectrum is constant. Phonemes are considered as the ”atomic sounds” that make up speech.
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Figure 3.3: An illustration of DTW distance. The big coloured square is the LCM, each
monochromatic subsquare in is an entry in the LCM. The color of each subsquare indicates
the magnitude of the quadratic distance in that entry, blue indicates low, and green and yellow
indicate higher values. The red line is the warping path.

2. Continuity: Two adjacent warping steps pk and pk+1 must be equal to adjacent elements
on the LCM. This means that the matrix elements that pk and pk+1 point to, must be
adjacent horizontally, vertically or diagonally in the LCM.

3. Monotonicity: The warping path must increase monotonically. This means that the
warping path cannot go backwards index-wise. If one combines the continuity, and mono-
tonicity constraints, and lets pk = LCM(i, j), valid values for pk are LCM(i + 1, j),
LCM(i, j + 1) and LCM(i+ 1, j + 1).

The warping distance of the warping path P is the sum of the LCM elements that entries of P
are equal to. The DTW distance between time series x and y is then defined as the square root
of the smallest possible warping distance between x and y. The warping path corresponding
to the smallest warping distance can be found by using a recurrent algorithm from dynamic
programming shown in equation (3.2) [15].

p1 = LCM{1, 1}, pL = LCM{n,m}
pi = LCM{f, g}

pi+1 = min {LCM{f + 1, g},LCM{f, g + 1},LCM{f + 1, g + 1}}
(3.2)

Although the DTW distance is more flexible than estimating Euclidean distance between two
time series, it comes at the cost of much higher run time and space requirements. The time
complexity for calculating the dissimilarity matrix of a set of N time series using the DTW
distance is O

(
nmN2

)
[13]. An illustration of how the DTW distance between two time series

is estimated is shown in figure 3.3.

3.1.2 Agglomerative Hierarchical Clustering

The agglomerative hierarchical clustering algorithm is the chosen clustering algorithm in this
work. It is a hard clustering algorithm, meaning that data objects are given a single cluster
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assignment, and do not have partial memberships to many different clusters. Clustering algo-
rithms that assign data objects partial memberships to many clusters are called soft clustering
algorithms.

Partitional clustering algorithms is a family of clustering algorithms that is an alternative to
the family of hierarchical clustering algorithms. Partitional methods work iteratively and rely
on defining prototypes that represent the cluster center. In the first iteration, the prototypes
are randomly initialized. Then, the dissimilarity between all data objects and the prototypes
are calculated, the data objects are then assigned to the cluster where the dissimilarity to the
cluster prototype is minimal. The final step is to update the cluster prototypes such that they
best represent the center of the new cluster. These steps repeat until the value of the cluster
prototypes, and cluster membership assignments converge.

Hierarchical clustering algorithms have two central advantages over partitional clustering al-
gorithms, such as K-means, K-medoids, and fuzzy C-means. The first advantage is that the
user does not have to decide the number of clusters they want to partition the dataset into
prior to using the algorithm. The second is that due to the reliance on cluster prototypes and
their random initialization, the cluster assignments yielded when the partitional algorithm are
non-deterministic. The clusters assignments that a partitional algorithm converges to is depen-
dent on what values the cluster prototypes are given upon initialization. Hierarchical clustering
algorithms will always yield the same hierarchy of cluster assignments, given that the same
dissimilarity matrix is inputted.

There are two main types of hierarchical clustering algorithms, divisive and agglomerative.
To understand the difference between these two algorithms, it helps to first understand how
agglomerative hierarchical clustering works. Assume one is applying the hierarchical clustering
algorithm to cluster a dataset of N data objects. In the initial step, the algorithm takes the
dissimilarity matrix as input, and every data object in the dataset is regarded as a separate
cluster. Next, the case of N − 1 clusters is considered, two of the existing clusters are merged
based on which clusters have the lowest dissimilarity such that there then are N − 1 clusters.
The dissimilarity between clusters is estimated with what is called a linkage criterion, which will
be expanded upon later. This step of merging existing clusters is repeated until all data objects
are contained in one cluster. The result is a hierarchy of clusters called a dendrogram, that can
yield cluster assignments at all the possible number of clusters. If one says that agglomerative
hierarchical clustering has a bottom-top approach, divisive hierarchical clustering can be said
to have a top-bottom approach. It starts at the top of the dendrogram with all data objects in
one cluster and continuously splits the cluster until every object is contained in its own cluster.
In this work, seven different linkage criteria are used, as detailed below.

• Single linkage: Computes the dissimilarity between two clusters as the smallest dissim-
ilarity between two individual members of each cluster [16].

• Complete linkage: Computes the dissimilarity between two clusters as the biggest dis-
similarity between two individual members of each cluster [17].

• Average linkage: Computes the dissimilarity between two clusters as the average dis-
similarity between all members of each cluster [16].

• Ward linkage: Computes the dissimilarity between two clusters as the increase in sum
squared dissimilarity of the entire cluster that would be the result of merging the two
clusters [18].

• Centroid linkage: Computes the dissimilarity between clusters by representing each
cluster with a ”centroid”, which is another word for a cluster prototype. The dissimilarity
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between clusters is then computed as the dissimilarity between the centroids of each
cluster. After the two clusters are merged, a new centroid is computed based on all the
cluster members of the two clusters merged [19].

• Median linkage: Computes dissimilarity between two clusters in the same way as the
centroid linkage, the only difference being that after the clusters are merged, the new
centroid is computed as the average of the two previous centroids [19].

• Weighted linkage: Works in a method similar to the average linkage, the only differ-
ence being that after two clusters are merged, this linkage requires all the entries in the
dissimilarity matrix that pertain to members of this cluster to be averaged. This merging
of entries in the dissimilarity matrix reduces the number of computations required further
down the line because there will be fewer dissimilarity values to average [19].

One of the apparent disadvantages of the hierarchical clustering algorithms is that they have
quadratic time complexity O(N2), and have also received critique for lacking flexibility [13]. The
lack of flexibility is because after two clusters are merged, they cannot be split for re-evaluation
when a lower number of clusters is considered.

3.1.3 Curse of Dimensionality

The curse of dimensionality is a term used to explain the problem of having too much information
about each individual object, with regard to the number of objects that make up the dataset.
This concept may sound counterintuitive, but it is a real issue in classification and regression
problems. For every new parameter that is added to a data object (or every dimension that
is added to a dataset), additional undesired stochastic behavior is added as well. Undesired
stochastic behavior is often referred to as noise because it makes it harder to detect the relation
between the input variables and the target variable. If the amount of noise in a dataset becomes
high enough, a machine learning model will become unable to generalize the relationship between
the input variables and the target variables. The curse of dimensionality refers to the issue of
the noise that is added when too many dimensions have been used to represent a dataset. The
number of dimensions must be chosen in the context of how many objects there are in the
dataset because if the number of objects in the dataset is great enough, the information added
by an additional dimension could outweigh the additional noise cost.
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3.2 Artificial Neural Networks

This section will explain how layers of perceptrons form an Artificial Neural Network (ANN),
how the said network is trained, the function of convolutional and recurrent layers in an ANN,
and will discuss the challenges of underfitting and overfitting.

3.2.1 Multi-layer Perceptrons

Figure 3.4a depicts the building blocks of an ANN, the perceptron. The perceptron is a model of
an artificial neuron, it takes in n inputs, performs a weighted sum of the inputs and a bias b, and
sends the sum through what is called an activation function. A single perceptron is only able
to perform binary classification on linearly separable points. However, by combining multiple
perceptrons into a layer, and multiple layers of perceptrons into a Multi-layer Perceptron (MLP),
they can capture complex non-linear relationships.
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Figure 3.4: (a) A Perceptron. (b) Example of a simple ANN known as an MLP.

O(x) = f

(
N∑
i=1

wixi + wbb

)
(3.3)

Equation (3.3) shows what the output of a perceptron (O(x)) is in terms of its weights {wi}, the
input x, its activation function f(·) and its bias b. The purpose of an activation function is to
give each perceptron the ability to perform actions that are not purely linear on its inputs [20].
Consider that the absence of an activation function, all a perceptron is doing is outputting a
weighted sum of its inputs. Any continuous function can, in principle, be used as an activation
function, but some functions are more common than others. Figure 3.5 shows the three most
popular activation functions used in modern ANN, the sigmoid function, tanh function, and
Rectified Linear Unit (ReLu). The sigmoid function was one of the first activation functions
introduced, and it shares many similar characteristics with the tanh function. The sigmoid, and
tanh functions are both hyperbolic functions that grant non-linear properties to the perceptron.
However, the ReLu function is often preferred over the two former functions for two important
reasons. First, the hyperbolic functions suffer an issue of saturation when the weighted sums
of the input becomes sufficiently large, while the ReLu does not. The second reason is not
as technical, but is still important. Since an ANN can be made up of hundreds, or even
thousands of perceptrons, the computation of complex exponential functions for every unit is
computationally expensive, whereas the computation of the ReLu is significantly less so.
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Figure 3.5: An illustration of the three most popular activation functions used for perceptrons
in ANN.

3.2.2 Training

A simple ANN is depicted in figure 3.4b. The first layer in an ANN is called the input layer, the
last layer is called the output layer, and all layers in between are called hidden layers. When
an ANN makes a prediction, it does what is called a feed-forward computation. The data is
passed through the input layer, and sent through the hidden layers, and finally through the
output layer. When training an ANN one defines a loss function, L(θ) which estimates the
error in the prediction as a function of the parameters of the ANN, θ. After a prediction is
made with a feed-forward computation, and the error in the prediction is calculated using the
loss function, the trainable parameters of the network need to be updated. This updating of the
weights can be considered a gradient optimization problem, and is solved using an algorithm
called Stochastic Gradient Descent (SGD) [20]. The SGD algorithm is shown in equation (3.4),
where lr is called the learning rate.

θnew = θold − lr
∂L(θold)

∂θold
(3.4)

The estimation of the partial derivatives of the loss function with regard to the individual pa-
rameters of the ANN is a significant task, and is estimated with the back-propagation algorithm.
The back-propagation algorithm estimates the partial derivatives of the loss function with re-
gard to the network parameters by beginning with the output layer and is working its way
backward through the hidden layers. It is given by the chain rule of differentiation that since
the output of hidden layer N in an ANN is a function of the layers preceding it, the partial
derivative of a parameter in N will be dependent on the partial derivatives of all the layers
coming after it. The computation of the back-propagation is expensive in terms of time and
space. It is often computed on a GPU since it has many small cores and is capable of computing
the same instruction on many data points. A challenge in the training of ANN is the choice of
lr; if it is too small, the model learns too slowly, and if it is too big, one risks the possibility of
overcompensating and increasing the error. Additionally, when parameters are getting close to
values that correspond to a minimum of the loss function, the gradients of the loss function tend
to become vanishingly small [20]. To address these challenges, one often uses a gradient descent
optimizer, which changes the learning rate during training if overcompensation is detected, or
if the gradients returned by the back-propagation algorithm become very small. One of the
most common gradient descent optimizer used is called ADAM, but an explanation of the inner
workings of ADAM falls outside the scope of this work. There exist alternatives to the SGD
algorithm, such as batch gradient descent and mini-batch gradient descent. They will not be
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Figure 3.6: An illustration of how a one-dimensional convolutional layer works. The blue circles
represent the input to the convolutional layer, the red circles represent units that make up the
convolutional layer, the green circles represent the output of the convolutional layer, the thin
arrows between units represent the weighted sum, and the thick arrow represents the sliding of
the filter over the input.

applied in this work. The term epoch or training epoch refers to the process of training the
ANN model on the entire training set once. It is normal to train an ANN for multiple epochs,
where the number of epochs depends on the complexity of the architecture.

3.2.3 Convolutional Layers

Layers of perceptrons where all the outputs of the previous layer are connected to all the inputs
of the current layer are referred to as dense, and they are only one of many possible layers
that can make up an ANN. Convolutional layers get their name from the convolution operator,
and for time series, they can be viewed as a set one-dimensional filters. Each sample in the
filtered output is a weighted sum, passed through activation functions of a close neighborhood of
samples of the input of the convolutional layer. This is illustrated in figure 3.6. A convolutional
layer may apply multiple filters, which each produce a separate output. Convolutional layers are
common in ANN used for computer vision tasks, because they can be used for detecting distinct
features such as lines and edges [20]. For time series, the features that are extracted could be
linear regions, exponential regions, or zero gradient regions. As the network gets deeper, the
features extracted by convolutional layers are combined to detect more complex structures such
as periodicity in time-series data. ANN that apply convolutional layers and dense layers are
called a Convolutional Neural Network (CNN).

3.2.4 Recurrent Layers

An attribute that was long sought after was the ability of an ANN to detect time-dependent
relations between the input. Especially in the fields of time-series analysis, natural language
processing, and video analysis. To address this problem, special perceptrons with ”memory”
were introduced, and layers of these perceptrons are called recurrent layers. The way that the
memory attribute was added to recurrent units was by introducing a feedback loop such that
the past output was added to the weighted sum of inputs with a separate weight, as illustrated
in figure 3.7. One implementation of this type of unit is called the Long Short-term Memory
(LSTM) unit. It works by giving a memory unit to a perceptron, which has three gates that
regulate the flow of information within the unit: write, read, and flush. The write gate controls
to which extent new inputs are allowed into the unit, the write gate controls the weighting that
the old values in the unit are given, when calculating the output and the flush gate controls
how long a particular value is allowed to remain in the unit [21]. ANN that apply recurrent
layers and dense layers are called a Recurrent Neural Network (RNN). The name ”deep neural
network” is used for architectures that are ”deep”, meaning that they consist of many layers.
There is no formal limit of how many layers an architecture must have before it is considered
deep, so Artificial Neural Network (ANN) is the nomenclature that will be used for the model
in this work.
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Patient is sick Patient is healthy

Patient tests sick TP FP

Patiet tests healthy FN TN

Table 3.1: Illustration of how the metrics TP, TN, False Positive (FP) and False Negative (FN)
are defined.
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Figure 3.7: An simplified illustration of the memory in an LSTM unit.

3.2.5 Underfitting and Overfitting

When training an ANN for deployment, it is common to divide the data one has at hand into
a training set, a validation set, and a test set. The training and validation sets are used during
training, and the test set is used after training to benchmark the model. When an ANN is
trained, SGD with back-propagation is performed on the training set, simultaneously the model
is evaluated on an independent validation set. This is done to determine whether the model
is overfitting on the training set. Overfitting is described as when a model performs well on
the training set, but underperforms on the validation and test set. This is common among
complex ANN architectures, and can be a sign that the architecture applied is too complex for
the dataset. Underfitting is said to occur when the accuracy of the model on the training set is
lower than to be expected, this is often a sign that architecture of the ANN is too simple, and
can be expanded.

3.3 Evaluation Metrics

In medicine one often assesses a test for a specific disease in terms of how many True Positive
(TP), True Negative (TN), False Positive (FP) and False Negative (FN) the test attains. The
meaning of these terms is illustrated in table 3.1. If a patient is sick and the test classifies the
patient as sick, this result is regarded as a True Positive. If a patient is sick and is classified
healthy by the test, it is regarded as a False Negative. If a patient is healthy and is classified
healthy by the test, it is regarded as a True Negative. Finally, if a patient is healthy and is
classified as sick, this is regarded as a False Positive. These metrics are also used frequently for
assessing the performance of binary classifiers. They can be used on multi-class classifiers as
well, but then one would have to calculate a set of metrics for each class. For classifiers the aim
is always to maximize the number of TP, and TN and minimize the number of FP, and FN.
The common metric accuracy can be defined in terms of these metrics as (TP + TN)/(TP +
TN + FP + FN).
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3.3.1 Sensitivity, Specificity, and Diagnostic Odds Ratio

Usually, it can be helpful to combine the four metrics shown in table 3.1 into two more compact
metrics known as sensitivity (true positive rate) and specificity (true negative rate), which
are defined in equation (3.5). Sensitivity is defined as the number of positive cases correctly
classified, divided by the total number of positive cases in the dataset. Similarily specificity
is defined as the total number of negatives correctly classified divided by the total number
of negatives in the dataset. If a dataset does not have an even distribution of positives or
negatives, the accuracy can be inflated if a model is only able to perform well at classifying one
class. Analyzing the sensitivity and specificity allows one to get a better understanding of how
well a model works at detecting each category. As with accuracy, sensitivity and specificity can
range from zero to one.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

(3.5)

A third metric that is useful when comparing multiple classifiers is known as Diagnostic Odds’
Ratio (DOR). It is defined by equation (3.6). What one can see quickly is that the value of
the DOR is unbounded, in contrast to the accuracy, sensitivity, and specificity metrics. This
is both a blessing and a curse. The advantage of this is that differences that may seem very
small in terms of accuracy, sensitivity, and specificity become very evident in the DOR. The
disadvantage is that the metric is undefined if either FP or FN are zero. An advantage of the
DOR is that it takes both TP and TN into account, whereas other metrics such as the F1-score
does not take TN into account.

DOR =
TP× TN

FP× FN
(3.6)

3.3.2 Adjusted Rand Index

The Adjusted Rand Index (ARI) is a version of the Rand Index, that is ”adjusted for chance”.
The Rand Index applied in binary classification problems is equivalent to accuracy [22]. How-
ever, it might be more helpful to view the ARI as a measure of how much the distribution
of two groupings2 of a dataset overlap. Given that one has a dataset X with n objects
X = {x1, x2, ..., xn}, and two groupings of this dataset, Y which has p different labels, and
Z which has q different labels. The first step of estimating the ARI is setting up a contingency
table shown in table 3.2 [22]. Here entry nij is the number of data objects that have label Zi
in the Z-grouping and label Yj in the Y -grouping, ai is the number of data objects with the
Zi label, and bj is the number of data objects with the Yj label. The ARI is then calculated
according to equation (3.7)

ARI =

∑
ij

(nij

2

)
−

[∑
i (ai2 )

∑
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2
)
]
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j
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2

)]
−

[∑
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∑
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2
)
]

(n2)

(3.7)

2Groupings refers to a segregation of a dataset into distinct non-overlapping groups with separate labels. An
example of a grouping can be a set of cluster assignments.
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Y1 Y2 . . . Yp
∑

Z1 n11 n12 . . . n1p a1

Z2 n21 n22 . . . n2p a2

...
...

...
. . .

...
...

Zq nq1 nq2 . . . nqp ap∑
b1 b2 . . . bq

Table 3.2: Contingency table used to calculate ARI. Inspired by the table used by [22]

3.4 Chapter Summary

In section 3.1 it is specified that whole-series TSC is what will be used in this work. The different
approaches and objectives of TSC are discussed. In section 3.1.1, the different dissimilarity
metrics that are to be used in the clustering models are presented, Euclidean distance and
DTW. The hierarchical agglomerative clustering algorithm is introduced as a hard clustering
algorithm that takes a dissimilarity matrix as input and yields a hierarchy of clusters as output
called a dendrogram. The different linkage criteria used in this are presented, and the section
ends by explaining the term ”curse of dimensionality”.

In section 3.2 many aspects of ANN were discussed. The basic building blocks, perceptrons were
presented and how they consist of weighted sums and activation functions. Section 3.2.2 ex-
plained how ANN are trained with feed-forward computation, and SGD with back-propagation.
Two special layers were presented, convolutional layers and recurrent layers that serve their
specific purpose in an ANN architecture. The section ends with discussing the two common
issues of underfitting and overfitting.

The chapter ends with section 3.3 which explains the different evaluation metrics used in this
work: Accuracy, sensitivity, specificity, DOR and ARI.
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Chapter 4
Review of The Literature

Two papers are considered particularly relevant to this work and will be discussed in this
paper. Both papers extract characteristic curves from the segments of the left ventricle using
echocardiography, and both of the papers apply machine learning models to attempt to separate
HFPEF patients from the rest. However, the different approaches used to fulfill this objective
are quite different.
Tabassian et al. [23] attempt to diagnose HFPEF using a combination of a statistical unsuper-
vised method, and a supervised classifier. Their dataset consists of the velocity, strain, and
strain-rate curves of the 18 regional segments of the left ventricle in 100 subjects. The effective-
ness of the velocity, strain, and strain-rate curves were evaluated separately. The patients were
stress-tested, meaning that the curves were extracted at rest, and after having been exposed
to a period of physical activity. This resulted in 36 curves of each curve type (18 at rest and
18 during exercise). The patients were split into four groups: HFPEF patients, hypertensive
patients, healthy control patients, and breathless control patients. They also performed another
partitioning of the patients where they combined the hypertensive patients and the healthy pa-
tients, and combined the breathless patients and the HFPEF patients. The machine learning
algorithm they developed was trained at predicting two different target variables, group affili-
ation with four classes, and group affiliation with two classes. The machine learning algorithm
was composed of an unsupervised method called principle component analysis and variations
of a supervised classifier called K Nearest Neighbors (KNN). Principle component analysis is
a method commonly used for dimensionality reduction. It projects the input variables onto a
new set of dimensions where the variance in the data is maximized. These new dimensions are
linear combinations of the input dimensions and are called principle components. In terms of
linear algebra, the principle components are the eigenvectors of the covariance matrix of the
input variables. Principle component analysis was used in this work to reduce dimensionality,
such that there were fewer dimensions for the KNN classifiers to consider. The best performing
model was the model that used strain curves as input. In the four-class classification problem,
the strain-curve-input model attained an overall accuracy of 0.57, but attained an accuracy of
0.81 within the class of HFPEF patients. In the two-class classification problem, the same model
attained an accuracy of 0.85, a sensitivity of 0.86, and a specificity of 0.82. The performance in
the two-class classification problem is good, and it is promising to see that strain curve input
yielded the highest scores.

Sanchez-Martinez et al. [24] also deal with HFPEF patients. They do not attempt to make
direct predictions about the diagnosis, but use an unsupervised learning approach to study
the patterns of the velocity curves of the myocardial segments of patients with HFPEF. They
reduce the dimensionality in an attempt to attain a representation that is easier to interpret.
The machine learning approach they use is based on merging the features yielded by multiple
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non-linear operators, or kernels, and the method is called multiple kernel learning. This yields
what the authors refer to as an ”output space”, which is a representation of the input data with
reduced dimensionality. After the output space is constructed, they reconstruct the velocity
curves using multiscale regression to see if this affects the variability of the different velocity-
curve features. Their model was applied on a group of 55 patients consisting of 19 HFPEF
patients, 22 healthy patients, and 14 breathless patients. Sanchez-Martinez et al. [24] also
stress test all their patients. They extract four velocity curves from each patient and consider
two types of analysis: One where the velocity curves are considered as a whole and another
where the velocity curves are split into five, based on which period of the cardiac cycle they
are in, yielding a total of 20 curves. Their analysis of the variability of the velocity curves
showed promise in terms of being able to separate healthy patients from diseased. Sanchez-
Martinez et al. [24] also make some compelling arguments as to why unsupervised models could
be preferred over supervised models. Unsupervised models are able to extract hidden structures
in the data that are impossible to find with supervised models. Also, unsupervised models are
not as hindered by objects that have been labeled wrong as they are not trained with labels.

Tabassian et al. [23] and Sanchez-Martinez et al. [24] make use of an unsupervised learning
approach to reduce the dimensionality of the dataset. Tabassian et al. [23] use principle com-
ponent analysis as a subroutine, which yields the principle components to a KNN classifier.
Sanchez-Martinez et al. [24] use multiple kernel learning to compress the input features into a
representation that makes it eases clinical interpretation. Also, they reconstruct the original
velocity curves using multiscale regression to analyze the variability of the reconstructed time
series. One of the big lessons from these two papers is the importance of dimensionality reduc-
tion when dealing with relatively small datasets of high dimensionality. Extra emphasis is given
to the word ”relatively small” because machine learning models in other fields such as com-
puter vision often have access to thousands, if not millions, of data objects (recall the ImageNet
database mentioned in section 1.1). In the papers of Tabassian et al. [23] and Sanchez-Martinez
et al. [24] dimensionality reduction is attained by combining the initial features using principle
component analysis and multiple non-linear kernels. In this work, the approach will be slightly
different, no attempt will be made at combining the features into a smaller subset, but the
different models that are applied will be tested on different subsets of the peak-value and time-
series datasets. Hence, it is more of a feature selection than a feature extraction. The different
subsets of the datasets will be detailed further in section 5.
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Chapter 5
Data Exploration

In this chapter, the variability, distribution, and type of data used in the assignment will be
explored. The exploration is divided into three sections corresponding to the three main groups
of variables: The patient meta-data, the input variables and the target variables. The meta-
data is the data about the patients which is not used in the classification models, but can be
used to describe the patient demographic, which makes up the dataset. The input variables
are the variables that are inputted into the machine learning models in order to train them,
and later used to make predictions about the patients’ target variables. The target variables
are the variables that the models will be trained to predict. Target variables are used both in
training to correct erroneous predictions that models make during the training and to evaluate
the accuracy of the model after training.

5.1 Patient Meta-data

The patient meta-data that will be considered in this section are age, gender, Body Mass Index
(BMI) and blood pressure.
Figure 5.1 shows the patient distributions with regard to age, gender and BMI. As evident from
the figure, the dataset is made up of 138 males and 57 females. From the age distribution plot
in figure 5.1, one can see that the majority of the patients are in the age group 60-80 years, and
some in the range 80-90 years. However, it should be mentioned that barely any information
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Figure 5.1: Distribution of age, gender and BMI.
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Figure 5.2: A joint distribtion plot of systolic and diastolic blood pressure of the patients.

about the patient’s age has been made available. During the process of anonymization, an error
occurred, so only eleven of 199 ages were included. The BMI distribution of patients is centered
around 26 kg/m2. Even though the BMI is not always accurate for individuals, for a population
of 199, an average BMI at 26 is quite high as scores above 24.9 are considered overweight. Figure
5.2 shows the joint distribution of systolic and diastolic blood pressure among the patients.

5.2 Input Variables

As mentioned earlier in section 6.1, the different machine learning models that will be applied
use two different types of input data; time-series data in the form of longitudinal strain curves
and point-values in the form of peak systolic global longitudinal strain and patient EF.

5.2.1 Peak Values

As mentioned in section 2.3 EF values below 45% is regarded as unhealthy with regard to
probability of heart failure. Keeping this in mind, one should note that the distribution of EF
values among the patients shown in figure 5.3 is centered at approximately 40% with tails going
as low as 20% and as high as 70%. Figure 5.4 shows the distribution of peak systolic GLS
values, for the three different views. As evident from the figure, the values are centered around
−12.5 with tails going as low as −29, and as high as −2.5.
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Figure 5.4: Distribution of peak systolic global longitudinal strain.
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5.2.2 Strain Curves

Figure 5.5 shows what a typical set of strain curves look like for a patient. Only the six regional
strain curves and the one global strain curve from the 4CH view have been included as they
are fairly similar across the different views. Since data from the different patients have been
collected at different times, and possibly with different ultrasound machines, the frame-rate and
number of frames in the different ultrasound videos vary from patient to patient. Each strain
curve has a standardized length of one heart cycle, due to this, different curves have different
numbers of samples. Figure 5.6 shows the distribution of frame rates, and number of samples
among the total number of strain curves.
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Figure 5.5: Plot of the global and regional longitudinal strain curves of one patient in the 4CH
view.
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Figure 5.6: Distribution of the frame rate used in the ultrasound imaging used to obtain the
strain curves (left), and sample count of the different strain curves (right).

5.3 Target Variables

Figure 5.7 shows the distribution of heart failure among patients (left), and the distribution of
different diagnoses (right). Since the dataset has approximately as many patients with a heart
failure diagnosis as without, it can be considered balanced in that regard. With regard to the
different patient diagnoses, their rate of occurrence is not uniform in this dataset. The control
group of healthy individuals consists of 30 patients. The groups of patients with STEMI, and
NSTEMI diagnoses consist of 60 and 39 patients, respectively. Finally, the group of patients
with heart failure, but without myocardial infarction (labeled OTHER in left barplot in figure
5.7) consists of 70 patients. To simplify the classification problem, this work will only attempt to
separate healthy patients from unhealthy patients. All the 169 diagnosed patients are therefore
grouped under the label unhealthy.
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Figure 5.7: The distribution of heart failure and different diagnoses within patients.

To illustrate the diagnostic power of EF, and peak systolic strain 5.8 shows the distribution of
EF for patients with and without heart failure (left), and the distribution of EF for patients with
and without a heart disease diagnosis (right). Figure 5.9 shows the distribution of peak systolic
GLS values for patients with and without heart failure, and figure 5.10 shows the distribution of
peak systolic GLS values for diseased patients and control patients. From the left plot in figure
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Figure 5.8: Distribution of EF for patients with and without heart failure (left), and distribution
of EF for patients in the control group, and patients with a diagnosis.

5.8 and figure 5.9 it seems as though the heart failure patients are more separable with the EF
values than with the GLS values. With regard to the separability of patients with diagnoses
and patients in the control group, it seems as though the right plot in figure 5.8, and figure
5.10 follow the same distribution as the heart failure patients. However, it is hard to evaluate
this since the sample size of the control group is much smaller than the group of patients with
a heart disease diagnosis. Since EF is so well established in clinical procedure, it is interesting
to see how well a threshold classifier on EF would perform in predicting heart failure. So a
prediction was made based on the normal threshold mentioned in Marwick, Yu, and Sun [6]
of 45%. The results were an accuracy of 0.77, a sensitivity of 0.86, a specificity of 0.69, and a
DOR of 13.48. This is quite high and will serve as a benchmark for the models when they are
applied to predict heart failure among patients.
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Figure 5.11: The left column shows five sample GLS curves for patients with (top), and without
(bottom) heart failure. The right column shows five sample GLS curves for unhealthy (top)
and healthy (bottom) patients.

Figure 5.11 shows five random sample GLS curves from all views for patients with different
conditions. GLS curves for patients with and without heart failure are illustrated on the column
to the left, and patients with and without a heart disease diagnosis are illustrated to the right.
For the curves, it is not easy to visually discern the difference between heart failure patients
and diseased patients based on the shape.
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Figure 5.12: Distribution segment indication labels.

Figure 5.12 shows the distribution of the different segment indications for all the left ventri-
cle segments of all the patients in the dataset. Since the occurrence of indications other than
”normal” and ”hypokinetic” are very rare, the occurrence axis has been represented logarith-
mically. The imbalance of segment indication labels illustrated in figure 5.12 means that it
will be challenging for any statistical model to perform well in the classes with low occurrence.
To counteract this, the taxonomy of the labels is changed such that the classification problem
becomes binary with the labels Normal and Not normal, similarly as was done with the patient
diagnoses. The dataset is then fairly evenly distributed with 1695 Normal labels and 1818 Not
normal labels. Figure 5.13 shows five random sample RLS curves that represent the different
segment indication labels. Figure 5.13 shows five random sample RLS curves that represent the
different labels. In this case, it is easier to see the difference between the different segmental
labels in terms of longitudinal strain. For the RLS curves that are labeled as hyperkinetic, one
can see that compared to the curves regarded as normal, these curves, in general, have troughs
in the strain curves that go further down than the normal curves. The RLS curves regarded
as normal rarely go below -20, whereas the hyperkinetic curves regularly pass -20, and some of
them go as low as -30. The curves with the ”hypokinetic”, ”akinetic”, and ”dyskinetic” labels
all show similar characteristics of various degrees. The curves within these three categories have
peaks and troughs that are smaller in magnitude than the curves that are considered normal.
The RLS curves regarded as akinetic and dyskinetic are also smaller than the curves with the
hypokinetic label. The RLS curves that are labeled aneurysmal have significantly more positive
strain than the curves with any other label. Two curves have peaks as high as 20, whereas the
curves with the other labels rarely pass 5.
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the indication in the title of the plot.
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Chapter 6
Method

6.1 Description of The Datasets

Since the different ML models require different types of input data the, datasets have been
divided into two main categories: The peak-value datasets and the time-series datasets.

6.1.1 Time-series Datasets

Nr Input variables Shape

1 Single RLS curves (3582, 1)

2 RLS curves (199, 18)

3 GLS curves (199, 3)

4 Strain curves (199, 21)

Table 6.1: Time-series datasets. The ”Shape” parameter indicates: (Number of objects in the
dataset, Number of curves used to represent each individual object). The curve length is not
included in the shape parameter because it differs for different curves.

Table 6.1 shows the different time-series datasets that will be used. All the datasets except
Single RLS curves will be used to predict whether or not the patient is diagnosed, and whether
the patient has heart failure. Recall that the different diagnoses are described in section 2.4, and
there occurrence rate are illustrated in figure 5.7.Single RLS curves will be used to predict the
segment indications shown in figure 5.12 and described in section 2.4. The point of classifying
regional segments of a patient’s left ventricle is that if a single segment is found to be not normal,
this will warrant closer inspection of said patient. As mentioned in the description of table 6.1,
the ”Shape” parameter shows how many objects each dataset has and how many curves are
associated with each object. Since each ultrasound examination takes ultrasound inspections
from three views, each patient has three views from which a GLS curve can be estimated. Since
each GLS curve, also can be divided into six RLS curves, there is a total of 21 strain curves per
patient. Since each patient has 18 RLS curves, there are approximately 18× 199 = 3582 curves
that make up dataset number 1. For datasets two to three, it will also testes wether using data
from a single view performs better than data from all views. For dataset two that means that
the number of curves used to represent an object will be either 6 or 18, for dataset three, it will
be either 1 or 3 curves, and for dataset four, patients will be represented with either 7 or 21
curves. Both the ANN, and the TSC model are applied on the datasets listed in table 6.1.
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6.1.2 Peak-value Datasets

Nr Input variables Shape

1 Peak systolic RLS values (199, 18)

2 Peak systolic GLS values (199, 3)

3 Peak systolic strain values (199, 21)

4 Peak systolic RLS, and EF values (199, 19)

5 Peak systolic GLS, and EF values (199, 4)

6 Peak systolic strain, and EF values (199, 22)

Table 6.2: Peak-value datasets. The ”Shape” parameter is indicates: (Number of objects in the
dataset, Number of dimensions used to represent each individual object).

Table 6.2 shows the different peak-value datasets. All the datasets will be used to predict the
diagnosis of patients and whether the patient has heart failure. The reason that there are more
peak-value datasets than there are time-series datasets is that the peak-value version of three
datasets in table 6.1 have been combined with EF to determine whether a combination of peak
systolic strain and EF can have higher predictive power than strain alone.

6.2 Clustering

The implementations of the two clustering models that are applied in this work are described
together in the same section because conceptually, they are almost identical. It is only the
method used to measure dissimilarity that separates the PVC and TSC models. The general
implementation of the clustering models is illustrated in figure 6.1. Time-series datasets are
preprocessed before dissimilarity measurement, peak-value datasets are not. In the following
subsections, the processes in each of the boxes in the flow diagram will be expanded.
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6.2.1 Time-series Preprocessing

Preprocessing of the time series is done because it is known that the DTW distance is sensitive
to absolute difference, and offsets of time series. In addition to clustering the longitudinal strain
time series without preprocessing, three forms of preprocessing were tested to see whether they
could improve the predictive performance of the clustering algorithm: Normalization, scaling,
and Z-score normalization. The normalized version of a time series ({xt}N ) is calculated by
equation (6.1). The smallest recorded value in the time series (min{xt}) is subtracted from the
time series ({xt}), then the time series is divided by the difference between the highest recorded
value (max{xt}), and lowest recorded value in the time series.

{xt}N =
{xt} −min{xt}

max{xt} −min{xt}
(6.1)

Scaling can be considered as normalizing a time series with regard to the highest and lowest
recorded values of the entire set of time series it is being compared to. If one lets {{xt}}
represent the set of time series to be scaled, min{{xt}} represent the smallest recorded value in
the entire set of time series and max{{xt}} represent the highest recorded value in the set of
time series, the scaled version of a time series ({xt}S) is given by equation (6.2).

{xt}S =
{xt} −min{{xt}}

max{{xt}} −min{{xt}}
(6.2)

The Z-score normalization is done by transforming each observation of a time series to its Z-
score. The Z-score of an individual time-series observation is calculated by subtracting the
expected value of the time series and dividing by the standard deviation. The unbiased estima-
tors used to calculate the expected value, and standard deviation of a time series are given in
equations (6.3), and (6.4) respectively. The Z-score normalized version of a time series ({xt}Z)
is calculated using equation (6.5)

µ̂ =
1

n

n∑
t=1

xt (6.3)

σ̂ =

√√√√ 1

n− 1

n∑
t=1

(xt − µ̂)2 (6.4)

{xt}Z =
{xt} − µ̂

σ̂
(6.5)

Figure 6.2 illustrates how the different preprocessing methods work on the 4CH GLS curves
of four random patients. By comparing 6.2a and 6.2d, one can see that scaling preserves both
the relative offsets and relative size differences between the curves. From 6.2b, one can see
that though normalization preserves the offsets of the curves, the relative sizes are not. From
6.2c, one can see that Z-score normalization preserves the offsets of the curves, the relative sizes
are only preserved to a certain extent. Also, the normalized and scaled curves are constricted
between 0 and 1, while the Z-score normalized curves are not.

6.2.2 Dissimilarity Measurement

When estimating dissimilarity between patients represented by a peak-value dataset, Euclidean
distance was used. To measure the dissimilarity between longitudinal strain curves in the
TSC model, DTW distance was used. Recall that the DTW distance between to time series
is the length of the shortest DTW path between them. To calculate the DTW distance the
dtaidistance 1.2.5 library was used. The dtaidistance library is used by the DTAI Research
Group to measure distances between time series. To encapsulate all the dissimilarity between
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Figure 6.2: Four plots of three random 4CH GLS curves that are preprocessed in the three
different ways. (a) no preprocessing, (b) normalization, (c) Z-score normalization and (d)
scaling
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patients in a single matrix, one first has to calculate one matrix of DTW distances for each of
the time series used to represent patients. Say that a patient was represented using the GLS
curves in the three views. To calculate the dissimilarity matrix one would first estimate the
DTW distance between all the 4CH GLS curves, then all the 2CH GLS curves and finally all
the APLAX GLS curves. By adding the three matrices of DTW distances together, one gets
the dissimilarity matrix.

6.2.3 Hierarchical Agglomerative Clustering

As mentioned in section 3.1.2, the hierarchical agglomerative clustering algorithm takes inn the
dissimilarity matrix and starts with every patient being represented by one cluster each. For
each number of possible clusters, then two clusters are merged based on minimizing one of the
six linkage criteria. There are also various options of distance metrics that can be used by the
clustering algorithm to measure the difference between elements of the dissimilarity matrix. In
this work, only Euclidean distance is used. The clustering algorithm used for time-series data
is implemented using the scipy.cluster.hierarchy 1.4.1 library, and in the TSC model all six
linkages detailed in section 3.1.2 are tested. In the PVC models a more holistic implementation
is applied using the scikit-learn 0.22.1 library. The implementation of the PVC models does
both the dissimilarity and clustering using one library. Because the scikit-learn library supports
fewer linkage criteria, only the single, complete, average, and ward linkages are tested.

6.2.4 Cluster Assignment Evaluation

When evaluating a specific TSC, or PVC clustering model, the model is evaluated at two to
nine cluster centers. For the cluster assignments given by evaluating the model at two cluster
centers the models TP, TN, FP and FN are calculated. These metrics are then used to estimate
the model’s accuracy, sensitivity, specificity, and DOR. The cluster assignments for a clustering
model evaluated at two cluster centers can be either 1 or 2. Since clustering is a form of
unsupervised machine learning, it is not given whether cluster 1 or 2 corresponds to the 1 or 0
of the target variable. Therefore, the evaluation metrics are calculated twice for each clustering
model evaluated at two cluster centers. Once where cluster 1 corresponds to target variable
1, and once where cluster 2 corresponds to target variable 1. The calculation that yields the
highest accuracy is kept, and the other is disregarded. In addition to these metrics, the ARI
is used to evaluate all the cluster assignments yielded from evaluating a clustering model at
between two to nine cluster centers. The ARI is used because it can give a measure of how
correlated the distributions of the cluster centers are with regard to the distribution of the
target variables. This can give insight into whether a clustering model evaluated at a higher
number of cluster centers than two is better at capturing a particular target variable. In the
heart failure and patient diagnosis case studies, there are twelve different datasets, four types
of preprocessing, and seven different linkages tested. This yields a total of 336 variations of
the TSC model that are tested in the heart failure, and patient diagnosis case studies. In the
segment indication case study, there are only 28 variations of the TSC model tested since there
is only one dataset. For the PVC models, there are six datasets tested, and four linkages tested
yielding 24 variations of the PVC model tested in the heart failure and patient diagnosis case
studies.

6.3 Artificial Neural Network

6.3.1 Preprocessing

Two methods of preprocessing were tested on the data used as input for the ANN in addition
to testing the ANN models without preprocessing. Since neural networks with recurrent layers
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Strain curve input

Convolutional layer, 16 filters, 128 units per filter, kernel regularizer: L2(10−4), ReLu activation

Convolutional layer, 32 filters, 64 units per filter, kernel regularizer: L2(10−4), ReLu activation

Recurrent layer, 20 units, kernel regularizer: L2(10−4), linear activation

Dense layer, 16 units, ReLu activation

Dense layer, 1 unit, Sigmoid activation

Output prediction

Figure 6.3: A block diagram illustrating the architecture of the ANN used in this work.

perform better when the sample rates of the input time series are equal, as they usually are
not correlated with the target variable. Since the frame rate of the ultrasound videos varies
from patient to patient, the sample rates of the longitudinal strain curves also vary, and the
sample rate is not correlated with heart failure, patient diagnosis, or segment indication. To
counteract this, it was tested whether upsampling all the strain curves to the highest sample
rate or downsampling them all to the lowest frame rate would affect the performance of the
ANN.

6.3.2 Architecture

The architecture of the ANN used in this work was not designed by the author himself, as there
sadly was not enough time. The architecture was designed by student Benjamin Nedregaard
and was used to estimate heart phase, and patient health using blood flow curves as input. The
reason why this architecture was applied is because it showed great promise when applied to
blood flow time series, which share charactaristics with left ventricle longitudinal strain time
series. The network was implemented using the keras with tensorflow 2.1.0 as backend. The
architecture used for the ANN is illustrated in figure 6.3. One aspect that is not shown in
figure 6.3 is the total number of trainable parameters of the architecture. The reason for this is
because it varies based on the shape of the dataset it is applied on. In section 6.1.1 the different
time-series datasets that are used in this thesis are detailed. Recall that the different datasets
will use different combinations of GLS and RLS curves from one or all of the three ultrasound
views. Because of this the number of curves used as input for the ANN can be 1, 3, 6, 7, 18 or
21.
Since the author did not design the architecture of the network, a thorough defence of the
architecture will not be given. However, a brief explanation of the properties the different
layers contributing to the model as a whole will be given. The two first layers in the ANN
are convolutional, and are intended to detect simple structures in the time series such as linear
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Strain curves used Views used Nr. of time series Nr. of trainable parameters

GLS, or single RLS curves Single view 1 39,457

GLS curves All views 3 43,553

RLS curves Single view 6 49,697

RLS curves All views 18 74,273

GLS and RLS curves Single view 7 51,745

GLS and RLS curves All views 21 80,417

Table 6.3: This table shows the total number of trainable parameters of the ANN, for different
number of time-series inputs.

regions, curved regions and rapid changes in the signal. The recurrent layer is intended to
detect time dependant relations of the signal such as periodicity and frequency. Regularization
terms are added to the outputs of the convolutional, and recurrent layers to attempt to bias the
weights toward zero, which is a technique used to avoid overfitting.Finally the dense layers are
intended to connect the features extracted by the previous layers to specific values the target
variable can have, and make a prediction.

6.3.3 Training and Validation

Binary cross entropy was used as loss function during training of the variations of the ANN
model. Each variation was trained for five epochs, using back propagation and SGD. The
ADAM learning rate optimizer was used with an initial learning rate of 10−3 with the intention
of avoiding that the loss function of the ANN got stuck in local minima during training. The
bias values of each layer were initialized as zeros, and the weights of the individual units were
initialized by sampling from the standard normal distribution function. .

To validate the ANN models, 10-fold cross-validation was used. N -fold cross validation of
a model-dataset combination entails dividing the dataset into N chunks of equal size, and
preferably with an approximately equal distribution of target-variable values in each chunk.
Then in N rounds, called folds N − 1 chunks are used to train the model and the final chunk
is used to test the model. For each round one also changes which chunk is used to test the
model such that it is able to attempt making a prediction on every value of the dataset. When
validating the variations of the ANN using cross-validation the number of TP, TN, FP and FN
attained during each fold were recorded and added together after all the folds were complete.
The sum of all TP, TN, FP and FN attained during cross-validation are used to estimate the
models’ accuracy, sensitivity, specificity and DOR. Since there are a total of twelve datasets
and three types of preprocessing tested, there are a total of 36 variations of the ANN model
applied in the heart failure and patient diagnosis case studies. In the segment indication case
study there is only one dataset, and three forms of preprocessing tested, so there are only three
variations of the ANN model tested.

6.4 Peak-value Supervised Classifiers

Since the PVSC models are used as a benchmark for the ANN model, the choice was made
to test a broad variety of classifiers, instead of putting a lot of work into select few. Eleven
supervised classifiers are included in the PVSC model group, they are all implemented using
the scikit-learn 0.23.1 library, with fairly standard hyperparameters. In this section a short
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description of the theory behind these classifiers, and the hyperparameters used in this work will
be given. The PVSC models are validated using 10-fold cross-validation in the same manner as
the ANN models.

6.4.1 Multi-layer Perceptron

The MLP is mentioned earlier described earlier in section 3.2.1. This MLP is configured with
a single dense layer with a 100 neurons with the ReLu activation, and an output layer of a
single neuron since the classification problem is binary. It is trained with using SGD with
back-propagation, with ADAM as gradient descent optimizer, and an initial learning rate of
10−3.

6.4.2 K Nearest Neighbors

K Nearest Neighbors (KNN) is a machine learning model that can be used for classification
and for regression. KNN are described as a form of lazy learner because it does not extract
generalized rules from the training set that are used to relate the input, and target variables,
but instead memorizes the dataset [25]. When used for classification the target variable is
predicted based on the objects from the training set which are ”nearest” in terms of input
variable values. Hence, there are two central features that define a KNN classifier: The number
of neighbors used for comparison, and the distance metric used to measure proximity to its
neighbors [26]. In the implementation used in this work, the model was constricted to only
consider five closest neighbors weighted equally, and use Euclidean distance as a distance metric.
The implementation uses a combination of three algorithms to compute the nearest neighbors:
BallTree, KDTree and brute force search. The BallTree and KDTree algorithms are constricted
to a maximum of 30 leaves.

6.4.3 Support Vector Classifier

Support vector machines were originally implemented as a type of binary classifier that could
classify linearly separable variables, as classifiers they are referred to as Support Vector Classifier
(SVC). Under ideal conditions SVC transform input variables to a set of hyperplanes where the
target variable values are linearly separable [27]. The transformation used depends on what
kernel is used, some examples of kernel functions include: Linear kernal, Radial Basis Function
(RBF) and sigmoid function. In this work two versions of the SVC are tested, one with a linear
kernel and one where the RBF is used. The RBF is given in in equation (6.6), where γ is equal
to 2. Both SVC applied use an L2 regularization penalty to avoid overfitting. For the RBF
SVC parameter C which is the inverse strength of the regularization is set to 1. For the linear
SVC C is set to 0.025.

RBF(x1,x2) = eγ(x1−x2)
2

(6.6)

6.4.4 Gaussian Process Classifier

Gaussian Process (GP) are a probabilistic machine learning technique that can be used for
regression, and classification tasks. Similar to SVC they perform best when the relationship
between the input variables and the target variable are linear, but by the use of what is called
basis functions they can map the input variables to a hyperplane where the targets are linearly
seperable [28]. One can say that basis functions are for GP, what kernels are for SVC. The
defining difference are that GP are probabilistic while SVC are deterministic. Where SVC work
with a single kernel GP work with an infinite set of basis functions, and much of the training
process amounts to finding an optimal linear combination of the set of kernals available [28]. The
implementation of the GP classifier in this thesis uses an RBF function as covariance function
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with γ equal to 0.5. The implementation uses the ”L-BFGS-B” algorithm to optimize the basis
functions parameters during training, and sets a maximum of 100 iterations of Newtons method
during predict operations.

6.4.5 Naive Bayes Classifier

The naive bayesian classifier used in this work is specifically a gaussian naive bayesian classifer,
it is a probabilistic classifier based on Bayes rule, and the assumption that individual input
features are independent. If one lets X be the training input data, t be the training target data,
xnew be a piece of new input data and tnew be the corresponding new target. Bayes rule in this
context is then given by equation (6.7).

P (tnew = k|X, t, xnew) =
P (xnew|tnew = k,X, t) P (tnew = k)∑
j P (xnew|tnew = j,X, t) P (tnew = j)

(6.7)

What the naive bayesian classifier assumes, is that the likelihoods of the input features follow
gaussian distributions where the mean and variance are found using maximum likelihood esti-
mation. Predictions are then made by yielding the label with the distribution from which the
new data object is most likely to have been sampled from.

6.4.6 Quadratic Discriminant Analysis

Discriminant analysis classifiers are classifiers that are able to set polynomial thresholds in
the input feature space. Linear discriminant analysis classifers are able to set multiple linear
thresholds, and as the name implies quadratic discriminant analysis classifiers are able to set
quadratic boundaries [29].

6.4.7 Decision Tree Classifiers

Decision tree classifiers are classifiers that create hierarchies of rules that are used to make
predictions of the target variable based on the values of the input variables [25]. The advantages
of decision tree classifiers is that they are highly interpretable because of their rule based
structure, and do not require as much data as many other classifiers. The main disadvantage
of decision trees are that they are prone to overfitting unless restrictions are set as to how
many branches can be grown, and what the maximum depth of the tree can be. [25]. For
the implementation of the single decision tree classifier used in this work the ”Gini impurity
criterion” is used to choose which of the existing nodes would yield the split of highest quality,
it uses the ”best” strategy to choose splits at a node and is allowed a max depth of five nodes.

”Extra Trees”, and ”Random Forest” are two ensemble methods that are based on initiating
many decision tree classifiers. The Random Forest method makes a prediction by averaging
predictions of many different Decision Tree classifiers that are trained on separate random
partitions of the dataset [30]. When choosing which node to split, a randomized subset of
the input features are used to make the choice. These two additions of random behaviour are
meant to decouple the prediction error of individual trees, such that an averaged prediction of
all the trees will have higher accuracy than any single tree, and will reduce the probability of
overfitting [29]. The implementation of the Random Forest classifer used in this work generates
ten different decision trees that use the ”Gini impurity criterion” to measure the quality of a
split, the trees are allowed a maximum depth of five nodes and are only allowed to consider a
single feature when finding the best split.

The Extra Trees classifier, also known as ”extremely randomized trees” works similarily to
Random Forest, but introduces one more source of ”randomness” to the mix [29]. When training
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a Random Forest classifier one attempts to estimate the threshold of a node-split such that the
discrimination between data objects is maximized based on their target variable value, for
an Extra Trees classifier multiple thresholds are picked at random, and the threshold that
maximizes discrimination of data objects based on their target variable value is chosen [29].
The implementation of the Extra Trees classifier used in this work uses 100 different decision
trees, each using the ”Gini impurity criterion” to measure the quality of a split and there is set
no limitation to how deep the trees can be, or the number of features that can be considered
during a node-split.

6.4.8 Ada Boost Classifier

The Ada Boost classifer is an ensemble models like Random Forest, and Extra Trees. What
makes Ada Boost different from Random Forest, and Extra Trees is that it is not neccesarily
restricted to using Decision Tree classifiers as base classifiers, and it uses a voting system to
make predictions and train the base classifiers. The training process works by assigning weights
to each of the training objects. In the first round of training, each object is assigned the same
weight 1/N , where N is the number of training objects, in the preceding rounds the weights are
updated by assigning smaller weights to the objects that the model is able to predict correctly
and bigger weights to the objects predicted wrong, the training algorithm is repeated until the
maximum number of iterations is reached or the accuracy converges to a fixed value [29]. For
the implementation of the Ada Boost classifer used in this work use a Decision Tree classifier
with the same parameters as the classifier in section 6.4.7 is used, only with a maximum depth
of one.

6.5 Presentation of Results

In chapter 7 the results of the different models will be presented in the form of three case
studies. Each case study will focus on a single target variable, and aims to find which model
group performs best at predicting the target variable in question. Recall that the three target
variables that will be considered in this thesis are: Heart failure, patient diagnosis, and the
indication of individual left ventricle segments. As mentioned earlier in the chapter, four models
will be tested. The case studies will first deal with each model individually, where variants of
the models with different hypermarameters will be tested on the different datasets. Then, the
best performing model variation within the four main models will be used to for comparison.
The supervised models will be assessed with the metrics: accuracy, sensitivity, specificity and
DOR. The clustering methods evaluated at two cluster centers will be assessed with the same
methods as the supervised models. The clustering methods evaluated at two to nine cluster
centers will also be assessed with ARI to determine whether the models evaluated at a higher
number of cluster centers could fit the data better.

The results of each model group in every case study will be presented in the form of a distribution
plot of the DOR, a scatter plot of sensitivity versus specificity, a table showing the five model
variations that attain the highest DOR, and if the model group is a clustering model a table
of the the five model variations that attain the highest ARI will also be presented. Recall
the definition of the DOR from equation (3.6), if a DOR is between 0 and 1 it indicates that
the product of FP, and FN is greater than the product of TP, and TN meaning that the
performance of the classifier model is bad. If the DOR attained by a model is greater than 1,
that at least means that it attained more correct predictions than wrong predictions. For a
balanced dataset random guessing should attain accuracy, sensitivity and specificity scores of
approximately 50%, hence scores below 50% can be considered as bad. For unbalanced datasets
such as the patient-diagnosis dataset where there are 170 positives and 30 negatives it becomes
a bit more complicated. Only guessing 1 will yield an accuracy of 85%, a sensitivity of 1 and
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a specificity of 0. So the most valued attribute among the models will be a balanced trade-off
between sensitivity, and specificity.

The ARI ranges from −1 to 1, where a score of 1 indicaties that the label distribution of two
groupings are perfectly matched, a score close to 0 indicates that there is very little overlap
between label distribution of the two groupings and a score close to −1 indicates that the overlap
of the labels of two groupings is worse than what would be expected by two sets of random
label distributions. The main strength of the ARI is also the reason why it is used by many
authors to evaluate clustering models CITATION, it allows for the comparison of a set of cluster
assignments where the number of clusters is greater than the number of labels.
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Chapter 7
Results

7.1 Case Study: Heart Failure

7.1.1 Time-series Clustering
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Figure 7.1: (a) Distribution plot of DOR of all TSC models evaluated at two cluster centers
when applied to classify heart failure. (b) Scatter plot of the same models sensitivity, and
specificity.

Figure 7.1a shows that the DOR is close to zero for many of the two-cluster-center models,
However, the best performing models are able to acheive a DOR above ten, these models are
listed in table 7.1. From the scatterplot in figure 7.1b one can see that the distribution of
sensitivity, and specificity are quite widespread. Sensitivity and specificity scores range from 0
to 1. Common to the top 18 models in terms of DOR is that they all use data from a single
view, and 2CH is the only view that is represented among the five models with highest DOR.
What else is worth noting is that almost all the models using normalization or z-normalization
as preprocessing score below the models that use scaling, or no preprocessing at all. These
observations can be confirmed from the table10.1 in the appendix. From table 7.1 one can
see that the two best-performing models in terms of DOR received the exact same score in all
metrics. gls/2CH/regular/centroid/2, and gls/2CH/scaled/centroid/2 differ only in the way of
preprocessing, the former does not preprocess the curves before clustering, and the latter uses
scaling. However, for these two cases preprocessing did not matter as they have the exact same
cluster assignments as well.

61



Dataset-model Accuracy Sensitivity Specificity DOR

GLS/2CH/regular/centroid/2 0.76 0.87 0.64 11.72

GLS/2CH/scaled/centroid/2 0.76 0.87 0.64 11.72

GLS/2CH/regular/average/2 0.75 0.85 0.65 10.38

GLS/2CH/scaled/average/2 0.75 0.85 0.65 10.38

GLS-rls/2CH/scaled/ward/2 0.74 0.82 0.67 9.14

Table 7.1: The accuracy, DOR, sensitivity and specificity scores of the five best performing
two-cluster-center TSC models in terms of DOR, at detecting heart failure. The Dataset-
model column indicates Dataset used/View used/Type of preprocessing used/Linkage criteria
of model/Number of cluster centers.

Dataset-model ARI

GLS/2CH/regular/centroid/2 0.25

GLS/2CH/scaled/centroid/2 0.25

GLS/2CH/scaled/centroid/3 0.24

GLS/2CH/regular/centroid/3 0.24

GLS/2CH/scaled/average/2 0.24

Table 7.2: The five highest ARI scores attained when applying TSC for detecting heart
failure. The Dataset-model column indicates Dataset used/View used/Linkage criteria of
model/Number of cluster centers.

The majority of ARI scores are close to zero, but 17 models evaluated at different numbers of
cluster centers are able to acheive an ARI score above 0.20. As with DOR, the general trends
for models with a high ARI score is that they use data from a single view, use scaling or no
preprocessing at all. From table 7.2 one can see that the top five models only use the GLS
curve from the 2CH view. In addition, one can also see that the two models with the high-
est ARI (0.25) are the clustering models evaluated at two cluster centers that perform best in
terms of DOR as well. This means that there most likely are no models evaluated at a number
of cluster centers higher than two that will perform better than gls/2CH/regular/centroid/2,
or gls/2CH/scaled/centroid/2. Figure 7.2 shows the 2CH GLS curves of five random cluster
members from the gls/2CH/regular/centroid/2 model. Although one cannot make any con-
clusive statements about what the general similarities between cluster members are, from the
plots in figure 7.2 it seems like the curves of cluster 2 are smooth, while the curves of cluster
1 are more irregular in shape, which makes sense as this clustering algorithm uses a shape-
based distance measure. Since gls/2CH/regular/centroid/2 is one of two models to acheive
the highest DOR (11.72), accuracy (0.76), and ARI (0.25) it is chosen as the best of the TSC
models at identifying heart failure among patients. gls/2CH/regular/centroid/2 is chosen over
gls/2CH/scaled/centroid/2 because it does not require preprocessing.
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Figure 7.2: Here the curves of five random cluster members assigned by the
gls/2CH/regular/centroid/2 model. Each plot depicts the 2CH GLS curves for five random
cluster members from the gls/2CH/regular/centroid/2 model. (a) and (b) contain members
from cluster 1 and 2 respectively. Only five curves are included to avoid making the plot too
chaotic.

7.1.2 Peak-value Clustering
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Figure 7.3: (a) Distribution plot of DOR of all PVC models evaluated at two cluster centers
when applied to classify heart failure. (b) Scatter plot of the same models sensitivity, and
specificity.

From figure 7.3a one can see that the majority of DOR scores are centered around zero, but
there is a substantial number of models that acheive a DOR score above 10. The scatterplot in
figure 7.3b shows that there is also a great spread in sensitivity, and specificity. A few models
are spread along the edges of the plot acheiving a sensitivity or specificity score close to zero, but
there are also models that aceive sensitivity and specificity scores above 0.7. Common to the
highest performing PVC models is that they all use the dataset that is a combination of peak
systolic GLS values and EF values. This can be confirmed from the complete table of results
in the appendix 10.4. From table 7.3 one can see that gls-EF/ward/2 is the PVC model that
acheives the highest DOR of 11.59 when applied to classify heart failure. The gls-EF/complete/2
model acheives the second highest DOR of 10.85, but its’ specificity is nine points higher than
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gls-EF/ward/2, while its sensitivity is only six points lower, and it also has the highest accuracy
of all the PVC models applied to identify heart failure.

Dataset-model Accuracy Sensitivity Specificity DOR

gls-EF/ward/2 0.75 0.87 0.63 11.59

gls-EF/complete/2 0.76 0.81 0.72 10.85

gls-EF/average/2 0.75 0.85 0.65 10.58

rls-EF/complete/2 0.73 0.86 0.60 8.89

gls-rls-EF/ward/2 0.72 0.84 0.60 7.80

Table 7.3: The accuracy, DOR, sensitivity and specificity scores of the five best performing two-
cluster-center PVC models in terms of DOR, at detecting heart failure. The Dataset-model
column indicates Dataset used/Linkage criteria of model/Number of cluster centers.

Dataset-model ARI

gls-EF/complete/2 0.27

gls-EF/ward/2 0.24

gls-EF/average/2 0.24

rls-EF/complete/2 0.21

gls-EF/complete/3 0.21

Table 7.4: The five highest ARI scores attained when applying PVC for detecting heart fail-
ure. The Dataset-model column indicates Dataset used/Linkage criteria of model/Number
of cluster centers.
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Many of the ARI of PVC models for classifying heart failure are close to zero, but substantially
more of the models score above zero in ARI. As with DOR, the models that acheive the highest
ARI scores use datasets that are combinations of strain curves and EF values. Table 7.4 shows
that the three highest ARI are attained by the same three models that acheived the highest
DOR. This means that there are most likely no models evaluated at a higher number of clus-
ter centers that will outperform ward/2, or complete/2 at classifying heart failure. However,
complete/2 acheives the highest ARI, although it only acheives the second highest DOR. com-
plete/2 is chosen as the best performing PVC model when classifying heart failure, since it has
the highest accuracy (76%), highest ARI (0.27), and second highest DOR (10.85). In figure 7.4
scatterplots patients are plotted with the dimensions: 4-chamber peak systolic GLS, 2-chamber
peak systolic GLS and EF. The colors of the points correspond to wheather the patient has
heart failure or not, and which cluster the points belong to. The plots are actually a lower di-
mensional projection of the GLS-EF peak-value dataset. This particular projection was chosen
as it was found to be the projection where heart failure patients were as separable as possible.
From plots 7.4b-d one can see that the clusters are fairly separable, heart failure on the other
hand is not as easy to separate in these dimensions as can be seen in plot 7.4d. Ward/2 and
complete/2 can in some sense be considered as binary classifiers where values under a certain
threshold are categorized as heart failure.The ward/2 model has the highest threshold for what
is considered heart failure, and complete/2 has the lowest, which explains their difference in
sensitivity and specificity score. Since model complete/2 acheives the highest accuracy (0.76),
highest ARI (0.27) and second highest DOR (10.85) it is chosen as the best PVC model to
identify heart failure among patients.
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(a) Heart failure. (b) Ward/2 cluster assignments.

(c) Complete/2 cluster assignments. (d) Average/2 cluster assignments.

Figure 7.4: Scatterplot of peak GLS values in each view. Colors in the of the different dots are
given by heart failure diagnosis, and cluster assignments of ward/2, complete/2 and average/2
models. Numbers are not included on the axes because the point of the figure is to illustrate
the separability of clusters, and heart failure.
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Dataset-model Accuracy Sensitivity Specificity DOR

gls/4CH/upsampled 0.54 0.46 0.61 1.36

rls/APLAX/regular 0.53 0.48 0.58 1.30

rls/4CH/regular 0.52 0.36 0.68 1.20

gls/APLAX/downsampled 0.52 0.63 0.40 1.15

gls/2CH/downsampled 0.51 0.61 0.40 1.03

Table 7.5: The accuracy, DOR, sensitivity and specificity scores of the five best performing
variations of the ANN in terms of DOR, at detecting heart failure. The Dataset-model
column indicates Dataset used/View used/Whether curve has been upsampled, downsampled or
is regular.

7.1.3 Artificial Neural Network
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Figure 7.5: (a) Distribution plot of DOR of all ANN models evaluated at two cluster centers
when trained to predict heart failure. (b) Scatter plot of the same models sensitivity, and
specificity.

From the distribution plot in figure 7.5a one can see that the most frequent DOR by ANN
models when training them to predict heart failure is zero. The highest DOR of 1.36 is attained
by using only the GLS curve from the 4CH view as input, as can be seen from table 7.5. In the
scatterplot in figure 7.5b one can see that sensitivity scores vary between 0.15 and 0.65, and
the specificity scores vary between 0 and 0.68. The majority of the ANN variations acheive a
sensitivity, specificity and accuracy below 0.50. The accuracy of the model variations are also
fairly low, 0.54 being the highest accuracy acheived. Since the heart failure dataset is fairly
evenly distribution (recall figure 5.7) an accuracy of 0.54 is not much better than what could
be acheived by randomly guessing the label. The 11 highest DOR attained by ANN models
trained to classify heart failure are acheived using only curves from single views as input, and
only GLS, or RLS curves. Gls/4CH/upsampled will be considered the best model variation of
the ANN at predicting heart failure since it acheives the highest accuracy and DOR .
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Dataset-model Accuracy Sensitivity Specificity DOR

gls-EF/Gaussian-Process 0.75 0.78 0.73 9.40

rls-EF/MLP 0.75 0.76 0.74 9.37

rls-EF/Linear-SVM 0.75 0.75 0.74 8.86

gls-EF/Ada-Boost 0.75 0.77 0.73 8.85

gls-EF/Naive-Bayes 0.75 0.76 0.74 8.79

Table 7.6: The accuracy, DOR, sensitivity and specificity scores of the five best performing
PVSC in terms of DOR, at detecting heart failure. The Dataset-model column indicates
Dataset used/The specific ML model used.

7.1.4 Peak-value Supervised Classifiers
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Figure 7.6: (a) Distribution plot of DOR of all PVSC models evaluated at two cluster centers
when trained to predict heart failure. (b) Scatter plot of the same models sensitivity, and
specificity.

From the distribution plot depicted in figure 7.6a one can see that the PVSC models overall
acheive relatively high DOR, with a range of approximately two to nine. The scatterplot in
figure 7.6b shows that the models are quite concentrated in terms of sensitivity and specificity
scores. The majority of the models achieve sensitivity, and specificity scores in the ranges 0.6
to 0.75, with some outliers acheiving specificity below 0.5 and sensitivity above 0.75. What
is even more concentrated are the accuracy scores of the models. As can be seen in table
7.6, the accuracy of top five PVSC models are all 0.75. As with PVC all the best performing
PVSC models use a combination of EF and peak systolic strain values, and no specific ML
model seems to outperform the others on all the datasets in term of DOR. The table also
shows that the highest DOR of 9.4 is acheived by model gls-EF/Gaissian-Process. Although
the DOR, sensitivity and specificity scores are very similar for the five best performing models
gls-EF/Gaussian-Process is chosen as the PVSC model that performs best at predicting heart
failure as it acheives the highest DOR.
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Dataset-model Accuracy Sensitivity Specificity DOR

TSC-gls/2CH/regular/centroid/2 0.76 0.87 0.64 11.72

PVC-gls-EF/complete/2 0.76 0.81 0.72 10.85

ANN-gls/4CH/upsampled 0.54 0.46 0.61 1.36

PVSC-gls-EF/Gaussian-Process 0.75 0.78 0.73 9.40

Dataset-model TP TN FP FN

TSC-gls/2CH/regular/centroid/2 86 62 35 13

PVC-gls-EF/complete/2 77 72 28 18

ANN-gls/4CH/upsampled 46 61 39 53

PVSC-gls-EF/Gaussian-Process 74 72 27 21

Table 7.7: A table comparing the best contenders within each model group for predicting
heart failure among patients. The top table compare the models by their accuracy, sensitivity,
specificity and DOR, and the bottom table shows the number of TP, TN, FP and FN that the
different models attain.

7.1.5 Comparisons

With exeption of the ANN, the models performance of the different models are very close in
terms of DOR and accuracy. From table 7.7 one can see that the TSC model gls/2CH/regular/centroid/2
achieves the highest sensitivity of all the models applied to predict heart failure, but it achieves
the second lowest specificity of the four model groups. This can be confirmed by the fact that it
attains 86 TP, and 35 FP. The PVSC model gls-EF/Gaussian-Process attains the most balanced
score in terms of sensitivity and specificity, and the highest specificity score of all the model
groups. However, the PVC model gls-EF/complete/2 attains a higher accuracy, sensitivity and
DOR than the PVSC model. One can also see that the PVC model attains more TP, the same
number of TN, fewer FP and fewer FN than the PVSC model. It should also be noted that the
PVC model and the PVSC model are using the same dataset which is a combination of peak
systolic GLS values, and EF. To conclude this particular case study, the PVC model is picked
as the best model at predicting heart failure among patients as it achieves the highest accuracy
of the model groups, highest number of TN, and one of the most balanced combinations of
sensitivity, and specificity. Recall the scores of the simple threshold classifier using EF, and a
lower threshold of 45% mentioned in section 5.3: Accuracy of 0.77, sensitivity of 0.86, specificity
of 0.69 and DOR of 13.48. The EF threshold classifier perfoms best in terms of overall accuracy
and DOR, but is outperformed by the best TSC model in terms of sensitivity, and the best
PVC and PVSC models in terms of specificity. Since the EF threshold classifier attains the
highest accuracy and DOR, a sensitivity that is only 1% below the best sensitivity score, and
specificity that is only 3% lower than the highest specificity score, it is arguably better than all
the models. This speaks volumes about the underperformance of the models, when applied to
predict heart failure, especially the PVC, and PVSC models that use EF as an input parameter.
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Dataset-model Accuracy Sensitivity Specificity DOR

gls/2CH/regular/centroid/2 0.74 0.71 0.93 33.47

gls/2CH/scaled/centroid/2 0.74 0.71 0.93 33.47

gls/2CH/scaled/average/2 0.73 0.69 0.93 30.71

gls/2CH/regular/average/2 0.73 0.69 0.93 30.71

gls/2CH/scaled/ward/2 0.71 0.67 0.93 27.49

Table 7.8: The accuracy, DOR, sensitivity and specicity scores of the five best performing
two-cluster-center TSC models in terms of DOR, at detecting patient diagnoses. The Dataset-
model column indicates Dataset used/View used/Type of preprocessing used/Linkage criteria
of model/Number of cluster centers.

7.2 Case Study: Patient Diagnosis

7.2.1 Time-series Clustering
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Figure 7.7: (a) Distribution plot of DOR of all TSC models evaluated at two cluster centers
when applied to classify patient diagnosis. (b) Scatter plot of the same models sensitivity, and
specificity.

From the distribution plot in figure 7.7a one can see that the majority of DOR are close to
zero, but there are some models that acheive a DOR above 30. In the scatter plot in figure
7.7b one can see that the specificity of the models and range from 0.5 to 1, and the sensitivity
scores range from 0 to 0.93. As with heart failure, the TSC models that perform best in terms
of DOR use data from a single view. The 2CH view, and GLS curves are the only view and
curve that are used among the models that achieve the five highest DOR. From the table of
all the model results in the appendix 10.2 one can see that the highest performing model in
terms of DOR to use a dataset other than GLS curves alone is gls-rls/2CH/scaled/ward/2 and
it achieves a DOR of 26.76. One can also note that the highest performing model in terms
of DOR that uses a view other than only 2CH is rls/all-views/normalized/weighted/2 which
achieves a DOR of 25.56. The TSC models that achieve the highest DOR scores all use no
preprocessing, or scaling. From table 7.8 one can see that the TSC models that acheive the
highest DOR scores are gls/2CH/regular/centroid/2, and gls/2CH/scaled/centroid/2 which are
the same two models that achieve the highest DOR in the heart failure case study.
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Dataset-model ARI

gls-rls/4CH/regular/complete/2 0.36

gls/all-views/regular/weighted/2 0.34

gls/all-views/scaled/weighted/4 0.33

gls/all-views/scaled/weighted/3 0.33

gls/APLAX/regular/single/10 0.32

Table 7.9: The five highest ARI scores attained when applying TSC for detecting patient
diagnoses. The Dataset-model column indicates Dataset used/View used/Linkage criteria of
model/Number of cluster centers.

The majority of the ARI scorer for all the TSC models evaluated at two to nine cluster centers are
centered around zero. As with the TSC models attaining the highest DOR the models using no
preprocessing or scaling acheive the highest ARI indices when used to identify patient diagnoses.
In addition, the GLS curves are also most often part of the dataset for the TSC models receiving
the highest ARI when used to identify patient diagnoses. From table 7.9 one can see that
the TSC models receiving the five highest ARI scores, are not among the TSC models that
receive the highest DOR scores. The TSC model gls-rls/4CH/regular/complete/2 attains the
highest ARI score when applied to identify patient diagnoses, and achieves an accuracy of
0.84, a sensitivity of 0.87 a specificity of 0.69 and a DOR 14.65. The TSC model gls/all-
views/regular/weighted/2 achieves the second highest ARI when applied to identify patient
diagnoses, and achieves an accuracy of 0.82, a sensitivity of 0.81 a specificity of 0.83 and a
DOR 21.06. What should also be noted is that the TSC models achieving the two highest
ARI when applied to identify patient diagnoses are models evaluated at two cluster centers,
which means that none of the TSC models evaluated at cluster centers between three and nine
can perform better than the ones evaluated at two cluster centers. It may seem strange that
the ordered lists of DOR, and ARI are so different. The reason for this is not because DOR
inherently values sensitivity higher than specificity, but stems from how the DOR is defined.
Recall that DOR = (TP× TN)/(FP× FN), since the patient diagnoses dataset is skewed in
favour of positives TP has the potential of being as high as 170 while TN can be as high as 30.
Therefore the DOR will be higher for models with a high sensitivity than for models with an
equally high sensitivity. In figure 7.8 curves of five random cluster members assigned by the
gls/all-views/regular/weighted/2 model are plotted. As with the observations made with regard
to figure 7.2 it is not possible to make any conclusive statements as to what the similarities are
based on such a small sample size. However, based on the small sample size in 7.8 it seems as
though the curves in cluster 2 (column (b)) are smoother in shape, than the curves in cluster 1
(column (a)). The TSC model that is chosen as the best model for identifying patient diagnoses
is gls/all-views/regular/weighted/2, because it achieves the second highest ARI, and because
it’s sensitivity and specificity are more balanced than the model attaining the highest ARI and
the models that achieve higher DOR.
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Figure 7.8: Here the curves of five random cluster members assigned by the gls/all-
views/regular/weighted/2 model are plotted. Each row represents one of the seven possible
strain curves in the 4CH view. Coloumn (a) and (b) represent cluster 1 and 2 respectively. To
make it easier to visually separate the curves, only five random members from cluster 1 and 2
are included in the figure.

Page 72 of 112



Dataset-model Accuracy Sensitivity Specificity DOR

gls-EF/ward/2 0.76 0.72 0.94 39.33

rls-EF/complete/2 0.77 0.74 0.93 37.61

gls-rls-EF/ward/2 0.76 0.72 0.93 35.16

gls-EF/average/2 0.74 0.70 0.94 34.90

gls-EF/complete/2 0.68 0.63 0.94 25.75

Table 7.10: The accuracy, DOR, sensitivity and specicity scores of the five best performing
two-cluster-center PVC models in terms of DOR, at detecting patient diagnoses. The Dataset-
model column indicates Dataset used/Linkage criteria of model/Number of cluster centers.

7.2.2 Peak-value Clustering
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Figure 7.9: (a) Distribution plot of DOR of all PVC models evaluated at two cluster centers
when applied to classify patient diagnosis. (b) Scatter plot of the same models sensitivity, and
specificity.

From the distribution plot in figure 7.9a one can see that the majority of the PVC models get
DOR close to zero, but there are a few models that attain DOR above 30, and close to 40. From
the scatter plot in 7.9b one can see that almost all the sensitivity scores are above 0.5, while the
specificity scores are concentrated in the areas 0 to 0.25 and 0.95. As with the heart failure case
study the PVC models that perform high in terms of DOR use a dataset that is a combination
of peak systolic strain values and EF. From table 7.10 one can see that gls-EF/ward/2 and rls-
EF/complete/2 are the two top performers in terms of DOR. gls-EF/ward/2 achieves a slightly
higher specificity score, where as rls-EF/complete/2 attains a slightly higher specificity score.
The majority of the ARI scores of PVC models applied to identify patient diagnoses are centered
around zero, but as one can see from table 7.11 there are a few models that acieve an ARI above
0.2 close to 0.3. For a change, the PVC models that perform best in terms of ARI, are neither
models evaluated at two cluster centers, or models that are applied on a combination of peak
systolic strain values and EF. In contrast to the heart failure case study, the PVC models that
achieve the highest ARI, when applied to identify patient diagnoses, are not the same models
that achieve the highest DOR. The two PVC models that achieve the highest ARI are the
gls/average model evaluated at 6 and 7 cluster centers respectively. To get a better idea of why
gls/average/6 and gls/average/7 attain the ARI they do, scatter plots of these two models,
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Dataset-model ARI

gls/average/6 0.29

gls/average/7 0.29

gls-rls/complete/3 0.28

rls-EF/complete/2 0.26

gls-EF/ward/2 0.25

Table 7.11: The five highest ARI scores attained when applying PVC for detecting patient diag-
noses. The Dataset-model column indicates Dataset used/Linkage criteria of model/Number
of cluster centers.

and gls-EF/ward/2 have been given in figure 7.4. A scatter plot of the target variable patient
diagnosis is also given for comparison. The dimensions used are peak systolic GLS in all three
views as these are the dimensions that are common to all three models. From the scatter plot
in plot 7.10a one can see that the healthy patients are in the minority, and are concentrated in
the corner with low peak systolic GLS values in the 4CH, 2CH and APLAX views. There are
also some healthy patients with low-medium peak systolic GLS values, and very few healthy
patients with high peak systolic GLS values. From plot 7.10b one can see that gls-EF/ward/2
is able to isolate the concentration of healthy patients with low peak systolic GLS, but at the
cost of many FN. In plot 7.10c and 7.10d one can see that cluster 1 of model gls/average/6,
and cluster 2 of model gls/average/7 capture the healthy patients with low peak systolic GLS,
but are unable of capturing the healthy patients with medium to high values. If one combines
clusters 1 and 5 of gls/average/6, and lets them represent healthy patients, and let the remaining
clusters represent unhealthy patients the model attains an accuracy of 0.74, a sensitivity of 0.70,
a specificity of 0.94 and a DOR of 34.90. If one combines clusters 2 and 5 of gls/average/7,
and lets them represent healthy patients, and let the remaining clusters represent unhealthy
patients this model attains an accuracy of 0.74, a sensitivity of 0.70, a specificity of 0.94 and a
DOR of 35.94. While the performance of the revised gls/average/6 and gls/average/6 models
are good, they are still not as good as the performance of the top three performers in terms
of DOR, which attain higher accuracy, sensitivity and DOR. Therefore, rls-EF/complete/2 is
chosen as the best of the PVC models at identifying patient diagnosis, as it achieves the second
highest DOR, and a more balanced sensitivity/specificity than gls-EF/ward/2 that attains the
highest DOR score.
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(a) Patient Diagnosis. H stands for Healthy, and
U stands for Unhealthy (b) GLS-EF Ward/2 cluster assignments.

(c) GLS Average/6 cluster assignments. (d) GLS Average/7 cluster assignments.

Figure 7.10: Scatterplot of peak GLS values in each view. Colors in the of the different dots
are given by heart failure diagnosis, and cluster assignments of gls-EF/ward/2, average/6 and
average/7 models. Numbers are not included on the axes because the point of the figure is to
illustrate the separability of clusters, and patient diagnosis.
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Dataset-model Accuracy Sensitivity Specificity DOR

all-strain/4CH/upsampled 0.83 0.99 0.00 0.00

all-strain/2CH/regular 0.85 1.00 0.00 NaN

gls/2CH/regular 0.85 1.00 0.00 NaN

rls/2CH/regular 0.85 1.00 0.00 NaN

all-strain/2CH/downsampled 0.85 1.00 0.00 NaN

Table 7.12: The accuracy, DOR, sensitivity and specicity scores of the five best performing
variations of the ANN in terms of DOR, when trained to predict patient diagnoses. The
Dataset-model column indicates Dataset used/View used/Whether curve has been upsam-
pled, downsampled or is regular.

7.2.3 Artificial Neural Network
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Figure 7.11: (a) Distribution plot of DOR of all ANN models when trained to classify patient
diagnosis. (b) Scatter plot of the same models sensitivity, and specificity.

From the distribution plot in figure 7.11, and table 7.12 one can see that the collective per-
formance of the different variations of the ANN trained to predict patient diagnosis is terrible.
The DOR of all the models are either zero because the number of TN attained are zero, or not
defined because the number of FN are zero. The sensitivities are all 1, or close to 1, and the
specificities are all 0. It is evident that the ANN models are not able to generalize the traits of
the healthy patients from such a small dataset. The ANN models will therefore not be discussed
further with relation to prediction of patient diagnosis, and are not included in the comparison
of the four model groups.
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Dataset-model Accuracy Sensitivity Specificity DOR

gls-rls-EF/Ada-Boost 0.95 0.97 0.79 138.42

gls-rls/KNN 0.93 0.95 0.82 84.53

rls-EF/Extra-Trees 0.93 0.96 0.75 76.50

gls-rls-EF/Extra-Trees 0.93 0.97 0.71 75.00

gls-rls/Extra-Trees 0.93 0.97 0.71 75.00

Table 7.13: The accuracy, DOR, sensitivity and specicity scores of the five best performing
PVSC models in terms of DOR, when trained to predict patient diagnosis. The Dataset-
model column indicates Dataset used/Specific machine learning model used.

7.2.4 Peak-value Classifiers
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Figure 7.12: (a) Distribution plot of DOR of all PVSC models when trained to classify patient
diagnosis. (b) Scatter plot of the same models sensitivity, and specificity.

From the distribution plot in figure 7.12 it might seem like the majority of the DOR scores are
close to zero, but in that is due to the shear spread of DOR scores so it should be said explicitly
that the lowest DOR score of a PVSC model is 3.68 and is attained by the gls/Gaussian-Process
model. The spread of DOR is so great that some models attain a DOR close to 100, and one
model attains a DOR close to 150. From the scatter plot in figure 7.12 one can see that the
sensitivity ranges from 0.75 to 1, and the specificity ranges from close to zero to approximately
0.95. Among the top five PVSC models in terms of DOR are many different combinations of
models, and datasets. Three of the five highest DOR scores are attained by Extra-Trees models,
and the top two scores are attained by KNN and Ada Boost classifiers. gls-rls-EF/Ada-Boost
and gls-rls/KNN are the two top PVSC performers with regard to DOR. gls-rls-EF/Ada-Boost
achieves the highest sensitivity of the two by two points, and gls-rls/KNN achieves the highest
specificity of the two by three points. Since sensitivity and specificity is weighted equally in
this study gls-rls/KNN is chosen as the best of the PVSC models trained to identify patient
diagnoses.
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Dataset-model Accuracy Sensitivity Specificity DOR

TSC-gls/all-views/regular/weighted/2 0.82 0.81 0.83 21.06

PVC-rls-EF/complete/2 0.77 0.74 0.93 37.61

PVSC-gls-rls/KNN 0.93 0.95 0.82 84.53

Dataset-model TP TN FP FN

TSC-gls/all-views/regular/weighted/2 136 24 5 31

PVC-rls-EF/complete/2 117 27 2 42

PVSC-gls-rls/KNN 147 23 5 4

Table 7.14: A table comparing the best contenders within each model group for predicting
patient diagnoses. The top table compare the models by their accuracy, sensitivity, specificity
and DOR, and the bottom table shows the number of TP, TN, FP and FN that the different
models attain on their respective datasets.

7.2.5 Comparisons

From the top table in 7.14 one can see that there is a significant difference in performance be-
tween the three models included for comparison. The TSC model gls/all-views/regular/weighted/2
attains the second highest accuracy, sensitivity and specificity of the three models, but also at-
tains the lowest DOR. The TSC model can also be said to attain the most balanced scores
in terms of sensitivity and specificity. The PVC model rls-EF/complete/2 attains the highest
specificity, second highest DOR, but lowest sensitivity and accuracy of the three models. The
PVSC model gls-rls/KNN attains the highest accuracy, sensitivity and DOR of all the models,
but it also achieves the lowest specificity of all the models. However, since the PVSC model
is so close to the TSC model in terms of specificity, and is so much better than the other two
models in all other metrics, it is chosen as the best model of identifying patient diagnoses. This
can be confirmed from the bottom table in 7.14, where one can see that the PVSC model only
gets one TN less than the TSC model, but attains 11 more TP.
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7.3 Case Study: Segment Indication

7.3.1 Time-series Clustering
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Figure 7.13: Distribution of DOR, sensitivity and specificity for the different TSC models when
classifying left ventricle segment indication.

Dataset-model Accuracy Sensitivity Specificity DOR

regular/weighted/2 0.69 0.45 0.95 15.63

scaled/weighted/2 0.69 0.45 0.95 15.63

regular/ward/2 0.77 0.66 0.88 14.26

scaled/ward/2 0.77 0.66 0.88 14.26

regular/complete/2 0.75 0.62 0.89 13.92

Table 7.15: The accuracy, DOR, sensitivity and specicity scores of the five best performing two-
cluster-center TSC models in terms of DOR, at detecting segment indication. The Dataset-
model column indicates Type of preprocessing used/Linkage criteria of model/Number of clus-
ter centers.

From the distribution plot in figure 7.13a one can see that the majority of the DOR are close
to zero, but a few models are able to achieve DOR above 12, and some models attain a DOR
close to 15 when applied to identify segment indication. From the scatter plot in figure 7.13b
one can see that the sensitivity of the TSC models range from 0.25 to 1, and the specificity of
the TSC models range from 0 to approximately 1. The spread in both sensitivity and specificity
is quite large, and there are very few models that are able to a attain a high sensitivity while
at the same time attaining a high specificity, and vice versa. Common to the high performing
TSC models in terms of DOR is that they all use either no preprocessing at all, or scaling.
z-norm/complete/2 is the seventh best TSC model in terms of DOR, and attains a DOR of 5.92
when applied to identify segment indication. norm/ward/2 is the ninth best models in terms
of DOR, and attains a DOR of 1.56, when applied to identify segment indication. This can be
comfirmed from table 10.3. The two TSC models attaining the highest DOR regular/weighted/2,
and scaled/weighted/2 differ only in type of preprocessing used. From table 7.15 and table 10.3
one can see that the two models attain the same scores in all metrics, this is because they yield
the exact same cluster assignments to the individual segment strain curves. The same goes
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Dataset-model ARI

scaled/centroid/5 0.286

regular/centroid/5 0.286

regular/ward/2 0.284

scaled/ward/2 0.284

scaled/centroid/6 0.271

Table 7.16: The five highest ARI scores attained when applying TSC for detecting segmend
indication. The Dataset-model column indicates Type of preprocessing used/Linkage criteria
of model/Number of cluster centers.

for the next two TSC models in line regular/ward/2 scaled/ward/2, these two models are also
the models that attain the highest accarcy of all the TSC models. Of the two TSC models
regular/weighted/2, and regular/ward/2 the latter is preferred for predicting segment indication
because regular/ward/2 has a more persistent performance in both sensitivity and specificity,
where as regular/weighted/2 has a high specificity, but a very low sensitivity.
The majority of the ARI of TSC models applied to identify segment indication, but as one
can see from table 7.16 some models are able to attain ARI above 25. As with the other case
studies, the TSC models that attain the highest ARI are models that use either no prepro-
cessing at all or scaling. Puzzlingly enough the top two TSC models for classifying segment
indication in terms of ARI, are models evaluated at five cluster centers, not two. TSC models
scaled/centroid/5, and regular/centroid/5 differ only in type of preprocessing used, and they
yield the exact same cluster assignments, and evaluations scores. The next two models in order
of ARI regular/ward/2, and scaled/ward/2 are familiar from the list of TSC models attaining
the highest DOR when applied to identify segment indication. From table 7.16 one can also see
that the difference in ARI between regular/centroid/5, and regular/ward/2 is only 0.002 Since
the regular/ward/2 model will be considered the best of the TSC models at classifying segment
indication. It attains the third highest ARI of all the TSC models applied to identify segment
indication, and is the preferred model among the TSC models evaluated at two cluster centers.
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7.3.2 Artificial Neural Network

model Accuracy Sensitivity Specificity DOR

regular 0.74 0.80 0.68 8.65

downsampled 0.74 0.74 0.75 8.38

upsampled 0.65 0.55 0.73 3.36

Table 7.17: Evaluation metrics of the ANN for classifying the binary indication of individual
segments in the left ventricle.

Of the three variations of the ANN model, the one that uses no resampling, and the one that
downsamples all signals to the lowest sample rate achieve relatively similar DOR scores. The
variation that upsamples the sample rate of all the curves to the highest sample rate performs
significantly worse than the other two in terms of DOR and sensitivity. Of the three variations
the model that uses downsampling is the preferred model of the three since its sensitivity and
specificity are more balanced than the model that uses no resampling, and accuracy is higher
than the model that uses upsampling.

7.3.3 Comparisons

From table 7.18 one can see that the performances of the ANN, and TSC models are quite close
in terms of accuracy, but differ significantly in the other metrics. The TSC model regular/ward/2
attains a higher accuracy, specificity and DOR than the ANN model downsampled. This can
also be confirmed by the fact that the TSC model attains more TN, and fewer FP than the
ANN model. The ANN model attains the highest sensitivity, which can be confirmed by the
fact that it attains more TP and fewer FN than the TSC model. The ANN model is also the
model that attains the most balanced scores of sensitivity and specificity. Therefore the ANN
model is chosen as the best performer at predicting the segment indication.

Dataset-model Accuracy Sensitivity Specificity DOR

TSC-regular/ward/2 0.76 0.64 0.88 13.15

ANN-downsampled 0.74 0.74 0.75 8.38

Dataset-model TP TN FP FN

TSC-regular/ward/2 1202 1491 204 616

ANN-downsampled 1255 1390 473 440

Table 7.18: A table comparing the best contenders within each model group for predicting
segment indication. The top table compare the models by their accuracy, sensitivity, specificity
and DOR, and the bottom table shows the number of TPs, TNs, FPs and FNs that the different
models attain.
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7.4 Chapter Summary

In the heart failure case study the PVC model was found to be the best performer, by a narrow
margin. The TSC, and PVSC models also performed well, but the NN did not. In fact, the
performance of the NN was not much better than what could be achieved by randomly guessing
the binary label with equal probability of choosing one or zero. The PVC model that performed
best at identifying heart failure among patients is gls-EF/complete/2, and it attains an accuracy
of 0.76, sensitivity of 0.81, specificity of 0.72 and DOR of 10.85.

In the patient diagnosis case study the PVSC model is regarded as the top performer. Here too,
it was a close call between the PVSC, PVC and TSC models. The patient diagnosis dataset was
skewed as there were 170 patients with a heart disease, and only 30 healthy patients. For this
reason it is probable that the NN was unable to generalize the feature of the healthy patients,
because almost all the variations of the NN ended up always making the prediction that the
patient was diseased yielding a score of 0 in specificity. The PVSC model that performed best

at predicting patient diagnosis is gls-rls/KNN, and it attains an accuracy of 0.93, sensitivity of
0.95, specificity of 0.82 and DOR of 84.53.

In the segment indication case study only the TSC and NN models were compared, and for a
change of pace it was only the NN that was chosen as the best performer. The TSC model
did not perform much worse, in fact it performed better than the NN in many respects. The
key reason for why the NN was preferred was because it had a more balanced sensitivity, and
specificity scores than the TSC model. The NN model that performed best at predicting segment
indication is downsampled, and it attains an accuracy of 0.74, sensitivity of 0.74, specificity of
0.72 and DOR of 8.38.
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Chapter 8
Discussion

In the results chapter, the performance results were presented in the order of the different target
variables that were explored. In the discussion chapter, a different approach is taken, and each
model will be discussed individually based on their performance in the case studies.

8.1 Time-series Clustering

Before dissimilarity was measured between strain curves, curves were preprocessed in one of four
ways. Curves were either: not preprocessed, scaled between zero and one, normalized between
zero and one, or z-score normalized. The TSC model was implemented by using DTW distance
between strain curves as a dissimilarity measure to achieve a shape-based TSC model. All the
dissimilarity measures between a specific strain curve of one patient to the same strain curve
of every other patient were combined into a dissimilarity matrix. If the dataset represented
patients with more than one strain curve, the dissimilarity matrices of each individual strain
curves were added together, such that there was a single dissimilarity matrix that represented the
dissimilarity between the patients. The dissimilarity matrix was then passed to the hierarchical
agglomerative clustering algorithm, which started out with each patient as an individual cluster
and merged clusters based on specific linkage criteria. Seven linkage criteria were tested: single,
complete, average, ward, centroid, median, and weighted. The clustering model was evaluated at
all cluster centers between two and nine. The ARI was estimated for all the cluster assignments
generated and the different target variables. For the cluster assignments yielded by a clustering
model evaluated at two cluster centers, the accuracy, sensitivity, specificity, and DOR were also
calculated.

The TSC models did not perform best in any of the case studies, but variations of the TSC
models generally yielded results with high performance in terms of accuracy, sensitivity, and
specificity. In the heart failure case study the best variation of the TSC model achieved the
highest sensitivity and DOR, but it was outperformed by the best variation of the PVC model
overall. In the patient diagnosis case study the best variation of the TSC model outperformed
the best variation of the PVC model, but they were both outperformed by the best PVSC model.
In the segment indication case study the best variation of the TSC model attains the highest
accuracy, specificity and DOR, but is outperformed by the ANN because it attains a higher
sensitivity score, and thereby attains a more balanced accuracy in the positives and negatives.
As discussed in section 3.1.3 a challenge for all statistical models is the ”curse of dimensionality”.

Briefly described, inmachine learning and data mining the curse of dimensionality refers to the
issue of attaining a good balance between the number of dimensions that an object is represented
in, and the number of objects used to train and/or evaluate the model. In the heart failure and
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patient diagnoses case studies the TSC models that perform best in terms of DOR, and ARI are
the models that use datasets where there are objects are represented by fewer dimensions. A
reason for this could be that for 199 patients, the heart failure diagnoses, and patient diagnoses
are most seperable for the TSC models when only one strain curve is used. The curve that then
gives the easiest separation of patients is then the 2CH GLS curve. In the heart failure study the
TSC models that attain the five best performing models in terms of DOR and ARI only use the
GLS curve from the 2CH view, meaning that these methods only use one of 21 possible curves.
This can be confirmed from table 7.1 and 7.2. In the patient diagnoses study one can see from
table 7.8 that the five methods that attain the highest DOR also only use the GLS curve from
the 2CH view. These two observations support the claim that at a dataset size of 199 objects
using fewer strain curves makes it easier for TSC models to separate heart failure diagnoses, and
patient diagnoses. An observation that does not directly support this claim is that in the patient
diagnosis case study, the TSC models that attain the four highest ARI use a combination of
GLS and RLS curves in the 4CH view, or use the GLS curves from all views. However, these
methods also only use three and seven of 21 curves in total, so this observation does not negate
the claim entirely. In all case studies it was found that TSC models that performed best in

terms of DOR, and ARI used no preprocessing. In some cases models using scaling as a form of
preprocessing yielded the same cluster assignments, which could indicate that scaling the curves
before measuring dissimilarity does not make much of a difference. Since TSC models using
normalization or z-score normalization as a form of preprocessing were not among the top five
methods in terms of DOR, or ARI in any of the case studies the argument could be made that
these form of preprocessing are not suited when using DTW as a dissimilarity on left ventrice
strain curves. Of the seven linkages tested, it was the centroid, weighted and ward linkages that

went into the TSC models that performed best at predicting heart failure, patient diagnosis and
segment indication respectively, in the different case studies. However, the single, complete and
average linkages also went into the methods that appeared in the top five candidates in terms
of DOR, or ARI. So it is not possible to say certainly that all linkages other than centroid,
weighted and ward linkages are not suited for clustering left ventricle strain curves, but one
can say with some degree of certainty that the median linkage does not go into any of the TSC
models that perform well in any of the three case studies. When calculating the dissimilarity

matrix of a set of 199 curves, it took approximately 0.3 seconds using the C-optimized functions
of the dtaidistance library. The time it took to compute the clustering varied between 0.15 and
0.45 seconds depending on what linkage was used. The single linkage criteria was found to be
the fastest, and the complete linkage was found to be the slowest. That the single linkage was
the fastest could is to be expected, as it fairly easy to compute. However, it was unexpected that
the complete linkage was the one that took the longest time to compute as one would expect the
more complex linkages such as the ward linkage to take the longest time to compute. When the
size of the dataset was increased to approximately 3600 curves it took 162 seconds to compute
the dissimilarity matrix. This increase in run time is in agreement with the time complexity
of the DTW algorithm described in section 3.1.1. In addition, the time it took to compute the
clustering after the dissimilarity matrix was computed also increased to vary between 3 seconds
for the single linkage, and 871 seconds for the ward linkage. So for a bigger dataset the run time
of the different linkages were more as expected. Although these run-times are attained with a
with a regular desktop Lenove G510 laptop, it illustrates possible challenge of how run-time of
the calculations of the dissimilarity matrix, and clustering increase quadratically with the size of
the dataset. It was often found that the PVC models that used EF in addition to peak systolic

strain values performed better than the PVC models that only used strain values. It would be
interesting to see whether incorporating EF in the TSC model would improve its performance
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as well. Since the hierarchical agglomerative clustering algorithm is uses dissimilarity matrix to
cluster objects, it should be fairly straight-forward to calculate the dissimilarity matrix between
a patients EF values, and add that to the dissimilarity matrices of the indivial curves. One could
also consider the approach taken by [24], where they split the strain curves into five smaller
curves based on the different periods of heart cycle, and pass them to the model separately.
Although the authors achieved good results with this, they also say that annotating points of
every strain curve as systolic or diastolic is very time consuming.

8.2 Peak-value Clustering

The PVC model was implemented in a similar fashion as the TSC model. The datapoints used
to represent patients were passed to an implementation of hierarchical agglomerative clustering
in scikit-learn. The dissimilarity between patients was measured as the Euclidean distance
between the dimensions used to represent them. The scikit-learn implementation did not have
all the same clustering linkages available as the scipy implementation used for TSC, so only
the following four linkages were tested: single, complete, average and ward. The evaluation
procedure for the PVC model was the same as the procedure used for TSC. The best variations

of the PVC model had a high performance in the heart failure, and in the patient diagnosis case
studies. It was chosen as the best model in the heart failure case study, but was closely followed
by the TSC, and PVSC models. In the patient diagnosis case study the best variation of the PVC
model attained the highest specificity and second-highest DOR of the three models compared.
However, it was outperformed by both the TSC and PVSC models due to its low sensitivity. In

the heart failure case study, PVC models that used datasets that were a combination of peak
systolic strain values and EF performed consistently better than the models than only used the
strain values. This is expected in the heart failure case study, as EF is a parameter that is well
established in the current medical procedures used to diagnose patients with heart failure. In
the heart failure case study it was found that an EF threshold classifier outperformed all PVC
models, which for heart failure at least goes to show that for a point-value dataset of 199 objects
strain values could be adding more noise than they are adding information, especially for the
PVC models. In the heart failure case study, it was the complete linkage that was used in the

model that was chosen as the best performer, but the ward and average linkages were also used
in the models that attained the top five DOR and ARI scores. In the patient diagnosis case
study, the complete linkage was also used in the model that was chosen as the best performer.
Hence, for PVC models using peak systolic strain values and EF to identify heart failure among
patients and patient diagnosis, the single linkage was not found to be suited. Since a scikit

learn implementation was used for the PVC model, it was not possible to separate run-time of
the dissimilarity calculation and the clustering itself. However, Euclidean distance is known to
scale linearly with the number of dimensions per object and number of objects in the dataset.
Since the underlying algorithm used by scikit learn is the same as the one used by scipy it is
assumed that it would perform similarly to the TSC model in terms of run time.

8.3 Neural Networks

For the ANN, two types of preprocessing were tested in addition to the option of not preprocess-
ing at all, upsampling the curves to the highest sample rate in the dataset and downsampling
the curves to the lowest sample rate. The curves of the dataset were then passed as input
to the ANN architecture detailed in section 6.3.2 together with the relevant target variables.
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The ANN was trained for five epochs using SGD with back-propagation. To validate the ANN
models 10-fold cross-validation was used, at the end of each fold the TP, TN, FP, and FN of
the model were noted. After the ANN had effectively attempted to predict every object of the
dataset all the TP, TN, FP, and FN were summed and this grand total was used to estimate
the models accuracy, sensitivity, specificity and DOR. The ANN models performed worst of

the four model groups in the heart failure case study, and the patient diagnosis case study.
However, it attained the highest sensitivity in the segment indication case study. It was chosen
as the best performing model because its sensitivity and specificity were more balanced than
the TSC model. In the patient diagnosis case study close to all of the ANN models predicted
all the patients to be unhealthy. It is evident that an ANN with the architecture used in this
assignment was not suited to classify patient diagnoses with a skewed dataset of only 169 un-
healthy patients and 30 healthy patients. It is the author’s opinion that the reason that the
ANN models performed so bad at predicting patient diagnosis is an aspect of ”the curse of
dimensionality”, and that the network was not able to generalize the characteristics of healthy
patients in the study, and therefore minimized loss function by predicting the most probable
label (unhealthy). From table 10.6, one can see that the top nine variations of the ANN model
that performed best in the heart failure case study with regard to DOR, were models that
used only the GLS curve from a single view, which supports the claim that. Since the different
ANN models differed in architecture depending on how many curves were used to represent one
patient, they also varied in the number of trainable parameters they have. The ANN models
that only take a single strain curve as input have 39457 trainable parameters, and the ANN
models that take 21 curves as input have 80417 trainable parameters. Even though there is no
exact ratio of how big a dataset should be with regard to how many trainable parameters a
model has, between 40 and 80 thousand parameters for a dataset of size 199 is likely too many
trainable parameters. On the other hand, the ANN model was chosen as the best performing
model at predicting segment indication. However, in that case study the size of the dataset
is significantly larger, and each object is represented by a single curve. Considering that the
architecture of the ANN was given and not developed specifically for this classification problem,
the performance that the model achieves is significant. It is the author’s opinion that if more

time is spent adapting the model to the dataset at hand, even better performances are within
reach for the ANN models. Especially for the segment indication classification problem, since
it is much bigger than the two other datasets. The first improvement that could be done the
ANN models is to reduce its complexity by removing layers or removing filters and units in
individual layers. There are alternatives to SGD that could be tested, such as batch gradient
descent and mini-batch gradient descent, which is a middle road between the two. There is also
the Gated Recurrent Unit (GRU) cells that are an alternative to the LSTM cells. Like LSTM
cells, GRU cells are able capture time-dependent connections. GRU cells are simpler than
LSTM cells in composition. One could also consider introducing layers that reduce complexity
such as max-pooling layers, which for time series can be considered as a max-value filter where
only the highest value in a segment of a curve is kept on. Dropout layers are also a technique
that is used frequently when ANN architecture becomes deep and complex. Dropout layers
introduce the probability that any particular perceptron in the layers preceding it can ”drop
out” meaning that they become inactive. In complex ANN architectures, it is often found that
during training, the model becomes overly dependent on certain perceptrons, and specific paths
through the network. This leads to the ANN not entirely utilizing all the perceptrons at its
disposal, and the accuracy suffers. It is found that adding a dropout layer remedies this effect
and can increase accuracy overall. Training, and validating the ANN models were one of the

more time-consuming computations required. The time it took to train the network depended
on what dataset was used, which makes sense as increasing the number of curves the ANN can
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take as input also increases the number of trainable parameters that need to be trained for
each step of the SGD algorithm. When validating the ANN models, a single fold in the 10-fold
cross-validation took approximately 100 seconds in the heart failure and patient diagnosis case
studies. The time it took to execute one fold in the segment indication case study took approx-
imately 640 seconds (11 min). However, these times do not reflect the times it will take to use
the ANN to evaluate new cases after training, so the same challenge one has with clustering is
not as pressing, should the goal be to deploy the ANN in a real-time clinical setting.

8.4 Peak-value Supervised Classifiers

The different peak-value datasets are passed the different supervised classifiers in the model
group. The different datasets are detailed in section 6.1, and the different supervised classifiers
tested are detailed in section 6.4. Each combination of dataset and classifiers is validated by
10-fold cross-validation in the same manner as the ANN. In the heart failure case study, the
best PVSC model outperformed the best variations of the TSC, and ANN models and had
a performance that was on par with the PVC, although the best PVC model was ultimately
deemed better in the end. In the patient diagnosis case study, the best PVSC model attained
the highest accuracy, sensitivity, and DOR of the four model groups, and it was deemed the
best model group at predicting patient diagnosis. What should be addressed is the fact that the

distribution of the DOR for the different PVSC models differ from the DOR distributions of the
other models in some key ways. In both the heart failure case study, and the patient diagnosis
case study the distribution of DOR for variations of TSC, PVC and ANN models are highly
concentrated around zero. For the PVSC models the lowest DOR attained by a PVSC model
in the heart failure study is 1.94, and the lowest DOR attained by a PVSC model in the patient
diagnosis case study is 3.68. In the heart failure case study, it is especially evident that the
DOR of the different PVSC models is distributed differently than the DOR of the other models.
It can be confirmed from figure 7.6 that the distribution of DOR for the PVSC is especially
concentrated in the range between four to eight. The significance of this difference of DOR
distribution is two-fold, the first thing to keep in mind is that not very much time was spent
optimizing the hyperparameters of the PVSC models as it falls outside the scope of this thesis,
and that in contrast to the clustering models the outcome of the PVSC model is probabilistic in
the sense that it is highly dependent on the initial conditions of the model before it is trained.
Since the DOR distribution of PVSC models in the heart failure and patient diagnosis case
studies are distributed higher in general than the TSC and PVC models, and that the PVSC
are configured with what can be considered as ”standard hyperparameters” it is probable that
spending time on optimizing the hyperparameters of the PVSC models, and testing different
initial conditions could improve the performance of all the PVSC models. Additionally, the fact
that the EF threshold classifier outperformed the best PVC model at identifying heart failure
among patients is another indicator that there is untapped potential in the PVSC models. The

time it took to train and validate the PVSC models varied and was highly dependent on the
dimensions of the dataset and which specific machine learning model was used. The shortest
training time encountered was at 201 seconds, and the longest was at 365 seconds. These were
the shortest training times encountered among the four model groups. Similar to the ANN
model, the training times of the PVSC models do not hinder their ability to make predictions
in real-time and deploy them in a clinical setting.
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Chapter 9
Conclusion

The main objective of this thesis, as stated in section 1.2, has been to explore whether a machine
learning model can predict three target variables using longitudinal strain as input. The three
target variables being heart failure among patients, diseased patients versus control patients
and abnormal behaviour of individual left ventricle segments. The main objective is followed by
two sub-objectives that decided the direction and scope of the thesis: Which type of machine
learning model will perform best, a supervised or unsupervised learning model, and what type
of longitudinal strain data will yield the best performance for the machine learning models, the
longitudinal strain curves of a segment or peak systolic longitudinal strain values in combination
with EF.

A dataset of 199 patients was used to fulfill these objectives. The models that used combinations
of GLS, and RLS curves from different views were a TSC model and an ANN, which were tested
to classify heart failure among patients, patient diagnosis and whether individual left ventricle
segments were acting abnormally. In addition to varying the dataset used with these models
different forms of preprocessing was tested for both models, and different linkages were tested
for the TSC model. The models that used peak systolic strain values were a PVC model,
and 11 different PVSC. They were only applied to identify heart failure among patients, and
patient diagnosis. To assess the performance of the supervised model’s accuracy, sensitivity,
specificity and DOR were used as evaluation metrics. To evaluate the unsupervised models
the same metrics were used as for the supervised models. In addition to using the ARI to
determine whether clustering models evaluated at a number of cluster centers greater than two
could provide better performance than models evaluated at two cluster centers. When making
a choice as to which model variation performed best within their respective model groups,
and which model performed best overall, the models were sorted in descending order of DOR
they attained. The models which attained the highest DOR and accuracy, while maintaining
a balanced relationship of sensitivity and specificity were then chosen as the best performing
models. For the clustering models, an additional evaluation was done with respect to ARI. If
there were clustering models evaluated at a number of cluster centers greater than two, that
attained an ARI greater than the best performing two-cluster-center model, an attempt was
made to visualize the result. Further, it was evaluated whether combining the clusters of the
model with more than two centers could yield a better performance than the two-cluster-center
model.

The overall consensus from the results is that it is possible to implement a machine learning
model that uses longitudinal strain as input, and that it can predict one of the three target
variables. However, no single stood out as superior in predicting all target variables. The
model that performed best at identifying heart failure among patients was a variation of the
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PVC model. It used a combination of peak systolic GLS values and EF as input data, used the
complete linkage and was evaluated at two cluster centers. This method attained an accuracy
of 0.76, sensitivity of 0.81, specificity of 0.72 and DOR of 10.85. However, it was found that all
the models were outperformed by a simple EF threshold classifier set at 45%, which attained
an accuracy of 0.77, sensitivity of 0.86, specificity of 0.69 and DOR of 13.48. This result is
surprising since EF was a parameter in the PVC and PVSC models applied to predict this
target variable. For the PVC models this indicates that the addition of longitudinal strain
values add more noise than information, at least for a dataset of 199 objects. For the PVSC
models this indicates that there is a lot of potential that is not used, and that further work should
be done on optimizing the hyperparameters of the PVSC models. The model that performed
best at predicting patient diagnosis was one of the PVSC models that used the KNN classifier
trained on a combination of peak systolic GLS, and RLS values. It attained an accuracy of 0.93,
a sensitivity of 0.95, a specificity of 0.82 and a DOR of 84.53. In the segment indication case
study, the ANN that downsampled all the individual RLS curves to the lowest sample rate of all
the curves was chosen as the best model. That model attained an accuracy of 0.74, sensitivity
of 0.74, specificity of 0.75 and DOR of 8.38.

It was found that PVC, and PVSC models using a combination of peak strain values and EF
generally performed better at predicting heart failure than variations using peak strain values
alone. The ANN was not able to generalize the features of healthy patients in the patient
diagnosis case study at all, and did not perform particularly well in the heart failure case study
either. It is the author’s opinion that this is because the architecture of the ANN is to complex
to be trained solely on a dataset of 199 patients. This conclusion was drawn based on the
fact that the ANN had between 40 and 80 thousand trainable parameters depending on how
many curves were used as input. This statement is also supported by the fact that the ANN
performed significantly better, when applied to classify single curves on a dataset of size 3600
curves. The variations of TSC models using no preprocessing performed better in general than
the variations using normalization, z-normalization or scaling, meaning that purely shape-based
TSC is not optimal for clustering left ventricle strain curves for diagnosing patients.

9.1 Limitations

The biggest limitation encountered was the number of objects in the dataset. This is particularly
evident in the performance of the ANN in the heart failure and patient diagnosis case studies.
It performed much better in the segment indication case study, as the dimensionality was
reduced to only a single time series as input, and the number of objects was multiplied by
18. No conclusive statements are made as to whether any specific machine learning model is
inappropriate for the applications in this work, because the dataset is too small.

9.2 Future Work

In this section further improvements that can be made on the TSC models, ANN models, and
PVSC models are discussed.

Dimensionality Reduction in Time-series Clustering

This work focused on feature selection by testing different subsets of the datasets as inputs. In
future work one could consider trying the approach of [23], using principle component analysis
to reduce the dimensionality into more information-dense combinations of the input features.
Additionally, one should consider the approach mentioned in the section 8.1 of combining point-
value EF to the TSC. This could be done by calculating the dissimilarity matrix of EF values
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separately, using a distance metric such as Euclidean distance, and adding it to the other
dissimilarity matrices as if it were another curve dimension.

Development of an Artificial Neural Network for Segment Indication

Given that the ANN performed so well at identifying the binary segment indication, it is prob-
able that by spending more time adapting the architecture to the segment indication dataset
one could achieve better performances than attained in this work. One could start with the
architecture used in this assignment, and attempt to reduce the complexity of the architecture
by adding pooling layers, or dropout layers. It should be tested whether using GRU cells could
improve the accuracy of the ANN as they are known to require less data than LSTM cells to
generalize the difference between different segment labels. One should also experiment with
variations of SGD for training the network, such as batch gradient descent and mini-batch gra-
dient descent. If concentrating mainly on an ANN solution one could also test if the resulting
model is capable of dealing with segment indication when multiple classes are used.

Development of Peak-value Supervised classifiers

Recall that the PVSC models performed best at predicting patient diagnosis. As mentioned in
section 8.4, although the PVSC did not perform best at identifying heart failure in patients,
the distribution of the DOR for the PVSC models was shifted significantly higher, and centered
higher than the DOR distribution of the TSC, PVC and ANN models. Since there was not
enough time to optimize the hyperparameters of the classifiers in the PVSC group, this shift in
distribution indicates that there is some missed potential as to what performance these models
could attain. Therefore, it is probable that by spending more time on adapting the individual
classifiers to the heart failure, and patient diagnosis datasets one could produce models that
yield higher scores in all evaluation metrics.
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Chapter 10
Appendix

10.1 Raw Model Results

10.1.1 Time-series Clustering

Table 10.1: Classification results of applying TSC to identify heart failure among patients. The
results are sorted in descending order of DOR, although DOR is not included.

Dataset-Method TP TN FP FN

gls/2CH/regular/centroid/2 86 62 35 13
gls/2CH/scaled/centroid/2 86 62 35 13
gls/2CH/regular/average/2 84 63 34 15
gls/2CH/scaled/average/2 84 63 34 15
gls-rls/2CH/scaled/ward/2 81 65 32 18
rls/APLAX/scaled/weighted/2 90 45 52 9
gls-rls/APLAX/regular/median/2 26 93 4 73
gls-rls/APLAX/scaled/weighted/2 90 43 54 9
rls/APLAX/scaled/average/2 82 60 37 17
gls/2CH/regular/ward/2 80 63 34 19
gls/2CH/scaled/ward/2 80 63 34 19
gls-rls/2CH/scaled/complete/2 74 70 27 25
gls-rls/4CH/regular/weighted/2 98 7 90 1
rls/2CH/scaled/ward/2 77 66 31 22
gls/2CH/regular/complete/2 75 68 29 24
gls/2CH/scaled/complete/2 75 68 29 24
gls/4CH/scaled/centroid/2 77 64 33 22
gls/4CH/regular/centroid/2 77 64 33 22
rls/all-views/regular/complete/2 86 49 48 13
gls/all-views/regular/weighted/2 88 44 53 11
gls/all-views/regular/centroid/2 74 67 30 25
gls-rls/2CH/regular/complete/2 73 68 29 26
gls-rls/2CH/regular/ward/2 78 62 35 21
gls-rls/APLAX/scaled/average/2 81 57 40 18
gls/all-views/scaled/average/2 73 67 30 26
gls/all-views/regular/median/2 21 93 4 78
gls-rls/4CH/regular/complete/2 91 34 63 8
gls/4CH/regular/complete/2 74 64 33 25
gls/4CH/scaled/complete/2 74 64 33 25
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gls/all-views/scaled/ward/2 67 71 26 32
gls/all-views/regular/ward/2 67 71 26 32
gls-rls/4CH/scaled/weighted/2 85 47 50 14
gls/all-views/scaled/complete/2 66 71 26 33
rls/2CH/regular/complete/2 67 70 27 32
gls/all-views/regular/average/2 62 74 23 37
gls/all-views/regular/complete/2 62 74 23 37
rls/all-views/scaled/ward/2 59 76 21 40
gls-rls/4CH/scaled/average/2 60 75 22 39
gls-rls/all-views/regular/complete/2 60 75 22 39
gls-rls/all-views/scaled/weighted/2 60 75 22 39
gls/APLAX/regular/ward/2 65 71 26 34
gls/APLAX/regular/median/2 65 71 26 34
gls-rls/all-views/regular/ward/2 61 74 23 38
rls/all-views/scaled/weighted/2 58 76 21 41
gls-rls/APLAX/scaled/centroid/2 58 76 21 41
gls-rls/all-views/regular/centroid/2 62 73 24 37
gls/APLAX/regular/average/2 63 72 25 36
rls/APLAX/scaled/ward/2 59 75 22 40
rls/all-views/scaled/complete/2 59 75 22 40
gls-rls/APLAX/scaled/complete/2 41 85 12 58
gls/APLAX/regular/centroid/2 65 70 27 34
gls-rls/all-views/scaled/average/2 60 74 23 39
gls/APLAX/regular/complete/2 47 82 15 52
gls/all-views/scaled/centroid/2 61 73 24 38
gls-rls/all-views/scaled/centroid/2 61 73 24 38
gls/4CH/regular/median/2 24 91 6 75
gls/4CH/regular/weighted/2 24 91 6 75
gls/4CH/scaled/weighted/2 24 91 6 75
gls/4CH/scaled/median/2 24 91 6 75
gls-rls/APLAX/regular/average/2 58 75 22 41
rls/APLAX/regular/ward/2 58 75 22 41
gls-rls/all-views/regular/average/2 58 75 22 41
rls/APLAX/regular/weighted/2 46 82 15 53
gls/all-views/scaled/weighted/2 13 94 3 86
gls-rls/4CH/scaled/ward/2 56 76 21 43
rls/4CH/scaled/average/2 56 76 21 43
rls/all-views/scaled/average/2 54 77 20 45
gls-rls/APLAX/scaled/ward/2 54 77 20 45
rls/all-views/regular/average/2 54 77 20 45
gls-rls/all-views/scaled/complete/2 54 77 20 45
gls-rls/4CH/scaled/complete/2 54 77 20 45
rls/APLAX/scaled/complete/2 58 74 23 41
gls-rls/APLAX/regular/ward/2 55 76 21 44
gls-rls/all-views/scaled/ward/2 55 76 21 44
rls/4CH/regular/complete/2 64 69 28 35
gls/APLAX/regular/weighted/2 36 86 11 63
gls/2CH/scaled/median/2 57 74 23 42
gls/2CH/scaled/weighted/2 57 74 23 42
gls/2CH/regular/weighted/2 57 74 23 42
gls/2CH/regular/median/2 57 74 23 42
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gls-rls/APLAX/regular/centroid/2 51 78 19 48
gls-rls/4CH/regular/ward/2 54 76 21 45
gls-rls/4CH/regular/average/2 54 76 21 45
rls/APLAX/regular/complete/2 54 76 21 45
rls/4CH/scaled/ward/2 52 77 20 47
rls/2CH/normalized/median/2 30 88 9 69
rls/all-views/normalized/weighted/2 98 4 93 1
rls/APLAX/normalized/median/2 98 4 93 1
rls/2CH/scaled/complete/2 60 71 26 39
gls/4CH/scaled/ward/2 43 82 15 56
gls/4CH/regular/ward/2 43 82 15 56
gls-rls/APLAX/regular/complete/2 73 58 39 26
rls/all-views/regular/ward/2 54 75 22 45
gls-rls/all-views/regular/weighted/2 46 80 17 53
gls/all-views/scaled/median/2 65 65 32 34
rls/4CH/scaled/complete/2 58 71 26 41
rls/4CH/regular/ward/2 52 75 22 47
rls/2CH/regular/ward/2 45 79 18 54
gls-rls/APLAX/regular/weighted/2 29 86 11 70
rls/4CH/regular/weighted/2 97 6 91 2
gls-rls/all-views/normalized/ward/2 27 85 12 72
rls/all-views/normalized/complete/2 35 80 17 64
gls-rls/4CH/normalized/ward/2 53 65 32 46
gls-rls/4CH/z-normalized/ward/2 60 58 39 39
gls-rls/2CH/z-normalized/ward/2 78 36 61 21
gls-rls/4CH/scaled/median/2 96 6 91 3
rls/4CH/z-normalized/ward/2 60 56 41 39
rls/2CH/z-normalized/weighted/2 98 2 95 1
rls/all-views/scaled/median/2 98 2 95 1
gls-rls/2CH/z-normalized/complete/2 98 2 95 1
rls/all-views/normalized/ward/2 58 56 41 41
gls/2CH/z-normalized/ward/2 70 42 55 29
rls/all-views/z-normalized/ward/2 50 61 36 49
gls-rls/APLAX/normalized/ward/2 25 81 16 74
gls/APLAX/normalized/complete/2 22 83 14 77
gls-rls/APLAX/normalized/complete/2 23 82 15 76
gls-rls/all-views/z-normalized/ward/2 51 59 38 48
rls/APLAX/normalized/ward/2 24 81 16 75
gls/all-views/z-normalized/ward/2 54 55 42 45
gls/4CH/z-normalized/complete/2 47 61 36 52
gls-rls/all-views/z-normalized/complete/2 49 59 38 50
rls/2CH/normalized/ward/2 74 32 65 25
gls/4CH/normalized/ward/2 39 67 30 60
rls/4CH/normalized/complete/2 77 28 69 22
rls/2CH/normalized/complete/2 77 28 69 22
gls/APLAX/z-normalized/complete/2 40 65 32 59
gls-rls/APLAX/z-normalized/complete/2 42 63 34 57
gls-rls/APLAX/z-normalized/ward/2 43 62 35 56
rls/all-views/z-normalized/complete/2 48 57 40 51
gls/all-views/normalized/ward/2 37 67 30 62
gls-rls/2CH/normalized/ward/2 65 39 58 34

Page 93 of 112



rls/2CH/z-normalized/ward/2 49 55 42 50
gls/APLAX/z-normalized/ward/2 37 66 31 62
gls-rls/all-views/normalized/complete/2 15 85 12 84
gls-rls/2CH/normalized/complete/2 70 33 64 29
rls/4CH/normalized/ward/2 79 23 74 20
gls/2CH/normalized/ward/2 62 41 56 37
rls/APLAX/normalized/complete/2 34 68 29 65
gls-rls/4CH/normalized/complete/2 35 67 30 64
rls/APLAX/z-normalized/complete/2 60 42 55 39
rls/APLAX/z-normalized/ward/2 30 70 27 69
gls/4CH/z-normalized/ward/2 33 67 30 66
gls-rls/APLAX/normalized/weighted/2 78 22 75 21
gls/APLAX/normalized/ward/2 76 24 73 23
gls/all-views/z-normalized/complete/2 64 35 62 35
gls/all-views/normalized/complete/2 84 15 82 15
rls/all-views/regular/median/2 94 5 92 5
gls-rls/2CH/z-normalized/weighted/2 97 2 95 2
rls/4CH/scaled/median/2 98 1 96 1
rls/4CH/regular/average/2 98 1 96 1
gls-rls/4CH/regular/single/2 98 0 97 1
gls-rls/all-views/scaled/median/2 98 0 97 1
gls-rls/all-views/z-normalized/centroid/2 98 0 97 1
gls-rls/APLAX/z-normalized/weighted/2 98 0 97 1
gls/all-views/normalized/single/2 98 0 97 1
gls-rls/APLAX/normalized/centroid/2 98 0 97 1
gls-rls/APLAX/normalized/average/2 98 0 97 1
gls-rls/all-views/scaled/single/2 98 0 97 1
gls-rls/APLAX/z-normalized/single/2 98 0 97 1
gls-rls/APLAX/normalized/median/2 98 0 97 1
gls-rls/APLAX/normalized/single/2 98 0 97 1
gls/all-views/z-normalized/single/2 98 0 97 1
gls-rls/APLAX/z-normalized/centroid/2 98 0 97 1
gls-rls/2CH/normalized/centroid/2 98 0 97 1
gls-rls/4CH/normalized/single/2 98 0 97 1
gls-rls/2CH/z-normalized/centroid/2 98 0 97 1
gls-rls/2CH/normalized/average/2 98 0 97 1
gls-rls/2CH/normalized/median/2 98 0 97 1
gls-rls/2CH/z-normalized/single/2 98 0 97 1
gls-rls/2CH/normalized/single/2 98 0 97 1
gls-rls/2CH/z-normalized/average/2 98 0 97 1
gls-rls/2CH/regular/weighted/2 98 0 97 1
gls-rls/2CH/regular/median/2 98 0 97 1
gls-rls/2CH/regular/centroid/2 98 0 97 1
gls/all-views/normalized/centroid/2 98 0 97 1
gls-rls/2CH/regular/average/2 98 0 97 1
gls/all-views/normalized/median/2 98 0 97 1
gls-rls/2CH/regular/single/2 98 0 97 1
gls/all-views/normalized/weighted/2 98 0 97 1
gls-rls/2CH/scaled/single/2 98 0 97 1
gls-rls/4CH/normalized/average/2 98 0 97 1
gls-rls/4CH/scaled/single/2 98 0 97 1
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gls-rls/4CH/z-normalized/weighted/2 98 0 97 1
gls-rls/4CH/z-normalized/median/2 98 0 97 1
gls-rls/4CH/z-normalized/centroid/2 98 0 97 1
gls-rls/2CH/scaled/average/2 98 0 97 1
gls/all-views/normalized/average/2 98 0 97 1
gls-rls/4CH/z-normalized/average/2 98 0 97 1
gls-rls/4CH/z-normalized/complete/2 98 0 97 1
gls-rls/4CH/z-normalized/single/2 98 0 97 1
gls-rls/2CH/scaled/centroid/2 98 0 97 1
gls-rls/4CH/normalized/median/2 98 0 97 1
gls-rls/4CH/normalized/centroid/2 98 0 97 1
gls-rls/2CH/scaled/weighted/2 98 0 97 1
gls-rls/4CH/normalized/weighted/2 98 0 97 1
gls/4CH/normalized/median/2 98 0 97 1
gls-rls/all-views/z-normalized/single/2 98 0 97 1
gls/2CH/z-normalized/median/2 98 0 97 1
gls/APLAX/normalized/single/2 98 0 97 1
gls/APLAX/normalized/average/2 98 0 97 1
gls/APLAX/normalized/centroid/2 98 0 97 1
gls/APLAX/normalized/median/2 98 0 97 1
gls/APLAX/normalized/weighted/2 98 0 97 1
gls/APLAX/z-normalized/single/2 98 0 97 1
gls/APLAX/z-normalized/average/2 98 0 97 1
gls/APLAX/z-normalized/centroid/2 98 0 97 1
rls/all-views/regular/single/2 98 0 97 1
rls/all-views/regular/weighted/2 98 0 97 1
rls/all-views/normalized/single/2 98 0 97 1
rls/all-views/normalized/centroid/2 98 0 97 1
rls/all-views/normalized/median/2 98 0 97 1
rls/all-views/z-normalized/single/2 98 0 97 1
rls/all-views/z-normalized/centroid/2 98 0 97 1
rls/all-views/z-normalized/median/2 98 0 97 1
rls/all-views/scaled/single/2 98 0 97 1
gls/2CH/z-normalized/weighted/2 98 0 97 1
gls/2CH/z-normalized/centroid/2 98 0 97 1
rls/4CH/regular/median/2 98 0 97 1
gls/2CH/z-normalized/average/2 98 0 97 1
gls/4CH/z-normalized/single/2 98 0 97 1
gls/4CH/z-normalized/average/2 98 0 97 1
gls/4CH/z-normalized/centroid/2 98 0 97 1
gls/4CH/z-normalized/median/2 98 0 97 1
gls/4CH/z-normalized/weighted/2 98 0 97 1
gls/4CH/normalized/centroid/2 98 0 97 1
gls/4CH/normalized/average/2 98 0 97 1
gls/4CH/normalized/complete/2 98 0 97 1
gls/4CH/normalized/single/2 98 0 97 1
gls/2CH/normalized/single/2 98 0 97 1
gls/2CH/normalized/complete/2 98 0 97 1
gls/2CH/normalized/average/2 98 0 97 1
gls/2CH/normalized/centroid/2 98 0 97 1
gls/2CH/normalized/median/2 98 0 97 1
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gls/2CH/normalized/weighted/2 98 0 97 1
gls/2CH/z-normalized/single/2 98 0 97 1
gls/2CH/z-normalized/complete/2 98 0 97 1
rls/4CH/regular/single/2 98 0 97 1
rls/4CH/normalized/single/2 98 0 97 1
gls-rls/all-views/normalized/centroid/2 98 0 97 1
rls/2CH/z-normalized/single/2 98 0 97 1
gls/4CH/normalized/weighted/2 98 0 97 1
rls/2CH/scaled/single/2 98 0 97 1
rls/2CH/scaled/average/2 98 0 97 1
gls/all-views/z-normalized/centroid/2 98 0 97 1
rls/2CH/scaled/centroid/2 98 0 97 1
rls/2CH/scaled/median/2 98 0 97 1
rls/2CH/scaled/weighted/2 98 0 97 1
rls/APLAX/normalized/single/2 98 0 97 1
rls/APLAX/normalized/centroid/2 98 0 97 1
rls/APLAX/normalized/weighted/2 98 0 97 1
rls/APLAX/z-normalized/single/2 98 0 97 1
rls/APLAX/z-normalized/centroid/2 98 0 97 1
rls/APLAX/z-normalized/median/2 98 0 97 1
gls/all-views/z-normalized/average/2 98 0 97 1
gls-rls/all-views/regular/single/2 98 0 97 1
gls-rls/all-views/regular/median/2 98 0 97 1
gls-rls/all-views/normalized/single/2 98 0 97 1
rls/2CH/z-normalized/average/2 98 0 97 1
rls/2CH/normalized/centroid/2 98 0 97 1
rls/4CH/normalized/average/2 98 0 97 1
rls/2CH/normalized/average/2 98 0 97 1
rls/4CH/normalized/centroid/2 98 0 97 1
rls/4CH/normalized/median/2 98 0 97 1
rls/4CH/normalized/weighted/2 98 0 97 1
rls/4CH/z-normalized/single/2 98 0 97 1
rls/4CH/z-normalized/complete/2 98 0 97 1
rls/4CH/z-normalized/average/2 98 0 97 1
rls/4CH/z-normalized/centroid/2 98 0 97 1
rls/4CH/z-normalized/median/2 98 0 97 1
rls/4CH/z-normalized/weighted/2 98 0 97 1
rls/4CH/scaled/single/2 98 0 97 1
gls/all-views/z-normalized/weighted/2 98 0 97 1
rls/2CH/regular/single/2 98 0 97 1
gls/all-views/z-normalized/median/2 98 0 97 1
rls/2CH/regular/average/2 98 0 97 1
rls/2CH/regular/centroid/2 98 0 97 1
rls/2CH/regular/weighted/2 98 0 97 1
rls/2CH/normalized/single/2 98 0 97 1
rls/2CH/z-normalized/centroid/2 98 0 97 1
gls/all-views/regular/single/2 99 1 96 0
gls/all-views/scaled/single/2 99 1 96 0
gls/4CH/regular/single/2 99 1 96 0
gls/4CH/regular/average/2 99 1 96 0
gls/4CH/scaled/single/2 99 1 96 0
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gls/4CH/scaled/average/2 99 1 96 0
gls/2CH/regular/single/2 99 1 96 0
gls/2CH/scaled/single/2 99 1 96 0
gls/APLAX/regular/single/2 99 1 96 0
rls/all-views/regular/centroid/2 99 0 97 0
rls/all-views/normalized/average/2 99 1 96 0
rls/all-views/z-normalized/average/2 2 97 0 97
rls/all-views/z-normalized/weighted/2 2 97 0 97
rls/all-views/scaled/centroid/2 99 0 97 0
rls/4CH/regular/centroid/2 99 1 96 0
rls/4CH/scaled/centroid/2 99 1 96 0
rls/4CH/scaled/weighted/2 99 1 96 0
rls/2CH/regular/median/2 99 0 97 0
rls/2CH/normalized/weighted/2 99 1 96 0
rls/2CH/z-normalized/complete/2 3 97 0 96
rls/2CH/z-normalized/median/2 99 2 95 0
rls/APLAX/regular/single/2 99 1 96 0
rls/APLAX/regular/average/2 99 1 96 0
rls/APLAX/regular/centroid/2 99 0 97 0
rls/APLAX/regular/median/2 99 1 96 0
rls/APLAX/normalized/average/2 99 2 95 0
rls/APLAX/z-normalized/average/2 2 97 0 97
rls/APLAX/z-normalized/weighted/2 99 1 96 0
rls/APLAX/scaled/single/2 99 1 96 0
rls/APLAX/scaled/centroid/2 99 0 97 0
rls/APLAX/scaled/median/2 99 1 96 0
gls-rls/all-views/normalized/average/2 2 97 0 97
gls-rls/all-views/normalized/median/2 99 1 96 0
gls-rls/all-views/normalized/weighted/2 99 1 96 0
gls-rls/all-views/z-normalized/average/2 2 97 0 97
gls-rls/all-views/z-normalized/median/2 99 0 97 0
gls-rls/all-views/z-normalized/weighted/2 2 97 0 97
gls-rls/4CH/regular/centroid/2 99 1 96 0
gls-rls/4CH/regular/median/2 99 1 96 0
gls-rls/4CH/scaled/centroid/2 99 1 96 0
gls-rls/2CH/normalized/weighted/2 99 1 96 0
gls-rls/2CH/z-normalized/median/2 99 2 95 0
gls-rls/2CH/scaled/median/2 99 0 97 0
gls-rls/APLAX/regular/single/2 99 1 96 0
gls-rls/APLAX/z-normalized/average/2 2 97 0 97
gls-rls/APLAX/z-normalized/median/2 99 0 97 0
gls-rls/APLAX/scaled/single/2 99 1 96 0
gls-rls/APLAX/scaled/median/2 99 1 96 0

Table 10.2: Classification results of applying TSC to identify patient diagnoses. The results are
sorted in descending order of DOR, although DOR is not included.

Dataset-Method TP TN FP FN

gls/2CH/regular/centroid/2 119 27 2 48
gls/2CH/scaled/centroid/2 119 27 2 48
gls/2CH/scaled/average/2 116 27 2 51
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gls/2CH/regular/average/2 116 27 2 51
gls/2CH/scaled/ward/2 112 27 2 55
gls/2CH/regular/ward/2 112 27 2 55
gls-rls/2CH/scaled/ward/2 111 27 2 56
gls-rls/2CH/regular/ward/2 111 27 2 56
rls/all-views/normalized/weighted/2 166 4 25 1
rls/2CH/scaled/ward/2 106 27 2 61
rls/all-views/regular/complete/2 130 25 4 37
rls/4CH/regular/weighted/2 165 6 23 2
gls/all-views/regular/centroid/2 102 27 2 65
gls/2CH/scaled/complete/2 102 27 2 65
gls/2CH/regular/complete/2 102 27 2 65
gls/all-views/regular/weighted/2 136 24 5 31
gls/all-views/scaled/average/2 101 27 2 66
gls-rls/2CH/regular/complete/2 100 27 2 67
rls/APLAX/scaled/average/2 116 26 3 51
gls-rls/2CH/scaled/complete/2 99 27 2 68
gls-rls/4CH/scaled/weighted/2 130 24 5 37
rls/2CH/regular/complete/2 92 27 2 75
gls/all-views/scaled/ward/2 91 27 2 76
gls/all-views/regular/ward/2 91 27 2 76
gls/all-views/scaled/complete/2 90 27 2 77
gls/APLAX/regular/centroid/2 90 27 2 77
gls/4CH/scaled/centroid/2 107 26 3 60
gls/4CH/regular/centroid/2 107 26 3 60
gls/APLAX/regular/median/2 89 27 2 78
gls/APLAX/regular/ward/2 89 27 2 78
gls-rls/4CH/regular/complete/2 145 20 9 22
gls-rls/APLAX/scaled/average/2 117 25 4 50
gls/APLAX/regular/average/2 86 27 2 81
gls/4CH/regular/complete/2 104 26 3 63
gls/4CH/scaled/complete/2 104 26 3 63
gls-rls/4CH/scaled/median/2 164 6 23 3
gls-rls/all-views/regular/centroid/2 84 27 2 83
rls/2CH/scaled/complete/2 84 27 2 83
gls/all-views/scaled/centroid/2 83 27 2 84
gls-rls/all-views/scaled/centroid/2 83 27 2 84
gls/all-views/regular/complete/2 83 27 2 84
gls/all-views/regular/average/2 83 27 2 84
rls/APLAX/scaled/weighted/2 135 22 7 32
gls-rls/all-views/regular/ward/2 82 27 2 85
gls-rls/all-views/scaled/average/2 81 27 2 86
gls-rls/all-views/scaled/weighted/2 80 27 2 87
gls-rls/all-views/regular/complete/2 80 27 2 87
gls-rls/4CH/scaled/average/2 80 27 2 87
gls-rls/2CH/z-normalized/complete/2 166 2 27 1
rls/2CH/z-normalized/weighted/2 166 2 27 1
rls/APLAX/scaled/ward/2 79 27 2 88
rls/all-views/scaled/complete/2 79 27 2 88
rls/APLAX/scaled/complete/2 79 27 2 88
gls/2CH/scaled/weighted/2 78 27 2 89
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gls-rls/all-views/regular/average/2 78 27 2 89
gls/2CH/scaled/median/2 78 27 2 89
gls-rls/APLAX/regular/average/2 78 27 2 89
rls/all-views/scaled/ward/2 78 27 2 89
gls/2CH/regular/median/2 78 27 2 89
gls/2CH/regular/weighted/2 78 27 2 89
rls/APLAX/regular/ward/2 78 27 2 89
rls/all-views/scaled/weighted/2 77 27 2 90
gls-rls/APLAX/scaled/centroid/2 77 27 2 90
gls-rls/APLAX/scaled/weighted/2 136 21 8 31
gls-rls/4CH/regular/weighted/2 164 5 24 3
rls/4CH/scaled/average/2 75 27 2 92
gls-rls/4CH/scaled/ward/2 75 27 2 92
rls/all-views/regular/ward/2 74 27 2 93
gls-rls/APLAX/regular/ward/2 74 27 2 93
gls-rls/all-views/scaled/ward/2 74 27 2 93
gls-rls/4CH/regular/ward/2 73 27 2 94
gls-rls/4CH/regular/average/2 73 27 2 94
rls/APLAX/regular/complete/2 73 27 2 94
gls-rls/all-views/scaled/complete/2 72 27 2 95
rls/4CH/regular/ward/2 72 27 2 95
rls/all-views/regular/average/2 72 27 2 95
gls-rls/APLAX/scaled/ward/2 72 27 2 95
rls/all-views/scaled/average/2 72 27 2 95
gls-rls/4CH/scaled/complete/2 72 27 2 95
rls/4CH/regular/complete/2 89 26 3 78
gls-rls/APLAX/regular/complete/2 107 24 5 60
rls/4CH/scaled/complete/2 81 26 3 86
gls/all-views/scaled/median/2 93 25 4 74
gls-rls/2CH/z-normalized/weighted/2 165 2 27 2
rls/4CH/regular/average/2 166 1 28 1
rls/4CH/scaled/median/2 166 1 28 1
gls/APLAX/normalized/ward/2 134 14 15 33
rls/2CH/normalized/ward/2 126 16 13 41
rls/4CH/normalized/ward/2 137 13 16 30
rls/2CH/normalized/complete/2 131 14 15 36
gls-rls/APLAX/normalized/weighted/2 136 12 17 31
rls/4CH/normalized/complete/2 130 13 16 37
gls-rls/2CH/normalized/ward/2 111 17 12 56
gls-rls/2CH/normalized/complete/2 120 15 14 47
rls/APLAX/z-normalized/ward/2 124 14 15 43
gls/all-views/z-normalized/complete/2 113 16 13 54
gls-rls/4CH/normalized/complete/2 116 14 15 51
gls/all-views/normalized/ward/2 114 14 15 53
gls/all-views/normalized/complete/2 144 7 22 23
gls/APLAX/z-normalized/ward/2 113 14 15 54
gls/4CH/z-normalized/ward/2 117 13 16 50
gls/APLAX/z-normalized/complete/2 109 14 15 58
gls/4CH/normalized/ward/2 111 13 16 56
rls/2CH/z-normalized/ward/2 92 16 13 75
gls-rls/APLAX/z-normalized/ward/2 103 14 15 64
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gls-rls/all-views/z-normalized/ward/2 93 15 14 74
gls-rls/2CH/z-normalized/ward/2 120 10 19 47
gls/all-views/z-normalized/ward/2 87 16 13 80
gls/4CH/z-normalized/complete/2 98 14 15 69
rls/all-views/z-normalized/ward/2 95 14 15 72
rls/APLAX/normalized/complete/2 114 10 19 53
gls-rls/APLAX/normalized/complete/2 135 6 23 32
gls-rls/4CH/normalized/ward/2 95 13 16 72
gls-rls/4CH/z-normalized/ward/2 83 15 14 84
rls/all-views/normalized/ward/2 83 15 14 84
rls/all-views/z-normalized/complete/2 92 13 16 75
rls/4CH/z-normalized/ward/2 86 14 15 81
gls-rls/APLAX/normalized/ward/2 132 6 23 35
gls/APLAX/normalized/complete/2 136 5 24 31
rls/APLAX/z-normalized/complete/2 97 11 18 70
gls/all-views/scaled/weighted/2 153 2 27 14
rls/APLAX/normalized/ward/2 132 5 24 35
gls/2CH/z-normalized/ward/2 105 9 20 62
gls-rls/APLAX/z-normalized/complete/2 100 9 20 67
rls/all-views/regular/median/2 158 1 28 9
gls-rls/all-views/z-normalized/complete/2 90 10 19 77
rls/all-views/normalized/complete/2 120 5 24 47
gls/2CH/normalized/ward/2 97 8 21 70
gls/all-views/regular/median/2 144 2 27 23
gls-rls/all-views/normalized/complete/2 142 2 27 25
gls/4CH/scaled/median/2 139 2 27 28
gls/4CH/scaled/weighted/2 139 2 27 28
gls/4CH/regular/weighted/2 139 2 27 28
gls/4CH/regular/median/2 139 2 27 28
gls/APLAX/regular/weighted/2 122 2 27 45
gls-rls/APLAX/regular/median/2 138 1 28 29
gls-rls/APLAX/scaled/complete/2 116 2 27 51
gls/4CH/scaled/ward/2 111 2 27 56
gls/4CH/regular/ward/2 111 2 27 56
rls/APLAX/regular/weighted/2 108 2 27 59
gls/APLAX/regular/complete/2 107 2 27 60
gls-rls/all-views/regular/weighted/2 106 2 27 61
rls/2CH/regular/ward/2 106 2 27 61
gls-rls/APLAX/regular/weighted/2 128 1 28 39
gls-rls/APLAX/regular/centroid/2 99 2 27 68
rls/4CH/scaled/ward/2 97 2 27 70
gls/4CH/z-normalized/weighted/2 166 0 29 1
gls-rls/4CH/scaled/single/2 166 0 29 1
gls/2CH/normalized/median/2 166 0 29 1
gls/2CH/normalized/centroid/2 166 0 29 1
gls/2CH/normalized/average/2 166 0 29 1
gls/2CH/normalized/complete/2 166 0 29 1
gls/2CH/normalized/single/2 166 0 29 1
gls-rls/2CH/regular/single/2 166 0 29 1
rls/4CH/scaled/single/2 166 0 29 1
gls-rls/4CH/z-normalized/weighted/2 166 0 29 1
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gls/4CH/z-normalized/median/2 166 0 29 1
gls-rls/2CH/regular/centroid/2 166 0 29 1
gls-rls/2CH/regular/median/2 166 0 29 1
gls-rls/2CH/regular/weighted/2 166 0 29 1
gls-rls/2CH/normalized/single/2 166 0 29 1
gls/4CH/z-normalized/centroid/2 166 0 29 1
gls-rls/2CH/normalized/average/2 166 0 29 1
gls-rls/2CH/regular/average/2 166 0 29 1
gls-rls/4CH/z-normalized/median/2 166 0 29 1
gls-rls/2CH/normalized/centroid/2 166 0 29 1
gls-rls/4CH/normalized/average/2 166 0 29 1
gls-rls/4CH/regular/single/2 166 0 29 1
gls/2CH/z-normalized/weighted/2 166 0 29 1
gls/2CH/z-normalized/median/2 166 0 29 1
gls/2CH/z-normalized/centroid/2 166 0 29 1
gls/2CH/z-normalized/average/2 166 0 29 1
gls-rls/4CH/normalized/single/2 166 0 29 1
gls/2CH/z-normalized/complete/2 166 0 29 1
gls/2CH/z-normalized/single/2 166 0 29 1
gls-rls/4CH/z-normalized/centroid/2 166 0 29 1
gls-rls/4CH/normalized/centroid/2 166 0 29 1
gls-rls/4CH/normalized/median/2 166 0 29 1
gls-rls/4CH/normalized/weighted/2 166 0 29 1
gls-rls/4CH/z-normalized/single/2 166 0 29 1
gls-rls/4CH/z-normalized/complete/2 166 0 29 1
gls-rls/4CH/z-normalized/average/2 166 0 29 1
gls/2CH/normalized/weighted/2 166 0 29 1
gls/4CH/z-normalized/average/2 166 0 29 1
gls-rls/2CH/z-normalized/single/2 166 0 29 1
gls-rls/2CH/normalized/median/2 166 0 29 1
gls/all-views/normalized/weighted/2 166 0 29 1
gls/all-views/z-normalized/centroid/2 166 0 29 1
gls-rls/APLAX/normalized/centroid/2 166 0 29 1
gls-rls/APLAX/normalized/median/2 166 0 29 1
gls/all-views/z-normalized/average/2 166 0 29 1
gls-rls/APLAX/z-normalized/single/2 166 0 29 1
gls/all-views/z-normalized/single/2 166 0 29 1
gls-rls/APLAX/z-normalized/average/2 165 0 29 2
gls-rls/APLAX/z-normalized/centroid/2 166 0 29 1
gls-rls/all-views/scaled/median/2 166 0 29 1
gls-rls/APLAX/z-normalized/weighted/2 166 0 29 1
gls-rls/APLAX/scaled/single/2 166 0 29 1
gls/all-views/normalized/median/2 166 0 29 1
gls/all-views/normalized/centroid/2 166 0 29 1
gls/all-views/normalized/average/2 166 0 29 1
gls/all-views/normalized/single/2 166 0 29 1
gls-rls/APLAX/scaled/median/2 166 0 29 1
gls-rls/APLAX/normalized/average/2 166 0 29 1
gls/all-views/z-normalized/median/2 166 0 29 1
gls-rls/APLAX/normalized/single/2 166 0 29 1
gls/all-views/z-normalized/weighted/2 166 0 29 1
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gls/4CH/z-normalized/single/2 166 0 29 1
gls-rls/2CH/z-normalized/average/2 166 0 29 1
gls/4CH/normalized/weighted/2 166 0 29 1
gls-rls/2CH/z-normalized/centroid/2 166 0 29 1
gls/4CH/normalized/median/2 166 0 29 1
gls-rls/2CH/scaled/single/2 166 0 29 1
gls/4CH/normalized/centroid/2 166 0 29 1
gls-rls/2CH/scaled/average/2 166 0 29 1
gls/4CH/normalized/average/2 166 0 29 1
gls-rls/2CH/scaled/centroid/2 166 0 29 1
gls-rls/2CH/scaled/weighted/2 166 0 29 1
gls-rls/APLAX/regular/single/2 166 0 29 1
gls/4CH/normalized/complete/2 166 0 29 1
gls/4CH/normalized/single/2 166 0 29 1
gls/all-views/scaled/single/2 166 0 29 1
gls/APLAX/regular/single/2 166 0 29 1
gls/APLAX/normalized/single/2 166 0 29 1
rls/4CH/z-normalized/weighted/2 166 0 29 1
rls/APLAX/regular/single/2 166 0 29 1
rls/2CH/scaled/single/2 166 0 29 1
rls/4CH/normalized/average/2 166 0 29 1
rls/2CH/scaled/average/2 166 0 29 1
rls/4CH/normalized/single/2 166 0 29 1
rls/2CH/scaled/centroid/2 166 0 29 1
rls/2CH/scaled/median/2 166 0 29 1
rls/2CH/scaled/weighted/2 166 0 29 1
rls/4CH/regular/median/2 166 0 29 1
rls/2CH/z-normalized/centroid/2 166 0 29 1
rls/APLAX/regular/average/2 166 0 29 1
rls/4CH/regular/single/2 166 0 29 1
rls/APLAX/regular/median/2 166 0 29 1
rls/all-views/scaled/median/2 164 0 29 3
rls/APLAX/normalized/single/2 166 0 29 1
rls/all-views/scaled/single/2 166 0 29 1
rls/APLAX/normalized/average/2 165 0 29 2
rls/4CH/normalized/centroid/2 166 0 29 1
rls/4CH/normalized/median/2 166 0 29 1
rls/APLAX/normalized/centroid/2 166 0 29 1
rls/2CH/regular/weighted/2 166 0 29 1
rls/4CH/z-normalized/median/2 166 0 29 1
rls/4CH/z-normalized/centroid/2 166 0 29 1
rls/2CH/regular/single/2 166 0 29 1
rls/4CH/z-normalized/average/2 166 0 29 1
rls/2CH/regular/average/2 166 0 29 1
rls/4CH/z-normalized/complete/2 166 0 29 1
rls/2CH/regular/centroid/2 166 0 29 1
rls/2CH/normalized/single/2 166 0 29 1
rls/2CH/z-normalized/average/2 166 0 29 1
rls/4CH/z-normalized/single/2 166 0 29 1
rls/2CH/normalized/average/2 166 0 29 1
rls/4CH/normalized/weighted/2 166 0 29 1
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rls/2CH/normalized/centroid/2 166 0 29 1
rls/2CH/normalized/median/2 128 0 29 39
rls/2CH/z-normalized/single/2 166 0 29 1
rls/2CH/z-normalized/complete/2 164 0 29 3
rls/all-views/z-normalized/weighted/2 165 0 29 2
rls/APLAX/normalized/median/2 162 0 29 5
gls/APLAX/normalized/average/2 166 0 29 1
gls-rls/all-views/z-normalized/single/2 166 0 29 1
gls-rls/all-views/normalized/single/2 166 0 29 1
gls/APLAX/z-normalized/average/2 166 0 29 1
gls-rls/all-views/normalized/average/2 165 0 29 2
gls-rls/all-views/normalized/ward/2 128 0 29 39
gls-rls/all-views/normalized/centroid/2 166 0 29 1
gls-rls/all-views/normalized/median/2 166 0 29 1
gls-rls/all-views/normalized/weighted/2 166 0 29 1
gls/APLAX/z-normalized/single/2 166 0 29 1
gls-rls/all-views/regular/median/2 166 0 29 1
gls-rls/all-views/z-normalized/average/2 165 0 29 2
gls/APLAX/normalized/weighted/2 166 0 29 1
gls-rls/all-views/z-normalized/centroid/2 166 0 29 1
gls-rls/all-views/z-normalized/weighted/2 165 0 29 2
gls-rls/all-views/scaled/single/2 166 0 29 1
gls/APLAX/normalized/median/2 166 0 29 1
gls/APLAX/normalized/centroid/2 166 0 29 1
gls/APLAX/z-normalized/centroid/2 166 0 29 1
rls/all-views/regular/single/2 166 0 29 1
rls/APLAX/normalized/weighted/2 166 0 29 1
rls/APLAX/scaled/single/2 166 0 29 1
rls/APLAX/z-normalized/single/2 166 0 29 1
rls/all-views/z-normalized/median/2 166 0 29 1
rls/APLAX/z-normalized/average/2 165 0 29 2
rls/all-views/z-normalized/centroid/2 166 0 29 1
rls/APLAX/z-normalized/centroid/2 166 0 29 1
rls/APLAX/z-normalized/median/2 166 0 29 1
rls/APLAX/z-normalized/weighted/2 166 0 29 1
rls/all-views/z-normalized/average/2 165 0 29 2
rls/all-views/regular/weighted/2 166 0 29 1
rls/all-views/z-normalized/single/2 166 0 29 1
rls/all-views/normalized/median/2 166 0 29 1
rls/APLAX/scaled/median/2 166 0 29 1
rls/all-views/normalized/centroid/2 166 0 29 1
gls-rls/all-views/regular/single/2 166 0 29 1
rls/all-views/normalized/average/2 166 0 29 1
rls/all-views/normalized/single/2 166 0 29 1
gls/all-views/regular/single/2 166 0 29 1
gls/4CH/regular/single/2 167 1 28 0
gls/4CH/regular/average/2 167 1 28 0
gls/4CH/scaled/single/2 167 1 28 0
gls/4CH/scaled/average/2 167 1 28 0
gls/2CH/regular/single/2 167 1 28 0
gls/2CH/scaled/single/2 167 1 28 0
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rls/all-views/regular/centroid/2 167 0 29 0
rls/all-views/scaled/centroid/2 167 0 29 0
rls/4CH/regular/centroid/2 167 1 28 0
rls/4CH/scaled/centroid/2 167 1 28 0
rls/4CH/scaled/weighted/2 167 1 28 0
rls/2CH/regular/median/2 167 0 29 0
rls/2CH/normalized/weighted/2 167 1 28 0
rls/2CH/z-normalized/median/2 167 2 27 0
rls/APLAX/regular/centroid/2 167 0 29 0
rls/APLAX/scaled/centroid/2 167 0 29 0
gls-rls/all-views/z-normalized/median/2 167 0 29 0
gls-rls/4CH/regular/centroid/2 167 1 28 0
gls-rls/4CH/regular/median/2 167 1 28 0
gls-rls/4CH/scaled/centroid/2 167 1 28 0
gls-rls/2CH/normalized/weighted/2 167 1 28 0
gls-rls/2CH/z-normalized/median/2 167 2 27 0
gls-rls/2CH/scaled/median/2 167 0 29 0
gls-rls/APLAX/z-normalized/median/2 167 0 29 0

Table 10.3: Classification results of applying TSC to identify heart failure among patients. The
results are sorted in descending order of DOR, although DOR is not included.

Preprocessing-Method TP TN FP FN

regular/weighted/2 822 1610 85 996
scaled/weighted/2 822 1610 85 996
regular/ward/2 1202 1491 204 616
scaled/ward/2 1202 1491 204 616
regular/complete/2 1133 1515 180 685
scaled/complete/2 1133 1515 180 685
z-norm/complete/2 471 1604 91 1347
z-norm/weighted/2 583 1553 142 1235
norm/ward/2 903 1049 646 915
z-norm/ward/2 1091 845 850 727
norm/complete/2 1704 58 1637 114
norm/weighted/2 1756 4 1691 62
regular/average/2 1816 0 1695 2
scaled/average/2 1816 0 1695 2
regular/centroid/2 1815 0 1695 3
scaled/centroid/2 1815 0 1695 3
z-norm/average/2 1814 0 1695 4
z-norm/centroid/2 1814 0 1695 4
norm/average/2 1809 0 1695 9
norm/centroid/2 1818 1 1694 0

10.1.2 Peak-value Clustering

Table 10.4: Classification results of applying PVC to identify heart failure among patients. The
results are sorted in descending order of DOR, although DOR is not included.

Dataset-Method TP TN FP FN

gls-EF/ward/2 83 63 37 12
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gls-EF/complete/2 77 72 28 18
gls-EF/average/2 81 65 35 14
rls-EF/complete/2 83 55 36 14
gls-rls-EF/ward/2 78 55 36 15
gls-rls-EF/complete/2 70 62 29 23
rls-EF/ward/2 58 74 17 39
rls/average/2 61 72 19 36
gls-rls/ward/2 56 71 20 37
rls/ward/2 57 71 20 40
gls/ward/2 59 74 26 36
gls-rls/complete/2 4 90 1 89
rls/complete/2 58 66 25 39
gls-rls/average/2 92 3 88 1
gls/complete/2 16 83 17 79
rls-EF/single/2 96 0 91 1
rls-EF/average/2 96 0 91 1
gls/average/2 0 99 1 95
gls/single/2 0 99 1 95
gls-rls-EF/single/2 92 0 91 1
gls-rls-EF/average/2 92 0 91 1
rls/single/2 97 1 90 0
gls-EF/single/2 1 100 0 94
gls-rls/single/2 93 1 90 0

Table 10.5: Classification results of applying PVC to identify patient diagnoses among patients.
The results are sorted in descending order of DOR, although DOR is not included.

Dataset-Method TP TN FP FN

gls-EF/ward/2 118 30 2 45
rls-EF/complete/2 117 27 2 42
gls-rls-EF/ward/2 112 27 2 43
gls-EF/average/2 114 30 2 49
gls-EF/complete/2 103 30 2 60
gls-rls-EF/complete/2 97 27 2 58
rls/complete/2 81 27 2 78
rls/average/2 78 27 2 81
gls-rls/ward/2 74 27 2 81
rls/ward/2 75 27 2 84
rls-EF/ward/2 73 27 2 86
gls/ward/2 82 29 3 81
gls-rls/average/2 153 2 27 2
gls/complete/2 137 7 25 26
gls-rls/complete/2 150 0 29 5
gls-EF/single/2 162 0 32 1
rls-EF/single/2 158 0 29 1
rls/single/2 158 0 29 1
rls-EF/average/2 158 0 29 1
gls-rls-EF/single/2 154 0 29 1
gls-rls-EF/average/2 154 0 29 1
gls/single/2 163 1 31 0
gls/average/2 163 1 31 0
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gls-rls/single/2 155 1 28 0

10.1.3 Neural Network

Table 10.6: Classification results of NN, when trained to predict heart failure among patients.
The results are sorted in descending order of DOR, although DOR is not included.

Dataset-Model TP TN FP FN

gls/4CH/upsampled 46 61 39 53
rls/APLAX/regular 48 58 42 51
rls/4CH/regular 36 68 32 64
gls/APLAX/downsampled 62 40 60 36
gls/2CH/downsampled 60 39 58 39
gls/4CH/downsampled 48 52 48 51
gls/APLAX/regular 48 50 50 51
gls/2CH/regular 57 39 58 43
gls/4CH/regular 61 34 66 39
all-strain/4CH/regular 52 31 69 48
rls/APLAX/downsampled 33 47 53 65
all-strain/all-views/regular 53 27 70 46
rls/2CH/downsampled 30 45 52 69
all-strain/all-views/downsampled 36 36 61 62
gls/APLAX/upsampled 49 24 76 49
rls/2CH/regular 36 34 63 64
gls/2CH/upsampled 58 16 81 41
all-strain/4CH/upsampled 19 54 46 80
all-strain/2CH/downsampled 64 10 87 35
all-strain/APLAX/regular 41 22 78 58
all-strain/all-views/upsampled 25 33 64 73
all-strain/APLAX/downsampled 34 22 78 64
gls/all-views/regular 25 28 69 74
all-strain/2CH/upsampled 51 9 88 48
rls/all-views/downsampled 51 8 89 47
all-strain/4CH/downsampled 35 15 85 64
rls/4CH/upsampled 22 24 76 77
rls/4CH/downsampled 36 13 87 63
rls/APLAX/upsampled 27 16 84 71
rls/all-views/upsampled 13 29 68 85
gls/all-views/upsampled 13 29 68 85
gls/all-views/downsampled 46 6 91 52
rls/all-views/regular 27 13 84 72
rls/2CH/upsampled 32 9 88 67
all-strain/APLAX/upsampled 41 3 97 57
all-strain/2CH/regular 42 0 97 58

Table 10.7: Classification results of NN, when trained to predict patient diagnoses. The results
are sorted in descending order of DOR, although DOR is not included.

Dataset-Preprocessing TP TN FP FN

all-strain/4CH/upsampled 166 0 32 1
all-strain/2CH/regular 168 0 29 0

Page 106 of 112



gls/2CH/regular 168 0 29 0
rls/2CH/regular 168 0 29 0
all-strain/2CH/downsampled 167 0 29 0
all-strain/2CH/upsampled 167 0 29 0
gls/2CH/downsampled 167 0 29 0
gls/2CH/upsampled 167 0 29 0
rls/2CH/downsampled 167 0 29 0
rls/2CH/upsampled 167 0 29 0
all-strain/all-views/regular 167 0 29 0
gls/all-views/regular 167 0 29 0
rls/all-views/regular 167 0 29 0
all-strain/all-views/downsampled 166 0 29 0
all-strain/all-views/upsampled 166 0 29 0
gls/all-views/downsampled 166 0 29 0
gls/all-views/upsampled 166 0 29 0
rls/all-views/downsampled 166 0 29 0
rls/all-views/upsampled 166 0 29 0
all-strain/4CH/regular 168 0 32 0
gls/4CH/regular 168 0 32 0
rls/4CH/regular 168 0 32 0
all-strain/4CH/downsampled 167 0 32 0
gls/4CH/downsampled 167 0 32 0
gls/4CH/upsampled 167 0 32 0
rls/4CH/downsampled 167 0 32 0
rls/4CH/upsampled 167 0 32 0
all-strain/APLAX/regular 167 0 32 0
gls/APLAX/regular 167 0 32 0
rls/APLAX/regular 167 0 32 0
all-strain/APLAX/downsampled 166 0 32 0
all-strain/APLAX/upsampled 166 0 32 0
gls/APLAX/downsampled 166 0 32 0
gls/APLAX/upsampled 166 0 32 0
rls/APLAX/downsampled 166 0 32 0
rls/APLAX/upsampled 166 0 32 0

Table 10.8: Classification results of NN, when trained to predict segment indication. The results
are sorted in descending order of DOR, although DOR is not included.

Preprocessing TP TN FP FN

regular 1364 1274 607 331
downsampled 1255 1390 473 440
upsampled 934 1365 498 761

10.1.4 Peak-value Supervised Classifiers

Table 10.9: Classification results of PVSC, when trained to predict heart failure among patients.
The results are sorted in descending order of DOR, although DOR is not included.

Dataset-Model TP TN FP FN
gls-EF/Gaussian-Process 74 72 27 21
rls-EF/MLP 74 67 23 23
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rls-EF/Linear-SVM 73 67 23 24
gls-EF/Ada-Boost 73 72 27 22
gls-EF/Naive-Bayes 72 73 26 23
gls-EF/Linear-SVM 71 74 25 24
rls-EF/Decision-Tree 76 62 28 21
gls-EF/KNN 70 73 26 25
gls-EF/Random-Forest 74 68 31 21
rls-EF/Extra-Trees 77 60 30 20
gls-rls-EF/Naive-Bayes 71 63 27 22
rls-EF/Naive-Bayes 72 65 25 25
rls/Naive-Bayes 73 64 26 24
gls-rls-EF/Linear-SVM 68 66 24 25
gls-rls-EF/Extra-Trees 72 61 29 21
gls-rls/Decision-Tree 71 62 28 22
gls-rls/Naive-Bayes 70 63 27 23
gls-EF/Discriminant-Analysis 67 74 25 28
gls-EF/Extra-Trees 69 72 27 26
gls-rls-EF/Ada-Boost 69 64 26 24
rls/KNN 79 55 35 18
gls-rls-EF/Random-Forest 70 62 28 23
gls-rls/Extra-Trees 72 59 31 21
gls/Gaussian-Process 70 69 30 25
rls/Ada-Boost 74 60 30 23
gls-rls/Ada-Boost 70 61 29 23
gls/Linear-SVM 70 68 31 25
rls/Linear-SVM 73 60 30 24
gls-EF/Decision-Tree 67 71 28 28
rls-EF/KNN 75 57 33 22
gls/Ada-Boost 70 67 32 25
gls/Naive-Bayes 69 68 31 26
gls-rls/Linear-SVM 67 62 28 26
rls/Extra-Trees 74 57 33 23
gls-rls-EF/KNN 69 59 31 24
rls-EF/Ada-Boost 68 63 27 29
rls-EF/Random-Forest 71 60 30 26
rls/Decision-Tree 74 56 34 23
gls-rls-EF/Decision-Tree 66 61 29 27
gls-rls/KNN 71 55 35 22
gls/Discriminant-Analysis 65 69 30 30
gls-rls/Random-Forest 67 59 31 26
gls-rls/MLP 65 61 29 28
gls/KNN 60 73 26 35
rls/MLP 64 64 26 33
rls/Random-Forest 69 58 32 28
rls-EF/Discriminant-Analysis 68 59 31 29
gls/Extra-Trees 64 67 32 31
rls/Discriminant-Analysis 67 59 31 30
gls-rls-EF/MLP 55 67 23 38
gls/Random-Forest 69 60 39 26
rls/Gaussian-Process 69 52 38 28
rls-EF/Gaussian-Process 69 52 38 28
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gls-rls-EF/Discriminant-Analysis 57 61 29 36
gls-rls-EF/Gaussian-Process 64 54 36 29
gls/Decision-Tree 62 63 36 33
gls/RBF-SVM 43 76 23 52
gls-rls/Discriminant-Analysis 54 59 31 39
gls-EF/RBF-SVM 9 95 4 86
gls-EF/MLP 42 74 25 53
gls-rls/Gaussian-Process 59 49 41 34
gls/MLP 40 72 27 55
rls/RBF-SVM 97 0 90 0
gls-rls/RBF-SVM 93 0 90 0
rls-EF/RBF-SVM 97 0 90 0
gls-rls-EF/RBF-SVM 93 0 90 0

Table 10.10: Classification results of PVSC, when trained to predict patient diagnoses. The
results are sorted in descending order of DOR, although DOR is not included.

Dataset-Model TP TN FP FN

gls-rls-EF/Ada-Boost 151 22 6 4
gls-rls/KNN 147 23 5 8
rls-EF/Extra-Trees 153 21 7 6
gls-rls-EF/Extra-Trees 150 20 8 5
gls-rls/Extra-Trees 150 20 8 5
gls-rls-EF/KNN 146 23 5 9
rls/Linear-SVM 155 18 10 4
rls-EF/Random-Forest 155 18 10 4
rls/Extra-Trees 154 19 9 5
gls-rls-EF/Linear-SVM 150 19 9 5
rls-EF/Gaussian-Process 150 22 6 9
rls-EF/Linear-SVM 154 18 10 5
rls-EF/KNN 149 22 6 10
rls-EF/Ada-Boost 153 19 9 6
gls-rls-EF/Gaussian-Process 144 22 6 11
rls/KNN 151 20 8 8
gls-rls/Decision-Tree 147 20 8 8
gls-rls/Linear-SVM 149 18 10 6
gls-rls/Random-Forest 148 18 10 7
rls/Random-Forest 154 15 13 5
rls/Ada-Boost 151 18 10 8
rls/Gaussian-Process 147 20 8 12
gls-rls-EF/Decision-Tree 143 20 8 12
gls-rls/Ada-Boost 149 15 13 6
rls/Naive-Bayes 121 25 3 38
gls-rls/Naive-Bayes 117 25 3 38
rls-EF/Naive-Bayes 120 25 3 39
gls-rls-EF/Naive-Bayes 116 25 3 39
gls-EF/Extra-Trees 154 18 13 9
gls-EF/Naive-Bayes 132 26 5 31
gls/Naive-Bayes 137 25 6 26
rls-EF/Decision-Tree 151 15 13 8
gls-rls-EF/Random-Forest 147 15 13 8
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gls-rls/Gaussian-Process 142 18 10 13
gls-rls/MLP 145 16 12 10
rls/Decision-Tree 149 15 13 10
gls-EF/Random-Forest 152 16 15 11
gls-EF/KNN 148 18 13 15
rls-EF/MLP 151 11 17 8
gls/Extra-Trees 152 14 17 11
gls-EF/Gaussian-Process 162 2 29 1
gls-EF/Decision-Tree 147 17 14 16
gls/Random-Forest 153 13 18 10
gls/KNN 152 13 18 11
rls/Discriminant-Analysis 157 3 25 2
rls-EF/Discriminant-Analysis 157 3 25 2
gls-rls-EF/MLP 146 10 18 9
rls/MLP 148 11 17 11
gls/MLP 160 4 27 3
gls-EF/Ada-Boost 147 14 17 16
gls/Decision-Tree 147 14 17 16
gls-EF/Discriminant-Analysis 153 10 21 10
gls/Discriminant-Analysis 153 10 21 10
gls/Ada-Boost 147 13 18 16
gls-EF/MLP 158 5 26 5
gls-EF/Linear-SVM 161 2 29 2
gls/Linear-SVM 161 2 29 2
gls/Gaussian-Process 160 2 29 3
gls/RBF-SVM 163 1 30 0
rls/RBF-SVM 159 0 28 0
gls-rls/RBF-SVM 155 0 28 0
gls-rls/Discriminant-Analysis 155 1 27 0
gls-EF/RBF-SVM 163 0 31 0
rls-EF/RBF-SVM 159 0 28 0
gls-rls-EF/RBF-SVM 155 0 28 0
gls-rls-EF/Discriminant-Analysis 155 1 27 0
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