
Carl Richard Steen Fosse
Pow

er Consum
ption m

odeling of TCP and U
D

P over low
 pow

er cellular netw
orks for a constrained device

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Carl Richard Steen Fosse

Power Consumption modeling of TCP
and UDP over low power cellular
networks for a constrained device

Master’s thesis in Electronic System Design and Innovation

Supervisor: Snorre Aunet, Sigve Tjora

June 2020

Carl Richard Steen Fosse

Power Consumption modeling of TCP
and UDP over low power cellular
networks for a constrained device

Master’s thesis in Electronic System Design and Innovation
Supervisor: Snorre Aunet, Sigve Tjora
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

The expanding number of constrained Internet of Things devices is challenging researches and
industry to improve and develop new communication technology, protocols and devices. The
emergence of new cellular LPWAN technologies like NB-IoT and LTE-M as precursors for 5G
has garnered lots of attention with promises of decade-long battery life and cheap devices.
Concurrently new and improved communication protocols are developed, though most are still
based on the well known UDP and TCP standards. There is a lack of research on how well these
protocols will perform on the new cellular technologies, which this thesis aims to assess.

We have devised a model that can be used for predicting the total power consumption of a cellular
IoT device that uses the UDP based CoAP protocol or the TCP based MQTT protocol over LTE-M
or NB-IoT. A developer can use the model without extensive knowledge about cellular or protocol
behavior to estimate the energy budget of their application.

We based the model on the results from linear regression analysis on measurements of energy
spent on transmissions with increasing payload sizes. The experiments found a linear relationship
between payload size and energy for NB-IoT, while for LTE-M no clear relationship was found.
However, it was also discovered that LTE-M is more energy efficient when the message payload
exceeds a certain size, given that the modem is released early from the network after transmission.

An nRF9160 Development Kit from Nordic Semiconductor was used to gather data for the ex-
periments and to test the model. Estimations show that 10-year battery life is achievable for an
application using either CoAP or MQTT over NB-IoT with transmissions of up to 1280 bytes
every 2 hours, under the assumption of 4µA sleep current. We estimated that the same battery
life is achievable over LTE-M when transmitting the same amount of data every 4 hours. CoAP
performed overall better than MQTT from an energy consumption standpoint.

i

Sammendrag

Det økende antall ressursbegrensede Internet of Things-enheter utfordrer forskere og industri til
å forbedre og utvikle ny kommunikasjonsteknologi, protokoller og enheter. Fremveksten av nye
mobilnett LPWAN-teknologier som NB-IoT og LTE-M i rollen som forløpere for 5G har fått mye
oppmerksomhet med løfter om ti års lang batterilevetid og billige enheter. Samtidig utvikles nye
og forbedrede kommunikasjonsprotokoller, selv om de fleste fortsatt er basert på de velkjente
UDP- og TCP-standardene. Det mangler forskning på hvor godt disse protokollene vil fungere for
de nye mobilnettteknologiene, og denne oppgaven tar sikte på å vurdere dette.

Vi har utviklet en modell som kan brukes til å forutsi det totale strømforbruket til en mobil IoT-
enhet som bruker den UDP-baserte CoAP-protokollen eller den TCP-baserte MQTT-protokollen
over LTE-M eller NB-IoT. En utvikler kan bruke modellen uten omfattende kunnskap om mobil-
eller protokollatferd for å estimere energibudsjettet for applikasjonen deres.

Vi baserte modellen på resultatene fra lineær regresjonsanalyse på målinger av energi brukt
på overføringer med økende størrelse. Eksperimentene fant en lineær sammenheng mellom
pakkestørrelse og energi for NB-IoT, mens det for LTE-M ikke ble funnet noen klar sammenheng.
Imidlertid ble det også oppdaget at LTE-M er mer energieffektiv når meldingsstørrelsen overstiger
en viss størrelse, gitt at modemet frigjøres tidlig fra nettverket etter overføring.

Et nRF9160 utviklingssett fra Nordic Semiconductor ble brukt til å samle data for eksperimentene
og for å teste modellen. Estimater viser at 10-års batterilevetid er oppnåelig for en applikasjon som
bruker CoAP eller MQTT over NB-IoT med overføringer på opptil 1280 byte hver 2. time, under
antagelse av 4 s mu ampere sovestrøm. Vi estimerte at den samme batterilevetiden er oppnåelig
over LTE-M når du overfører samme datamengde hver fjerde time. CoAP presterte generelt bedre
enn MQTT fra et energiforbrukssynspunkt.

ii

Preface

This Master’s thesis is my final required submission before finishing the 5-year MSc program
Electronic System Design and Innovation (elsys) at The Department of Electronic Systems (IES),
Norwegian University of Science and Technology (NTNU). The project is an engagement from the
company Disruptive Technologies AS on the feasibility of using low power cellular technology
in sensor solutions. Preliminary research was conducted during the autumn of 2019, surveying
cellular standards and protocols for use in Internet of Things solutions. The master project
continued this work through the spring of 2020 by modeling the power consumption of selected
communication protocols over cellular networks. Snorre Aunet of the IES has supervised the
project together with Sigve Tjora from Disruptive technologies. I, Carl Richard Steen Fosse
conducted the research.

The spring of 2020 brought with it some surprises. And while home office and social distancing
may be the ideal conditions for working hard, it tested both the will-power and motivation of the
author. In the end I did prevail, resulting in this thesis, but that was not only to my own merit.

I want to express my gratitude towards my supervisors, Sigve and Snorre, for closely following
my progress suggesting alterative approaches when I was stuck and providing good feedback to
my work and research.

I would like to thank the Pål Sturla Sæther and NTNU Internet of Things lab for borrowing out the
OTII-ARC, a measurement instrument that revealed itself to be crucial for finishing the research.

Long days working alone eventually led to the formation of a "digital study room" with some of
my fellow master candidates. This has been of much help and motivation, so I would like to thank
Erik, Embla, Kaja and all the others1 for sticking together and helping each other towards the
finishing line.

Lastly I would like to express my deepest gratitude towards Silje Aagaard. She has been there for
me throughout this whole ordeal, even though her own work as a teacher has been challenging.

1In general I am very grateful for my study programme, elsys, and what it stands for.

iii

Contents

Abstract i

Sammendrag ii

Preface iii

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Structure . 2

2 Background 3

2.1 Other Low Power Wide Area Networks . 3

2.2 Cellular low power wide area network standards 4

2.2.1 LTE-M . 4

2.2.2 NB-IoT . 5

2.2.3 Power saving mechanisms for NB-IoT and LTE-M 5

2.3 Radio resource control states . 8

2.3.1 Connected DRX configuration . 10

2.4 Communication protocols . 11

2.4.1 TCP . 11

iv

2.4.2 User Datagram Protocol . 13

2.4.3 Research on TCP and UDP over cellular connections 14

2.4.4 Maximum payload calculation . 14

2.5 modeling energy consumption . 15

2.5.1 Model . 16

2.6 Linear Regression . 17

2.6.1 Metrics of linear regression . 17

3 Implementation and methodology 19

3.1 Equipment, tools and software . 19

3.1.1 Cellular hardware: nRF9160 from Nordic Semiconductor 19

3.1.2 Cellular provider: Telenor NB-IoT . 20

3.1.3 Measuring unit: OTII-ARC . 20

3.1.4 Power Supply: Gw Instek GPD-3303s . 21

3.1.5 MQTT broker and client . 21

3.1.6 CoAP server . 21

3.1.7 Data processing platform: Python Jupyter Notebook 22

3.2 Development and test environment . 22

3.2.1 Hardware setup . 22

3.2.2 Development environment for the nRF9160 22

3.2.3 Communicating with the nRF9160 modem 24

3.3 nRF9160 application design . 24

3.3.1 Project Configuration . 27

3.3.2 Determining maximum payload . 27

3.3.3 Application challenges . 28

v

3.4 Data processing . 28

4 Experiments and results 33

4.1 Parameter measurements . 33

4.2 Payload size sweep . 34

4.3 Regression results . 39

4.3.1 Transmission energy . 39

4.3.2 Transmission time . 40

4.3.3 Regression remarks . 41

4.4 Model performance . 41

4.5 Case Study . 45

5 Discussion 47

5.1 UDP and TCP over cellular networks . 47

5.2 Payload size effects . 48

5.3 modeling . 49

5.4 Working with a cellular device . 50

6 Conclusion 51

A Parameter measurements 54

B nRF9160 - CoAP application 57

C nRF9160 - CoAP application 69

D Processing notebook 81

E Model notebook 100

vi

F Processing helper functions 115

References 119

vii

viii

Abbreviations

3GPP Third Generation Partnership Project.

CoAP Constrained Application Protocol.

CSV Comma Separated Variable.

DL downlink.

DRX Discontious Receptions.

DTLS Datagram Transport Layer Security.

eDRX Extended Discontious Receptions.

FoTA Firmware over The Air.

GPIO General purpose input output.

HTTP Hyper Text Transport Protocol.

IETF Internet Engineering Task Force.

IoT Internet of Things.

IP Internet Protocol.

LPWAN Low Power Wide Area Network.

LTE Long Term Evolution.

MCU Microcontroller unit.

MQTT Message Queue Telemetry Transport.

MSS Maximum Segment Size.

MTU maximum transmission unit.

ix

NB-IoT Narrowband-Internet of Things.

NCS nRF Connect sofware development kit.

PDCCH Physical Downlink Control Channel.

PSM Power Saving Mode.

pTAU Periodic Tracking Area Update.

QoS Quality of Service.

REST Representational state transfer.

RRC Radio Resource Control.

RTOS Real Time Operating System.

SDK software development kit.

SiP System in Package.

TAU Tracking Area Update.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

UART Universal Asynchronous Receiver/Transmitter.

UDP User Datagram Protocol.

UE User Equipment.

UL uplink.

URI Unique Resource Identifier.

x

List of Tables

2.1 Some specifications of LTE-M and Narrowband-Internet of Things (NB-IoT)[10]. 4

2.2 T3412 encoding . 6

2.3 T3324 encoding . 6

2.4 Possible connected DRX timer values from 3GPP TS 36.331 [17]. 10

2.5 Possible RRC inactive timer configurations from 3GPP TS 36.331 [17]. 10

2.6 The Quality of Service (QoS) levels of Message Queue Telemetry Transport (MQTT). 13

2.7 Battery life estimates from 3GPP TS 45.820, section 7.3.6.4 [35, p.-393]. 16

3.1 Development environment. 23

3.2 Application function calls. 25

3.3 Project configurations . 27

4.1 Measurement results . 34

4.2 Settings for payload sweep experiment . 35

4.3 Message energy regression results and scores . 39

4.4 Message transmission time regression results and scores 40

4.5 Prediction of total energy for small test. ‹ . 42

4.6 Prediction of total energy for large test. [µWh] 42

4.7 Battery life difference between 1280 byte and 1 byte transmissions 46

A.1 NB-IoT cDRX parameter measurements . 55

xi

A.2 LTE-M cDRX parameter measurements . 56

xii

List of Figures

2.1 Diagram of PSM timing. TAU(Tracking Area Update) period is the time between
the device notifying the network. [2]. 6

2.2 Diagram of Extended Discontious Receptions (eDRX) timing.[2]. 7

2.3 Results from research done on Power Saving Mode (PSM) and eDRX perfor-
mance[16]. 8

2.5 MQTT operation example [8]. 12

2.6 MQTT packet structure. 12

2.7 Constrained Application Protocol (CoAP) packet structure. 14

3.1 nRF9160 Development Kit. Picture credit: Nordic Semiconductor 20

3.2 Wiring diagram for the hardware setup. Based on the diagram [47]. 23

3.3 Raw data example from a CoAP over NB-IoT payload sweep experiment. Periods
of transmission activity are marked with red, with identifying labels underneath. 29

3.4 Segmentation process demonstrated on the CoAP data from figure 3.3. 30

3.5 Scatter visualization of the transmission energy for CoAP over NB-IoT. 31

4.1 Results of NB-IoT payload sweep measurements. 36

4.2 Results of LTE-M payload sweep measurements. 37

4.3 Comparison of results from payload sweep measurements. 38

4.4 Regression lines and calculated values for transmission energy of messages. . . 40

4.5 Regression lines and measured values for transmission time of messages. 41

xiii

4.6 Results of model testing. 43

4.7 Results of model testing. 44

4.8 Plot depicting the difference between the total energy increase between transmis-
sions for real and predicted total energy. 45

4.9 Estimated life of a 5Wh battery for an application transmitting at various intervals
using MQTT and CoAP over NB-IoT and LTE-M. Note that the maximum interval
is different for LTE-M and NB-IoT. 45

xiv

Chapter 1

Introduction

The vast technological advancements within the electronics industry have opened new fields for
the Internet of Things. With devices smaller and more efficient, it is now possible to monitor
figuratively everything, relieving their human counterparts of tedious data collection tasks. These
devices are connected to the internet using a wide array of protocols and standards ranging from
well-known implementations like HTTP to highly optimized proprietary solutions.

The company Disruptive Technologies AS (DT) has developed a very power efficient sensor/-
gateway solution that enables a single sensor to have a battery life of up to 15 years, making the
solution ideal for long term monitoring of buildings, factories and inaccessible areas. However, the
system is inefficient in low-density scenarios where only a small number of sensors are present as
the gateway should be connected to at least five sensors to remain sustainable. Possible solutions
to this challenge may use a cheap device that achieves a wide area network (WAN) connectivity
with low power consumption. The novel NB-IoT[1] and LTE-M[2] cellular standards introduced
in 2016 targets this kind of Internet of Things (IoT) device operation.

1.1 Motivation

The increasing constraints on devices do not only pose new requirements for the physical layer
connectivity, it also demands more from the high-level communication protocols requiring
smaller overhead and new methods for ensuring reliable transmissions. This have resulted in the
emergence of protocols like the CoAP[3] using the User Datagram Protocol (UDP)[4], though
we still see more demanding protocols like MQTT[5] built on the Transmission Control Protocol
(TCP)[6] still being in wide usage [7]. This thesis aims to model the power consumption of LTE-M
and NB-IoT in relation to the used communication protocol. Such a model will simplify the
development of low power cellular applications and in turn shorten the time to market. Such a
model can also be used to assess the feasibility of using a cellular device in DT’s solution.

1

2 CHAPTER 1. INTRODUCTION

1.2 Goals

We set out to answer the following questions with the research done in this thesis:

1. How do TCP and UDP perform on cellular networks?

2. Is there a relationship between the payload of a message and the consumed time and energy
for transmission over NB-IoT and LTE-M?

3. Can the total energy consumption when using either TCP or UDP over cellular networks
be correctly modeled assuming the relationship above?

1.3 Structure

The thesis is structured as follows: In chapter 2, we will present relevant background theory and
related work. The NB-IoT and LTE-M standards will be thoroughly covered along with similar
Low Power Wide Area Network (LPWAN) standards. Additionally, we will describe the power
saving mechanisms PSM and eDRX along with the communication standards MQTT (TCP) and
CoAP (UDP). The implementation of test applications and data processing are documented in
chapter 3. In this chapter, we will also cover the equipment and software that were used. The
experiments, together with the results are presented in chapter 4, followed by a discussion of the
findings in chapter 5. The thesis is concluded in chapter 6.

Chapter 2

Background

This chapter will provide an overview of the key aspects behind developing a low power cellular
sensor device. A set of other LPWAN types will be introduced and compared to their cellular
counterparts NB-IoT and LTE-M in order to get a perspective on the competition and advancements
within the field. We will then do a more thorough description of the cellular technologies and
their respective power-saving mechanisms derived from the author’s earlier project [8]. Followed
by an explanation of the communication protocols MQTT and CoAPalong with their respective
transport layer protocols TCP and UDP. These will also be discussed in the context of usage
on cellular networks. We will conclude the chapter by presenting other research on modeling
of power consumption on cellular embedded devices and provide a description of this project’s
approach to the matter.

2.1 Other Low Power Wide Area Networks

The application spectrum of the Internet of Things is growing, with new fields of use within smart
city technology, agriculture, asset tracking and other industries. These application requirements
for connectivity extends beyond the scope of short-range protocols like Bluetooth and WiFI. On
the other end, conventional cellular networks like GSM and 4G provide adequate coverage, but at
the expense of high energy use. The lack of any technology targeting constrained devices has
opened up a market for a novel type of wide-area networks that targets devices that require low
energy consumption and long-range operation, with the accepted cost of lower data rate. These
are gathered under the collective name of LPWANs.

The cellular standards, NB-IoT and LTE-M, that are in focus for this report are classified as
LPWANs. However, there are other prominent LPWAN alternatives that one could consider. Most
prominently are the LoRaWAN and Sigfox technologies, which both are deployed in the unlicensed
band as opposed to the cellular standards. Though most LPWANs are recent technologies that all

3

4 CHAPTER 2. BACKGROUND

have emerged within the last decade, SigFox(released in 2010) and LoRaWan(released in 2015)
have had more time to mature. Research is done in [9] comparing NB-IoT with LoRaWan and
Sigfox shows that the two latter ones are targeting heavily constrained devices with slower data
rates, optimizations for infrequent transmission and superior battery life. However, NB-IoT has a
comparatively superior data rate as well as better support for massive networks.

2.2 Cellular low power wide area network standards

The 3GPP defined the LTE-M and NB-IoT standards in 2016[10] as a part of their commitment to
support cellular IoT throughout 4G and eventually 5G. Looking at table 2.1, that contains some
key specifications, it is clear that the two protocols target different use cases. The details will be
discussed in the following paragraphs.

Table 2.1: Some specifications of LTE-M and NB-IoT[10].

LTE-M NB-IoT
Deployment In-Band LTE In-band & Guard-Band LTE, standalone
Coverage 155.6 dB 164 dB
Bandwidth 1.08 MHz 180 kHz
Peak data rate 1 Mbps ∼50 kbps
Latency 50-100 ms 1.5-10s
Target battery life* ∼10 years >10 years
Maximum single packet size** 8188 octets 1600 octets
* Using a 5 watt hour battery (depending on traffic and coverage needs)
** Limited by the Protocol Data Unit of the Packet Data Convergence Protocol defined in 3GPP TS36.323 [11, p.-12].
Larger sizes leads to fragmentation between the layers.

2.2.1 LTE-M

LTE-M extends the LTE standard with the goal of lowering cost and power consumption while
maintaining relatively high performance with regards to speed and latency. We can see this in
table 2.1 comparing to NB-IoT, as LTE-M excels in both bandwidth and data rate at the expense
of battery life and coverage. Furthermore, the standard supports both mobile (i.e. moving)
User Equipments (UEs) and voice transmission, making it a good candidate for asset tracking or
emergency equipment. The data rate is variable as well, so it can be adjusted according to the
application.

Another perk of LTE-M is that a cellular network operator can effortlessly deploy the standard to
existing Long Term Evolution (LTE) stations through software updates. This reduces both the
complexity and deployment costs of devices. In general, LTE-M is well suited for IoT applications.
However, the higher energy usage may invalidate the protocol for use in very constrained devices
where power consumption, not latency, is the restriction.

2.2. CELLULAR LOW POWER WIDE AREA NETWORK STANDARDS 5

2.2.2 NB-IoT

The NB-IoT standard targets the lower end of the market and is specially designed to support
devices that transmit small amounts of data, at long intervals. As stated in table 2.1, it has a
bandwidth of only 180 kHz, thereof the "narrowband" name. This results in cheaper units as a
180 kHz frontend requires less sophisticated hardware compared to LTE-M [12]. Besides, the
modulation scheme of NB-IoT is restricted so that only one antenna is used for both uplink and
downlink transmission, further lowering the device cost[13]. However, the deployment cost of
NB-IoT for cellular network operators will be higher as new hardware must be installed on every
base station. This cost does not seem to be a big concern as the standard is being adopted by
several operators around the world, according to the Global mobile Suppliers Association[14].

The narrow bandwidth enables the NB-IoT to exist in the three different ways listed in the
specifications; inside the LTE band, in the guard bands of LTE and on independently licensed
bands. This enables the network to support over 50.000 devices per cell, allowing massive sensor
networks, like smart cities, to be established [10]. This kind of application is further encouraged
as NB-IoT lacks good mobility support as opposed to LTE-M. Hence, devices should be stationary.
The higher coverage of NB-IoT also allows for deeper signal penetration, enabling devices to be
situated within buildings and underground. This is investigated by Lauridsen, Kovacs, Mogensen,
et al.[15]. The research discovered that NB-IoT devices achieve a 95% coverage of "deep indoor"
users, though at the cost of 2-6 times higher power consumption and support for a tenfold fewer
devices per base station. Comparably LTE-M only achieved 80% coverage.

It is clear that NB-IoT is less versatile than LTE-M, but the optimizations and features imple-
mented make it very attractive for certain, specialized applications that require very low power
consumption.

2.2.3 Power saving mechanisms for NB-IoT and LTE-M

Both of the aforementioned LPWAN technologies are developed to be used with low power
devices, but as described in the previous paragraphs, they target different applications. This aside
LTE-M and NB-IoT supports the two same mechanisms for saving power; eDRX and PSM. Which
are both part of the minimum specifications for LTE-M and NB-IoT networks[1], [2]. A more
thorough description of these follows in the next subsections.

2.2.3.1 Power Saving Mode (PSM)

PSM enables a device to stay attached to the network even after it enters deep sleep, where most of
it is circuitry, including the radio receiver, is turned off. The mechanism also saves the device the
energy cost of reattaching to the network when waking up, but it will be unreachable during the

6 CHAPTER 2. BACKGROUND

hibernation. PSM is initiated by the device by suggesting two values to the network: the period
of which it will be notifying the network that its still registered, and how long it will stay awake
after said notification. The two timers are defined as T3412 and T3324 respectively. The network
will respond with the accepted timer values. Note that these may differ from the requested ones.
Figure 2.1 show the interactions between the timers.

Figure 2.1: Diagram of PSM timing. TAU(Tracking Area Update) period is the time between the
device notifying the network. [2].

The encoding of T3412 is shown in table 2.2 and the encoding of T3324 in table 2.3. Both encoding
schemes reserves bit 8 to 6 for value increment and bit 5 to 1 for binary-coded timer value. The
maximum TAU period is 413 days, while the reachable time should be a minimum of 16 seconds,
with a recommended ratio of 90% between the two [1], [2].

Table 2.2: T3412 encoding

bit 8 7 6 meaning
0 0 0 value is incremented in multiples of 10 minutes
0 0 1 value is incremented in multiples of 1 hour
0 1 0 value is incremented in multiples of 10 hours
0 1 1 value is incremented in multiples of 2 seconds
1 0 0 value is incremented in multiples of 30 seconds
1 0 1 value is incremented in multiples of 1 minute
1 1 0 value is incremented in multiples of 320 hours
1 1 1 deactivated

Table 2.3: T3324 encoding

bit 8 7 6 meaning
0 0 0 value is incremented in multiples of 2 seconds
0 0 1 value is incremented in multiples of 1 minute
0 1 0 value is incremented in multiples of decihours
1 1 1 deactivated

2.2. CELLULAR LOW POWER WIDE AREA NETWORK STANDARDS 7

2.2.3.2 Extended Discontinuous Reception (eDRX)

Discontinuous Reception (DRX) is an already existing LTE power saving mechanism that turns
of the receiving part of a device modem for brief periods of time, saving power while it is off.
The periods of receiving are called paging. DRX is already in extensive use for mobile devices
like cellphones and has been expanded in the LTE-M and NB-IoT specifications to extend the
time where the modem is not receiving significantly. Hence, the "extended" addition to DRX.
Applications using eDRX must tolerate downlink delay, but this is usually acceptable for IoT
devices [2].

As with PSM, the device and the network negotiate the period of time in which the receiver will
be off. The resulting timing behavior is shown in figure 2.2.

eDRX does not have the same power-saving capabilities as PSM. However, it is more versatile
when it comes to the network availability as the device stays awake with only short durations of
unreachability as opposed to the long sleep period of PSM.

Figure 2.2: Diagram of eDRX timing.[2].

2.2.3.3 Power saving performance of eDRX and PSM

How the power consumption of a device using eDRX and/or PSM will be affected depends on the
configuration of the two timers. This has been researched by Sultania, Zand, Blondia, et al.[16] for
a NB-IoT UE. A mathematical model for power consumption during possible device connection
cycles was derived and compared to simulated behavior. Figure 2.3 displays a selection of the
results. As expected, a longer T3412(e.g sleep time) value yields better power-saving performance,
notice as well in figure 2.3b that estimations show battery life well over 10 years, especially given
short idle time (T3324). Furthermore, it is worth noting in figure 2.3a that the combination of
a short PSM timer (T3412) yields insignificant power consumption improvements if the device
uploads data rarely.

8 CHAPTER 2. BACKGROUND

(a) Energy consumption for different PSM timer,T3412,
values with an idle timer T3324 of 30s.

(b) Estimated battery life of a 1388 mAh battery for
different values ofT3412 andT3324, with an uplink data
interval of 24 hours.

Figure 2.3: Results from research done on PSM and eDRX performance[16].

2.3 Radio resource control states

Radio Resource Control (RRC) is the over-the-air interface of the LTE standard [17]. Cellular
UE operates in two RRC states RRC idle and RRC connected. For 5G a third state; RRC inactive is
introduced as well, but as the 5G network is yet to be extensively deployed it is out of scope for
this thesis.

In idle mode the modem is inactive and the UE is disconnected from the network. Figure 2.4a
displays a transition diagram for the two states, including transitions within the respective
states. Figure 2.4b complements the state diagram, showing the typical chain of events and their
respective energy levels.

As shown in figure 2.4a the UE can transition from RRC idle to RRC connected in three manners:
if the UE initiates a data upload, if the PSM timer T3412 expires or if downlink data is available
during paging. The latter may only occur if the eDRX timer T3324 is larger than zero, as the
modem will go straight to PSM sleep otherwise.

When entering RRC connected the UE will issue a Tracking Area Update (TAU) to the network. If
data is available for either upload or download it will perform the transactions before entering
the earlier described connected eDRX mode, staying connected and paging until the RRC inactive

timer expires. This timer will be restarted if a transaction is initiated during this period. If no data
is available after entering the RRC connected state, the modem will go straight to RRC idle after
issuing the TAU. Note that the UE always can initiate a upload, regardless of RRC state. Downlink
transactions can only be initiated while the UE is paging.

2.3. RADIO RESOURCE CONTROL STATES 9

RRC connection release RRC Connection establish

T3412 expire
or

UL request
PSM

UL data transfer finished
UL

DL data transfer finished

UL data available

RRC inactivity
timer expire

Connected
DRX

DL data available

DL

RRC Connected

RRC Idle

Initiate
network

connection

No UL/DL data

Data available

T3324 expire

eDRX timer expire
or

UL request

eDRX

Active

UL/DL data
available

DL Data
unavailable

Paging

UE power on

(a) Flowchart depicting the state transitions of a modem between RRC idle and RRC connected, with internal
transitions included. Derived from the diagram in [16].

RRC CONNECTEDRRC IDLE RRC IDLE RRC CONNECTED

T3324 - Active timer

T3412 - PSM timer

PTW
(paging time window)

IeDRX cycle

CeDRX cycle

RRC Inactive Timer

time

po
w

er
 c

on
su

m
pt

io
n

DRX inactive
timer

R
R

C
 re

le
as

e

In
iti

at
e

ne
tw

or
k

co
nn

ec
tio

n

TX/RX

Connected eDRX
Idle eDRX PSM

In
iti

at
e

ne
tw

or
k

co
nn

ec
tio

n

TX/RX

(b) Time diagram depicting the different power levels of a modem within the RRC idle and RRC connected
states. Derived from [18].

10 CHAPTER 2. BACKGROUND

2.3.1 Connected DRX configuration

The 3GPP deployment guide for LTE-M[2] and NB-IoT[1] recommends eDRX is supported both
in idle and connected mode, and that the timers controlling these mechanisms are configurable.
The configuration of the idle eDRX is already explained section 2.2.3.2. The duration of connected
mode eDRX is restricted to the RRC inactive timer, defined on the base station equipment. Two
important parameters are mentioned for connected eDRX; the Discontious Receptions (DRX)
cycle, describing the duration between paging actions and onDurationTime, describing how long
the UE will monitor the channel. In between monitoring the UE remains on, but in a low power
mode. Possible values the network can use for these timers are shown in table 2.4.

Table 2.4: Possible connected DRX timer values from 3GPP TS 36.331 [17].

Timer name Timer values
onDurationTimer psf1, psf2, psf3, psf4, psf5, psf6, psf8, psf10, psf20, psf30, psf40, psf50, psf60,

psf80, psf100, psf200
DRX cycle sf10, sf20, sf32, sf40, sf60, sf64, sf70, sf80, sf128, sf160, sf256, sf320, sf512,

sf640, sf1024, sf1280, sf2048, sf2560

These values are given as a number of sub-frames(sf) and Physical Downlink Control Channel
(PDCCH) sub-frames(psf). These are a part of the synchronization scheme of LTE, that divides
operations into frames and sub-frames. One radio frame is 10 ms long and consists of equally
divided sub-frames, each of 1ms length [19]. A PDCCH sub-frame describes the sub-frames
while monitoring the network. Based on this, the timer values in table 2.4 can be interpreted in
milliseconds.

The RRC Inactivity Timer is referred to as the dataInactivityTimer in the 3GPP specifications [20,
p.-212]. Note that the same specifications state that the timer is optional, enabling the device
to move to idle mode immediately if configured. Table 2.5 show possible values for the RRC
inactivity timer. This timer is defined on the network side, making it unavailable for the UE-side
configuration. However, release 14 from 3GPP introduces the release assistance indication (RAI)
feature for LTE-M and NB-IoT enabling the UE to notify to the network when no more uplink (UL)
or downlink (DL) is expected [21, p.-370]. The use of this mechanism among other optimizations
for an IoT device using LTE has been researched in [22]. They conclude that the RAI functionality
can have a significant effect on power consumption for applications with moderate transmission
intervals.

Table 2.5: Possible RRC inactive timer configurations from 3GPP TS 36.331 [17].

Timer name Timer values
RRC Inactivity timer s1, s2, s3, s5, s7, s10, s15, s20, s40, s50, s60, s80, s100, s120, s150, s180

2.4. COMMUNICATION PROTOCOLS 11

2.4 Communication protocols

The topics we have covered so far in this chapter can be mapped to the lower layers of the
OSI-model [23]. While it is important to have an understanding of the behavior in these lower
layers, most developers will commonly only interact with the application-level communication
protocols. The following section will cover two of the most commonly used protocols in IoT;
MQTT and CoAP, as well as their respective transport layer protocols; TCP and UDP.

The Transmission Control Protocol is defined in RFC793 from the Internet Engineering Task Force
(IETF) with the intent of being a "highly reliable host-to-host protocol" [6]. This reliability comes
in the form of ensuring confirmed delivery of packets over a persistent connection between hosts.
On the other hand, the User Datagram Protocol strives to minimize the protocol mechanism at
the expense of reliability. It was defined in RFC768 in 1980 [4].

2.4.1 TCP

The increased reliability of TCP comes with increased overhead, which in turn can affect power
consumption and latency of communications. This could make the protocol unsuitable for
the latency-prone operation of constrained IoT devices. Research in [24] has assessed TCP’s
performance on constrained devices, concluding that even though TCP underperforms UDP trends
still suggests that the protocol will be in extensive use for IoT devices in the forseeable future.
This is also clear from a survey done by Eclipse in 2018, showing that the TCP based standard
MQTT is the most used protocol for IoT applications today [7]. The IETF has provided guidelines
for using TCP on constrained devices, suggesting that many of the claims on the unsuitability of
the protocol are invalid or solvable [25].

2.4.1.1 MQTT

The Message Queue Telemetry Transport protocol is a an ISO standard currently being maintained
byOASIS [5]. It uses a publish/subscribemessage pattern allowing individual clients in the network
to be decoupled, communicating only with a central server (also known as broker). An example of
how this behavior is shown in figure 2.5. The publish/subscribe scheme also enables one-to-many
message distribution so that subscribers can read data published by a single client.

The publish/subscribe scheme of MQTT is implemented so that clients can subscribe and publish
to defined topics. This feature can be useful in many instances, for example, by applications with
many sensors providing different kinds of data.

With lightweight headers and a user controllable Quality of Service scheme the MQTT standard
targets machine-to-machine and IoT applications. The packet structure of MQTT can be seen in

12 CHAPTER 2. BACKGROUND

MQTT BrokerMQTT client

MQTT client

MQTT client

Subscribe

Publish

Figure 2.5: MQTT operation example [8].

figure 2.6

Packet lengthPacket
type

Variable length header (optional)

Payload (optional)

0 1 2 543 6 7
1Byte

Bit
1 to 4

Flags

0 1 2 543 6 7

Packet type : Publish, connect and so on
Flags : Level of QoS, retain and duplicate messages
Packet length : The remaining length of the packet
Variable length header : Only used for certain message types
Payload : Payload of the message

Figure 2.6: MQTT packet structure.

As we can see from figure 2.6 the minimum packet size is only 2 bytes. Though as we have
established TCP requires extensive overhead, which is reflected in the total overhead for MQTT.
The headers TCP and Internet Protocol (IP) will add up to the total data actually being transmitted.
From the IETF definitions of TCP[6] and IP[26] we can see that both have 20 byte headers, hence
the physical layer would have to handle a minimum of 42 bytes for a MQTT transmission. Efforts
are made towards lighter operation through the introduction of MQTT Sensor Network (MQTT-
SN), which is a UDP based implementation of MQTT [27]. This has not seen much development
since its introduction in 2013, but is expected to change with higher demand for constrained
protocols in IoT.

Every MQTT packet has a QoS level defined by a flag in the header. The three supported levels
are shown in table 2.6.

The QoS mechanism could seem redundant as TCP ensures delivery, but that is only between
client and server. The decoupled operation of the publish/subscribe messaging pattern means that
the protocol needs to facilitate for guaranteed delivery all the way from publisher to subscriber,

2.4. COMMUNICATION PROTOCOLS 13

Table 2.6: The QoS levels of MQTT.

QoS 0 at most once (i.e "fire and forget")
QoS 1 at least once
QoS 2 exactly once

something TCP does not account for. For example, would packets lost by a server crash after
receiving, but before delivering, only be detected if the packets use the QoS 1 or 2 flags.

2.4.2 User Datagram Protocol

UDP is a connectionless protocol, with datagrams being sent from host to receiver with no required
setup, or guarantee of delivery or duplicate messages. The simple nature of the protocol makes
it ideal for constrained devices though the lack of reliability has required the development of
supporting message protocols using UDP as transport. One of these is the Constrained Application
Protocol (CoAP).

2.4.2.1 Constrained Application Protocol

CoAP was defined by the IETF in 2014 with the intent of creating a web protocol for constrained
environments[3]. Similarly to another well known web protocol Hyper Text Transport Protocol
(HTTP), CoAP is based on the the Representational state transfer (REST)ful architecture [28].
Though the CoAP’s specification clearly states that the protocols main intention is not to compress
HTTP, but rather to enable use of the RESTful architecture for constrained machine-to-machine
applications.

Entities participating in a CoAP network are named endpoints, and as opposed to MQTT, they
follow a request/response message pattern, where transactions are initiated by a sender requesting
a method on a resource hosted on a recipient. The recipient will, in turn, respond with a response
code. This transaction is handled asynchronously by CoAP in contrast to HTTP[3].

UDP based protocols must handle reliability schemes for retransmissions and duplicate delivery
on the application protocol level. CoAP does this by introducing a lightweight option QoS scheme
along with message IDs. All CoAP packages have a message ID so that duplicates can be detected.
In addition, a message can be one of four types: confirmable, non-confirmable, acknowledgment
or reset. Confirmable messages will require an acknowledgment from the receiver and will start
retransmissions with exponential back-off in the case of a time out. Non-confirmable messages
are essentially "fire-and-forget", but duplicates will be detected based on the message ID.

The CoAP packet structure is shown in figure 2.7. The minimum packet size is 4 bytes, being
an empty packet without payload or options. Though not as small as the MQTT header t is still

14 CHAPTER 2. BACKGROUND

very light. The token is used to match a request with a response and is always present in a CoAP
message. Requests and responses can also carry options, which are information relating to how
an endpoint shall handle the message. Options can, for example, consist of Unique Resource
Identifier (URI) information, telling a server on what resource to use a method. Hence, most
requests/responses will always carry some options.

Ver T TKL Code Message ID

Options(optional)

Payload(optional)

0 1 2 543 6 7 0 1 2 543 6 7 0 1 2 543 6 7 0 1 2 543 6 7
1 2 3 4Byte

Bit

Ver : CoAP version
T : Transaction type
TKL : Token length
Code : Method or response code
Message ID : Unique identifier

Tokens(optional) 0 - 8 bytes

Figure 2.7: CoAP packet structure.

2.4.3 Research on TCP and UDP over cellular connections

The topic of choosing a communication protocol for constrained cellular devices have been
assessed in several research papers. CoAP and MQTT over NB-IoT were assessed in [29] which
concluded that the UDP based CoAP consistently performed better than the TCP basedMQTT over
NB-IoT, though for less dense scenarios MQTT still worked well. Similar results were uncovered
in [30] when comparing the performance of MQTT and MQTT-SN, the UDP implementation of
MQTT. In this scenario, the TCP application had a packet loss of almost 90%, while UDP achieved
close to 4% loss. To the author’s knowledge, the use of TCP and UDP over LTE-M has not been
researched.

2.4.4 Maximum payload calculation

The maximum payload size of a message is under several restrictions. An application using
UDP, which boasts a maximum theoretical payload length of 216 bytes, will for example have an
actual payload limit far below this, as the other layers of the connection path can be limited by
a maximum transmission unit (MTU). Larger messages would either need to be fragmented or
dropped. The MTU can be used as a base when calculating the maximum payload size for an
application. In the case of CoAP the header plus options and tokens can be expressed as:

sCoAP overhead = sheader + stoken + soptions (2.1)

2.5. MODELING ENERGY CONSUMPTION 15

The parameters are as follows:

• stoken is the token size of 0 - 8 bytes.

• sheader is the header of 4 bytes. The absolute minimum size of a CoAP message.

• soptions is the CoAP options, with varying length.

Based on this, we can express the maximum payload of a CoAP message with the following
equation.

smax payload = MTU − (sIP + sUDP + soverhead) (2.2)

When connecting to an internet service the MTU commonly follows the connection path, meaning
that the link with the smallest MTU decides the MTU for all links in order to avoid fragmentation
[31]. To avoid fragmentation CoAP also supports Block-Wise transfers, enabling larger messages
to be sent [32].

The issue of payload size is not as pressing for TCP as the protocol supports a sophisticated
segmentation scheme, allowing larger payloads to be split into several smaller TCP packets based
on the option Maximum Segment Size (MSS). The MSS commonly restricted by the MTU of the
IP layer to avoid IP fragmentation. The MSS is assumed to be 536 if not received on connection
initiation [33, p.-85].

2.5 modeling energy consumption

A general approach to modeling the power consumption of IoT systems has been proposed in
[34]. The research divides the elements contributing to the power consumption into network,
acquisition, processing and system before analyzing each of these elements and combining
the results into an analytical model. However, the model is not specialized for any particular
communication standard, and an application developer will thus require a thorough understanding
of the physical behavior of different alternatives. Furthermore, the presented parameters do not
easily translate to, for example, payload size. As the this thesis aims to focus on cellular standards
in particular, a more specialized model is needed.

The model devised in [16] and discussed briefly in section 2.2.3.3 does model the energy consump-
tion over NB-IoT, but with no comparison to LTE-M. Furthermore, no research on the modeling
of high-level communication protocols over cellular networks has been found. Thus, this thesis
aims to assess UDP and TCP over both NB-IoT and LTE-M in a general model based on empirical
data.

16 CHAPTER 2. BACKGROUND

The 3GPP has done an analysis on the power consumption of NB-IoT devices [35, p.-393]. Their
estimation takes maximum coupling loss1 and transmission interval into account. Table 2.7 below
shows the resulting prediction. No estimation was present for LTE-M.

Table 2.7: Battery life estimates from 3GPP TS 45.820, section 7.3.6.4 [35, p.-393].

Battery life [years]

Packet size, transmission interval Coupling loss = 144 dB Coupling loss = 154 dB
Coupling loss
= 164 dB

50 bytes, 2 hours 22.4 11 2.5
200 bytes, 2 hours 18.2 5.9 1.5
50 bytes, 1 day 36 31.6 17.5
200 bytes, 1 day 34.9 26.2 12.8

2.5.1 Model

Based on the behavior described in section 2.3 of this chapter the model for the total energy
consumption Etot of a cellular connected device is shown in (2.3) below.

Etot =
Emsд(N) + EcDRX + Epsm(N)

Tmsд
t + Estar t (2.3)

The parameters are described in the list below:

• N is the payload size in bytes.

• Emsд(N) is the energy spent on the data transmission.

• EcDRX is the approximation of energy spent in connected DRX mode after a transmission.

• Epsm is the energy spent during RRC idle mode and can be written as ppsmtidle where
tidle = Tmsд − tmsд(N).

This model specializes for applications that mainly does UL communication and assumes that
the device enters PSM-mode straight after transmission and cDRX. Hence, the PSM Active timer,
T3324, is zero. An application is expected to upload with fixed intervals Tmsд . The model does not
account for possible alarm notifications and processing done during PSM. An approximation of
the power consumed during the RRC Inactive Timer countdown, EcDRX , is shown in equation
(2.4). The were parameters introduced in section 2.3 and section 2.3.1.

EcDRX = (pconnected (Tcycle − tonDuration + Epaдinд)
tcDRX
Tpaдinд

+ Er elease (2.4)
1A cellular coverage metric defined by 3GPP.

2.6. LINEAR REGRESSION 17

• pconnected : power consumption while the device is connected, but inactive.

• Epaдinд : energy spent on a paging action

• Edisconnect : energy spent on RRC disconnect

• Tpaдinд : The period of paging during the inactive countdown

• tcDRX : The RRC Inactive Timer duration

• tonDuration : The connected mode DRX onDuration timer, deciding how long the UE will
monitor the network for data.

2.6 Linear Regression

The assumption that Emsд and tmsд are dependent on payload size can be tested using linear
regression analysis. This will show if there is a linear relationship between the variables and
yield usable models for predictions, should the assumption of linearity be viable. No research was
found that used this method to predict power consumption over cellular networks, but it has been
used with success in other settings. The method was applied for predicting smart home energy
use in [36], and [37] used it for prediction of indoor signal propagation with NB-IoT.

2.6.1 Metrics of linear regression

There are several ways to measure the performance of a linear regression analysis. In [38], two
metrics are highlighted as good values for assessing model efficiency and accuracy; the R2 and
the standard error of estimate (SSE). They are explained in detail below:

• R2, also known as the coefficient of determination is a measure of howmuch of the variation
in the data that can be explained by the model. This is an important score when the model
is supposed to be used for prediction, as in the case of this report. The closer to 1 r 2 is the
better, a lower score may lead to more error in the resulting model.

• SEE is a similar metric to standard deviation, showing how much the predicted values vary
from the observed ones. Lower values of SEE means a more accurate model.

The goal of the experiments done in this project will be to gather enough data to achieve viable
linear regression predictors for Emsд and tmsд .

18 CHAPTER 2. BACKGROUND

Chapter 3

Implementation and methodology

This chapter will cover the implementation of test applications and the methodology used for
data acquisition and processing. We will provide detailed background for design, equipment and
software choices enabling the reader to set up a similar environment for testing and experiments.

3.1 Equipment, tools and software

This section will cover the equipment used for the research. Note that access to a computer is
essential as both development and experiments require software running on a computer. This
project has been developed and tested on a macOS computer, but both Windows and Linux should
support the described procedure.

3.1.1 Cellular hardware: nRF9160 from Nordic Semiconductor

The GSMA lists several available cellular modules with support for LTE-M and NB-IoT [39]. We
have chosen to use the nRF9160 System in Package (SiP) from Nordic Semiconductor as it supports
both of the standards along with housing a full-fledged Arm Microcontroller unit (MCU) [40].

Nordic Semiconductor provides a versatile development kit (DK) housing the nRF9160 for evalua-
tion and development use, shown in figure 3.1 It has all features necessary for developing a cellular
application, including antenna and support for external devices through General purpose input
output (GPIO) [41]. This should be adequate for the applications and tests we will design. For more
versatile prototyping Nordic provides the Thingy:91 as well, a battery-driven cellular prototyping
platform complete with sensors, buzzer, button and LEDs [42]. This product falls outside our
scope as it sacrifices some ease of use by being more portable and targeting "Proof-of-concept"
designs.

19

20 CHAPTER 3. IMPLEMENTATION AND METHODOLOGY

Figure 3.1: nRF9160 Development Kit. Picture credit: Nordic Semiconductor

3.1.2 Cellular provider: Telenor NB-IoT

There are two main providers of LTE-M and NB-IoT in Norway: Telia and Telenor. They have a
similar level of deployment for both standards, but we chose Telenor to supply SIM-cards for the
project because of availability. Allegedly they cannot deliver one SIM-card that supports both
LTE-M and NB-IoT; thus, one for each standard was acquired. However, after testing, it was
apparent that the NB-IoT card did indeed support both standards, and it was therefore used for
the rest of the project.

3.1.3 Measuring unit: OTII-ARC

An OTII-ARC Qoitech, hereby OTII, was used for data acquisition. It is a specialized measuring
and power supply unit targeting the development of power-constrained devices. It measures
currents at a µA level with a sample rate of 4 kilo-samples per second, making it ideal for detecting
the fluctuations we expect when transmitting as well as the sleep current of a low power cellular
application like the ones assessed in this report. Furthermore, the OTII can power the device
under test with up to 3.75 V standalone, and 5V with an external power supply. This is sufficient
for the specified supply voltage range of 3.3V to 5.5V of the nRF9160 [40].

We control the OTTI from a computer through associated software. The software supports visual-
ization of measurements, along with logging over Universal Asynchronous Receiver/Transmitter
(UART) from the device. The latter can be beneficial for linking events on the device under test to
power consumption. It is also possible to measure peak, bottom and average current as well as
energy consumed during a chosen time window.

3.1. EQUIPMENT, TOOLS AND SOFTWARE 21

3.1.3.1 Considerations when choosing measurement equipment

There is a wide range of equipment and tools for measuring energy consumption, and choosing
the correct tools is important for achieving the desired results. The experiments for this report was
initially done using an oscilloscope of the type InfiniiVision MSO-X 20002A, but two issues arose
that prompted the search for alternative measuring equipment. First of all, most oscilloscopes
are not sensitive on a µV level, requiring a large shunt resistor when measuring weak currents.
Using large shunt resistors can lead to "brown outs" 1, which can interfere with the operation of
the nRF9160 SiP. Secondly, there is the issue of timing. As will be discussed in the result section,
transmissions over cellular networks take several seconds and can be expected to enter several
different power levels, as seen in figure 2.4b. While the trigger-functionality of oscilloscope helps
detect voltage spikes and acquire segments of data, the short time window of sampled data makes
it challenging to analyze transactions as a whole.

3.1.4 Power Supply: Gw Instek GPD-3303s

The Gw Instek GPD-3303s is a lab power supply that reliably can deliver the 8 volts needed to
drive the OTII externally [43].

3.1.5 MQTT broker and client

There are many free and commercial brokers available for MQTT. The open-source Eclipse
Mosquitto MQTT software was chosen for this project[44] as it is easy to use and setup. Self-
hosting a broker is also preferable for testing as it enables full control over its operation, con-
tributing to a more reliable and predictable testing environment. Though, it does not necessarily
represent open or commercial brokers as these could present more strict requirements with
relation to security and client interaction.

The messages published from the nRF9160 were monitored on a computer, using an MQTT client
application. The program "MQTT explorer" was chosen for this purpose as it has a simple interface
and retains a history of published messages in their respective topics. Simply connect the program
to the desired MQTT broker and subscribe to the desired topic. We used this software to verify
that the messages arrived correctly.

3.1.6 CoAP server

The CoAP application is connecting to Telenor’s own CoAP server, accessible through their online
NB-IoT test dashboard [45]. The dashboard allows the user to monitor published messages and to

1a drop in voltage across the power supply system, so that the whole device or parts of it are underpowered.

22 CHAPTER 3. IMPLEMENTATION AND METHODOLOGY

post messages to the device. Access to this server is limited to Telenor networks.

3.1.7 Data processing platform: Python Jupyter Notebook

As the OTII can export raw data as Comma Separated Variable (CSV)-files, virtually any data
processing tool is viable. The Jupyter Notebook Python environment was chosen for this purpose
as it is a powerful tool for scientific computing [46].

3.2 Development and test environment

This section describes how to set up the hardware and software environments for the tools and
software introduced in the previous section.

3.2.1 Hardware setup

Nordic Semiconductor has a guide for using the OTII with the nRF9160 for measuring current [47].
Following these instructions enables the user to flash new applications and log information from
the nRF9160 DK while it is still connected to the measuring setup. This is a great advantage for
iterative development and testing. Figure 3.2 shows a wiring diagram of the setup. In the guide
3.70V is supplied to the nRF9160 DK. The OTII should, in theory, manage to act as a standalone
power supply for that voltage, but an external supply is used in the guide. Thus, we use the same
setup with the Gw Instek external power supply.

The nRF9160 and OTII are both connected to the computer with micro-USB cables. The OTII has
a barrel connector for external power, so we used an adapter for the wires from the Gw Instek.
The power supply was configured to provide 8V with a maximum of 1A through channel 1.

3.2.2 Development environment for the nRF9160

The nRF Connect software development kit (SDK) (also known as NCS) is Nordic’s framework for
development of cellular IoT and short-range wireless applications [48]. NCS comes with a wide
variety of samples and example code to get started with development, along with application
protocol stacks, libraries and hardware drivers. Furthermore integrates the Zephyr, a Real Time
Operating System (RTOS) governed by the Linux Foundation targeting constrained devices [49].
The SDK is available publicly on GitHub, but is best installed via nRFConnect for Desktop. The
desktop app provides a step-by-step Getting Started guide for setting up NCS, and its required
components. In addition, the desktop app has applications for updating firmware and serial
monitoring [50].

3.2. DEVELOPMENT AND TEST ENVIRONMENT 23

OTII

Power Supply
(Gw Instek)

nRF9160 DK

nRF current

measurement

External supply

VDD_nRF

-

+

USB

USB

+-
DC in

Figure 3.2: Wiring diagram for the hardware setup. Based on the diagram [47].

The hardware and software versions for the Nordic environment used in this report are shown in
table 3.1 below.

Table 3.1: Development environment.

nRF Connect SDK version 1.2
nRF9160 DK version 8.5
modem firmware version 1.1

When setting up the development environment for the nRF9160 DK, it is recommended to follow
Nordic’s getting started guide as it is being updated along with software and firmware updates [51].
The project code available on github can be added to the main directory of the NCS installation
[52]. After which the desired application can be built and flashed by navigating to the application
directory using a terminal of choice and running the following chain of commands:

mkdir build

cd build

cmake -GNinja -DBOARD=nrf9160_pca10090ns ..

ninja flash

This will result in a working binary file that can be flashed2 to the nRF9160 DK.
2loaded into the persistent memory of the MCU.

24 CHAPTER 3. IMPLEMENTATION AND METHODOLOGY

3.2.3 Communicating with the nRF9160 modem

The nRF9160modem is controlled with AT commands. This is a common command set for modems
that follows standardized syntax rules defined by the 3GPP [53]. The available commands for
the nRF9160 modem are defined in [54]. Though the application backend performs most modem
operations, it is possible to directly use these commands to control or request information from
the modem. In this report, we used the LTE Link Monitor app from the nRF Connect for Desktop
program for serial communication with the modem.

3.3 nRF9160 application design

The initial goal of this report was to make two power-optimized applications, one with CoAP
and one with MQTT and compare them with Disruptive Technology’s already existing solution.
However, we decided that modeling the energy consumption of the two communication protocols
over LTE-M and NB-IoT would pose much more usability as a tool for developing future appli-
cations. Hence, the applications were designed with the intent of gathering data for the model,
focusing on making the parameters configurable and the data acquisition straightforward. The
project header, main and configuration files are attached in appendix B and C. The rest of the
project code is, as mentioned, available on github [52].

We chose to base the applications on already existing implementations of MQTT and CoAP for
the nRF9160, as this yielded more time for testing and we could expect working behavior. The
MQTT application was built around Nordic’s "Simple MQTT client" sample [55] and for the CoAP
application we took basis in an implementation done by Exploratory Engineering, a IoT working
group from Telenor [56].

For both instances, the protocol operations were moved to a separate module and the kernel thread
features of the Zephyr RTOS to handle events related to the protocol behavior. This cleared up
the main-files while also decoupling the protocol behavior, only exposing essential functionality
like initiation and messaging functions. All MQTT messages are sent with QoS 1 as specified in
2.6, while all CoAP messages are sent as confirmable.

The function flow of the main file can be seen in table 3.2. This introduces the two test functions
run_size_sweep and run_periodic. The former is used for testing energy consumption in
relation to increasing payload size. The latter is used for testing a more realistic sensor scenario
where the device transmits a fixed data size at the periodic TAU. We configured the applications
to run with PSM behavior for both test functions as applications not using PSM is out of scope
for this thesis.

As mentioned the run_periodic function will run with fixed intervals based on the requested
periodic TAU. This does in fact not comply with the specifications for PSM as described in section

3.3. NRF9160 APPLICATION DESIGN 25

Table 3.2: Application function calls.

Function name description
button_leds_init Initializes the LEDs and buttons on the board. The LEDs are used

for tracking where the current status of the application. The
buttons were used initiating a transmission instantly.

setup_psm We provide the defined PSM settings to the modem. It will provi-
sion these to the network when running the modem_configure
function. Providing the values in advance is much faster than
negotiating after connecting.

modem_configure Starts the modem and initializes the connection to the chosen
network.

Initialize connection

• MQTT: initialize TCP connection with the broker and start
kernel thread.

• CoAP: initialize the endpoint and associated variables, like
URI-path, as no persistent connection is necessary. Start
kernel thread.

Confirm PSM timer values Reads the PSM timer values finally agreed on by the network in
case they differ with the pre-defined ones. If the run_periodic
test is defined, a timer that triggers on the confirmed periodic
TAU value is started.

main loop Two possible test functions:

• run_size_sweep: send data with increasing payload with
a short, fixed delay between each transmission. Exits when
reaching maximum payload size for the respective applica-
tion.

• run_periodic: sends constant sized data at a fixed interval
given by the requested PSM value, similar to an actual
sensor application. This test end after a specified number
of messages has been transmitted.

26 CHAPTER 3. IMPLEMENTATION AND METHODOLOGY

2.3. According to the definition of the mechanism, the requested periodic TAU determines how
long a device will stay in RRC idle mode after releasing from RRC connected. This means that the
duration between transmissions is dependent on how long time transmissions take, which in turn
leads to non-periodic behavior as transmission time can vary from message to message. We chose
to force true periodic transmissions in the application developed for this thesis as this is more
predictable for both developer and end-user. In practice, this means that the application transmits
data with the interval of the requested periodic TAU, but the time spent in sleep (i.e RRC idle) will
be a bit shorter. Commonly the periodic TAU is in the range of hours, days or weeks, meaning
the small deviation will be insignificant.

3.3. NRF9160 APPLICATION DESIGN 27

3.3.1 Project Configuration

Every NCS project has a file called "prj.conf" which is used for application- and SDK-wide settings.
Table 3.3 shows the key settings that were altered between different test configurations. Other
application-specific settings are available in the attached code.

Table 3.3: Project configurations

Configuration name Value Description
CONFIG_LTE_NETWORK_MODE_NBIOT y/n Used for setting the modem in

NB-IoT mode. LTE-M is default.
CONFIG_LTE_PSM_REQ_RPTAU String of bits Used for setting the requested

periodic TAU. Encoded as men-
tioned in section 2.2.3.

CONFIG_LTE_PSM_REQ_RAT String of bits Used for setting the requested
active time. Encoded as men-
tioned in section 2.2.3.

CONFIG_SERIAL y/n Used for logging over UART.
This consumes power and are
deactivated when logging is not
needed.

CONFIG_AT_HOST_LIBRARY y/n Used for monitoring modem op-
eration throughAT command re-
sponses. Must be set to "n" if
CONFIG_SERIAL is "n".

3.3.2 Determining maximum payload

During development it was discovered that the CoAP application was restricted to a maximum
payload size of 1440 bytes. This is a direct consequence of the MTU of the cellular network, which
was determined to be 1500. The AT-command AT+CGCONTRDP=0 [54, p.-106]can be used to find
the network MTU. We can also arrive at this conclusion using the functions defined 2.4.2.1. The
CoAP message overhead can be calculated using equation (2.1),

soverhead = 4 + 8 + 20

soverhead = 32

Using this result in (2.2) yields the expected result

smax payload = MTU − (sIPv4 + sUDP + soverhead)

smax payload = 1500 − (20 − 8 − 32)

smax payload = 1440

28 CHAPTER 3. IMPLEMENTATION AND METHODOLOGY

Hence, the CoAP application behaves as expected. A similar limitation is not seen in the MQTT
application, as it manages to transmit packages with a maximum of 4096 bytes of payload. We
assume that this is due to the segmentation mechanism of TCP explained in section 2.4.1, where
larger transmissions are segmented to avoid IP fragmentation. The restriction of 4096 bytes
is assumed due to constant BSD_IP_MAX_MESSAGE_SIZE, defined in bsd_limits.h of the nRF
Connect SDK.

3.3.3 Application challenges

We designed the applications to run as similarly as possible, but there were challenges with seem-
ingly periodic current spikes of 9mA on the MQTT application. Further inspection revealed that
the spikes arrived with increasing intervals, restarting at the shortest interval each transmission.
This behavior may indicate that it may be related to some kind of exponential backoff scheme3

in the TCP operation of the application. The issue was also discussed with the support team of
Nordic Semiconductor. They agreed that it could be related to the TCP backend and suggested to
close the socket used by the MQTT library. Unfortunately, this did not work, and at the time of
writing, the issue is not resolved. As the current spikes are small and very short, they are not
expected to affect the actual energy consumption much.

In section 2.3.1, the use of Release Assistance Indication was discussed as a possible optimization
option for power saving as the device can release from RRC connected mode as soon as the
transmission is finished. It was chosen not to make use of this functionality in this report as
most measurements were already finished when the possibility of RAI was discovered. However,
the developed model can predict the usage of RAI as the cDRX energy can be chosen to be zero.
Lastly, the nRF9160 only supports RAI for NB-IoT and not LTE-M [54] at the time of writing, so it
would not be possible to test for all configurations.

3.4 Data processing

This section will cover how the bulk of the data acquired with the OTII was processed. The
processing code is attached in appendix D, E and F. It is also available on github [57].

A sample of the typical raw data when running running a test with the run_size_sweep function
is shown in figure 3.3. The experiment is explained in detail in section 4.2. In this case, the
measurements displayed are for the startup and first five transmissions of the CoAP over NB-IoT
configuration.

In order to determine the energy used during each transmission, the transmissions had to be
segmented, so that we could calculate the energy spent individually. This processing was done in

3An algorithm for spacing out repeated retransmission with decreasing rate.

3.4. DATA PROCESSING 29

Device startup and
connection

Transmission 1
0 bytes

Transmission 2
41 bytes

Transmission 3
82 bytes

Transmission 4
123 bytes

Transmission 5
164 bytes

…

Payload size [bytes]

Payload size sweep – raw data

Cu
rre

nt
 [m

A]

Figure 3.3: Raw data example from a CoAP over NB-IoT payload sweep experiment. Periods of
transmission activity are marked with red, with identifying labels underneath.

30 CHAPTER 3. IMPLEMENTATION AND METHODOLOGY

the Python Jupyter Notebook environment. The segmenting code iterates through the data until it
triggers when the current consumption is above a certain threshold that indicates a transmission.
The index will then jump past the assumed length of the transmission and iterate backward until
the end of the transmission is detected. We then save the segment and duration of it in separate
arrays for further processing. The device startup is ignored. Figure 3.4 demonstrates this based
on the data in figure 3.3.

…

…

Segment 0 Segment 1 Segment 2 Segment 3 Segment 4

Figure 3.4: Segmentation process demonstrated on the CoAP data from figure 3.3.

Following the segmentation the energy consumed across each segment was calculated using the
following equation:

Eseдment = (∆t ∗V
N∑
n=0

sample(n)) (3.1)

Where V is the supply voltage of the system, ∆t is the duration between each sample, N is the

3.4. DATA PROCESSING 31

number of samples in a segment and sample(n) is the current sample. One segment encloses both
the actual data transmission and the connected DRX period in which the UE stays connected
to the network. As the target of these measurements is to predict the energy consumed during
each data transmission regardless of how long the device stays connected afterward, we wish to
disregard the cDRX contribution. Hence, the measured cDRX energy for either LTE-M or NB-IoT
depending on the dataset is subtracted from each segment energy resulting in the value Emsд . We
estimate the actual cDRX contribution in the model with equation (2.4). Also, the RRC inactive
time for the respective cellular standard is subtracted from the calculated transmission times. This
processing was performed on every dataset, eventually storing the resulting segment energies
and transmission times in arrays tied to the corresponding payload size. Figure 3.5 shows a scatter
visualization example of the data at this point in the process.

0 200 400 600 800 1000 1200 1400
Payload size [Bytes]

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

M
es

sa
e

en
er

gy
 [u

W
h]

CoAP over NB-IoT transmission energy

Figure 3.5: Scatter visualization of the transmission energy for CoAP over NB-IoT.

To estimate the relation between payload size, energy consumption and transmission time, we
used ordinary least squares linear regression on the processed data. This was done using the
Python library "Statmodels", that provides powerful tools for computing linear regression analysis
and assessing its quality. The resulting coefficients and intercepts were then used to calculate
Emsд(N) and Tmsд(N) for the model.

32 CHAPTER 3. IMPLEMENTATION AND METHODOLOGY

Chapter 4

Experiments and results

This chapter will cover the experiments done to gather data for the model, as well as the results of
these experiments. The first section will present the application performance and list the different
values that were measured for use in the model parameters. We will then show how the payload
sweep experiment was set up and cover the results from that. This is followed by an assessment
of the results and accuracy of the linear regression before showing the results of testing the model
against real data. The section concludes with a small case example of how the model can be used.
The nRF9160 DK was running at 3.70V throughout all experiments, as per what is used in Nordic’s
reference tests [40].

4.1 Parameter measurements

The various parameters used in the model were obtained through measurements using the OTII
software. This concerns the variables of the cDRX energy estimation in (2.4), as well as the
average sleep power, ppsm and average power during connected mode, pconnected . We performed
the measurements in the manner described below:

• ppsm : the average current over 5 minute window in PSM, between two transmissions.
Multiplied with the supply voltage.

• pconnected : 20 samples of the average current between paging in RRC connected mode.
Multiplied with the supply voltage.

• Timers : using the specification values introduced in table 2.4 of section 2.3.1 to identify
the settings determined by the network.

• Paging and release energy: 20 samples measured from individual LTE-M and NB-IoT
transmissions.

33

34 CHAPTER 4. EXPERIMENTS AND RESULTS

• Total cDRX energy: 20 samples measured over the RRC Inactive timer interval from the
end of a transmission. Used to remove cDRX contribution from the transmissions, as well
as to verify the cDRX approximation.

An average sleep current of 108 µA was measured for the CoAP application, while 117 µA was
measured for the MQTT application. The higher average is due to the current spikes mentioned
in the implementation section. We measured the average idle current for both applications to
157.7(+/−0.732)µA. Table 4.1 shows the rest of the resulting values. Full table of measurements
is present in appendix A.

Table 4.1: Measurement results

NB-IoT LTE-M
tcDRX [s] 20.48* 10.24*
tonDuration [s] 0.2 0.1
Tpaдinд [s] 2.048 0.320
Epaдinд [µWh] 2.58(+/−0.365) 3.227(+/−4.098)
Er elease [µWh] 2.171(+/−0.52) 0.448(+/−0.193)
Total cDRX energy [µWh] 28.48(+/−1.142) 101.95(+/−14.771)
* Confirmed by Telenor over email.

Important observations to make here is that the results indicate LTE-M being much more spurious
than NB-IoT in the matter of energy used during cDRX. The significant standard deviation of
Epaдinд during LTE-M is due to the UE monitoring for longer than the designated onDuration
resulting in more energy being consumed. The reason for this is unknown. These variations also
contribute to the high standard deviation in the total cDRX energy measured for LTE-M.

Given the values in table 4.1 an approximation for EcDRX can be calculated using(2.4). The equation
yields 29.874 µWh for the NB-IoT transmissions, differing 4.895% from the measured mean and
falling outside the standard deviation. For LTE-M (2.4) yields 102.298 µWh differing 0.34% from
the measured mean, being well inside the expected standard deviation. These comparisons only
verify the cDRX approximation for one case, Telenor’s current network. Testing for other cases
would be ideal, but as the values are network specific, it is not possible with the current test
environment.

4.2 Payload size sweep

This experiment strives to determine howTCP and UDP perform on cellular networks with relation
to message size. We conduct the test by running the two respective applications with increasing
payload size while measuring the current consumption using the OTII. These measurements will
give insights into how both the protocols and cellular standards handle large data sizes and may

4.2. PAYLOAD SIZE SWEEP 35

Table 4.2: Settings for payload sweep experiment

MQTT CoAP
Maximum test payload [bytes] 4096 1439
Payload size step [bytes] 64 41
Transmission interval (NB-IOT / LTE-M) [s] 40/30 30/30
Requested TAU [hours] 2 2
Requested Active Time [hours] 2 2

uncover trends related to the payload size.

The experiment was performed by transferring messages of increasing size with constant intervals
using the already mentioned run_size_sweep function. Initially, the incremental value was
chosen to 5 bytes per step, starting at a zero byte sent with an interval of 10 seconds. PSM was not
used as it was assumed that it would be irrelevant in this test setting. However, the short interval
and no PSM resulted in data where the transmissions proved difficult to distinguish. Thus, we
redid the tests with different settings shown in table 4.2. Three identical runs were done for every
configuration to ensure an adequate amount of data for further processing. The configuration
should yield 108 data points for the CoAP implementations and 192 data points for the MQTT
applications.

The maximum test payload is based on the determined maximum payload for the respective
protocols, calculated in section 3.3.2 of implementation chapter. We chose the step value so that
trends related to increased payload would stand out, without requiring unreasonable time to
complete the experiment. It was also important that the step value was a factor of a number
close to the maximum possible payload so that the test reflects the payload constraints of the
respective protocol. The MQTT step size of 64 bytes amounts to a total of 64 samples, with the
maximum payload being 4096 bytes. The CoAP step size of 41 bytes amounts to a total of 36
samples, with the maximum payload being 1435 bytes. It could be problematic that a different
amount of samples is gathered for the two protocols, but as we expect linear behavior, the general
trend should still be apparent.

The transmission interval is also varied between the different tests. This is to compensate for the
faster transmission time of LTE-M. In retrospect, this value should have been the same for all
tests in order to simplify the data processing afterward.

To be able to distinguish the transmissions easily and conform the test more to the scope of low
power applications, PSM was used during the test. A periodic TAU of 2 hours was requested to
force the device to enter back into PSM after transmissions without worrying about potential
Tracking Area Updates. As explained in section 2.2.3.1, the device can freely wake up and transmit
at any time during PSM.

There were no failed transmissions to the author’s knowledge, and all messages arrived at the

36 CHAPTER 4. EXPERIMENTS AND RESULTS

destination. The resulting energy and transmission times for NB-IoT are shown in figure 4.1.

0 500 1000 1500 2000 2500 3000 3500 4000
Payload size [Bytes]

30

40

50

60

70

80

90

100

Me
ss

ag
e

en
er

gy
 [u

W
h]

NB-IoT message energy
CoAP
MQTT

(a) Message energy for CoAP and MQTT
over NB-IoT. cDRX contribution of 28.48
µWh subtracted.

0 500 1000 1500 2000 2500 3000 3500 4000
Payload size [Bytes]

4

6

8

10

12

Tr
an

sm
iss

ion
 ti

m
e

[s]

NB-IoT transmission time

(b) Message transmission times for CoAP
and MQTT over NB-IoT. RRC Inactive time
contribution of 20.48 s subtracted.

Figure 4.1: Results of NB-IoT payload sweep measurements.

The results of figure 4.1a indicates that the energy consumed by both CoAP and MQTT trans-
missions over NB-IoT increases linearly with payload size. As expected, MQTT consumes more
energy than CoAP, with an average of ∼32% more energy consumed per message within the
payload range of CoAP. MQTT uses on average 5% more time per message within the same
payload range.

The resulting energy and transmission times for LTE-M are shown in figure 4.2. Due to unexpected
behavior in one of the MQTT payload sweeps over LTE-M, only the results from two sweeps
are presented for that configuration. The processing method presented in 3.4 did not manage to
handle the case. In retrospect, we could have avoided this issue by allowing a longer time interval
between transmissions when performing the experiment.

The behavior of LTE-M is vastly different from that of NB-IoT. Both the energy consumed and
time spent seems independent of the message payload within the measured range. It appears that
the energy and time used for transmitting MQTT messages increase to a new level for payloads
of ∼500 bytes or more. Notice as well that the MQTT measurements include some major energy
peaks.

The average of the measurements was calculated and smoothed using a Savitzky–Golay filter
with a window length of 9 and an order 3 polynomial. The results of this calculation, both with
and without cDRX and RRC Inactive timer contribution is shown in figure 4.3. The 536 byte MSS
of TCP is marked for possible identification of change in energy usage. Note that averaging and
smoothing may lead to loss of information. However, this use of the data is only for the sake of
comparison and will not be utilized for the model and other further calculations.

These results show that including cDRX energy, which is the actual situation for the measured
data, LTE-M performs worse than NB-IoT in terms of energy spent per transaction. However, the

4.2. PAYLOAD SIZE SWEEP 37

0 500 1000 1500 2000 2500 3000 3500 4000
Payload size [Bytes]

40

60

80

100

120

140

160

M
es

sa
ge

 e
ne

rg
y

[u
W

h]
LTE-M message energy

(a) Message energy for CoAP and MQTT
over LTE-M. cDRX contribution of 101.95
µWh subtracted.

0 500 1000 1500 2000 2500 3000 3500 4000
Payload size [Bytes]

2

4

6

8

10

12

14

Tr
an

sm
iss

io
n

tim
e

[s
]

LTE-M transmission time

(b) Message transmission times for CoAP
and MQTT over LTE-M. RRC Inactive time
contribution of 10.24 s subtracted.

Figure 4.2: Results of LTE-M payload sweep measurements.

LTE-M transactions are much faster, which we can expect due to the higher throughput of the
standard. It is also worth noticing that the increased energy usage for MQTT with payloads after
∼500 bytes and above is seemingly present in both the NB-IoT and LTE-M data.

38 CHAPTER 4. EXPERIMENTS AND RESULTS

0 1000 2000 3000 4000
Payload size [Bytes]

20

40

60

80

100

120

140

160

180

200

En
er

gy
 [u

W
h]

NB-IoT

0 1000 2000 3000 4000
Payload size [Bytes]

20

40

60

80

100

120

140

160

180

200
LTE-M

536 Bytes (TCP default MSS)
CoAP
CoAP with cDRX energy
MQTT
MQTT with cDRX energy

Message energy comparison

(a) Comparison of message energy for MQTT and CoAP over both LTE-M and NB-IoT. The results are
shown with and without cDRX contribution.

0 1000 2000 3000 4000
Payload size [Bytes]

0

5

10

15

20

25

30

35

Tr
an

sm
iss

io
n

tim
e

[s
]

NB-IoT

0 1000 2000 3000 4000
Payload size [Bytes]

0

5

10

15

20

25

30

35
LTE-M

CoAP
CoAP with RRC inactive time
MQTT
MQTT with RRC inactive time

Transmission time comparison

(b) Comparison of message transmission time for MQTT and CoAP over both LTE-M and NB-IoT. The
results are shown with and without RRC inactive timer contribution.

Figure 4.3: Comparison of results from payload sweep measurements.

4.3. REGRESSION RESULTS 39

4.3 Regression results

This section will cover the linear regression estimation results used to model the transactions’
energy and transmission time. The linear regression is done based on the resulting data after
processing, covered in the previous section.

4.3.1 Transmission energy

Table 4.3 shows the resulting coefficients and test scores of the regression analysis performed
to predict message energy based on the payload size. We explained the meaning of the scores
presented herein section 2.5 of the background chapter.

Table 4.3: Message energy regression results and scores

Observations Intersect Slope SEE SEE/prediction R2

[µWh] [µWh/Bytes] [µWh] [%]
CoAP NB-IoT 108 3.52E+01 9.10E-03 6.947 2.870 0.648
CoAP LTE-M 108 3.98E+01 -2.70E-03 13.834 5.226 0.048
MQTT NB-IoT 192 4.88E+01 1.16E-02 6.041 4.194 0.915
MQTT LTE-M 128 5.68E+01 3.10E-03 26.047 16.363 0.048

The regression scores show that the regression for NB-IoT is promising for predicting message
energy. Both CoAP and MQTT achieve high R2 indicating a good correlation between the message
energy and payload size. Furthermore, SEE shows that the predictions, on average, only deviate
∼ 6% to ∼ 7$. The results are not as favorable for LTE-M, however. Both CoAP and MQTT scores
low in the R2 test, indicating that the payload may not correlate well with message energy. This is
strengthened by high variation in the predictions, showing that the model is inaccurate. Besides,
the negative slope of the CoAP over LTE-M prediction does seem unlikely and as such the LTE-M
models are probably not fit for prediction of message energy.

Note the intersect values here, as this is the base energy required for any transmission. This
means that small payloads have a significant energy overhead compared to larger ones.

The predictions of 4.3 is plotted together with test data in figure 4.4. This enables us to assess
the regression results graphically. We present the data with a focus on comparing the respective
communication protocols within each of the cellular standards. This is to accentuate how LTE-M
and NB-IoT perform in relation to each other. Note that cDRX energy is not included in these
calculations.

The plots do show that the NB-IoT models achieve a more satisfactory fit with the measured data.
The LTE-M fits for both CoAP and MQTT seem to be affected by considerable variation, but it is
not randomly distributed throughout the data set, affecting the fit’s quality. However, we can

40 CHAPTER 4. EXPERIMENTS AND RESULTS

0 500 1000 1500
Payload size [Bytes]

0

20

40

60

80

100

120

140

160

En
er

gy
 [u

W
h]

CoAP

0 1000 2000 3000 4000
Payload size [Bytes]

0

20

40

60

80

100

120

140

160

MQTT

NB-IoT regression line
LTE-M regression line
NB-IoT data
LTE-M data

Message energy regression lines

Figure 4.4: Regression lines and calculated values for transmission energy of messages.

make one important observation. Both for CoAP and MQTT, it will be more beneficial from an
energy perspective to use LTE-M when the payload reaches a specific size, given that the device
enters PSM straight after transmission. The intersections between NB-IoT for the regression lines
in figure 4.4 is 390 bytes for CoAP and 948 bytes for MQTT. Though, as the models for LTE-M, in
this case, are deemed inaccurate, these intersections are probably likewise.

4.3.2 Transmission time

The results for the simple regression analysis performed to predict message transmission time
based on payload size is presented in table 4.4. We use the same metrics for assessing regression
quality, as in the previous section.

Table 4.4: Message transmission time regression results and scores

Observations Intersect Slope SEE SEE/prediction R2

[s] [s/Bytes] [s] [%]
CoAP NB-IoT 108 2.74E+01 5.00E-04 1.062 3.830 0.045
CoAP LTE-M 108 1.24E+01 -2.79E-05 0.217 1.749 0.003
MQTT NB-IoT 192 2.87E+01 5.00E-04 1.693 5.713 0.107
MQTT LTE-M 128 1.38E+01 2.00E-04 1.563 10.925 0.032

The results are represented graphically as well in figure 4.5. Unfortunately, these results are not
promising for transmission time prediction. LTE-M performs badly in this instance as well, with
very low values for R2. For CoAP over LTE-M transmission time is practically unchanged with
increased payload within the measured range, indicating no correlation. The resulting prediction

4.4. MODEL PERFORMANCE 41

could still prove useful, as the SEE is low. However, a constant value would likely suffice as well.
MQTT over LTE-M scores better in terms of R2, but as discussed in 4.2 above, MQTT has similar
behavior to CoAP over LTE-M apart from increased energy and time spent per messages over
∼500 bytes. This can also be seen in 4.5. The scores of the NB-IoT predictions are lower than
in the case of message energy, especially in the case of CoAP over NB-IoT. These results could
overall indicate that the correlation between transmission time and payload size, in general, is
not very strong and that other factors affect the transmission time to a higher degree.

0 500 1000 1500
Payload size [Bytes]

0

2

4

6

8

10

12

14

Ti
m

e
[s

]

CoAP

0 1000 2000 3000 4000
Payload size [Bytes]

0

2

4

6

8

10

12

14
MQTT

NB-IoT regression line
LTE-M regression line
NB-IoT data
LTE-M data

Transmission time regression lines

Figure 4.5: Regression lines and measured values for transmission time of messages.

4.3.3 Regression remarks

From the regression results presented so far, it may seem that simple linear regression is inadequate
for predicting anything other than the message energy consumption for CoAP and MQTT over
LTE-M. However, the results of the regression analysis will still be used for the final models, and
any error will be assessed with the results of this section in mind.

4.4 Model performance

In this section the testing of the final model will be described followed by the results and errors.
The four configurations, CoAP and MQTT over NB-IoT and LTE-M, was tested for two scenarios
run_periodic function and the current consumption measured using the OTII. Five messages
were transmitted, yielding five samples. The scenarios are described below.

• Small: A Tmsд = 300s transmission interval with N = 256 byte payload upload.

42 CHAPTER 4. EXPERIMENTS AND RESULTS

• Large: A Tmsд = 300s transmission interval with N = 1280 byte payload for CoAP and
N = 4096 byte payload upload.

The same configuration was put into the model (2.3) yielding the resulting equations shown in
table 4.5 for the small test and table 4.6. The values discussed in section 4.1 of this chapter are
used for EcDRX and ppsm . As no approximation for Estar t has been made in this thesis, we chose
to use the starting energy of the measured data. This will also make the comparison with the
model fairer as it starts with the same origin as the measured data.

Table 4.5: Prediction of total energy for small test. ‹

CoAP over NB-IoT 37.490µWh+29.874µWh+108A∗3.7V(300s−7.011s)
300s t + Estar t 0.329t + 85.031

CoAP over LTE-M 39.072µWh+102.298µWh+108A∗3.7V(300s−2.197s)
300s t + Estar t 0.586t + 184.766

MQTT over NB-IoT 51.730µWh+29.874µWh+117A∗3.7V(300s−8.297s)
300s t + Estar t 0.384t + 121.592

MQTT over LTE-M 57.616µWh+102.298µWh+117A∗3.7V(300s−3.658s)
300s t + Estar t 0.656t + 245.139

Table 4.6: Prediction of total energy for large test. [µWh]

CoAP over NB-IoT 46.773µWh+29.874µWh+108A∗3.7V(300s−7.559s)
300s t + Estar t 0.360t + 84.378

CoAP over LTE-M 36.281µWh+102.298µWh+108A∗3.7V(300s−2.168s)
300s t + Estar t 0.577t + 189.604

MQTT over NB-IoT 96.180µWh+29.874µWh+117A∗3.7V(300s−10.191s)
300s t + Estar t 0.532t + 116.007

MQTT over LTE-M 69.426µWh+102.298µWh+117A∗3.7V(300s−4.568s)
300s t + Estar t 0.695t + 248.850

The predicted energy consumption along with the measured total energy is plotted in figure
4.6.As expected the linear model is not be able to predict the staircase-like behavior of the real
data, though the plots show that the model manages, with variable success, to predict the current
total energy after a transmission have occurred.

4.4. MODEL PERFORMANCE 43

0 500 1000 1500
Time [s]

0

200

400

600

800

1000

1200

En
er

gy
 [u

W
h]

256 byte message

0 500 1000 1500
Time [s]

0

200

400

600

800

1000

1200
1280 byte message

Model (NB-IoT)
Data (NB-IoT)
Model (LTE-M)
Data (LTE-M)

CoAP - 5 min interval

(a) Plot depicting predicted energy versus actual energy for the CoAP application.

0 500 1000 1500
Time [s]

0

200

400

600

800

1000

1200

1400

En
er

gy
 [u

W
h]

256 byte message

0 500 1000 1500
Time [s]

0

200

400

600

800

1000

1200

1400

4096 byte message

Model (NB-IoT)
Data (NB-IoT)
Model (LTE-M)
Data (LTE-M)

MQTT - 5 min interval

(b) Plot depicting predicted energy versus actual energy for the MQTT application.

Figure 4.6: Results of model testing.

44 CHAPTER 4. EXPERIMENTS AND RESULTS

The error of the model has been calculated based on the difference between the predicted energy
and the actual energy after transmissions. See figure 4.7 for a graphical representation. As the
slope of the predictions is constant, any error will most likely increase with time, which can be
seen when inspecting the results in figure 4.7. This behavior is especially present for MQTT over
LTE-M, where the overestimation shows an increasing difference between the predicted and the
real value. Similar behavior is seen for neither MQTT over NB-IoT or CoAP over LTE-M. As a
matter of fact, the other predictions seem to stabilize over time, though more data is needed to
determine the actual accuracy.

0 2 4
Message number

1

0

1

2

3

4

5

6

7

Di
ffe

re
nc

e
[%

]

CoAP

0 2 4
Message number

1

0

1

2

3

4

5

6

7
MQTT

256 B (NB-IoT)
256 B (LTE-M)
4096 B (NB-IoT)
4096 B (LTE-M)
Zero difference

Model error - data points

Figure 4.7: Results of model testing.

We can also assess the relative change or slope between each data point. This is depicted in figure
4.8 by plotting the difference in change between each point for the model and the real data. These
results confirm that the slope of the prediction in most cases is steeper than that of the measured
data.

4.5. CASE STUDY 45

0 1 2 3 4
Message number

10

5

0

5

10

15

20

Di
ffe

re
nc

e
[%

]
CoAP

0 1 2 3 4
Message number

10

5

0

5

10

15

20
MQTT

256 B (NB-IoT)
256 B (LTE-M)
4096 B (NB-IoT)
4096 B (LTE-M)
Zero difference

Model error - slope

Figure 4.8: Plot depicting the difference between the total energy increase between transmissions
for real and predicted total energy.

4.5 Case Study

One of the main goals of producing this model is for a developer to utilize it to predict the energy
consumption of an application. This section will cover a small case study where the model is
used to estimate an application’s battery life based on payload size and transmission interval.
Nordic Semiconductor boasts a minimum sleep current during PSM of 4µA [47], and we use
this value in the following case. In a real application, other factors would most likely lead to
higher base current. A battery with a capacity of 5Wh is used for the calculations, similar to
the specifications from Third Generation Partnership Project (3GPP) in 2.1. Figure 4.9 shows the
resulting predictions.

1280 512 256 16 8 1
Payload size [bytes]

0

2

4

6

8

10

12

Ba
tte

ry
 li

fe
tim

e
[y

ea
rs

]

NB-IoT case study
4uA sleep current

CoAP - 900s
CoAP - 1800s
CoAP - 3600s
CoAP - 7200s
MQTT - 900s
MQTT - 1800s
MQTT - 3600s
MQTT - 7200s

(a) NB-IoT predictions.

1280 512 256 16 8 1
Payload size [bytes]

0

2

4

6

8

10

12

Ba
tte

ry
 li

fe
tim

e
[y

ea
rs

]

LTE-M case study
4uA sleep current

CoAP - 900s
CoAP - 1800s
CoAP - 3600s
CoAP - 14400s
MQTT - 900s
MQTT - 1800s
MQTT - 3600s
MQTT - 14400s

(b) LTE-M predictions.

Figure 4.9: Estimated life of a 5Wh battery for an application transmitting at various intervals
using MQTT and CoAP over NB-IoT and LTE-M. Note that the maximum interval is different for
LTE-M and NB-IoT.

46 CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.7: Battery life difference between 1280 byte and 1 byte transmissions

NB-IoT LTE-M
Transmission interval[s] MQTT [%] CoAP [%] MQTT [%] CoAP [%]
900 17.77 16.62 2.38 -2.35
1800 17.01 15.78 2.33 -2.29
3600 15.68 14.34 2.23 -2.19
NB-IoT: 7200 | LTE-M: 14400 13.56 12.12 1.78 -1.71

These results show that 10-year battery life can be ensured for NB-IoT for a transmission interval
of 2 hours. Similar battery life for LTE-M requires a four-hour transmission interval. Furthermore,
it is worth noting payload size has an impact on the battery life for applications using NB-IoT.
Though, as can be seen in table 4.7, the difference decreases with transmission interval. The
results from the same table show that the payload size has an insignificant effect on the batty life
of LTE-M applications.

Chapter 5

Discussion

This report’s main goal is to deduce a model for predicting the total energy consumption of
the communication protocols TCP and UDP over the cellular standards NB-IoT and LTE-M.
Furthermore, we wish to assess the usefulness of the communication protocols and cellular
standards with respect to each other. The CoAP and MQTT protocols were chosen as they use
UDP and TCP respectively. It was hypothesized that the energy and time required for transmitting
a single message over LTE-M and NB-IoT would increase with payload size. The previous chapter
covered the different experiments performed and the results of these. This chapter will assess the
results.

5.1 UDP and TCP over cellular networks

In the section 1.2 of the introduction, we stated three research questions. The first of which asked,
"How UDP and TCP perform on cellular networks?". TCP performed noticeably worse than UDP
throughout all experiments both in terms of energy and transmission time, which one could
expect comparing to related research on the matter. Two papers were discussed in section 2.4.3
with [29] comparing MQTT and CoAP, showing the same behavior as the results presented here.
However, in [30] the TCP implementation (using MQTT) experienced a very high rate of packet
loss. We had no means of measuring the packet loss rate, but any instability relating to such an
issue was absent.

The MQTT application did surge in energy consumption after the payload size exceeded ∼500
bytes, as seen in figure 4.3, suggesting that the segmentation scheme of TCP is used due to
the default maximum segment size being 536 bytes. This behavior is not seen for the CoAP
measurements, further strengthening the theory that it is TCP-segmentation. An important point
that can we can draw from this behavior is that knowing what restrictions relating to payload size
are in place for a particular protocol is imperative when developing a application for constrained

47

48 CHAPTER 5. DISCUSSION

devices.

Even though TCP did perform worse than UDP over the cellular standards, it should not be
rejected for use in constrained environments. However, further innovation with the protocol is
necessary as current research shows that UDP based communication excels. MQTT has shown
many qualities that are very beneficial within the IoT industry and with introduction of the UDP
based MQTT-SN [27] research effort should be made in comparing that with CoAP.

5.2 Payload size effects

The second research question asked, "Is there a relationship between the payload of a message
and the consumed time and energy for transmission over NB-IoT and LTE-M?". The results of
linear regression show a strong correlation between payload size and message energy for NB-IoT
in the range of 0 to 4096 bytes. A similar, linear relationship was found in [58] though, the
resulting slope of their energy prediction was steeper than the slope of our predictions for both
CoAP and MQTT over NB-IoT. Still, it is clear that NB-IoT energy consumption can be modeled
linearly, which is an essential premise for the third research question. We got more ambiguous
results from the transmission time measurements. The linear regression scores are much lower,
as seen in table 4.4, suggesting that the transmission time of NB-IoT might not be dependent
on the payload size. This could be tied to NB-IoT’s expected maximum latency of 10 seconds as
specified in table 2.1, as that will induce a more asymptotic curve with increased payload. There
are tendencies to this behavior in our results, though, we can not determine the actual behavior
without doing more measurements. With the way the model (2.3) is defined, inaccuracy in the
prediction of transmission time will affect the expected PSM period. This error will be negligible
with long transmission intervals, which is commonplace for many constrained devices. Should
the transmission intervals be shorter, it may lead to errors.

The less fortunate results for LTE-M clearly show that within the measured range of 0 to 4096
bytes, there is no linear relationship between payload size and neither transmission energy nor
time. This is likely related to LTE-M being a standard that favors low latency and high data rate.
As shown in table 2.1, the maximum size of a single LTE-M packet is 8188 octets (bytes). That
is over double the maximum payload transmitted during our experiments suggesting that the
standard uses more or less the same energy for messages with sizes smaller than the maximum
packet size. However, we do not see this behavior when the payload size exceeds the 1600 octet
maximum packet size of NB-IoT, indicating that there may be other causes of this behavior. The
knowledge needed to determine why LTE-M behaves as it does may require an understanding
of how the physical layer of the standard works, something which has not been covered in this
thesis. In conclusion, LTE-M does not fit for modeling the total energy consumption, and as the
results in figure 4.6b show, it leads to overestimation.

5.3. MODELING 49

The behavior of LTE-M is still interesting from a developer’s point of view, as the more or less
constant energy required to transmit messages means that the energy per message at some point
will be lower than that of NB-IoT. This does require the device to avoid the energy spent during
cDRX through the use of Release Assist Indication (RAI). RAI is supported for both NB-IoT and
LTE-M by Telenor, but only for NB-IoT on the nRF9160 making this difficult to confirm at this
point in time.

When processing the data from the MQTT over LTE-M payload sweep measurements, one of
the data sets was not possible to handle. This was due to unexpected behavior in the application,
as it did not enter PSM mode between two successive transmissions. The RRC inactive timer
was restarted later than expected due to a TX/RX initiation. As this only happened for the TCP
enabled application, it is reasonable to believe that some traffic related to this protocol is to blame.
We could not pinpoint the exact transaction, and more sophisticated monitoring of individual
data transmission would be required to investigate this issue further. However, it could have been
avoided with a longer duration between test transmissions.

5.3 modeling

We defined the third and final research question as "Can the total energy consumption when
using either TCP or UDP over LTE-M and NB-IoT be correctly modeled assuming the relationship
above?". Based on the results from the test described in section 4.4, predicting the total power
consumption based on the empirical data gathered is possible. When basing a model on several
parameters, including empirical data, there are many possible points of failure. Firstly the results
are gathered on one type of device. In this case, the nRF9160 and does not necessarily apply to
other devices. Secondly, the parameters measured in section 4.1 shows that LTE-M, in particular,
is suspect to high variation in energy use during cDRX, something which is difficult to model
without a more thorough understanding of the protocol. Thirdly, the LTE-M message energy
prediction’s inaccuracy likely contributed to overcompensation seen for MQTT in figure 4.6b. The
predictions for CoAP (i.e. UDP) over LTE-M are less erroneous, though this might be deceiving
given that the slope of the prediction for this case is negative, which in turn compensates eventual
errors in cDRX approximation. The overall more accurate predictions for NB-IoT confirms that
both the parameter measurements and linear regression models for NB-IoT are more viable for
estimation.

The research in [16] and [34] does indeed show that modeling the power consumption of IoT
devices is possible. However, both papers devise complicated, analytical models, while the research
done in our project uses simple empirical data while still achieving good accuracy. However, the
model is tied to specific configurations of MQTT and CoAP; thus, it would not necessarily be
viable for applications using other QoS levels, for example. This could be mitigated by modeling
on a per-byte level, ignoring the overlying protocol. One then would be able to predict power

50 CHAPTER 5. DISCUSSION

consumption based on the exact number of bytes transmitted. This is what has been done in
the papers above. However, this would require even more complicated models when applied to
applications using, for example, MQTT as handshaking and so onmust be taken into consideration.
Hence, modeling based on empirical data using the desired protocol can be much more efficient.

The estimations in figure 4.9 show that 10-year battery life is achievable for both NB-IoT and
LTE-M for payloads smaller than 1280 bytes transmitted with 2 and 4-hour intervals respectively.
Our model is based on empirical data, with measurements done on a specific device, so other
estimations are likely to differ. However, our NB-IoT results are comparable to the 3GPP estimation
results in table 2.7, though they estimate a drastically shorter lifetime with increased payload
size. This difference could be related to assumptions and estimation setup. They do assume the
same PSM current as us, 4µA, but the actual calculation is not presented, so it was challenging to
compare the results correctly. Furthermore, we have not taken coupling loss into account in this
report, so it is unclear which estimations from 3GPP’s estimation that actually apply. Accounting
for coupling loss in the model is reserved for further research.

5.4 Working with a cellular device

This section will make some remarks on the experience gained from working with novel cellular
technology. When working with a cellular-connected device, the developer is at the mercy of
the network provider. Ultimately the possibilities for using mechanisms like eDRX and PSM
rely on what is possible with the respective provider. During the development and testing of
the application discussed in this thesis, it has been discovered that there are many possible
configurations and limitations, especially concerning connection configuration.

Chapter 6

Conclusion

In this paper, we have evaluated and compared the energy consumption spent to transmit messages
using UDP and TCP over the cellular networks NB-IoT and LTE-M. Notably, we have used empirical
data to estimate the total power consumption of a cellular IoT device, the nRF9160, using the
TCP-based MQTT and UDP-based CoAP communication protocols. The model parameters are
payload size and desired transmission interval, as well as network parameters for connected DRX.

CoAP was shown to perform better than MQTT from the standpoint of energy usage, though,
both protocols were deemed functional. We used linear regression to analyze the measured energy
usage for a range of payload sizes, under the assumption that there is a relationship between
payload size and energy spent for transmissions over LTE-M and NB-IoT. Our findings show a
clear linear dependency between payload size and energy for NB-IoT, which resulted in promising
accuracy for both CoAP and MQTT over NB-IoT in the model. No clear relation was found for
LTE-M, and energy usage per byte was more or less constant within the tested range of payload
sizes. Though this finding resulted in less accurate estimations using the model, it also suggests
that LTE-M is more energy efficient when payload size exceeds ∼400 bytes over CoAP and ∼950
bytes over MQTT given that Release Assist Indication is used. In an example of utilization, the
model was applied to show that a cellular device can achieve 10 years of battery life under some
constraints.

The high abstraction level of this model allows a developer without extensive knowledge of
cellular and communication protocol behavior to estimate the power consumption of a device
easily, but we suggest that modeling of LTE-M should be further investigated as the method used
in our research was insufficient, and no other research has been found on the matter. Furthermore,
the model only takes uplink application into account, though many devices today require regular
updates with firmware and configuration. Extending the model with the predictions of downlink
data will expand on their usefulness.

51

Appendices

52

Appendix A

Parameter measurements

54

55

Table A.1: NB-IoT cDRX parameter measurements

Measurement number cDRX energy [µ Wh] Paging energy [µ Wh] Release energy [µ Wh]
1 28 2.66 2.38
2 29.2 2.69 2.36
3 29.2 2.36 2.32
4 27.7 2.32 1.99
5 28.7 2.68 2.1
6 28.8 2.69 2.12
7 27.9 2.81 1.99
8 29 2.61 1.83
9 28.8 2.69 2.69
10 28.9 2.68 2.3
11 27.9 2.38 2.45
12 27.9 2.39 1.9
13 28 2.68 2.26
14 27.5 2.67 2.3
15 28.8 2.16 1.9
16 27.9 2.35 1.94
17 29.1 2.71 2.53
18 28.9 2.68 1.75
19 28.3 2.8 2.38
20 29.1 2.59 1.92

56 APPENDIX A. PARAMETER MEASUREMENTS

Table A.2: LTE-M cDRX parameter measurements

Measurement number cDRX energy [µ Wh] Paging energy [µ Wh] Release energy [µ Wh]
1 98.5 2.3 0.409
2 109 2.31 0.172
3 101 2.28 0.584
4 95.4 2.28 0.405
5 97 2.26 0.509
6 96.7 2.29 0.368
7 101 2.3 0.378
8 97.8 2.29 0.505
9 97.4 5.73 0.536
10 112 2.29 0.546
11 95.7 6.04 0.407
12 95.5 6.35 0.505
13 113 2.34 0.387
14 110 9.7 0.392
15 117 2.3 0.535
16 97.2 2.29 0.384
17 96.5 2.28 0.512
18 114 2.29 0.521
19 98 2.32 0.38
20 96.3 2.29 0.526

Appendix B

nRF9160 - CoAP application

Listing B.1: Main file of the CoAP application
1 #include <zephyr.h>

2 #include <logging/log.h>

3

4 #include <dk_buttons_and_leds.h>

5 #include <lte_lc.h>

6

7 #include "coap.h"

8

9 LOG_MODULE_REGISTER(app_main , CONFIG_APP_LOG_LEVEL);

10

11 /* Application settings */

12 #define WITH_PSM

13 #define TEST_PERIODIC

14 //#define TEST_SWEEP

15

16 /* Test settings */

17 #define SAMPLE_INTERVAL 1 // Seconds

18 #define SWEEP_INTERVAL 40 // Seconds

19 #define SIZE_STEP 41 //1435 bytes is max , so we get as close to the

limit as possible.

20 #define MAX_SAMPLES 5

21 #define PERIODIC_MSG_SIZE 1280 //Bytes

22

23 // The periodic TAU given by the network

24 static int actual_tau;

25

26 /* Indicates when the application is ready to transmit *

27 * according to the periodic TAU */

28 static bool transmit = false;

29

30 // Size is restricted my MTU

31 #define TEST_DATA_SIZE 1439

57

58 APPENDIX B. NRF9160 - COAP APPLICATION

32

33 //1440 characters in an array for upload testing

34 u8_t * testData="

yK3vQHgUQ1WBUNPGprMSh0o1ZOTpGzC788DMB0OoQytSTDmKo7zeybWdx1DGh3SX"

35 "IpfkYHSkX3hQuEUdWC8jWBq6qRAzv4NB79aECZwwUsReylQcJOzZ4NW1rY3xbyya"

36 "ep9DOEWnRsWkjILrSh4crLHlfvmqVLxRjA1dDvHx72JVD4rvhhLbcQ6Gi94lvVF7"

37 "0KmnO4Lh7IRGUm37TVXzQXtRnb228WPngoCC5Ge4GZNmBRFhXWtgeuU9Vt2JJbID"

38 "jvdEpZVL88RszUn7Ah4pnTC7rkHRft6apfuZCUqo0udcvNbEaUFncwjsU8zkw8j7"

39 "mfiD7QxF2A9Kv7XTztxef2Ryj1MbWe0vDAPXUz3yb4AqfgcxPb3TCocDCgAd2F2S"

40 "xlAZ69913oxzD0M24Sl0YIztsCnTuUrzrgIOrdXWvjOcEcuEJltiIZMygVx8gxwc"

41 "pwY4YNybojiLfuRET4w91tbTgn33IvFcY8J7tu5Y8LZjk5ZfkekJg5zhZs6Bo2Jm"

42 "N0mC7eCqYvSBGm4No2TPbLjYD2fB5ERubVuo2rGeZjbnWEx8jcP9jgq049pEjjS9"

43 "MRXvJnDtpo8hIZcZpz1HKyXbOXbz60baSbpW5RHOhwg1TBh8wrBTOOORMMCBhl4O"

44 "QApYjcf2w4ZlbyfWUjQY6gkGR21599Wb1IjraQL911QeFjiRFGtcDEpxo5GMWL1O"

45 "ZKM4Gnkp4LP0A0yK9FlHeopsaCOBxOI0dTaq2gWDD8rRRCbYykck0J5IZfQnrBbv"

46 "AH1MSzQuBq5BLjPC6KhWj519pymLg11fSvhgWlOnhfuSNlmqq9pysYmZIPUNKGOP

"

47 "9gfpEKm8tCuvpUWZvoFsrmxfYQNe9vUznG0PZMhHDSc5C6wDBpFqDBhHEHRdg0KR"

48 "Df8CU5RsaaviBtI8yFb0plaRQjzTYg2xZcppX4NANeqB0udVdEdfhIxX6iVXcEb5"

49 "lGY0a35dDRjCgL7ePgZn7oQbLuusUurDbprEu2msxDXz94KJPwhnMldretN5bgq7"

50 "yK3vQHgUQ1WBUNPGprMSh0o1ZOTpGzC788DMB0OoQytSTDmKo7zeybWdx1DGh3SX"

51 "IpfkYHSkX3hQuEUdWC8jWBq6qRAzv4NB79aECZwwUsReylQcJOzZ4NW1rY3xbyya"

52 "ep9DOEWnRsWkjILrSh4crLHlfvmqVLxRjA1dDvHx72JVD4rvhhLbcQ6Gi94lvVF7"

53 "0KmnO4Lh7IRGUm37TVXzQXtRnb228WPngoCC5Ge4GZNmBRFhXWtgeuU9Vt2JJbID"

54 "jvdEpZVL88RszUn7Ah4pnTC7rkHRft6apfuZCUqo0udcvNbEaUFncwjsU8zkw8j7"

55 "mfiD7QxF2A9Kv7XTztxef2Ryj1MbWe0vDAPXUz3yb4AqfgcxPb3TCocDCgAd2F2S"

56 "xlAZ69913oxk5ZfkekJg5zhZs6Bo2Ja";

57

58

59

60

61

62 /* @brief Message post function derived from Telenor 's code */

63 static int message_post(struct coap_resource *resource , struct coap_packet *

request , struct sockaddr *addr , socklen_t addr_len) {

64 coap_endpoint *coap = resource ->user_data;

65

66 u16_t payload_len;

67 const u8_t *payload = coap_packet_get_payload(request , &payload_len);

68

69 u8_t *buf = k_calloc(payload_len + 1, 1);

70 memcpy(buf , payload , payload_len);

71 LOG_INF("Received CoAP POST: %s", log_strdup(buf));

72 k_free(buf);

73

74 int err = coap_endpoint_respond(coap , request , COAP_RESPONSE_CODE_CREATED ,

NULL , 0, addr , addr_len);

75 if (err != 0) {

76 LOG_ERR("coap_endpoint_respond: %d", err);

77 }

59

78

79 return 0;

80 }

81

82 /* Structures for CoAP*/

83 static const char * const message_path [] = { "message", NULL };

84 static struct coap_resource resources [] = {

85 {

86 path: message_path ,

87 post: message_post ,

88 },

89 {},

90 };

91 static coap_endpoint *coap;

92 struct sockaddr_in remote_addr = {

93 .sin_family = AF_INET ,

94 .sin_port = htons (5683) ,

95 };

96 static const char * const path[] = { "straight", "and", "narrow", NULL };

97

98 /* @brief Used to instantiate different variables needed for CoAP operation */

99 void init_endpoint(void) {

100 struct sockaddr_in local_addr = {

101 .sin_family = AF_INET ,

102 .sin_port = htons (5683) ,

103 };

104 coap = coap_endpoint_init ((struct sockaddr *)&local_addr , sizeof(local_addr),

resources);

105 if (coap == NULL) {

106 LOG_ERR("coap_endpoint_init");

107 return;

108 }

109

110 resources [0]. user_data = coap;

111

112 // Telenor 's IP address.

113 net_addr_pton(AF_INET , "172.16.15.14", &remote_addr.sin_addr);

114 }

115

116

117 /**@brief Callback for button events from the DK buttons and LEDs library. */

118 static void button_handler(u32_t button_states , u32_t has_changed)

119 {

120 static size_t test_index = 0;

121

122 if (has_changed & button_states & DK_BTN1_MSK) {

123 LOG_INF("DEV_DBG: button 1 pressed\n");

124 LOG_INF("Current test_index: %d", test_index);

125 if(test_index <= TEST_DATA_SIZE) {

126 int ret = coap_endpoint_post(coap , (struct sockaddr *)&remote_addr ,

60 APPENDIX B. NRF9160 - COAP APPLICATION

sizeof(remote_addr), path , testData , test_index);

127 if (ret != COAP_RESPONSE_CODE_CREATED) {

128 LOG_ERR("coap_endpoint_post: %d", ret);

129 return;

130 }

131 test_index += 10;

132 } else {

133 test_index = 0;

134 }

135 }

136 else if (has_changed & button_states & DK_BTN2_MSK) {

137 // resetting the test

138 test_index = 0;

139 }

140 return;

141 }

142

143 /**@brief Configures modem to provide LTE link. Blocks until link is

144 * successfully established.

145 */

146 static void modem_configure(void)

147 {

148 #if defined(CONFIG_LTE_LINK_CONTROL)

149 if (IS_ENABLED(CONFIG_LTE_AUTO_INIT_AND_CONNECT)) {

150 /* Do nothing , modem is already turned on

151 * and connected.

152 */

153 } else {

154 int err;

155

156 LOG_INF("LTE Link Connecting ...\n");

157 err = lte_lc_init_and_connect ();

158 __ASSERT(err == 0, "LTE link could not be established.");

159 LOG_INF("LTE Link Connected !\n");

160 }

161 #endif /* defined(CONFIG_LTE_LINK_CONTROL) */

162 }

163

164 /**@brief Initializes buttons and LEDs , using the DK buttons and LEDs

165 * library.

166 */

167 static void buttons_leds_init(void)

168 {

169 int err;

170

171 LOG_INF("DEV_DBG: Initalizing buttons and leds.\n");

172

173 err = dk_buttons_init(button_handler);

174 if (err) {

175 LOG_ERR("Could not initialize buttons , err code: %d\n", err);

61

176 }

177

178 err = dk_leds_init ();

179 if (err) {

180 LOG_ERR("Could not initialize leds , err code: %d\n", err);

181 }

182

183 err = dk_set_leds_state(DK_ALL_LEDS_MSK , DK_NO_LEDS_MSK);

184 if (err) {

185 LOG_ERR("Could not set leds state , err code: %d\n", err);

186 }

187 }

188

189 void setup_psm(void)

190 {

191 /*

192 * GPRS Timer 3 value (octet 3)

193 *

194 * Bits 5 to 1 represent the binary coded timer value.

195 *

196 * Bits 6 to 8 defines the timer value unit for the GPRS timer as follows:

197 * Bits

198 * 8 7 6

199 * 0 0 0 value is incremented in multiples of 10 minutes

200 * 0 0 1 value is incremented in multiples of 1 hour

201 * 0 1 0 value is incremented in multiples of 10 hours

202 * 0 1 1 value is incremented in multiples of 2 seconds

203 * 1 0 0 value is incremented in multiples of 30 seconds

204 * 1 0 1 value is incremented in multiples of 1 minute

205 * 1 1 0 value is incremented in multiples of 320 hours (NOTE 1)

206 * 1 1 1 value indicates that the timer is deactivated (NOTE 2).

207 */

208 char psm_settings [] = CONFIG_LTE_PSM_REQ_RPTAU;

209 printk("PSM bits: %c%c%c\n", psm_settings [0], psm_settings [1],

210 psm_settings [2]);

211 printk("PSM Interval: %c%c%c%c%c\n", psm_settings [3], psm_settings [4],

212 psm_settings [5], psm_settings [6], psm_settings [7]);

213 int err = lte_lc_psm_req(true);

214 if (err < 0) {

215 printk("Error setting PSM: %d Errno: %d\n", err , errno);

216 }

217 }

218

219 /* Timer used during TEST_PERIODIC to initiate transmission at the designated

interval */

220 void app_timer_handler(struct k_timer *dummy)

221 {

222 static u32_t minutes;

223

224 minutes ++;

62 APPENDIX B. NRF9160 - COAP APPLICATION

225 /* This shall match the PSM interval */

226 if (minutes % actual_tau == 0) {

227 transmit = true;

228 LOG_INF("Ready for transmit");

229 }

230 LOG_INF("Elapsed time: %d\n", minutes);

231 }

232

233 K_TIMER_DEFINE(app_timer , app_timer_handler , NULL);

234

235 /* @brief initializes timer that triggers every minute */

236 void timer_init(void)

237 {

238 k_timer_start (&app_timer , K_MINUTES (1), K_MINUTES (1));

239 }

240

241

242 #ifdef TEST_PERIODIC

243 static int run_periodic(void) {

244 static u8_t sample_cnt = 1;

245 static bool transmit_finished = false;

246

247 if (transmit) {

248 // Lighting LED2 to indicate that transmission is initiated

249 dk_set_led(DK_LED2 , 0);

250

251 //Data upload

252 int ret = coap_endpoint_post(coap , (struct sockaddr *)&remote_addr ,

sizeof(remote_addr), path , testData , PERIODIC_MSG_SIZE);

253 if (ret != COAP_RESPONSE_CODE_CREATED) {

254 LOG_ERR("coap_endpoint_post: %d", ret);

255 return -1;

256 }

257 transmit_finished = true;

258 }

259

260 k_sleep(K_SECONDS(SAMPLE_INTERVAL));

261

262 if(transmit && transmit_finished) {

263 // Transmission phase over.

264 dk_set_led(DK_LED2 , 1);

265 transmit = false;

266 transmit_finished = false;

267

268 if(sample_cnt >= MAX_SAMPLES) {

269 //exit test

270 return -1;

271 }

272

273 sample_cnt ++;

63

274 }

275

276 return 0;

277 }

278

279 #endif

280

281 #ifdef TEST_SWEEP

282 static int run_size_sweep(void) {

283 static size_t test_index = 0;

284

285 LOG_INF("Current test_index: %d", test_index);

286 int ret = coap_endpoint_post(coap , (struct sockaddr *)&remote_addr , sizeof(

remote_addr), path , testData , test_index);

287 if (ret != COAP_RESPONSE_CODE_CREATED) {

288 LOG_ERR("coap_endpoint_post: %d", ret);

289 return -1;

290 }

291 test_index += SIZE_STEP;

292

293 if(test_index > TEST_DATA_SIZE) {

294 // ending test

295 return -1;

296 }

297

298 return 0;

299 }

300 #endif

301

302 void main() {

303 LOG_INF("\nDT CoAP application example started\n");

304

305 int err;

306

307 buttons_leds_init ();

308

309 #ifdef WITH_PSM

310 setup_psm ();

311 #else

312 /* Force PSM off in case the modem uses old PSM settings */

313 err = lte_lc_psm_req(false);

314 #endif

315

316

317 modem_configure ();

318

319 init_endpoint ();

320

321 #ifdef WITH_PSM

322

64 APPENDIX B. NRF9160 - COAP APPLICATION

323 // The network can provide other PSM values. So we fetch the actual values of

the network

324 int curr_active;

325 lte_lc_psm_get (&actual_tau , &curr_active);

326 LOG_INF("Reqested: TAU = %s | AT = %s", log_strdup(CONFIG_LTE_PSM_REQ_RPTAU),

log_strdup(CONFIG_LTE_PSM_REQ_RAT));

327 LOG_INF("Got: TAU = %d | AT = %d", actual_tau , curr_active);

328 #endif

329

330 #ifdef TEST_PERIODIC

331 // Converting TAU to minutes

332 actual_tau = actual_tau /60;

333 timer_init ();

334 #endif

335

336 #ifdef TEST_SWEEP

337 k_sleep(K_SECONDS(SWEEP_INTERVAL));

338 #endif

339

340 // Lighting LED1 to indicate that the application is connected and entering

main loop.

341 dk_set_led(DK_LED1 , 0);

342 while (1) {

343 #ifdef TEST_PERIODIC

344 err = run_periodic ();

345 if (err < 0) {

346 dk_set_led(DK_LED3 , 0);

347 LOG_ERR("Error or finished sweep");

348 return;

349 }

350 k_sleep(K_SECONDS(SAMPLE_INTERVAL));

351 #elif defined(TEST_SWEEP)

352 dk_set_led(DK_LED2 , 0);

353 if (run_size_sweep () < 0) {

354 dk_set_led(DK_LED3 , 0);

355 LOG_ERR("Error or finished sweep");

356 return;

357 }

358 dk_set_led(DK_LED2 , 1);

359 k_sleep(SWEEP_INTERVAL);

360 #else

361 k_sleep(K_SECONDS(SAMPLE_INTERVAL));

362 #endif

363 }

364 }

65

Listing B.2: The CoAP header file from Telenor
1 #pragma once

2

3 #include <net/coap.h>

4

5 // A coap_endpoint is a CoAP client and server.

6 typedef struct _coap_endpoint coap_endpoint;

7

8 // coap_endpoint_init creates a CoAP endpoint and starts listening for requests

.

9 coap_endpoint *coap_endpoint_init(struct sockaddr *local_addr , socklen_t

local_addr_len , struct coap_resource *resources);

10

11 // A coap_response_handler is called when a response is received or an error

occurs.

12 // The response packet is freed after the handler returns , so the handler must

copy any data it wants to retain.

13 // It is the responsibility of the response handler to acknowledge or reject

the response.

14 // The error code may be:

15 // -EAGAIN if an acknowledgement was never received for a Confirmable

message

16 // -ECANCELED if the remote endpoint sent a Reset message

17 // -ENOMEM if the endpoint could not allocate memory

18 typedef void (* coap_response_handler)(void *handler_data , int err , struct

coap_packet *response);

19

20 // coap_endpoint_post performs a POST request towards the given address with

the given path and payload.

21 // It returns an enum coap_response_code or a negative error code.

22 int coap_endpoint_post(coap_endpoint *ep, struct sockaddr *addr , socklen_t

addr_len , const char *const *path , u8_t *payload , int payload_len);

23

24 // coap_endpoint_post_async asynchronously performs a POST request towards the

given address with the given path and payload.

25 int coap_endpoint_post_async(coap_endpoint *ep, struct sockaddr *addr ,

socklen_t addr_len , const char *const *path , u8_t *payload , int payload_len

, coap_response_handler response_handler , void *response_handler_data);

26

27 // coap_endpoint_respond responds to a CoAP request. The response is

piggybacked on a acknowledgement if the request was confirmable.

28 // This function must only be called from a request handler , not a different

thread.

29 int coap_endpoint_respond(coap_endpoint *ep, struct coap_packet *request , enum

coap_response_code code , u8_t *payload , u16_t payload_len , struct sockaddr

*addr , socklen_t addr_len);

30

31 // coap_endpoint_acknowledge send an acknowledgement for the given packet if it

is confirmable , otherwise it does nothing.

32 int coap_endpoint_acknowledge(coap_endpoint *ep, struct coap_packet *packet ,

66 APPENDIX B. NRF9160 - COAP APPLICATION

struct sockaddr *addr , socklen_t addr_len);

33

34 // coap_endpoint_reset sends a reset message for the given packet.

35 int coap_endpoint_reset(coap_endpoint *ep, struct coap_packet *packet , struct

sockaddr *addr , socklen_t addr_len);

67

Listing B.3: Project configuration file for CoAP
1 # General config

2 CONFIG_ASSERT=n #Consumes a lot of power.

3 CONFIG_TEST_RANDOM_GENERATOR=n

4

5 # Logging

6 CONFIG_SERIAL=y #set to "n" for no logging. Saves power

7 CONFIG_LOG=y

8 CONFIG_LOG_STRDUP_MAX_STRING =64

9 CONFIG_APP_LOG_LEVEL_DBG=y

10 CONFIG_LTE_LINK_CONTROL_LOG_LEVEL_INF=y

11 CONFIG_COAP_LOG_LEVEL_DBG=y

12

13 # AT Host

14 CONFIG_UART_INTERRUPT_DRIVEN=y

15 CONFIG_AT_HOST_LIBRARY=y #set to "n" when serial is "n".

16

17 # Network

18 CONFIG_NETWORKING=y

19 CONFIG_NET_SOCKETS=y

20 CONFIG_NET_SOCKETS_OFFLOAD=y

21

22 # BSD library

23 CONFIG_BSD_LIBRARY=y

24

25 # LTE link control

26 CONFIG_LTE_LINK_CONTROL=y

27 CONFIG_LTE_AUTO_INIT_AND_CONNECT=n

28 CONFIG_LTE_NETWORK_MODE_NBIOT=y

29 CONFIG_LTE_PDP_CMD=y

30 CONFIG_LTE_PDP_CONTEXT="0,\"IP\",\"mda.ee\""

31

32 #PSM test

33 CONFIG_LTE_PSM_REQ_RPTAU="10100101" #5 min

34 CONFIG_LTE_PSM_REQ_RAT="00000000" #0 min

35

36 CONFIG_LTE_EDRX_REQ=n

37 CONFIG_LTE_EDRX_REQ_VALUE="0000"

38 CONFIG_LTE_PTW_VALUE="0001"

39 #CONFIG_MODEM_INFO=n

40

41 # CoAP

42 CONFIG_COAP=y

43

44 # Heap and stacks

45 CONFIG_HEAP_MEM_POOL_SIZE =16384

46 CONFIG_MAIN_STACK_SIZE =8192

47 CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE =2048

48 CONFIG_HW_STACK_PROTECTION=y

49

68 APPENDIX B. NRF9160 - COAP APPLICATION

50 # Library for buttons and LEDs

51 CONFIG_DK_LIBRARY=y

52

53 # Disable native network stack to save some memory

54 CONFIG_NET_IPV4=n

55 CONFIG_NET_IPV6=n

56 CONFIG_NET_UDP=n

57 CONFIG_NET_TCP=n

58 CONFIG_NET_RX_STACK_SIZE =1024

59 CONFIG_NET_TX_STACK_SIZE =1024

60

61 # Uncomment the lines below to disable optimizations when debugging

62 CONFIG_NO_OPTIMIZATIONS=n

63 CONFIG_DEBUG=n

Appendix C

nRF9160 - CoAP application

Listing C.1: Main file of the MQTT application
1 /*

2 * Copyright (c) 2018 Nordic Semiconductor ASA

3 *

4 * SPDX -License -Identifier: LicenseRef -BSD -5-Clause -Nordic

5 */

6

7 #include <zephyr.h>

8 #include <stdio.h>

9 #include <string.h>

10 #include <logging/log.h>

11

12 #include <net/mqtt.h>

13 #include <net/socket.h>

14 #include <lte_lc.h>

15

16 #include <dk_buttons_and_leds.h>

17

18 #include "mqtt_module.h"

19

20 LOG_MODULE_REGISTER(app_mqtt_main , CONFIG_APP_LOG_LEVEL);

21

22 /* Application settings */

23 #define WITH_PSM

24 #define TEST_PERIODIC

25 //#define TEST_SWEEP

26

27

28 /* Test settings */

29 #define SAMPLE_INTERVAL 1 // Seconds

30 #define SWEEP_INTERVAL 40 // Seconds

31 #define SIZE_STEP 64 //Bytes

32 #define MAX_SAMPLES 5

69

70 APPENDIX C. NRF9160 - COAP APPLICATION

33 #define PERIODIC_MSG_SIZE 4096 //Bytes

34

35 // The periodic TAU given by the network

36 static int actual_tau = 10;

37

38 /* Indicates when the application is ready to transmit *

39 * according to the periodic TAU */

40 static bool transmit = false;

41

42 // Actual maximum payload size

43 #define TEST_DATA_SIZE 4096

44

45 //4096 characters in an array for upload testing

46 u8_t * testData = "

yK3vQHgUQ1WBUNPGprMSh0o1ZOTpGzC788DMB0OoQytSTDmKo7zeybWdx1DGh3SX"

47 "IpfkYHSkX3hQuEUdWC8jWBq6qRAzv4NB79aECZwwUsReylQcJOzZ4NW1rY3xbyya"

48 "ep9DOEWnRsWkjILrSh4crLHlfvmqVLxRjA1dDvHx72JVD4rvhhLbcQ6Gi94lvVF7"

49 "0KmnO4Lh7IRGUm37TVXzQXtRnb228WPngoCC5Ge4GZNmBRFhXWtgeuU9Vt2JJbID"

50 "jvdEpZVL88RszUn7Ah4pnTC7rkHRft6apfuZCUqo0udcvNbEaUFncwjsU8zkw8j7"

51 "mfiD7QxF2A9Kv7XTztxef2Ryj1MbWe0vDAPXUz3yb4AqfgcxPb3TCocDCgAd2F2S"

52 "xlAZ69913oxzD0M24Sl0YIztsCnTuUrzrgIOrdXWvjOcEcuEJltiIZMygVx8gxwc"

53 "pwY4YNybojiLfuRET4w91tbTgn33IvFcY8J7tu5Y8LZjk5ZfkekJg5zhZs6Bo2Jm"

54 "N0mC7eCqYvSBGm4No2TPbLjYD2fB5ERubVuo2rGeZjbnWEx8jcP9jgq049pEjjS9"

55 "MRXvJnDtpo8hIZcZpz1HKyXbOXbz60baSbpW5RHOhwg1TBh8wrBTOOORMMCBhl4O"

56 "QApYjcf2w4ZlbyfWUjQY6gkGR21599Wb1IjraQL911QeFjiRFGtcDEpxo5GMWL1O"

57 "ZKM4Gnkp4LP0A0yK9FlHeopsaCOBxOI0dTaq2gWDD8rRRCbYykck0J5IZfQnrBbv"

58 "

AH1MSzQuBq5BLjPC6KhWj519pymLg11fSvhgWlOnhfuSNlmqq9pysYmZIPUNKGOP"

59 "9gfpEKm8tCuvpUWZvoFsrmxfYQNe9vUznG0PZMhHDSc5C6wDBpFqDBhHEHRdg0KR"

60 "Df8CU5RsaaviBtI8yFb0plaRQjzTYg2xZcppX4NANeqB0udVdEdfhIxX6iVXcEb5"

61 "lGY0a35dDRjCgL7ePgZn7oQbLuusUurDbprEu2msxDXz94KJPwhnMldretN5bgq7"

62 "yK3vQHgUQ1WBUNPGprMSh0o1ZOTpGzC788DMB0OoQytSTDmKo7zeybWdx1DGh3SX"

63 "IpfkYHSkX3hQuEUdWC8jWBq6qRAzv4NB79aECZwwUsReylQcJOzZ4NW1rY3xbyya"

64 "ep9DOEWnRsWkjILrSh4crLHlfvmqVLxRjA1dDvHx72JVD4rvhhLbcQ6Gi94lvVF7"

65 "0KmnO4Lh7IRGUm37TVXzQXtRnb228WPngoCC5Ge4GZNmBRFhXWtgeuU9Vt2JJbID"

66 "jvdEpZVL88RszUn7Ah4pnTC7rkHRft6apfuZCUqo0udcvNbEaUFncwjsU8zkw8j7"

67 "mfiD7QxF2A9Kv7XTztxef2Ryj1MbWe0vDAPXUz3yb4AqfgcxPb3TCocDCgAd2F2S"

68 "xlAZ69913oxzD0M24Sl0YIztsCnTuUrzrgIOrdXWvjOcEcuEJltiIZMygVx8gxwc"

69 "pwY4YNybojiLfuRET4w91tbTgn33IvFcY8J7tu5Y8LZjk5ZfkekJg5zhZs6Bo2Jm"

70 "N0mC7eCqYvSBGm4No2TPbLjYD2fB5ERubVuo2rGeZjbnWEx8jcP9jgq049pEjjS9"

71 "MRXvJnDtpo8hIZcZpz1HKyXbOXbz60baSbpW5RHOhwg1TBh8wrBTOOORMMCBhl4O"

72 "QApYjcf2w4ZlbyfWUjQY6gkGR21599Wb1IjraQL911QeFjiRFGtcDEpxo5GMWL1O"

73 "ZKM4Gnkp4LP0A0yK9FlHeopsaCOBxOI0dTaq2gWDD8rRRCbYykck0J5IZfQnrBbv"

74 "

AH1MSzQuBq5BLjPC6KhWj519pymLg11fSvhgWlOnhfuSNlmqq9pysYmZIPUNKGOP"

75 "9gfpEKm8tCuvpUWZvoFsrmxfYQNe9vUznG0PZMhHDSc5C6wDBpFqDBhHEHRdg0KR"

76 "Df8CU5RsaaviBtI8yFb0plaRQjzTYg2xZcppX4NANeqB0udVdEdfhIxX6iVXcEb5"

77 "lGY0a35dDRjCgL7ePgZn7oQbLuusUurDbprEu2msxDXz94KJPwhnMldretN5bgq7"

78 "yK3vQHgUQ1WBUNPGprMSh0o1ZOTpGzC788DMB0OoQytSTDmKo7zeybWdx1DGh3SX"

79 "IpfkYHSkX3hQuEUdWC8jWBq6qRAzv4NB79aECZwwUsReylQcJOzZ4NW1rY3xbyya"

71

80 "ep9DOEWnRsWkjILrSh4crLHlfvmqVLxRjA1dDvHx72JVD4rvhhLbcQ6Gi94lvVF7"

81 "0KmnO4Lh7IRGUm37TVXzQXtRnb228WPngoCC5Ge4GZNmBRFhXWtgeuU9Vt2JJbID"

82 "jvdEpZVL88RszUn7Ah4pnTC7rkHRft6apfuZCUqo0udcvNbEaUFncwjsU8zkw8j7"

83 "mfiD7QxF2A9Kv7XTztxef2Ryj1MbWe0vDAPXUz3yb4AqfgcxPb3TCocDCgAd2F2S"

84 "xlAZ69913oxzD0M24Sl0YIztsCnTuUrzrgIOrdXWvjOcEcuEJltiIZMygVx8gxwc"

85 "pwY4YNybojiLfuRET4w91tbTgn33IvFcY8J7tu5Y8LZjk5ZfkekJg5zhZs6Bo2Jm"

86 "N0mC7eCqYvSBGm4No2TPbLjYD2fB5ERubVuo2rGeZjbnWEx8jcP9jgq049pEjjS9"

87 "MRXvJnDtpo8hIZcZpz1HKyXbOXbz60baSbpW5RHOhwg1TBh8wrBTOOORMMCBhl4O"

88 "QApYjcf2w4ZlbyfWUjQY6gkGR21599Wb1IjraQL911QeFjiRFGtcDEpxo5GMWL1O"

89 "ZKM4Gnkp4LP0A0yK9FlHeopsaCOBxOI0dTaq2gWDD8rRRCbYykck0J5IZfQnrBbv"

90 "

AH1MSzQuBq5BLjPC6KhWj519pymLg11fSvhgWlOnhfuSNlmqq9pysYmZIPUNKGOP"

91 "9gfpEKm8tCuvpUWZvoFsrmxfYQNe9vUznG0PZMhHDSc5C6wDBpFqDBhHEHRdg0KR"

92 "Df8CU5RsaaviBtI8yFb0plaRQjzTYg2xZcppX4NANeqB0udVdEdfhIxX6iVXcEb5"

93 "lGY0a35dDRjCgL7ePgZn7oQbLuusUurDbprEu2msxDXz94KJPwhnMldretN5bgq7"

94 "yK3vQHgUQ1WBUNPGprMSh0o1ZOTpGzC788DMB0OoQytSTDmKo7zeybWdx1DGh3SX"

95 "IpfkYHSkX3hQuEUdWC8jWBq6qRAzv4NB79aECZwwUsReylQcJOzZ4NW1rY3xbyya"

96 "ep9DOEWnRsWkjILrSh4crLHlfvmqVLxRjA1dDvHx72JVD4rvhhLbcQ6Gi94lvVF7"

97 "0KmnO4Lh7IRGUm37TVXzQXtRnb228WPngoCC5Ge4GZNmBRFhXWtgeuU9Vt2JJbID"

98 "jvdEpZVL88RszUn7Ah4pnTC7rkHRft6apfuZCUqo0udcvNbEaUFncwjsU8zkw8j7"

99 "mfiD7QxF2A9Kv7XTztxef2Ryj1MbWe0vDAPXUz3yb4AqfgcxPb3TCocDCgAd2F2S"

100 "xlAZ69913oxzD0M24Sl0YIztsCnTuUrzrgIOrdXWvjOcEcuEJltiIZMygVx8gxwc"

101 "pwY4YNybojiLfuRET4w91tbTgn33IvFcY8J7tu5Y8LZjk5ZfkekJg5zhZs6Bo2Jm"

102 "N0mC7eCqYvSBGm4No2TPbLjYD2fB5ERubVuo2rGeZjbnWEx8jcP9jgq049pEjjS9"

103 "MRXvJnDtpo8hIZcZpz1HKyXbOXbz60baSbpW5RHOhwg1TBh8wrBTOOORMMCBhl4O"

104 "QApYjcf2w4ZlbyfWUjQY6gkGR21599Wb1IjraQL911QeFjiRFGtcDEpxo5GMWL1O"

105 "ZKM4Gnkp4LP0A0yK9FlHeopsaCOBxOI0dTaq2gWDD8rRRCbYykck0J5IZfQnrBbv"

106 "

AH1MSzQuBq5BLjPC6KhWj519pymLg11fSvhgWlOnhfuSNlmqq9pysYmZIPUNKGOP"

107 "9gfpEKm8tCuvpUWZvoFsrmxfYQNe9vUznG0PZMhHDSc5C6wDBpFqDBhHEHRdg0KR"

108 "Df8CU5RsaaviBtI8yFb0plaRQjzTYg2xZcppX4NANeqB0udVdEdfhIxX6iVXcEb5"

109 "lGY0a35dDRjCgL7ePgZn7oQbLuusUurDbprEu2msxDXz94KJPwhnMldretN5bgq";

110

111

112

113 #if defined(CONFIG_BSD_LIBRARY)

114 /**@brief Recoverable BSD library error. */

115 void bsd_recoverable_error_handler(uint32_t err)

116 {

117 LOG_ERR("bsdlib recoverable error: %u\n", (unsigned int)err);

118 }

119

120 #endif /* defined(CONFIG_BSD_LIBRARY) */

121

122 /**@brief Configures modem to provide LTE link. Blocks until link is

123 * successfully established.

124 */

125 static void modem_configure(void)

126 {

72 APPENDIX C. NRF9160 - COAP APPLICATION

127 #if defined(CONFIG_LTE_LINK_CONTROL)

128 if (IS_ENABLED(CONFIG_LTE_AUTO_INIT_AND_CONNECT)) {

129 /* Do nothing , modem is already turned on

130 * and connected.

131 */

132 } else {

133 int err;

134

135 LOG_INF("LTE Link Connecting ...\n");

136 err = lte_lc_init_and_connect ();

137 __ASSERT(err == 0, "LTE link could not be established.");

138 LOG_INF("LTE Link Connected !\n");

139 }

140 #endif /* defined(CONFIG_LTE_LINK_CONTROL) */

141 }

142

143 /* @brief returns a random "sample"*/

144 static u8_t sensor_data_get () {

145 u8_t random_sample;

146

147 random_sample = sys_rand32_get () % 255;

148

149 return random_sample;

150 }

151

152 /**@brief Callback for button events from the DK buttons and LEDs library. */

153 static void button_handler(u32_t button_states , u32_t has_changed)

154 {

155 u8_t sample = 0;

156 int err;

157

158 if (has_changed & button_states & DK_BTN1_MSK) {

159 LOG_INF("DEV_DBG: button 1 pressed\n");

160

161 // alarm inducer

162 sample = sensor_data_get ();

163 err = mqtt_data_publish (&sample ,1);

164

165 if (err < 0) {

166 LOG_ERR("MQTT_PUBLISH ret %d", err);

167 return;

168 }

169 }

170 else if (has_changed & button_states & DK_BTN2_MSK) {

171

172 }

173

174 return;

175 }

176

73

177 /**@brief Initializes buttons and LEDs , using the DK buttons and LEDs

178 * library.

179 */

180 static void buttons_leds_init(void)

181 {

182 int err;

183

184 LOG_INF("DEV_DBG: Initalizing buttons and leds.\n");

185

186 err = dk_buttons_init(button_handler);

187 if (err) {

188 LOG_ERR("Could not initialize buttons , err code: %d\n", err);

189 }

190

191 err = dk_leds_init ();

192 if (err) {

193 LOG_ERR("Could not initialize leds , err code: %d\n", err);

194 }

195

196 err = dk_set_leds_state(DK_ALL_LEDS_MSK , DK_NO_LEDS_MSK);

197 if (err) {

198 LOG_ERR("Could not set leds state , err code: %d\n", err);

199 }

200 }

201

202 /* Requests the configured PSM values from the network */

203 void setup_psm(void)

204 {

205 /*

206 * GPRS Timer 3 value (octet 3)

207 *

208 * Bits 5 to 1 represent the binary coded timer value.

209 *

210 * Bits 6 to 8 defines the timer value unit for the GPRS timer as follows:

211 * Bits

212 * 8 7 6

213 * 0 0 0 value is incremented in multiples of 10 minutes

214 * 0 0 1 value is incremented in multiples of 1 hour

215 * 0 1 0 value is incremented in multiples of 10 hours

216 * 0 1 1 value is incremented in multiples of 2 seconds

217 * 1 0 0 value is incremented in multiples of 30 seconds

218 * 1 0 1 value is incremented in multiples of 1 minute

219 * 1 1 0 value is incremented in multiples of 320 hours (NOTE 1)

220 * 1 1 1 value indicates that the timer is deactivated (NOTE 2).

221 */

222 char psm_settings [] = CONFIG_LTE_PSM_REQ_RPTAU;

223 printk("PSM bits: %c%c%c\n", psm_settings [0], psm_settings [1],

224 psm_settings [2]);

225 printk("PSM Interval: %c%c%c%c%c\n", psm_settings [3], psm_settings [4],

226 psm_settings [5], psm_settings [6], psm_settings [7]);

74 APPENDIX C. NRF9160 - COAP APPLICATION

227 int err = lte_lc_psm_req(true);

228 if (err < 0) {

229 printk("Error setting PSM: %d Errno: %d\n", err , errno);

230 }

231 }

232

233 /* @brief triggers every minute. Set transmit true if one periodic tau period

has passed */

234 void app_timer_handler(struct k_timer *dummy)

235 {

236 static u32_t minutes;

237

238 minutes ++;

239 /* This shall match the PSM interval */

240 if (minutes % actual_tau == 0) {

241 LOG_INF("Awake - transmit true");

242 transmit = true;

243 }

244 LOG_INF("Elapsed time: %d\n", minutes);

245 }

246

247 K_TIMER_DEFINE(app_timer , app_timer_handler , NULL);

248

249 /* @brief initializes timer that triggers every minute */

250 void timer_init(void)

251 {

252 k_timer_start (&app_timer , K_MINUTES (1), K_MINUTES (1));

253 }

254

255

256 #ifdef TEST_PERIODIC

257 static int run_periodic(void) {

258 static bool transmit_finished = false;

259 static u8_t sample_cnt = 1;

260

261 if (transmit) {

262 // Lighting LED2 to indicate that transmission is initiated

263 dk_set_led(DK_LED2 , 0);

264

265 //Data upload

266 int err = mqtt_data_publish(testData ,PERIODIC_MSG_SIZE);

267 if (err < 0) {

268 LOG_ERR("MQTT publish error: %d", err);

269 return err;

270 }

271

272 transmit_finished = true;

273 }

274

275 k_sleep(K_SECONDS(SAMPLE_INTERVAL));

75

276

277 if(transmit && transmit_finished) {

278 // Transmission phase over.

279 dk_set_led(DK_LED2 , 1);

280 transmit = false;

281 transmit_finished = false;

282

283

284 if(sample_cnt >= MAX_SAMPLES) {

285 //exit test

286 return -1;

287 }

288

289 sample_cnt ++;

290 }

291

292 return 0;

293 }

294 #endif

295

296 #ifdef TEST_SWEEP

297 static int run_size_sweep(void) {

298 static size_t test_index = 0;

299

300 // Lighting LED2 to indicate that transmission is initiated

301

302 LOG_INF("Current test_index: %d", test_index);

303 if(test_index < TEST_DATA_SIZE) {

304 LOG_INF("Transmit");

305 int err = mqtt_data_publish(testData ,test_index);

306 if (err < 0) {

307 LOG_ERR("MQTT_PUBLISH ret %d", err);

308 return err;

309 }

310 test_index += SIZE_STEP;

311 } else {

312 // Ending test

313 test_index = 0;

314 return -1;

315 }

316

317 return 0;

318 }

319 #endif

320

321 void main(void)

322 {

323 LOG_INF("\nDT MQTT application example started\n");

324

325 int err;

76 APPENDIX C. NRF9160 - COAP APPLICATION

326

327 buttons_leds_init ();

328

329 #ifdef WITH_PSM

330 setup_psm ();

331 #else

332 /* Force PSM off in case the modem uses old PSM settings */

333 err = lte_lc_psm_req(false);

334 if (err) {

335 LOG_ERR("ERROR: set psm %d\n", err);

336 return;

337 }

338 #endif

339

340 modem_configure ();

341

342 #ifdef WITH_PSM

343 // The network can provide other PSM values. So we fetch the actual values of

the network

344 int curr_active;

345 err = lte_lc_psm_get (&actual_tau , &curr_active);

346 LOG_INF("Reqested: TAU = %s | AT = %s", log_strdup(CONFIG_LTE_PSM_REQ_RPTAU),

log_strdup(CONFIG_LTE_PSM_REQ_RAT));

347 LOG_INF("Got: TAU = %d | AT = %d", actual_tau , curr_active);

348 #endif

349

350 /* Initialize MQTT connection */

351 mqtt_start_thread ();

352 while(! mqtt_connected ()) {

353 k_sleep (100);

354 }

355

356 #ifdef TEST_PERIODIC

357 // Converting TAU to minutes

358 actual_tau = actual_tau /60;

359 timer_init ();

360 #endif

361

362 if(err) {

363 LOG_ERR("Initialization error");

364 return;

365 }

366

367 #ifdef TEST_SWEEP

368 k_sleep(K_SECONDS(SWEEP_INTERVAL));

369 #endif

370

371 // Lighting LED1 to indicate that the application is connected and enterin

main loop.

372 dk_set_led(DK_LED1 , 0);

77

373

374 while (1) {

375 #ifdef TEST_PERIODIC

376 err = run_periodic ();

377 if (err < 0) {

378 dk_set_led(DK_LED3 , 0);

379 LOG_ERR("Error or finished periodic");

380 return;

381 }

382 #elif defined(TEST_SWEEP)

383 dk_set_led(DK_LED2 , 0);

384 if (run_size_sweep () < 0) {

385 dk_set_led(DK_LED3 , 0);

386 LOG_ERR("Error or finished sweep");

387 return;

388 }

389 dk_set_led(DK_LED2 , 1);

390 k_sleep(K_SECONDS(SWEEP_INTERVAL));

391 #else

392 k_sleep(K_SECONDS(SAMPLE_INTERVAL));

393 #endif

394 }

395 }

78 APPENDIX C. NRF9160 - COAP APPLICATION

Listing C.2: The MQTT header file from Telenor
1 /*

2 - file: mqtt_module.h

3 - desc: contains the mqtt thread and the means to start it

4 */

5

6 #ifndef _MQTT_MODULE_H_

7 #define _MQTT_MODULE_H_

8

9 // Initiates MQTT connection and thread

10 void mqtt_start_thread ();

11

12 // Publish data to topic specified in prj.conf

13 int mqtt_data_publish(u8_t *data , size_t len);

14

15 // Returns connection status of MQTT

16 int mqtt_connected(void);

17

18 #endif

79

Listing C.3: Project configuration file for MQTT
1 #

2 # Copyright (c) 2019 Nordic Semiconductor ASA

3 #

4 # SPDX -License -Identifier: LicenseRef -BSD -5-Clause -Nordic

5 #

6

7 # General config

8 CONFIG_TEST_RANDOM_GENERATOR=n

9 CONFIG_BSD_LIBRARY_TRACE_ENABLED=n

10 CONFIG_NET_SOCKETS_POSIX_NAMES=y

11

12 # Logging

13 CONFIG_SERIAL=n #set to "n" for no logging. Saves power

14 CONFIG_LOG=y

15 CONFIG_APP_LOG_LEVEL_DBG=y

16 CONFIG_LTE_LINK_CONTROL_LOG_LEVEL_DBG=y

17

18

19 # AT Host

20 CONFIG_UART_INTERRUPT_DRIVEN=y

21 CONFIG_AT_HOST_LIBRARY=n #set to "n" when serial is "n".

22

23

24 # Network

25 CONFIG_NETWORKING=y

26 CONFIG_NET_SOCKETS=y

27 CONFIG_NET_SOCKETS_OFFLOAD=y

28

29 # BSD library

30 CONFIG_BSD_LIBRARY=y

31

32 # LTE link control

33 CONFIG_LTE_LINK_CONTROL=y

34 CONFIG_LTE_AUTO_INIT_AND_CONNECT=n

35 CONFIG_LTE_NETWORK_MODE_NBIOT=y

36

37 #PSM test

38 CONFIG_LTE_PSM_REQ_RPTAU="10100101" #5 min

39 CONFIG_LTE_PSM_REQ_RAT="00000000" #0 min

40

41 CONFIG_LTE_EDRX_REQ=n

42 CONFIG_LTE_EDRX_REQ_VALUE="0010"

43 CONFIG_LTE_PTW_VALUE="0000"

44 CONFIG_MODEM_INFO=n

45

46 # MQTT

47 CONFIG_MQTT_LIB=y

48 CONFIG_MQTT_LIB_TLS=n

49

80 APPENDIX C. NRF9160 - COAP APPLICATION

50 # Library for buttons and LEDs

51 CONFIG_DK_LIBRARY=y

52

53 # Application

54 CONFIG_MQTT_PUB_TOPIC="/nrf91/publish/touch"

55 CONFIG_MQTT_SUB_TOPIC="/nrf91/subscribe/topic1"

56 CONFIG_MQTT_CLIENT_ID="DT_nRF91_2020_local"

57 CONFIG_MQTT_BROKER_HOSTNAME="84.210.212.77"

58 CONFIG_MQTT_BROKER_PORT =1883

59 CONFIG_MQTT_KEEPALIVE =7200

60

61 CONFIG_APP_MQTT_PASSWORD="dt_spring2020"

62 CONFIG_APP_MQTT_USERNAME="nrf9160"

63

64 # Main thread

65 CONFIG_MAIN_THREAD_PRIORITY =7

66 CONFIG_MAIN_STACK_SIZE =8192

67 CONFIG_HEAP_MEM_POOL_SIZE =16384

68

69 # Disable native network stack to save some memory

70 CONFIG_NET_IPV4=n

71 CONFIG_NET_IPV6=n

72 CONFIG_NET_UDP=n

73 CONFIG_NET_TCP=n

Appendix D

Processing notebook

81

processing_sweep

June 29, 2020

[]: #### Sweep processing code ####
This file contains the code handling the measurements from the payload sweep␣
↪→experiments.

[]: import pandas as pd
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

from scipy import signal as sig
from scipy import stats as stat
from sklearn import preprocessing
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from numpy import fft
import importlib

import processing_helpers as ph
from processing_helpers import do_linear_regression
from processing_helpers import get_residuals
from processing_helpers import segment_data
from processing_helpers import plot_pred_interval

[]: ## For reloading processing_helpers when changes are made
importlib.reload(ph)

[]: #initial constants
delta_t = 0.00025 #s
V = 3.7 #V

to_uWh = (1000*1000*delta_t*V)/3600 #uWh

nb_active_energy = 28.48 #uWh Based on 20 measurements from test data
nb_active_time = 20.48 #s

ltem_active_energy = 101.95 #uWh Based on 20 measurements from test data
ltem_active_time = 10.24 #s

1

[]: ## CoAP measurment data
coap_byte_step = 41

sweep_file1 = "../measurements/otii/sweep_coap_psm_test01.csv"
sweep_file2 = "../measurements/otii/sweep_coap_psm_test02.csv"
sweep_file3 = "../measurements/otii/sweep_coap_psm_test03.csv"

coap_nb_data = []
coap_nb_data.append(pd.read_csv(sweep_file1))
coap_nb_data.append(pd.read_csv(sweep_file2))
coap_nb_data.append(pd.read_csv(sweep_file3))

sweep_file1 = "../measurements/otii/sweep_ltem_coap_psm_test01.csv"
sweep_file2 = "../measurements/otii/sweep_ltem_coap_psm_test02.csv"
sweep_file3 = "../measurements/otii/sweep_ltem_coap_psm_test03.csv"

coap_ltem_data = []
coap_ltem_data.append(pd.read_csv(sweep_file1))
coap_ltem_data.append(pd.read_csv(sweep_file2))
coap_ltem_data.append(pd.read_csv(sweep_file3))

[]: ## MQTT measurement data
mqtt_byte_step = 64

sweep_file1 = "../measurements/otii/sweep_mqtt_psm_test01.csv"
sweep_file2 = "../measurements/otii/sweep_mqtt_psm_test02.csv"
sweep_file3 = "../measurements/otii/sweep_mqtt_psm_test03.csv"

mqtt_data = []
mqtt_data.append(pd.read_csv(sweep_file1))
mqtt_data.append(pd.read_csv(sweep_file2))
mqtt_data.append(pd.read_csv(sweep_file3))

sweep_file1 = "../measurements/otii/sweep_ltem_mqtt_psm_test01.csv"
sweep_file2 = "../measurements/otii/sweep_ltem_mqtt_psm_test02.csv"
sweep_file3 = "../measurements/otii/sweep_ltem_mqtt_psm_test03.csv"

mqtt_ltem_data = []
mqtt_ltem_data.append(pd.read_csv(sweep_file1))
mqtt_ltem_data.append(pd.read_csv(sweep_file2))
#mqtt_ltem_data.append(pd.read_csv(sweep_file3)) #major outlier that affects␣
↪→segmenting

2

[]: ## Getting the Energy and Current data from the measurements

coap_nb_energy = []
coap_nb_current = []
for i in coap_nb_data:

coap_nb_energy.append(i["Arc Main Energy (J)"])
coap_nb_current.append(i["Arc Main Current (A)"])

mqtt_nb_energy = []
mqtt_nb_current = []
for i in mqtt_data:

mqtt_nb_energy.append(i["Arc Main Energy (J)"])
mqtt_nb_current.append(i["Arc Main Current (A)"])

coap_ltem_energy = []
coap_ltem_current = []
for i in coap_ltem_data:

coap_ltem_energy.append(i["Arc Main Energy (J)"])
coap_ltem_current.append(i["Arc Main Current (A)"])

mqtt_ltem_energy = []
mqtt_ltem_current = []
for i in mqtt_ltem_data:

mqtt_ltem_energy.append(i["Arc Main Energy (J)"])
mqtt_ltem_current.append(i["Arc Main Current (A)"])

[]: ## Plotting total energy

plt.figure()
for i in coap_nb_energy:

i.plot()

for i in coap_ltem_energy:
i.plot()

for i in mqtt_nb_energy:
i.plot()

for i in mqtt_ltem_energy:
i.plot()

[]: #### CoAP over NB-IoT - START ####

[]: ## Segmenting the CoAP over NB-IoT measurements
[segments_coap_nb, timing_coap_nb] = segment_data(coap_nb_current, 160000, 0.
↪→01, 120000, 20000)

3

[]: ## Calculating the energy and time spent in each segment of each data set

fig = plt.figure()
ax = fig.add_subplot(111)

idx_seg = 0
coap_nb_sums = []

bytes_coap = range(0,coap_byte_step*len(segments_coap_nb[0]), coap_byte_step)

for i in segments_coap_nb:
sum_acc = []
idx_sample = 0
for j in i:

curr_sum = j.sum()*to_uWh - nb_active_energy
sum_acc.append(curr_sum)
idx_sample += 1

print(np.size(sum_acc))
plt.plot(bytes_coap,sum_acc, label = str(idx_seg))
coap_nb_sums.append(sum_acc)
idx_seg += 1

plt.grid()

plt.ylabel("Power consumption [uWh]")
plt.xlabel("Payload size [Bytes]")

[]: ## Calulating the average time and energy spent for each payload step
coap_nb_stds = []
coap_nb_avg = []

timing_coap_nb_avg = []

for i in range(len(coap_nb_sums[0])):
curr_sample = []
curr_time = []
for j in range(len(coap_nb_sums)):

curr_sample.append(coap_nb_sums[j][i])
curr_time.append(timing_coap_nb[j][i])

coap_nb_avg.append(np.mean(curr_sample))
coap_nb_stds.append(np.std(curr_sample))

timing_coap_nb_avg.append(np.mean(curr_time))

print(np.mean(coap_nb_stds))

4

print(coap_nb_avg[1])

[]: #### CoAP over NB-IoT - END ####

CoAP over LTE-M - START

[]: ## Segmenting the CoAP over LTE-M measurements
[segments_coap_ltem, timing_coap_ltem] = segment_data(coap_ltem_current,␣
↪→100000, 0.01, 60000, 20000)

[]: ## Calculating the energy and time spent in each segment of each data set
fig = plt.figure()
ax = fig.add_subplot(111)

idx_seg = 0

coap_ltem_sums = []

for i in segments_coap_ltem:
sum_acc = []
idx_sample = 0
for j in i:

curr_sum = j.sum()*to_uWh - ltem_active_energy
sum_acc.append(curr_sum)
idx_sample += 1

print(np.size(sum_acc))
plt.plot(bytes_coap,sum_acc, label = str(idx_seg))
coap_ltem_sums.append(sum_acc)
idx_seg += 1

plt.grid()

plt.ylabel("Power consumption [uWh]")
plt.xlabel("Payload size [Bytes]")

[]: ## Calulating the average time and energy spent for each payload step
coap_ltem_stds = []
coap_ltem_avg = []

timing_coap_ltem_avg = []

for i in range(len(coap_ltem_sums[0])):
curr_sample = []
curr_time = []
for j in range(len(coap_ltem_sums)):

5

curr_sample.append(coap_ltem_sums[j][i])
curr_time.append(timing_coap_ltem[j][i])

coap_ltem_avg.append(np.mean(curr_sample))
coap_ltem_stds.append(np.std(curr_sample))

timing_coap_ltem_avg.append(np.mean(curr_time))

print(np.mean(coap_ltem_stds))
print(coap_ltem_avg[1])

[]: #### COAP over LTE-M - END ####

MQTT over NB-IoT - START

[]: ## Segmenting the MQTT over NB-IoT measurements
[segments_mqtt_nb, timing_mqtt_nb] = segment_data(mqtt_nb_current, 180000, 0.
↪→01, 140000, 20000)

[]: ## Calculating the energy and time spent in each segment of each data set
fig = plt.figure()
ax = fig.add_subplot(111)

idx_seg = 0

mqtt_nb_sums = []
bytes_mqtt = range(0,mqtt_byte_step*len(segments_mqtt_nb[0]), mqtt_byte_step)

for i in segments_mqtt_nb:
sum_acc = []
idx_sample = 0
for j in i:

curr_sum = j.sum()*to_uWh - nb_active_energy
sum_acc.append(curr_sum)
idx_sample += 1

print(np.size(sum_acc))
plt.plot(bytes_mqtt,sum_acc, label = str(idx_seg))
mqtt_nb_sums.append(sum_acc)
idx_seg += 1

plt.grid()

plt.ylabel("Power consumption [uWh]")
plt.xlabel("Payload size [Bytes]")

6

[]: ## Calulating the average time and energy spent for each payload step
mqtt_nb_stds = []
mqtt_nb_avg = []

timing_mqtt_nb_avg = []

for i in range(len(mqtt_nb_sums[0])):
curr_sample = []
curr_time = []
for j in range(len(mqtt_nb_sums)):

curr_sample.append(mqtt_nb_sums[j][i])
curr_time.append(timing_mqtt_nb[j][i])

mqtt_nb_avg.append(np.mean(curr_sample))
mqtt_nb_stds.append(np.std(curr_sample))

timing_mqtt_nb_avg.append(np.mean(curr_time))

print(np.mean(mqtt_nb_stds))
print(mqtt_nb_avg[1])
print(len(mqtt_nb_avg))

[]: #### MQTT over NB-IoT - END ####

MQTT over LTE-M - START

[]: ## Segmenting the MQTT over LTE-M measurements
[segments_mqtt_ltem, timing_mqtt_ltem] = segment_data(mqtt_ltem_current,␣
↪→120000, 0.01, 100000, 20000)

[]: ## Calculating the energy and time spent in each segment of each data set
fig = plt.figure()
ax = fig.add_subplot(111)

idx_seg = 0

mqtt_ltem_sums = []
bytes_mqtt = range(0,mqtt_byte_step*len(segments_mqtt_ltem[0]), mqtt_byte_step)

for i in segments_mqtt_ltem:
sum_acc = []
idx_sample = 0
for j in i:

curr_sum = j.sum()*to_uWh - ltem_active_energy
sum_acc.append(curr_sum)
#mqtt_ltem_sums[idx_sample][idx_seg] = curr_sum
idx_sample += 1

7

print(np.size(sum_acc))
plt.plot(bytes_mqtt,sum_acc, label = str(idx_seg))
mqtt_ltem_sums.append(sum_acc)
idx_seg += 1

plt.grid()

plt.ylabel("Energy consumption [uWh]")
plt.xlabel("Payload size [Bytes]")

[]: ## Calulating the average time and energy spent for each payload step

mqtt_ltem_stds = []
mqtt_ltem_avg = []

timing_mqtt_ltem_avg = []

for i in range(len(mqtt_ltem_sums[0])):
curr_sample = []
curr_time = []
for j in range(len(mqtt_ltem_sums)):

curr_sample.append(mqtt_ltem_sums[j][i])
curr_time.append(timing_mqtt_ltem[j][i])

mqtt_ltem_avg.append(np.mean(curr_sample))
mqtt_ltem_stds.append(np.std(curr_sample))

timing_mqtt_ltem_avg.append(np.mean(curr_time))

print(np.mean(mqtt_ltem_stds))
print(mqtt_ltem_avg[1])
print(len(mqtt_ltem_avg))

[]: ## Smoothing the average measurements for pretty plotting
Applying a Savitzky-Golay filter:
- window length : 9
- polynomial order: 3

coap_ltem_smooth = sig.savgol_filter(coap_ltem_avg,9,3)
coap_nb_smooth = sig.savgol_filter(coap_nb_avg,9,3)
mqtt_nb_smooth = sig.savgol_filter(mqtt_nb_avg,9,3)
mqtt_ltem_smooth = sig.savgol_filter(mqtt_ltem_avg,9,3)

timing_coap_ltem_smooth = sig.savgol_filter(timing_coap_ltem_avg,9,3)
timing_coap_nb_smooth = sig.savgol_filter(timing_coap_nb_avg,9,3)
timing_mqtt_nb_smooth = sig.savgol_filter(timing_mqtt_nb_avg,9,3)

8

timing_mqtt_ltem_smooth = sig.savgol_filter(timing_mqtt_ltem_avg,9,3)

[]: ## Plotting the smoothed energy averages
fig, (ax1, ax2) = plt.subplots(1,2)

plt.suptitle("Message energy comparison")

ax1.set_title('NB-IoT')
ax2.set_title('LTE-M')

ax1.set(ylabel="Energy [uWh]")
ax1.set_xlabel("Payload size [Bytes]")
ax2.set_xlabel("Payload size [Bytes]")
ax1.set_ylim([20,200])
ax2.set_ylim([20,200])

ax1.axvline(536)
ax2.axvline(536, label = "536 Bytes (TCP default MSS)")

#plt.plot(bytes_coap, coap_nb_avg , label = "CoAP NB-IoT average")
ax1.plot(bytes_coap, coap_nb_smooth, "g" ,label = "NB-IoT")
ax1.plot(bytes_coap, coap_nb_smooth+nb_active_energy, "g--" ,label = "NB-IoT")

#plt.plot(bytes_mqtt, mqtt_nb_avg , label = "MQTT 2300 average")
ax1.plot(bytes_mqtt, mqtt_nb_smooth, "r" ,label = "NB-IoT")
ax1.plot(bytes_mqtt, mqtt_nb_smooth+nb_active_energy, "r--" ,label = "NB-IoT")

#plt.plot(bytes_coap, coap_ltem_avg , label = "CoAP LTE-M average")
ax2.plot(bytes_coap, coap_ltem_smooth, "g", label = "CoAP")
ax2.plot(bytes_coap, coap_ltem_smooth+ltem_active_energy, "g--", label = "CoAP␣
↪→with cDRX energy")

#plt.plot(bytes_mqtt, mqtt_ltem_avg , label = "MQTT 2300 average")
ax2.plot(bytes_mqtt, mqtt_ltem_smooth, "r" ,label = "MQTT")
ax2.plot(bytes_mqtt, mqtt_ltem_smooth+ltem_active_energy, "r--" ,label = "MQTT␣
↪→with cDRX energy")

ax2.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.savefig("../dt_thesis/plots/tx_energy_comparison.pdf", bbox_inches='tight')

9

[]: ## Plotting the smoothed time averages
fig, (ax1, ax2) = plt.subplots(1,2)

ax1.set_title('NB-IoT')
ax2.set_title('LTE-M')

plt.suptitle("Transmission time comparison")

ax1.set(ylabel="Transmission time [s]")
ax1.set_xlabel("Payload size [Bytes]")
ax2.set_xlabel("Payload size [Bytes]")
ax1.set_ylim([0,35])
ax2.set_ylim([0,35])

#plt.plot(bytes_coap, coap_nb_avg , label = "CoAP NB-IoT average")
ax1.plot(bytes_coap, timing_coap_nb_smooth-20.48, "g" ,label = "NB-IoT")
ax1.plot(bytes_coap, timing_coap_nb_smooth, "g--" ,label = "NB-IoT")

#plt.plot(bytes_mqtt, mqtt_nb_avg , label = "MQTT 2300 average")
ax1.plot(bytes_mqtt, timing_mqtt_nb_smooth-20.48, "r" ,label = "NB-IoT")
ax1.plot(bytes_mqtt, timing_mqtt_nb_smooth, "r--" ,label = "NB-IoT")

#plt.plot(bytes_coap, coap_ltem_avg , label = "CoAP LTE-M average")
ax2.plot(bytes_coap, timing_coap_ltem_smooth-10.24, "g", label = "CoAP")
ax2.plot(bytes_coap, timing_coap_ltem_smooth, "g--", label = "CoAP with RRC␣
↪→inactive time")

#plt.plot(bytes_mqtt, mqtt_ltem_avg , label = "MQTT 2300 average")
ax2.plot(bytes_mqtt, timing_mqtt_ltem_smooth-10.24, "r" ,label = "MQTT")
ax2.plot(bytes_mqtt, timing_mqtt_ltem_smooth, "r--" ,label = "MQTT with RRC␣
↪→inactive time")

ax2.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.savefig("../dt_thesis/plots/tx_time_comparison.pdf", bbox_inches='tight')

[]: ## OLS linear regression analysis of the calculated message energy
class Results:

def __init__(self, results):
self.intercept = results.params[0]
self.slope = results.params[1]
self.results = results

10

timing_coap_nb_res = Results(do_linear_regression(bytes_coap, timing_coap_nb))
timing_mqtt_nb_res = Results(do_linear_regression(bytes_mqtt, timing_mqtt_nb))
timing_coap_ltem_res = Results(do_linear_regression(bytes_coap,␣
↪→timing_coap_ltem))

timing_mqtt_ltem_res = Results(do_linear_regression(bytes_mqtt,␣
↪→timing_mqtt_ltem))

energy_coap_nb_res = Results(do_linear_regression(bytes_coap, coap_nb_sums))
energy_mqtt_nb_res = Results(do_linear_regression(bytes_mqtt, mqtt_nb_sums))
energy_coap_ltem_res = Results(do_linear_regression(bytes_coap, coap_ltem_sums))
energy_mqtt_ltem_res = Results(do_linear_regression(bytes_mqtt, mqtt_ltem_sums))

[]: ## Writing the results to file in order for later use (in the model)

result_matrix = {
'timing_coap_nb' : [timing_coap_nb_res.slope , timing_coap_nb_res.

↪→intercept],
'energy_coap_nb' : [energy_coap_nb_res.slope , energy_coap_nb_res.

↪→intercept],
'timing_coap_ltem' : [timing_coap_ltem_res.slope, timing_coap_ltem_res.

↪→intercept],
'energy_coap_ltem' : [energy_coap_ltem_res.slope, energy_coap_ltem_res.

↪→intercept],
'timing_mqtt_nb' : [timing_mqtt_nb_res.slope , timing_mqtt_nb_res.

↪→intercept],
'energy_mqtt_nb' : [energy_mqtt_nb_res.slope , energy_mqtt_nb_res.

↪→intercept],
'timing_mqtt_ltem' : [timing_mqtt_ltem_res.slope, timing_mqtt_ltem_res.

↪→intercept],
'energy_mqtt_ltem' : [energy_mqtt_ltem_res.slope, energy_mqtt_ltem_res.

↪→intercept]
}

regression_results = pd.DataFrame(data = result_matrix)
regression_results.to_csv("reg_res.csv")

[]: ## Regression line plot for both NB-IoT and LTE-M data.

fig, (ax1,ax2) = plt.subplots(1,2)

fig.suptitle("Message energy regression lines")
x_mqtt = np.linspace(0,4096,4096)
x_coap = np.linspace(0,1439,1439)

CoAP
ax1.set_title("CoAP")
ax1.set_ylabel("Energy [uWh]")

11

ax1.set_xlabel("Payload size [Bytes]")
ax1.set_ylim([0,170])

y_coap_nb = energy_coap_nb_res.slope*x_coap+energy_coap_nb_res.intercept
y_coap_ltem = energy_coap_ltem_res.slope*x_coap+energy_coap_ltem_res.intercept

ax1.plot(x_coap,y_coap_nb, "g", label="NB-IoT regression line")
ax1.scatter(bytes_coap, coap_nb_sums[0], color = "g", s=5, alpha=0.3,␣
↪→label="NB-IoT data")

ax1.scatter(bytes_coap, coap_nb_sums[1], color = "g", s=5, alpha=0.3)
ax1.scatter(bytes_coap, coap_nb_sums[2], color = "g", s=5, alpha=0.3)

ax1.plot(x_coap,y_coap_ltem, "r", label="LTE-M regression line")
ax1.scatter(bytes_coap, coap_ltem_sums[0], color = "r", s=5, alpha=0.3,␣
↪→label="LTE-M data")

ax1.scatter(bytes_coap, coap_ltem_sums[1], color = "r", s=5, alpha=0.3)
ax1.scatter(bytes_coap, coap_ltem_sums[2], color = "r", s=5, alpha=0.3)

MQTT
ax2.set_title("MQTT")
ax2.set_xlabel("Payload size [Bytes]")
ax2.set_ylim([0,170])

y_mqtt_nb = energy_mqtt_nb_res.slope * x_mqtt+energy_mqtt_nb_res.intercept
y_mqtt_ltem = energy_mqtt_ltem_res.slope* x_mqtt+energy_mqtt_ltem_res.intercept

ax2.plot(x_mqtt,y_mqtt_nb, "g", label="NB-IoT regression line")
ax2.scatter(bytes_mqtt, mqtt_nb_sums[0], color = "g", s=5, alpha=0.3,␣
↪→label="NB-IoT data")

ax2.scatter(bytes_mqtt, mqtt_nb_sums[1], color = "g", s=5, alpha=0.3)
ax2.scatter(bytes_mqtt, mqtt_nb_sums[2], color = "g", s=5, alpha=0.3)

ax2.plot(x_mqtt,y_mqtt_ltem, "r", label="LTE-M regression line")
ax2.scatter(bytes_mqtt, mqtt_ltem_sums[0], color = "r", s=5, alpha=0.3,␣
↪→label="LTE-M data")

ax2.scatter(bytes_mqtt, mqtt_ltem_sums[1], color = "r", s=5, alpha=0.3)
#ax2.scatter(bytes_mqtt, mqtt_ltem_sums[2], color = "r", s=5, alpha=0.3)

ax2.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.savefig("../dt_thesis/plots/energy_reg_lines.pdf", bbox_inches='tight')

intersect_coap = (energy_coap_nb_res.intercept-energy_coap_ltem_res.intercept)/
↪→(energy_coap_ltem_res.slope-energy_coap_nb_res.slope)

12

intersect_mqtt = (energy_mqtt_nb_res.intercept-energy_mqtt_ltem_res.intercept)/
↪→(energy_mqtt_ltem_res.slope-energy_mqtt_nb_res.slope)

print("CoAP Energy consumption intersection at: " + str(intersect_coap))
print("MQTT Energy consumption intersection at: " + str(intersect_mqtt))

[]: ## Regression line plot for both NB-IoT and LTE-M data.
fig, (ax1,ax2) = plt.subplots(1,2)

fig.suptitle("Transmission time regression lines")
x_mqtt = np.linspace(0,4096,4096)
x_coap = np.linspace(0,1439,1439)

y_min_t = 0
y_max_t = 14

ax1.set_ylim([y_min_t,y_max_t])
ax2.set_ylim([y_min_t,y_max_t])

CoAP
ax1.set_title("CoAP")
ax1.set_ylabel("Time [s]")
ax1.set_xlabel("Payload size [Bytes]")

y_coap_nb_t = timing_coap_nb_res.slope *x_coap+timing_coap_nb_res.intercept
y_coap_ltem_t = timing_coap_ltem_res.slope*x_coap+timing_coap_ltem_res.intercept

ax1.plot(x_coap,y_coap_nb_t-20.48, "g", label="NB-IoT regression line")
ax1.scatter(bytes_coap, np.array(timing_coap_nb[0])-20.48, color = "g", s=5,␣
↪→alpha=0.3, label="NB-IoT data")

ax1.scatter(bytes_coap, np.array(timing_coap_nb[1])-20.48, color = "g", s=5,␣
↪→alpha=0.3)

ax1.scatter(bytes_coap, np.array(timing_coap_nb[2])-20.48, color = "g", s=5,␣
↪→alpha=0.3)

ax1.plot(x_coap,y_coap_ltem_t-10.24, "r", label="LTE-M regression line")␣
↪→#subtracting the RRC Connected time of LTE-M. This is not consistent though

ax1.scatter(bytes_coap, np.array(timing_coap_ltem[0])-10.24, color = "r", s=5,␣
↪→alpha=0.3, label="LTE-M data")

ax1.scatter(bytes_coap, np.array(timing_coap_ltem[1])-10.24, color = "r", s=5,␣
↪→alpha=0.3)

ax1.scatter(bytes_coap, np.array(timing_coap_ltem[2])-10.24, color = "r", s=5,␣
↪→alpha=0.3)

13

MQTT
ax2.set_title("MQTT")
ax2.set_xlabel("Payload size [Bytes]")

y_mqtt_nb_t = timing_mqtt_nb_res.slope *x_mqtt+timing_mqtt_nb_res.intercept
y_mqtt_ltem_t = timing_mqtt_ltem_res.slope*x_mqtt+timing_mqtt_ltem_res.intercept

ax2.plot(x_mqtt,y_mqtt_nb_t-20.48, "g", label="NB-IoT regression line")
ax2.scatter(bytes_mqtt, np.array(timing_mqtt_nb[0])-20.48, color = "g", s=5,␣
↪→alpha=0.3, label="NB-IoT data")

ax2.scatter(bytes_mqtt, np.array(timing_mqtt_nb[1])-20.48, color = "g", s=5,␣
↪→alpha=0.3)

ax2.scatter(bytes_mqtt, np.array(timing_mqtt_nb[2])-20.48, color = "g", s=5,␣
↪→alpha=0.3)

ax2.plot(x_mqtt,y_mqtt_ltem_t-10.24, "r", label="LTE-M regression line")␣
↪→#subtracting the RRC Connected time of LTE-M. This is not consistent though

ax2.scatter(bytes_mqtt, np.array(timing_mqtt_ltem[0])-10.24, color = "r", s=5,␣
↪→alpha=0.3, label="LTE-M data")

ax2.scatter(bytes_mqtt, np.array(timing_mqtt_ltem[1])-10.24, color = "r", s=5,␣
↪→alpha=0.3)

#ax2.scatter(bytes_mqtt, np.array(timing_mqtt_ltem[2])*delta_t-10.24, color =␣
↪→"r", s=5, alpha=0.3)

ax2.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig("plots/time_reg_lines.pdf", bbox_inches='tight')

intersect = (energy_mqtt_nb_res.intercept-energy_mqtt_ltem_res.intercept)/
↪→(energy_mqtt_ltem_res.slope-energy_mqtt_nb_res.slope)

print("Energy consumption intersection at: " + str(intersect))

[]: ### The following cells plots the calculated transmission times and energy ###

[]: plt.title("NB-IoT message energy")
plt.ylabel("Message energy [uWh]")
plt.xlabel("Payload size [Bytes]")

xMax = 4096
yMin = 30
yMax = 110

plt.scatter(bytes_coap, coap_nb_sums[0], color = "g", s=5)
plt.scatter(bytes_coap, coap_nb_sums[1], color = "g", s=5)
plt.scatter(bytes_coap, coap_nb_sums[2], color = "g", s=5, label = "CoAP")

14

plt.scatter(bytes_mqtt, mqtt_nb_sums[0], color = "r", s=5)
plt.scatter(bytes_mqtt, mqtt_nb_sums[1], color = "r", s=5)
plt.scatter(bytes_mqtt, mqtt_nb_sums[2], color = "r", s=5, label = "MQTT")

nb_diffs = []
for i in range(len(timing_coap_nb)):

curr_coap = np.array(coap_nb_sums[i])
curr_mqtt = np.array(mqtt_nb_sums[i][:len(curr_coap)])

nb_diffs.append(100*(1-curr_coap/curr_mqtt))

print(np.mean(nb_diffs))
print(np.std(nb_diffs))

plt.legend()

plt.savefig("../dt_thesis/plots/energy_nbiot.pdf", bbox_inches='tight')

[]: plt.title("LTE-M message energy")
plt.ylabel("Message energy [uWh]")
plt.xlabel("Payload size [Bytes]")

plt.scatter(bytes_coap, coap_ltem_sums[0], color = "g", s=5)
plt.scatter(bytes_coap, coap_ltem_sums[1], color = "g", s=5)
plt.scatter(bytes_coap, coap_ltem_sums[2], color = "g", s=5, label = "CoAP")

plt.scatter(bytes_mqtt, mqtt_ltem_sums[0], color = "r", s=5)
plt.scatter(bytes_mqtt, mqtt_ltem_sums[1], color = "r", s=5, label = "MQTT")
#plt.scatter(bytes_mqtt, mqtt_ltem_sums[2], color = "g", s=5)

plt.savefig("../dt_thesis/plots/energy_ltem.pdf", bbox_inches='tight')

[]: plt.title("NB-IoT transmission time")
plt.ylabel("Transmission time [s]")
plt.xlabel("Payload size [Bytes]")

plt.scatter(bytes_coap, np.array(timing_coap_nb[0])-20.48, color = "g", s=5,␣
↪→label="CoAP")

plt.scatter(bytes_coap, np.array(timing_coap_nb[1])-20.48, color = "g", s=5)
plt.scatter(bytes_coap, np.array(timing_coap_nb[2])-20.48, color = "g", s=5)

plt.scatter(bytes_mqtt, np.array(timing_mqtt_nb[0])-20.48, color = "r", s=5,␣
↪→label="MQTT")

plt.scatter(bytes_mqtt, np.array(timing_mqtt_nb[1])-20.48, color = "r", s=5)
plt.scatter(bytes_mqtt, np.array(timing_mqtt_nb[2])-20.48, color = "r", s=5)

15

nb_diffs = []
for i in range(len(timing_coap_nb)):

curr_coap = np.array(timing_coap_nb[i])
curr_mqtt = np.array(timing_mqtt_nb[i][:len(curr_coap)])

nb_diffs.append(100*(1-curr_coap/curr_mqtt))

print(np.mean(nb_diffs))
print(np.std(nb_diffs))
plt.savefig("../dt_thesis/plots/time_nbiot.pdf", bbox_inches='tight')

[]: plt.title("LTE-M transmission time")
plt.ylabel("Transmission time [s]")
plt.xlabel("Payload size [Bytes]")

plt.scatter(bytes_coap, np.array(timing_coap_ltem[0])-10.24, color = "g", s=5,␣
↪→label="CoAP")

plt.scatter(bytes_coap, np.array(timing_coap_ltem[1])-10.24, color = "g", s=5)
plt.scatter(bytes_coap, np.array(timing_coap_ltem[2])-10.24, color = "g", s=5)

plt.scatter(bytes_mqtt, np.array(timing_mqtt_ltem[0])-10.24, color = "r", s=5,␣
↪→label="MQTT")

plt.scatter(bytes_mqtt, np.array(timing_mqtt_ltem[1])-10.24, color = "r", s=5)

plt.savefig("../dt_thesis/plots/time_ltem.pdf", bbox_inches='tight')

[]: ### Following this cell is calculation and plotting of residuals ###
This was not used directly in the thesis

[]: residuals_coap_nb = get_residuals(coap_nb_sums, energy_coap_nb_res, ␣
↪→bytes_coap)

residuals_coap_ltem = get_residuals(coap_ltem_sums, energy_coap_ltem_res, ␣
↪→bytes_coap)

residuals_mqtt_nb = get_residuals(mqtt_nb_sums, energy_mqtt_nb_res, ␣
↪→bytes_mqtt)

residuals_mqtt_ltem = get_residuals(mqtt_ltem_sums, energy_mqtt_ltem_res, ␣
↪→bytes_mqtt)

[]: fig, ((ax1, ax2),(ax3,ax4)) = plt.subplots(2,2)

ax1.set_title("Coap NB-IoT residuals")
ax2.set_title("Coap LTE-M residuals")
ax3.set_title("MQTT NB-IoT residuals")
ax4.set_title("MQTT LTE-M residuals")

16

ax1.scatter(residuals_coap_nb[0], residuals_coap_nb[1])
ax2.scatter(residuals_coap_ltem[0], residuals_coap_ltem[1])
ax3.scatter(residuals_mqtt_nb[0], residuals_mqtt_nb[1])
ax4.scatter(residuals_mqtt_ltem[0], residuals_mqtt_ltem[1])

[]: fig, (ax1, ax2) = plt.subplots(1,2)

fig.suptitle("Message energy regression residuals")

ax1.set(ylabel="Energy [uWh]")
y_min = -70
y_max = 110

ax1.set_ylim([y_min,y_max])
ax2.set_ylim([y_min,y_max])

ax1.set_title("CoAP")
ax1.set_xticks([1,2])
ax1.set_xticklabels(['NB-IoT', "LTE-M"])
ax2.set_title("MQTT")
ax2.set_xticks([1,2])
ax2.set_xticklabels(['NB-IoT', "LTE-M"])

ax1.violinplot(residuals_coap_nb[1], positions = [1])
ax1.violinplot(residuals_coap_ltem[1], positions = [2])

ax2.violinplot(residuals_mqtt_nb[1], positions = [1])
ax2.violinplot(residuals_mqtt_ltem[1], positions = [2])

plt.savefig("plots/energy_reg_res.pdf", bbox_inches='tight')

[]: residuals_time_coap_nb = get_residuals(timing_coap_nb, timing_coap_nb_res, ␣
↪→ bytes_coap)

residuals_time_coap_ltem = get_residuals(timing_coap_ltem,␣
↪→timing_coap_ltem_res, bytes_coap)

residuals_time_mqtt_nb = get_residuals(timing_mqtt_nb, timing_mqtt_nb_res, ␣
↪→ bytes_mqtt)

residuals_time_mqtt_ltem = get_residuals(timing_mqtt_ltem,␣
↪→timing_mqtt_ltem_res, bytes_mqtt)

[]: fig, ((ax1, ax2),(ax3,ax4)) = plt.subplots(2,2)

ax1.set_title("Coap NB-IoT time spent - residuals")
ax2.set_title("Coap LTE-M time spent - residuals")
ax3.set_title("MQTT NB-IoT time spent - residuals")

17

ax4.set_title("MQTT LTE-M time spent - residuals")

ax1.scatter(residuals_time_coap_nb[0] , residuals_time_coap_nb[1])
ax2.scatter(residuals_time_coap_ltem[0], residuals_time_coap_ltem[1])
ax3.scatter(residuals_time_mqtt_nb[0] , residuals_time_mqtt_nb[1])
ax4.scatter(residuals_time_mqtt_ltem[0], residuals_time_mqtt_ltem[1])

[]: fig, (ax1, ax2) = plt.subplots(1,2)

fig.suptitle("Transmit time regression residuals")

ax1.set(ylabel="Time [s]")
y_min = -5
y_max = 11

ax1.set_ylim([y_min,y_max])
ax2.set_ylim([y_min,y_max])

ax1.set_title("CoAP")
ax1.set_xticks([1,2])
ax1.set_xticklabels(['NB-IoT', "LTE-M"])
ax2.set_title("MQTT")
ax2.set_xticks([1,2])
ax2.set_xticklabels(['NB-IoT', "LTE-M"])

ax1.violinplot(residuals_time_coap_nb[1] , positions = [1])
ax1.violinplot(residuals_time_coap_ltem[1], positions = [2])

ax2.violinplot(residuals_time_mqtt_nb[1] , positions = [1])
ax2.violinplot(residuals_time_mqtt_ltem[1], positions = [2])

plt.savefig("plots/time_reg_res.pdf", bbox_inches='tight')

18

Appendix E

Model notebook

100

processing_model

June 29, 2020

[92]: #### Model test code ####
This file contains the code handling the results of the model testing.
It calculates the model using functions from processing_helpers.py and
plots the model togheter with measured data.
Some error calculations as well as a case study is also performed.

[]: import pandas as pd
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

from scipy import signal

from processing_helpers import get_energy
from processing_helpers import get_con_energy
from processing_helpers import get_residuals

[]: ### Constants ###

V = 3.7 #V
hour = 3600 #s
delta_t = 0.00025 #s
joule_to_uWh = 0.000277777778*1000*1000 #uWh

[]: ### Read OTII measurment data ###

coap_256_nb = pd.read_csv("../measurements/otii/model_test_coap_256_nb.csv" ␣
↪→ , usecols = ["Arc Main Energy (J)"]).to_numpy()*joule_to_uWh

coap_256_ltem = pd.read_csv("../measurements/otii/model_test_coap_256_ltem.
↪→csv" , usecols = ["Arc Main Energy (J)"]).to_numpy()*joule_to_uWh

coap_1280_nb = pd.read_csv("../measurements/otii/model_test_coap_1280_nb.csv"␣
↪→ , usecols = ["Arc Main Energy (J)"]).to_numpy()*joule_to_uWh

coap_1280_ltem = pd.read_csv("../measurements/otii/model_test_coap_1280_ltem.
↪→csv", usecols = ["Arc Main Energy (J)"]).to_numpy()*joule_to_uWh

mqtt_256_nb = pd.read_csv("../measurements/otii/model_test_mqtt_256_nb.csv" ␣
↪→ , usecols = ["Arc Main Energy (J)"]).to_numpy()*joule_to_uWh

1

mqtt_256_ltem = pd.read_csv("../measurements/otii/model_test_mqtt_256_ltem.
↪→csv" , usecols = ["Arc Main Energy (J)"]).to_numpy()*joule_to_uWh

mqtt_4096_nb = pd.read_csv("../measurements/otii/model_test_mqtt_4096_nb.csv"␣
↪→ , usecols = ["Arc Main Energy (J)"]).to_numpy()*joule_to_uWh

mqtt_4096_ltem = pd.read_csv("../measurements/otii/model_test_mqtt_4096_ltem.
↪→csv", usecols = ["Arc Main Energy (J)"]).to_numpy()*joule_to_uWh

[]: ### Read the regression coefficients calculated in processing_sweep.ipynb ###

regression_results = pd.read_csv("reg_res.csv")

timing_coap_nb = regression_results["timing_coap_nb"].to_numpy()
energy_coap_nb = regression_results["energy_coap_nb"].to_numpy()
timing_coap_ltem = regression_results["timing_coap_ltem"].to_numpy()
energy_coap_ltem = regression_results["energy_coap_ltem"].to_numpy()
timing_mqtt_nb = regression_results["timing_mqtt_nb"].to_numpy()
energy_mqtt_nb = regression_results["energy_mqtt_nb"].to_numpy()
timing_mqtt_ltem = regression_results["timing_mqtt_ltem"].to_numpy()
energy_mqtt_ltem = regression_results["energy_mqtt_ltem"].to_numpy()

[]: #device parameters
p_idle = 157.7*V #uW
coap_p_sleep = 108*V #uW
mqtt_p_sleep = 117*V #uW

[]: ## Function for getting the start segment of the data ##
def get_data_start(data):

diff_array = np.diff(data, axis=0)

i = 160000
while(diff_array[i] < 0.01):

i -= 1
return [i*delta_t, data[i][0]]

[]: ### Estimating the cDRX energy for NB-IoT and LTE-M ###

#NB-IoT
E_cdrx_nb = get_con_energy(

t_inactive = 20.48, #s
t_cycle = 2.048, #s
t_onDuration = 0.200, #s
E_monitor = 2.580, #uWh
E_release = 2.171, #uWh
p_idle = p_idle)

#LTE-M

2

E_cdrx_ltem = get_con_energy(
t_inactive = 10.24, #s
t_cycle = 0.320, #s
t_onDuration = 0.100, #s
E_monitor = 3.227, #uWh
E_release = 0.448, #uWh
p_idle = p_idle

)

[]: ### The different tests are defined and put in arrays for easy iteration ###

class Test:
def __init__(self, data, T_msg, n_bytes, t, E, E_start, cdrx):

self.data = data
self.duration = np.linspace(0,len(data)*0.00025,len(data))
self.T_msg = T_msg
self.n_bytes = n_bytes
self.t = t
self.E = E
self.E_start = E_start
self.cdrx = cdrx

coap_test_array = []
coap_test_array.append(Test(coap_256_nb, 300,256, timing_coap_nb, ␣
↪→energy_coap_nb, get_data_start(coap_256_nb), E_cdrx_nb))

coap_test_array.append(Test(coap_256_ltem, 300,256, timing_coap_ltem,␣
↪→energy_coap_ltem, get_data_start(coap_256_ltem), E_cdrx_ltem))

coap_test_array.append(Test(coap_1280_nb, 300,1280,timing_coap_nb, ␣
↪→energy_coap_nb, get_data_start(coap_1280_nb), E_cdrx_nb))

coap_test_array.append(Test(coap_1280_ltem, 300,1280,timing_coap_ltem,␣
↪→energy_coap_ltem, get_data_start(coap_1280_ltem), E_cdrx_ltem))

mqtt_test_array = []
mqtt_test_array.append(Test(mqtt_256_nb, 300,256, timing_mqtt_nb, ␣
↪→energy_mqtt_nb, get_data_start(mqtt_256_nb), E_cdrx_nb))

mqtt_test_array.append(Test(mqtt_256_ltem, 300,256, timing_mqtt_ltem,␣
↪→energy_mqtt_ltem, get_data_start(mqtt_256_ltem), E_cdrx_ltem))

mqtt_test_array.append(Test(mqtt_4096_nb, 300,4096, timing_mqtt_nb, ␣
↪→energy_mqtt_nb, get_data_start(mqtt_4096_nb), E_cdrx_nb))

mqtt_test_array.append(Test(mqtt_4096_ltem, 300,4096, timing_mqtt_ltem,␣
↪→energy_mqtt_ltem, get_data_start(mqtt_4096_ltem), E_cdrx_ltem))

[]: ### Calculating the coefficients of estimated total energy consumption for all␣
↪→the tests ###

3

coap_predictions = []

for i in coap_test_array:
coap_predictions.append(

get_energy(
n_bytes = i.n_bytes,
max_bytes = 1439,
T_msg = i.T_msg,
E_cdrx = i.cdrx,
p_sleep = coap_p_sleep,
reg_coeffs_t = i.t,
reg_coeffs_e = i.E,
start_params = i.E_start

)
)

mqtt_predictions = []
for i in mqtt_test_array:

mqtt_predictions.append(
get_energy(

n_bytes = i.n_bytes,
max_bytes = 4096,
T_msg = i.T_msg,
E_cdrx = i.cdrx,
p_sleep = mqtt_p_sleep,
reg_coeffs_t = i.t,
reg_coeffs_e = i.E,
start_params = i.E_start

)
)

[]: ### Plotting the CoAP model test results ###

fig, (ax1, ax2) = plt.subplots(1,2)
plt.subplots_adjust(wspace = 0.3)

fig.suptitle("CoAP - 5 min interval")

ax1.set_ylabel("Energy [uWh]")
ax1.set_xlabel("Time [s]")
ax2.set_xlabel("Time [s]")

ax1.set_title("256 byte message")
ax2.set_title("1280 byte message")

style = [["g--" , "g"],["r--","r"]]

4

labels = [["Model (NB-IoT)", "Data (NB-IoT)"], ["Model (LTE-M)", "Data␣
↪→(LTE-M)"]]

for i in range(2):
curr_durr = coap_test_array[i].duration
ax1.plot(curr_durr, coap_predictions[i][0]*curr_durr +␣

↪→coap_predictions[i][1], style[i][0])
ax1.plot(curr_durr, coap_test_array[i].data, style[i][1])

for i in range(2,4):
curr_durr = coap_test_array[i].duration
ax2.plot(curr_durr, coap_predictions[i][0]*curr_durr +␣

↪→coap_predictions[i][1], style[i-2][0], label = labels[i-2][0])
ax2.plot(curr_durr, coap_test_array[i].data, style[i-2][1], label =␣

↪→labels[i-2][1])

ax2.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.savefig("../dt_thesis/plots/model_test_coap.pdf", bbox_inches='tight')

[]: ### Plotting the MQTT model test results ###

fig, (ax1, ax2) = plt.subplots(1,2)

plt.subplots_adjust(wspace = 0.3)

fig.suptitle("MQTT - 5 min interval")

y_min = -50
y_max = 1500

ax1.set_ylim([y_min,y_max])
ax2.set_ylim([y_min,y_max])

ax1.set_ylabel("Energy [uWh]")
ax1.set_xlabel("Time [s]")
ax2.set_xlabel("Time [s]")

ax1.set_title("256 byte message")
ax2.set_title("4096 byte message")

style = [["g--" , "g"],["r--","r"]]
labels = [["Model (NB-IoT)", "Data (NB-IoT)"], ["Model (LTE-M)", "Data␣
↪→(LTE-M)"]]

for i in range(2):

5

curr_dur = mqtt_test_array[i].duration
ax1.plot(curr_dur, mqtt_predictions[i][0]*curr_dur +␣

↪→mqtt_predictions[i][1], style[i][0])
ax1.plot(curr_dur, mqtt_test_array[i].data, style[i][1])

for i in range(2,4):
curr_dur = mqtt_test_array[i].duration
ax2.plot(curr_dur, mqtt_predictions[i][0]*curr_dur +␣

↪→mqtt_predictions[i][1], style[i-2][0], label = labels[i-2][0])
ax2.plot(curr_dur, mqtt_test_array[i].data, style[i-2][1], label =␣

↪→labels[i-2][1])

ax2.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.savefig("../dt_thesis/plots/model_test_mqtt.pdf", bbox_inches='tight')

[]: ### Function for finding the point of transmission in the measured data ###

def get_msg_idxs(test_data):

test_msg_idxs = []

diff_array = np.diff(test_data, axis=0)
i = len(diff_array)-1

while(i > 0):
curr_diff = diff_array[i]
if (curr_diff > 0.010):

test_msg_idxs.append(i)
i-=960000

else:
i-=1

test_msg_idxs.reverse()
return test_msg_idxs

[]: ### Getting the model error in terms of difference from the measured CoAP␣
↪→transmissions ###

idx = 0
test_tuples_coap = []

for i in coap_test_array:
test_msg_idxs = get_msg_idxs(i.data)

msg_energy_tuples = []

6

for x in test_msg_idxs:
#new_tuple = ()
msg_energy_tuples.append(

100*(1-float(i.data[x])/float(coap_predictions[idx][0]*x*0.00025 +␣
↪→coap_predictions[idx][1])))

idx += 1
test_tuples_coap.append(msg_energy_tuples)

[]: ### Getting the model error in terms of difference from the measured MQTT␣
↪→transmissions ###

idx = 0
test_tuples_mqtt = []

for i in mqtt_test_array:
test_msg_idxs = get_msg_idxs(i.data)

msg_energy_tuples = []

for x in test_msg_idxs:
#new_tuple = ()
msg_energy_tuples.append(

100*(1-float(i.data[x])/float(mqtt_predictions[idx][0]*x*0.00025 +␣
↪→mqtt_predictions[idx][1])))

idx += 1
test_tuples_mqtt.append(msg_energy_tuples)

[]: ### Plotting the model error in terms of difference from measured data ###

fig, (ax1, ax2) = plt.subplots(1,2)

fig.suptitle("Model error - data points")

ax1.set_title("CoAP")
ax2.set_title("MQTT")

ax1.set_ylabel("Difference [%]")
ax1.set_xlabel("Message number")
ax2.set_xlabel("Message number")

y_min = -1
y_max = 7

ax1.set_ylim([y_min,y_max])
ax2.set_ylim([y_min,y_max])

7

labels = ["256 B (NB-IoT)", "256 B (LTE-M)", "4096 B (NB-IoT)", "4096 B␣
↪→(LTE-M)",]

styles = ["g","r","g--","r--"]
markers = ["o","+","o","+"]

for i in range(len(test_tuples_coap)):
ax1.plot(test_tuples_coap[i], styles[i], marker = markers[i])
ax2.plot(test_tuples_mqtt[i], styles[i], marker = markers[i],label =␣

↪→labels[i])

ax1.axhline()
ax2.axhline(label = "Zero difference")
ax2.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.savefig("../dt_thesis/plots/model_error_diff.pdf", bbox_inches='tight')

[]: ### Getting the model error in terms of slope difference between model and␣
↪→mesured data for CoAP ###

idx = 0
test_tuples_coap = []

for i in coap_test_array:
test_msg_idxs = get_msg_idxs(i.data)
msg_energy_tuples = []

acc = []

real_prev_energy = i.data[test_msg_idxs[0]]
pred_prev_energy = float(coap_predictions[idx][0]*test_msg_idxs[0]*delta_t␣

↪→+ coap_predictions[idx][1])

for x in range(1,len(test_msg_idxs)):
curr_msg_idx = test_msg_idxs[x]

real_curr_energy = i.data[curr_msg_idx]
real_energy_diff = real_curr_energy-real_prev_energy
real_prev_energy = real_curr_energy

pred_curr_energy = float(coap_predictions[idx][0]*curr_msg_idx*delta_t␣
↪→+ coap_predictions[idx][1])

pred_energy_diff = pred_curr_energy - pred_prev_energy
pred_prev_energy = pred_curr_energy

acc.append(100*(1-real_energy_diff/pred_energy_diff))

msg_energy_tuples.append(

8

100*(1-real_energy_diff/pred_energy_diff))
idx += 1
test_tuples_coap.append(msg_energy_tuples)
print("AVG %d: %f (+/- %f)" %(idx, np.mean(acc), np.std(acc)))

[]: ### Getting the model error in terms of slope difference between model and␣
↪→mesured data for CoAP ###

idx = 0
test_tuples_mqtt = []

for i in mqtt_test_array:
test_msg_idxs = get_msg_idxs(i.data)
msg_energy_tuples = []

acc = []

real_prev_energy = i.data[test_msg_idxs[0]]
pred_prev_energy = float(mqtt_predictions[idx][0]*test_msg_idxs[0]*delta_t␣

↪→+ mqtt_predictions[idx][1])

for x in range(1,len(test_msg_idxs)):
curr_msg_idx = test_msg_idxs[x]

real_curr_energy = i.data[curr_msg_idx]
real_energy_diff = real_curr_energy-real_prev_energy
real_prev_energy = real_curr_energy

pred_curr_energy = float(mqtt_predictions[idx][0]*curr_msg_idx*delta_t␣
↪→+ mqtt_predictions[idx][1])

pred_energy_diff = pred_curr_energy - pred_prev_energy
pred_prev_energy = pred_curr_energy

acc.append(100*(1-real_energy_diff/pred_energy_diff))

msg_energy_tuples.append(
100*(1-real_energy_diff/pred_energy_diff))

idx += 1
test_tuples_mqtt.append(msg_energy_tuples)
print("AVG %d: %f (+/- %f)" %(idx, np.mean(acc), np.std(acc)))

[]: ### Plotting the slope error ###

fig, (ax1, ax2) = plt.subplots(1,2)

fig.suptitle("Model error - slope")

9

ax1.set_title("CoAP")
ax2.set_title("MQTT")

ax1.set_ylabel("Difference [%]")
ax1.set_xlabel("Message number")
ax2.set_xlabel("Message number")

y_min = -10
y_max = 20

ax1.set_ylim([y_min,y_max])
ax2.set_ylim([y_min,y_max])

labels = ["256 B (NB-IoT)", "256 B (LTE-M)", "4096 B (NB-IoT)", "4096 B␣
↪→(LTE-M)",]

styles = ["g","r","g--","r--"]
markers = ["o","+","o","+"]

for i in range(len(test_tuples_coap)):
ax1.plot(test_tuples_coap[i], styles[i], marker = markers[i])
ax2.plot(test_tuples_mqtt[i], styles[i], marker = markers[i],label =␣

↪→labels[i])

ax1.axhline()
ax2.axhline(label = "Zero difference")
ax2.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.savefig("../dt_thesis/plots/model_error_slope.pdf", bbox_inches='tight')

[]: ### Calculation and plotting of battery life in years for a NB-IoT application␣
↪→5wh battery with 4uA sleep current ###

psm_length_test_array = [900,1800,3600,7200,86400]
msg_size_test_array = [1,8,16,256,512,1280]
msg_size_test_array.reverse()

sleep_power = 4*V #uW
capacity = 5000000 #wh

coap_test_times = []
mqtt_test_times = []

#CoAP
for i in psm_length_test_array:

test_time_coap = []
test_time_mqtt = []
for j in msg_size_test_array:

10

curr_mqtt_test = Test(mqtt_256_nb, i,j, timing_mqtt_nb,␣
↪→energy_mqtt_nb, get_data_start(mqtt_256_nb), E_cdrx_nb)

curr_coap_test = Test(coap_256_nb, i,j, timing_coap_nb,␣
↪→energy_coap_nb, get_data_start(coap_256_nb), E_cdrx_nb)

curr_mqtt_energy = get_energy(
n_bytes = curr_mqtt_test.n_bytes,
max_bytes = 1439,
T_msg = curr_mqtt_test.T_msg,
E_cdrx = curr_mqtt_test.cdrx,
p_sleep = sleep_power,
reg_coeffs_t = curr_mqtt_test.t,
reg_coeffs_e = curr_mqtt_test.E,
start_params = curr_mqtt_test.E_start

)

curr_coap_energy = get_energy(
n_bytes = curr_coap_test.n_bytes,
max_bytes = 1439,
T_msg = curr_coap_test.T_msg,
E_cdrx = curr_coap_test.cdrx,
p_sleep = sleep_power,
reg_coeffs_t = curr_coap_test.t,
reg_coeffs_e = curr_coap_test.E,
start_params = curr_coap_test.E_start

)

test_time_mqtt.append(((capacity - curr_mqtt_energy[1])/
↪→curr_mqtt_energy[0])/3600/24/365)

test_time_coap.append(((capacity - curr_coap_energy[1])/
↪→curr_coap_energy[0])/3600/24/365)

mqtt_test_times.append(test_time_mqtt)
coap_test_times.append(test_time_coap)

plt.title("NB-IoT case study\n4uA sleep current")
plt.ylabel("Battery lifetime [years]")
plt.xlabel("Payload size [bytes]")
plt.ylim([0,13])

labels = ["CoAP - 900s", "CoAP - 1800s", "CoAP - 3600s", "CoAP - 7200s", None]
markers = ["+","o","<", "s", None]
idx = 0
for i in coap_test_times:

plt.plot(i, color="g", marker=markers[idx], label = labels[idx])
print(i)
idx += 1

11

labels = ["MQTT - 900s", "MQTT - 1800s", "MQTT - 3600s", "MQTT - 7200s", None]
idx = 0
for i in mqtt_test_times:

plt.plot(i, color="r", marker=markers[idx], label = labels[idx])
print(i)
idx += 1

plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.xticks(range(len(msg_size_test_array)), msg_size_test_array)

for i in range(len(psm_length_test_array)):
print(100*(coap_test_times[i][5]/coap_test_times[i][0]-1))

for i in range(len(psm_length_test_array)):
print(100*(mqtt_test_times[i][5]/mqtt_test_times[i][0]-1))

plt.savefig("../dt_thesis/plots/case_study_nb.pdf", bbox_inches='tight')

[]: ### Calculation and plotting of battery life in years for a LTE-M application␣
↪→5wh battery with 4uA sleep current ###

psm_length_test_array = [900,1800,3600,14400,86400]
msg_size_test_array = [1,8,16,256,512,1280]
msg_size_test_array.reverse()

sleep_power = 4*V
capacity = 5000000 #ah

coap_test_times = []
mqtt_test_times = []

#CoAP
for i in psm_length_test_array:

test_time_coap = []
test_time_mqtt = []
for j in msg_size_test_array:

curr_mqtt_test = Test(mqtt_256_ltem, i,j, timing_mqtt_ltem,␣
↪→energy_mqtt_ltem, get_data_start(mqtt_256_ltem), E_cdrx_ltem)

curr_coap_test = Test(coap_256_ltem, i,j, timing_coap_ltem,␣
↪→energy_coap_ltem, get_data_start(coap_256_ltem), E_cdrx_ltem)

curr_mqtt_energy = get_energy(
n_bytes = curr_mqtt_test.n_bytes,
max_bytes = 1439,
T_msg = curr_mqtt_test.T_msg,

12

E_cdrx = curr_mqtt_test.cdrx,
p_sleep = sleep_power,
reg_coeffs_t = curr_mqtt_test.t,
reg_coeffs_e = curr_mqtt_test.E,
start_params = curr_mqtt_test.E_start

)

curr_coap_energy = get_energy(
n_bytes = curr_coap_test.n_bytes,
max_bytes = 1439,
T_msg = curr_coap_test.T_msg,
E_cdrx = curr_coap_test.cdrx,
p_sleep = sleep_power,
reg_coeffs_t = curr_coap_test.t,
reg_coeffs_e = curr_coap_test.E,
start_params = curr_coap_test.E_start

)

test_time_mqtt.append(((capacity - curr_mqtt_energy[1])/
↪→curr_mqtt_energy[0])/3600/24/365)

test_time_coap.append(((capacity - curr_coap_energy[1])/
↪→curr_coap_energy[0])/3600/24/365)

mqtt_test_times.append(test_time_mqtt)
coap_test_times.append(test_time_coap)

plt.title("LTE-M case study\n4uA sleep current")
plt.ylabel("Battery lifetime [years]")
plt.xlabel("Payload size [bytes]")
plt.ylim([0,13])

labels = ["CoAP - 900s", "CoAP - 1800s", "CoAP - 3600s", "CoAP - 14400s", None]
markers = ["+","o","<", "D", None]
idx = 0
for i in coap_test_times:

print(i)
plt.plot(i, color="g", marker=markers[idx], label = labels[idx])
idx += 1

labels = ["MQTT - 900s", "MQTT - 1800s", "MQTT - 3600s", "MQTT - 14400s", None]

idx = 0
for i in mqtt_test_times:

print(i)
plt.plot(i, color="r", marker=markers[idx], label = labels[idx])
idx += 1

13

plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.xticks(range(len(msg_size_test_array)), msg_size_test_array)

for i in range(len(psm_length_test_array)):
print(100*(coap_test_times[i][5]/coap_test_times[i][0]-1))

for i in range(len(psm_length_test_array)):
print(100*(mqtt_test_times[i][5]/mqtt_test_times[i][0]-1))

plt.savefig("../dt_thesis/plots/case_study_ltem.pdf", bbox_inches='tight')

[]:

14

Appendix F

Processing helper functions

Listing F.1: t
1

2 ### This file contains helper functions used in processing ###

3

4 import numpy as np

5 import statsmodels.api as sm

6 import matplotlib.pyplot as plt

7

8 from sklearn import preprocessing

9 from sklearn.linear_model import LinearRegression

10 from sklearn.model_selection import train_test_split

11 from sklearn.model_selection import cross_val_score

12 from sklearn import metrics

13

14 ## Linear Regression ##

15 ## Params: byte_range : the range of bates for the specific sample_list

16 ## sample_list : an array of datasets with either energy or time data

17 ## Based on: https :// towardsdatascience.com/a-beginners -guide -to-linear -

regression -in-python -with -scikit -learn -83 a8f7ae2b4f

18 def do_linear_regression(byte_range , sample_list):

19 y = []

20 X = []

21

22 for i in range(len(sample_list [0])):

23 for j in range(len(sample_list)):

24 X.append(byte_range[i])

25 y.append(sample_list[j][i])

26

27 X_const = sm.add_constant(X)

28 model = sm.OLS(y, X_const)

29 results = model.fit()

30 prediction = results.get_prediction ()

31

115

116 APPENDIX F. PROCESSING HELPER FUNCTIONS

32 return results

33

34 ## Gets the residuals with the given regression coefficients

35 def get_residuals(sample_list , reg_coeffs , byte_range):

36 y = []

37 X = []

38

39 for i in range(len(sample_list [0])):

40 for j in range(len(sample_list)):

41 X.append(byte_range[i])

42 y.append(sample_list[j][i])

43

44

45 y_pred = reg_coeffs.slope*np.array(X)+reg_coeffs.intercept

46

47 return [X, y-y_pred]

48

49 ## Returns the message duration given the regression coefficients

50 def get_message_duration(n_bytes , max_bytes , reg_coeffs):

51 x = np.linspace(0,max_bytes+1,max_bytes +1)

52 y = [reg_coeffs [0]]*x+reg_coeffs [1]

53

54 return y[n_bytes]

55

56 ## Returns the message energy given the regression coefficients

57 def get_message_energy(n_bytes , max_bytes , reg_coeffs):

58 x = np.linspace(0,max_bytes+1,max_bytes +1)

59 y = [reg_coeffs [0]]*x+reg_coeffs [1]

60

61 return y[n_bytes]

62

63 ## Returns the coefficients for the estimation of total energy given the model

parameters

64 def get_energy(n_bytes ,max_bytes ,E_cdrx ,T_msg ,p_sleep ,reg_coeffs_t ,reg_coeffs_e

,start_params):

65 t_psm = T_msg -get_message_duration(n_bytes , max_bytes , reg_coeffs_t)

66

67 E_msg = get_message_energy(n_bytes , max_bytes , reg_coeffs_e) #uWh

68 E_sleep = p_sleep*t_psm /3600

69 E_start = start_params [1]

70

71 E_tot_coef = (E_msg+E_cdrx + E_sleep)/(T_msg)

72 E_tot_intercept = E_start -E_tot_coef*start_params [0]

73

74 return [E_tot_coef , E_tot_intercept]

75

76 ## Returns an approximation of the cDRX energy

77 def get_con_energy(t_inactive , t_cycle , t_onDuration , E_monitor , E_release ,

p_idle):

78 return ((p_idle *(t_cycle -t_onDuration)/3600 + E_monitor) * t_inactive/

117

t_cycle + E_release)

79

80 ## Returns an array of segments and an array of message durations. Parameter

description follows:

81 # data : the measurement data from the OTII

82 # batch_start : an index at some point after the device has

83 # entered PSM and before the first test transmission.

84 # rrc_con_threshold: given in mA. Used to determine that a transmission is

afoot.

85 # jump_past : an value to be added to the start index of segment so that

the index

86 # jumps past a transmission and can begin to iterate

backwards to find

87 # the end.

88 # jump_between : used to shorten processing time by moving closer to the

next

89 # transmission.

90 def segment_data(data , batch_start , rrc_con_threshold , jump_past , jump_between)

:

91 segments = []

92 timing = []

93

94 segment_triggered = False

95

96 delta_t = 0.00025

97

98 idx = 0

99 for batch in data:

100 print("Batch: " + str(idx))

101 curr_set = []

102 i = batch_start

103 curr_timing = []

104 endpoint = (batch.index.size)

105 while(i < endpoint):

106 curr_meas = batch.iloc[i]

107 if(segment_triggered):

108 if(curr_meas > rrc_con_threshold):

109 segment_end = i

110 curr_timing.append ((segment_end -segment_start)*delta_t)

111 curr_set.append(batch.iloc[segment_start:segment_end])

112 i+= jump_between

113 segment_triggered = False

114 else:

115 i -= 1

116 else:

117 if(curr_meas > rrc_con_threshold):

118 segment_start = i

119 i+= jump_past

120 segment_triggered = True

121 else:

118 APPENDIX F. PROCESSING HELPER FUNCTIONS

122 i += 1

123 timing.append(curr_timing)

124 segments.append(curr_set)

125 idx += 1

126 return [segments , timing]

References

[1] GSMA. (Jun. 2019). NB-IoT deployment guide v3, [Online]. Available: https://www.gsma.
com/iot/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-

v3.pdf (visited on 12/06/2019).

[2] ——, (Jun. 2019). LTE-M deployment guide v3, [Online]. Available: https://www.gsma.com/
iot/wp-content/uploads/2019/08/201906-GSMA-LTE-M-Deployment-Guide-v3.pdf

(visited on 12/06/2019).

[3] Z. Shelby, K. Hartke, and C. Bormann. (Jun. 2014). The constrained application protocol
(CoAP), [Online]. Available: https : / / tools . ietf . org / html / rfc7252 (visited on
12/16/2019).

[4] J. Postel. (Aug. 1980). User datagram protocol, [Online]. Available: https://tools.ietf.
org/html/rfc768 (visited on 12/16/2019).

[5] Oasis/ISO. (Jun. 2016). ISO/IEC 20922:2016, ISO. Library Catalog: www.iso.org, [Online].
Available: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/
data/standard/06/94/69466.html (visited on 06/12/2020).

[6] J. Postel. (Sep. 1981). Transmission control protocol. Library Catalog: tools.ietf.org, [Online].
Available: https://tools.ietf.org/html/rfc793 (visited on 04/24/2020).

[7] Eclipse. (Apr. 2018). IoT developer survey results, [Online]. Available: https://iot.
eclipse.org/resources/iot-developer-survey/iot-developer-survey-2018.pdf

(visited on 12/15/2019).

[8] C. R. S. Fosse, “A survey of communication protocols for a low power embedded cellular
device,” Dec. 2019.

[9] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of LPWAN technologies
for large-scale IoT deployment,” ICT Express, vol. 5, no. 1, pp. 1–7, Mar. 1, 2019.

[10] P. Reininger, “3gpp standards for IoT,” Smart Summit, Singapore, Nov. 2016.

119

https://www.gsma.com/iot/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-v3.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-v3.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-v3.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/08/201906-GSMA-LTE-M-Deployment-Guide-v3.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/08/201906-GSMA-LTE-M-Deployment-Guide-v3.pdf
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc768
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/94/69466.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/94/69466.html
https://tools.ietf.org/html/rfc793
https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2018.pdf
https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2018.pdf

120 REFERENCES

[11] 3GPP. (). Specification # 36.323, [Online]. Available: https : / / portal . 3gpp . org /
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=

2439 (visited on 06/29/2020).

[12] S.-H. Hwang and S.-Z. Liu, “Survey on 3gpp low power wide area technologies and its
application,” in 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS),
ISSN: null, Aug. 2019, pp. 1–5.

[13] C. B. Mwakwata, H. Malik, M. Mahtab Alam, Y. Le Moullec, S. Parand, and S. Mumtaz,
“Narrowband internet of things (NB-IoT): From physical (PHY) and media access control
(MAC) layers perspectives,” Sensors (Basel, Switzerland), vol. 19, no. 11, Jun. 8, 2019.

[14] GSA. (Mar. 2019). Global narrowband IoT - LTE-m networks – march 2019, GSA, [Online].
Available: https://gsacom.com/paper/global-narrowband-iot-lte-m-networks-
march-2019/ (visited on 12/17/2019).

[15] M. Lauridsen, I. Z. Kovacs, P. Mogensen, M. Sorensen, and S. Holst, “Coverage and capacity
analysis of LTE-m and NB-IoT in a rural area,” in 2016 IEEE 84th Vehicular Technology

Conference (VTC-Fall), ISSN: null, Sep. 2016, pp. 1–5.

[16] A. K. Sultania, P. Zand, C. Blondia, and J. Famaey, “Energy modeling and evaluation of
NB-IoT with PSM and eDRX,” in 2018 IEEE Globecom Workshops (GC Wkshps), ISSN: null,
Dec. 2018, pp. 1–7.

[17] 3GPP. (). Specification # 36.331, [Online]. Available: https : / / portal . 3gpp . org /
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=

2440 (visited on 06/29/2020).

[18] A. K. Sultania, C. Delgado, and J. Famaey, “Implementation of NB-IoT power saving
schemes in ns-3,” in Proceedings of the 2019 Workshop on Next-Generation Wireless with

ns-3, ser. WNGW 2019, Florence, Italy: Association for Computing Machinery, Jun. 21, 2019,
pp. 5–8.

[19] 3GPP. (). Specification # 36.211, [Online]. Available: https : / / portal . 3gpp . org /
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=

2425 (visited on 06/29/2020).

[20] ——, (). Specification # 38.331, [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3197 (visited on
06/29/2020).

[21] ——, (). Specification # 24.301, [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=1072 (visited on
06/29/2020).

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2439
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2439
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2439
https://gsacom.com/paper/global-narrowband-iot-lte-m-networks-march-2019/
https://gsacom.com/paper/global-narrowband-iot-lte-m-networks-march-2019/
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2440
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2440
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2440
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2425
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2425
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2425
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1072
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1072

REFERENCES 121

[22] P. Andres-Maldonado, P. Ameigeiras, J. Prados-Garzon, J. J. Ramos-Munoz, and J. M. Lopez-
Soler, “Optimized LTE data transmission procedures for IoT: Device side energy con-
sumption analysis,” 2017 IEEE International Conference on Communications Workshops (ICC

Workshops), pp. 540–545, May 2017. arXiv: 1704.04929.

[23] ISO. (). I35.100 - open systems interconnection (OSI), [Online]. Available: https://www.
iso.org/ics/35.100/x/ (visited on 06/29/2020).

[24] C. Gomez, A. Arcia-Moret, and J. Crowcroft, “TCP in the internet of things: From ostracism
to prominence,” IEEE Internet Computing, vol. 22, no. 1, pp. 29–41, Jan. 2018, Conference
Name: IEEE Internet Computing.

[25] C. Gomez. (Mar. 9, 2019). TCP usage guidance in the internet of things (IoT). Library Catalog:
tools.ietf.org, [Online]. Available: https://tools.ietf.org/id/draft-ietf-lwig-
tcp-constrained-node-networks-05.html (visited on 06/11/2020).

[26] J. Postel. (Sep. 1981). Internet protocol. Library Catalog: tools.ietf.org, [Online]. Available:
https://tools.ietf.org/html/rfc791 (visited on 06/12/2020).

[27] A. Stanford-Clark and H. L. Truong, “MQTT for sensor networks (MQTT-SN) protocol
specification,” p. 28, Nov. 2013.

[28] A. Keranen. (Sep. 14, 2017). RESTful design for internet of things systems, [Online]. Avail-
able: https://tools.ietf.org/id/draft- keranen- t2trg- rest- iot- 05.html
(visited on 12/19/2019).

[29] A. Larmo, A. Ratilainen, and J. Saarinen, “Impact of CoAP and MQTT on NB-IoT system
performance,” Sensors (Basel, Switzerland), vol. 19, no. 1, Dec. 20, 2018.

[30] J. Wirges and U. Dettmar, “Performance of TCP and UDP over narrowband internet of
things (NB-IoT),” in 2019 IEEE International Conference on Internet of Things and Intelligence

System (IoTaIS), ISSN: null, Nov. 2019, pp. 5–11.

[31] J. C.Mogul and S. E. Deering. (Nov. 1990). PathMTUdiscovery. Library Catalog: tools.ietf.org,
[Online]. Available: https://tools.ietf.org/html/rfc1191 (visited on 06/09/2020).

[32] Z. Shelby and C. Bormann. (Aug. 2016). Block-wise transfers in the constrained application
protocol (CoAP). Library Catalog: tools.ietf.org, [Online]. Available: https://tools.ietf.
org/html/rfc7959 (visited on 05/10/2020).

[33] R. Braden. (Oct. 1989). Requirements for internet hosts - communication layers. Library
Catalog: tools.ietf.org, [Online]. Available: https://tools.ietf.org/html/rfc1122
(visited on 06/23/2020).

https://arxiv.org/abs/1704.04929
https://www.iso.org/ics/35.100/x/
https://www.iso.org/ics/35.100/x/
https://tools.ietf.org/id/draft-ietf-lwig-tcp-constrained-node-networks-05.html
https://tools.ietf.org/id/draft-ietf-lwig-tcp-constrained-node-networks-05.html
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/id/draft-keranen-t2trg-rest-iot-05.html
https://tools.ietf.org/html/rfc1191
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc1122

122 REFERENCES

[34] B. Martinez, M. Montón, I. Vilajosana, and J. D. Prades, “The power of models: Modeling
power consumption for IoT devices,” IEEE Sensors Journal, vol. 15, no. 10, pp. 5777–5789,
Oct. 2015, Conference Name: IEEE Sensors Journal.

[35] 3GPP. (). Specification # 45.820, [Online]. Available: https : / / portal . 3gpp . org /
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=

2719 (visited on 06/29/2020).

[36] P. P. Moletsane, T. J. Motlhamme, R. Malekian, and D. C. Bogatmoska, “Linear regression
analysis of energy consumption data for smart homes,” in 2018 41st International Convention

on Information and Communication Technology, Electronics and Microelectronics (MIPRO),
May 2018, pp. 0395–0399.

[37] J. Thrane, K. M. Malarski, H. L. Christiansen, and S. Ruepp, “Experimental evaluation of
empirical NB-IoT propagation modeling in a deep-indoor scenario,” arXiv:2006.00880 [cs,
eess], Jun. 1, 2020. arXiv: 2006.00880.

[38] P. B. Palmer and D. G. O’Connell, “Regression analysis for prediction: Understanding the
process,” Cardiopulmonary Physical Therapy Journal, vol. 20, no. 3, pp. 23–26, Sep. 2009.

[39] GSMA. (). Mobile IoT modules, Internet of Things. Library Catalog: www.gsma.com, [On-
line]. Available: https : / / www . gsma . com / iot / mobile - iot - modules/ (visited on
06/11/2020).

[40] N. Semiconductor. (2019). nRF9160 SiP. Library Catalog: www.nordicsemi.com, [Online].
Available: https://www.nordicsemi.com/en/Products/Low%20power%20cellular%
20IoT/nRF9160 (visited on 06/29/2020).

[41] ——, (2019). nRF9160 DK. Library Catalog: www.nordicsemi.com, [Online]. Available:
https://www.nordicsemi.com/en/Software%20and%20tools/Development%20Kits/

nRF9160%20DK (visited on 06/29/2020).

[42] ——, (2019). Nordic thingy:91 prototyping platform. Library Catalog: www.nordicsemi.com,
[Online]. Available: https://www.nordicsemi.com/en/Software%20and%20tools/
Prototyping%20platforms/Nordic%20Thingy%2091 (visited on 06/29/2020).

[43] G. Instek. (). GPD-series multiple output programmable linear d.c. power supply. Library
Catalog: www.gwinstek.com, [Online]. Available: https://www.gwinstek.com/en-
GB/products/detail/GPD-Series (visited on 06/18/2020).

[44] Eclipse. (Jan. 8, 2018). Eclipse mosquitto, Eclipse Mosquitto. Library Catalog: mosquitto.org,
[Online]. Available: https://mosquitto.org/ (visited on 06/15/2020).

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2719
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2719
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2719
https://arxiv.org/abs/2006.00880
https://www.gsma.com/iot/mobile-iot-modules/
https://www.nordicsemi.com/en/Products/Low%20power%20cellular%20IoT/nRF9160
https://www.nordicsemi.com/en/Products/Low%20power%20cellular%20IoT/nRF9160
https://www.nordicsemi.com/en/Software%20and%20tools/Development%20Kits/nRF9160%20DK
https://www.nordicsemi.com/en/Software%20and%20tools/Development%20Kits/nRF9160%20DK
https://www.nordicsemi.com/en/Software%20and%20tools/Prototyping%20platforms/Nordic%20Thingy%2091
https://www.nordicsemi.com/en/Software%20and%20tools/Prototyping%20platforms/Nordic%20Thingy%2091
https://www.gwinstek.com/en-GB/products/detail/GPD-Series
https://www.gwinstek.com/en-GB/products/detail/GPD-Series
https://mosquitto.org/

REFERENCES 123

[45] Telenor. (). Telenor NB-IoT developer portal, Telenor NB-IoT Developer portal. Library
Catalog: nbiot.engineering, [Online]. Available: https://nbiot.engineering (visited on
06/18/2020).

[46] P. Jupyter. (). Project jupyter. Library Catalog: jupyter.org, [Online]. Available: https:
//www.jupyter.org (visited on 06/25/2020).

[47] S. Bland. (May 7, 2020). Measuring PSM sleep current on the nRF9160-DK - nordic blog
- nordic blog - nordic DevZone, Nordic Blog, [Online]. Available: https://devzone.
nordicsemi.com/nordic/nordic- blog/b/blog/posts/measuring- psm- sleep-

current-on-the-nrf9160-dk (visited on 05/08/2020).

[48] N. Semiconductor. (). nRFConnect SDK - nordic semiconductor. Library Catalog: www.nordicsemi.com,
[Online]. Available: https://www.nordicsemi.com/en/Software%20and%20tools/
Software/nRF%20Connect%20SDK (visited on 06/14/2020).

[49] T. L. Foundation. (). Zephyr project | home, Zephyr Project. Library Catalog: www.zephyrproject.org,
[Online]. Available: https://www.zephyrproject.org/ (visited on 06/14/2020).

[50] N. Semiconductor. (). nRF connect for desktop. Library Catalog: www.nordicsemi.com,
[Online]. Available: https://www.nordicsemi.com/en/Software%20and%20tools/
Development%20Tools/nRF%20Connect%20for%20desktop (visited on 06/14/2020).

[51] A. Patel. (Jan. 2019). Getting started with nRF9160 DK - getting started - cellular IoT guides
- nordic DevZone. Library Catalog: devzone.nordicsemi.com, [Online]. Available: https:
//devzone.nordicsemi.com/nordic/cellular-iot-guides/b/getting-started-

cellular/posts/getting-started-with-nrf9160-dk (visited on 06/14/2020).

[52] C. R. S. Fosse, Dt_app, Available at: https://github.com/crfosse/dt_app, Jun. 29, 2020.

[53] 3GPP and ETSI. (2019). TS 127 007, [Online]. Available: https://www.etsi.org/deliver/
etsi_ts/127000_127099/127007/15.07.00_60/ts_127007v150700p.pdf (visited on
06/18/2020).

[54] N. Semiconductor. (Apr. 2020). Nrf91 AT commands v1.2, [Online]. Available: https :
//infocenter.nordicsemi.com/pdf/nrf91_at_commands_v1.2.pdf (visited on
06/14/2020).

[55] ——, (Apr. 2020). nRF9160: Simple MQTT, GitHub. Library Catalog: github.com, [Online].
Available: https://github.com/nrfconnect/sdk-nrf (visited on 06/14/2020).

[56] E. Engineering. (Feb. 2020). Constrained application protocol (CoAP), GitHub. Library Cat-
alog: github.com, [Online]. Available: https://github.com/ExploratoryEngineering/
nrf9160-telenor (visited on 06/14/2020).

https://nbiot.engineering
https://www.jupyter.org
https://www.jupyter.org
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/measuring-psm-sleep-current-on-the-nrf9160-dk
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/measuring-psm-sleep-current-on-the-nrf9160-dk
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/measuring-psm-sleep-current-on-the-nrf9160-dk
https://www.nordicsemi.com/en/Software%20and%20tools/Software/nRF%20Connect%20SDK
https://www.nordicsemi.com/en/Software%20and%20tools/Software/nRF%20Connect%20SDK
https://www.zephyrproject.org/
https://www.nordicsemi.com/en/Software%20and%20tools/Development%20Tools/nRF%20Connect%20for%20desktop
https://www.nordicsemi.com/en/Software%20and%20tools/Development%20Tools/nRF%20Connect%20for%20desktop
https://devzone.nordicsemi.com/nordic/cellular-iot-guides/b/getting-started-cellular/posts/getting-started-with-nrf9160-dk
https://devzone.nordicsemi.com/nordic/cellular-iot-guides/b/getting-started-cellular/posts/getting-started-with-nrf9160-dk
https://devzone.nordicsemi.com/nordic/cellular-iot-guides/b/getting-started-cellular/posts/getting-started-with-nrf9160-dk
https://www.etsi.org/deliver/etsi_ts/127000_127099/127007/15.07.00_60/ts_127007v150700p.pdf
https://www.etsi.org/deliver/etsi_ts/127000_127099/127007/15.07.00_60/ts_127007v150700p.pdf
https://infocenter.nordicsemi.com/pdf/nrf91_at_commands_v1.2.pdf
https://infocenter.nordicsemi.com/pdf/nrf91_at_commands_v1.2.pdf
https://github.com/nrfconnect/sdk-nrf
https://github.com/ExploratoryEngineering/nrf9160-telenor
https://github.com/ExploratoryEngineering/nrf9160-telenor

124 REFERENCES

[57] C. R. S. Fosse, Dt_data, Available at: https://github.com/crfosse/dt_data, Jun. 29, 2020.

[58] J. Haukland, “Modeling the energy consumption of nb-iot transmissions,” Master thesis,
Norwegian University of Science and Technology, Trondheim, Jun. 2019, 115 pp.

Carl Richard Steen Fosse
Pow

er Consum
ption m

odeling of TCP and U
D

P over low
 pow

er cellular netw
orks for a constrained device

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Carl Richard Steen Fosse

Power Consumption modeling of TCP
and UDP over low power cellular
networks for a constrained device

Master’s thesis in Electronic System Design and Innovation

Supervisor: Snorre Aunet, Sigve Tjora

June 2020

	Abstract
	Sammendrag
	Preface
	Introduction
	Motivation
	Goals
	Structure

	Background
	Other Low Power Wide Area Networks
	Cellular low power wide area network standards
	LTE-M
	NB-IoT
	Power saving mechanisms for NB-IoT and LTE-M

	Radio resource control states
	Connected DRX configuration

	Communication protocols
	TCP
	User Datagram Protocol
	Research on TCP and UDP over cellular connections
	Maximum payload calculation

	modeling energy consumption
	Model

	Linear Regression
	Metrics of linear regression

	Implementation and methodology
	Equipment, tools and software
	Cellular hardware: nRF9160 from Nordic Semiconductor
	Cellular provider: Telenor NB-IoT
	Measuring unit: OTII-ARC
	Power Supply: Gw Instek GPD-3303s
	MQTT broker and client
	CoAP server
	Data processing platform: Python Jupyter Notebook

	Development and test environment
	Hardware setup
	Development environment for the nRF9160
	Communicating with the nRF9160 modem

	nRF9160 application design
	Project Configuration
	Determining maximum payload
	Application challenges

	Data processing

	Experiments and results
	Parameter measurements
	Payload size sweep
	Regression results
	Transmission energy
	Transmission time
	Regression remarks

	Model performance
	Case Study

	Discussion
	UDP and TCP over cellular networks
	Payload size effects
	modeling
	Working with a cellular device

	Conclusion
	Parameter measurements
	nRF9160 - CoAP application
	nRF9160 - CoAP application
	Processing notebook
	Model notebook
	Processing helper functions
	References

