
TFE4930 ELECTRONIC SYSTEMS DESIGN, MASTER’S THESIS

THESIS REPORT

Virtual prototype of low-power digital
architectures in SystemC

Written by :

Motaz Thiab

Supervisors :

Milica Orlandic

Isael Diaz

June 18, 2020

Abstract

Nordic Semiconductor is considering to include the use of SystemC virtual prototypes into their

System-on-Chip (SoC) design flow. These prototypes would be useful in the development of

embedded software. Nowadays, the software team at Nordic semiconductors tests their software

in two stages, the first one is the Unit test, It’s a set of functional tests of the software, which they

run completely on the machine. And the second one is the Target test, They run more complex

tests, it tests the communication between peripherals. The tests use one or two development

boards, in the case of two devices, One device runs the software under test and the other runs a

test program.

Our goal was to investigate the feasibility of using a virtual prototype in the design flow

of Nordic Semiconductor. We selected some of the tests used by the software team at Nordic

Semiconductor to decide what are the peripherals to be modeled and how detailed these models

need to be. We have then modeled and verified the individual components and the overall

system. Before running the tests, we had to modify them to be compatible with the SystemC

prototype before running them on it. We evaluated the performance of the prototype for the

tests and compare it with the performance of the development boards. The results showed that

the virtual prototype provided a huge speedup in the testing which we believe would increase

the testing productivity and test coverage. The prototype provides more visibility over the

system components, allowing for more debugging capabilities. It is also proven to be easily

expandable, either expanding the system by adding more models or expanding the individual

models by adding extra functionalities.

i

Table of Contents

Abstract i

Table of Contents iii

List of Tables vi

List of Figures viii

1 Introduction 1

1.1 Background . 1

1.2 Thesis scope . 2

1.3 Outline . 3

2 Theory 5

2.1 Software testing . 5

2.2 Current testing methodology . 6

2.2.1 Unit tests . 7

2.2.2 Target tests . 8

2.3 Virtual Prototyping, SystemC and TLM . 9

2.3.1 Virtual prototyping . 9

2.3.2 Transaction level modeling (TLM) methodology 10

2.3.3 SystemC . 12

2.4 Multiprotocol Service Layer (MPSL) . 17

2.5 System components and peripherals . 18

i

2.5.1 Nested Vector Interrupt Controller (NVIC) 18

2.5.2 System Control Block (SCB) . 20

2.5.3 CLOCK . 21

2.5.4 RADIO . 22

2.5.5 Real-time counter (RTC) . 23

2.5.6 TIMER . 23

2.5.7 Temperature sensor . 26

2.5.8 General purpose input/output (GPIO) 26

2.6 System core Bauhaus . 27

3 Methodology 29

3.1 The initial subset of tests . 30

3.2 Identifying hardware accesses . 31

3.3 Extracted peripherals . 33

3.4 Modeling of peripherals . 34

3.4.1 Nested Vector Interrupt Controller (NVIC) model 35

3.4.2 CLOCK peripheral’s model . 36

3.4.3 General purpose input/output (GPIO) module model 44

3.5 Models verification . 44

3.5.1 General purpose input/output (GPIO) model behaviour verification . . . 45

3.5.2 CLOCK model behaviour verification 45

3.5.3 NVIC Verification . 46

3.5.4 System Verification . 48

3.6 Running tests on the virtual platform . 49

3.6.1 Running the base test . 49

3.6.2 CLOCK peripheral tests . 50

4 Results 53

4.1 Results of Models verification . 53

4.1.1 CLOCK model verification . 53

4.1.2 GPIO model verification . 56

4.1.3 NVIC model verification . 58

ii

4.1.4 System verification . 60

4.2 Executed tests on the platform . 61

4.2.1 Results of the base test . 61

4.2.2 Results of CLOCK’s tests . 63

4.3 Verbosity and visibility . 64

4.4 Reusability and expandability . 65

4.5 Virtual prototype vs. development boards . 65

5 Discussion 67

6 Conclusion 69

A Acronyms 71

B Code 73

B.1 Template code . 73

B.2 Nested Vector Interrupt Controller (NVIC) model as part of the CPU 75

B.3 CLOCK code . 79

B.4 GPIO code . 101

B.5 Verification tests . 110

B.5.1 NVIC verification tests . 110

B.5.2 GPIO verification tests . 113

B.5.3 CLOCK verification tests . 117

B.5.4 System verification tests . 124

B.6 The base test code . 125

Bibliography 126

iii

iv

List of Tables

2.1 List of used Nested Vector Interrupt Controller (NVIC) registers 20

2.2 List of used System Control Block (SCB) registers 21

2.3 List of used registers in RADIO peripheral . 23

2.4 List of used registers in RTC peripheral . 24

2.5 List of used registers in timer peripheral . 25

2.6 List of used registers in temperature sensor peripheral 26

3.1 immediate functions after mpsl_init . 32

3.2 NVIC’s registers . 35

3.3 List of used Nested Vector Interrupt Controller (NVIC) registers 35

3.4 Registers of the CLOCK model . 37

3.5 List of Low Frequency Clock (LFCLK) sources 40

3.6 List of General purpose input/output registers 44

3.7 General purpose input/output verification conditions and test 45

3.8 CLOCK verification conditions and test . 46

3.9 NVIC verification conditions and test . 47

4.1 Verification results HFCLK controller . 54

4.2 Verification results LFCLK controller . 55

4.3 Verification results of LFCLK’s oscillator calibration 57

4.4 General purpose input/output verification results 58

4.5 NVIC verification results . 60

4.6 Comparison table of virtual prototype and development board 66

v

vi

List of Figures

2.1 Unit testing . 8

2.2 Target test . 9

2.3 Model setup to communicate using TLM transaction 11

2.4 SystemC language architecture . 13

2.5 SystemC simulation kernel . 14

2.6 Nested Vector Interrupt Controller (NVIC) Block diagram 19

2.7 clock control block diagram, c©Nordic Semiconductors 21

2.8 Real-time counter (RTC) block diagram, c©Nordic Semiconductors 24

2.9 The timer block diagram, c©Nordic Semiconductors 25

3.1 Proposed steps of methodology . 29

3.2 mpsl_init functions that access the peripherals 32

3.3 mpsl_uninit functions that access the peripherals 33

3.4 The virtual prototype structure . 34

3.5 The steps to start the external high frequency oscillator 38

3.6 Steps to stop the external High frequency oscillator 39

3.7 Steps to start the LFCLK . 41

3.8 Steps to stop the LFCLK . 42

3.9 Low Frequency Clock (LFCLK) calibration flowchart 43

3.10 system verification plan . 48

4.1 HFCLK controller start Verification . 54

4.2 HFCLK controller stop Verification . 54

vii

4.3 LFCLK controller start Verification . 55

4.4 LFCLK controller stop Verification . 55

4.5 external oscillator start Verification . 55

4.6 verification of calibration timer operation . 56

4.7 verification of calibration process operation 56

4.8 verification of GPIO bits individually . 57

4.9 verification of GPIO bits cumulatively . 57

4.10 EnableIRQ function verification . 58

4.11 DisableIRQ function verification . 58

4.12 ClearPendingIRQ function verification . 59

4.13 GetEnableIRQ function verification . 59

4.14 GetPendingIRQ function verification . 59

4.15 system verification results . 60

4.16 The results of the initialization routine . 61

4.17 The results of the base test . 62

4.18 The results of One-shot CLOCK callback test 63

4.19 The results of No CLOCK callback is called when HFCLK started by protocol

test . 63

4.20 The results of CLOCK callback is called when HFCLK is already triggered test 64

viii

Chapter 1
Introduction

1.1 Background

In System-on-Chip (SoC) development, both software and hardware need to be developed,

where the hardware will interface with the external environment like peripherals and sensors.

The software provides the interfaces between high-level software and the hardware

components of the chip, which makes the software development an essential part of the

hardware design. Software content on System-on-Chip (SoC) comprises low-level firmware or

telecom/communication stacks, and these need to be tested and validated.

Here we are interested in the software testing of Nordic Semiconductor, where their software

team relies on two types of software testing, unit tests, and target tests.

The issue that we are interested in is the productivity of testing, and we going to focus on

the second stage of testing used by Nordic Semiconductor, target test. One of the target test

drawbacks is its dependency on development boards. And in the early stages of SoC design

flow, they will not be available which will force the delay of the SoC testing until the board

design is finished and the board itself has been manufactured. A workaround to reduce the

waiting time for development boards is the use of FPGAs. The FPGA can be configured to

behave similarly as the under-development board. Even though the use of FPGAs will save the

waiting issue it would add extra cost to the product development which is proportional to the

number and type of used FPGAs.

Another issue target tests are suffering from is the time need to execute the tests. The number

of tests that need to be run to cover a specific system increases with system complexity. And

1

Chapter 1. Introduction

having a complex system with different peripherals requires extensive software testing. With a

massive number of cases and states to be tested, the testing time will increase drastically. This

could force the developers to decrease the number of tests and focus on the corner cases to stay

within a reasonable testing time.

An approach to reduce this effect is the use of virtual prototypes. A virtual prototype is a

hardware-mimicking software that can run its software. The main principle of virtual

prototypes is to have a trade-off between accuracy and simulation speed. It would provide a

functional simulation while abstracting some of the unnecessary details to increase the

simulation speed. Transaction level modeling (TLM) is one of the methodologies used to

abstract the communication details between different system components. Its principle is to

have an object of the payload that we would like to send from the initiator to a target, and

instead of passing the whole object, the initiator would pass a pointer to that object. SystemC

is one of the virtual prototyping languages that also use TLM methodology to transmit

transactions between different system’s components.

1.2 Thesis scope

This thesis is working with another one [1] to address the previously mentioned issue where

we gonna be working on different parts of the same system, and the results for both theses will

be based on the complete system which will be the combination of our work. We will try to

answer on the following questing:

Does the use of SystemC virtual prototypes in the design flow of Nordic Semiconductor provide

a good testing platform for their software? and whether it can replace the physical boards in

software development?

We will be trying to develop a virtual prototype to run and evaluate the performance of these

tests. The prototype will use some of the components that are already available and used by

Nordic Semiconductor like a simple CPU that initiates simple read and write transactions,

interconnect between the CPU and the rest of the models, and a system builder to connect

different models into a single complete system. Our focus will be on the modeling of the

peripherals and some CPU components like Nested Vector Interrupt Controller (NVIC) and

System Control Block (SCB). We will also evaluate the performance of the prototype and

2

1.3 Outline

compare it with the tests’ performance on the development boards.

1.3 Outline

The thesis consists of 6 chapters including the introduction, acronyms appendix, and appendix

for some of the code mentioned through the thesis. Chapter 2 is the theory chapter and it

discusses software testing in general then it narrows down to the testing methodology used

at Nordic Semiconductor. It will also talk a bit about the software that we are going to test.

Then it moves to talk about the hardware components that will be modeled either in this thesis

or in [1]. We will also discuss SystemC as the used modeling language and explain some of

its concepts and components, in addition to the in-house components that we have used from

Nordic Semiconductor.

Chapter 3 will list the methodology and the steps taken through the thesis. It will start by

discussing the selection of the initial subset of tests and the identifying of the hardware accesses

performed by that subset of tests. It will also move to peripherals that are going to be modeled

followed by their modeling and verification plans. Finally, it will discuss the modification of

tests to be compatible with the prototype.

Chapter 4 will have the results of the verification plans and the results of executing the tests.

It will also mention some of the features the prototype has like visibility and expandability. It

will finish by listing a comparison between the virtual prototype and the development boards

for different tests.

Chapter 5 will discuss the results and findings of the thesis and comment on them, and try to

answer the thesis question. While chapter 6 will summarize the work, findings, and conclusion

of the research.

3

Chapter 1. Introduction

4

Chapter 2
Theory

2.1 Software testing

The correctness of embedded software functionality and performance plays a big role in

software quality. Software testing is an important asset of software quality assurance[7]. The

embedded software testing stretches across the software and the hardware. It deals with the

software and hardware issues, as well as their coordination [11].

There are several embedded development models that deal with different stages of

development including the writing and testing of software. They are different level of testing

that can be applied to embedded systems. We will discuss two of them here which are relevant

to this thesis. The two types of embedded software testing are:

• Software unit testing:

It tests a function or a class from the software, a single unit of the software. The test cases

are developed based on the specification, and it tests the logic of the software.

• Software/hardware integration testing:

It could also be referred to as target testing. It focuses on testing the interaction between

the software within hardware components. It tests the integrity of communication

between different parts of the software. It usually requires the use of physical boards,

either development boards of the target hardware or configured FPGAs.

The main goal of all types of testing is to discover design bugs and errors at earlier stages

of development. The later the bugs are being detected the higher the cost and the delay of

5

Chapter 2. Theory

fixing them. The delay caused by discovering a bug depends on if we have to go back to

previous stages of the design flow to fix it or how many stages we would have to revisit. The

further we have to roll back in the design flow the more time and cost are needed.

The testing gets more complicated when moving to target testing as the target hardware of the

software might not be available at this point in the design flow. As the software is tightly

coupled with the hardware in an embedded system, this could be a bottleneck of the design

flow. There are different ways to deal with this issue, either by delaying the software

development until the target hardware is available, but the product development time would

increase. Another solution is the use of configured FPGAs, that behaves similarly to the target

hardware. This would overcome the bottleneck and save time in the development, but it would

add extra costs to the development due to the high cost of FPGAs. A more recent approach is

the use of virtual prototypes, which promises to allow for early testing at a cost cheaper than

the use of FPGAs. This would be the focus of this thesis and will be discussed more in details

later on in this chapter.

So to recap, all models aim to develop a design that fits the requirements and specifications

as soon as possible while trying to minimize the development cost. Having the right testing

solution for a certain product will increase the testing productivity. If the testing productivity

increased this will lead to better test coverage or shorter software development time, which both

can be translated to saved development costs. That might impact the final product in two major

ways, first is being able to publish the product earlier to the market, in other words, it shortens

the time-to-market (TTM). Second, is with lower development costs for the product there is the

potential to have the product available for customers at a competitive price or increase the profit

margin.

2.2 Current testing methodology

This thesis is building on the current testing approach at Nordic Semiconductor to try and

provide a proof-of-concept for a potentially improved approach with increased testing

productivity. Nordic Semiconductor design its own System-on-Chip (SoC), the Hardware

access layer (HAL) to access it and its software.

6

2.2 Current testing methodology

And this part will present the software testing approach used at Nordic Semiconductor in

their design flow. Their testing methodology consists of two stages, unit tests, and target tests.

2.2.1 Unit tests

Unit tests testing is an early stage of testing, that tests the software logic. It tests that individual

pieces of code software are functioning correctly, separate from other software components.

The unit tests are run on a machine, with a simple mock hardware file to mimic the existence

of hardware. Mock hardware is a C code that has a dummy definition for some of the functions

called in the tested software. The testing framework of unit tests is illustrated in 2.1. The unit

testing framework consists of three main elements:

1. DUT (device under test) :

Even though it is called the device-under-test it refers to the software to be tested. It

represents the newly developed software that needs to be tested before further

development. The DUT is being tested by checking the correctness of its functions’

implementations. Its access to correct peripherals’ registers in the correct order is also

being covered in unit testing.

2. Mock hardware:

This is a simplified virtual platform usually a single C file. it is a functional model to

perform simple tests written in C. Each test has its own mock hardware to cover the

function calls needed by each test.

3. Test control:

It is a C file contains the definition of multiple tests that will be performed on a piece of

the software. It initializes both mock hardware and the software. It returns the results of

all tests indicating which tests have passed and which has not. It uses a unit test testing

framework for C to define the tests and run them. The test control will return the results

of the tests if they pass or fail.

7

Chapter 2. Theory

Figure 2.1: Unit testing

2.2.2 Target tests

This is a later stage of testing, which tests the communication between different peripherals

and different parts of the system. It uses development boards to flash and run the tests. The

test setup consists of two boards, one is loaded with the compiled software to be tested and the

other contains the tester software as shown in figure 2.2. Both boards communicate via radio

channel if the test requires. The test control block for figure 2.2 represents a machine, where

both boards are connected to a machine during the testing. The machine runs the tests which

include flashing both boards with tests code and logging the test steps and results.

8

2.3 Virtual Prototyping, SystemC and TLM

Figure 2.2: Target test

2.3 Virtual Prototyping, SystemC and TLM

This section will discuss the approach and the literature behind the methodology that will be

used in this thesis. The topics that will be presented are wide and has extensive material

describing all different aspects of them, but here we will introduce them and focus on the

components and parts which are relevant to this work.

2.3.1 Virtual prototyping

In a general definition virtual prototype is an executable software that models a hardware

system that runs on a host computer. A virtual prototype is binary compatible, meaning it can

run unmodified binary images of entire software stacks. It abstracts away levels of hardware

details essential to hardware developer but not relevant to a software developer, where it can be

used similar to development boards by a software developer to load, execute and debug.

This abstraction allows the virtual prototype to run the simulation at higher performance

compared to other hardware-oriented emulation. Virtual prototypes can be modeled to

simulate part of the software stack, and continuously extend the virtual prototype along with

9

Chapter 2. Theory

software development.

It shows that virtual prototyping allows software development to start earlier concurrently with

hardware. Software/Hardware integration becomes easier using a virtual prototype instead of

using FPGAs or development boards from a software developer perspective. The ultimate goal

from the previously mentioned features that virtual prototypes provided is to reduce

development time and effort, and subsequently, it could lower the development cost[4].

2.3.2 Transaction level modeling (TLM) methodology

Transaction level modeling (TLM) is a transaction-based modeling approach founded on

high-level programming languages such as SystemC. It highlights the concept of separating

communication from computation within a system. It is also used as a set of standards like

TLM2.0, which ensures interoperability between different TLM compliant models. TLM

compliant models referrers to the models that use the abstraction provided by TLM approach.

In TLM approach, the components of a system are modeled as modules, with concurrent

processes to represent their behavior and functionalities. The modules exchange

communication through interfaces, where processes can access these interfaces through

module sockets. The communication exchanged is in the form of transactions, which is passed

through channels. Channels are used by TLM to encapsulate communication protocol by

implementing interfaces within channels. [3].

Various communication protocols can be defined on top of the core TLM interface layer. These

protocols rely fully on the core TLM interface to transfer a transaction between two different

points (modules) in a system.

The transfers of TLM are refined by these protocols in terms of transaction payload and

blocking/non-blocking transfer[5]. The following Figure 2.3 shows how payload objects

transferred as a transaction through the sockets of the modules from initiator socket to target

socket. It also shows a typical TLM communication setup which consists of:

• An initiator component: it is a module that initiates (constructs and send) new

transactions.

10

2.3 Virtual Prototyping, SystemC and TLM

• A target component: it is the target module of transactions that acts as the endpoint of the

transaction. It is responsible for executing requests from the initiator and send responses.

• An interconnect component: It forwards and routes transaction objects between initiator

and target.

References to the object are passed along the forward path from the initiator socket to the target

socket, and the responses are passed through return path form target sockets to initiator sockets.

Figure 2.3: Model setup to communicate using TLM transaction

TLM models have different coding styles depending on the timing-to-data dependency that

they must obey:

• Loosely-timed models:

These models have a loose dependency between timing and data. They can provide timing

information and the requested data at the point when a transaction is being initiated.

These models prioritize the speed of the simulation, and so they are particularly useful for

doing software development on a Virtual Platform. The processes in this style of TLM

can run ahead of simulation time (temporal decoupling). Transactions completes in one

blocking function call.

• Approximately-timed models:

These models have a much stronger dependency between timing and data. They are

not able to provide timing information and/or the requested data when a transaction is

11

Chapter 2. Theory

being initiated. they are forced to trigger multiple context switches in the simulation,

resulting in performance penalties. It is sufficient for architectural hardware design space

exploration, since it introduced more details than the previous style.

Processes run in locksetp with simulation time and cannot run ahead of it, unlike the

previous style. Transactions in this style have usually four timing points and non-blocking

behaviour.

The TLM coding style that will be used is loosely-timed since the focus is to enhance

software testing. And therefore the transactions will all be blocking transactions.

2.3.3 SystemC

There are different virtual prototyping languages, and here the focus is on SystemC. SystemC

addresses the modeling of both hardware and software using C++ as it is not a separate

language, but rather a set of classes and macros in a C++ library that supports hardware

modeling. SystemC provides several hardware-oriented constructs that are not normally

available in a software language like modeling concurrency, synchronization, inter-process

communication and simulation kernel (scheduler) and figure 2.4 shows some of the elements

used to do so. These constructs are essential for simulating hardware behaviour[2].

And here we will discuss the some of SystemC components from figure 2.4, and provide an

overview of them.

Modules and Hierarchy

Large designs are mostly broken down hierarchically to manage the design complexity and

ease the understanding of the design. SystemC provide constructs to implement hardware

hierarchy. Some of these constructs is module entity. Modules are classes that inherit from the

sc_module base class. They encapsulate design component and they may contains other

modules, processes and channels and ports for connectivity. Instantiating these module classes

in other modules creates the system hierarchy.

SystemC simulation kernel

SystemC simulation kernel consists of 6 phases, that govern the behaviour of the models and

12

2.3 Virtual Prototyping, SystemC and TLM

Figure 2.4: SystemC language architecture

simulate their execution concurrency. Figure 2.5 shows the phases of systemC simulation

kernel.

1. Elaboration phase:

This phase referrers to the execution of all states prior to the sc_start() call. All

SC_MODULES are called during this phase and the connection between modules is

checked, and if there a port which is not bound the simulation will complain about it at

the beginning.

2. Initialization phase:

During this phase, all processes are invoked in unspecific deterministic. Methods are

executed once while threads will be executed if its synchronization point is reached(i.e.

wait()).

3. Evaluation phase:

SystemC simulator implements a cooperative multitasking environment where processes

keep executing until they yield control At this phase, all processes marked as executable

are executed successively an in undefined order, and their marking is removed. Methods

are executed until they return, while threads get suspended by wait(). During their

execution processes cannot be interrupted. Some of the processes might generate

13

Chapter 2. Theory

Figure 2.5: SystemC simulation kernel

"update request" by writing to sc_signal or sc_fifio etc. These requests are created for

assignments to be made in the update phase. Furthermore, the execution of a wait() may

result in a "timeout". This means that this process should be continued at a later time and

they are stored in the event queue.

4. Update phase:

In this phase the previously requested updates are performed. And the simulator estimates

if any of the process are sensitive to the updates of these signals and if so marks them as

executable. The scheduler goes back to evaluation phase to execute the processes marked

as executable which might generate new update requests. The loop between the evaluation

and the update phases is called delta cycle. This loop keeps going until there are no update

requests left and no processes to execute.

5. Advance time phase:

In this stage the simulation time is advanced to to time of events in the event queue with

the smallest time. The processes sensitive to these events are marked as executable and

the scheduler proceeds to the evaluation phase.

6. cleanup phase:

If there are no events left in the event queue or if sc_stop() is called, the scheduler

14

2.3 Virtual Prototyping, SystemC and TLM

proceeds to the cleanup phase. In the cleanup phase all destructors are called and the

simulation is over.

SystemC Threads and Methods

The systemC simulation kernel schedules the executions of all simulation processes.

Simulation processes are member functions of sc_module class that is registered with the

simulation kernel during the elaboration phase. There are two ways of representing processes

in systemC modules, Methods, and Threads. They register with the simulation kernel using

SC_METHOD or SC_THREAD SystemC macro. Methods are similar to VHDL’s process, and

they can be invoked as often as needed. Methods are being executed atomically with no

preemption, therefore, infinite loops must be avoided. Methods are usually sensitive to signals

and events in the sensitivity list, and they do not take arguments and return no value.

While threads are started once at begin of the simulation and die when the end of its scope

is reached, and for that, they can be suspended using wait() statements to wait for an event to

be notified. Threads are recommended to have infinite loops to prevent the thread from

reaching the end of its scope.

Both methods and threads are the basic blocks to simulate concurrency of execution. They are

invoked by the simulation kernel, where the user has indirect control over which and when a

process is invoked through events, notifications, and sensitivity.

Events, Sensitivity, and Notification

Events, sensitivity, and notification are essential for the simulation of concurrency in SystemC

models. Events are implemented with the SystemC sc_event and sc_event_queue like shown.

1 //creating event that can be notified once during evaluation phase.

2 sc_event myEvent ;

3 // create an event that could be notified multiple times during the

evaluation phase.

4 sc_event_queue myEvent_queue;

Events are caused or notified through the event member function notify. The notification can

occur within a simulation process or as a result of activity in a channel. Events are notified

during evaluation phase of SystemC kernel but the effect of the notification could occur at the

immediately at the current evaluation phase or it could be time stamped to be notified at a point

15

Chapter 2. Theory

in the future as shown below.

1 void triggerProcess(){

2 //notify the event at next update phase

3 myEvent.notify();

4 //notify the event after 10 ns from current time

5 myEvent.notify(10,SC_NS);

6 }

The difference between sc_event and sc_event_queue rises when the same event is notified

multiple times at evaluation phase. In the case of sc_event only the first notification will be

registered and all the following ones will be ignored, so in the example shown before the

second notification will not be executed. While for sc_event_queue all the notifications will be

stored and executed at their perspective times. There are two types of sensitivities, static and

dynamic. Static sensitivities are specified in the constructor of the model at the elaboration

phase for both methods and threads, and cannot be changed. While dynamic sensitivities allow

the simulation process to change their sensitivity by calling different functions with the

process. function wait(myEvent) is used for threads’ dynamic sensitivity, and

next_triger(myEvent) for methods’ dynamic sensitivity.

SystemC Data Types

Digital hardware requires data types which are not provided inside the natural boundaries of

C++ native data types. SystemC provides hardware-compatible data types that support explicit

bit width for both integral and fixed-point. Non-binary hardware types are supported with

four-state logic (0,1,X(unknown),Z(high impedance)) data types (e.g., sc_logic). Familiar data

types like sc_logic and sc_lv<T> are provided for RTL hardware designers who need a data

type to represent basic logic values or vectors of logic values. SystemC also allows the user to

define new hardware types for new hardware technology.

Ports, Interfaces, and Channels

processes need to communicate with other processes both locally and in other modules.

Processes communicate locally using events or channels. processes can also communicate

across the boundaries of modules which may interconnect with other modules using channels.

16

2.4 Multiprotocol Service Layer (MPSL)

Channels are used to separate communication from functionality and they act as a container of

communication protocols and synchronization events. SystemC provides several built-in

channels common to hardware and software design. They include locking mechanisms and

hardware concepts like FIFOs, signals, and others. The ability to have interchangeable

channels is implemented through a component called interface. An interface is defined as a set

of pure virtual functions which is used as a base class. While channels provide the

implementation of one or more interface(s).

2.4 Multiprotocol Service Layer (MPSL)

As this work is trying to improve the testing methodology used at Nordic Semiconductor, it uses

Multiprotocol Service Layer (MPSL). It is a library that provides access to the peripherals of

Real-time counter (RTC)0, TIMER0, CLOCK, and Temperature sensor. It allows higher-level

software to communicate with the peripherals using MPSL functions.

The target tests of the MPSL runs test for different peripherals and different functionalities of the

library. All different target tests have a similar structure. Each test calls the initialization routine

mpsl_init and the beginning of the test. And an un-initialization mpsl_uninit routine is called

when hardware accesses for the test are done. The function mpsl_init initializes the peripherals,

configures some of their registers, and resets the interrupt lines (clear pending requests and

disable them). While the function mpsl_uninit would stop some of the peripherals like CLOCK

and resets others like the temperature sensor and the radio.

The following shows how MPSL tests are structured.

1 void mpsl_test(void){ //The test main function

2

3 //initializing the mpsl library

4 mpsl_init(&mpsl_clock_config,MPSL_TEST_IRQn, mpsl_assert_handler);

5

6 /*

7 *The body of the test

8 *all the function calls to mpsl library function happen here

9 */

10

11 //uninitializing the mpsl library

17

Chapter 2. Theory

12 mpsl_uninit();

13

14 /*

15 *you can assert some values here,

16 *but not use any of the mpsl library functions

17 */

18 }

2.5 System components and peripherals

This section is discussing and explaining the behavior and functionalities of the components

that we will base the models on. It includes the peripherals used by the tests and some CPU

components. We will discuss the peripherals and components within the scope of this thesis

since their description can get a bit complex and lengthy. So not all registers or functionalities

of each peripheral will be explained, it will be limited to the functionalities and registers used

by the selected tests.

2.5.1 Nested Vector Interrupt Controller (NVIC)

It is part of the CPU, and it controls the incoming interrupt requests from peripherals to the

CPU. Interrupts are used as a way to divert the CPU from its current task to another task with a

higher priority. The CPU can be triggered internally from the processor and it is called

exceptions, or externally by external peripherals, and it is called interrupts. NVIC uses

interrupt vectors to determine which service routine should be executed for a specific interrupt

request. Each vector holds the address of interrupt handler function to a specific interrupt

request. Interrupt vectors are arranged in interrupt vector tables. Interrupts have different

priorities, which decide which interrupt service routine should be performed in case of

multiple interrupt requests at the same time.

In ARM Cortex-M CPUs which are used in Nordic Semiconductor’s System-on-Chip (SoC),

the CPU receive the interrupt requests via Nested Vector Interrupt Controller (NVIC) as shown

in figure 2.6 . The Nested Vector Interrupt Controller (NVIC) manages and prioritizes the

external interrupts, where it can be used to enable or disable interrupt request lines. Some

interrupt lines cannot be masked out(disable), they are referred to as Non-maskable interrupts

18

2.5 System components and peripherals

(NMI). NVIC interrupts the CPU with the highest priority interrupt request and the CPU stops

the currently executing process and uses the interrupt request number to access the vector table

and get the interrupt handler to start address for this specific request, which the CPU starts

executing.

Figure 2.6: Nested Vector Interrupt Controller (NVIC) Block diagram

The Nested Vector Interrupt Controller (NVIC) consists of the multiple registers, but for

the scope of the thesis we will limit the discussion to the ones used for the modeling, which are

the following registers:

• Interrupt Set Enable Register (ISER):

The bits in ISER correspond to different Interrupt request line (IRQ). The value of each

bit decides if the corresponding IRQ is enabled or not in the NVIC. Setting any of the bits

in ISER enables the interrupt of the corresponding IRQ, while clearing it does not affect

the status of IRQ.

• Interrupt Clear Enable Register (ICER):

ICER is similar to ISER that each bit corresponds to an IRQ. However, it differ in the

functionality, where setting a bit in ICER would disable the corresponding IRQ, and its

interrupt requests will not interrupt the execution of the CPU. Clearing bits in ICER has

no effect of the IRQ.

19

Chapter 2. Theory

Function Description
NVIC_DisableIRQ Enable interrupts
NVIC_EnableIRQ Disable interrupts
NVIC_ClearPendingIRQ Clears the status of IRQ pending
NVIC_GetEnableIRQ Returns if IRQ is enabele or not
NVIC_GetPendingIRQ Returns the status of IRQ pending
NVIC_SetPriority Sets the priority of IRQ

Table 2.1: List of used Nested Vector Interrupt Controller (NVIC) registers

• Interrupt Set Pending Register (ISPR):

ISPR is modified by the NVIC, where the the NVIC would set a bit if its corresponding

IRQ has a pending interrupt request waiting for a process with higher priority to be over.

• Interrupt Clear Pending Register (ICPR):

This register is a complement to ISPR, where ICPR is used to flag the IRQs which its

pending requests have been cleared. If a bit is set, it means that its corresponding IRQ is

no longer pending an interrupt request.

• Interrupt Priority Register (IPR):

This register used to configure the priority of different IRQs. This register, unlike the

ones before, takes an integer value to represent the priority of interrupt requests. The IRQ

with lower integer value is the one with the highest priority and vice versa.

The table 3.3 lists the NVIC functions that are needed by the tested software. These

functions operate on the NVIC registers mentioned earlier. All functions take IRQ as a sole

argument expect NVIC_SetPriority which takes additionally the priority value of associated

IRQ.

2.5.2 System Control Block (SCB)

SCB is also another component of the CPU similar to NVIC. It provides system

implementation information and system control. This includes configuration, control, and

reporting of the system exceptions. And it has different registers to store this information or to

be configured, but here we will limit the discussion to the ones which are used by the tests. For

the tests that we ran, there is a need for two register from System Control Block’s registers,

System Control Register (SCR) and System Handler Priprity Register (SHP) as shown in table

20

2.5 System components and peripherals

Register Function
SCR System Control Register
SHP System Handler Priprity Register

Table 2.2: List of used System Control Block (SCB) registers

2.2. SCR controls features of entry and exit from low power state. While SHP is used to

configure the priority of system interrupts (exceptions).

2.5.3 CLOCK

The clock control system can provide the system clocks from a range of high and low

frequencies from internal or external oscillators. It also distributes different clocks to different

modules based on the individual module’s needs. Clock distribution is automated and grouped

independently by modules to limit current consumption in unused branches of the clock tree

[9].

Figure 2.7 shows the internal and external oscillators of the clock control of both High

Frequency Clock (HFCLK) and Low Frequency Clock (LFCLK) controllers. The blue marked

blocks are the sources of HFCLK. while the orange ones for the LFCLK.

Figure 2.7: clock control block diagram, c©Nordic Semiconductors

21

Chapter 2. Theory

The High Frequency Clock (HFCLK) controller provides the high-frequency clocks when

requested otherwise it enters power-saving mode. It can provide the following frequencies:

• 64 MHz CPU clock.

• 1 MHz peripheral clock.

• 16 MHz peripheral clock.

• 32 MHz peripheral clock.

On the other hand, Low Frequency Clock (LFCLK) controller can provide only a CLOCK of

32.768 KHz. It can generate this frequency from the supported following sources(marked in

orange in figure 2.7):

• 32.768 KHz RC oscillator .

• 32.768 kHz crystal oscillator.

• 32.768 kHz synthesized from High Frequency Clock (HFCLK).

The RC oscillator is the default source of LFCLK. The RC oscillator can be calibrated since its

frequency will be affected by variation in temperature. The High Frequency Clock (HFCLK)

oscillator is used as a reference to calibrate the RC oscillator. A calibration timer is used to time

the calibration interval of the 32.768 kHz RC oscillator, where the block CAL in figure 2.7 is

responsible for the calibration process of the RC oscillator.

2.5.4 RADIO

The RADIO contains a 2.4 GHz radio receiver and a 2.4 GHz radio transmitter that is compatible

with Nordic’s proprietary 1 Mbps and 2 Mbps radio modes in addition to 1 Mbps and 2 Mbps

Bluetooth R© low energy mode. For the tests we are planning to run, they will not use the

RADIO peripheral, but it is still part of the initialization routine. The register that is used from

the CLOCK peripheral in the initialization routine is the power register to power up and shut

off the peripheral.

22

2.5 System components and peripherals

Register Function
NRF_RADIO->POWER Peripheral power control

Table 2.3: List of used registers in RADIO peripheral

2.5.5 Real-time counter (RTC)

The RTC peripheral features a 24-bit COUNTER, a 12-bit (1/X) Prescaler, capture/compare

registers, and a tick event generator for low power, tickless RTOS implementation. the RTC

runs off 32.768 kHz of Low Frequency Clock (LFCLK) [10]. The value of the counter’s

PRESCALER register decides the overflow time value and the counter frequency (resolution)

based on the following equation:

fRTC [KHz] =
32.768

(PRESCALER + 1)

For example, if the desired frequency is 100Hz (100ms counter period) then the PRESCALER

register value will be as follow:

PRESCALER = (
32.768kHz

100Hz
)− 1 = 327

The RTC contains four compare registers CC[0] - CC[3], these registers are configured with

the counter values at which the RTC would trigger match event. When the COUNTER register

value transitions from M-1 to M and one of the compare registers has the value M, an event

for the corresponding compare register will be triggered. When a match event is triggered the

corresponding EVENT_COMPARE[i] register value will be set to 1.

The figure 2.8 shows the block diagram of Real-time counter (RTC). And table 2.4 lists names

and descriptions of the registers used by selected tests.

2.5.6 TIMER

The TIMER runs on the High Frequency Clock and it contains a four-bit (1/2X) Prescaler to

divide the timer input clock from the HFCLK controller.

It operates in two modes Timer mode and Counter mode as shown in figure 2.9. In both

modes, the timer starts by triggering the START task and stops by triggering the STOP task.

Counting/timing can be resumed if it has been stopped by triggering START task again, and it

23

Chapter 2. Theory

Figure 2.8: Real-time counter (RTC) block diagram, c©Nordic Semiconductors

Register Function
NRF_RTC0->TASKS_START Start RTC COUNTER
NRF_RTC0->TASKS_STOP Stop RTC COUNTER
NRF_RTC0->TASKS_CLEAR Clear RTC COUNTER
NRF_RTC0->CC[i] Capture/Compare register i
NRF_RTC0->EVENTS_COMPARE[i] Compare event on CC[i] match
NRF_RTC0->INTENCLR Disable interrupt
NRF_RTC0->EVENTCLR Disable event routing
NRF_RTC0->EVENTSET Enable event routing
NRF_RTC0->COUNTER Current COUNTER value

Table 2.4: List of used registers in RTC peripheral

continues from the prior value it had before stopping.

During timer’s mode, the TIMER internal register is incremented by 1 for each tick of the

timer frequency. The timer frequency is derived from 16 MHz peripheral clock (PCLK16M)

using the value specified in PRESCALER register according to the following equation:

fTIMER =
16MHz

(2PRESCALER)

. If fTIMER is less than 1 MHz the timer will use 1 MHz peripheral clock (PCLK1M) instead of

16 MHz peripheral clock (PCLK16M). During the timer’s mode, the COUNTER register is not

used. On the other hand, in counter mode, the TIMER’s internal register increments its value

each time the COUNTER task is triggered. The timer’s frequency and the timer prescaler are

24

2.5 System components and peripherals

not used in counter mode.

The timer can generate COMPARE events. One COMPARE event is generated for each

capture/compare register. The COMPARE event is triggered when the COUNTER register’s

value reaches a value similar to one of the capture/compare (CC[i]) registers.

Figure 2.9: The timer block diagram, c©Nordic Semiconductors

Register Function
NRF_TIMER0->TASKS_START Start Timer
NRF_TIMER0->TASKS_STOP Stop Timer
NRF_TIMER0->TASKS_SHUTDOWN Shut down timer
NRF_TIMER0->INTENSET Enable interrupt
NRF_TIMER0->INTENCLR Disable interrupt
NRF_TIMER0->CC[i] Capture/Compare register i
NRF_TIMER0->EVENTS_COMPARE[i] Compare event on CC[i] match

Table 2.5: List of used registers in timer peripheral

25

Chapter 2. Theory

2.5.7 Temperature sensor

The temperature sensor measures the die temperature over the temperature range of the device.

It has a resolution of 0.25 degrees. The temperature measurements triggered by the START

task, and a DATARDY event is generated when the measurement is done and the result can be

read from TEMP register. Temperature measurement supports the only one-shot operation and

it powers down after measurement is completed to save power.

The temperature measurement does not start automatically and has to be explicitly started using

START task. The table 2.6 lists the registers of temperature sensor which are used by selected

tests.

Register Function
NRF_TEMP->TASKS_START Start temperature measurement
NRF_TEMP->TASKS_STOP Stop temperature measurement
NRF_TEMP->EVENTS_DATARDY Temperature measurement complete, data ready
NRF_TEMP->INTENSET Enable interrupt
NRF_TEMP->INTENCLR Disable interrupt
NRF_TEMP->TEMP Temperature in oC (0.25o steps)

Table 2.6: List of used registers in temperature sensor peripheral

2.5.8 General purpose input/output (GPIO)

The General purpose input/output has multiple ports with each port having 32 pins. The use of

this module in our test is very limited. It is mainly used to set or clear some of the GPIO pins.

The functionalities of the GPIO can be performed at a bit level, setting and clearing individual

bits, where each bit in the GPIO registers corresponds to a pin of the port. Table ?? lists the

registers used by the selected tests.

The register OUTSET of the GPIO sets the values of the pins based on their corresponding bits,

if the bit is set then its corresponding bit in register OUT is also set. While if the bits are set in

register OUTCLR then the corresponding bit in register OUT is cleared.

And the values of OUT register corresponds to the output of the port’s pins, where the pin’s

value is HIGH if its corresponding pin in OUT register is set and it is LOW if it is cleared.

26

2.6 System core Bauhaus

2.6 System core Bauhaus

The work of this thesis will focus mainly on modeling the peripherals for the system. Our

system will be built on existing models at Nordic Semiconductor called Bauhaus. Bauhaus is a

proof-of-concept and experimentation testbench for virtual modeling with SystemC used by

Nordic Semiconductor [8].

It provides a simple CPU that initiate blocking read and write transactions to system

components. It also provides system builder functionality to easily add new modules to the

system with their base addresses. The top-level of Bauhaus institute the system CPU and allow

developers to add their modules to the system. The binding of modules ports and signals is

done at the top level as well.

When Bauhaus simulation start it starts be executing the CPU initialization thread. The CPU

initialization thread calls the software routine after running initialization checks. The software

routine is a member function of one of the CPU elements. The software routine’s

implementation contains the user-defined software or in our case the tests that we want to run

on Bauhaus. The software routine uses a pointer to the CPU object to initiate read and write

transactions to different modules of the system. Once the function is executed the CPU stops

and the simulation is over.

Bauhaus generates log files of the simulation which capture all the transaction that have been

carried out by the simulation with their time stamps. So as a user of Bauhaus you would have

to take care of correctly binding the ports of your modules to the system. and write the read or

write transaction that you want the system to simulate in the software routine using a pointer to

a CPU object.

27

Chapter 2. Theory

28

Chapter 3
Methodology

Figure 3.1 illustrates the proposed steps to carry out throughout this work. Steps have been

explained in more detail in separate sections of this chapter. Methodology steps start with

understanding and getting familiar with Nordic Semiconductor’s technology and testing

process. The work moved from simple to more complex tests to have an easier and less

complicated debugging process.

Figure 3.1: Proposed steps of methodology

29

Chapter 3. Methodology

3.1 The initial subset of tests

The first task of the thesis was to define an initial test to focus on, from the different tests

performed by the software team at Nordic Semiconductors. Any chosen test to run on our

virtual platform will affect its architecture in the following points:

• Modeled hardware

Each test is performed to verify specific functionalities of the system carried by one or

more peripherals. And in turn, only some of the peripherals’ models will be needed for

each test. And that will govern which of the system’s peripherals are going to be modeled

in our virtual platform.

• Peripherals’ models’ Details

After deciding which peripherals are needed to be modeled to run a certain test on the

platform, we had to decide how many details are present in the models. The details of

each model include the registers and the different functionalities of each peripheral. The

introduced details to each model should mainly cover the registers and functionalities of

tests to be run.

The previous points show how significant the effect of tests on the complexity of the

platform. That makes selecting the initial test to start model the system based on very critical.

The initial test needs to provide meaningful testing to compare its results and performance

with the development boards later on. It also should use a range of common peripherals that

are reusable by future tests.

As mentioned in section 2.4, running any of Multiprotocol Service Layer (MPSL) tests

follows a standard structure. All of MPSL tests assert the function mpsl_init at the beginning of

the test and call the function mpsl_uninit at the end of the test as shown in script below 1.

1

2 void dummy_test (void)

3 {

4 ASSERT_EQ(mpsl_init(arguments),0);

5 /*

6 *

30

3.2 Identifying hardware accesses

7 *The rest of the test body

8 *

9 */

10 mpsl_uninit();

11 }

12

Listing 3.1: MPSL test structure

The function mpsl_init initializes the system for other operations. It initializes some

registers’ values, configures the Nested Vector Interrupt Controller, and triggers different

peripherals needed for the system to operate. While the function mpsl_unint performs similar

to mpsl_init except it turns off some of the peripherals as they are not needed anymore.

For the initial test, the initialization test has been selected which we will refer to as the

base test since it fits the criteria of the initial test and will be the base of all further tests to be

implemented. The initialization test uses the functions mpsl_init and mpsl_unint and asserts the

values of Nested Vector Interrupt Controller (NVIC)’s registers. The base test will access the

peripherals implemented in mpsl_init and mpsl_unint. The next section will elaborate on the

peripherals and functionalities that need to be implemented for the base test.

3.2 Identifying hardware accesses

To identify the accessed register for the base test we had to account for the peripherals’ accesses

by NVIC which implemented in the body of the test, and the hardware accesses due to the

functions mpsl_init and mpsl_uninit. And to identify the accessed peripherals from the functions

mpsl_init and mpsl_unint we went over the definition of each of the functions. We also identified

which functionalities of the accessed peripherals are used. The figure 3.2 illustrates the used

functions in mpsl_init which perform accesses to one or more peripherals. For example, in

figure 3.2, the main routine mpsl_init calls for four immediate functions. They are listed with

their accessed peripherals in table 3.1.

And figure 3.3 does the same for the function mpsl_uninit. The blocks with the same color

indicate that the functions are in the same C file.

31

Chapter 3. Methodology

Functions accessed peripheral
m_reset_and_clear_temp() temperature sensor
m_reset_and_clear_radio RADIO
mpsl_clock_init CLOCK
rem_start() TIMER and RTC

Table 3.1: immediate functions after mpsl_init

In both graphs, they software start from calling the main function either mpsl_init or

mpsl_uninit. The arrows represent a function call from the function at the arrow’s base to the

function at its base. Each block has the name of the function and its containing file, with

blocks with the same color existing in the same file. The functions illustrated are only the ones

that perform one peripheral access or more. While other functions that do not access

peripherals are used by the tests, they are not visible in the graph to keep its size from

exploding and for irrelevance to the modeling process.

Figure 3.2: mpsl_init functions that access the peripherals

32

3.3 Extracted peripherals

Figure 3.3: mpsl_uninit functions that access the peripherals

3.3 Extracted peripherals

After going through the peripherals’ accesses needed to perform the base test, we have listed

the peripherals that need to be modeled to be able to run the base test. The list is made by

finding registers accesses performed in by the software and gather the accessed registers of each

peripheral to form to realize how would the peripheral model will consist of. After gathering

registers accesses to different peripherals we got a list of the following peripherals to model:

• CLOCK peripheral

• RADIO peripheral

• Real-time counter (RTC) peripheral

• Temperature sensor peripheral

• TIMER peripheral

• General purpose input/output (GPIO) peripheral

33

Chapter 3. Methodology

Figure 3.4: The virtual prototype structure

Figure 3.4 illustrates the architecture of the virtual platform in the SystemC environment. A

detailed description of each peripheral models is in the next section.

3.4 Modeling of peripherals

We are both working on the same virtual prototype to cover its peripherals with each thesis

developing a different set of peripherals models. To simplify the collaboration between two

theses we have used a peripheral’s model template. It aims to standardize the modeling process

and reduce the complexity of integrating the models together to build the platform.

The template provides a target socket for the models to connect to the interconnect with a

blocking transport implementation to communicate over the interconnect. It also has a generic

base structure to define registers of each peripheral and generic read and write functions to and

from these registers. The interaction (read and write) with a peripheral registers in the template

34

3.4 Modeling of peripherals

NVIC registers
Interrupt Set Enable Register (ISER)
Interrupt Clear Enable Register (ICER)
Interrupt Clear Pending Register (ICPR)
Interrupt Set Pending Register (ISPR)
Interrupt Priority Register (IPR)

Table 3.2: NVIC’s registers

Function Description
NVIC_DisableIRQ Enable interrupts
NVIC_EnableIRQ Disable interrupts
NVIC_ClearPendingIRQ Clears the status of IRQ pending
NVIC_GetEnableIRQ Returns if IRQ is enabele or not
NVIC_GetPendingIRQ Returns the status of IRQ pending
NVIC_SetPriority Sets the priority of IRQ

Table 3.3: List of used Nested Vector Interrupt Controller (NVIC) registers

is implemented using BusRead function and BusWrite functions. These functions allow the

registers of the peripherals’ models to be accessed. Each transaction that occurs to a peripheral

will be either read or write and based on the transaction type the functions BusRead or BusWrite

will be called. Both functions use switch expression based on the register’s address to perform

read, write, and other required changes. The template of the models can be found in appendix

B.1.

3.4.1 Nested Vector Interrupt Controller (NVIC) model

The implementation of NVIC model has been added to the CPU model by defining its registers

and functions as part of the CPU model. Only the registers used by the running tests are

implemented.

The registers in table 3.2 were represented by a struct inside the CPU constructor. The

functionalities of the Nested Vector Interrupt Controller present as CPU methods and table ??

list the NVIC functions that have been implemented.

The interrupt lines are modeled using sc_signal to connecting the interrupt output from the

peripherals models to the CPU model. the interrupt output at the peripherals is of type sc_out

while at CPU is defined of type sc_in. All different interrupt signals are binded in the TOP

model to create the Interrupt request line (IRQ) for different peripherals.

35

Chapter 3. Methodology

We have used std::function type as pointer to interrupt handler routines(interrupt vector).

This type can be considered as a safer version of a function pointer and can reference any

type of callable target. A vector type cb_arg_t was made to store the addresses of all interrupt

vectors. Type cb_arg_t is defined as follows:

1 struct cb_arg_t {

2 //the callback - takes a uint32_t input.

3 std::function<void(void)> cb;

4 //value to return with the callback.

5 uint32_t arg;

6 };

7 std::vector<cb_arg_t> callbacks_;

New interrupt vectors can be added to interrupt vector table bu passing a pointer to the

interrupt handler and an integer representing the IRQ number. The code written to implement

the NVIC can be found in appendix B.2.

For now, the interrupt handlers are predefined as simple print commands. While the current

NVIC model can detect interrupt requests from other peripherals models. It is still can not

execute complex interrupt handlers. This could be further developed but for our test which uses

NVIC to enable or disable some interrupt lines without actually using interrupts to trigger other

actions.

3.4.2 CLOCK peripheral’s model

The CLOCK model has been implemented as a separate peripheral unlike the NVIC which

was part of the CPU. The model follows the peripherals’ template structure where it has the

following registers:

The description of the registers in table 3.4 can be found in section 2.5.3.

When starting the platform, the initialization thread of the CLOCK model runs a wait

command and triggers the internal High Frequency Clock (HFCLK) to simulates the startup

delay in the peripheral til the High Frequency Clock signal is stable and ready to be used by

the system. After the initialization of the CLOCK peripheral, there are three main

functionalities the CLOCK provides:

36

3.4 Modeling of peripherals

CLOCK model registers Description
nrfclockHFCLKSTART Start HFCLK crystal oscillator
nrfclockHFCLKSTOP Stop HFCLK crystal oscillator
nrfclockLFCLKSTART Start LFCLK source
nrfclockLFCLKSTOP Stop LFCLK source
nrfclockCAL Start calibration of LFRC oscillator
nrfclockCTSTART Start calibration timer
nrfclockCTSTOP Stop calibration timer
nrfclockHFCLKSTARTED HFCLK oscillator started
nrfclockLFCLKSTARTED LFCLK oscillator started
nrfclockDONE Calibration of LFCLK RC oscillator complete event
nrfclockCTTO Calibration timer timeout
nrfclockINTENSET Enable interrupt
nrfclockINTENCLR Disable interrupt
nrfclockHFCLKSTAT HFCLK status
nrfclockLFCLKSTAT LFCLK status
nrfclockLFCLKSRC Clock source for the LFCLK
nrfclockHFXODEBOUNCE Sets the debounce time to start the external HFCLK

oscillator
nrfclockCTIV Calibration timer interval

Table 3.4: Registers of the CLOCK model

• High Frequency Clock (HFCLK) control.

• Low Frequency Clock (LFCLK) control.

• Low Frequency Clock (LFCLK) calibration.

High Frequency Clock (HFCLK) control

As mentioned when the CLOCK powers up, it starts with the internal High Frequency Clock

(HFCLK). After that the external High Frequency Clock could be used changing different

sources for the High Frequency Clock can be performed.

The figure 3.5 shows how to start the external high frequency oscillator. It starts by

triggering the TASKS_HFCLKSTART which can be done by writing 1 to register

nrfclockHFCLKSTART. After that, the model checks the status of the High Frequency Clock

(HFCLK) if it is already running, If so, it returns a message reporting that the external

oscillator is already in use. If it is not running, the status register will be updated to change the

state of the external oscillator to "Running" and the source of High Frequency Clock (HFCLK)

to the external oscillator. followed by a simulation of the start-up time needed for the external

oscillator to generate a stable clock. The waiting period depends on the sum of the oscillator

37

Chapter 3. Methodology

Figure 3.5: The steps to start the external high frequency oscillator

startup time (which is 360us) and the debouncing time. The debouncing time is either 256us or

1024us depending on the value of nrfclockHFXODEBOUNCE register. After the waiting

period has passed the model will set the value of nrfclockHFCLKSTARTED and notify the

38

3.4 Modeling of peripherals

interrupt event of starting external High Frequency Clock which could trigger an interrupt of

its conditions are met.

Figure 3.6: Steps to stop the external High frequency oscillator

Alternatively, to stop the external High Frequency Clock (HFCLK) the tasks

TASKS_HFCLKSTOP has to be triggered by writing 1 to register nrfclockHFCLKSTOP. It

model first checks the status of the external oscillator, if it isn’t running, it displays a message

stating that. If the external oscillator is running it will update the status register

nrfclockHFCLKSTAT to indicate changing the state to "Not Running" and the source to

internal RC oscillator. And the figure 3.6 illustrates these steps.

39

Chapter 3. Methodology

Value Source
00 32.768 kHz RC oscillator (LFRC)
01 32.768 kHz crystal oscillator (LFXO)
10 32.768 kHz synthesized from HFCLK

(LFSYNT)

Table 3.5: List of Low Frequency Clock (LFCLK) sources

Low Frequency Clock (LFCLK) control

Unlike the High Frequency Clock (HFCLK) which starts when the CLOCK’s model powers

up, the Low Frequency Clock (LFCLK) needs to be explicitly started regardless of its source.

To use the Low Frequency Clock (LFCLK) the source needs to be decided by writing the source

value into register nrfclockLFCLKSRC like shown in table 3.5. If the source has not been chosen

the default option is 32.768 kHz RC oscillator.

Figure 3.7 shows the steps to start the Low Frequency Clock (LFCLK), it is started when

the task TASKS_LFCLKSTART is triggered by writing 1 to register nrfclockLFCLKSTART.

The model checks the state register of Low Frequency Clock (LFCLK), if it is already running

it prints a message stating that. While if it was not running, it then checks which oscillator is

the source for the Low Frequency Clock, in the case of the external oscillator as the source, the

model will delay the simulation to imitate the start-up time needed by the external oscillator.

Then it updates the state of LFCLK to "Running", generate LFCLKSTARTED event and he

notifying interrupt event for starting starting LFCLK. This event might trigger an interrupt to

the CPU if its conditions are met.

The stopping process of the LFCLK is illustrated in figure 3.8 the task

TASKS_LFCLKSTOP need to be triggered by writing 1 to the register nrfclockLFCLKSTOP.

The model then checks the state of LFCLK, if it is "Not Running" it prints a message

indicating that. While if the state is "Running" the state is changed to "Not Running".

Low Frequency Clock (LFCLK) calibration

As mentioned before the frequency of the RC internal oscillator might be affected by

40

3.4 Modeling of peripherals

Figure 3.7: Steps to start the LFCLK

variation in temperature. And it can be calibrated to compensate for these variations. The

calibration uses the external high-frequency oscillator to calibrate the RC oscillator, so before

performing the calibration the Low Frequency Clock (LFCLK) needs to be running with RC

oscillator as its source as well as the high-frequency oscillator. Before running the calibration

process the calibration timer needs to run first. To run the calibration timer the register CTIV

41

Chapter 3. Methodology

Figure 3.8: Steps to stop the LFCLK

should configure first with the calibration timer interval. The start of the calibration timer is

triggered by writing to the TASKS_CTSTART register.

The calibration timer keeps decrementing the value of CTIV until it reaches zero or until

TASKS_CTSTOP is triggered. When any of the previous occurs the calibration timer stops and

the event EVENTS_CTTO is triggered.

After that the calibration process can be triggered via TASKS_CAL by writing 1 to register

nrfclockCAL. At the end of the calibration, the event EVENTS_DONE is generated indicating

the completion of the calibration process. The points and steps mentioned before are illustrated

in figure 3.9.

Interrupt configuration

42

3.4 Modeling of peripherals

Figure 3.9: Low Frequency Clock (LFCLK) calibration flowchart

The interrupts firing mechanism is modeled by a thread in the model waiting for interrupt

events to be notified. When an interrupt SystemC event is notified the thread check if the

interrupt generated this event is enabled. The Interrupt request lines of a modeled are enabled

by configuring nrfclockINTENSET register. The used code to implement the clock mode can be

found in section B.3

43

Chapter 3. Methodology

GPIO registers Description
nrfgpioOUT GPIO pins value
nrfgpioOUTSET set individual bits in GPIO port
nrfgpioOUTCLR clear individual bits in GPIO port

Table 3.6: List of General purpose input/output registers

3.4.3 General purpose input/output (GPIO) module model

This model follows the template structure. The table 3.6 contains the registers used in GPIO

model, They are explained in section 2.5.8.

The module executes two functions, setting an individual bit of a specific port and clearing

an individual bit of a specific port. To set a bit in the GPIO port, write ’1’ to the corresponding

bit in OUTSET register. Alternatively, to clear a bit in the GPIO port, write ’1’ to the

corresponding bit in OUTCLR register. Writing ’0’ to any of the previous registers will not

affect the GPIO port. The drivers of the pins can be checked by reading OUT register. The

code used to implement the General purpose input/output model can be found in section B.4.

3.5 Models verification

Before moving on to running tests on the virtual platform the models’ behavior needs to be

verified that is as expected. Running a comprehensive verification of the models should reduce

the debugging process later on when running tests on the platform. To verify the system, first,

we have individually verified the models’ behavior before moving on verifying the system

behavior as a whole. In this part only the peripherals modeled by this thesis will be verified

which are General purpose input/output (GPIO), NVIC and CLOCK models.

The verification methodology used in this work is simulation-based verification. There are

some papers which discusses formal verification methodology for SystemC models like [6]

and [12]. But the formal approach will not be used in this work since the used models are not

extremely complex and formal verification of SystemC models is outside the scope of this work.

44

3.5 Models verification

3.5.1 General purpose input/output (GPIO) model behaviour verification

As the main functionality of General purpose input/output model is to set and clear bits of GPIO

ports. Table 3.7 lists the verification conditions and their corresponding tests.

Verification condition Verification test

Correctly set and clear individual bits individual bit set/clear()

Correctly set and clear all bits accumulative set/clear()

Table 3.7: General purpose input/output verification conditions and test

1. Individual bit set/clear

The correct bit in OUT register is being affected by changes in OUTSET or OUTCLR

registers. This is done by setting the each bit in OUTSET individually and read the value

of OUT register. All 32 bits in OUTSET need to set the corresponding bits in OUT

register. The same is done for clear. All 32 bits in OUTCLR need to clear the

corresponding bits in OUT.

2. Accumulative set/clear

Setting a bit in OUTSET or OUTCLR registers will only affect the corresponding bit in

OUT register. While the rest of the bits keep their values. This is done by setting the bits

in OUTSET register one by one and then check the new value of OUT register. The new

change should not affect the previous state of other bits. The same is done for OUTCLR

register. Setting the bits in it one by one and check the value of OUT register. Where the

previous state of other bits should not change.

The code of the verification can be found in appendix B.5.2.

3.5.2 CLOCK model behaviour verification

The CLOCK model has three main behaviours that has been verified.

• High Frequency Clock (HFCLK) operation:

It would verify the correctness of High Frequency Clock (HFCLK) controller behavior.

It includes initialization and shutting down sequence illustrated in figures 3.5 and 3.6.

45

Chapter 3. Methodology

• Low Frequency Clock (LFCLK) operation:

It would also verify the correctness of the Low Frequency Clock (LFCLK) controller. It

covers the sequence illustrated in figures 3.7 and 3.8.

• Low Frequency Clock (LFCLK) calibration:

It verifies the correctness of the LFCLK calibration process. The verification plan runs

the sequence illustrated in figure 3.9.

The following table illustrates the verification conditions covered by each verification test.

Verification condition Verification test
Correctly start HFCLK

HFCLK_verification()
Correctly update HFCLK status
Correctly generate HFCLKSTARTED event
Correctly stop HFCLK
Correctly start LFCLK

LFCLK_verification()
Correctly update LFCLK source
Correctly generate LFCLKSTARTED event
Correctly stop LFCLK
Correctly start calibration timer

LFCLK_calibration_verification()
Correctly decrements calibration timer interval
Correctly generate DONE event
Correctly stop calibration timer

Table 3.8: CLOCK verification conditions and test

The verification of the previously mentioned behaviors is done by running the software

sequence for each one of these functionalities and compare the results of the affected registers

with the expected value. The code for these verification plans for different functionalities can

be found in appendix B.5.3.

3.5.3 NVIC Verification

The Nested Vector Interrupt Controller is implemented as part of the CPU. It has five functions

that had been verified.

These functions are:

• NVIC_EnableIRQ:

This function takes the Interrupt request line number and set the corresponding bit in

Interrupt Set Enable Register (ISER). It has been verified by setting all 30 available IRQ

46

3.5 Models verification

of register ISER. Then compare the value of NVIC interrupt enable register (ISER) with

the expected value.

• NVIC_DisableIRQ:

This function takes the Interrupt request line number and sets the corresponding bit in

Interrupt Clear Enable Register (ICER). It has been verified by setting all 30 available

IRQ of ICER register . Then compare the value of NVIC Interrupt Clear Enable Register

(ICER) with the expected value.

• NVIC_ClearPendingIRQ:

This function takes the Interrupt request line number and sets the corresponding bit in

Interrupt Clear Pending Register. It has been verified by setting all 30 available IRQ of

ICPR register. Then compare the value of NVIC interrupt disable register (ICPR) with

the expected value.

• NVIC_GetEnableIRQ:

This method returns the bit value to the corresponding IRQ in ISER register It has been

verified by setting all 30 available IRQ of ISER register one by one. Then compare the

returned value from NVIC_GetEnableIRQ method.

• NVIC_GetPendingIRQ:

This method returns the bit value to the corresponding IRQ in Interrupt Set Pending

Registerregister It has been verified by setting all 30 available IRQ of ISPR register one

by one. Then compare the returned value from NVIC_GetPendingIRQ method.

The following table illustrates the verification conditions covered by each verification test.

Verification condition Verification test
Correctly use NVIC_EnableIRQ method NVIC_Verification_EnableIRQ()
Correctly use NVIC_DisableleIRQ method NVIC_Verification_DisableIRQ()
Correctly use NVIC_ClearPendingIRQ method NVIC_Verification_ClearPendingIRQ()
Correctly use NVIC_GetEnable method NVIC_Verification_GetEnable()
Correctly use NVIC_GetPending method NVIC_Verification_GetPending()

Table 3.9: NVIC verification conditions and test

The code used for the verification can be found in section B.5.1.

47

Chapter 3. Methodology

3.5.4 System Verification

After verifying the correctness of the models’ behaviors separately we need to verify their

operation together. Ensuring that the system components will not unexpectedly affect each

other.

The test that has been implemented included the use of CLOCK, GPIO, and NVIC models and

figure 3.10 shows the steps of the verification plan. The system would be verified by starting

the Low Frequency Clock in the CLOCK model and enable its interrupt. This will fire an

interrupt signal that would be detected by the NVIC. The NVIC will in turn execute an

interrupt routine that would set some bits in the GPIO model and then compare the contents of

GPIO OUT register with the expected results. The code used to verify the system is in

appendix B.5.4.

Figure 3.10: system verification plan

48

3.6 Running tests on the virtual platform

3.6 Running tests on the virtual platform

After developing the peripherals models and verifying them, the next step is testing the platform

by running the software tests. We started by running the base test discussed earlier (section

3.2). To run the tests on the virtual platform we have modified the tests to be compatible with

SystemC models. The test consist mainly of two functions, initialization function mpsl_init

and un-initialization function mpsl_uninit and this thesis worked on modifying and running the

function mpsl_init. Below are some of the modifications that we have performed on the test

files to make them compatible with the platform:

• Use some of the test files unchanged:

Some of the files which define variables used by test functions or declaration/implement

functions that do not perform hardware accesses. These files kept unchanged and used by

the virtual platform.

• Merging the functions:

We have gathered all functions definitions needed by mpsl_init in a single C++ file. These

are the functions the perform hardware accesses.

• Passing CPU pointer:

A pointer to a CPU object is passed to all functions that perform hardware accesses. The

CPU pointer allows the function to send transactions to different models in the platform.

The wall-time of the software execution is being measured during the test runs. It starts

recording the time when the top module of the virtual prototype is constructed, while the timer

stopping point is when the simulation is over. This time, the difference between the start and

endpoints, is used in the performance comparison later on.

3.6.1 Running the base test

After successfully running the initialization and un-initialization functions mpsl_init and

mpsl_uninut. We moved on to the base test which checks the correctness of the initialization

and un-initialization process. It calls mpsl_init function and asserts its return value is the same

as expected. Then it checks the values of the different register of NVIC by asserting their

49

Chapter 3. Methodology

values of different IRQ to the expected values. It calls mpsl_uninit function and checks the

values of the NVIC registers similarly to before. The test code can be found in appendix B.6.

3.6.2 CLOCK peripheral tests

After running the base test on the platform, the next step was to run more tests that provide

more data to compare and more test coverage. We have run three tests that test different

scenarios of CLOCK callback. The function mpsl_clock_hfclk_request() grants access to

HFCLK by the tests, where only one device at a time can access the HFCLK. While the

function mpsl_clock_hfclk_release() release the HFCLK making it available for other

processes to access it. Both functions provide synchronization mechanism to control the

software access to the HFCLK These tests are the following:

1. One-shot CLOCK callback:

Tests that callback given to mpsl_clock_hfclk_request() is executed when HFCLK is

enabled.

Test procedure:

• Check that POWER_CLOCK IRQ is not pending

• Check that HFCLK is not running

• Call mpsl_clock_hfclk_request()

• Wait till HFCLK is running

• Check that callback given to mpsl_clock_hfclk_request() was executed once.

2. No CLOCK callback is called when HFCLK started by protocol:

Tests that clock is started when mpsl_clock_hfclk_protocol_request() is called, and that

the user supplied callback is not called. Test procedure:

• Start clock using mpsl_clock_hfclk_request(), wait unti it is running and check that

the callback is called once.

• Stop the clock using mpsl_clock_hfclk_release(), wait until it is stopped

• Call mpsl_clock_hfclk_protocol_request()

• Wait until clock is running

50

3.6 Running tests on the virtual platform

• Call mpsl_clock_hfclk_protocol_release()

• Check that call count for the user supplied callback is still 1

3. CLOCK callback is called when HFCLK is already triggered:

Tests that callback given to mpsl_clock_hfclk_request() is executed when HFCLK is

enabled if HFCLK clock start is triggered before the call. Test procedure:

• Check that HFCLK is not running

• Trigger HFCLK using hal_clock_hfclk_start()

• Call mpsl_clock_hfclk_request()

• Wait untill HFCLK is running

• Check that callback given to mpsl_clock_hfclk_request() was executed once

51

Chapter 3. Methodology

52

Chapter 4
Results

4.1 Results of Models verification

As the verification plans of each model have been presented in the previous chapter, here we

would show their outcomes for the different models. The simulation log files are presented as

the results of verification plans. The logs capture and display all the transactions carried out by

the simulation.

4.1.1 CLOCK model verification

The verification plans of the CLOCK peripheral verified the operation of its three main

functionalities:

• High Frequency Clock controller verification plan:

The figure 4.1 shows the results of verification of HFCLK start when triggering

TASKS_HFCLKSTART. The figure displays information messages describing each

transaction and its implications on the system behavior. While figure 4.2 shows the

results of the verification when TASKS_HFCLKSTOP is triggered.

Table 4.1 shows the passing verification conditions covered by HFCLK controller

verification test.

53

Chapter 4. Results

Figure 4.1: HFCLK controller start Verification

Figure 4.2: HFCLK controller stop Verification

verification test verification condition Pass/Fail
Correctly start HFCLK Pass
Correctly update HFCLK status Pass
Correctly generate HFCLKSTARTED event Pass

HFCLK_verification

Corrctly stop HFCLK Pass

Table 4.1: Verification results HFCLK controller

• Low Frequency Clock controller verification:

Figure 4.3 highlights the behaviour of the peripheral when TASKS_LFCLKSTART is

triggered. While the figure 4.4 highlights part showing the behaviour when

TASKS_LFCLKSTOP is triggered. And the figure 4.5 illustrates the verification results

when changing the source of the LFCLK to the external oscillator.

54

4.1 Results of Models verification

Figure 4.3: LFCLK controller start Verification

Figure 4.4: LFCLK controller stop Verification

Figure 4.5: external oscillator start Verification

Table 4.2 shows the results of the verification test of the LFCLK controller.

verification test verification condition Pass/Fail
Correctly start LFCLK Pass
Correctly update LFCLK source Pass
Correctly generate LFCLKSTARTED event Pass

LFCLK_verification

Correctly stop LFCLK Pass

Table 4.2: Verification results LFCLK controller

55

Chapter 4. Results

• Low Frequency Clock calibration verification:

Figure 4.6 highlights the calibration timer operation in the verification plan. The

calibration timer starts operation when TASKS_CTSTART is triggered. While figure 4.7

highlights the calibration process when TASKS_CAL is triggered.

Figure 4.6: verification of calibration timer operation

Figure 4.7: verification of calibration process operation

Table 4.3 shows the verification results of LFCLK calibration verification test.

4.1.2 GPIO model verification

The verification of General purpose input/output (GPIO) model covers the control of the bits of

the peripheral’s port.

56

4.1 Results of Models verification

verification test verification condition Pass/Fail
Correctly start calibration timer Pass
Correctly decrements calibration timer interval Pass
Correctly generate DONE event Pass

LFCLK_calibration_verification

Correctly stop calibration timer Pass

Table 4.3: Verification results of LFCLK’s oscillator calibration

Figure 4.8 shows the results of the individual verification of the bits. The individual

verification performs set and clear operation on the individual bits of the ports. While the

figure 4.9 verifies that operating on a bit will not affect the rest. It performs set operation on

the ports’ bits one by one and when all bits are set it performs the clear operation similarly.

The figures show only the final results since the same operation is performed for all bits in the

port. Table 4.4 shows the results of GPIO verification test.

Figure 4.8: verification of GPIO bits individually

Figure 4.9: verification of GPIO bits cumulatively

57

Chapter 4. Results

Verification condition Verification test Pass/Fail
Correctly set and clear individual bits individual bit set/clear() Pass

Correctly set and clear all bits accumulative set/clear() Pass

Table 4.4: General purpose input/output verification results

4.1.3 NVIC model verification

The description of the NVIC can be found in section 3.5.3. NVIC verification covers the

operation of its functions. The verification of NVIC tested all IRQ lines, but the results will

show only the final since we repeat the same operation for the different IRQs. The results of

NVIC verification are as follow:

• NVIC_EnableIRQ function verification:

Figure 4.10: EnableIRQ function verification

• NVIC_DisableIRQ function verification:

Figure 4.11: DisableIRQ function verification

58

4.1 Results of Models verification

• NVIC_ClearPendingIRQ function verification:

Figure 4.12: ClearPendingIRQ function verification

• NVIC_GetEnableIRQ function verification:

Figure 4.13: GetEnableIRQ function verification

• NVIC_GetPendingIRQ function verification:

Figure 4.14: GetPendingIRQ function verification

Table 4.5 shows the results of NVIC’s verification results.

59

Chapter 4. Results

Verification condition Verification test Pss/Fail
Correctly use NVIC_EnableIRQ method NVIC_Verification_EnableIRQ() Pass

Correctly use NVIC_DisableleIRQ method NVIC_Verification_DisableIRQ() Pass
Correctly use NVIC_ClearPendingIRQ method NVIC_Verification_ClearPendingIRQ() Pass

Correctly use NVIC_GetEnable method NVIC_Verification_GetEnable() Pass
Correctly use NVIC_GetPending method NVIC_Verification_GetPending() Pass

Table 4.5: NVIC verification results

4.1.4 System verification

After verifying the components individually, we have verified the system as a whole. The

description of the system verification is in section 3.5.4. We ran software that would use the

models developed in this thesis (GPIO, CLOCK, and NVIC). Figure 4.15 captures the

transactions of the system verification showing what is the system doing at each point in time.

Figure 4.15: system verification results

60

4.2 Executed tests on the platform

4.2 Executed tests on the platform

The first piece of software that ran on the platform was the initialization routine of the base test

mpsl_init(). This routine would initiate the peripherals and configure some of their registers. We

managed to run the initialization routine on the virtual platform, and figure 4.16 shows some of

the transactions carried out by the platform.

Figure 4.16: The results of the initialization routine

4.2.1 Results of the base test

The first complete test to be run on the platform was the base test, which calls the initialization

routine (mpsl_init()), checks the contents of NVIC registers, performs the un-initialization

routine (mpsl_uninit()) and checks the contents of some of NVIC registers again. Figure 4.17

shows part of the base test’s transactions, as well as the execution wall-time for the test on the

platform.

61

Chapter 4. Results

Figure 4.17: The results of the base test

62

4.2 Executed tests on the platform

4.2.2 Results of CLOCK’s tests

We have ran three tests regarding the CLOCK callback in a different scenarios, and their results

were as follow:

1. One-shot CLOCK callback:

Figure 4.18: The results of One-shot CLOCK callback test

2. No CLOCK callback is called when HFCLK started by protocol:

Figure 4.19: The results of No CLOCK callback is called when HFCLK started by protocol test

63

Chapter 4. Results

3. CLOCK callback is called when HFCLK is already triggered:

Figure 4.20: The results of CLOCK callback is called when HFCLK is already triggered test

4.3 Verbosity and visibility

The virtual platform provides great visibility to the developer where they can see how a certain

functionality is being implemented in any of the system models. Having such a high degree of

visibility makes the debugging process easier either for hardware or software developers. The

platform captures the transaction carried out and generates a log file listing these transactions.

Having such a log file could shorten the debugging process since these log messages are

readable and easy to understand. The user of the platform will have the ability to control what

is being captured and what is being logged. This should be useful to narrow down the amount

of information to the suspected model or peripheral. The code below shows how to configure

the verbosity of the platform where it will only log and display the transactions related to

CLOCK models while ignoring the GPIO model.

1 // For debugging only one or more system components

2 // Uncomment the following line and the lines corresponding to specific

system components to debug

3 sc_report_handler::set_actions(SC_INFO, SC_DO_NOTHING);

4 sc_report_handler::set_actions("nrf_clock", SC_INFO, SC_DISPLAY | SC_LOG);

5 //sc_report_handler::set_actions("nrf_gpio", SC_INFO, SC_DISPLAY | SC_LOG);

64

4.4 Reusability and expandability

In addition to that, the ability to add custom messages and breaking points might decrease

the development time. And with shorter development time, the product would have a shorter

time-to-market(TTM), and it could also reduce the development cost.

4.4 Reusability and expandability

One of the features that the virtual prototype could provide is the reusability of the system

components. It will be useful in case of having different systems that share similar peripheral

or components or upgrading one aspect of the system while leaving the rest of the system

unchanged. Another feature provided by the system is expandability, which includes

expanding the individual models or the whole system. For the individual models, they could be

expanded by adding extra functionalities, registers, ports, or signals. Or modifying existing

ones to accommodate for changes in the system.

While for the overall prototype, it allows adding new models easily, which increases the testing

capabilities of the prototype.

4.5 Virtual prototype vs. development boards

In this section, we evaluate and compare the performance of running the tests on the virtual

prototype against the development boards. The verbosity configuration of the tests of virtual

prototype disabled the logging and displaying of transactions to get the shortest execution

time. The table 4.6 shows the comparison between the execution time of virtual prototype and

development boards. The table has the tests implemented by this thesis and by [1].

65

Chapter 4. Results

Te
st

na
m

e
E

xe
cu

tio
n

Ti
m

e
(m

s)
sp

ee
du

p
D

ev
el

op
m

en
tb

oa
rd

s
V

ir
tu

al
pr

ot
ot

yp
e

M
PS

L
in

it
13

90
8.

92
15

5
Te

m
pe

ra
tu

re
M

ea
su

re
m

en
t

13
84

9.
55

14
4

O
ne

sh
ot

Ti
m

er
C

al
lb

ac
k

15
35

10
.2

8
14

9
O

ne
sh

ot
C

L
O

C
K

ca
llb

ac
k

14
25

9.
79

14
5

C
L

O
C

K
ca

llb
ac

k
is

ca
lle

d
w

he
n

H
FC

L
K

is
al

re
ad

y
tr

ig
ge

re
d

13
92

9.
8

14
2

N
o

C
L

O
C

K
ca

llb
ac

k
is

ca
lle

d
w

he
n

H
FC

L
K

st
ar

te
d

by
pr

ot
oc

ol
13

68
10

.2
5

13
4

Table 4.6: Comparison table of virtual prototype and development board

66

Chapter 5
Discussion

This thesis started with the goal of creating a proof-of-concept to virtual prototype in a

software testing setup, and provide arguments if it is a good approach to be adopted by Nordic

Semiconductor into their development process.

As a start, the virtual prototype managed to execute the same tests as the development boards

and obtained the same results. It proved that the virtual prototype was accurate enough for the

tests we ran to give the same results. Although they both have the same results for similar tests,

having a virtual prototype allows for the testing process to start even before manufacturing the

development boards. That would allow for concurrent development of both hardware and

software.

While the development boards provide a good platform to debug and test software, we can

argue that the virtual prototype provides more debugging capabilities compare to the use of

development boards. Due to its better visibility over the system components, and its readable

and more comprehensive logs, both of which will help the developers and it could decrease the

time of the development process.

The main and perhaps the most interesting finding of this thesis is the speedup of the

testing which is obtained from running the software tests on the virtual prototype. The table

4.6 lists the comparisons where we got a speedup between 134 - 155 times across the different

tests that we ran. This is a big advantage of the virtual prototype over the use of the

development boards, where being able to run the test faster increases the testing productivity

and provides a wider test coverage. This could decrease the time spent in software testing and

67

Chapter 5. Discussion

in turn decrease the time of the development process. And having a shorter development time

could decrease the cost of development, and decrease the time needed for the product to be

available for customers, time-to-market(TTM).

An additional point for the use of virtual prototype it that it is expandable, modifying or adding

functionalities to models or adding models to the system can be done relatively easier and

cheaper compared to using different development boars with different capabilities.

From the results of this thesis and based on the tests we ran it seems that using a virtual

prototype in the development process would allow for early testing and concurrent software

and hardware development. The speedup provided by a virtual prototype would increase the

testing productivity and the test coverage. It could also decrease the time-to-market (TTM) by

having a shorter development time. It might also reduce the production cost since using virtual

prototype would be cheaper than having physical boards or using FPGAs.

The modeled prototype based on the actual hardware used by Nordic Semiconductor, and

the tests also based on the actual tests run by the software team. The results of the thesis

based on comparing the performance of the actual tests run by the software team against the

performance of the virtual prototype. In turn, this gives the results more depth and credibility.

However, despite the promising results and their implications, but it should be kept in mind that

these results are based on a few tests, so to get more concrete results for the rest of the tests or

more complex tests. Our prototype had models of a handful of peripherals that are needed by

the tests we chose, but these models are a few percentages of the full system. So adding more

models and running more complicated tests that require more peripherals might provide a more

accurate representation of the prototype behavior. Another thing which the prototype would

benefit greatly from is having a better interface between the prototype and the tested software,

as right now we compile and execute both of the software and prototype together, which forced

us to modify the tested software to become compatible with the systemC prototype and run

correctly. And despite all the advantages that are provided by the use of virtual prototypes, we

do not think that it will be able to completely replace the use of physical boards, at least in its

current state. It could be introduced as an intermediate stage between the unit testing and target

testing for now, and it might be able to replace them in the future with more refined modeling

and verification.

68

Chapter 6
Conclusion

We started this thesis with the goal of providing a proof-of-concept to the feasibility of using

a virtual prototype in Nordics Semiconductor’s development process. We started by studying

their current approach of testing at Nordic Semiconductor followed by identifying some of

their tests to proceed with. From the selected tests we extracted the peripherals needed to

be modeled and how detailed are they, and we started modeling the peripherals in a similar

structure to ease their integration later on to the overall system and ran verification plans for

each model individually and the complete system. After having the complete system, we started

by modifying the previously selected tests to be compatible with the virtual prototype. We ran

the tests on the prototype and evaluated their performance, then compared the performance

of each test on the prototype against the development boards. The virtual prototype provided

more visibility over the system components which increases the debugging capabilities of the

prototype. It is also proven to be expandable, allowing for an easier upgrade of the system

functionalities. From the results we got from the tests we ran, we managed to get a speedup

of almost 150 for most of the tests, and hence the virtual prototype would increase the testing

productivity and potentially reduce the development time, and with shorter development time,

it would decrease the time-to-market(TTM) of the products. It could also reduce the cost of

concurrent hardware/software development, since having multiple virtual prototypes could be

cheaper than the use of multiple FPGAs. But it still unable to replace the physical boards in its

current state, it could be used as an intermediate stage between the unit and the target testing.

69

Chapter 6. Conclusion

70

Appendix A
Acronyms

SoC System-on-Chip

BLE Bluetooth

API Application programming interface

ABI Application Binary interface

HCI Host Controller Interface

PPI Programmable peripheral interconnect

EEP event end point

TEP task end point

NVIC Nested Vector Interrupt Controller

ISER Interrupt Set Enable Register

ICER Interrupt Clear Enable Register

ISPR Interrupt Set Pending Register

ICPR Interrupt Clear Pending Register

IPR Interrupt Priority Register

HFCLK High Frequency Clock

71

LFCLK Low Frequency Clock

RTC Real-time counter

PCLK1M 1 MHz peripheral clock

PCLK16M 16 MHz peripheral clock

HAL Hardware access layer

IRQ Interrupt request line

MPSL Multiprotocol Service Layer

GPIO General purpose input/output

TLM Transaction level modeling

SCB System Control Block

SCR System Control Register

SHP System Handler Priprity Register

72

Appendix B
Code

B.1 Template code

1

2 #ifndef N_IP_APB_H

3 #define N_IP_APB_H

4

5 #include <systemc>

6

7 #include "tlm.h"

8

9 #include "n_ip.h"

10

11 using namespace sc_core;

12

13 struct Nip_Apb: Nip, tlm::tlm_fw_transport_if<>{

14

15 const int AHB_BASE_ADDR;

16

17 tlm::tlm_target_socket<> apb_target_socket;

18

19 Nip_Apb(sc_module_name name, int ahb_base_addr);

20

21 // TLM target functions

22 virtual void b_transport(tlm::tlm_generic_payload& trans, sc_core::

sc_time& delay);

73

23 virtual bool get_direct_mem_ptr(tlm::tlm_generic_payload& trans, tlm::

tlm_dmi& dmi_data);

24 virtual unsigned int transport_dbg(tlm::tlm_generic_payload& trans);

25 virtual tlm::tlm_sync_enum nb_transport_fw(tlm::tlm_generic_payload&

trans, tlm::tlm_phase& phase, sc_time& delay);

26

27 };

28

29

30 #endif

74

B.2 Nested Vector Interrupt Controller (NVIC) model as

part of the CPU

1

2

3 truct Cpu: NORDIC::n_module, tlm::tlm_bw_transport_if<>{

4

5 NORDIC::CLOCK::n_clock_slave_port clk;

6

7 tlm::tlm_initiator_socket<> apb_init_socket;

8

9 Software* sw;

10

11 sc_event ev_start_cpu;

12

13 // Constructor

14 Cpu (sc_module_name name);

15

16 // SCB register definition

17 struct {

18 uint32_t scbCPUID; /*!< Offset: 0x000 (R/) CPUID

Base Register */

19 uint32_t scbICSR; /*!< Offset: 0x004 (R/W)

Interrupt Control and State Register */

20 uint32_t scbVTOR; /*!< Offset: 0x008 (R/W) Vector

Table Offset Register */

21 uint32_t scbAIRCR; /*!< Offset: 0x00C (R/W)

Application Interrupt and Reset Control Register */

22 uint32_t scbSCR; /*!< Offset: 0x010 (R/W) System

Control Register */

23 uint32_t scbCCR; /*!< Offset: 0x014 (R/W)

Configuration Control Register */

24 uint8_t scbSHP[12]; /*!< Offset: 0x018 (R/W) System

Handlers Priority Registers (4-7, 8-11, 12-15) */

25 uint32_t scbSHCSR; /*!< Offset: 0x024 (R/W) System

Handler Control and State Register */

75

26 uint32_t scbCFSR; /*!< Offset: 0x028 (R/W)

Configurable Fault Status Register */

27 uint32_t scbHFSR; /*!< Offset: 0x02C (R/W)

HardFault Status Register */

28 uint32_t scbDFSR; /*!< Offset: 0x030 (R/W) Debug

Fault Status Register */

29 uint32_t scbMMFAR; /*!< Offset: 0x034 (R/W)

MemManage Fault Address Register */

30 uint32_t scbBFAR; /*!< Offset: 0x038 (R/W) BusFault

Address Register */

31 uint32_t scbAFSR; /*!< Offset: 0x03C (R/W)

Auxiliary Fault Status Register */

32 uint32_t scbPFR[2]; /*!< Offset: 0x040 (R/)

Processor Feature Register */

33 uint32_t scbDFR; /*!< Offset: 0x048 (R/) Debug

Feature Register */

34 uint32_t scbADR; /*!< Offset: 0x04C (R/)

Auxiliary Feature Register */

35 uint32_t scbMMFR[4]; /*!< Offset: 0x050 (R/) Memory

Model Feature Register */

36 uint32_t scbISAR[5]; /*!< Offset: 0x060 (R/)

Instruction Set Attributes Register */

37 uint32_t scbRESERVED0[5];

38 uint32_t scbCPACR; /*!< Offset: 0x088 (R/W)

Coprocessor Access Control Register */

39 } SCBregs;

40

41 // SCB register definition

42 struct {

43 uint32_t cpuPRIMASK; /*Priority Mask Register

*/

44 } CPUregs;

45

46 /******** NVIC ********/

47

48 //NVIC registers definition

49 struct {

50 uint32_t nvicISER[8]; // 0x000;

76

51 uint32_t nvicICER[8]; // 0x080;

52 uint32_t nvicICPR[8]; // 0x180;

53 } NVICregs;

54

55 /// List of callback functions.

56 std::vector<cb_arg_t> callbacks_;

57

58 /******** NVIC ********/

59

60

61 void main_sw_thread();

62

63 // -- Empty dummy functions for TML compatibility

64 virtual tlm::tlm_sync_enum nb_transport_bw(tlm::tlm_generic_payload&

trans, tlm::tlm_phase& phase, sc_time& delay);

65 virtual void invalidate_direct_mem_ptr(sc_dt::uint64 start_range, sc_dt::

uint64 end_range);

66

67 // -- Convenience apb access functions

68 void apb_simple_write(int addr, int& data);

69 void apb_simple_read(int addr, int& data);

70 void apb_simple_transport(int addr, int& data, bool write);

71

72 // -- Functions to write into CPU/SCB/NVIC registers

73 void cpu_reg_write(uint32_t ®, uint32_t data);

74 uint32_t cpu_reg_read(uint32_t ®);

75

76 // -- Assembler related functions

77 void wfe_cpu(void);

78 void nop_cpu(void);

79 void enable_irq_cpu(void);

80 void disable_irq_cpu(void);

81 uint32_t get_PRIMASK_cpu(void);

82

83 // -- NVIC functions

84 void NVIC_DisableIRQ(int IRQn);

85 void NVIC_EnableIRQ(int IRQn);

86 void NVIC_ClearPendingIRQ(int IRQn);

77

87

88 // -- interrupt handling Functions

89 void InterruptHandlers_registration();

90 void Register_InturreptHandler(const cb_t &cb, uint32_t val);

91 void callback_handller(uint32_t index);

92 int callback_check(uint32_t index);

93

94

95

96 // Flag handling utilities

97 void set(uint32_t ®, uint32_t flag);

98 void clr(uint32_t ®, uint32_t flag);

99 bool isSet(uint32_t reg, uint32_t flag);

100 bool isClr(uint32_t reg, uint32_t flag);

101

102 void delay_us(double us);

103

104 };

78

B.3 CLOCK code

1 //nrf_clock.h

2 #ifndef NRF_CLOCKC_H

3 #define NRF_CLOCKC_H

4

5 #include <iostream>

6 #ifdef _WIN32

7 typedef unsigned __int32 uint32_t;

8 #else

9 #include <stdint.h>

10 #endif

11

12 #include "systemc.h"

13 #include "tlm.h"

14 #include "tlm_utils/simple_target_socket.h"

15

16 #include "n_ip_apb.h"

17

18

19

20 using namespace sc_core;

21

22

23 // Address of the peripheral registers (example)

24 #define CLOCK_ADDR_MASK 0xFFF

25

26 #define TASKS_HFCLKSTART 0x000 //

27 #define TASKS_HFCLKSTOP 0x004 //

28 #define TASKS_LFCLKSTART 0x008 //

29 #define TASKS_LFCLKSTOP 0x00C //

30 #define TASKS_CAL 0x010

31 #define TASKS_CTSTART 0x014

32 #define TASKS_CTSTOP 0x018

33 #define EVENTS_HFCLKSTARTED 0x100 //

34 #define EVENTS_LFCLKSTARTED 0x104 //

35 #define EVENTS_DONE 0x10C

36 #define EVENTS_CTTO 0x110

79

37 #define INTEN 0x300 // Added register

38 #define INTENSET 0x304 //

39 #define INTENCLR 0x308 //

40 #define HFCLKRUN 0x408 // added (will be used by the HAL)

41 #define HFCLKSTAT 0x40C //

42 #define LFCLKSTAT 0x418 //

43 #define LFCLKSRCCOPY 0x41C // added (will be used by the HAL)

44 #define LFCLKSRC 0x518 //

45 #define HFXODEBOUNCE 0x528 //added register

46 #define CTIV 0x538

47

48

49

50 struct nrf_clock : Nip_Apb{

51 public:

52 // Constructor

53 nrf_clock(sc_module_name name_, int ahb_base_addr);

54 // Peripheral register definition (example)

55 struct {

56 uint32_t clockHFCLKSTART; //0x000

57 uint32_t clockHFCLKSTOP; //0x004

58 uint32_t clockLFCLKSTART; //0x008

59 uint32_t clockLFCLKSTOP; //0x00C

60 uint32_t clockCAL; //0x010

61 uint32_t clockCTSTART; //0x014

62 uint32_t clockCTSTOP; //0x018

63 uint32_t clockHFCLKSTARTED; //0x100

64 uint32_t clockLFCLKSTARTED; //0x104

65 uint32_t clockDONE; //0x10C

66 uint32_t clockCTTO; //0x110

67 uint32_t clockINTEN; //0x300

68 uint32_t clockINTENSET; //0x304

69 uint32_t clockINTENCLR; //0x308

70 uint32_t clockHFCLKRUN; //0x408

71 uint32_t clockHFCLKSTAT; //0x40C

72 uint32_t clockLFCLKSTAT; //0x418

73 uint32_t clockLFCLKSRCCOPY; //0x41C

74 uint32_t clockLFCLKSRC; //0x518

80

75 uint32_t clockHFXODEBOUNCE; //0x528

76 float clockCTIV; //0x538

77 } regs;

78

79

80 // Events

81 sc_event start_event;

82 sc_event interrupt_event0;

83 sc_event interrupt_event1;

84 sc_event calibration_timer_event;

85

86 // Peripheral signals

87 sc_signal<bool> pwr_sig; // Signal to handle power changes

88 //sc_out<bool> HFCLKSTARTED_interrupt;

89 sc_out<bool> interrupts[5];

90

91 // Blocking transport function

92 virtual void b_transport(tlm::tlm_generic_payload &payload,

sc_time &delay);

93

94 // Debug function

95 unsigned int transport_dbg(tlm::tlm_generic_payload& gp);

96

97 // Functions to handle power and reset

98 void power_domain_handler();

99 void reset_handler();

100

101 // Flag handling utilities

102 void set(uint32_t ®, uint32_t flag);

103 void clr(uint32_t ®, uint32_t flag);

104 bool isSet(uint32_t reg, uint32_t flag);

105 bool isClr(uint32_t reg, uint32_t flag);

106

107

108 private:

109

110 /*Threads*/

111 void initialization_thread();

81

112 void HFCLK_interrupts_thread();

113 void LFCLK_interrupts_thread();

114 void Calibration_Timer_thread();

115

116

117 // Function to write to a register

118 virtual void busWrite(uint32_t uaddr, uint32_t wdata);

119 // Function to read from a register

120 uint32_t busRead(uint32_t uaddr);

121

122 /*delay functions*/

123 void LFXO_start(void);

124 void HFXO_start(void);

125

126 /*logging functions*/

127 void LFCLKSRClog(void);

128 void LFCLKSTATlog(void);

129 void HFCLKSTATlog(void);

130 void INTENlog(void);

131

132 };

133

134 #endif

82

1 //nrf_clock.cpp

2 #include "nrf_clock.h"

3 #include <bitset>

4

5

6

7

8 nrf_clock::nrf_clock(sc_module_name name_, int ahb_base_addr) : Nip_Apb(

name_, ahb_base_addr){

9 // Constructor

10 SC_HAS_PROCESS(nrf_clock);

11

12 //Threads

13 SC_THREAD(initialization_thread);

14 SC_THREAD(HFCLK_interrupts_thread);

15 SC_THREAD(LFCLK_interrupts_thread);

16 SC_THREAD(Calibration_Timer_thread);

17

18 // Make power signal asynchronous

19 async_reset_signal_is(pwr_sig, false);

20

21 // Register functions to handle power and reset

22 SC_METHOD(power_domain_handler);

23 sensitive << power_port;

24 SC_METHOD(reset_handler);

25 sensitive << clk.reset;

26

27 // Clear regs

28 memset(®s, 0, sizeof(regs));

29 regs.nrfclockHFXODEBOUNCE = 0x10; //set the debounce time to 256 us

30 regs.nrfclockINTEN = 0x0;

31

32 SC_REPORT_INFO("nrf_clock", "Completed constructor");

33 }

34

35

36 // init thread

83

37 void nrf_clock::initialization_thread(){

38 while (1) {

39 wait(start_event);

40 SC_REPORT_INFO("nrf_clock", "start initialization routine");

41 //reset all the registers

42 regs.nrfclockHFXODEBOUNCE = 0x10; //set the debounce time to 256 us

43 regs.nrfclockINTEN = 0x0;

44 wait(3, SC_MS);//wait for HFINT to start up

45 SC_REPORT_INFO("nrf_clock", "initialization routine is over");

46 }

47 }

48

49

50 // Reset behaviour

51 void nrf_clock::reset_handler(){

52 start_event.notify();

53 }

54

55 // Power domain handler

56 void nrf_clock::power_domain_handler() {

57 start_event.notify();

58 switch (power_port->get_power_status()){

59 case NORDIC::POWER::n_power_status::OFF:

60 pwr_sig.write(false);

61 break;

62 case NORDIC::POWER::n_power_status::ON:

63 pwr_sig.write(true);

64 break;

65 default:

66 break;

67 }

68 }

69

70 //Calibration Timer

71 void nrf_clock::Calibration_Timer_thread(){

72 std::ostringstream ostr;

73 while(1){

74 wait(calibration_timer_event);

84

75 SC_REPORT_INFO("nrf_clock","calibration timer is starting");

76 while(isClr(regs.nrfclockCTSTOP,0x1)&& (regs.nrfclockCTIV != 0)){

77 wait(25,SC_US);

78 regs.nrfclockCTIV = regs.nrfclockCTIV - 0.25;

79 ostr << "/* CTIV */ " <<regs.nrfclockCTIV ;

80 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

81 ostr.str("");

82 // std::cout << "/* CTIV */" << regs.nrfclockCTIV << ’\n’;

83

84 }

85 SC_REPORT_INFO("nrf_clock","calibration timer has finished");

86 regs.nrfclockCTTO = 0x1;

87 ostr << "/* CTTO is */ " <<regs.nrfclockCTTO ;

88 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

89 ostr.str("");

90 // std::cout << "/* CTTO is */" << regs.nrfclockCTTO << ’\n’;

91

92 }

93

94 }

95

96 //interrupts

97 void nrf_clock::HFCLK_interrupts_thread(){

98 while(1){

99 wait(interrupt_event0);

100 SC_REPORT_INFO("nrf_clock", "HFCLKSTARTED interrupt has been fired");

101 if (isSet(regs.nrfclockINTEN, 0x1)){ // If interrupts are enabled

102 SC_REPORT_INFO("nrf_clock", "Interrupt has been fired to NVIC");

103 interrupts[0].write(true);

104 wait(3, SC_US);//reset the signal to false so we can get future

interrupts

105 interrupts[0].write(false);

106

107 }

108

109 }

110 }

111

85

112 void nrf_clock::LFCLK_interrupts_thread(){

113 while(1){

114 wait(interrupt_event1);

115 SC_REPORT_INFO("nrf_clock", "LFCLKSTARTED interrupt has been fired");

116 if (isSet(regs.nrfclockINTEN, 0x2)){ // If interrupts are enabled

117 SC_REPORT_INFO("nrf_clock", "Interrupt has been fired to NVIC");

118 interrupts[1].write(true);

119 wait(3, SC_US); //reset the signal to false so we can get future

interrupts

120 interrupts[1].write(false);

121 }

122 }

123 }

124

125 //logging functions

126 void nrf_clock::LFCLKSRClog(){

127 switch(regs.nrfclockLFCLKSRC & 0x3){

128 case 0:

129 if(isClr(regs.nrfclockLFCLKSRC,0x10000) && isClr(regs.

nrfclockLFCLKSRC,0x20000)){

130 SC_REPORT_INFO("nrf_clock", "Normal operation, RC is source");

131 }else{SC_REPORT_INFO("nrf_clock", "DO NOT USE, change source

configuration");}

132 break;

133 case 1:

134 if(isClr(regs.nrfclockLFCLKSRC,0x20000)){

135 if(isClr(regs.nrfclockLFCLKSRC,0x10000)){SC_REPORT_INFO("nrf_clock"

, "Normal XTAL operation");}else{SC_REPORT_INFO("nrf_clock", "DO NOT USE

, change source configuration");}

136 }else{if(isClr(regs.nrfclockLFCLKSRC,0x10000)){SC_REPORT_INFO("

nrf_clock", "Apply external low swing signal to XL1, ground XL2");}else{

SC_REPORT_INFO("nrf_clock", "Apply external full swing signal to XL1,

leave XL2 unconnected");}

137 }

138 break;

139 case 2:

140 if(isClr(regs.nrfclockLFCLKSRC,0x20000)){

141 SC_REPORT_INFO("nrf_clock", "Normal operation, synth is source");

86

142 }else{

143 SC_REPORT_INFO("nrf_clock", "DO NOT USE, change source

configuration");

144 }

145 break;

146 default:

147 break;

148 }

149

150 // if(isSet(regs.nrfclockLFCLKSRC,0x1))SC_REPORT_INFO("nrf_clock", "The

LFCLK source is 32.768 kHz crystal oscillator");

151 // if(isSet(regs.nrfclockLFCLKSRC,0x2)) SC_REPORT_INFO("nrf_clock", "The

LFCLK source is 32.768 kHz synthesized from HFCLK");

152 // if(isClr(regs.nrfclockLFCLKSRC,0x1) && isClr(regs.nrfclockLFCLKSRC,0x2

))SC_REPORT_INFO("nrf_clock", "The LFCLK source is 32.768 kHz RC

oscillator");

153 // if(isSet(regs.nrfclockLFCLKSRC,0x10000)){SC_REPORT_INFO("nrf_clock", "

BYPASS is Enable");}else{SC_REPORT_INFO("nrf_clock", "BYPASS is Disable

");}

154 // if(isSet(regs.nrfclockLFCLKSRC,0x20000)){SC_REPORT_INFO("nrf_clock", "

Enable use of external source");}else{SC_REPORT_INFO("nrf_clock", "

Disable use of external source");}

155 }

156

157 void nrf_clock::LFCLKSTATlog(){

158 if(isSet(regs.nrfclockLFCLKSTAT,0x1))SC_REPORT_INFO("nrf_clock", "The

LFCLK source is 32.768 kHz crystal oscillator");

159 if(isSet(regs.nrfclockLFCLKSTAT,0x2)) SC_REPORT_INFO("nrf_clock", "The

LFCLK source is 32.768 kHz synthesized from HFCLK");

160 if(isClr(regs.nrfclockLFCLKSTAT,0x1) && isClr(regs.nrfclockLFCLKSRC,0x2))

SC_REPORT_INFO("nrf_clock", "The LFCLK source is 32.768 kHz RC

oscillator");

161 if(isSet(regs.nrfclockLFCLKSTAT,0x10000)){SC_REPORT_INFO("nrf_clock", "

LFCLK state is Running");}else{SC_REPORT_INFO("nrf_clock", "LFCLK state

is NotRunning");}

162 }

163

164 void nrf_clock::HFCLKSTATlog(){

87

165 if(isSet(regs.nrfclockHFCLKSTAT,0x1)){SC_REPORT_INFO("nrf_clock", "HFCLK

source is 64 MHz crystal oscillator (HFXO)");}else{SC_REPORT_INFO("

nrf_clock", "HFCLK source is 64 MHz internal oscillator (HFINT)");}

166 if(isSet(regs.nrfclockHFCLKSTAT,0x10000)){SC_REPORT_INFO("nrf_clock", "

HFXO state is Running");}else{SC_REPORT_INFO("nrf_clock", "HFXO state is

NotRunning");}

167 }

168

169 void nrf_clock::INTENlog(){

170 if(isSet(regs.nrfclockINTEN,0x1)){SC_REPORT_INFO("nrf_clock", "

HFCLKSTARTED is Enabled");}else{SC_REPORT_INFO("nrf_clock", "

HFCLKSTARTED is Disabled");}

171 if(isSet(regs.nrfclockINTEN,0x2)){SC_REPORT_INFO("nrf_clock", "

LFCLKSTARTED is Enabled");}else{SC_REPORT_INFO("nrf_clock", "

LFCLKSTARTED is Disabled");}

172 if(isSet(regs.nrfclockINTEN,0x8)){SC_REPORT_INFO("nrf_clock", "DONE is

Enabled");}else{SC_REPORT_INFO("nrf_clock", "DONE is Disabled");}

173 if(isSet(regs.nrfclockINTEN,0x10)){SC_REPORT_INFO("nrf_clock", "CTTO is

Enabled");}else{SC_REPORT_INFO("nrf_clock", "CTTO is Disabled");}

174 if(isSet(regs.nrfclockINTEN,0x400)){SC_REPORT_INFO("nrf_clock", "

CTSTARTED is Enabled");}else{SC_REPORT_INFO("nrf_clock", "CTSTARTED is

Disabled");}

175 if(isSet(regs.nrfclockINTEN,0x800)){SC_REPORT_INFO("nrf_clock", "

CTSTOPPED is Enabled");}else{SC_REPORT_INFO("nrf_clock", "CTSTOPPED is

Disabled");}

176

177 }

178

179 //delay functions

180

181 //model the delay till HFXO start

182 void nrf_clock::HFXO_start(){

183 int HFXO_delay;

184 SC_REPORT_INFO("nrf_clock", "switching to HFXO");

185 if(isSet(regs.nrfclockHFXODEBOUNCE,0x10)){HFXO_delay = 360 + 256;}else{

HFXO_delay = 360 + 1024;}

186 std::ostringstream ostr;

187 ostr << "waiting for " << HFXO_delay<<’\t’<<"till HFXO is running";

88

188 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

189 ostr.str("");

190 wait(clk.get_delay(HFXO_delay, SC_US));// Simulate time to start external

HFXO 256 Dbounce 360 startup time

191 SC_REPORT_INFO("nrf_clock", "HFXO is running");

192 regs.nrfclockHFCLKSTARTED = 0x1;

193 interrupt_event0.notify();

194 }

195

196 //model the delay till LFXO start

197 void nrf_clock::LFXO_start(){

198 if(isSet(regs.nrfclockLFCLKSRC,0x1)){

199 SC_REPORT_INFO("nrf_clock", "switch to LFRCO");

200 clr(regs.nrfclockLFCLKSTAT , 0x1); //switch to the internal RC LFCLKSRC

201 wait(clk.get_delay(25, SC_MS));// Simulate time to start external

LFCLKSRC

202 SC_REPORT_INFO("nrf_clock", "wait for 25ms before switching to LFXO");

203 SC_REPORT_INFO("nrf_clock", "switching back to LFXO");

204 set(regs.nrfclockLFCLKSTAT , 0x1); //switch back to the LFXO

205 }

206 regs.nrfclockLFCLKSTARTED = 0x1;

207 interrupt_event1.notify();

208 }

209

210

211 // Read from registers. Call different functions here as required

212 uint32_t nrf_clock::busRead(uint32_t uaddr){

213 float data = 0;

214 sc_time delay;

215

216 std::ostringstream ostr;

217 ostr << "Received expected read request from " << std::hex << uaddr;

218 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

219 ostr.str("");

220

221 switch(uaddr){

222 case NRF_CLOCK_TASKS_HFCLKSTART:

223 data = regs.nrfclockHFCLKSTART;

89

224 ostr << "TASKS_HFCLKSTART"<<std::bitset<32>(data);

225 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

226 ostr.str("");

227 break;

228 case NRF_CLOCK_TASKS_HFCLKSTOP:

229 data = regs.nrfclockHFCLKSTOP;

230 ostr << "TASKS_HFCLKSTOP"<<std::bitset<32>(data);

231 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

232 ostr.str("");

233 break;

234 case NRF_CLOCK_TASKS_LFCLKSTART:

235 data = regs.nrfclockLFCLKSTART;

236 ostr << "TASKS_LFCLKSTART"<<std::bitset<32>(data);

237 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

238 ostr.str("");

239 break;

240 case NRF_CLOCK_TASKS_LFCLKSTOP:

241 data = regs.nrfclockLFCLKSTOP;

242 ostr << "TASKS_LFCLKSTOP"<<std::bitset<32>(data);

243 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

244 ostr.str("");

245 break;

246 case NRF_CLOCK_TASKS_CAL:

247 SC_REPORT_INFO("nrf_clock", " TASKS_CAL is a write-only register");

248 break;

249 case NRF_CLOCK_TASKS_CTSTART:

250 SC_REPORT_INFO("nrf_clock", " TASKS_CTSTART is a write-only register");

251 break;

252 case NRF_CLOCK_TASKS_CTSTOP:

253 SC_REPORT_INFO("nrf_clock", " TASKS_CTSTOP is a write-only register");

254 break;

255 case NRF_CLOCK_EVENTS_HFCLKSTARTED:

256 data = regs.nrfclockHFCLKSTARTED;

257 if (isSet(regs.nrfclockHFCLKSTARTED, 0x1)){

258 SC_REPORT_INFO("nrf_clock", " EVENTS_HFCLKSTARTED has been generated");

259 }else{

260 SC_REPORT_INFO("nrf_clock", " EVENTS_HFCLKSTARTED has not been

generated yet");

90

261 }

262 break;

263 case NRF_CLOCK_EVENTS_LFCLKSTARTED:

264 data = regs.nrfclockLFCLKSTARTED;

265 if (isSet(regs.nrfclockLFCLKSTARTED, 0x1)){

266 SC_REPORT_INFO("nrf_clock", " EVENTS_LFCLKSTARTED has been generated");

267 }else{

268 SC_REPORT_INFO("nrf_clock", " EVENTS_LFCLKSTARTED has not been

generated yet");

269 }

270 break;

271 case NRF_CLOCK_EVENTS_DONE:

272 data = regs.nrfclockDONE;

273 ostr << "EVENT DONE register is: "<<data;

274 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

275 ostr.str("");

276

277 break;

278 case NRF_CLOCK_EVENTS_CTTO:

279 data = regs.nrfclockCTTO;

280 ostr << "CTTO event is "<<data;

281 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

282 ostr.str("");

283 break;

284 case NRF_CLOCK_INTENSET:

285 data = regs.nrfclockINTENSET;

286 ostr << "INTENSET register is "<<std::bitset<32>(data);

287 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

288 ostr.str("");

289

290 break;

291 case NRF_CLOCK_INTENCLR:

292 data = regs.nrfclockINTENCLR;

293 ostr << "INTENCLR register is "<<std::bitset<32>(data);

294 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

295 ostr.str("");

296

297 break;

91

298 case NRF_CLOCK_HFCLKSTAT:

299 data=regs.nrfclockHFCLKSTAT;

300 HFCLKSTATlog();

301 break;

302 case NRF_CLOCK_LFCLKSTAT:

303 data=regs.nrfclockLFCLKSTAT;

304 LFCLKSTATlog();

305 break;

306 case NRF_CLOCK_LFCLKSRC:

307 data = regs.nrfclockLFCLKSRC;

308 LFCLKSRClog();

309 break;

310 case NRF_CLOCK_CTIV:

311 data = regs.nrfclockCTIV;

312 ostr << "Calibration timer interval is "<<data<<" seconds";

313 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

314 ostr.str("");

315 break;

316 case NRF_CLOCK_INTEN:

317 data = regs.nrfclockINTEN;

318 INTENlog();

319 break;

320 case NRF_CLOCK_HFCLKRUN:

321 data = regs.nrfclockHFCLKRUN;

322 ostr << "HFCLKRUN register is "<<std::bitset<32>(data);

323 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

324 ostr.str("");

325

326 break;

327 case NRF_CLOCK_LFCLKSRCCOPY:

328 data = regs.nrfclockLFCLKSRCCOPY;

329 ostr << "LFCLKSRCCOPY register is "<<std::bitset<32>(data);

330 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

331 ostr.str("");

332

333 break;

334 case NRF_CLOCK_HFXODEBOUNCE:

335 data = regs.nrfclockHFXODEBOUNCE;

92

336 ostr << "HFXODEBOUNCE register is "<<std::bitset<32>(data);

337 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

338 ostr.str("");

339

340 break;

341 }

342 //SC_REPORT_INFO("nrf_clock", "Received expected read request");

343 return (data);

344 }

345

346 // Write to registers. Call different functions here as required

347 void nrf_clock::busWrite(uint32_t uaddr, uint32_t wdata) {

348 sc_time delay;

349

350 std::ostringstream ostr;

351 ostr << "Received expected write request to "<<std::hex<< uaddr;

352 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

353 ostr.str("");

354

355 switch(uaddr){

356 case NRF_CLOCK_TASKS_HFCLKSTART:

357 if(isSet(regs.nrfclockHFCLKSTAT,0x10000)){

358 SC_REPORT_INFO("nrf_clock","HFXO is already running");

359 }else{

360 if(wdata == 0x1){

361 regs.nrfclockHFCLKSTART = wdata;

362 SC_REPORT_INFO("nrf_clock","HFXO will start \n you can use the RADIO");

363 set(regs.nrfclockHFCLKSTAT,0x10001);//SRC external oscillator and STAT

is running

364 regs.nrfclockHFCLKRUN = 0x1;

365 HFXO_start();

366 }}

367 break;

368 case NRF_CLOCK_TASKS_HFCLKSTOP:

369 if(isClr(regs.nrfclockHFCLKSTAT,0x10000)){

370 SC_REPORT_INFO("nrf_clock","HFXO is already stopped");

371 }else{

372 if(wdata & 0x1){

93

373 regs.nrfclockHFCLKSTOP = wdata;

374 SC_REPORT_INFO("nrf_clock","HFXO will stop");

375 clr(regs.nrfclockHFCLKSTAT,0x10001);//STAT is NotRunning

376 //regs.nrfclockHFCLKSTARTED = 0x0000;//resets the event //this step

done by the user before calibration

377 regs.nrfclockHFCLKRUN = 0x0;}

378 }

379 break;

380 case NRF_CLOCK_TASKS_LFCLKSTART:

381 if(isSet(regs.nrfclockLFCLKSTAT,0x10000)){

382 SC_REPORT_INFO("nrf_clock","LFCLK is already running");

383 }else{

384 regs.nrfclockLFCLKSTART = wdata;

385 SC_REPORT_INFO("nrf_clock","LFCLK will start");

386 LFXO_start();

387 set(regs.nrfclockLFCLKSTAT,0x10000);//STAT is Running

388 regs.nrfclockLFCLKSRCCOPY = regs.nrfclockLFCLKSTAT;

389 }

390 break;

391 case NRF_CLOCK_TASKS_LFCLKSTOP:

392 if(isClr(regs.nrfclockLFCLKSTAT,0x10000)){

393 SC_REPORT_INFO("nrf_clock","LFCLK is already stopped");

394 }else{

395 regs.nrfclockLFCLKSTOP = wdata;

396 SC_REPORT_INFO("nrf_clock","LFCLK will stop");

397 clr(regs.nrfclockLFCLKSTAT,0x10000);//STAT is Not Running

398 //regs.nrfclockLFCLKSTARTED = 0x0;//resets the event //this step done

by the user before calibration

399 }

400 break;

401 case NRF_CLOCK_TASKS_CAL:

402 if(isClr(regs.nrfclockHFCLKSTARTED,0x1)){

403 SC_REPORT_INFO("nrf_clock","Start HFXO first");

404 }else{

405 regs.nrfclockCAL = wdata ;

406 regs.nrfclockDONE = wdata;

407 SC_REPORT_INFO("nrf_clock","Calibration process is starting");

408

94

409 }

410 break;

411 case NRF_CLOCK_TASKS_CTSTART:

412 if(isSet(wdata,0x1) || isClr(wdata,0x1)){

413 regs.nrfclockCTSTART = wdata;

414 SC_REPORT_INFO("nrf_clock","Calibration timer is starting");

415

416 if(wdata == 1) calibration_timer_event.notify();

417

418 }else{

419 SC_REPORT_INFO("nrf_clock","incorrect value for calibration timer start

");

420 }

421 break;

422 case NRF_CLOCK_TASKS_CTSTOP:

423 if(isSet(wdata,0x1) || isClr(wdata,0x1)){

424 regs.nrfclockCTSTOP = wdata ;

425 SC_REPORT_INFO("nrf_clock","Calibration timer is stoping");

426 }

427 else {

428 SC_REPORT_INFO("nrf_clock","incorrect value for calibration timer

stop");

429 }

430 break;

431 case NRF_CLOCK_EVENTS_HFCLKSTARTED:

432 regs.nrfclockHFCLKSTARTED = wdata;

433 ostr << "HFCLKSTARTED event has been updated to "<< wdata;

434 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

435 ostr.str("");

436 break;

437 case NRF_CLOCK_EVENTS_LFCLKSTARTED:

438 regs.nrfclockLFCLKSTARTED = wdata;

439 ostr << "LFCLKSTARTED event has been updated to "<< wdata;

440 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

441 ostr.str("");

442 break;

443 case NRF_CLOCK_EVENTS_DONE:

444 regs.nrfclockDONE = wdata;

95

445 ostr << "DONE event has been updated to "<< wdata;

446 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

447 ostr.str("");

448 break;

449 case NRF_CLOCK_EVENTS_CTTO:

450 regs.nrfclockCTTO = wdata;

451 ostr << "CTTO event has been updated to "<< wdata;

452 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

453 ostr.str("");

454 break;

455 case NRF_CLOCK_INTENSET:

456 regs.nrfclockINTENSET = wdata;

457 set(regs.nrfclockINTEN,regs.nrfclockINTENSET);

458 ostr << "INTENSET register has been updated to "<<std::bitset<32>(

wdata);

459 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

460 ostr.str("");

461 break;

462 case NRF_CLOCK_INTENCLR:

463 regs.nrfclockINTENCLR = wdata;

464 clr(regs.nrfclockINTEN,regs.nrfclockINTENCLR);

465 ostr << "INTENCLR register has been updated to "<<std::bitset<32>(

wdata);

466 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

467 ostr.str("");

468 break;

469 case NRF_CLOCK_HFCLKSTAT:

470 SC_REPORT_INFO("nrf_clock","LFCLKSTAT is read-only register");

471 break;

472 case NRF_CLOCK_LFCLKSTAT:

473 SC_REPORT_INFO("nrf_clock","LFCLKSTAT is read-only register");

474 break;

475 case NRF_CLOCK_LFCLKSRC:

476 //check that the LFCLK is Not Running

477 if(isClr(regs.nrfclockLFCLKSTAT, 0x10000)){

478 if (isSet(wdata, 0x3)){

479 SC_REPORT_INFO("nrf_clock", "source unknown, try again");

480 }else{

96

481 regs.nrfclockLFCLKSRC = wdata;

482 set(regs.nrfclockLFCLKSTAT,(wdata & 0x3));

483 SC_REPORT_INFO("nrf_clock", "LFCLKSRC has been updated");

484 LFCLKSRClog();

485

486 }

487 }else{

488 SC_REPORT_INFO("nrf_clock", "LFCLK is running, can’t change LFCLK

source");

489 }

490 break;

491 case NRF_CLOCK_CTIV:

492 regs.nrfclockCTIV = wdata * 0.25;

493 ostr << "CTIV register has been updated to "<< regs.nrfclockCTIV ;

494 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

495 ostr.str("");

496 break;

497 case NRF_CLOCK_INTEN:

498 regs.nrfclockINTEN = wdata;

499 ostr << "INTEN register has been updated to "<< std::bitset<32>(wdata

);

500 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

501 ostr.str("");

502

503 break;

504 case NRF_CLOCK_HFCLKRUN:

505 SC_REPORT_INFO("nrf_clock","HFCLKRUN is read-only register");

506 break;

507 case NRF_CLOCK_LFCLKSRCCOPY:

508 SC_REPORT_INFO("nrf_clock","LFCLKSRCCOPY is read-only register");

509 break;

510 case NRF_CLOCK_HFXODEBOUNCE:

511 regs.nrfclockHFXODEBOUNCE = wdata;

512 ostr << "HFXODEBOUNCE register has been updated to "<<wdata;

513 SC_REPORT_INFO("nrf_clock", ostr.str().c_str());

514 ostr.str("");

515

516 break;

97

517 }

518 //SC_REPORT_INFO("nrf_clock", "Received expected write request");

519

520 }

521

522 // TLM b_transport function

523 void nrf_clock::b_transport(tlm::tlm_generic_payload &gp, sc_time &delay){

524 wait(clk.get_delay(3));

525

526 // Get address from the generic payload

527 sc_dt::uint64 addr = gp.get_address();

528

529 uint32_t *dataPtr; // Pointer to data in the generic payload

530 int offset; // Data byte offset in word

531 uint32_t uaddr; // Peripheral address after the mask

532

533 // Mask off the address to its range

534 uaddr = (uint32_t)(addr) & CLOCK_ADDR_MASK;

535 offset = 0;

536

537 // Get data pointer

538 dataPtr = reinterpret_cast<uint32_t*>(gp.get_data_ptr());

539

540 // Read of write to a register depending on the command

541 switch(gp.get_command()){

542 case tlm::TLM_READ_COMMAND:

543 dataPtr[offset] = busRead(uaddr);

544 break;

545 case tlm::TLM_WRITE_COMMAND:

546 busWrite(uaddr, dataPtr[offset]);

547 break;

548 case tlm::TLM_IGNORE_COMMAND:

549 gp.set_response_status(tlm::TLM_GENERIC_ERROR_RESPONSE);

550 break;

551 return;

552 }

553

554 gp.set_response_status(tlm::TLM_OK_RESPONSE);

98

555 delay += sc_time(10, SC_NS);

556 }

557

558 // TLM transport_dbg function

559 unsigned int nrf_clock::transport_dbg(tlm::tlm_generic_payload& gp){

560

561 sc_dt::uint64 addr = gp.get_address();

562 uint32_t *dataPtr;

563 unsigned int len = gp.get_data_length();

564

565 int offset;

566 uint32_t uaddr;

567

568 uaddr = (uint32_t) addr;

569 offset = 0;

570

571 dataPtr = reinterpret_cast<uint32_t*>(gp.get_data_ptr());

572

573 switch (gp.get_command()){

574 case tlm::TLM_READ_COMMAND:

575 dataPtr[offset] = busRead(uaddr);

576 break;

577 case tlm::TLM_WRITE_COMMAND:

578 busWrite(uaddr, dataPtr[offset]);

579 break;

580 case tlm::TLM_IGNORE_COMMAND:

581 gp.set_response_status(tlm::TLM_GENERIC_ERROR_RESPONSE);

582 return (0);

583 }

584

585 gp.set_response_status(tlm::TLM_OK_RESPONSE);

586 return (len);

587 }

588

589 // Flag handling utilities

590 void nrf_clock::set(uint32_t ®, uint32_t flags){

591 reg |= flags;

592 }

99

593

594 void nrf_clock::clr(uint32_t ®, uint32_t flags){

595 reg &= ~flags;

596 }

597

598 bool nrf_clock::isSet(uint32_t reg, uint32_t flags){

599 return flags == (reg & flags);

600 }

601

602 bool nrf_clock::isClr(uint32_t reg, uint32_t flags){

603 return flags != (reg & flags);

604 }

100

B.4 GPIO code

1 //nrf_gpio.h

2

3 #ifndef NRF_GPIO_H

4 #define NRF_GPIO_H

5

6 #include <iostream>

7 #ifdef _WIN32

8 typedef unsigned __int32 uint32_t;

9 #else

10 #include <stdint.h>

11 #endif

12

13 #include "systemc.h"

14 #include "tlm.h"

15 #include "tlm_utils/simple_target_socket.h"

16

17 #include "n_ip_apb.h"

18

19

20

21 using namespace sc_core;

22

23

24 // Address of the peripheral registers (example)

25 #define GPIO_ADDR_MASK 0xFFF

26

27 #define NRF_GPIO_OUT 0x000 //added

28 #define NRF_GPIO_OUTSET 0x004 //

29 #define NRF_GPIO_OUTCLR 0x008 //

30

31

32

33

34 struct nrf_gpio : Nip_Apb{

35 public:

36 // Constructor

101

37 nrf_gpio(sc_module_name name_, int ahb_base_addr);

38 // Peripheral register definition (example)

39 struct {

40 uint32_t nrfgpioOUT; //0x000

41 uint32_t nrfgpioOUTSET; //0x004

42 uint32_t nrfgpioOUTCLR; //0x008

43 } regs;

44

45

46 // Events

47 sc_event start_event;

48

49

50 // Peripheral signals

51 sc_signal<bool> pwr_sig; // Signal to handle power changes

52

53

54 // Blocking transport function

55 virtual void b_transport(tlm::tlm_generic_payload &payload,

sc_time &delay);

56

57 // Debug function

58 unsigned int transport_dbg(tlm::tlm_generic_payload& gp);

59

60 // Functions to handle power and reset

61 void power_domain_handler();

62 void reset_handler();

63

64 // Flag handling utilities

65 void set(uint32_t ®, uint32_t flag);

66 void clr(uint32_t ®, uint32_t flag);

67 bool isSet(uint32_t reg, uint32_t flag);

68 bool isClr(uint32_t reg, uint32_t flag);

69

70

71 private:

72

73 /*Threads*/

102

74 void initialization_thread();

75

76

77

78 // Function to write to a register

79 virtual void busWrite(uint32_t uaddr, uint32_t wdata);

80 // Function to read from a register

81 uint32_t busRead(uint32_t uaddr);

82

83

84 };

85

86 #endif

103

1 \\ nrf_gpio.cpp

2 #include "nrf_gpio.h"

3 #include <bitset>

4

5

6

7

8 nrf_gpio::nrf_gpio(sc_module_name name_, int ahb_base_addr) : Nip_Apb(name_

, ahb_base_addr){

9 // Constructor

10 SC_HAS_PROCESS(nrf_gpio);

11

12 //Threads

13 SC_THREAD(initialization_thread);

14

15 // Make power signal asynchronous

16 async_reset_signal_is(pwr_sig, false);

17

18 // Register functions to handle power and reset

19 SC_METHOD(power_domain_handler);

20 sensitive << power_port;

21 SC_METHOD(reset_handler);

22 sensitive << clk.reset;

23

24 // Clear regs

25 memset(®s, 0, sizeof(regs));

26

27

28 SC_REPORT_INFO("nrf_gpio", "Completed constructor");

29 }

30

31

32 // init thread

33 void nrf_gpio::initialization_thread(){

34 while (1) {

35 wait(start_event);

36 SC_REPORT_INFO("nrf_gpio", "start initialization routine");

104

37 //reset all the registers

38

39 SC_REPORT_INFO("nrf_gpio", "initialization routine is over");

40 }

41 }

42

43

44 // Reset behaviour

45 void nrf_gpio::reset_handler(){

46 start_event.notify();

47 }

48

49 // Power domain handler

50 void nrf_gpio::power_domain_handler() {

51 start_event.notify();

52 switch (power_port->get_power_status()){

53 case NORDIC::POWER::n_power_status::OFF:

54 pwr_sig.write(false);

55 break;

56 case NORDIC::POWER::n_power_status::ON:

57 pwr_sig.write(true);

58 break;

59 default:

60 break;

61 }

62 }

63

64

65

66

67

68

69 // Read from registers. Call different functions here as required

70 uint32_t nrf_gpio::busRead(uint32_t uaddr){

71 uint32_t data = 0;

72 sc_time delay;

73 //int wdata = 0; //temporary for the simulation

74

105

75 switch(uaddr){

76 case NRF_GPIO_OUT:

77 data = regs.nrfgpioOUT;

78 std::cout <<"regs OUT"<<’\t’<< std::bitset<32> (data) << ’\n’;

79

80 break;

81 case NRF_GPIO_OUTSET:

82 data = regs.nrfgpioOUTSET;

83 break;

84 case NRF_GPIO_OUTCLR:

85 data = regs.nrfgpioOUTCLR;

86 break;

87 default:

88 break;

89 }

90 //SC_REPORT_INFO("nrf_gpio", "Received expected read request");

91 return (data);

92 }

93

94 // Write to registers. Call different functions here as required

95 void nrf_gpio::busWrite(uint32_t uaddr, uint32_t wdata) {

96 sc_time delay;

97

98 std::ostringstream ostr;

99 ostr << "Received expected write request to "<<std::hex<< uaddr;

100 SC_REPORT_INFO("nrf_gpio", ostr.str().c_str());

101 ostr.str("");

102

103 switch(uaddr){

104 case NRF_GPIO_OUT:

105 regs.nrfgpioOUT = wdata;

106 break;

107 case NRF_GPIO_OUTSET:

108 regs.nrfgpioOUTSET = wdata;

109 // std::cout << "regs OUTSET"<<’\t’<< std::bitset<32>(regs.

nrfgpioOUTSET) << ’\n’;

110 set(regs.nrfgpioOUT, regs.nrfgpioOUTSET);

111 // std::cout <<"regs OUT"<<’\t’<< std::bitset<32>(regs.nrfgpioOUT) <<

106

’\n’;

112

113 break;

114 case NRF_GPIO_OUTCLR:

115 regs.nrfgpioOUTCLR = wdata;

116 clr(regs.nrfgpioOUT, regs.nrfgpioOUTCLR);

117 break;

118 default:

119 break;

120 }

121 //SC_REPORT_INFO("nrf_gpio", "Received expected write request");

122

123 }

124

125 // TLM b_transport function

126 void nrf_gpio::b_transport(tlm::tlm_generic_payload &gp, sc_time &delay){

127 wait(clk.get_delay(3));

128

129 // Get address from the generic payload

130 sc_dt::uint64 addr = gp.get_address();

131

132 uint32_t *dataPtr; // Pointer to data in the generic payload

133 int offset; // Data byte offset in word

134 uint32_t uaddr; // Peripheral address after the mask

135

136

137

138

139 // Mask off the address to its range

140 uaddr = (uint32_t)(addr) & GPIO_ADDR_MASK;

141 offset = 0;

142

143 // Get data pointer

144 dataPtr = reinterpret_cast<uint32_t*>(gp.get_data_ptr());

145

146 // Read of write to a register depending on the command

147 switch(gp.get_command()){

148 case tlm::TLM_READ_COMMAND:

107

149 /* The if statment is used to fix an issue when reading

150 *data that is more than 3-byte size

151 */

152 // unsigned int count;

153 // count = 0;

154 // uint32_t read;

155 // read = busRead(uaddr);

156 // if(read > 0xFFFFFF){

157 //

158 // }

159 // std::cout << std::bitset<32>(read) << ’\n’;

160 // while (read) {

161 // count += read & 1;

162 // read >>= 1;

163 // }

164 // std::cout << count << ’\n’;

165 // if (busRead(uaddr) > 0xFFFFFF){

166 // dataPtr[1] = busRead(uaddr);

167 // dataPtr[offset] = busRead(uaddr) >> 24;}

168 // else{

169 dataPtr[offset] = busRead(uaddr) ;//}

170 break;

171 case tlm::TLM_WRITE_COMMAND:

172 busWrite(uaddr, dataPtr[offset]);

173 break;

174 case tlm::TLM_IGNORE_COMMAND:

175 gp.set_response_status(tlm::TLM_GENERIC_ERROR_RESPONSE);

176 break;

177 return;

178 }

179

180 gp.set_response_status(tlm::TLM_OK_RESPONSE);

181 delay += sc_time(10, SC_NS);

182 }

183

184 // TLM transport_dbg function

185 unsigned int nrf_gpio::transport_dbg(tlm::tlm_generic_payload& gp){

186

108

187 sc_dt::uint64 addr = gp.get_address();

188 uint32_t *dataPtr;

189 unsigned int len = gp.get_data_length();

190

191 int offset;

192 uint32_t uaddr;

193

194 uaddr = (uint32_t) addr;

195 offset = 0;

196

197 dataPtr = reinterpret_cast<uint32_t*>(gp.get_data_ptr());

198

199 switch (gp.get_command()){

200 case tlm::TLM_READ_COMMAND:

201 dataPtr[offset] = busRead(uaddr);

202 break;

203 case tlm::TLM_WRITE_COMMAND:

204 busWrite(uaddr, dataPtr[offset]);

205 break;

206 case tlm::TLM_IGNORE_COMMAND:

207 gp.set_response_status(tlm::TLM_GENERIC_ERROR_RESPONSE);

208 return (0);

209 }

210

211 gp.set_response_status(tlm::TLM_OK_RESPONSE);

212 return (len);

213 }

214

215 // Flag handling utilities

216 void nrf_gpio::set(uint32_t ®, uint32_t flags){

217 reg |= flags;

218 }

219

220 void nrf_gpio::clr(uint32_t ®, uint32_t flags){

221 reg &= ~flags;

222 }

223

224 bool nrf_gpio::isSet(uint32_t reg, uint32_t flags){

109

225 return flags == (reg & flags);

226 }

227

228 bool nrf_gpio::isClr(uint32_t reg, uint32_t flags){

229 return flags != (reg & flags);

230 }

B.5 Verification tests

B.5.1 NVIC verification tests

1 #include "sw_main.h"

2 #include "cpu.h"

3 #include <bitset>

4

5 void Software::sw_main(void){

6

7 NVIC_verification_EnableIRQ();

8 NVIC_verification_DisableIRQ();

9 NVIC_verification_ClearPendingIRQ();

10 NVIC_verification_GetEnable();

11 NVIC_verification_GetPending();

12

13 }

14

15 void Software::NVIC_verification_EnableIRQ(void){

16 int irq = 0;

17 uint32_t reg;

18 int pass = 0;

19

20 for (irq; irq<30;irq++){

21 cpu_ptr->NVIC_EnableIRQ(irq);

22 reg = cpu_ptr->cpu_reg_read(cpu_ptr->NVICregs.nvicISER[0]);

23 if(!(reg & 1 << irq)){

24 SC_REPORT_INFO("NVIC Verification","EnableIRQ: Verification FAILED");

25 }else{pass++;}

26 }

110

27 if(pass == 30){

28 SC_REPORT_INFO("NVIC Verification","EnableIRQ: verification PASSED");

29

30 }

31 }

32

33 void Software::NVIC_verification_DisableIRQ(void){

34 int irq = 0;

35 uint32_t reg;

36 int pass = 0;

37

38 for (irq; irq<30;irq++){

39 cpu_ptr->NVIC_DisableIRQ(irq);

40 reg = cpu_ptr->cpu_reg_read(cpu_ptr->NVICregs.nvicICER[0]);

41 if(!(reg & 1 << irq)){

42 SC_REPORT_INFO("NVIC Verification","DiableIRQ: Verification FAILED");

43

44 }else{pass++;}

45 }

46 if(pass == 30){

47 SC_REPORT_INFO("NVIC Verification","DiableIRQ: Verification PASSED");

48

49 }

50 }

51

52 void Software::NVIC_verification_ClearPendingIRQ(void){

53 int irq = 0;

54 uint32_t reg;

55 int pass = 0;

56

57 for (irq; irq<30;irq++){

58 cpu_ptr->NVIC_ClearPendingIRQ(irq);

59 reg = cpu_ptr->cpu_reg_read(cpu_ptr->NVICregs.nvicICPR[0]);

60 // std::cout <<std::bitset<32>(reg & 1 << irq) << ’\n’;

61 if(!(reg & 1 << irq)){

62 SC_REPORT_INFO("NVIC Verification","ClearPendingIRQ: Verification FAILED"

);

63 }else{pass++;}

111

64 }

65 // std::cout << pass << ’\n’;

66 if(pass == 30){

67 SC_REPORT_INFO("NVIC Verification","ClearPendingIRQ: Verification PASSED"

);

68

69 }

70 }

71

72 void Software::NVIC_verification_GetEnable(void){

73 uint32_t read;

74 int pass;

75 uint32_t i=0;

76 for(int irq = 0;irq<30;irq++){

77 if(i) cpu_ptr->NVIC_EnableIRQ(irq);

78 read = cpu_ptr->NVIC_GetEnableIRQ(irq);

79 std::cout << "/* message */"<< i << ’\n’;

80 if(read == i) pass++;

81 i = !i;

82 }

83 if(pass == 30){

84 SC_REPORT_INFO("NVIC","GetEnable Verification PASSED");

85 }else{

86 std::cout << pass <<" tests passed out of 30" << ’\n’;

87 SC_REPORT_ERROR("NVIC","GetEnable Verification FAILED");

88 }

89 }

90

91 void Software::NVIC_verification_GetPending(void){

92 uint32_t read;

93 int pass;

94 int i = 0;

95 for(int irq = 0;irq<30;irq++){

96

97 cpu_ptr->NVICregs.nvicISPR[((uint32_t)(irq) >> 5)] |= i << ((uint32_t)(

irq) & 0x1F);

98

99 read = cpu_ptr->NVIC_GetPendingIRQ(irq);

112

100 if(read == i) pass++;

101 i = !i;

102 }

103 if(pass == 30){

104 SC_REPORT_INFO("NVIC","GetPending Verification PASSED");

105 }else{

106 std::cout << pass <<" tests passed out of 30" << ’\n’;

107 SC_REPORT_ERROR("NVIC","GetPending Verification FAILED");

108 }

109 }

B.5.2 GPIO verification tests

1 #include "sw_main.h"

2 #include "cpu.h"

3 #include <bitset>

4 #include "addresses.h"

5 // #include "scv.h"

6

7 void Software::sw_main(void){

8

9 int data_in = 0 ;

10

11 //reset OUT register before the test

12 cpu_ptr->apb_simple_write(NRF_GPIO_OUTSET_address, data_in);

13 cpu_ptr->delay_us(5);

14

15 individual_bit_SET_CLR_TEST();

16

17

18 bits_SET_then_CLR_TEST();

19

20 }

21

22 /* This test goal is to verify that each individual bit that has been set

in OUTSET

113

23 * register is actuall sit in the OUT register, and each bit that has been

set

24 * in OUTCLR register is cleared in the OUT register.

25 */

26 void Software::individual_bit_SET_CLR_TEST(void){

27 int data_in = 0;

28 int data_out;

29 int i;

30 int set_pass = 0;

31 int clr_pass = 0;

32

33 for (i = 0;i<32;i++){

34 data_in = 0;

35 data_in = data_in | (1 << i) ;

36

37 cpu_ptr->apb_simple_write(NRF_GPIO_OUTSET_address, data_in);

38 cpu_ptr->delay_us(5);

39

40 cpu_ptr->apb_simple_read(NRF_GPIO_OUT_address, data_out);

41 cpu_ptr->delay_us(5);

42

43

44 if (data_out & (1 << i)){

45 set_pass++;

46 }

47

48 cpu_ptr->apb_simple_write(NRF_GPIO_OUTCLR_address, data_in);

49 cpu_ptr->delay_us(5);

50

51 cpu_ptr->apb_simple_read(NRF_GPIO_OUT_address, data_out);

52 cpu_ptr->delay_us(5);

53

54 // std::cout <<std::bitset<32> (data_out)<< ’\n’;

55

56 if (!(data_out & (1 << i))){

57 clr_pass++;

58 }

59 }

114

60

61

62 if(set_pass == i){

63 SC_REPORT_INFO("GPIO verification","Indvidual bits SETOUT verification

PASSED");

64 }else{

65 SC_REPORT_INFO("GPIO verification","Indvidual bits SETOUT verification

FAILED");

66

67 }

68

69 if(clr_pass == i){

70 SC_REPORT_INFO("GPIO verification","Indvidual bits CLROUT verification

PASSED");

71 }else{

72 SC_REPORT_INFO("GPIO verification","Indvidual bits CLROUT verification

FAILED");

73

74 }

75 }

76

77

78 /* The goal of this tes is to verify that setting a bit in OUTSET

79 *register would only affect the corrosponding bit on OUT registers

80 * leaving the rest of the bits untouched, and the same for CLROUT

81 */

82 void Software::bits_SET_then_CLR_TEST(void){

83 int data_in = 0;

84 int data_out;

85 int i;

86 int set_pass = 0;

87 int clr_pass = 0;

88 int t;

89 uint32_t total_set_pass;

90 uint32_t total_clr_pass;

91

92 data_in = 0;

93

115

94 for (i = 0;i<=31;i++){

95 data_in = 0;

96 data_in = data_in | (1 << i) ;

97

98 cpu_ptr->apb_simple_write(NRF_GPIO_OUTSET_address, data_in);

99 cpu_ptr->delay_us(5);

100

101 cpu_ptr->apb_simple_read(NRF_GPIO_OUT_address, data_out);

102 cpu_ptr->delay_us(5);

103 std::cout << std::bitset<32>(data_in) << ’\n’;

104 std::cout << std::bitset<32>(data_out) << ’\n’;

105

106 if (data_out & (1 << i) == data_in){

107 set_pass++;

108 }

109

110 }

111 std::cout << set_pass << ’\n’;

112 if(set_pass==32){

113 total_set_pass = 1;

114 }else{

115 total_set_pass = 0;

116 }

117

118

119 data_in = 0;

120

121 for (i = 0;i<=31;i++){

122

123 data_in = data_in | (1 << i) ;

124

125 cpu_ptr->apb_simple_write(NRF_GPIO_OUTCLR_address, data_in);

126 cpu_ptr->delay_us(5);

127

128 cpu_ptr->apb_simple_read(NRF_GPIO_OUT_address, data_out);

129 cpu_ptr->delay_us(5);

130

131 if (!(data_out & (1 << i))){

116

132 clr_pass++;

133 }

134 }

135

136

137 if(clr_pass==32){

138 total_clr_pass = 1;

139

140 }else{ total_clr_pass = 0;

141 }

142

143 if(total_set_pass){

144

145 SC_REPORT_INFO("GPIO verification","accemulative SETOUT verification

PASSED");

146 }else{ SC_REPORT_INFO("GPIO verification","accemulative SETOUT

verification FAILED");

147 }

148

149 if(total_clr_pass){

150 SC_REPORT_INFO("GPIO verification","accemulative CLROUT verification

PASSED");

151 }else{

152 SC_REPORT_INFO("GPIO verification","accemulative CLROUT verification FAILED

");

153 }

154

155 }

B.5.3 CLOCK verification tests

1 #include "sw_main.h"

2 #include "cpu.h"

3 #include <bitset>

4 #include "addresses.h"

5

6

117

7 void Software::sw_main(void){

8

9 HFCLK_verification();

10 LFCLK_verification();

11 LFCLK_calibration_verification();

12

13

14 }

15

16

17 void Software::HFCLK_verification(void){

18

19 int data_in;

20 int data_out;

21

22 //check that the clock does not start when

23 // the HFCLK task hasn’t triggered

24 //data_in = 0x0 ;

25 //cpu_ptr->apb_simple_write(TASKS_HFCLKSTART_address, data_in);

26 //cpu_ptr->delay_us(5);

27

28 cpu_ptr->apb_simple_read(NRF_CLOCK_HFCLKSTAT_address, data_out);

29 cpu_ptr->delay_us(5);

30

31 if(data_out & 0x10000){

32 std::cout << "Error: the HFCLK has not started yet";

33 }

34

35 // check that HFCLKSTARTED event has not been triggered

36 cpu_ptr->apb_simple_read(NRF_CLOCK_EVENTS_HFCLKSTARTED_address,

data_out);

37 cpu_ptr->delay_us(5);

38

39 if(data_out & 0x1){

40 std::cout << "Error: the HFCLK has not started yet";

41 }

42

43 //check that the state and the source change

118

44 // when the HFCLK task is triggered

45 data_in = 0x1 ;

46 cpu_ptr->apb_simple_write(NRF_CLOCK_TASKS_HFCLKSTART_address, data_in);

47 cpu_ptr->delay_us(5);

48

49 cpu_ptr->apb_simple_read(NRF_CLOCK_HFCLKSTAT_address, data_out);

50 cpu_ptr->delay_us(5);

51

52 if(!(data_out & 0x10000) | !(data_out & 0x1)){

53 std::cout << "Error: the HFCLK has started already";

54 }

55

56 //check that HFCLKSTARTED event has been generated

57 cpu_ptr->apb_simple_read(NRF_CLOCK_EVENTS_HFCLKSTARTED_address,

data_out);

58 cpu_ptr->delay_us(5);

59

60 if(!(data_out & 0x1)){

61 std::cout << "Error: the HFCLK has started already";

62 }

63

64 //check that when the HFCLKSTOP task triggered

65 // the state of the HFCLK will stop

66 data_in = 0x0;

67 cpu_ptr->apb_simple_write(NRF_CLOCK_TASKS_HFCLKSTOP_address, data_in);

68 cpu_ptr->delay_us(5);

69

70 cpu_ptr->apb_simple_read(NRF_CLOCK_HFCLKSTAT_address, data_out);

71 cpu_ptr->delay_us(5);

72

73 if (!(data_out & 0x1)){

74 std::cout << "Error: the HFCLK has not been stopped yet";

75 }

76

77

78 //check that the state of the FCLK will go back to zero

79 //after stopping it it

80

119

81 data_in = 0x1;

82 cpu_ptr->apb_simple_write(NRF_CLOCK_TASKS_HFCLKSTOP_address, data_in);

83 cpu_ptr->delay_us(5);

84

85

86 cpu_ptr->apb_simple_read(NRF_CLOCK_HFCLKSTAT_address, data_out);

87 cpu_ptr->delay_us(5);

88

89 if (data_out & 0x1){

90 std::cout << "Error: the HFCLK has been stopped ";

91 }

92 }

93

94 void Software::LFCLK_verification(void){

95

96 int data_in;

97 int data_out;

98

99 //check the registers before LFCLKSTART is triggered

100 cpu_ptr->apb_simple_read(NRF_CLOCK_LFCLKSTAT_address, data_out);

101 cpu_ptr->delay_us(5);

102

103 if(data_out & 0x10000){

104 std::cout <<"Error: LFCLKSTART has not been triggered";

105 }

106 if(data_out & 0x3){

107 std::cout <<"Error: LFCLKSRC is not RC";

108 }

109

110 //start the LFCLK with RC as source

111 data_in = 1;

112 cpu_ptr->apb_simple_write(NRF_CLOCK_TASKS_LFCLKSTART_address,data_in);

113 cpu_ptr->delay_us(5);

114

115 cpu_ptr->apb_simple_read(NRF_CLOCK_LFCLKSTAT_address, data_out);

116 cpu_ptr->delay_us(5);

117

118 if(!(data_out & 0x10000)){

120

119 std::cout <<"Error: LFCLKSTART has been triggered";

120 }

121 if((data_out & 0x3)!= 0x0){

122 std::cout <<"Error: LFCLKSRC is not RC";

123 }

124

125 //stop LFCLK

126 data_in = 1;

127 cpu_ptr->apb_simple_write(NRF_CLOCK_TASKS_LFCLKSTOP_address,data_in);

128 cpu_ptr->delay_us(5);

129

130 cpu_ptr->apb_simple_read(NRF_CLOCK_LFCLKSTAT_address, data_out);

131 cpu_ptr->delay_us(5);

132

133 if(data_out & 0x10000){

134 std::cout <<"Error: LFCLKSTART has been stopped";

135 }

136

137 //set the SRC as external oscillator

138 data_in = 0x1;

139 cpu_ptr->apb_simple_write(NRF_CLOCK_LFCLKSRC_address,data_in);

140 cpu_ptr->delay_us(5);

141

142 cpu_ptr->apb_simple_read(NRF_CLOCK_LFCLKSTAT_address, data_out);

143 cpu_ptr->delay_us(5);

144

145 if((data_out & 0x3)!= 0x1){

146 std::cout <<"Error: LFCLKSTART is not external oscillator";

147 }

148

149 //start the LFCLK with external oscillator as source

150 data_in = 1;

151 cpu_ptr->apb_simple_write(NRF_CLOCK_TASKS_LFCLKSTART_address,data_in);

152 cpu_ptr->delay_us(5);

153

154 cpu_ptr->apb_simple_read(NRF_CLOCK_LFCLKSTAT_address, data_out);

155 cpu_ptr->delay_us(5);

156

121

157 if(!(data_out & 0x10000)){

158 std::cout <<"Error: LFCLKSTART has been triggered";

159 }

160

161 //check that LFCLKSTARTED event has been generated

162 cpu_ptr->apb_simple_read(NRF_CLOCK_EVENTS_LFCLKSTARTED_address,

data_out);

163 cpu_ptr->delay_us(5);

164

165 if(!(data_out & 0x1)){

166 std::cout <<"Error: LFCLKSTART has been triggered";

167 }

168

169

170 }

171

172 void Software::LFCLK_calibration_verification(void){

173

174 int data_in;

175 int data_out;

176

177 //clear the HFCLKSTARTED register

178 data_in = 0x0;

179 cpu_ptr->apb_simple_write(NRF_CLOCK_EVENTS_HFCLKSTARTED_address,

data_in);

180 cpu_ptr->delay_us(5);

181

182

183 //configure the calibration timer interval

184 data_in = 16;

185 cpu_ptr->apb_simple_write(NRF_CLOCK_CTIV_address, data_in);

186 cpu_ptr->delay_us(5);

187

188 //start CT

189 data_in = 0x1;

190 cpu_ptr->apb_simple_write(NRF_CLOCK_TASKS_CTSTART_address,data_in);

191 cpu_ptr->delay_us(5);

192

122

193 cpu_ptr->apb_simple_read(NRF_CLOCK_CTIV_address,data_out);

194 cpu_ptr->delay_us(5);

195

196 while(data_out != 0){

197 cpu_ptr->apb_simple_read(NRF_CLOCK_CTIV_address,data_out);

198 cpu_ptr->delay_us(5);

199 }

200

201 //read the CTTO

202 cpu_ptr->apb_simple_read(NRF_CLOCK_EVENTS_CTTO_address, data_out);

203 cpu_ptr->delay_us(5);

204

205 if(data_out!= 1){

206 SC_REPORT_ERROR("nrf_clock","The timer has not reached zero");

207 }

208

209 //start HFCLK

210 data_in = 0x1;

211 cpu_ptr->apb_simple_write(NRF_CLOCK_TASKS_HFCLKSTART_address,data_in);

212 cpu_ptr->delay_us(5);

213

214 //starting the calibration process

215 data_in = 0x1;

216 cpu_ptr->apb_simple_write(NRF_CLOCK_TASKS_CAL_address,data_in);

217 cpu_ptr->delay_us(5);

218

219 //check that calibration DONE event has been generated

220 cpu_ptr->apb_simple_read(NRF_CLOCK_EVENTS_DONE_address, data_out);

221 cpu_ptr->delay_us(5);

222

223 if(!(data_out & 0x1)){

224 SC_REPORT_ERROR("nrf_clock","DONE event has not been generated");

225 }

226

227 }

123

B.5.4 System verification tests

1 #include "sw_main.h"

2 #include "cpu.h"

3 #include <bitset>

4 #include "addresses.h"

5

6

7 void Software::sw_main(void){

8

9 system_verification();

10 }

11

12

13 /*This verification will work as follow: it will turn on LFCLK with

external oscillator

14 * as a source which will generate an interrupt the interrupt will be

deteted by the NVIC

15 * and it would set some bits in the GPIO module.

16 */

17 void Software::system_verification(void){

18 int data_in;

19 int data_out;

20

21 //enable interrupt in the NVIC_ClearPendingIRQ

22 cpu_ptr->NVIC_EnableIRQ(0x0);

23

24 //enable the interrupt for EVENTS_LFCLKSTARTED

25 cpu_ptr->delay_us(5);

26 data_in = 0x2;

27 cpu_ptr->apb_simple_write(NRF_CLOCK_INTENSET_address, data_in);

28

29 // choose the LFCLK source

30 cpu_ptr->delay_us(5);

31 data_in = 0x1;

32 cpu_ptr->apb_simple_write(NRF_CLOCK_LFCLKSRC_address, data_in);

33

34 // start the LFCLK

124

35 cpu_ptr->delay_us(5);

36 data_in = 0x1;

37 cpu_ptr->apb_simple_write(NRF_CLOCK_TASKS_LFCLKSTART_address, data_in);

38

39 //read OUT register

40 cpu_ptr->delay_us(5);

41 cpu_ptr->apb_simple_read(NRF_GPIO_OUT_address, data_out);

42

43 if (data_out == 0x10){

44 SC_REPORT_INFO("system verification","system verification PASSED");

45 }else{

46 SC_REPORT_INFO("system verification","system verification FAILED");

47 } }

B.6 The base test code

1 void fun_mpsl_init_001(Cpu* cpu_ptr){

2 ASSERT_EQ(mpsl_init(cpu_ptr),0);

3

4 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(POWER_CLOCK_IRQn));

5 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(RTC0_IRQn));

6 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(MPSL_TEST_IRQn));

7

8 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(TIMER0_IRQn) == 0);

9 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(RADIO_IRQn) == 0);

10 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(TEMP_IRQn) == 0);

11

12 mpsl_uninit(cpu_ptr);

13

14 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(POWER_CLOCK_IRQn) == 0);

15 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(RTC0_IRQn) == 0);

16 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(TIMER0_IRQn) == 0);

17 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(RADIO_IRQn) == 0);

18 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(TEMP_IRQn) == 0);

19 ASSERT(cpu_ptr->NVIC_GetEnableIRQ(MPSL_TEST_IRQn) == 0);

20 }

21

125

126

Bibliography

[1] David Barahona. Virtualization of low-power digital architectures in systemc, 2020.

[2] David C Black, Jack Donovan, Bill Bunton, and Anna Keist. SystemC: From the ground

up, volume 71. Springer Science & Business Media, 2009.

[3] L. Cai and D. Gajski. Transaction level modeling: an overview. In First IEEE/ACM/IFIP

International Conference on Hardware/ Software Codesign and Systems Synthesis (IEEE

Cat. No.03TH8721), pages 19–24, Oct 2003.

[4] Tom De Schutter. Better Software. Faster! Best Practices in Virtual Prototyping. Synopsys

Press, Mountain View, CA, USA, 2014.

[5] Frank Ghenassia et al. Transaction-level modeling with SystemC, volume 2. Springer,

2005.

[6] Paula Herber and Bettina Hünnemeyer. Formal verification of systemc designs using the

blast software model checker. volume 1250, 09 2014.

[7] H. Qian and C. Zheng. A embedded software testing process model. In 2009 International

Conference on Computational Intelligence and Software Engineering, pages 1–5, Dec

2009.

[8] Nordic Semiconductor. Bauhaus, internal document, June 2020. Available:

https://projecttools.nordicsemi.no/bitbucket/projects/ESL/

repos/bauhaus/browse.

127

https://projecttools.nordicsemi.no/bitbucket/projects/ESL/repos/bauhaus/browse
https://projecttools.nordicsemi.no/bitbucket/projects/ESL/repos/bauhaus/browse

[9] Nordic Semiconductor. Clock — clock control, February 2020. Available:

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.

nordic.infocenter.nrf52832.ps.v1.1%2Fclock.html&cp=4_2_0_

18&anchor=frontpage_clock.

[10] Nordic Semiconductor. Rtc — real-time counter, February 2020. Available:

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.

nordic.infocenter.nrf52832.ps.v1.1%2Frtc.html&cp=4_2_0_24&

anchor=concept_rvn_vkj_sr.

[11] L. Shuping and P. Ling. The research of v model in testing embedded software. In 2008

International Conference on Computer Science and Information Technology, pages 463–

466, Aug 2008.

[12] Moshe Vardi. Formal techniques for systemc verification. pages 188–192, 01 2007.

128

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52832.ps.v1.1%2Fclock.html&cp=4_2_0_18&anchor=frontpage_clock
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52832.ps.v1.1%2Fclock.html&cp=4_2_0_18&anchor=frontpage_clock
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52832.ps.v1.1%2Fclock.html&cp=4_2_0_18&anchor=frontpage_clock
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52832.ps.v1.1%2Frtc.html&cp=4_2_0_24&anchor=concept_rvn_vkj_sr
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52832.ps.v1.1%2Frtc.html&cp=4_2_0_24&anchor=concept_rvn_vkj_sr
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52832.ps.v1.1%2Frtc.html&cp=4_2_0_24&anchor=concept_rvn_vkj_sr

129

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Thesis scope
	Outline

	Theory
	Software testing
	Current testing methodology
	Unit tests
	Target tests

	Virtual Prototyping, SystemC and TLM
	Virtual prototyping
	tlm methodology
	SystemC

	 mpsl
	System components and peripherals
	nvic
	scb
	CLOCK
	RADIO
	rtc
	TIMER
	Temperature sensor
	gpio

	System core Bauhaus

	Methodology
	The initial subset of tests
	Identifying hardware accesses
	Extracted peripherals
	Modeling of peripherals
	nvic model
	CLOCK peripheral's model
	gpio module model

	Models verification
	gpio model behaviour verification
	CLOCK model behaviour verification
	nvic Verification
	System Verification

	Running tests on the virtual platform
	Running the base test
	CLOCK peripheral tests

	Results
	Results of Models verification
	CLOCK model verification
	GPIO model verification
	NVIC model verification
	System verification

	Executed tests on the platform
	Results of the base test
	Results of CLOCK's tests

	Verbosity and visibility
	Reusability and expandability
	Virtual prototype vs. development boards

	Discussion
	Conclusion
	Acronyms
	Code
	Template code
	nvic model as part of the CPU
	CLOCK code
	GPIO code
	Verification tests
	NVIC verification tests
	GPIO verification tests
	CLOCK verification tests
	System verification tests

	The base test code

	Bibliography

