
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Maja Sofie Stava

ANN for classification of Jack snipe

Master’s thesis in Electronics Systems Design and Innovation

Supervisor: Guillaume Dutilleux

June 2020

Maja Sofie Stava

ANN for classification of Jack snipe

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Guillaume Dutilleux
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

ABSTRACT

Machine learning used in biodiversity conservation is an expanding field of
study, as it provides non-intrusive monitoring of events in the wild. For the
purpose of this thesis, the event of interest is to classify jack snipe in a record-
ing of several hours. A binary CNN- and LSTM model was built and trained
on an annotated dataset consisting of 400 clips. Each clip has a duration of
4 seconds, where 130 of the clips are of jack snipe vocalization, and 270 is
non-jack snipe vocalization, like wind, grouse, and crow. The models are then
tested on the sound recording of 1 h and 49 min, containing 22 vocalizations
of jack snipe. The recording included clean vocalizations and vocalizations pol-
luted with environmental sounds such as wind and river noise. The best result
came from using the CNN model with input shape of (90, 126, 1) and added
DTW and bandpass filter with frequency range 400-2000 Hz on the clips to be
predicted, with a true positive rate (TPR) of TPR = 0.88 and false positive rate
(FPR) of FPR = 0.086. The total length of all the 196 positive predicted clips
is 13 min and 4 sec. When testing on full recordings of 9 h and 15 h length,
the predictions proved more unstable depending on how windy the recording
was.

SAMMENDRAG

Maskinlæring som brukes i biomangfoldisk bevarelse er et fagområde i utvik-
ling, da det tilbyr en ikke-ingripende overvåkning av hendelser i naturen. For
formålet til denne avhandlingen så er vi interesert i å klassifisere kvartsbekkasin
i opptak på flere timer. En binær CNN -og LSTM modell ble bygd og trent på
et merket datasett bestående av 400 klipp, hvor hvert klipp varte i 4 sekunder.
Av disse var 130 klipp av kvartbekkasin, mens 270 var av ikke-kvartbekkasin.
Modelene blir testet med et umerket lydopptak på 1 t og 49 min, som inne-
holder 22 vokaliseringer av kvartbekkasin. Lydklippet inneholder klare vokal-
iseringer uten mye forstyrrelse, og vokaliseringer som er forurenset med lyder
fra omgivelsen, slik som vind og elvbrus. Det beste resultatet ble oppnådd ved å
bruke en CNN model med inngangsform (90, 126, 1) og et påført båndpassfil-
ter med frekvensområde 400-2000 Hz på lydklippet. Dette ga en sann positive
testrate (TPR) på TPR= 0.88, og en falsk positiv testrate (FPR) på FPR= 0.086.
Den totale lengen på de predikert positive klippene er 13 min og 4 s.

ABBREVIATIONS

ANN Artificial Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

FPR False positive rate

JS Jack snipe

LSTM Long Short-Term Memory

MFCC Mel-frequency Cepstrum Coefficient

ML Machine Learning

NN Neural Network

RNN Recurent Neural Network

TPR True positive rate

i

AKNOWLEDGMENT

I would like to thank my supervisor, Guillaume Dutilleux, for providing guid-
ance and advice on how to proceed with the task. I would also like to thank
Eline Stenwig and Kristina Andersen Thue for discussing different approaches
with me, and giving moral support when needed.

I would like to thank NINA and John Atle Kålsås for providing the annotated
files and the sound files used to create the dataset.

Last but not least, I would like to thank my family for support, encouragement
and brain storming around different ways to solve the problems at hand during
the writing of this thesis.

iii

CONTENTS

1 Introduction . 1
1.1 Motivation . 1
1.2 Scope . 2
1.3 Previous work . 2
1.4 Outline of the report . 3
1.5 Background . 4

2 Theory . 7
2.1 Recurrent neural networks, Long short-term memory 7
2.2 Convolutional neural network . 8
2.3 Mel-frequency Cepstrum Coefficient 10
2.4 Implementation . 11
2.5 Validation and improvements of the models 14

3 Method . 17
3.1 Pre-processing . 17
3.2 Implementation . 19
3.3 Testing of the trained models . 22

4 Results . 25
4.1 Training of model . 25

4.1.1 CNN model . 25
4.1.2 LSTM model . 26

4.2 Testing of the models using test recording JS22 26
4.2.1 CNN model . 27
4.2.2 LSTM model . 28

4.3 Vocalizations detected fully or partly 29
4.4 Testing on long recording . 29

5 Discussion . 31

v

vi

5.1 The training of the models . 31
5.2 Validation of the models . 31
5.3 CNN vs LSTM . 33
5.4 Testing on full length recording . 34

6 Conclusion . 35
6.1 Future work . 36

A Timestamp for jack snipe vocalization in test clip JS22 41
B How to set up and run the training/classification script 45

B.1 Packages to install . 45
B.2 Training file . 46
B.3 Running the trained model . 46

C Trained models . 47
C.1 Trained CNN graph and arcitecture 47
C.2 LSTM . 51

D Confusion matrix, TPR and FPR for the CNN model 53
D.1 CNN with 45 mel bands . 53
D.2 CNN with 90 mel bands . 54
D.3 CNN with 128 mel bands . 55

E confusion matrix, TPR and FPR for the LSTM model 57
E.1 LSTM with 45 mel bands . 57
E.2 LSTM with 90 mel bands . 58
E.3 LSTM with 128 mel bands . 59

F List of bird species . 61

CHAPTER1

INTRODUCTION

The dataset used in this project was recorded in Kautokeino between 7-14th

of June 2017. It is not representative for all birds in Kautokeino, as it is recor-
ded at one location and in a limited time window of 8 days in June. Each day
two sound files are generated, one large containing 18 h and 38 min of audio
and one small with 5h and 20min of audio. It was decided to focus mainly on
jack snipe, from here referred to as JS, as this bird is red-listed and difficult
to spot visually. The goal is to identify JS vocalization in the recordings using
machine learning methods and reduce the time it would take to look through
the full recording manually to find the vocalizations. A benchmark code using
Mel-frequency cepstrum coefficient and convolutional neural network from the
Urban sound challenge [1] were used as inspiration.

1.1 Motivation

The artificial neural network is an exciting field in fast development, becoming
more important in modern society. Examples of use are in medical technology,
biodiversity monitoring, automated cars, and in financial institutions[2]. For
biodiversity conservation, non-inverse bioacoustic tracking is a growing field of
interest[3]. As I like spending time in the outdoors, I found the idea of using
machine learning to classify birds interesting, and an excellent opportunity to
learn more about machine learning.

1

2

1.2 Scope

The scope of this report is to look into the following

• Using machine learning to train a binary NN model on a dataset made
up of 400 clips with a length of 4 seconds, where 130 is of Jack snipe
vocalization, and 270 is of any other sound than jack snipe.
• Using machine learning to identify Jack snipe by running a trained model

on long recordings from a recorder placed in the wild. The results are
presented as a sound clip containing the jack snipe’s vocalization, where
the name gives the start time of the vocalization, the length of the clip,
and the confidence interval. The timestamp is also stored in a text file to
be viewed in Audacity.

1.3 Previous work

Convolutional neural networks (CNN) are popular to use in audio classification,
and have been used for classifying bird species[4], environmental sounds[1],
fish[5] and music genre[6]. In 2004, Dan Stowell and Mark D. Plumbley [7]
used unsupervised learning with the implementation of spherical k-mean, on
four large and diverse datasets of bird vocalization. The results gave a strongly
improved bird classification. They also suggested that raw Mel spectra might be
better for benchmark compared to the MFCCs, as it outperformed the MFCCs
in their tests.

Stefan Kahl et al. [8] used CNNs for large scale birds sound classification for
the BirdCLEF 2017. The dataset used consisted of 36 496 audio recordings with
1500 different bird species. The training set consisted of unbalanced classes,
with the smallest class having four recordings, while the maximum class has
160 recordings. They separated the sound file into five seconds sound clips with
four seconds overlap and transformed these clips into 940 740 spectrograms.
They modeled three different CNNs, where the runtime during training was
measured to a maximum of 5500 s per Epoch. They achieved a mean average
precision of 0.605.

In Bird sounds classification by large scale acoustic features and extreme learning
machine [9] by Kun Quian et al., they implement p-center for segmentation,
before extracting a large scale of acoustic features from bird sound syllables as
units. The classifier is an extreme learning machine and achieved an accuracy
of 86.57 % with 54 bird species.

Chapter 1: Introduction 3

Shawn Hershey et al. [10] looked closer into the processing time for large data-
sets by using 70 million training videos from Youtube, generating a total of 5.24
million hours of audio labeled with 30 871 audio tags. The training time for the
different models varied between 35h to 119h.

The lack of annotated datasets has been a challenge when trying to improve
the accuracy of bird song classification. In 2019, Dan Stowell et al. [11] intro-
duced NIPS4Bplus in NIPS4Bplus: a richly annotated birdsong audio dataset.
NIPS4Bplus consists of recordings of bird vocalization with species tags and
temporal annotations. The intent was to provide a fully annotated dataset with
bird vocalization to improve detection and classification further.

Dan Stowell launched the app Warblr the 13th august 2015 [12]. Wablr is a
bird recognition app that is aimed for British birds. It uses unsupervised learn-
ing, with spherical k-means in combination with CNN [7]. From the launch back
in 2015 to today, Wablr has become increasingly popular, and thus the sound
database for the app increases as user world wild record birds and saves the clip
in the database. In 2017 a Norwegian app similar to Wablr, Whatbird, launched
by a company based in Trondheim. Today the app has over 30 000 daily users
[13], and the database expands as the users store their clip in the database. In
order for the apps to give a result, it needs to have access to a mobile network
or Wi-Fi. It analyses each clip and can have problems identifying multiple birds
or if there is much noise.

1.4 Outline of the report

First, some theory on machine learning and the neural network will be presen-
ted in Chapter 2. Important layers making up a neural network model in Keras
is explained in the same chapter. In Chapter 3, the method for pre-processing
the training dataset and training the models is explained. The making of a test
clip to run trough the trained models is also explained, together with meth-
ods to help validate the models. Then follows Chapter 4 where all the results
from the running and testing on the models are presented before a follow-up
discussion is done in Chapter 5 followed by the conclusion in Chapter 6

4

1.5 Background

Jack snipe

Jack snipe is a shy bird, that tends to crunch down when approached, making it
hard to detect visually. The preferred habitat is thick vegetation, wet grassland,
marshes, and reedbeds. It is a small bird with a long beak. Jack snipe vocalizes
in the lower frequency band, with a frequency range between 500-1500 Hz.
The vocalization sounds a bit like a galloping horse in the distance, with one
vocalization lasting around 8-12 seconds.

Machine learning

Machine learning (ML) focuses on the development of computer programs and
allows the machine to learn from a large amount of data, and predict the most
likely output based on the observed patterns picked up during training. There
are four different machine learning methods: Supervised ML -, unsupervised
ML-, Semi-supervised ML -and Reinforcement ML algorithms. For the purpose
of this thesis, supervised ML is used.

Supervised learning

According to Mark Ryan M.Talabis et al. [14], supervised learning uses labeled
data to train the model. The prediction of unlabeled data is made with the
labeled data as the basis of the prediction. It is still used a lot today and is easy
to implement. A drawback is the performance, as it is time consuming when
dealing with large datasets. Supervised learning demands more work from the
developer, as one has to label the training data manually.

Chapter 1: Introduction 5

Artificial neural network

An artificial neural network (ANN) is a network of nodes developed to imit-
ate the human brain. The nodes in the neural network (NN) works as neurons
in the brain. The neuron nodes are interconnected with each other, analyzing
and processing information and is capable of learning as more input is given.
An illustration of the natural neuron is shown in Fig.1.1. Easily explained, the

Figure 1.1: Illustration of a neuron

neuron takes in input (dendrites), process the input (soma), does some non-
linear operation on the processed input (axon) before outputting the results to
the other connected neurons (synapses). The artificial neurons are not as com-
plex as the natural neurons, but the function of these four basic components
are simulated in the artificial neurons [15].

CHAPTER2

THEORY

2.1 Recurrent neural networks, Long short-term memory

In The Basics of Recurrent Neural Networks (RNNs) by Ben Khuong [16], a re-
current neural network (RNN) is a model that gives the output at time t back to
the input in the same network layer at time t+1. A drawback when using RNNs
is that RNNs are not capable of memorizing long term dependency of an input
time sequence since the gradient will vanish when using this model. To solve
the shortcoming of RNNs, the long short-term memory (LSTM) network was
introduced. LSTM is a RNN, with feedback connections. The LSTM network is
well suited to classify, process, and make predictions based on time series data.

A LSTM network consists of a set of recurrently connected subnets, called memory
blocks, where each block contains a minimum of one self-connected memory
cell and three multiplicative units: The input, output and forget gates. See Fig.
2.1 for a graphical overview of the cell. By looking at the figure, one can see
that the new input to the model (xt) is combined with the previous output from
ht−1. The input signal is then processed through the input gate, The first order
of business in the LSTM cell is to decide what information to keep in the cell
state. This is done in the forget gate (ft), and it outputs a number between 0 and
1, where 0 means throw all away and 1 means keep all. Next step is to deiced
what information to store in the cell state. This is done in the input gate (it),
which is a layer of activated sigmoid nodes. The combined input signal is then
squashed by the tanh layer, and multiplied with the output from the input gate
is then multiplied by the squashed input signal. The result of this operation is
that the sigmoids get rid of any elements of the input vector that is not required.

7

8

Figure 2.1: Illustration of a LSTM cell

This gives the network a continuous series of write, read, and reset operations.
The set-up of an LSTM network is the same as for a simple RNN, with the only
difference being that the non-linear units in the hidden layers of the RNN are
replaced by the memory blocks of LSTM [16].

2.2 Convolutional neural network

CNN is often used for machine learning on images, as it identifies spatial pat-
terns from images efficiently. CNN consists of an input and output layer, with
multiply hidden layers between them. The hidden layers of a CNN model have
a minimum of one convolution layer and then one or more fully connected lay-
ers. A CNN model with three convolutional layers and one fully connected layer
can be seen in Fig. 2.2.

Figure 2.2: Illustration of a CNN model with 3 convolution layers.

Chapter 2: Theory 9

The convolutional layer - Conv2D

The convolutional layer is the first layer to extract features from the input im-
age, learning the image features by using small squares of input data. The con-
volution layer preserves the relationship between the pixels [17].

The input to a convolution layer is an image of the form m×m×q, where m
is the height and the width of the image given in pixels, and q is the number of
channels. The convolution layer will consist of k kernels of size n×n, where n<
m. the kernel size represents the height and width of the 2D convolution win-
dow and can vary for each kernel. The kernel size decides the locally connected
structure, where each of these is convoluted with the input image to produce
k feature maps of the size m-n+1. As a general rule, the kernel size is often
two odd numbers, e.g. (3, 3) or (5, 5). The reason is simple; when the kernel
is odd-sized, the output pixel will be centered in all the layers, see Fig.2.3. The

Figure 2.3: Illustration of two different kernel sizes, with kernel size (2, 2) to
the left and (3, 3) to the right.

first Conv2D layer needs to be given the input_shape, e.g. input_shape = (128,
126, 1), which gives a 128×126 greyscale picture. This is followed by a pool-
ing layer, where each map is downsampled by pooling[18]. Pooling reduces
the time and use of resources in the training stage[19]. It reduces the feature
map size without a loss in information, thus reduces the amount of processing
needed in the training of the model. There are three common variants of pool-
ing in CNN: Max poling, which takes the maximum pixel value within the filter,
Average pooling, which takes the average pixel value within the square and sum
pooling, which sums the pixel values in the filter. The pooling is done over p×p
contiguous regions, where the size of the pooling operator is smaller than the
size of the feature map. The size of the feature map is given as the output after
each Conv2D layer. The most commonly used is a 2×2 pixel window applied

10

with a stride of two pixels. This gives that each feature map will be reduced by
a factor of two, reducing the number of pixels or values in each feature map to
one quarter the size. In recent years, max-pooling has become the most com-
mon to use, as it extracts the maximum value for each patch of the feature map,
see Fig.2.4 for illustration.

Figure 2.4: Illustration of max pooling with kernel size 2x2 and stride = 2.

2.3 Mel-frequency Cepstrum Coefficient

Mel-Frequency Cepstral coefficient (MFCC) is explained by Golam Rabbani et
al. [20] as the information on the rate of change in spectral bands. It is based
on the fact that that variation in the human ear’s critical bandwidth with fre-
quency is known. MFCCs uses two types of filters, linearly spaced filters, and
logarithmically spaced filters. The signal is then expressed in the Mel frequency
scale in order to capture the important characteristics of the signal. See Fig. 2.5
for a block diagram of the MFCC processor. The triangular shapes in the mel

Figure 2.5: A block diagram of the MFCC process.

filter banks is called mel bands. From [20], the Mel-frequency scale is a linear
frequency spacing below 1000Hz and a logarithmic spacing above 1000Hz. The

Chapter 2: Theory 11

pitch of a 1 kHz tone, which is 40 dB over the perceptual hearing threshold, is
used as a reference point and defined as 1000 meld. The formula for converting
frequency f in Hz to the Mel scale can be seen in Eq.(2.1).

Mel(f) = 2595 ∗ log10(1+
f

700
) (2.1)

The Cepstral coefficient is obtained by taking the log mel spectrum Mel(f) and
convert it back to time. The mel spectrum coefficients, as well as their logar-
ithms, are real numbers, so the conversion back to the time domain can be done
by using Discrete Cosine Transform (DCT). The resulting spectrum is not in the
frequency domain nor in the time domain; it is in the quefrequency domain
and is referred to as the Cepstral[21]. The MFCC can be found as its amplitude.
When plotting, the mel spectrogram shows the time on its x-axis and the mel
scale on the y-axis. In Fig.2.6, the mel spectrogram of a JS vocalization is dis-
played. In the Fig. 2.6, the y-axis is the frequency in log scale.

Figure 2.6: Mel spectrogram of a clean jack snipe vocalization, the x-axis
shows the time in [s] and the y-axis is the frequency in log scale.

2.4 Implementation

Keras is an API used on the TensorFlow backend to make the implementation
of machine learning simpler. It is compatible with Python, and have support in
many libraries.

Before the training starts, some pre-defined variables are set: epoch and batch

12

size. Epochs are the number of times the algorithm runs through the entire data-
set. In general, the epoch size is decided depending on if the dataset contains
very similar or different data, e.g., only white dogs or black cats will need fewer
epochs than if the data is different. Batch size is equal to the number of itera-
tions for one epoch. The model is trained using gradient descent, where there
are three common types: Stochastic-, Batch -and mini-batch gradient descent,
see list below.

• Batch gradient descent: Batch size = size of the training set
• Stochastic gradient descent: Batch size = 1
• Mini-batch gradient descent: 1 < Batch size < size of the training set

Batch gradient descent is time-consuming and can have only one update per
epoch. On the positive side, it is guaranteed to converge. Stochastic gradient
descent is usually much faster than batch gradient descent and can be used to
learn online. Mini-batch gradient descent uses the best of both worlds, as it re-
duces the variance of the parameter updates and has support in deep learning
libraries, which makes the computing of gradient with respect to a mini-batch
very efficient[22].

As the training dataset often is extensive, the batch size is generally not set
equal to training size. Small batch size is often preferred, as it makes it easier
to fit one batch of training data in memory, and because it gives more noise.
This offers a regularizing effect and reduces the generalization error[23].

Important layers in Keras for machine learning

From [24], the following are some of the important layers in Keras that needs
or is beneficial to implement when building a NN model.

• Dropout(): The dropout layer is used to prevent overfitting. The dropout
rate is a float between 0 and 1. The dropout layer sets random input nodes
to 0 and scales the other nodes up by 1

1−rate . To activate the Dropout()
layer, the training parameter must be set to True.
• Dense(): The deeply connected NN layer. It implements the operation:

output = activation(dot(input, kernel) + bias) where activation is the ac-
tivation function passed as the activation argument (like ReLU or softmax,
see below for explanation of both) and kernel is a weights matrix created
by the layer. If use bias is set to true, the bias is a bias vector created by
the layer.
• Flatten(): It simply flattens the input without affecting the batch size. For

example, if the input to the flatten layer is on the form (None, 3, 30, 16),
the output shape is (None, 1440), as 3x30x16 = 1440.

Chapter 2: Theory 13

• Activation layer: The activation functions are either linear or non-linear,
and is applied to the linear input before the output is passed on to the
next layer. In machine learning it is most popular to chose a non-linear
activation function, as it can learn from highly complex, non-linear data.
When the non-linear activation function is applied to all neurons in the
NN, it makes the whole network non-linear, making it easier for the model
to generalize the data. Three popular activation functions are the rely,-
tanh -and softmax activation function.

◦ Rectified Linear Unit activation (relu) function, returns the element-
wise maximum of 0 and the input tensor, max(x,0) unless another
max return value is specified.
◦ The tanh activation fuction is a hyperbolic tangent activation func-

tion with range [-1, 1], where a negative inut is mapped strongly
negative and zero inputs will be maped near zero. The tanh activa-
tion function is mainly used for binary classifiers.
◦ Softmax activation function. It converts a real vector to a vector of

probabilities in the range 0-1 and sum to 1. This activation function
is often used for the last layer in the NN so that the result could be
used as a probability distribution.

Compilation

When compiling the model in Keras, the two arguments for optimizer and loss
needs to be specified. There are nine different options for optimizers, which
are all explained in [24]. For deep neural networks, the adam optimizer is a
popular choice. It requires little memory and works well without changing the
hyperparameters to much. For shallow neural networks, the Stochastic gradient
descent (SGD) optimizer works well.

For the other argument, the loss function, there are three main types of loss:
Probabilistic losses, Regression losses, and hinge losses. Each type has multiple
subclasses, see [24] for more details. Probability losses give the cross-entropy
loss between a true label and the predicted label and are used when there
are only to classes to predict. Regression loss calculates the mean square er-
ror between true labels and predicted labels. Hinge losses lie in the name, as
it computes the hinge loss between a true label and the predicted label. The
hinge loss is widely used for support vector machines.

14

2.5 Validation and improvements of the models

Overfitting and underfitting

In machine learning, there are two outcomes one wishes to avoid when train-
ing a model; underfitting and overfitting. Underfitting is described by WMP van
der Aalst et al. [25] when the model over-generalizes the data, meaning that
the model will have problems to assign specific characteristics to a class. As can
be seen from Fig.2.7, the model has a high error value when its underfitted,
meaning it has poor performance on the training data.

Overfitting is more commonly discussed and can cause the developer to think
that the model works better than it does. An overfitted model will give good
results on the training data, so much that it can have an issue with generaliz-
ing data and thus not perform well on new data[25]. In Fig.2.7, it can be seen
that overfitting occurs when the model gets more complex. There are some

Figure 2.7: An illustration showing underfitting and overfitting in a model
when under training.

techniques that can be used to reduce overfitting when evaluating machine
learning algorithms. As explained by Nitish Srivastava et al. [26], dropout is a
way of reducing overfitting. It provides a method for approximating combining
exponentially many different neural networks efficiently. Dropout refers to the
fact that when used, it drops out nodes (hidden and visible) in a NN. Another
method is to reduce the complexity of the model, i.e., reduce the number of
layers in the model.

Chapter 2: Theory 15

Dynamic time warping

Dynamic time warping (DTW) is a technique that is used to find an alignment
between two given, time-dependent sequences [27]. It finds the best match
between signals even if the signals are out of phase. The dtw() function in
Python gives the best alignment of two signals and returns the distance. The
distance is small for similar clips, and DTW is often used in vocal and speech
recognition where a word could be spoken in different tones and at different
speeds.

CHAPTER3

METHOD

3.1 Pre-processing

The sound files for the training dataset was made from sound clips taken in
a national park in Kautokeino in 2017 by the Norwegian Institute for Nature
Research (NINA). It consists of 400 annotated sound clips, 130 of which is
JS and 230 if of wind, rivers, crickets, and a variety of birds suck as cocko,
chaffinch, crow, grouse a.s.o. A list of the birds possibly present is presented
in Appendix F. The annotation is done in Audacity before the sound files are
exported. The clips containing JS are filtered through a bandpass filter with a
frequency range between 400-2000 Hz as the frequency range for the vocal-
ization of JS is between 500-1500 Hz, see Fig.3.1. This is done to make the

Figure 3.1: Illustration of a vocalization of jack snipe, showing between the
two lines and with a duration of a littler over 13 seconds.

17

18

vocalization as clean as possible. No filtering is used on the samples without JS
vocalization.

Training and validation dataset

The sound clips are then cut to a specific length and sampling frequency. Each
clip is 4 seconds long, with a samplings frequency of 16 kHz. The number of
detected vocalization varied a lot for each file, where the highest had almost
twice as many detected vocalizations than the one with least. The number of
vocalization in each file can be seen from Tab.3.1 The detection of vocalization

Table 3.1: Table showing the number of detected vocalization in the recordings
provided from John Atle Kålås at NINA done between 07-14th of June. Each
recording is divided into to two sub-recordings, containing 24h of sound when
summarized.

Recording Date Detected vocalization
1 07/06 51
2 08/06 56
3 09/06 58
4 10/06 64
5 11/06 69
6 12/06 101
7 13/06 81
8 14/06 93

of JS was marked as seen Tab.3.1 in an additional .csv file also provided from
NINA.

• 1: Not visible on the sonogram, but can be heard weakly
• 2: Weakly visible on the sonogram
• 3: Partly covered by noise from rivers in the sonogram
• 4: Can be seen clearly in the sonogram
• 5: Two males vocalizes almost at the same time, making the vocalization

longer and clearer
• 9: Clearly visible in the sonogram, but the sound quality is not checked

closer
• Detected: the vocalization was detected, but the quality of the detection

was not further commented

The annotated dataset used to train the model contains mainly clips from re-

Chapter 3: Method 19

cording 8 and 3, but also from recording 1 and 2. In total, the annotated dataset
contains 130 clips with jack snipe vocalization, annotated as JS, and 270 clips
containing wind, river noise, a variation of bird calls such as chaffinch, crow,
and cuckoo, annotated as NJS. Out of the 130 clips with JS vocalization, the
majority are marked as 9 in the .csv file, but also vocalizations marked as 1,
2, 4, and 5 are collected to give a better range of vocalizations in the dataset
for the model to train on. Before building and training the model, the dataset
is pre-processed. When getting the spectrogram for the sounds, the number of
mel bands used in the filterbank, n_mels, is specified as 128 by default. Models
with 45, 90, and 128 mel bands are trained and tested to check how differ-
ent values affected the classification. The input shape of the picture is set to
be (n_mels, 126, 1) for the CNN model and (n_mels, 126) for the LSTM. 126
corresponds to a sound clip of length 4 seconds with fs = 16 kHz.

The training dataset is unbalanced, with 140 more sound samples in the NJS
class. To balance this out, class weight is added by running the following com-
mand:

Class_Weights = class_weight.compute_class_weight(’balanced’,
np.unique(y_train_integer_encoded), y_train_integer_encoded)

which is then called upon when using fit() on the compiled model

history = model.fit(x=X_train, y=y_train,
epochs=MAX_EPOCHS,
batch_size=MAX_BATCH_SIZE,
verbose=0,
validation_data= (X_val, y_val),
callbacks=callback,
class_weight=Class_Weights)

The number of epochs is changed to avoid underfitting and overfitting. The
batch size is kept more constant, and is set to 32.

3.2 Implementation

The code is written in Python 3.7.4, in the online compiler jupyter notebook.
An artificial environment is created using Anaconda Navigator version 2019.10.
All additional packages used is installed in the environment to prevent root ac-
cess problems. See Appendix B for a step-by-step explanation of how to run the
program.

20

The following packages with the used version are listed below, along with a
short explanation.

• Keras version 2.3.1: A high-level API for machine learning running on
top of Tensorflow, which is an end-to-end open platform for machine
learning[24]. With Keras, the different layers and models are imported.
• Librosa version 0.7.2: Librosa is used for audio analysis and signal pro-

cessing, and is used to load the sound recordings and clips with desired
sampling frequency. Librosa is also used to normalize and fix the length
of the training sound samples.
• Numpy v1.18.0: NumPy is a library that is used for handling large, multi-

dimensional arrays and matrices, with support to easily operate these
arrays with mathematical operations.
• Scikit-learn version 9.23: Scikit-learn is a Python module for machine

learning, both supervised and unsupervised. It focuses on making the ma-
chine learning algorithms easy to use with a high-level language such
as Python [28]. It is used to split the test and validation set by using
test_train_split() and add weight to balance the two classes as the NJS
class is outweighing the JS class with 140 sound samples.
• h5py version 2.9.0 : Used to save the finished trained model.

The models are trained for sampling frequency fs = 16 kHz. As mentioned
above, the number of filters used to take the mel spectrogram can be specified
and changed and is 128 by default. The models are tested with three different
numbers of filters, 45, 90, and 128 filters. Both were trained with the annot-
ated dataset, with different input shapes depending on the number of filter-
s/mel bands. The dataset consists of 400 clips, and is a small dataset, meaning
that the NN should not be too complex in order to avoid overfitting. The CNN
model was constructed with two to three layers, depending on the number of
filters used in the mel spectrogram. A MaxPooling() layer is added, followed by
a flattering layer to prepare the vector to be passed to the fully connected layer.

Both the models are compiled with the following

model.compile(optimizer=’adam’,loss=’binary_crossentropy’,
metrics=[’accuracy’])

where the loss arguments binary_crossentropy is used as there is only two
classes to predict. The adam algorithm is chosen as optimizer as it is efficient
and demands little memory.

The code from the Urban sound challenge [1] was used as a benchmark code.

Chapter 3: Method 21

It started as a three-layer CNN model, where 10% of the training set was split
into a test set. For this classification task, the number of layers was altered, and
the test set was made by using 30 % of the training dataset.

Building and training of CNN model

The code below is used to build the CNN model with input shape (45, 126, 1).

model = Sequential()
input_shape= X_train.shape[1:]

model.add(Conv2D(16, (3, 3), strides=(1, 1), input_shape=input_shape))
model.add(MaxPooling2D(2))
model.add(Activation(’relu’))

model.add(Conv2D(24, (3, 3), strides=(1, 1), padding="valid"))
model.add(Activation(’relu’))
model.add(Dropout(rate=0.5))

model.add(Flatten())
model.add(Dropout(rate=0.5))

model.add(Dense(24))
model.add(Activation(’relu’))
model.add(Dropout(rate=0.5))

model.add(Dense(len(list_labels)))
model.add(Activation(’softmax’))

model.summary()

After the build, the models end up with an output of (5, 15, 24) after the last
Conv2D layer, giving a 5×15 pixel window as output. The kernel size is kept at
(3, 3) as it is preferable with a small, odd-sized kernel due to reasons explained
in chapter 2.2. The strides are set to (1, 1) after some testing. The activation
functions are reLU and softmax to get the probability distribution when testing
as the output is in vector form.

Building and training of LSTM model

The code for building the LSTM model with input shape (90, 126) is shown
below.

input_shape = X_train.shape[1:]

22

model = Sequential()

model.add(LSTM(8, input_shape=input_shape, return_sequences=True))
model.add(Activation(’tanh’))

model.add(LSTM(16, return_sequences=True))
model.add(Activation(’tanh’))

model.add(Flatten())
model.add(Dropout(rate=0.5))

model.add(Dense(16))
model.add(Activation(’tanh’))
model.add(Dropout(rate=0.5))

model.add(Dense(len(list_labels)))
model.add(Activation(’softmax’))

model.summary()

For the LSTM model, the activation layer is changed to tanh.

3.3 Testing of the trained models

The model is tested with different values of mel bands when computing the
mel-spectrogram used to classify the sounds. It is also tested with different fre-
quency bands in the bandpass filter applied to the pre-process clip. The upper
frequency limit being 2 kHz and 4 kHz, and the lower frequency limit is 400 Hz.
JS vocalizes in the range of 500-1500 Hz, and the lower limit is set to reduce the
impact of wind to some degree. The upper limit is 2 kHz so that all the tops are
in the spectrogram, but it will also remove some of the other bird vocalizations,
e.g., chaffinch who vocalizes frequently and in the frequency range 2000-8000
Hz. The upper limit is changed to 4 kHz to see if it could give a better sound
picture for the model to predict.

The best model for the different filters is stored for further testing on the record-
ings from Alta. Recording 6 consists of one sub-recording 6.1 containing 15h
of sound recordings, and one sub-recording 6.2 that contains 9h of sound re-
cording. Sub-recording 6.2 is cut to a smaller clip of a total length of 01:49:00,
with a total of 22 vocalizations of JS. This clip will be referred to as 22JS in the
following text. The vocalizations in 22JS are a mix of strong and weakly visible

Chapter 3: Method 23

vocalizations in the spectrogram. Sound clips polluted with wind of different
degrees is also included. The code file CNN_classifier.py and LSTM_classifier.py
shows the code used to classify JS22. The code snip for the bandpass filter and
the making of the Mel spectrogram is shown below. The parameter nr_mel is,
as mentioned, changed depending on the desired mel bands in the filterbank.

f_sound = butter_bandpass_filter(sound, 400, 2000, fs, order = 5)

ps = lb.feature.melspectrogram(y=f_sound, sr=fs, window = ’hann’,
n_fft = 2048, n_mels = nr_mel)

For the melspectrogram(), an hann window is chosen as it has good frequency
resolution and reduces spectral leakage. The length of the FFT window, n_fft,
decides how detailed the analysis is. A narrow FFT window means a more de-
tailed analysis of the signal, while a wider FFT window is used when there is
no quick changes or disturbances in the signal [29]. For this classification, the
n_fft was first set to 1024 to get a detailed analysis of the input signal f_sound.
This gave some error in detecting the JS pattern, and thus indicated a too thor-
oughly detailed analysis. When looking at a JS vocalization in Audacity, the
minimum period (T) in the signal is measured to approx. T = 250 ms. Setting
n_fft = 1024 corresponds to a window size of 64 ms, which is narrow. Chan-
ging to n_fft = 2048 gives a width of the window corresponding to 128 ms,
which is still smaller than the period. However, the increased width improves
the spectral resolution and make the model more adaptable to recognize the
correct pattern.

To find the false positive rate (FPR) and true positive rate (TPR) of 22JS, all the
4 seconds clips are stored and viewed to find the number of clips containing JS
vocalization. The clip needed a minimum of 1 second of JS’s vocalization to be
counted as a JS positive clip. In the classification, no clips less than 1 second
was classified as JS; thus, this was set as the limit. The 22JS file contained 1635
sound clips of 4 seconds, where 69 clips contain JS vocalization, and 1566 clips
are negative of JS. The timestamp of all the JS vocalizations of JS22 can be
found in appendix A. The Fig.3.2 illustrates one vocalization of JS lasting 12
seconds being split into three chunks of 4-second clips. This splitting is done
on the total length of the recording, meaning that in ’worst-case’ scenario, a
vocalization lasting 12 seconds could be split into 4 chunks, which all need to
be predicted to cover the whole vocalization.

A script that stores the timestamp in a .txt file to be imported to Audacity is
created. It stores the start time of the clip and the end time, with tab set as

24

Figure 3.2: Illustration of how one vocalization of jack snipe is split into 3
chunks of 4 second clip

the delimiter. This will make it easier to see which vocalizations the model will
have some challenges with classifying and provide a better understanding of
how well the model works.

To further improve the classification, dynamic time warping was used on the
predicted clips. The limit for maximum value for the distance was set to 50
after some testing on clips with JS to see what the typical value would be to
avoid cutting out positive vocalizations. The new predicted clips are stored in
a separate .txt file.

Test on full 24h recording

After finding the best classification model based on the TPR and the FPR, the
total length of recording 6.1 and 6.2 is run through the best model. Record-
ing 6.1 has a total length of approximately 15 hours of sound recordings, and
recording 6.2 has approximately 9 hours. The first classification run is done
without using DTW before applying DTW in the second run.

CHAPTER4

RESULTS

4.1 Training of model

The models are trained with the training dataset to find the combination of
the variables that will give the best results. The loading of the dataset takes
9-10 seconds, and the compiling of the CNN model and the LSTM model takes
between 10-15 seconds. The trained model is presented below, followed by the
testing of both models on the testing sound file JS22.

4.1.1 CNN model

In Fig.4.1 the accuracy and loss function of a CNN model with input shape
(128, 126, 1) is displayed. Models with input shape (90, 126, 1) and (45, 126,
1) are trained as well, where 128, 90, and 45 represent the mel bands/filters
in the filter bank used in the computation of the MFCCs. For the accuracy - and

Figure 4.1: The loss and accuracy of the CNN model where 128 mel bands/-
filters is used in the computation of the MFCC

loss graph of the models with input shape (45, 126, 1) and (90, 126, 1), see

25

26

Appendix C.1.

4.1.2 LSTM model

The LSTM model is also trained with three the different input sizes. In Fig. 4.2
a LSTM model with input shape (90, 126) is shown. The number of ephochs is

Figure 4.2: The loss and accuracy of the LSTM model where 90 mel bands/-
filters is used in the computation of the MFCC

set to 6 and batch size is set to 32, achieving an accuracy of 0.98 for the test
set. For the accuracy - and loss graph of the models with input shape (45, 126)
and (128, 126), see Appendix C.2.

4.2 Testing of the models using test recording JS22

As mentioned in 3.2, a test recording with 22 vocalizations of JS is created to
test the trained models. Six tests were conducted for each model; the first three
with the number of mel bands changed between 45, 90, and 128, and then
again for the same variations in mel bands but with added DTW to the positive
classified clips. All the results for the CNN - and LSTM model can be viewed
in Appendix D and E respectively. In Fig.4.3, two annotated vocalizations with
the corresponding predicted clips are displayed. The predicted clip is annotated
with the confidence interval.

Chapter 4: Results 27

(a) Annotated vocalization of jack
snipe with the belonging confid-
ence interval of the predicted clip.

(b) Annotated vocalization of jack
snipe with the belonging confid-
ence interval of the predicted clip

Figure 4.3: Both (a) and (b) shows the predicted clips with belonging confid-
ence interval generated by the CNN model using 90 mel bands.

4.2.1 CNN model

For the CNN model, the best TPR is achieved when there are 90 mel bands in
the frequency bank, and the frequency range is set to 400-2000 Hz for the band
pass filter. This gives the model the input shape (90, 126, 1). In Tab. 4.1 the
confusion matrix with TPR and FPR is shown for the CNN model with applied
band-pass filter with frequency range 400-2000 Hz. Here, one can see that the

Table 4.1: Confusion matrix for CNN model with 90 mel bands, and an applied
band pass filter with range 400-2000 Hz.

Actually positive Actually negative
Predicted positive 67 1465
Predicted negative 2 101

TPR 0.97
FPR 0.94

FPR is very high, and when viewing the clip in Audacity it shows that many of
the classified positive clips are minutes long. When calculating the total length
of the all the positive clips, the length is 01:45:16 (hh:mm:sec), meaning that
the model classifies almost the total length of JS22 as positive. DTW is then
applied to the classifications, with limit < 50. The results of this can be seen
from Tab.4.2. Here, one can see that the FPR is reduced. The total length of the
clips classified as positive is reduced to 00:13:04.

28

Table 4.2: Confusion matrix for CNN model with 90 mel bands, an applied
band pass filter with range 400-2000 Hz. Additionally, DTW is used on the
classified clips.

Actually positive Actually negative
Predicted positive 61 135
Predicted negative 8 1431

TPR 0.88
FPR 0.086

4.2.2 LSTM model

The LSTM model with input shape (45, 126), where the bandpass filterused on
the clip has frequency range 400-2000 Hz, gives the results best results. This is
listed in Tab. 4.3. The FPR is high, and the total length of the predicted positive

Table 4.3: Confusion matrix for LSTM model with 45 mel bands, and an ap-
plied band pass filter with range 400-2000 Hz.

Actually positive Actually negative
Predicted positive 51 1225
Predicted negative 18 341

TPR 0.74
FPR 0.78

clips is 01:25:04. Adding DTW to the classified clips with limit <50, gives the
results shown in Tab. 4.4.

Table 4.4: Confusion matrix for LSTM model with 45 mel bands, and an ap-
plied band pass filter with range 400-2000 Hz. Additionally, DTW is used on
the classified clips.

Actually positive Actually negative
Predicted positive 3 46
Predicted negative 66 1521

TPR 0.043
FPR 0.029

Chapter 4: Results 29

4.3 Vocalizations detected fully or partly

The JS22 file consists of 22 clips of JS vocalization of different length. By look-
ing only at the vocalizations without the dividing of 4 second chunks, the pos-
itive class is reduced to the number of JS vocalization, which is 22. The CNN
model with mel bands equal to 90 and a frequency range 400-4000 Hz for the
band-pass filter gives the best result in this scenario, where 16/22 of the clips
are recognised. This gives a FP = 142, and the total length of the predicted
positive clips are 00:47:04. In Tab. 4.5 the results from partly detected clips are
listed Note that the length of the predicted clips for 90 mel bands with out DTW

Table 4.5: Vocalizations detected partly or fully by the different trained CNN
models.

CNN
2 kHz 4 kHz
wo. DTW DTW wo. DTW DTW

45 mel bands 14 13 9 8
90 mel bands 22 22 16 16
128 mel bands 20 13 10 9

is 01:42:08.

4.4 Testing on long recording

The best model, the CNN model with 90 mel bands and frequency range 400-
2000 Hz, is run on the full length of recording 6.1 and 6.2 to see the process time
and the number of predicted positive clips. The 6.1 recording is tested first. The
wall time without DTW is 00:08:48, and gives 629 predictions. The total length
for all the predictions is 13:33:28. When DTW is added to the classification, the
wall time is 00:56:58, and it produces 42 predictions with summarized length
of 13:33:12. When viewed in Audacity, the predicted clips were long, on aver-
age 00:18:22, and gave very high likelihood for these clips. The longest clips
appeared in the parts of the recording that was heavily influenced by wind, see
Fig. 4.4

Recording 6.2 is tested after 6.1. This recording (6.2) is the recording in which
the JS22 is made out of. Without DTW, the wall time is 00:04:14 and results in
5733 positive predicted clips, collected to 61 clips in the directory where the
predicted sound files are stored. The total length for the predicted clips was
06:22:12. After using DTW, the wall time is 00:54:17 and 2177 positive pre-

30

Figure 4.4: A prediction done on recording 6.1 with much wind. The y-axis
shows the frequency, while the tag indicated the confidence interval.

dicted clips are detected, with a total of 469 clips being stored in the directory.
Total length of the predictions is 02:25:08.

CHAPTER5

DISCUSSION

By testing different mel bands’ values, it was interesting to see how well the
classification models worked for each model.

5.1 The training of the models

The dataset used to train the models is very small, consisting of only 400 samples.
The small dataset makes it hard to train a model, as it gets overfitted easily. A
model with few hidden layers and nodes is used to minimize the overfitting, but
either way, the models reach between 0.96-1.0 on accuracy for the training and
validation and dataset. A model with many layers or a large number of nodes
in the layers results in a poor model with a high loss value.

5.2 Validation of the models

As can be seen from the results, the classification with applied fu = 2 kHz, gave
a better TP for all tests. When looking closer into the clips classified here, the
clips were often very long and covered more than one vocalization of JS in one
positive classification. The most extended clip is 17 min and 36 s and contains
six vocalizations of JS, which correspond to a quarter of the total length of 22JS.

The classification model gives large clusters of positive classifications in areas
where the wind are noticeable. JS vocalizes in the range 500-1500 Hz, meaning
that wind present in this frequency range would make it hard for the model to
identify the vocalizations of JS. The idea of taking in the probability of vocal-

31

32

ization of JS in the predicted sound file name was to easier prioritize the clip
that likely contains JS. When testing on the JS22, and importing the labels to
Audacity, it became clear that the given probability of a predicted clip does not
necessarily give a good picture of the likelihood of a positive vocalization. For
the models with mel bands equal 45, the length of the predicted clips is long.
For the vocalizations with the presence of wind, the probability was lower than
for the clean clips. The vocalizations that had wind in the 400 Hz frequency
proved more challenging to predict, and was part of larger predicted clips with
length of minutes. To reduce the number of FP, the DTW function is applied to
the positive predicted clips. When trying to set a minimum distance limit,

The model classifies river noise and crickets as JS with a high probability (over
0.9) at first. Two actions were done to improve this, one in the training of the
model and the other in the pre-processing of the input signal to be classified. In
training, clips of crickets and river noise are added to the model’s training data-
set before the model is compiled again. In the pre-process of the signal, where
the Mel spectrogram is generated, the width of the FFT window is altered to
improve the spectral resolution and changed from 1024 to 2048. These actions
reduced the probability score and the number of FP on these clips. The chal-
lenges when trying to improve on the river noise, is that is in the same frequency
range as JS.

As the model have challenges when there is a high presence of wind and river
noise, it would be beneficial to try to minimize these types of environmental
sounds when setting up the recorder.

True positive and False positives

After importing the labeled predicted clips to Audacity, some similarity with the
false positive represents themself. The majority of the false positive clips con-
tain wind, river noise and crickets. The cricket gave a very high probability of
JS, coming out in the upper 90 percentile when the model is run at a frequency
range of 400-2000 Hz and a low number of mel bands. As the frequency range
is changed to 400-4000 Hz, these clips are reduced or removed from the models
with the different mel bands.

As the TPR is calculated from the total number of positive clips, some mod-
els detected a higher amount of the vocalizations than the rate indicates. When
counting vocalizations detected, some of the models with lower TPR recog-
nized a part of many of the vocalizations, i.e., recognized one clip out of the
three that made up the vocalization as displayed in Fig. 3.1. If one only looks

Chapter 5: Discussion 33

at how many of the vocalizations that were partly or fully detected, the CNN
model with 90 mel bands in the filterbank, applied DTW and bandpass filter
with frequency range 400-2000 Hz, find all the 22 vocalizations. Also, for 45
mel bands (without DTW), the results are better, where the model finds 14/22
vocalizations, and the total length of the positive predictions is 11 min and 24
s. For the 45 mel band CNN model, the hits decreased when DTW was applied.
The limit was increased, but it proved hard to find a limit that would keep the
FP down and the TP on a constant level. As DTW compares two signals as ex-
plained in Ch. 2.5, it could mean that the SNR in the predicted clip is low and
thus makes it difficult to recognize as JS vocalization.

5.3 CNN vs LSTM

When viewing the positive classifications in Audacity, it shows that, on aver-
age, the clips classified by the LSTM are longer and have a much poorer FPR.
The LSTM model gets overfitted easily, and the results could indicate that the
trained model generalizes badly as the predicted clips often stretch over long
time intervals. The duration of one JS vocalization is around 8-12 seconds on
average, so the predicted clip’s duration should be between 8-16 seconds if all
the clips contain JS.

The CNN model trained with input size (90, 126, 1) and with applied bandpass
filter with frequency range 400-2000 Hz detects the most JS positive clips, with
a TPR = 0.88 after applying DTW. This model gets a high hit rate for both fre-
quency ranges, and this could indicate that more mel bands are efficient when
trying to predict clips with the presence of wind in them. The LSTM model had
a TPR = 0.74 before DTW, and FPR = 0.78. The predicted clips were minutes
long when viewed in Audacity, and thus the FPR is high as the total length of all
the predicted clips is 01:24:04 long, meaning that 78 % of JS22 was predicted
to contain JS. These results could indicate that the model is bad at generalizing
for JS vocalization.

When the model is trained with fewer filters in the Mel spectrogram, many
of the predicted clips are longer than for models trained with 90 and 128 fil-
ters. The long clips could indicate that the trained model is underfitted, as that
would make it hard to recognize patterns. At the same time, it is a few clips
of grouse, which vocalizes in the frequency range 400-1000 Hz, that are clas-
sified as JS. There are more than one vocalizations from grouse in the training
dataset. The grouse vocalization signal has longer periods than the JS vocaliz-
ation signal and lasts for approx. 2 s, indicating that the model does recognize

34

a pattern.

5.4 Testing on full length recording

The CNN model that uses 90 mel bands gave the best result and is used on
recording 6. Recording 6 is split into two sub-recording, where recording 6.1
lasting 14:57:57 and recording 6.1 lasting 08:56:32. When viewed in Audacity,
recording 6.1 shows much wind in the spectrogram; thus, it might be hard to
predict on this sub-recording as the SNR value is low. Recording 6.2 does also
has a high presence of wind in it, but it is not persistent through the whole
recording. Thus, it would be reasonable to think that predictions on 6.2 will be
more accurate than for 6.1.

Recording 6.1 is tested first. The first run with no DTW and frequency range
400-2000 Hz returned predictions with a total length of almost the same length
as the recording, lasting in a total of 13 hours and 43 minutes, and returning
673 positive clips. As the goal for the classification is to reduce the time used on
viewing and listening to hours of recordings in Audacity, this would be a poor
outcome. DTW is applied, and reduces the total length of the predicted sound
considerably to 13:33:12, with 42 positive predictions. The positive recordings
were long and the confidence interval was very high in parts with a lot of wind.

Then recording 6.2 is tested. This recording had less wind in the beginning,
and JS22 is made out of this part. The wall time for this recording was 4 min
and 14 s and gave a total of 61 positive predicted clips with a total length of
6 hours 22 min and 12 s. With 61 predicted positives, this gives an average
length for each prediction of 6 min and 16 s, meaning that the model has some
challenges recognizing the patterns for JS vocalization when there is a presence
of wind and/or river noise.

When using DTW, the wall time is 00:54:17, and it returned 469 positive pre-
dicted clips that are stored. The total length of the predictions is 02:25:08,
which is a reduction of 55 % compared to the original 6.2 recording. After
viewing the predicted clips in Audacity, the model has predicted minutes long
clip with high probability.

CHAPTER6

CONCLUSION

The presence of jack snipe is detected when running the trained model on a
sound recording. The detected clips are stored in a directory and the start and
end time is transmitted to a .txt file with the confusion interval as the tag for
the clip to be imported to Audacity. By viewing these files, it was easier to detect
patterns to where the classifier failed and find the TPR and FPS. It was found
that a CNN model with mel bands = 90 gave the best result, but with a high
FPR = 0.94, where many of these clips contained wind and river noise. This
indicates that the training of the model worked, but the classification could be
improved as it has some challenges detecting samples where wind or river noise
is present (see sec ??). After applying DTW on the predicted clips, the FPR was
reduced significantly, while the TPR was still high with TPR = 0.88. The total
length of all the predicted samples is 00:13:04, reducing the data from its ori-
ginal 01:49:00.

When starting, the goals was to reduce the time a person need to use to identify
JS vocalization by automating as much as possible of the work flow. The model
with the best results, CNN with 90 mel bands and using DTW funcion, had a
TPR = 0.88 and FPR = 0.086, and reduced the recording to around 13 min.
As such there is an improvement compared to the starting point (which was a
recording of length 01:49:00) and this program developed will be beneficial to
the end user when the problem with high presence of wind and river noise in
the FP is solved.

35

36

6.1 Future work

Some learning points from this project, is that results could be further improved
by following up on the wind and river noise problematic as discussed in Ch. 5.2.
As the width of the FFT window decides the spectral resolution of the spec-
trogram, wavelet analysis could be interesting to look into. Wavelet analysis
adapts to the changes in the signal, meaning that it could provide a detailed
analyses (narrower FFT window) when a change in the signal i detected, and
run through the signal fast otherwise by using a wider FFT window. This could
reduce the length of the predicted clips, and possibly remove some of the FP
predictions on clips containing wind and river noise.

The annotated training dataset is small, making it easy to overfitt and harder
to make a robust model. For future work, the training dataset should be made
larger, containing more vocalizations of jack snipe. It would also be interesting
to include more species in the training dataset, and use unsupervised learning.
The model would learn without demanding further input from the developer
and give out more data for the end user to use.

LSTM CNN model could be an interesting model to try out, as the LSTM model
got many hits on the positive clips, but struggled with many FP and very long
predictions. The models could also be trained on a higher sampling frequency,
as this would improve the resolution for the spectrogram and thus may make
the detection of the pattern easier for the model.

BIBLIOGRAPHY

[1] Smartsheet, Real-life and buissness application of neural network, https:
//github.com/praveendhaked/Urban-Sound-Classification/blob/
master/CNN.ipynb.

[2] Smartsheet, Real-life and buissness application of neural network, https:
//www.smartsheet.com/neural-network-applications.

[3] Z. Zhao, S.-h. Zhang, Z.-y. Xu, K. Bellisario, N.-h. Dai, H. Omrani and
B. C. Pijanowski, ‘Automated bird acoustic event detection and robust
species classification’, Ecological Informatics, vol. 39, pp. 99–108, 2017,
ISSN: 1574-9541. DOI: https://doi.org/10.1016/j.ecoinf.2017.04.
003. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S157495411630231X.

[4] D. Stowell, M. Wood, H. Pamua, Y. Stylianou and H. Glotin, ‘Automatic
acoustic detection of birds through deep learning: The first bird audio de-
tection challenge’, Methods in Ecology and Evolution, vol. 10, Oct. 2018.
DOI: 10.1111/2041-210X.13103.

[5] M. Malfante, J. Mars, M. Dalla Mura and C. Gervaise, ‘Automatic fish
sounds classification’, The Journal of the Acoustical Society of America,
vol. 143, pp. 2834–2846, May 2018. DOI: 10.1121/1.5036628.

[6] G. Tzanetakis and P. Cook, ‘Musical genre classification of audio signals’,
IEEE Transactions on Speech and Audio Processing, vol. 10, pp. 293–302,
Jan. 2002.

[7] D. Stowell and M. Plumbley, ‘Automatic large-scale classification of bird
sounds is strongly improved by unsupervised feature learning’, PeerJ,
vol. 2, e488, Jul. 2014. DOI: 10.7717/peerj.488.

37

https://github.com/praveendhaked/Urban-Sound-Classification/blob/master/CNN.ipynb
https://github.com/praveendhaked/Urban-Sound-Classification/blob/master/CNN.ipynb
https://github.com/praveendhaked/Urban-Sound-Classification/blob/master/CNN.ipynb
https://www.smartsheet.com/neural-network-applications
https://www.smartsheet.com/neural-network-applications
https://doi.org/https://doi.org/10.1016/j.ecoinf.2017.04.003
https://doi.org/https://doi.org/10.1016/j.ecoinf.2017.04.003
http://www.sciencedirect.com/science/article/pii/S157495411630231X
http://www.sciencedirect.com/science/article/pii/S157495411630231X
https://doi.org/10.1111/2041-210X.13103
https://doi.org/10.1121/1.5036628
https://doi.org/10.7717/peerj.488

38

[8] S. Kahl, T. Wilhelm-Stein, H. Hussein, H. Klinck, D. Kowerko, M. Ritter
and M. Eibl, ‘Large-scale bird sound classification using convolutional
neural networks’, Sep. 2017.

[9] K. Qian, Z. Zhang, F. Ringeval and B. Schuller, ‘Bird sounds classifica-
tion by large scale acoustic features and extreme learning machine’, Dec.
2015, pp. 1317–1321. DOI: 10.1109/GlobalSIP.2015.7418412.

[10] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, R. C.
Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. J.
Weiss and K. Wilson, ‘Cnn architectures for large-scale audio classifica-
tion’, in 2017 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), Mar. 2017, pp. 131–135. DOI: 10.1109/ICASSP.
2017.7952132.

[11] V. Morfi, Y. Bas, H. Pamua, H. Glotin and D. Stowell, ‘Nips4bplus: A richly
annotated birdsong audio dataset’, PeerJ Computer Science, vol. 5, e223,
Oct. 2019. DOI: 10.7717/peerj-cs.223.

[12] D. Stowell and F. Wilkinson, Wablr, https://www.warblr.co.uk/, 2015.

[13] abelmagic, Whatbird, http://whatbird.no, 2018.

[14] M. R. M. Talabis, R. McPherson, I. Miyamoto, J. L. Martin and D. Kaye,
‘Chapter 1 - analytics defined’, in Information Security Analytics, M. R. M.
Talabis, R. McPherson, I. Miyamoto, J. L. Martin and D. Kaye, Eds.,
Boston: Syngress, 2015, p. 2, ISBN: 978-0-12-800207-0. DOI: https:
/ / doi . org / 10 . 1016 / B978 - 0 - 12 - 800207 - 0 . 00001 - 0. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
B9780128002070000010.

[15] D. Anderson and G. McNeill, ‘Artificial neural networks technology’, Ka-
man Sciences Corporation, vol. 258, no. 6, pp. 1–83, 1992.

[16] B. Khuong, The basics of recurrent neural networks (rnns), https://
medium.com/towards-artificial-intelligence/whirlwind-tour-
of-rnns-a11effb7808f, 2019.

[17] D. Tomè, F. Monti, L. Baroffio, L. Bondi, M. Tagliasacchi and S. Tubaro,
‘Deep convolutional neural networks for pedestrian detection’, Signal
Processing: Image Communication, vol. 47, pp. 482–489, 2016, ISSN: 0923-
5965. DOI: https://doi.org/10.1016/j.image.2016.05.007. [On-
line]. Available: http://www.sciencedirect.com/science/article/
pii/S0923596516300637.

[18] Stanford, Convolutional neural network, http://deeplearning.stanford.
edu/tutorial/supervised/ConvolutionalNeuralNetwork/.

https://doi.org/10.1109/GlobalSIP.2015.7418412
https://doi.org/10.1109/ICASSP.2017.7952132
https://doi.org/10.1109/ICASSP.2017.7952132
https://doi.org/10.7717/peerj-cs.223
https://www.warblr.co.uk/
http://whatbird.no
https://doi.org/https://doi.org/10.1016/B978-0-12-800207-0.00001-0
https://doi.org/https://doi.org/10.1016/B978-0-12-800207-0.00001-0
http://www.sciencedirect.com/science/article/pii/B9780128002070000010
http://www.sciencedirect.com/science/article/pii/B9780128002070000010
https://medium.com/towards-artificial-intelligence/whirlwind-tour-of-rnns-a11effb7808f
https://medium.com/towards-artificial-intelligence/whirlwind-tour-of-rnns-a11effb7808f
https://medium.com/towards-artificial-intelligence/whirlwind-tour-of-rnns-a11effb7808f
https://doi.org/https://doi.org/10.1016/j.image.2016.05.007
http://www.sciencedirect.com/science/article/pii/S0923596516300637
http://www.sciencedirect.com/science/article/pii/S0923596516300637
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

Chapter 6: Conclusion 39

[19] M. West, Convolutional neural network : The theory, https://www.bouvet.
no/bouvet-deler/understanding-convolutional-neural-networks-
part-1, 2019.

[20] M. Hasan, M. Jamil, G. Rabbani and M. S. Rahman, ‘Speaker identific-
ation using mel frequency cepstral coefficients’, Proceedings of the 3rd
International Conference on Electrical and Computer Engineering (ICECE
2004), Dec. 2004.

[21] A. V. Oppenheim and R. W. Schafer, ‘From frequency to quefrency: A his-
tory of the cepstrum’, IEEE Signal Processing Magazine, vol. 21, no. 5,
pp. 95–106, Sep. 2004, ISSN: 1558-0792. DOI: 10.1109/MSP.2004.
1328092.

[22] S. Ruder, ‘An overview of gradient descent optimization algorithms’,
pp. 2–3, Sep. 2016.

[23] J. Brownlee, How to improve deep learning model robustness by adding
noise, https://machinelearningmastery.com/how-to-control-the-
speed-and-stability-of-training-neural-networks-with-gradient-
descent-batch-size/.

[24] F. Chollet et al., Keras, https://keras.io, 2015.

[25] J. Brownlee, Overfitting and underfitting with machine learning algorithms,
https://machinelearningmastery.com/overfitting-and-underfitting-
with-machine-learning-algorithms/.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
‘Dropout: A simple way to prevent neural networks from overfitting’,
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, Jun. 2014.

[27] ‘Dynamic time warping’, in Information Retrieval for Music and Motion.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 69–84, ISBN:
978-3-540-74048-3. DOI: 10.1007/978-3-540-74048-3_4. [Online].
Available: https://doi.org/10.1007/978-3-540-74048-3_4.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot and É. Duchesnay, ‘Scikit-learn:
Machine learning in python’, Journal of Machine Learning Research, vol. 12,
no. 85, pp. 2825–2830, 2011. [Online]. Available: http://jmlr.org/
papers/v12/pedregosa11a.html.

[29] M. LLC. (1999). Librosa.feature.melspectrogram, [Online]. Available:
https://librosa.org/librosa/master/generated/librosa.feature.
melspectrogram.html (visited on 25/06/2020).

https://www.bouvet.no/bouvet-deler/understanding-convolutional-neural-networks-part-1
https://www.bouvet.no/bouvet-deler/understanding-convolutional-neural-networks-part-1
https://www.bouvet.no/bouvet-deler/understanding-convolutional-neural-networks-part-1
https://doi.org/10.1109/MSP.2004.1328092
https://doi.org/10.1109/MSP.2004.1328092
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://keras.io
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1007/978-3-540-74048-3_4
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://librosa.org/librosa/master/generated/librosa.feature.melspectrogram.html
https://librosa.org/librosa/master/generated/librosa.feature.melspectrogram.html

APPENDIXA

TIMESTAMP FOR JACK SNIPE VOCALIZATION IN TEST
CLIP JS22

41

Sound clips containing jack snipe vocalization hh:min:sec

00:01:40

00:01:44

00:01:48

00:06:32

00:06:36

00:06:40

00:06:44

00:16:52

00:16:56

00:17:00

00:17:04

00:24:04

00:24:08

00:24:12

00:41:40

00:41:44

00:41:48

00:41:52

00:46:40

00:46:44

00:46:48

00:46:52

00:53:44

00:53:48

00:53:52

00:53:56

00:55:52

00:55:56

00:59:08

00:59:12

00:59:16

01:00:32

01:00:36

01:00:40

01:04:12

01:04:16

01:04:20

01:08:28

01:08:32

01:08:36

01:08:40

01:13:40

01:13:44

01:13:48

01:15:16

01:15:20

01:16:52

01:16:56

clip 12

clip 13

clip 14

clip 15

clip 6

clip 7

clip 8

clip 9

clip 10

clip 11

clip 1

clip 2

clip 3

clip 4

clip 5

01:17:00

01:20:36

01:20:40

01:20:44

01:22:12

01:22:16

01:22:20

01:23:48

01:23:52

01:23:56

01:28:56

01:29:00

01:29:04

01:29:08

01:30:36

01:30:40

01:30:44

01:47:00

01:47:04

01:47:08

clip 19

clip 20

clip 15

clip 17

clip 18

clip 21

clip 22

Total number of 4 seconds clip 69

APPENDIXB

HOW TO SET UP AND RUN THE
TRAINING/CLASSIFICATION SCRIPT

B.1 Packages to install

Before installing the required packages, make an artificial environment on your
computer and activate it in terminal. An easy way to o this is by using launching
Anaconda navigator and create a new environment. When this is done, you
open Terminal in this environment. It should then look like this: and install

Figure B.1: How the terminal window should look when the environment au-
dioheaven is activated.

the following packages by typing pip install PACKAGE NAME in the Terminal
window:

• numpy
• librosa
• scikit-learn
• h5py
• panda
• os
• matplotlib

45

46

B.2 Training file

A .csv file containing the file ID and the associated class. In the .csv file, the
filename of the sound file and the class of prediction (either Jack snipe or NJS)
is listed in the same column, separated by , and no white space. See Fig.B.2.
The dataset is stored in a sub-directory in the same directory as the .csv file is

Figure B.2: How the training sound files are listed in the .csv file. file_ID and
Class are the two headers. Jack snipe is one of the classes, the other one being
NJS.

stored. When running trained_model_16000.py, change the path to where the
.csv file and the directory storing the dataset are stored on your computer.

B.3 Running the trained model

To run the model on a recording, use CNN_classifier.py. Make sure the recording
is stored in the same directory as the script, or enter the full path. Depending on
how many n_mels the model is trained on (45, 90 or 128), make sure n_mels
matches this. You can choose what to call the directory to where the sound files
will be saved and the corresponding .txt file that will be used to import the
timestamps to Audacity.

APPENDIXC

TRAINED MODELS

C.1 Trained CNN graph and arcitecture

CNN with mel bands = 45

Figure C.1: Trained model with input shape (45, 126, 1)

With the below building architecture

model = Sequential()
input_shape= X_train.shape[1:]

model.add(Conv2D(16, (3, 3), strides=(1, 1), input_shape=input_shape))
model.add(MaxPooling2D(2))
model.add(Activation(’relu’))

model.add(Conv2D(24, (3, 3), strides=(1, 1), padding="valid"))
model.add(Activation(’relu’))
model.add(Dropout(rate=0.5))

47

48

model.add(Flatten())
model.add(Dropout(rate=0.5))

model.add(Dense(24))
model.add(Activation(’relu’))
model.add(Dropout(rate=0.5))

model.add(Dense(len(list_labels)))
model.add(Activation(’softmax’))

model.summary()

CNN with mel bands = 90

Figure C.2: LEGG INN RIKTIG FIGUR(90, 126, 1)

model = Sequential()
input_shape= X_train.shape[1:]

model.add(Conv2D(16, (3, 3), strides=(2, 2), input_shape= input_shape))
model.add(MaxPooling2D(2))
model.add(Activation(’relu’))

model.add(Conv2D(24, (3, 3), strides=(2, 2), padding="valid"))
model.add(MaxPooling2D(2))
model.add(Activation(’relu’))
model.add(Dropout(rate=0.3))

model.add(Flatten())
model.add(Dropout(rate=0.3))

model.add(Dense(24))
model.add(Activation(’relu’))

Chapter C: Trained models 49

model.add(Dropout(rate=0.3))

model.add(Dense(len(list_labels)))
model.add(Activation(’softmax’))

model.summary()

CNN with mel bands = 128

Figure C.3: Trained model with input shape (128, 126, 1)

model = Sequential()
input_shape= X_train.shape[1:]

model.add(Conv2D(16, (3, 3), strides=(1, 1), input_shape=input_shape))
model.add(MaxPooling2D(2))
model.add(Activation(’relu’))

model.add(Conv2D(24, (3, 3), strides=(1, 1), padding="valid"))
model.add(MaxPooling2D(2))
model.add(Activation(’relu’))
model.add(Dropout(rate=0.5))

model.add(Conv2D(36, (3, 3), strides=(1, 1), padding="valid"))
model.add(MaxPooling2D(2))
model.add(Activation(’relu’))
model.add(Dropout(rate=0.5))

model.add(Flatten())
model.add(Dropout(rate=0.5))

model.add(Dense(24))
model.add(Activation(’relu’))

50

model.add(Dropout(rate=0.5))

model.add(Dense(len(list_labels)))
model.add(Activation(’softmax’))

model.summary()

Chapter C: Trained models 51

C.2 LSTM

LSTM with mel bands = 45

Figure C.4: Trained model with input shape (45, 126)

with the following building architecture:

model = Sequential()

model.add(LSTM(8, input_shape=input_shape, return_sequences=True))
model.add(Activation(’tanh’))

model.add(LSTM(16, return_sequences=True))
model.add(Activation(’tanh’))

model.add(Flatten())
model.add(Dropout(rate=0.5))

model.add(Dense(16))
model.add(Activation(’tanh’))
model.add(Dropout(rate=0.5))

model.add(Dense(len(list_labels)))
model.add(Activation(’softmax’))

model.summary()

52

LSTM with mel bands = 90

Figure C.5: Trained model with input shape (90, 126)

The building architecture is equal for all the LSTM models.

LSTM with mel bands = 128

Figure C.6: Trained model with input shape (128, 126)

The building architecture is equal for all the LSTM models.

APPENDIXD

CONFUSION MATRIX, TPR AND FPR FOR THE CNN
MODEL

D.1 CNN with 45 mel bands

With frequency range 400-2000 Hz

Table D.1: Confusion matrix for CNN model with 45 mel bands, and an applied
band pass filter with range 400-2000 Hz.

Actually positive Actually negative
Predicted positive 41 130
Predicted negative 28 1436

TPR 0.594
FPR 0.083

Table D.2: Confusion matrix for CNN model with 45 mel bands, and an applied
band pass filter with range 400-2000 Hz. Additionally, DTW is used on the
classified clips.

Actually positive Actually negative
Predicted positive 37 125
Predicted negative 32 1441

TPR 0.536
FPR 0.080

53

54

With frequency range 400-4000 Hz

Table D.3: Confusion matrix for CNN model with 45 mel bands, and an applied
band pass filter with range 400-4000 Hz.

Actually positive Actually negative
Predicted positive 11 3
Predicted negative 58 1563

TPR 0.159
FPR 0.002

Table D.4: Confusion matrix for CNN model with 45 mel bands, and an applied
band pass filter with range 400-4000 Hz. Additionally, DTW is used on the
classified clips.

Actually positive Actually negative
Predicted positive 7 7
Predicted negative 62 1559

TPR 0.101
FPR 0.004

D.2 CNN with 90 mel bands

With frequency range 400-2000 Hz

Table D.5: Confusion matrix for CNN model with 90 mel bands, and an applied
band pass filter with range 400-2000 Hz.

Actually positive Actually negative
Predicted positive 67 1465
Predicted negative 2 101

TPR 0.971
FPR 0.936

With frequency range 400-4000 Hz

Chapter D: Confusion matrix, TPR and FPR for the CNN model 55

Table D.6: Confusion matrix for CNN model with 90 mel bands, an applied
band pass filter with range 400-2000 Hz. Additionally, DTW is used on the
classified clips.

Actually positive Actually negative
Predicted positive 61 135
Predicted negative 8 1431

TPR 0.884
FPR 0.086

Table D.7: Confusion matrix for CNN model with 90 mel bands, and an applied
band pass filter with range 400-4000 Hz.

Actually positive Actually negative
Predicted positive 39 667
Predicted negative 30 899

TPR 0.565
FPR 0.426

Table D.8: Confusion matrix for CNN model with 90 mel bands, an applied
band pass filter with range 400-4000 Hz. Additionally, DTW is used on the
classified clips.

Actually positive Actually negative
Predicted positive 18 682
Predicted negative 51 884

TPR 0.261
FPR 0.436

D.3 CNN with 128 mel bands

With frequency range 400-2000 Hz

Table D.9: Confusion matrix for CNN model with 128 mel bands, and an ap-
plied band pass filter with range 400-2000 Hz.

Actually positive Actually negative
Predicted positive 45 904
Predicted negative 24 662

TPR 0.652
FPR 0.577

56

Table D.10: Confusion matrix for CNN model with 128 mel bands, an applied
band pass filter with range 400-2000 Hz. Additionally, DTW is used on the
classified clips.

Actually positive Actually negative
Predicted positive 43 158
Predicted negative 26 1408

TPR 0.623
FPR 0.100

With frequency range 400-4000 Hz

Table D.11: Confusion matrix for CNN model with 128 mel bands, and an
applied band pass filter with range 400-4000 Hz.

Actually positive Actually negative
Predicted positive 27 453
Predicted negative 42 1113

TPR 0.391
FPR 0.289

Table D.12: Confusion matrix for CNN model with 128 mel bands, an applied
band pass filter with range 400-4000 Hz. Additionally, DTW is used on the
classified clips.

Actually positive Actually negative
Predicted positive 21 343
Predicted negative 48 1223

TPR 0.304
FPR 0.219

APPENDIXE

CONFUSION MATRIX, TPR AND FPR FOR THE LSTM
MODEL

E.1 LSTM with 45 mel bands

With frequency range 400-2000 Hz

Table E.1: Confusion matrix for LSTM model with 45 mel bands, and an ap-
plied band pass filter with range 400-2000 Hz.

Actually positive Actually negative
Predicted positive 51 1225
Predicted negative 18 341

TPR 0.739
FPR 0.782

Table E.2: Confusion matrix for LSTM model with 45 mel bands, and an ap-
plied band pass filter with range 400-2000 Hz. Additionally, DTW is used on
the classified clips.

Actually positive Actually negative
Predicted positive 3 46
Predicted negative 66 1521

TPR 0.043
FPR 0.029

57

58

With frequency range 400-4000 Hz

Table E.3: Confusion matrix for LSTM model with 45 mel bands, and an ap-
plied band pass filter with range 400-4000 Hz.

Actually positive Actually negative
Predicted positive 24 358
Predicted negative 45 1208

TPR 0.347
FPR 0.229

Table E.4: Confusion matrix for LSTM model with 45 mel bands, and an ap-
plied band pass filter with range 400-4000 Hz. Additionally, DTW is used on
the classified clips.

Actually positive Actually negative
Predicted positive 7 7
Predicted negative 62 1559

TPR 0.101
FPR 0.004

E.2 LSTM with 90 mel bands

With frequency range 400-2000 Hz

Table E.5: Confusion matrix for CNN model with 90 mel bands, and an applied
band pass filter with range 400-2000 Hz.

Actually positive Actually negative
Predicted positive 41 933
Predicted negative 28 633

TPR 0.594
FPR 0.596

With frequency range 400-4000 Hz

Chapter E: confusion matrix, TPR and FPR for the LSTM model 59

Table E.6: Confusion matrix for LSTM model with 90 mel bands, and an ap-
plied band pass filter with range 400-2000 Hz. Additionally, DTW is used on
the classified clips.

Actually positive Actually negative
Predicted positive 3 42
Predicted negative 66 1524

TPR 0.043
FPR 0.027

Table E.7: Confusion matrix for LSTM model with 90 mel bands, and an ap-
plied band pass filter with range 400-4000 Hz.

Actually positive Actually negative
Predicted positive 16 300
Predicted negative 53 1266

TPR 0.231
FPR 0.192

Table E.8: Confusion matrix for LSTM model with 90 mel bands, and an ap-
plied band pass filter with range 400-4000 Hz. Additionally, DTW is used on
the classified clips.

Actually positive Actually negative
Predicted positive 1 20
Predicted negative 68 1546

TPR 0.014
FPR 0.013

E.3 LSTM with 128 mel bands

With frequency range 400-2000 Hz

Table E.9: Confusion matrix for LSTM model with 128 mel bands, and an
applied band pass filter with range 400-2000 Hz.

Actually positive Actually negative
Predicted positive 38 972
Predicted negative 31 663

TPR 0.550
FPR 0.594

60

Table E.10: Confusion matrix for LSTM model with 128 mel bands, and an
applied band pass filter with range 400-2000 Hz. Additionally, DTW is used on
the classified clips.

Actually positive Actually negative
Predicted positive 3 43
Predicted negative 66 1524

TPR 0.043
FPR 0.027

With frequency range 400-4000 Hz

Table E.11: Confusion matrix for LSTM model with 128 mel bands, and an
applied band pass filter with range 400-4000 Hz.

Actually positive Actually negative
Predicted positive 10 38
Predicted negative 59 1528

TPR 0.145
FPR 0.024

Table E.12: Confusion matrix for LSTM model with 128 mel bands, and an
applied band pass filter with range 400-4000 Hz. Additionally, DTW is used on
the classified clips.

Actually positive Actually negative
Predicted positive 2 1
Predicted negative 67 1565

TPR 0.029
FPR 0.0006

APPENDIX F

LIST OF BIRD SPECIES

Norsk English
Kvartbekkasin Jack snipe
Dverggås Lesser white
Stokkand Mallard
Stjertand Pintail
Brunnakke Wigeon
Krikkand Common teal
Toppand Tufted duck
Havelle Long-tailed duck
Kvinand Goldeneye duck
Lirype Grouse
Storlom black-throated diver
Fjellvåk Rough-legged hawk
Dvergfalk Merlin
Sandlo Killdeer
Heilo Plovers
Temmincksnipe Temminck’s stint
Brushane Ruff
Grønnstilk Wood Sandpiper
Strandsnipe Common Sandpiper
Sotsnipe Spotted Redshank
Lappspove Bar-tailed godwit
Småspove Eurasian Whimbrel
Enkeltbekkasin Common Snipe
Svømmesnipe Red-necked Phalarope

61

62

Fjelljo Long-tailed skua
Fiskemåke Common gull
Rødnebbterne Artic Tern
Taksvale Common House Martin
Sandsvale Sand Martin
Heipiplerka Meadow pipit
Gulerlen Western Yellow Wagtail
Blåstrupe Bluethroat
Steinkvetten Northern wheatear
Måltrost Song Thrush
Rødvingetrost Redwing
Gråtrost Fieldfare
Løvsanger Willow Warbler
Varsler Great Grey Shrike
Skjære Eurasian Magpie
Kråke Crow
Ravn Raven
Bjørkefink Brambling
Gråsisik Common Redpoll
Sivspurv Common Reed Bunting
Lappspurv Lapland Longspur
Sangsvane Whooper Swan
Gjøk Common Cuckoo
Bokfink Chaffinch

Table F.1

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Maja Sofie Stava

ANN for classification of Jack snipe

Master’s thesis in Electronics Systems Design and Innovation

Supervisor: Guillaume Dutilleux

June 2020

	Introduction
	Motivation
	Scope
	Previous work
	Outline of the report
	Background

	Theory
	Recurrent neural networks, Long short-term memory
	Convolutional neural network
	Mel-frequency Cepstrum Coefficient
	Implementation
	Validation and improvements of the models

	Method
	Pre-processing
	Implementation
	Testing of the trained models

	Results
	Training of model
	CNN model
	LSTM model

	Testing of the models using test recording JS22
	CNN model
	LSTM model

	Vocalizations detected fully or partly
	Testing on long recording

	Discussion
	The training of the models
	Validation of the models
	CNN vs LSTM
	Testing on full length recording

	Conclusion
	Future work

	Timestamp for jack snipe vocalization in test clip JS22
	How to set up and run the training/classification script
	Packages to install
	Training file
	Running the trained model

	Trained models
	Trained CNN graph and arcitecture
	LSTM

	Confusion matrix, TPR and FPR for the CNN model
	CNN with 45 mel bands
	CNN with 90 mel bands
	CNN with 128 mel bands

	confusion matrix, TPR and FPR for the LSTM model
	LSTM with 45 mel bands
	LSTM with 90 mel bands
	LSTM with 128 mel bands

	List of bird species

