
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Christoffer Boothby

An implementation of a compression
algorithm for hyperspectral images. A
novelty of the CCSDS 123.0-B-2
standard

Master’s thesis in Electronic Systems Design

Supervisor: Milica Orlandic

June 2020

Christoffer Boothby

An implementation of a compression
algorithm for hyperspectral images. A
novelty of the CCSDS 123.0-B-2
standard

Master’s thesis in Electronic Systems Design
Supervisor: Milica Orlandic
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Acknowledgement

I would like to thank my supervisor Milica Orlandic for giving me and others the support throughout
the project thesis and master thesis. Willing to share knowledge, help others and push for new technol-
ogy is a huge benefit to the world. She has given me huge motivation to further work with complicated
hardware and the huge possibilities of FPGA. I would also like to give my thanks to Sivert Bakken for
the tremendous help he has been able to provide when working with this project. Being able to provide
insightful help when algorithms suddenly would not work. I would like to express gratitude to Evelyn
Honoré-Livermore for taking the effort to create a team and the opportunity for NTNU to have a space
related project. The effort to go into the space industry is difficult and tiring and the credits should not
go without recognition. Finally i would like to give my thanks to the whole HYPSO team for creating a
great working environment and all the work we went through together.

Christoffer Boothby

i

Abstract
For many years in the space industry the usage of hyperspectral imaging has been used to observe the
Earth for research and industrial uses. The usage of hyperspectral imaging allows researchers to analayze
the wide spectrum of wavelengths instead of regular colors. In particular the possibility to observe algae
blooms or oil spills with an hyperspectral camera. These issues gave birth to the mission Hyperspectral
Smallsat for Ocean Observation at Norwegian University of Science and Technology which is to launch
a cubesat into space to observe the earth using a hyperspectral camera. Due to the limited speeds of
the transmission antenna on the cubesat introduces the requirement of image compression algorithms to
reduce the demand on the antenna. This thesis will implement two standards developed by Consultative
Committee for Space Data Systems for compression of hyperspectral images. The first standard CCSDS
123.0-B-1 published in 2015 provides a method for lossless compression. The standard is already im-
plemented as a FPGA solution in the on-board processing unit and required a software backup solution
in the programming langauge C. The second standard CCSDS 123.0-B-2 recently published in 2019 is a
new near-lossless compression algorithm of hyperspectral imaging. This thesis will focus on a software
implementation of CCSDS 123.0-B-2 in the programming language C and further research the possible
compression rates and image quality from this standard. With the possibility to control the amount of
near-lossless in the compression algorithm allows a user to select the required quality of an image. The
results from the implementation presents the possibility to achieve compression rates by using a lossless
method. Achieving a typically compression rate of 2-3 when using the lossless method. By increasing
the near-lossless the compression rates increases to beyond 100 when using the new hybrid encoder. A
comparison with the sample adaptive encoder is presented and it peaks typically at a compression rate of
14-16. This does however come at the cost of image quality where the Peak signal-to-noise ratio (PSNR)
ranges from 90 to 20 depending of the level of near-lossless, and the type of image. The implementation
still requires some future work and verification to determine a functioning compression algorithm as the
introduction of near-lossless creates a difficult problem of testing.

iii

Sammendrag
I romindustrien har hyperspektrale kameraer vært kritisk for observasjoner av jorda for romforskining
og industriell bruk. Bruken av hyperspektrale kameraer gir forskere muligheten å analysere det elektro-
magnetiske spekteret istedenfor å bruke vanlige farge kamera. Hyperspektrale kameraer gir muligheten
for å observere for eksempel algevekst eller oljesøl. Disse problemene ga motivasjon for å danne pros-
jektet Hyperspectral Smallsat for Ocean Observation hos Norges teknisk-naturvitenskapelige universitet
(NTNU) med formål å lage en satelitt og sende den til verdensrommet. Satelitten i en form av en cubesat
vil observere jorden ved bruk av et hyperspektral kamera. Et problem ved å bruke cubesat er begren-
sningene på antennen for å overføre data til jorden. Dette gir motivasjon til å implementere en kom-
primerings algoritme av hyperspektrale bilder. Denne masteroppgaven vil implementere 2 standarder
laget av Consultative Committee for Space Data Systems for komprimering av hyperspektrale bilder.
Den første standarden CCSDS 123.0-B-1 er publisert i 2015 for tapsfri komprimering av hyperspektrale
bilder. I prosjektet er denne standarden allerede implementert i form av en FPGA løsning og krevde
derfor en implementasjon i programmeringspråket C som en sikkerhet. Den andre standarden CCSDS
123.0-B-2 som er nylig publisert i 2019 gir en mulighet for komprimering med tap av kvalitet. Tap av
kvalitet kan gi bedre komprimeringsrater i forhold til tapsfri komprimering. I tilegg gir standarden en
mulighet til å kontrollere graden av kvalitetestap for bedre kompresjonsrater. Denne masteroppgaven vil
fokusere på en implementasjon av CCSDS 123.0-B-2 i programmeringsspråket C. I tilegg vil oppgaven
gå dypere i de mulige kompresjonsratene og bildekvaliteten som medfører av standarden. Det esulteres
i en kompresjonsrate på 2-3 ved bruk av tapsfri komprimering. Ved å øke tapet av bildekvalitet vil kom-
presjonsraten gå vel over 100 når det brukes den nye "hybrid encoder". I forhold til den gamle bruken av
"sample adaptive encoder" som når maksimalt en kompresjonsrate på 14-16. Kvaliteten av bildene går
derimot ned fra det orginale bildet til en Peak signal-to-noise ratio som vil typisk være fra 90 til 20. Dette
varierer av hvor hvilken grad komprimerings tapet er valgt, og hvilket bilde som er brukt. Implemen-
tasjonen av standarden krever videre arbeid og verifisering for å kunne fastslå en korrekt komprimerings
algoritme. Siden introduksjonen av å kontrollere kvalitetstapet gjør det vanskelig for verfisering om
resultatene er korrekte.

iv

Contents

Acknowledgement i

Abstract iii

Sammendrag iv

Table of Contents vii

List of Tables viii

List of Figures ix

Acronyms xi

1. Introduction 1
1.1. Chapter outline . 2

2. CCSDS 123 Project Thesis 3
2.1. CCSDS 123 Issue 1 . 3

2.1.1. Predictor . 5
2.1.1.1. Local sum . 5
2.1.1.2. Local differences . 6
2.1.1.3. Weight Vector . 8
2.1.1.4. Predicted Sample . 8
2.1.1.5. Weight update . 9
2.1.1.6. Mapped Prediction residual . 10

2.1.2. Sample adaptive encoder . 10
2.2. CCSDS 123 Issue 2 Additions . 11

2.2.1. Predictor . 12
2.2.1.1. Local sum . 12
2.2.1.2. Local differences . 14
2.2.1.3. Weight Vector . 14
2.2.1.4. Prediction calculation . 14
2.2.1.5. Quantization . 15

2.2.1.5.1. Fidelity control . 15
2.2.1.6. Sample representation . 16
2.2.1.7. Weight update . 16
2.2.1.8. Mapped quantizer index . 17

2.2.2. Hybrid entropy encoder . 17
2.2.2.1. High-Entropy . 18

v

2.2.2.2. Low-Entropy . 18
2.3. CCSDS 123 Issue 2 Software Implementation . 20

3. CCSDS 123 Issue 1 implementation 26
3.1. Standard Version . 26

3.1.1. Prediction . 27
3.1.2. Encoding . 30

3.2. Decompression . 31
3.2.1. Decode . 32
3.2.2. UnPredict . 32

3.3. Embedded Version . 34

4. CCSDS 123 Issue 2 Improvements 37
4.1. Supporting different bit sizes . 37
4.2. Support for signed integers . 38
4.3. Conversion of Endianess . 39
4.4. Support for varying image order and encoding order . 39
4.5. Fixing the hybrid encoder . 41
4.6. Decompression . 41

4.6.1. Unpredict . 42

5. Hypso on-board processing testing and changes 44
5.1. Communication with CubeDMA . 45
5.2. Linux Kernel Driver . 49

5.2.1. Opening and closing the device . 49

6. Results 51
6.1. CCSDS 123 Issue 1 Results . 51
6.2. CCSDS 123 Issue 2 Results . 52
6.3. HYPSO mission verification . 71

6.3.1. Verification of Memory Region . 72

7. Analysis 73
7.1. Issue1 . 73
7.2. Issue 2 . 74
7.3. HYPSO . 76

Bibliography 77

A. Verification of CubeDMA

B. Linux Kernel Driver

C. Verification of CCSDS FPGA

D. Software Implementation

vi

E. Code Tables and Flush Tables

vii

List of Tables

2.1. Low entropy code input symbol limit and threshold. 19
2.2. User defined parameters for arguments[1] . 22
2.3. Compression rate with sample adaptive . 25

3.1. User defined parameters for arguments[1] . 27

5.1. Part 1 of memory map registers for CubeDMA[2] . 47
5.2. Part 2 of memory map register for CubeDMA[2] . 48
5.3. Memory structure of reserved memory . 49

6.1. General status of the software . 53
6.2. Status of prediction . 53
6.3. Status of Fidelity Control . 53
6.4. Status of Encoder . 54
6.5. Parameters used in Testing . 55

viii

List of Figures

2.1. Cube Dimensions of an image cube [2] . 4
2.2. Illustration of the three different sample orderings of spectral images [2]. 4
2.3. Neighborhood of a given sample sz,y,x [3] . 6
2.4. Neighbor oriented local sum[3] . 7
2.5. Column-oriented local sum[3] . 7
2.6. Schematic[4] . 12
2.7. Sample dependency for local sums[4] . 13
2.8. Modular Software Implementation[1] . 20
2.9. Procedure for compression[1] . 21

3.1. Top Level . 26
3.2. Hypso Pipeline . 35

4.1. Big-endian vs Low Endian in memory . 39
4.2. Big-endian vs Low Endian in memory . 40

5.1. Zynq System Setup in Vivado . 45
5.2. Zynq 7000 CPU memory map[5] . 46

6.1. HYPSO compression test of CCSDS 123 Issue 1 . 52
6.2. The compressed size of the original image compared to an increasing absolute error for

sample adaptive encoder . 56
6.3. The compression rate compared to an increasing absolute error for the sample adaptive

encoder . 56
6.4. The compressed size of the original image compared to an increasing absolute error for

the hybrid encoder . 57
6.5. The compression rate compared to an increasing absolute error for the hybrid encoder . . 57
6.6. Chart of the peak signal to noise ratio compared to an increasing absolute error 58
6.7. Lossless compressed HICO image with Absolute Error = 0 59
6.8. Lossy compression of HICO images with absolute error 60
6.9. Lossy compression of HICO images with absolute error 61
6.10. Comparison of different local sums using absolute error 1024 62
6.11. Landsat image of a mountain lossless compressed of size X: 1024 Y: 1024 Z: 6 63
6.12. Compressed size and compression rate results from varying absolute error using the sam-

ple adaptive encoder . 63
6.13. Compressed size and compression rate results from varying absolute error using the hy-

brid encoder . 64
6.14. Peak signal-to-noise ratio compared to absolute error value 64

ix

6.15. Lossy compression of landsat mountain images with absolute error 65
6.16. Lossy compression when using NARROW local sum 66
6.17. Landsat image lossless compressed of size X: 1024 Y:1024 Z:6 67
6.18. Compressed size and compression rate results from varying absolute error using the sam-

ple adaptive encoder . 67
6.19. Compressed size and compression rate results from varying absolute error using the hy-

brid encoder . 68
6.20. The Peak signal-to-noise ratio of the compressed image compared to absolute error value 68
6.21. Lossy compression of landsat images with absolute error 69
6.22. Top left corner of the original Landsat image . 70

x

Acronyms

AXI Advanced eXtensible Interface.

BIL Band Interleaved by Line.

BIP Band Interleaved by Pixel.

BSQ Band Sequential.

CCSDS Consultative Committee for Space Data Systems.

CPU Central Processing Unit.

CubeDMA A direct memory access fpga core for hyperspectral cubes.

DDR Double Data Rate.

DMA Direct Memory Access.

FPGA Field-Programmable Gate Array.

HICO Hyperspectral Imager for the Costal Ocean.

HYPSO Hyperspectral Smallsat for Ocean Observation.

IP Intellectual Property.

NTNU Norwegian University of Science and Technology.

PSNR Peak signal-to-noise ratio.

SoC System on Chip.

xi

1. Introduction
In the recent decades the cost for launching spacecrafts into space have been reduced. Launching a satel-
lite in 1988 on an Ariane 44 rocket would cost $17900 per kg, and today SpaceX has the possibility to
cut the costs down to $2720 per kg on a Falcon 9 as advertised[6]. With these reduction of costs gives
the opportunity for low cost projects to launch into space. In particular the niche market of cubesats is
emerging. A cubesat has the basic form of a 10cm x 10cm x 10cm cube to provide an alternative method
of launching a payload into space in comparison to larger satellites. This allows multiple projects to
launch in a single rocket for reducing the total project cost. However using a small satellite does come
at the cost of available hardware, solar cell power generation, the maximum size of an antenna and the
problems of dissipating heat in vacuum. A major challenge in a cubesat is to increase the antenna trans-
mission speed which comes at the cost of heat generation and power usage. In addition to this there is a
lack of high rate radio transmission antennas that can fit into a cubesat which makes providing high-rate
transmission difficult. As such the possible speed a cubesat can typically achieve is a couple of Kb/s to
10Mbps+.[7]

With the possibility to use smallsats for science missions allowed a group called NTNU SmallSat to
create a satellite for observing oceanographic phenomena. NTNU SmallSat created a mission called
Hyperspectral Smallsat for Ocean Observation with the objective to observe the ocean through a hyper-
spectral camera. The camera allows scientists to observe the earth from different wavelength for research.
In particular the observations from this camera allows to easily discover oil spills, algae blooms or boats,
and much more. However the images produced from the camera will create files that can be hundreds
of megabytes which is going to take a lot of time to download with a slow antenna. Primarily because
the HYPSO satellite only has the possibility of a couple of Mbps. To offload the requirements on the
antenna and to reduce the size of hyperspectral images is the usage of compression algorithms for high-
speed computation. The sole goal of reducing the captured hyperspectral images to a file that is smaller
in size than the original. By using compression algorithm on large amounts of data requires for a high-
speed hardware but at a low cost. A good solution to these problems was the usage of System on Chip
with an Field-Programmable Gate Array built inside. HYPSO uses an Zynq-7000 SoC as the on-board
processing unit for the satellite. As the hardware is defined for the mission it was still a requirement
to use developed compression algorithms. By using a compression algorithm on the satellite allows the
possibility to transfer files at a reduced time. From this particular issue allowed a group called Con-
sultative Committee for Space Data Systems to develop the standard CCSDS 123 for compression of
hyper-spectral images. Two standards is published by CCSDS regarding compression of hyper-spectral.
CCSDS 123.0-B-1 which is published in 2015 designed for compression of lossless images.[3] The
second standard published in 2019 called CCSDS 123.0-B-2 is a new standard to achieve higher com-
pression in the form of near-lossless.[4] This thesis will implement both standards in the programming
language C for research usage, and the study of the new compression algorithm CCSDS 123.0-B-2 in
future missions. In a previous master thesis by Johan Fjeldtvedt developed a FPGA version of CCSDS
123.0-B-1 for usage on the on-board processing unit in HYPSO.[2] If this would fail then the mission
could not continue. This possible issue grew the requirement to create a backup solution as a C version

1

of CCSDS 123.0-B-1.

1.1. Chapter outline
Three main problems has been focused in this thesis and will be split into its separate chapters. The three
problems detailed in this thesis is the implementation of CCSDS 123.0-B-1, and the improvements of the
project thesis in [1] of CCSDS 123.0-B-2. The third problem is the required changes and improvements
to the system for HYPSO. This thesis is structured as:

• Chapter 2 will describe the necessary background to understand the CCSDS 123 standards and
the project thesis which implemented CCSDS 123.0-B-2.

• Chapter 3 will describe the C implementation of CCSDS 123.0-B-1

• Chapter 4 details the improvement and fixes for completing the software that was done in this
thesis.

• Chapter 5 will detail the improvements and changes that was required for the HYPSO system.

• Chapter 6 presents the results of the implementations and the verification on the software.

• Chapter 7 is the final chapter where a discussion of the results will be presented with an conclusion
and the required future work of the implementations.

2

2. CCSDS 123 Project Thesis

As this master thesis is a continuation of a project thesis in [1] and this chapter will summarise the
background information and the implementation of the project thesis. The project thesis implemented
a compression algorithm of hyper-spectral images using the compression algorithm CCSDS 123. As
the software was not completely finished in the project thesis, Chapter 4 will present the improvements
done in this thesis for completing the software. Consultative Committee for Space Data Systems is an
organisation founded by the major space agencies to develop standards for space data and informations
systems [8]. The organistation has among the many publications, published a hyper-spectral compression
algorithms for compressing the total data usage of the images. The compression algorithm has two
versions that has been published in 2012 and 2019; CCSDS 123.0-B-1 and CCSDS 123.0-B-2. CCSDS
123 Issue 1 or the official name CCSDS 123.0-B-1 is a lossless compression algorithm that has the
objective of not losing any information of the original image. CCSDS 123 Issue 2 or the official name
CCSDS 123.0-B-2 is a near-lossless compression algorithm that will introduce lossy into the compressed
images to achieve higher compression rates. This has the great benefit of reducing the demand of high
data-rates on a transmission medium. Section 2.1 will present a summary of the background information
regarding CCSDS 123 Issue 1 which is written in more detail in the project thesis [1] or the original
published paper [9]. While Issue 1 and Issue 2 is similar there are some differences that are needed to be
explained to understand the new additions.

2.1. CCSDS 123 Issue 1

The CCSDS 123 Issue 1 standard will use the original CCSDS 123 Issue 1 as its main source of in-
formation, this source is the official published standard in [3]. Spectral images will be covering three
dimensional images along the x, y and z axis where the x and y coordinates will be the spatial coordi-
nates in an image. The z axis will be the spectral information of an image. Such a cube can be shown
in Figure 2.1. This thesis will use the words sample or pixel to reference each individual coordinate in
this cube. A sample is defined as sz,y,x where s is the image cube, and a pixel will also be defining
this sample. The usage of the term pixel will differ from traditional use as it defines coordinates on a
computer monitor. These pixels do represent the Red, Green and Blue (RGB) color scheme, or Cyan,
Magneta, Yellow and Key(CMYK) to represent color. One could extract the wavelengths that represents
the colors from a spectral cube and present them as such.

3

Figure 2.1.: Cube Dimensions of an image cube [2]

Images can be stored and computed in three different orders: Band Interleaved by Pixel which will
store all the bands z for each pixel x, y in order, Band Interleaved by Line will store a spatial row x for
each band for all rows and Band Sequential the spatial for each band are stored in order in similar to a
normal image. This can be visually shown in Figure 2.2.

Figure 2.2.: Illustration of the three different sample orderings of spectral images [2].

4

As it is mentioned the cubes will represent coordinates in a three dimensional cube. Each of the axis
x, y, z is limited constrained within 0 ≤ x ≤ Nx− 1, 0 ≤ y ≤ Ny − 1 and 0 ≤ z ≤ Nz − 1, where each
dimension Nx, Ny and Nz is specified in the integer range of 1 ≤ N ≤ 216 [3]. Each sample is also
constrained to a fixed bit-depth or also known as color-depth which defines how many bits to represent
each individual sample. The bit size or also known as dynamic range are defined by the user specified
parameter D in the range of 2 ≤ D ≤ 16. The dynamic range is often constrained by the camera that
will be capturing the images. The captured image samples sz,y,x can be signed or unsigned integers
where the minimum value of a sample is smin, middle value is smid and the maximum value smax
defines the range of the camera values. The unsigned minimum, middle and maximum value is defined
by Equation 2.1 and for signed minimum, middle and maximum value this is defined by Equation 2.2.

smin = 0, smax = 2D−1, smid = 2D − 1 (2.1)

smin = −2D−1, smax = 2D−1 − 1, smid = 0 (2.2)

2.1.1. Predictor

Predicition involves the method to calculate the prediction residual ŝz,y,x and the mapped prediction
residual δz,y,x from the input image sz,y,x. The calculation of these values is done by calculating a local
sum σz,y,x which will be described in section 2.1.1.1. The local sum values are used in the calculation
of local differences dz,y,x, and the directional local differences dNz,y,x, dWz,y,x and dNWz,y,x as this will
be explained in section 2.1.1.2. CCSDS 123 presents two modes; reduced and full for compression.
Under Full mode the central differences and directional local differences will be used for calculation.
If reduced is chosen then only central local differences will be used. These modes are to improve the
possible compression rates which CCSDS will produce. [3]

2.1.1.1. Local sum

CCSDS 123 Issue 1 proposes two methods for calculating the local sums; neighbour-oriented and
column-oriented. The local sums will calculate a sum around a given sample as this is shown in Fig-
ure 2.4 or Equation 2.4. Using column-oriented local sum is not recommended when FULL mode is used
and should therefore use neighbour-oriented local sum. Note that the localsum σz,0,0 is not used and not
necessary to calculate. The corner case for neighbor oriented cover this as this is shown in Equation 2.3,
and for column-oriented in Equation 2.4.

σz,y,x =

sz,y,x−1 + sz,y−1,x−1 + sz,y−1,x−1 + sz,y−1,x+1 if y > 0 and 0 < x < Nx − 1

4sz,y,x−1 if y = 0 and x > 0

2(sz,y−1,x + sz,y−1,x+1) if y > 0 and x = 0

sz,y,x−1 + sz,y−1,x−1 + 2sz,y−1,x if y > 0 and x = Nx − 1

(2.3)

σz,y,x =

{
4 ∗ sz,y−1,x if y > 0

4 ∗ sz,y,x−1 if y = 0 and x > 0
(2.4)

5

Figure 2.3.: Neighborhood of a given sample sz,y,x [3]

2.1.1.2. Local differences

The local differences for each coordinate x,y,z is the difference between σz,y,x and the sample sz,y,x.
The calculation of the central local diffrence is as shown in Equation 2.5. Similar to the localsum the
local difference for dz,0,0 is not defined, except for the directional local diffrences. The calculation of the
directional local diffrences is as shown in Equation 2.6, Equation 2.7 and Equation 2.8. The directional
local diffrences denoted by N, W and NW will denote the compass points in reference to a sample. The
directional local differences will only be used when the prediction mode is used in full mode.

dz,y,x = 4sz,y,x − σz,y,x (2.5)

dNz,y,x =

{
4sz,y−1,x − σz,y,x if y > 0

0 if y = 0
(2.6)

dWz,y,x =

4sz,y,x−1 − σz,y,x if x > 0 and y > 0

4sz,y−1,x − σz,y,x if y > 0 and y > 0

0 if y = 0

(2.7)

dNWz,y,x =

4sz,y−1,x−1 − σz,y,x if x > 0 and y > 0

4sz,y−1,x − σz,y,x if x = 0 and y > 0

0 if y = 0

(2.8)

6

Figure 2.4.: Neighbor oriented local sum[3]

Figure 2.5.: Column-oriented local sum[3]

Prediction will use a number of preceding spectral bands defined by the user-specified parameter P,
which is specified to be an integer in the range 0 ≤ P ≤ 15. However if the current band z is less than
P then the preceding bands will only look at z bands as this is defined in Equation 2.9.

P ∗z = min{z, P} (2.9)

The calculation of the predicted sample requires the local difference vector Uz(t) of the P ∗z preceding
bands. Under full mode the directional local differences will also be included in the vector as this is
shown in Equation 2.10. Under reduced mode only the P ∗z preceding central local differences is used in
the vector as shown in Equation 2.11.

Uz(t) =

dNz (t)
dWz (t)
dNWz (t)
dz−1(t)
dz−1(t)
. . .

dz−P∗z (t)

(2.10)

7

Uz(t) =

dz−1(t)
dz−1(t)
. . .

dz−P∗z (t)

 (2.11)

2.1.1.3. Weight Vector

Similar to the local difference vector a weight vector Wz(t) of the same size of P is also required. Each
element ωz(t) in the vector is constrained to be in a range as defined in Equation 2.12, and the calculation
of these values will be described in section 2.1.1.5. The user defined parameter Ω is the weight resolution
of the weighs ω and is defined in the range 4 ≤ Ω ≤ 19.

ωmin = −2Ω+2, ωmax = 2Ω+2 − 1 (2.12)

Under full prediction mode the weight vectors Wz(t) will also include directional wights similar to local
differences. This is as shown in Equation 2.13.

Wz(t) =

ωNz (t)
ωWz (t)
ωNWz (t)

ω
(1)
z (t)

ω
(2)
z (t)
. . .

ω
(P∗z)
z (t)

(2.13)

For reduced mode the weight vector will only include a vector of P ∗z weights. The calculation of these
is as shown in section 2.1.1.5

Wz(t) =

ω

(1)
z (t)

ω
(2)
z (t)
. . .

ω
(P∗z)
z (t)

 (2.14)

2.1.1.4. Predicted Sample

The local difference vector and weight vector will be multiplied as this is shown in Equation 2.15. If the
preceding bands is zero then this value will always be zero.

d̂ = WT
z (t)Uz(t) (2.15)

For calculation of the predicted sample value a function mod∗R[x] is used to store the value in an R-bit
two’s bit complement. The calculation of this is as shown in Equation 2.16. The user parameter R used
in equation 2.16 is constrained to be an integer in the range of max{32, D + Ω + 2 ≤ 64}. Note that a
higher value of R can prevent a possible overflow which is detailed more in [10].

mod∗R[x] = ((x+ 2R−1)mod2R)− 2R−1 (2.16)

8

The calculation of the scaled predicted value is done as shown in Equation 2.17, it can be shown the
corner cases for t = 0 where the localsums and local differences is not used.

s̃z(t) =

clip

(⌊
mod∗R[d̂z(t)+2Ω(σz(t)−4smid]

2Ω+1

⌋
+ 2smid + 1, {2smin, 2smax + 1}

)
t > 0

2sz−1(t) t = 0, P > 0, z > 0

2smid t = 0 and (P = 0 or z = 0)
(2.17)

As shown in the calculation of the scaled predicted sample they will be used in a clip function which will
limit the output value within a range. This function is as described in Equation 2.18.

clip(x, {xmin, xmax}) =

xmin if x < xmin

x if xmin ≤ x ≤ xmax
xmax if x > xmax

(2.18)

Finally the predicted sample value is calculated by Equation 2.19.

ŝz(t) =
s̃z(t)

2
(2.19)

2.1.1.5. Weight update

After the calculation of the predicted sample value the weight vector will be updated. This is done by
first calculating an scaled prediction error ez(t) as shown in Equation 2.20.

ez(t) = 2sz(t)− s̃z(t) (2.20)

Weights will update to according to the image statistics during computation, this is done by calculating
a weight update factor p(t) in Equation 2.21. The values will be clipped using the function in Equa-
tion 2.18 by the user-defined parameters vmin, vmax. tinc is a user defined parameter defining the rate
of incriminating of the statistics. These parameters are to be in the range of −6 ≤ vmin ≤ vmax ≤ 9
and 24 ≤ tinc ≤ 211.

p(t) = clip
(
vmin +

t−Nx
tinc

, {vmin, vmax}
)

+D − Ω (2.21)

Finally all the weight vector will be updated as this is shown in Equation 2.22. The function sgn+(x) is
defined in Equation 2.23. Finally the weights will be clipped withing the weight resolution as specified
in Equation 2.12.

Wz(t+ 1) = clip
(

Wz(t) +
⌊1

2
(sgn+[ez(t)] · 2−p(t) · Uz(t) + 1)

⌋
, {ωmin, ωmax}

)
(2.22)

sgn+(x) =

{
1 if x ≥ 0

−1 if x < 0
(2.23)

9

2.1.1.6. Mapped Prediction residual

Finally in the prediction stage is the calculation of the mapped prediction residuals δz(t) as this is calcu-
lated by Equation 2.24. Note that the mapped prediction residuals will be an unsigned integer even if the
samples are signed. This will create a similar result for both signed and unsigned images.

δz(t) =

|∆z(t)|+ θz(t) if |∆z(t)| > θz(t)

2|∆z(t)| if 0 ≤ (−1)s̃z(t)∆z(t) ≤ θz(t)
2|∆z(t)| − 1 if otherwise

(2.24)

∆z(t) = sz(t)− ŝz(t) (2.25)

θz(t) is defined by equation 2.26.

θz(t) = min{ŝz(t)− smin, smax − ŝz(t)} (2.26)

2.1.2. Sample adaptive encoder

The sample adaptive encoder will encode mapped prediction residuals δz(t) to reduce the number of bits
representing each value. This is done by using variable-length binary codeswords which uses golomb-
power-of 2 codes. The variable-length codes will be output according the the statistics of the images
which is updated by the mapped prediction residuals. Each output codeword is constrained by the user-
defined parameter Umax to limit the maximum output codeword to be represented by Umax + D bits.
Umax is a user-defined parameter defined in the range of 8 ≤ Umax ≤ 32. The encoding of the mapped
residuals δz(t) is calculated by the integer kz(t) which allows a range of codes that will satisfy 0 ≤
kz(t) ≤ D − 2. Each code-word is calculated by Equation 2.27 where delta is represented by the
quotient u and the remainder r.

δ = u · 2k + r (2.27)

The quotient is calculated by Equation 2.28 and the remained is calculated by Equation 2.29.

u =
⌊ δ

2k

⌋
(2.28)

r = δ mod 2k (2.29)

The codeword of δz(t) is determined by the value of uz(t). The output code for a given mapped predic-
tion residual will be determined as such:

• If uz(t) < Umax then the codeword shall consist of a unary encoding of u, the binary represen-
tation shall be uz(t) zeros followed by a one. Then it shall be followed by kz(t) least significant
bits of δz(t).

• If uz(t) > Umax then the binary represented codeword shall consist of Umax zeros followed by
δz(t) of bit size D.

The encoding will update according to statistics of the mapped prediction residuals to reduce the neces-
sary bits to represent each value. The code-words requires the value k which is calculated according to
Equation 2.30. This value updates according to the accumulator Σz(t) and counterΓz(t). The ratio of

10

Σz(t)
Γz(t) is the mean estimate of the image statistics which is used to calculate the code-word.

2kz(t) ≤ Σz(t)

Γ(t)
+

49

128
(2.30)

The value of kz(t) with base 2 is calculated as shown in Equation 2.31.

kz(t) ≤ log2

(
Σz(t) +

⌊49

27
Γ(t)

⌋)
(2.31)

After each calculation of a code-word the statistics of the image will be updated as this is shown in Equa-
tion 2.32, and Equation 2.34. Accumulator Σz(t) will carry the information for the value of the mapped
prediction residuals, and the counter will carry the number of samples computed. The accumulator is
initialised as shown in Equation 2.35 where the parameter k

′

z shall be in the range of 0 ≤ k
′

z ≤ D − 2.
The counter is initialised as shown in Equation 2.33 where the user defined parameter γ0 is to be defined
in the range of 1 ≤ γ0 ≤ 8. These values are limited to the user-defined parameter γ∗ which is defined
to be in the range max{4, γ0 + 1} ≤ γ∗ ≤ 9. Once the accumulator reaches the value of 2∗ − 1 it will
divide by 2 to "reset" the accumulator and counter.

Σz(t) =

{
Σz(t− 1) + δz(t− 1) if Γ(t− 1) < 2γ

∗ − 1
Σz(t−1)+δz(t−1)+1

2 if Γ(t− 1) = 2γ
∗ − 1

(2.32)

Γ(1) = 2γ0 (2.33)

Γ(t) =

{
Γ(t− 1) + 1 if Γ(t− 1) < 2γ

∗ − 1
Γ(t−1)+1

2 if Γ(t− 1) = 2γ
∗ − 1

(2.34)

Σz(1) =
⌊ 1

27

(
3 · 2k

′
z+6
)
Σ(1)

⌋
(2.35)

2.2. CCSDS 123 Issue 2 Additions

This section will describe the new additions that has been made for the CCSDS 123 Issue 2 algorithm
that was published in 2019 [4]. As mentioned this algorithm introduces a near-lossless compression
algorithm that will achieve higher compression rates compared to Issue 1 which will benefit a space
mission with limited hardware. The main source of information of the CCSDS 123 Issue 2 compression
standard is described in [4]. CCSDS 123 Issue 2 will compress images similar to Issue 1 where it will first
compute a value in prediction followed by an encoding the mapped quantizer index δz(t) to the output
bit-stream. The prediction stage uses some similar elements to issue 1 but is changed to accommodate
a near-lossless aspect of prediction. CCSDS 123 Issue 2 introduces a method to control the amount of
lossy an image becomes during compression which is a huge benefit. For encoding it is still possible
to use the sample adaptive encoder as this is described for Issue 1 in section 2.1.2, but a new encoder
is introduced called the hybrid-encoder. This encoder is a hybrid of the sample-adaptive encoder which
is inteded for a lower-entropy distribution mapped quantizer index δz(t). This primarily occurs because

11

of the near-lossless of prediction. The hybrid encoder will encode values as either lower-entropy or
high-entropy depending on the statistics of the mapped quantizer index. The Low-entropy encoding is
16 variable-to-variable length codes that contains fixed output codes depending on the input. The High-
entropy encoding is similar to the sample adaptive encoder. The Issue 2 top level design is shown in
Figure 2.6 where the new additions of a quantizer and sample representative is the primary new changes
to the prediction stage.

Figure 2.6.: Schematic[4]

2.2.1. Predictor

CCSDS 123 Issue 2 prediction is similar to Issue 1 where it will compute a local sum, local difference
and using weights for computation. The new introduction however is that computation is no longer
around a sample sz,y,x but using sample representatives s”

z,y,x for near loss-less compression. The
computation creates a data dependency by using previously computed sample representatives from the
sample representation stage. The prediction is similar to what is in issue 1 but with some small changes
that will be mentioned. In addition to this the quantizer and sample representative is the new additions
to Issue 2 which provides the possibility for near-lossless compression. Finally the mapper is similar to
the computation of mapped prediction residuals in issue 1 but with some small changes.

2.2.1.1. Local sum

For prediction it is required to compute the localsum σz,y,x which is a weighted sum of the previous
sample representatives s”

z,y,x. Using the previous sample representatives allows the prediction stage to
compress a sample for computation of the next sample. Issue 2 Local sum introduces four local sums
where two new is introduced compared to the previous issue. The local sums can be computed with
neighbour-oriented or column oriented. Issue 2 introduces the possibility to do wide or narrow local
sums where wide oriented will include previous bands for computation. The different localsums can be
shown in Figure 2.7.

12

Figure 2.7.: Sample dependency for local sums[4]

Wide-neighbor oriented shown in Equation 2.36 is similar to issue 1 as shown in Equation 2.3 with
the exception of the local sum is using the sample representatives.

σz,y,x =

s”
z,y,x−1 + s”

z,y−1,x−1 + s”
z,y−1,x−1 + s”

z,y−1,x+1 if y > 0 and 0 < x < Nx − 1

4s”
z,y,x−1 if y = 0 and x > 0

2(s”
z,y−1,x + s”

z,y−1,x+1) if y > 0 and x = 0

s”
z,y,x−1 + s”

z,y−1,x−1 + 2s”
z,y−1,x if y > 0 and x = Nx − 1

(2.36)

Narrow-neighbor is a new addition to Issue 2 which includes previous bands for computing the local
sums. This is as shown in Equation 2.37.

σz,y,x =

s”
z,y−1,x−1 + 2s”

z,y−1,x + s”
z,y−1,x+1 if y > 0 and 0 < x < Nx − 1

4s”
z−1,y,x−1 if y = 0 and x > 0 and z > 0

2(s”
z,y−1,x + s”

z,y−1,x+1) if y > 0 and x = 0

2(s”
z,y−1,x−1 + s”

z,y−1,x) if y > 0 and x = Nx − 1

4smid if y = 0 and x > 0 and z = 0

(2.37)

Wide column oriented is similar to issue 1 but as similar to wide neighbor it will use sample representa-
tives instead of samples. The Equation 2.38 shows how it is done.

σz,y,x =

{
4s”
z,y−1,x if y > 0

4s”
z,y,x−1 if y = 0 and x > 0

(2.38)

Finally the narrow column local sum which is a new addition to issue 2 will also include previous bands
for computing as this is shown in Equation 2.39.

σz,y,x =

4s”
z,y−1,x if y > 0

4s”
z−1,y,x−1 if y = 0 and x > 0 and z > 0

4smid if y = 0 and x > 0 and z = 0

(2.39)

13

2.2.1.2. Local differences

The local differences for Issue 2 does not use the samples sz,y,x but instead uses the sample represen-
tatives s”

z,y,x. The central local difference is required to be calculated by Equation 2.40 and create a
vector of P ∗z local differences from previous bands. If full mode is chosen then the computation will
include the compass local differences denoted with North, West or Northwest. The local differences for
North, West and Northwest calculations are computed respectively by Equation 2.41, Equation 2.42 and
Equation 2.43.

dz,y,x = 4s”
z,y,x − σz,y,x (2.40)

dNz,y,x =

{
4s”
z,y−1,x − σz,y,x if y > 0

0 if y = 0
(2.41)

dWz,y,x =

4s”
z,y,x−1 − σz,y,x if x > 0 and y > 0

4s”
z,y−1,x − σz,y,x if y = 0 and y > 0

0 if y = 0

(2.42)

dNWz,y,x =

4s”
z,y−1,x−1 − σz,y,x if x > 0 and y > 0

4s”
z,y−1,x − σz,y,x if x = 0 and y > 0

0 if y = 0

(2.43)

2.2.1.3. Weight Vector

A weight vector Wz(t) of size P ∗z is used for prediction in the same way this is done in Issue 1. Each
weight ωz(t) has a bit-size defined by the user defined parameter Ω, and it is constrained to be within
4 ≤ Ω ≤ 19. The Weight vector will also include directional weights if FULL mode is chosen. The
updating of the weights will be mentioned in section 2.2.1.7 where there are some changes compared to
issue 1.

2.2.1.4. Prediction calculation

The method to calculate the predicted sample value ŝz(t) is different from the method presented in
issue 1. First it is done by calculating a high resolution prediction sample, followed by calculating the
double resolution sample and finally the predicted sample value. The calculation of the high resolution
predicted sample requires the multiplication of local difference vector and weight vectors as done in
Issue 1 in Equation 2.15. After this is done then the calculation of the high resolution sample šz(t) is
done as shown in Equation 2.44.

šz(t) = clip

(
mod∗R[d̂z(t) + 2Ω(σz(t)− 4smid) + 2Ω+2smid + 2Ω+1, {2Ω+2smin, 2

Ω+2smax + 2Ω+1

)
(2.44)

14

The double resolution error is calculated as shown in Equation 2.45.

s̃z(t)

⌊
šz(t)
2Ω+1

⌋
if t > 0

2sz−1(t) if t = 0 and P > 0 and z > 0

2smid if t = 0 and(P = 0 or z = 0)

(2.45)

Finally the predicted sample value ŝz(t) is calculated as shown in 2.46.

ŝz(t) =
⌊ s̃z(t)

2

⌋
(2.46)

2.2.1.5. Quantization

Quantization is a new addition to CCSDS 123 Issue 2 which involves in calculating the quantizer index
qz(t). First the sample residual ∆z(t) is required which is the difference between sample sz(t) and the
predicted sample value ŝz(t), and is calculated as shown in Equation 2.47.

∆z(t) = sz(t)− ŝz(t) (2.47)

The quantizer index is the quantization of the ∆z(t) which is using a uniform quantizer with a step size
2mz(t). The calculation of the quantizer index is as shown in Equation 2.48 wher e mz(t) is the fidelity
control of maximum error. This will be more detailed in paragraph 2.2.1.5.1 where it is possible to
control the maximum error with different methods.

qz(t) =

{
∆z(0) if t = 0

sgn(∆z(t))
⌊
|∆z(t)|+mz(t)

2mz(t)+1

⌋
if t > 0

(2.48)

2.2.1.5.1. Fidelity control CCSDS 123 Issue 2 introduces a method to control the near-lossless
compression of images by using fidelity control which involves controlling the value mz(t). By using
mz(t) = 0 would compress images lossless and be reversible when decompressing. However when
mz(t) increases it is not possible to reproduce and provides loss when decompressing. There are three
methods to control the value mz(t) by using absolute error, relative error or a combination of both.
Absolute error will define a fixed mz(t) as shown in Equation 2.49 where the user-defined parameter
az(t) is limited to be in the range 0 ≤ az ≤ 2DA − 1. DA is a value defined to be in the range
1 ≤ DA ≤ min{D − 1, 16}. The value az(t) can be band-independent where the value is the same for
each band, or band-dependent where each band has a unique az(t) defined.

mz(t) = az (2.49)

Second option is to use relative error which will adjust based on the predicted sample value ŝz(t) as
shown in Equation 2.50. A relative error rz is defined to be in the range 0 ≤ rz ≤ 2DR − 1, with the
relative error bit depth DR is defined to in the range 1 ≤ DR ≤ min{D − 1, 16}. Relative error rz
can be band-independent where all bands use the same rz or band-dependent where each band may use

15

unique rz .

mz(t) =
⌊rz|ŝz(t)

2D

⌋
(2.50)

The final possible fidelity control is the combination of absolute and relative error as shown Equa-
tion 2.51. This allows also for using band-independent or band-dependent error values, but also the
possibility to mix both.

mz(t) = min(az,
⌊rz|s̃z(t)|

2D

⌋
) (2.51)

The updating ofmz(t) has the possibility to be done less frequent by using an periodic error limit updater.
This can be set by the user-defined parameter u which is an integer in the range 0 ≤ u ≤ 9. This will
limit the value mz(t) to update every 2u frames instead of every frame.

2.2.1.6. Sample representation

Sample representation is the calculation of the sample representative value s”
z(t) to be used in following

calculations of predicted sample values. First the clipped bin center is calculated as shown in Equa-
tion 2.52. If lossless is used then sz(t) = s

′

z(t), but if mz(t) 6= 0 then the reconstruction of sz(t) will be
at most mz(t).

s
′

z(t) = clip
(
s̃z(t) + qz(t)(2mz(t) + 1), {smin, smax}

)
(2.52)

The double resolution sample representative is calculated as shown in Equation 2.53 which introduces
the user-defined parameters damping φz , offset Ψ and resolution Θ. Resolution Θ is defined by in the
range 0 ≤ Θ ≤ 4, and φz is defined in the range 0 ≤ φz ≤ 2Θ − 1. The offset Ψ is defined in the range
0 ≤ Ψ ≤ 2Θ − 1. If lossless is chosen then Ψ = 0-

s̃”
z(t) =

⌊4(2Θ − φz) · (s
′

z(t) · 2Ω − sgn(qz(t)) ·mz(t) ·Ψz · 2Ω−Θ) + φz · šz(t)− ψz · 2Ω+1

2Ω+Θ+1

⌋
(2.53)

Finally the sample representation of sz(t) is calculated as shown in Equation 3.2.

s”
z(t)

{
sz(0) if t = 0⌊
s̃”z(t)+1

2

⌋
if t > 0

(2.54)

2.2.1.7. Weight update

The weight update involves the calculation of the next weights for t+1 which is done the same way as Is-
sue 1 in section 2.1.1.5. First is the calculation of dobule resolution error ez(t) as shown in Equation 2.55
using the clipped bin center as calculated in Equation 2.52.

ez(t) = 2s
′

z(t)− s̃z(t) (2.55)

Similar to Issue 1 the prediction will update to the statistics of the image for the weight update control
as shown in Equation 2.56.

p(t) = clip
(
vmin +

⌊ t−Nx
tinc

⌋
{vmin, vmax}

)
+D + Ω (2.56)

16

The weight update will be done in a similar method as defined in issue 1 except with the introduction of
the user-defined intra-band offset parameter ςiz and the intra-band offset parameter ς∗z . Central weights
will use the intra-band offset parameter for calculation as shown in Equation 2.57 where the parameter
is defined to be in the range of −6 ≤ ςiz ≤ 5. The directional weights North, West and Northwest will
use the parameter ς∗z as defined in Equation 2.58, Equation 2.59 and Equation 2.60. ς∗z is defined to be
in the range −6 ≤ ς∗z ≤ 5.

ω(i)(t+ 1) = clip
(
ω(i)
z (t) +

⌊1

2

(
sgn+[ez(t) · 2−(p(t)+ςiz) · dz−i(t) + 1

⌋
, {ωminωmax}

)
(2.57)

ωN (t+ 1) = clip
(
ωNz (t) +

⌊1

2

(
sgn+[ez(t) · 2−(p(t)+ς∗z) · dNz−i(t) + 1

⌋
, {ωminωmax}

)
(2.58)

ωW (t+ 1) = clip
(
ωWz (t) +

⌊1

2

(
sgn+[ez(t) · 2−(p(t)+ς∗z) · dWz−i(t) + 1

⌋
, {ωminωmax}

)
(2.59)

ωNW (t+ 1) = clip
(
ωNWz (t) +

⌊1

2

(
sgn+[ez(t) · 2−(p(t)+ς∗z) · dNWz−i (t) + 1

⌋
, {ωminωmax}

)
(2.60)

2.2.1.8. Mapped quantizer index

The final stage of prediction is the computation of the mapped quantizer index which is calculated in
Equation 2.61. This is similar to Issue 1 except using the quantizer indexes.

δz(t) =

|qz(t)|+ θz(t) if |qz(t)| > θz(t)

2|qz(t)| if 0 ≤ (−1)s̃z(t)qz(t) ≤ θz(t)
2|qz(t)| − 1 if otherwise

(2.61)

θz(t) is calculated by Equation 2.62 where the new addition is including the maximum error valuemz(t)
for calculation.

θz(t) =

{
min{ŝz(0)− smin, smax − ŝz(0)} if t = 0

min{
⌊
ŝ−smin+mz(t)

2mz(t)+1

⌋
,
⌊
smax−ŝz(t)+mz(t)

2mz(t)+1

⌋
} if t > 0

(2.62)

2.2.2. Hybrid entropy encoder

The hybrid encoder is a new addition for CCSDS 123 Issue 2 which encodes mapped quantizer indexes
δz(t) to an output bit-stream by reducing the amount of bits necessary to represent them. The hybrid en-
coder as mentioned is a hybrid of the sample adaptive encoder but is adapted to a different image pattern
because of the near-lossless compression. The hybrid encoder will as mentioned encode in high-entropy
or low-entropy encoding. High-entropy encoding is similar to the sample adaptive encoder and will pro-
duce an output code-word immediately. Low-entropy code will collect more mapped prediction samples
before producing an output code-word which allows for multiple inputs to be represented fewer bits. The

17

selection of high-entropy or low-entropy is based on the image statistics and a threshold to determine
low-entropy encoding. The image statistics is determined by the counter Γz(t) and accumulator Σ̃z(t)
similar to the sample adaptive encoder. The counter Γz(t) is initialised as shown in Equation 2.63 by the
user defined parameter γ0 in the range of 1 ≤ γ0 ≤ 8.

Γ(0) = 2γ0 (2.63)

The accumulator will be initialised by the user-defined parameter Σ̃z(0) in the range of 0 ≤ Σ̃z(0) ≤
2D+γ0 . The accumulator will be updated based on the encode mapped quantizer index as shown in
Equation 2.64. When the accumulator rescales the least significant bit of Σ̃z(t) will be appended to the
bitstream for reconstructing the accumulator during decompression.

Σ̃z(t) =

{
Σ̃z(t− 1) + 4δz(t) if Γ(t− 1) < 2γ

∗ − 1⌊
Σ̃z(t−1)+4δz(t)+1

2

⌋
if Γ(t− 1) = 2γ

∗ − 1
(2.64)

The counter is update as shown in Equation 2.65.

Γ(t) =

{
Γ(t− 1) + 1 if Γ(t− 1) < 2γ

∗ − 1⌊
Γ(t−1)+1

2

⌋
if Γ(t− 1) = 2γ

∗ − 1
(2.65)

The next step is determine if the mapped quantizer index is a high-entropy or low entropy number. This
is done by determining calculating the threshold where this occurs, and the calculation of the threshold
is as shown in Equation 2.66. If the calculation is above the treshold T0 then it is determined to be a
high-entropy code. T0 is the value for code index 0 determined by the treshold table for low entropy
codes as shown in Table 2.1. Equation 2.67 shows a simpler way to determine if the treshold is satisfied.

Σ̃z(t) · 214 ≥ T0 · Γ(t) (2.66)

Σ̃z(t) · 214

Γ(t)
≥ T0 (2.67)

2.2.2.1. High-Entropy

If the treshold is satisfied as shown in Equation 2.67 then the encoding will be using high-entropy codes.
The high entropy encoding as mentioned is similar to the sample adaptive encoding in section 2.1.2.
However CCSDS 123 Issue 2 changes this by writing the output in a reverse order as such:

• If uz(t) < Umax then the codeword shall consist of the kz(t) least significant bits of δz(t), fol-
lowed by a ’one’ bit, and followed by uz(t) ’zeros’.

• If uz(t) > Umax then the binary represented codeword shall consist of δz(t) of size D followed
by Umax ’zeros’.

2.2.2.2. Low-Entropy

When the statistics for the current mapped quantizer index would be below the threshold value T0 then it
would be determined as a low entropy encoding. Encoding these numbers are done by a set of 16 inputs,

18

binary output and different fixed codes for each input. These 16 codes is as shown in Table 2.1 where
each different code is differed by the code index i. Each code has a input symbol limit which is used
to determine if the numbers was an unlikely input and it sets the maximum value within each codetable
that is possible. Each code is also determined by the statistics in similar manner to determine if a code is
high entropy or low entropy, and each code index i has a threshold value Ti as shown in Table 2.1. One
speciality about the low entropy encoding is to allow for multiple inputs to fewer outputs and it is done
by storing a sequence of active prefixAPi. During encoding of low entropy numbers a mapped quantizer
index will be appended to the sequence and to be checked for a valid output. Appendix E provides 16
code tables and flush tables used for checking of these inputs to output codes. If an input is valid then
the corresponding output code will be appended to the bit-stream. For example if the active prefix for
index 15 has stored 256 zeros then the valid output is a 1 bit written to the output stream. If each of
those zeros was represented with 16 bits then the compression rate is huge, but this is not the case for
images with varying statistics. Choosing the correct code index for a mapped quantizer index is chosen

Table 2.1.: Low entropy code input symbol limit and threshold.
Code Index, i Input Symbol Limit, Li Treshold, Ti Active Prefix (APi)

0 12 303336
1 10 225404
2 8 166979
3 6 128672
4 6 95597
5 4 69670
6 4 50678
7 4 34898
8 2 23331
9 2 14935
10 2 9282
11 2 5510
12 2 3195
13 2 1928
14 2 1112
15 0 408

by satisfying the equation Equation 2.68 and choose the largest code index in Table 2.1. If a threshold
value is calculated to be e.g 409 then the code is determined for code index 14.

Σ̃z(t) · 214 < Ti · Γ(t) (2.68)

Equation 2.68 can be rewritten as Equation 2.69.

Σ̃z(t) · 214

Γ(t)
< Ti (2.69)

After a code index is chosen then it must be determined if the input was an unlikely number. The next
input symbol ιz(t) is chosen by Equation 2.70 where the hexadecimal representation of the mapped

19

quantizer index δz(t) is stored. However if the mapped quantizer index δz(t) is larger than the input
symbol limit from Table 2.1 then an X will be used instead, and this number is therefore considered
unlikely. If an X is appended then δz(t)−Li− 1 will be encoded to the bitstream. A ’1’ bit followed by
the D-bit value of δz(t)− Li − 1 followed by Umax ’zeros’ will be appended to the bitstream.

ιz(t) =

{
δz(t) if δz(t) ≤ Li
X if δz(t) > Li

(2.70)

Each input symbol ιz(t) will be appended to their corresponding code index chosen by the image statis-
tics. If after appending a code index there is a corresponding active-prefix , then the output code will
be written to the bitstream. The active prefix will also be reset to a null sequence. Appendix E gives an
example of these codewords and the corresponding output code word, these tables are extracted from the
CCSDS 123 Issue 2 standard in [4]. After the encoding of the image is done then the remaining active
prefixes APi will be flushed to the bitstream by using a set of 16 flush-tables. Each remaining active
prefix will have a corresponding output code that will be written to the bitstream. Appendix E gives an
example of the flush tables for table 2 where each active prefix has a corresponding flush word. Finally
the final accumulator value Σ̃z(Nx ·Ny − 1) will be written to the bitstream of 2 + D + γ∗ bits. A ’1’
will be written after the accumulator value followed by fill bits to make the compressed image a multiple
of the output word size.

2.3. CCSDS 123 Issue 2 Software Implementation

This section will explain some details regarding the software implementation that was made in the project
thesis in [1]. Note that the additions in 4 will provide changes to the software that have improved or
fixed problems that occurred for this implementation. The overall structure of the software has not been
changed and can be shown in figure 3.2. The figure shows how the folder structure and modular design of
the software and the location to find the different implementations of CCSDS Issue 2. The compression

Figure 2.8.: Modular Software Implementation[1]

20

algorithm involves two steps to compress images at the top level design which is to predict samples and
then to encode them into a bit-stream. Figure 2.9 provides the code procedure from the top level on how
this is done. First the software will parse arguments provided to the command line interfaces. These
primarily contain the user-defined arguments for the CCSDS 123 Issue 2 algorithm. These arguments
can be shown in table 3.1 where each CCSDS 123 Issue 2 argument can be shown. The implementation
of the argument parsing uses the ArgP library which is included in the standard GNU C library. After
the argument has been parsed then it is possible to determine the image size and read every sample into
memory for compression. Specifically the x, y and z arguments provide the image size.

Figure 2.9.: Procedure for compression[1]

21

Table 2.2.: User defined parameters for arguments[1]
Argument Description Argument Allowed Values
Full Prediction Mode -f NONE

Debug Mode –debug NONE
Register size, R -r max{32, D + Ω + 2} ≤ R ≤ 64

Sample resolution -f N/A
Dynamic Range -d 2 . . . 16

Prediction Bands, P -p 0 ≤ P ≤ 15
Weight resolution, Ω N/A 4 ≤ Ω ≤ 19
Weight interval, tinc N/A 24 ≤ tinc ≤ 211

Vmin -v −6 ≤ vmin ≤ vmax ≤ 9
Vmax -V −6 ≤ vmin ≤ vmax ≤ 9

Image size X -x 1 ≤ X ≤ 216 − 1
Image size Y -y 1 ≤ Y ≤ 216 − 1
Image size Z -z 0 ≤ Z ≤ 216 − 1
Word Size N/A Computer word size, 8 = 64-bit

Initial Accumulator, Sample Adaptive, Σz(1) N/A 0 ≤ K ≤ min(D − 2, 14)
Initial counter, γ0 N/A 1 ≤ γ0 ≤ 8

Counter rescaling, γ∗ N/A max(4, γ0 + 1) ≤ γ∗ ≤ 11
Umax N/A 8 ≤ Umax ≤ 32

As mentioned the compression will predict samples and encode them into the bit-stream. The objective
of the prediction is to reduce the image samples to smaller numbers to benefit a greater compression rate
when encoding. The introduction of quantization and lossy compression would create a much lower en-
tropy number which could benefit the compression rate even more. The prediction follows the prediction
algorithm as described in section 2.2.1 and the overall procedure is done as follows:

• Compute the local sum for t > 0 (Will store all the sum in memory)

• Compute the local differences and create the diffrences vector for t > 0

• Compute high resolution prediction sample for t > 0

• Compute double resolution prediction sample

• Compute the predicted sample value

• Compute the quantization value

• Compute the clipped bin center

• Compute the sample representation and store it (Will store all sample rep in memory)

• Weight update/Weight init

• Compute and return the mapped quantizer index

22

The code for the procedure of prediction is as shown in listing 2.1, note that some changes to prediction
has been made in chapter 4, but the overall structure remains the same. This code will calculate every-
thing specified for the prediction stage as this was described in section 2.2.1. This top level code will
calculate the prediction quantizer index for each sample sz,y,x.

1 u i n t 3 2 _ t p r e d i c t (u i n t 3 2 _ t * inpu tSample , u i n t 1 6 _ t x , u i n t 1 6 _ t y , u i n t 1 6 _ t z , s t r u c t
a rgumen t s * p a r a m e t e r s , u i n t 3 2 _ t * sampleRep , i n t 3 2 _ t * loca l sum ,

2 i n t 3 2 _ t * d i f f V e c t o r , i n t 3 2 _ t * we igh t s , i n t 3 2 _ t sMin , i n t 3 2 _ t sMax , i n t 3 2 _ t sMid ,
u i n t 3 2 _ t maximumError , u i n t 3 2 _ t sampleDamping , u i n t 3 2 _ t s a m p l e O f f s e t , u i n t 3 2 _ t
i n t e r b a n d O f f s e t , i n t 3 2 _ t i n t r a b a n d E x p o n e n t) {

3 / *
4 C a l c u l a t e l o c a l sum and b u i l d up t h e d i f f r e n t i a l v e c t o r a t a g i v e n sample .
5 * /
6 i n t 6 4 _ t h ighResSample = 0 ;
7 i f (x+y != 0) {
8 narrowNeighborLocalSum (sampleRep , loca l sum , sMid , x , y , z , p a r a m e t e r s) ;
9 B u i l d D i f f V e c t o r (sampleRep , loca l sum , d i f f V e c t o r , x , y , z , p a r a m e t e r s) ;

10 highResSample = computeHighResPredSample (loca l sum , we igh t s , d i f f V e c t o r , sMid , sMin
, sMax , x , y , z , p a r a m e t e r s) ;

11 }
12 / *
13 Step f o r c a l c u l a t i n g p r e d i c t i o n sample and doub leResPredSample
14 * /
15 i n t 6 4 _ t doub leResPredSample = 0 ; / / C a l c u l a t e d i n s i d e f u n c t i o n

c o m p u t e P r e d i c t e d S a m p l e
16 i n t 6 4 _ t p r e d i c t e d S a m p l e = c o m p u t e P r e d i c t e d S a m p l e (inpu tSample , &doubleResPredSample ,

loca l sum , highResSample , sMid , sMin , sMax , x , y , z , p a r a m e t e r s) ;
17 / *
18 Q u a n t i z a t i o n
19 * /
20 i n t 3 2 _ t q u a n t i z e r I n d e x = q u a n t i z a t i o n (inpu tSample , p r e d i c t e d S a m p l e , maximumError , x ,

y , z , p a r a m e t e r s) ;
21 / *
22 Sample R e p r e s e n t a t i o n
23 * /
24 i n t 3 2 _ t c l i p p e d B i n = c l i p p e d B i n C e n t e r (p r e d i c t e d S a m p l e , q u a n t i z e r I n d e x , maximumError ,

sMin , sMax) ;
25 sampleRep [o f f s e t (x , y , z , p a r a m e t e r s)] = s a m p l e R e p r e s e n t a t i o n (inpu tSample , c l i p p e d B i n ,

p r e d i c t e d S a m p l e , q u a n t i z e r I n d e x , maximumError , highResSample , sampleDamping ,
s a m p l e O f f s e t , x , y , z , p a r a m e t e r s) ;

26 / *
27 Weight Update
28 * /
29 i f (x+y == 0) {
30 i n i t W e i g h t s (we igh t s , z , p a r a m e t e r s) ;
31 } e l s e {
32 i n t 6 4 _ t d o u b l e R e s E r r o r = (c l i p p e d B i n << 1) − doub leResPredSample ;
33 u p d a t e W e i g h t V e c t o r (we igh t s , d i f f V e c t o r , d o u b l e R e s E r r o r , x , y , z , i n t e r b a n d O f f s e t ,

i n t r a b a n d E x p o n e n t , p a r a m e t e r s) ;
34 }
35 i n t 3 2 _ t r e s i d u a l = computeMappedQuan t ize r Index (q u a n t i z e r I n d e x , p r e d i c t e d S a m p l e ,

doubleResPredSample , sMin , sMax , maximumError , x , y , z , p a r a m e t e r s) ;
36 r e t u r n r e s i d u a l ;
37 }

Listing 2.1: Prediction function

23

This procedure will iterate over each sample in a BSQ/BIL or BIP order and compute the mapped quan-
tizer index δz(t) for encoding. After the prediction is finished then there are two encoding methods which
is the hybrid encoder or the sample adaptive encoder. The objective for these is to reduce the number of
bits needed to represent each mapped quantizer index. When the sequences of mapped quantizer indexes
are low entropy numbers or close to 0 then these will affect the compression rate by reducing the number
of bits needed. One renown encoding of numbers is the Huffman Codes which could work as an encoder
for CCSDS 123, but the Huffman Coding is not effective in hardware as it would require to store all the
mapped quantizer indexes before encoding[4, 11].

Concerning the hybrid encoder it still remained to fix the problems regarding the implementation where
the program could not find specific codes. This particular issue will be further detailed in section 4.5.
Instead of using the hybrid encoder the software could use the sample adaptive encoder. The sample
adaptive encoder was completed and functional to compress the mapped quantizer indexes. The imple-
mentation of the sample adaptive encoder follows the procedure as described in section 2.1.2, with the C
code implementation as shown in listing 3.6.

1 i n t encodeSampleAdap t ive (u n s i g n e d long sampleToEncode , u n s i g n e d i n t * c o u n t e r ,
u n s i g n e d i n t * a c c u m u l a t o r , i n t x , i n t y , i n t z , u n s i g n e d i n t * t o t a l W r i t t e n B y t e s ,

u n s i g n e d i n t * numWri t t enBi t s , FILE * f i l e T o W r i t e , s t r u c t a rgumen t s * p a r a m e t e r s)
{

2 i f (y == 0 && x == 0) {
3 w r i t e B i t s (sampleToEncode , p a r a m e t e r s −>dynamicRange , numWri t t enBi t s ,

t o t a l W r i t t e n B y t e s , f i l e T o W r i t e) ;
4 } e l s e {
5 i n t 6 4 _ t kValue = log2 ((a c c u m u l a t o r [z] + ((4 9 * c o u n t e r [z]) >> 7)) / c o u n t e r [z]) ;
6 kValue = kValue < 0 ? 0 : kValue ;
7 kValue = kValue > (p a r a m e t e r s −>dynamicRange − 2) ? p a r a m e t e r s −>dynamicRange −

2 : kValue ;
8 u i n t 6 4 _ t uValue = sampleToEncode >> kValue ;
9 i f (uValue < p a r a m e t e r s −>uMax) {

10 w r i t e B i t s (0 , uValue , numWri t t enBi t s , t o t a l W r i t t e n B y t e s , f i l e T o W r i t e) ;
11 w r i t e B i t s (1 , 1 , numWri t t enBi t s , t o t a l W r i t t e n B y t e s , f i l e T o W r i t e) ;
12 w r i t e B i t s (e x t r a c t B i t s (sampleToEncode , kValue) , kValue , numWri t t enBi t s ,

t o t a l W r i t t e n B y t e s , f i l e T o W r i t e) ;
13 } e l s e {
14 w r i t e B i t s (0 , p a r a m e t e r s −>uMax , numWri t t enBi t s , t o t a l W r i t t e n B y t e s ,

f i l e T o W r i t e) ;
15 w r i t e B i t s (sampleToEncode , p a r a m e t e r s −>dynamicRange , numWri t t enBi t s ,

t o t a l W r i t t e n B y t e s , f i l e T o W r i t e) ;
16 }
17

18 i f (x+y != 0) {
19 i f (c o u n t e r [z] < ((1 << p a r a m e t e r s −>y S t a r) − 1)) {
20 a c c u m u l a t o r [z] += sampleToEncode ;
21 c o u n t e r [z] + + ;
22 } e l s e {
23 a c c u m u l a t o r [z] = (a c c u m u l a t o r [z] + sampleToEncode + 1) >> 1 ;
24 c o u n t e r [z] = (c o u n t e r [z] + 1) >> 1 ;
25 }
26 }
27 }
28

29 r e t u r n 0 ;

24

30 }

Listing 2.2: Prediction function

The resulting compression rates achieved by the sample adaptive encoder as shown in table 2.3 did
provide good results of compression rates using the sample adaptive encoder. Note that these results are
lossless which saved roughly 50% of data sizes. The introduction of lossy compression which is added
in chapter 4 could yeild higher compression rates at the cost of quality of image. The software presented

Table 2.3.: Compression rate with sample adaptive
Dataset Total Size Compressed Size Compression Ratio

HICO L2_1.BSQ 133.1 MB 34.9 MB 3.81
HICO L2_2.BSQ 133.1 MB 47.8 MB 2.78
HICO L2_3.BSQ 133.1 MB 49.2 MB 2.71
HICO L2_4.BSQ 133.1 MB 48.1 MB 2.77
HICO L2_6.BSQ 133.1 MB 64.3 MB 2.07

in [1] as mentioned was not completely finished, and it would still require improvements to provide a
feasible implementation. The most important work that remained is presented as such:

• Support different bit sizes, D. The implementation only supports 16-bit image data.

• The software implementation requires to support signed numbers and the implementation only
supports unsigned.

• Argument parsing does not support all user-defined parameters, some of these are set to a default
value in the argument parser.

• Currently the software only support BSQ. An important feature is to support BIP and BIL.

• The hybrid encoder requires future work to solve the issues regarding the codewords and a better
testing solution. A decoder is a possible testing solution.

• The software implementation needs a decompression implementation to be able to read a com-
pressed stream. The sample adaptive already has a possible decoder solution from issue 1, but the
predictor for CCSDS 123 Issue 2 does not have a depredictor and requires an implementation.

These necessary fixes will be addressed in chapter 4.

25

3. CCSDS 123 Issue 1 implementation

As the HYPSO mission will launch with the CCSDS 123 Issue 1 standard running on the on-board pro-
cessing pipeline, it was necessary to implement a software solution as a backup if the FPGA on-board did
not operate correctly. This chapter will present two different versions of the software implementation but
very similar implementations. The embedded version which will run as the software backup is presented
in section 3.3 which will only implement the compression of hyper-spectral images and is integrated
into the HYPSO software running on-board. Section 3.1 will present the normal implementation of the
compression standard which is a more user friendly program to be run on a standard computer. This im-
plementation will also include a decompression implementation to do decompression of hyper-spectral
images. Both implementation follow the iteration of computing the prediction stage and encoding a sam-
ple into the compressed bitstream. Figure 3.1 presents the general idea of how this process works where
the input image is a stream of samples according to the BIP, BIL or BSQ standard.

Figure 3.1.: Top Level

3.1. Standard Version

A software similar to the one made in the project thesis as described in section 2.3 was made for testing
and decompression of the compressed images. The software for Issue 1 uses the same library and the
same structure as the software but has removed any CCSDS 123 Issue 2 implementations. This imple-
mentation can be found in Appendix D. The software uses the ArgP library to parse arguments into the
program and these arguments are described as follows:

26

Table 3.1.: User defined parameters for arguments[1]
Argument Description Argument Allowed Values Default
Full Prediction Mode -f NONE Reduced

Debug Mode –debug NONE OFF
Register size, R -r max{32, D + Ω + 2} ≤ R ≤ 64 N/A

Sample resolution -f N/A N/A
Dynamic Range -d 2 . . . 16 N/A

Prediction Bands, P -p 0 ≤ P ≤ 15 N/A
Weight resolution, Ω N/A N/A N/A
Weight interval, tinc N/A N/A N/A

Vmin -v −6 ≤ vmin ≤ vmax ≤ 9 N/A
Vmax -V −6 ≤ vmin ≤ vmax ≤ 9 N/A

Image size X -x 1 ≤ X ≤ 216 − 1 N/A
Image size Y -y 1 ≤ Y ≤ 216 − 1 N/A
Image size Z -z 0 ≤ Z ≤ 216 − 1 N/A

Θ N/A N/A 0
ωmin N/A N/A N/A
ωmax N/A N/A N/A

wordSize N/A N/A N/A
initialAccumulator, Σ̃z(0) N/A N/A 26

Umax N/A N/A N/A

3.1.1. Prediction

This section will describe how the prediction is implemented in the programming language C. This
implementation will describe the algorithms described in section 2.1 regarding CCSDS Issue 1. As listing
3.1 shows the implemented code for doing the prediction. This involves creating the local differences as
according to section 2.1.1.2 by iterating through P previous bands.

1 u i n t 1 6 _ t p r e d i c t (u i n t 1 6 _ t * inpu tSample , u i n t 1 6 _ t x , u i n t 1 6 _ t y , u i n t 1 6 _ t z , s t r u c t
a rgumen t s * p a r a m e t e r s , i n t 6 4 _ t * d i f f V e c t o r , i n t 3 2 _ t * w e i g h t s) {

2 / *
3 C a l c u l a t e l o c a l sum and b u i l d up t h e d i f f r e n t i a l v e c t o r a t a g i v e n sample .
4 * /
5 i f (x+y != 0) {
6 B u i l d D i f f V e c t o r (inpu tSample , d i f f V e c t o r , x , y , z , p a r a m e t e r s , wideNeighborLocalSum

) ;
7 }
8 / *
9 Step f o r c a l c u l a t i n g p r e d i c t i o n sample and s c a l e d P r e d i c t e d

10 * /
11 i n t 3 2 _ t s c a l e d P r e d i c t e d = c o m p u t e S c a l e d P r e d i c t e d (inpu tSample , we igh t s , d i f f V e c t o r ,

wideNeighborLocalSum (inpu tSample , x , y , z , p a r a m e t e r s) , x , y , z , p a r a m e t e r s) ;
12

13 / *
14 Update w e i g h t s
15 * /

27

16 i f (x+y == 0) {
17 i n i t W e i g h t s (we igh t s , z , p a r a m e t e r s) ;
18 } e l s e {
19 i n t 6 4 _ t d o u b l e R e s E r r o r = (i n p u t S a m p l e [o f f s e t (x , y , z , p a r a m e t e r s)] << 1) −

s c a l e d P r e d i c t e d ;
20 u p d a t e W e i g h t V e c t o r (we igh t s , d i f f V e c t o r , d o u b l e R e s E r r o r , x , y , z , p a r a m e t e r s) ;
21 }
22 r e t u r n computeMappedResidual (i n p u t S a m p l e [o f f s e t (x , y , z , p a r a m e t e r s)] , s c a l e d P r e d i c t e d ,

p a r a m e t e r s) ;
23 }

Listing 3.1: Precition stage of CCSDS 123 Issue 1

The iteration of the previous bands is as shown in listing 3.2 which shows how it is done for the central
local differences and the directional local diffrences. Note that only the directional local differences
is calculated when Full mode is used during compression. The function creates the local diffrences as
shown in equation 2.10 or equation 2.11.

1 vo id B u i l d D i f f V e c t o r (u i n t 1 6 _ t * sample , i n t 6 4 _ t * d i f f V e c t o r , u i n t 1 6 _ t x , u i n t 1 6 _ t y ,
u i n t 1 6 _ t z , s t r u c t a rgumen t s * p a r a m e t e r s , i n t 3 2 _ t (* loca lSumFunc) (u i n t 1 6 _ t * ,

u i n t 1 6 _ t , u i n t 1 6 _ t , u i n t 1 6 _ t , s t r u c t a rgumen t s *)) {
2 i n t c u r r e n t P r e d B a n d s = z < p a r a m e t e r s −>p r e c e d i n g B a n d s ? z : p a r a m e t e r s −>

p r e c e d i n g B a n d s ;
3 i f (z > 0) {
4 f o r (i n t i = 0 ; i < c u r r e n t P r e d B a n d s ; i ++) {
5 d i f f V e c t o r [i] = (sample [o f f s e t (x , y , z−i −1, p a r a m e t e r s)] << 2) − loca lSumFunc (

sample , x , y , z−i −1, p a r a m e t e r s) ;
6 }
7 }
8 i f (p a r a m e t e r s −>mode == FULL) {
9 i f (x+y != 0) {

10 d i f f V e c t o r [p a r a m e t e r s −>p r e c e d i n g B a n d s] = n o r t h L o c a l D i f f r e n c e (sample , x , y , z ,
loca lSumFunc (sample , x , y , z , p a r a m e t e r s) , p a r a m e t e r s) ;

11 d i f f V e c t o r [p a r a m e t e r s −>p r e c e d i n g B a n d s +1] = w e s t L o c a l D i f f r e n c e (sample , x , y , z ,
loca lSumFunc (sample , x , y , z , p a r a m e t e r s) , p a r a m e t e r s) ;

12 d i f f V e c t o r [p a r a m e t e r s −>p r e c e d i n g B a n d s +2] = n o r t h w e s t L o c a l D i f f r e n c e (sample , x , y ,
z , loca lSumFunc (sample , x , y , z , p a r a m e t e r s) , p a r a m e t e r s) ;

13 }
14 }
15 }

Listing 3.2: Building the Local Difference function

For calculating the scaled predicted sample as the formula is specified in equation 2.19 it is done as
shown in listing 3.3. Note that the left shifting can cause severe issues when done on negative numbers,
this is circumvented by left shifting a positive number. Multiplying the positive number by negative 1 if
the end result will be negative.

1 i n t 3 2 _ t c o m p u t e S c a l e d P r e d i c t e d (u i n t 1 6 _ t * sample , i n t 3 2 _ t * w e i gh tV ec to r , i n t 6 4 _ t *
d i f f V e c t o r , i n t 3 2 _ t loca l sum ,

2 u i n t 1 6 _ t x , u i n t 1 6 _ t y , u i n t 1 6 _ t z , s t r u c t a rgumen t s * p a r a m e t e r s) {
3

4 i n t 3 2 _ t s c a l e d P r e d i c t e d = 0 ;
5 i f (x+y == 0) {
6 i f (z == 0 | | p a r a m e t e r s −>p r e c e d i n g B a n d s == 0) {
7 s c a l e d P r e d i c t e d = p a r a m e t e r s −>sMid << 1 ;
8 } e l s e {

28

9 s c a l e d P r e d i c t e d = sample [o f f s e t (x , y , z−1, p a r a m e t e r s)] << 1 ;
10 }
11 } e l s e {
12 i n t 3 2 _ t d i f f P r e d i c t e d = i n n e r P r o d u c t (w e i gh tV ec to r , d i f f V e c t o r , z , p a r a m e t e r s) ;
13 / / / S h i f t i n g o f n e g a t i v e numbers can c a u s e s e v e r e i s s u e s . Thus s h i f t i n g o f t h e

a b s o l u t e v a l u e and t h e n make i t n e g a t i v e .
14 i n t 6 4 _ t tmpValue = l o c a l s u m − (p a r a m e t e r s −>sMid << 2) ;
15 i n t sgn = tmpValue < 0 ;
16 tmpValue = abs (tmpValue) << p a r a m e t e r s −>w e i g h t R e s o l u t i o n ;
17 tmpValue = sgn ? −1 * tmpValue : tmpValue ;
18 i n t 6 4 _ t h ighResSample = modR(d i f f P r e d i c t e d + tmpValue , p a r a m e t e r s −> r e g i s t e r S i z e) ;
19 / / / /
20 highResSample = highResSample >> (p a r a m e t e r s −>w e i g h t R e s o l u t i o n +1) ;
21 highResSample += ((p a r a m e t e r s −>sMid < <1) + 1) ;
22

23 i n t 3 2 _ t lowerbounds = p a r a m e t e r s −>sMin < <1;
24 i n t 3 2 _ t h i g h e r b o u n d s = (p a r a m e t e r s −>sMax < <1) + 1 ;
25 s c a l e d P r e d i c t e d = c l i p (highResSample , lowerbounds , h i g h e r b o u n d s) ;
26 }
27 r e t u r n s c a l e d P r e d i c t e d ;
28 }

Listing 3.3: Computing the scaled predicted sample

Finally the weights will be updated as specified in section 2.1.1.5 where listing 3.4 shows the implemen-
tation.

1 vo id u p d a t e W e i g h t V e c t o r (i n t 3 2 _ t * we igh t s , i n t 6 4 _ t * d i f f V e c t o r , i n t 3 2 _ t e r r o r ,
u i n t 1 6 _ t x , u i n t 1 6 _ t y , u i n t 1 6 _ t z , s t r u c t a rgumen t s * p a r a m e t e r s) {

2

3 i n t 6 4 _ t w e i g h t L i m i t = 0x1 << (p a r a m e t e r s −>w e i g h t R e s o l u t i o n + 2) ;
4 i n t s i g n E r r o r = e r r o r < 0 ? −1 : 1 ;
5 u i n t 6 4 _ t s c a l i n g E x p = 0 ;
6 s c a l i n g E x p = ((y−1)* p a r a m e t e r s −>x S i z e +x) / (1< < p a r a m e t e r s −>w e i g h t I n t e r v a l) ;
7 s c a l i n g E x p = c l i p (p a r a m e t e r s −>weightMin + s c a l i n g E x p , p a r a m e t e r s −>weightMin ,

p a r a m e t e r s −>weightMax) ;
8 s c a l i n g E x p += p a r a m e t e r s −>dynamicRange − p a r a m e t e r s −>w e i g h t R e s o l u t i o n ;
9 i n t c u r r e n t P r e d i c t i o n B a n d = z < p a r a m e t e r s −>p r e c e d i n g B a n d s ? z : p a r a m e t e r s −>

p r e c e d i n g B a n d s ;
10

11 l ong tmp = 0 ;
12 f o r (i n t i = 0 ; i < c u r r e n t P r e d i c t i o n B a n d ; i ++) {
13 i f ((s c a l i n g E x p) > 0) {
14 tmp = (s i g n E r r o r * d i f f V e c t o r [i]) >> (s c a l i n g E x p) ;
15 } e l s e {
16 tmp = (s i g n E r r o r * d i f f V e c t o r [i]) << (−1*(s c a l i n g E x p)) ;
17 }
18 tmp = (tmp + 1) >> 1 ;
19 w e i g h t s [i] = c l i p (w e i g h t s [i] + tmp , (−1 * w e i g h t L i m i t) , (w e i g h t L i m i t − 1)) ;
20 }
21 i f (p a r a m e t e r s −>mode == FULL) {
22 f o r (i n t i = 0 ; i < 3 ; i ++) {
23 i f ((s c a l i n g E x p) > 0) {
24 tmp = (s i g n E r r o r * d i f f V e c t o r [p a r a m e t e r s −>p r e c e d i n g B a n d s + i]) >> (

s c a l i n g E x p) ;
25 } e l s e {
26 tmp = (s i g n E r r o r * d i f f V e c t o r [p a r a m e t e r s −>p r e c e d i n g B a n d s + i]) <<

(−1*(s c a l i n g E x p)) ;

29

27 }
28 tmp = (tmp + 1) >> 1 ;
29 w e i g h t s [p a r a m e t e r s −>p r e c e d i n g B a n d s + i] = c l i p (w e i g h t s [p a r a m e t e r s −>

p r e c e d i n g B a n d s + i] + tmp , (−1 * w e i g h t L i m i t) , (w e i g h t L i m i t −1)) ;
30 }
31 }
32 }

Listing 3.4: Updating Weights

The final stage of the prediction is calculating the mapped residual which calculates as specified in
section 2.1.1.6. Listing 3.5 shows the implementation.

1 u i n t 1 6 _ t computeMappedResidual (u i n t 1 6 _ t sample , u i n t 3 2 _ t s c a l e d P r e d i c t e d , s t r u c t
a rgumen t s * p a r a m e t e r s) {

2 u i n t 1 6 _ t p r e d i c t e d S a m p l e = s c a l e d P r e d i c t e d >> 1 ;
3 i n t 3 2 _ t d e l t a = sample − p r e d i c t e d S a m p l e ;
4

5 i n t 3 2 _ t temp1 = p r e d i c t e d S a m p l e − p a r a m e t e r s −>sMin ;
6 i n t 3 2 _ t temp2 = p a r a m e t e r s −>sMax − p r e d i c t e d S a m p l e ;
7 i n t 3 2 _ t omega = temp1 > temp2 ? temp2 : temp1 ;
8

9 i f (abs (d e l t a) > omega) {
10 r e t u r n abs (d e l t a) + omega ;
11 } e l s e i f (s c a l e d P r e d i c t e d % 2 == 0 && d e l t a >= 0 | | s c a l e d P r e d i c t e d % 2 != 0 &&

d e l t a <= 0) {
12 r e t u r n abs (d e l t a) << 1 ;
13 } e l s e {
14 r e t u r n (abs (d e l t a) << 1) − 1 ;
15 }
16 }

Listing 3.5: Computing the mapped prediction residual

3.1.2. Encoding
The final step of the compression is to encode each of the samples produced from the prediction stage,
and this will in turn reduce the overall size of the total image. The objective of the encoder is to reduce
the amount of bits needed to represent each of the samples. The Sample adaptive encoder is implemented
in listing 3.6 which implements the specified algorithm in section 2.1.2. The function writeBits will as
the name explains only write a set amount of bits to the the output bitstream.

1 i n t encodeSampleAdap t ive (u i n t 3 2 _ t sampleToEncode , u i n t 1 6 _ t * c o u n t e r , u i n t 6 4 _ t *
a c c u m u l a t o r , u i n t 1 6 _ t x , u i n t 1 6 _ t y , u i n t 1 6 _ t z , u n s i g n e d i n t * t o t a l W r i t t e n B y t e s ,

u n s i g n e d i n t * numWri t t enBi t s , u i n t 8 _ t * compressedImage , s t r u c t a rgumen t s *
p a r a m e t e r s) {

2 i f (x == 0 && y == 0) {
3 i n i t S a m p l e E n c o d e r (z , c o u n t e r , a c c u m u l a t o r , p a r a m e t e r s) ;
4 w r i t e B i t s (sampleToEncode , p a r a m e t e r s −>dynamicRange , numWri t t enBi t s ,

t o t a l W r i t t e n B y t e s , compressedImage) ;
5 } e l s e {
6 l ong kValue = log2 ((a c c u m u l a t o r [z] + ((4 9 * c o u n t e r [z]) >> 7)) / c o u n t e r [z]) ;
7 kValue = kValue < 0 ? 0 : kValue ;
8 kValue = kValue > (p a r a m e t e r s −>dynamicRange − 2) ? p a r a m e t e r s −>dynamicRange −

2 : kValue ;
9 l ong uValue = sampleToEncode >> kValue ;

30

10 i f (uValue < p a r a m e t e r s −>uMax) {
11 w r i t e B i t s (0 , uValue , numWri t t enBi t s , t o t a l W r i t t e n B y t e s , compressedImage) ;
12 w r i t e B i t s (1 , 1 , numWri t t enBi t s , t o t a l W r i t t e n B y t e s , compressedImage) ;
13 w r i t e B i t s (e x t r a c t B i t s (sampleToEncode , kValue) , kValue , numWri t t enBi t s ,

t o t a l W r i t t e n B y t e s , compressedImage) ;
14 } e l s e {
15 w r i t e B i t s (0 , p a r a m e t e r s −>uMax , numWri t t enBi t s , t o t a l W r i t t e n B y t e s ,

compressedImage) ;
16 w r i t e B i t s (sampleToEncode , p a r a m e t e r s −>dynamicRange , numWri t t enBi t s ,

t o t a l W r i t t e n B y t e s , compressedImage) ;
17 }
18 i f (x+y != 0) {
19 i f (c o u n t e r [z] < ((1 << p a r a m e t e r s −>y S t a r) − 1)) {
20 a c c u m u l a t o r [z] += sampleToEncode ;
21 c o u n t e r [z] + + ;
22 } e l s e {
23 a c c u m u l a t o r [z] = (a c c u m u l a t o r [z] + sampleToEncode + 1) >> 1 ;
24 c o u n t e r [z] = (c o u n t e r [z] + 1) >> 1 ;
25 }
26 }
27 }
28 r e t u r n 0 ;
29 }

Listing 3.6: Implemented sample adaptive encoder

3.2. Decompression
The CCSDS 123 Issue 1 standard was also made to be decompressing by decoding and using predic-
tion to reproduce the original samples. This section will describe the implementation to decompress
the images produced in the compression software. Decompression is done in a different manner from
compression because compressed images can differ based on the parameters chosen. First the decom-
pression tool will read the image header that has been written at the top of the bitstream that contains
the parameters that was parsed in the argument parser. Listing 3.7 shows the top level decompression of
images which involves a decoding and a unprediction step.

1 i n t decompress Image (FILE * compressedImage , FILE * dec ompr es sed Imag eF i l e , s t r u c t
a rgumen t s * p a r a m e t e r s) {

2 f o r (u i n t 1 6 _ t z = 0 ; z < p a r a m e t e r s −>z S i z e ; z ++) {
3 f o r (u i n t 1 6 _ t y = 0 ; y < p a r a m e t e r s −>y S i z e ; y ++) {
4 f o r (u i n t 1 6 _ t x = 0 ; x < p a r a m e t e r s −>x S i z e ; x ++) {
5 u i n t 3 2 _ t t e m p R e s i d u a l = decodeSampleAdap t ive (c o u n t e r , a c c u m u l a t o r ,

x , y , z , compressedImage , p a r a m e t e r s) ;
6 o r i g i n a l I m a g e [o f f s e t (x , y , z , p a r a m e t e r s)] = u n P r e d i c t (o r i g i n a l I m a g e

, t empRes idua l , x , y , z , p a r a m e t e r s , d i f f V e c t o r , w e i g h t s) ;
7 i f (p a r a m e t e r s −>p i x e l T y p e == SIGNED) {
8 i n t 1 6 _ t s ignedSample = o r i g i n a l I m a g e [o f f s e t (x , y , z , p a r a m e t e r s)

] − p a r a m e t e r s −>sMid ;
9 f w r i t e (& s ignedSample , 2 , 1 , d e c o m p r e s s e d I m a g e F i l e) ;

10 } e l s e {
11 f w r i t e (& o r i g i n a l I m a g e [o f f s e t (x , y , z , p a r a m e t e r s)] , 2 , 1 ,

d e c o m p r e s s e d I m a g e F i l e) ;
12 }
13 }

31

14 }
15 }
16 }

Listing 3.7: Decompression function

3.2.1. Decode
Decoding involves reproducing the mapped prediction samples produced by the sample adaptive encoder
as described in section 2.1.2. The step to reproduce the samples invovlves reading the uValue uz(t) that
was written to the bitstream as a value of N zeros until the ’1’ bit. Thus it can be determined how
man bits to be read to fetch the encoded mapped prediction sample from the bitstream. Finally the
accumulator and counter will be updated as described by the sample adaptive encoder. Listing 3.8 shows
the implementation of the decoder whch will perform the operation as mentioned.

1 u i n t 3 2 _ t decodeSampleAdap t ive (u i n t 1 6 _ t * c o u n t e r , u i n t 6 4 _ t * a c c u m u l a t o r , u i n t 1 6 _ t x ,
u i n t 1 6 _ t y , u i n t 1 6 _ t z , FILE * compressedImage , s t r u c t a rgumen t s * p a r a m e t e r s) {

2 u i n t 3 2 _ t tempSample = 0 ;
3 i f (x == 0 && y == 0) {
4 i n i t S a m p l e E n c o d e r (z , c o u n t e r , a c c u m u l a t o r , p a r a m e t e r s) ;
5 tempSample = r e a d B i t s (p a r a m e t e r s −>dynamicRange , compressedImage) ;
6 r e t u r n tempSample ;
7 } e l s e {
8 l ong kValue = log2 ((a c c u m u l a t o r [z] + ((4 9 * c o u n t e r [z]) >> 7)) / c o u n t e r [z]) ;
9 kValue = kValue < 0 ? 0 : kValue ;

10 kValue = kValue > (p a r a m e t e r s −>dynamicRange − 2) ? p a r a m e t e r s −>dynamicRange −
2 : kValue ;

11

12 u i n t 1 6 _ t uValue = readNZeros (p a r a m e t e r s −>uMax , compressedImage) ;
13 i f (uValue > p a r a m e t e r s −>uMax) {
14 tempSample = r e a d B i t s (p a r a m e t e r s −>dynamicRange , compressedImage) ;
15 } e l s e {
16 u i n t 1 6 _ t t e m p B i t s = r e a d B i t s (kValue , compressedImage) ;
17 tempSample = (uValue << kValue) | t e m p B i t s ;
18 }
19

20 i f (c o u n t e r [z] < ((1 << p a r a m e t e r s −>y S t a r) − 1)) {
21 a c c u m u l a t o r [z] += tempSample ;
22 c o u n t e r [z] + + ;
23 } e l s e {
24 a c c u m u l a t o r [z] = (a c c u m u l a t o r [z] + tempSample + 1) >> 1 ;
25 c o u n t e r [z] = (c o u n t e r [z] + 1) >> 1 ;
26 }
27 r e t u r n tempSample ;
28 }
29

30 }

Listing 3.8: Sample adaptive decoding of bitstream

3.2.2. UnPredict
Unprediction involves the step to reproduce a sample sz,y,x(t) from a mapped prediction residual after
it has been decoded. Equation 2.25 shows how to produce the delta prediction residual in the prediction

32

stage, but for unprediction this step requires to reproduce the sample residual ∆z(t). This can be done by
inversing the mapped prediction residual computed in section 2.1.1.6 as shown in Equation 3.1[10]. The
prediction stage will produce a scaled prediction and prediction sample which is used in the equation.
θz(t) is calculated in a similar manner as shown in Equation 2.26.

∆(t) =

{
(θz(t)− δz(t))sgn+(ŝz(t)− smid) if δz(t) > 2θz(t)
δz(t)+1

2 (−1)s̃z(t)+δz(t) if δz(t) ≤ 2θz(t)
(3.1)

Finally the sample sz(t) can be reproduced by inverting the equation Equation 2.25 as this is shown in
Equation 3.2.

sz(t) = ∆z(t) + ŝz(t) (3.2)

The implementation of the unprediction stage as mentioned is shown in Listing 3.9.

1 u i n t 3 2 _ t u n P r e d i c t (u i n t 1 6 _ t * inpu tSample , u i n t 1 6 _ t mappedResidual , u i n t 1 6 _ t x ,
u i n t 1 6 _ t y , u i n t 1 6 _ t z , s t r u c t a rgumen t s * p a r a m e t e r s , i n t 6 4 _ t * d i f f V e c t o r ,
i n t 3 2 _ t * w e i g h t s) {

2 / *
3 C a l c u l a t e l o c a l sum and b u i l d up t h e d i f f r e n t i a l v e c t o r a t a g i v e n sample .
4 * /
5 i f (x+y != 0) {
6 B u i l d D i f f V e c t o r (inpu tSample , d i f f V e c t o r , x , y , z , p a r a m e t e r s , wideNeighborLocalSum

) ;
7 }
8 / *
9 Step f o r c a l c u l a t i n g p r e d i c t i o n sample and s c a l e d P r e d i c t e d

10 * /
11 i n t 3 2 _ t s c a l e d P r e d i c t e d = c o m p u t e S c a l e d P r e d i c t e d (inpu tSample , we igh t s , d i f f V e c t o r ,

wideNeighborLocalSum (inpu tSample , x , y , z , p a r a m e t e r s) , x , y , z , p a r a m e t e r s) ;
12 i n t 3 2 _ t d e l t a = i n v e r s e M a p p e d R e s i d u a l (mappedResidual , s c a l e d P r e d i c t e d > >1 ,

s c a l e d P r e d i c t e d , p a r a m e t e r s) ;
13 u i n t 1 6 _ t sample = (s c a l e d P r e d i c t e d > >1) + d e l t a ;
14 / *
15 Update w e i g h t s
16 * /
17 i f (x+y == 0) {
18 i n i t W e i g h t s (we igh t s , z , p a r a m e t e r s) ;
19 } e l s e {
20 i n t 3 2 _ t d o u b l e R e s E r r o r = (sample << 1) − s c a l e d P r e d i c t e d ;
21 u p d a t e W e i g h t V e c t o r (we igh t s , d i f f V e c t o r , d o u b l e R e s E r r o r , x , y , z , p a r a m e t e r s) ;
22 }
23 r e t u r n sample ;
24 }
25

26 i n t 3 2 _ t i n v e r s e M a p p e d R e s i d u a l (u i n t 3 2 _ t mappedResidual , u i n t 6 4 _ t p r e d i c t e d S a m p l e ,
u i n t 3 2 _ t s c a l e d P r e d i c t e d , s t r u c t a rgumen t s * p a r a m e t e r s) {

27 i n t 6 4 _ t omega = 0 ;
28 i n t 6 4 _ t temp1 = p r e d i c t e d S a m p l e − p a r a m e t e r s −>sMin ;
29 i n t 6 4 _ t temp2 = p a r a m e t e r s −>sMax − p r e d i c t e d S a m p l e ;
30

31 omega = temp1 > temp2 ? temp2 : temp1 ;
32

33 i f (mappedRes idua l > (omega < <1)) {
34 i n t sgn = s g n P l u s (p r e d i c t e d S a m p l e−p a r a m e t e r s −>sMid) ;
35 r e t u r n (omega−mappedRes idua l) * sgn ;

33

36 } e l s e {
37 i f ((mappedRes idua l + s c a l e d P r e d i c t e d) % 2 == 0) {
38 r e t u r n ((mappedRes idua l +1) / 2) ;
39 } e l s e {
40 r e t u r n −1 * ((mappedRes idua l +1) / 2) ;
41 }
42 }
43 }

Listing 3.9: Unprediction top level function

3.3. Embedded Version

The embedded version is implemented as a function in the HYPSO software running on-board HYPSO
mission, it only contains the compressImage function as similar to the one implemented in Section 3.1
but with limited capabilities to change parameters in its current status. The primary design focus is
using the user defined parameters similar to the one implemented in the FPGA version as this is defined
during synthesis. Figure 3.2 shows the total design of the on-board processing but the focus is on the
Lossless Compression where it used as a stage in the pipeline before transmission or local storage. For
the satellite it is very important to use the compression to reduce the pressure on the transmission through
the on-board antenna. Uncompressed images can become a problem for slow speeds on the antenna.

34

Figure 3.2.: Hypso Pipeline

Listing 3.10 provides the top level function compressImage as implemented in the pipeline. The im-
plementation is at the top level shown in the figure 3.1. In the for loop for line 35 to 45 it will predict and
encode every individual pixel in the image. Similar to the implementation of CCSDS 123 Issue 2 with
argument parsing it would initialise default parameters to be used for the algorithm. This is different in
this implementation as these parameters are initialised by the HYPSO software. The intention for this
is that the parameters will not change often as the mission is operational. Once the satellite has been
launched there is the possibility of downloading an uncompressed image and optimise the parameters
to provide the optimal results for the mission. The second point is to be similar to the FPGA at every
time to provide similar results, but if the FPGA changes then it is possible to update the HYPSO software.

1 i n t compressImage (
2 u i n t 1 6 _ t * image ,
3 u i n t 8 _ t * compressedImage ,
4 u n s i g n e d i n t * t o t a l W r i t t e n B y t e s ,
5 compr_conf ig_sw_ t * p a r a m e t e r s) {
6 i n t e r r o r = 0 ;
7

8 / / A l l o c a t e memory . I f any of t h e s e a r e n u l l t h e n i t s h o u l d c l e a n up .
9 i n t 3 2 _ t * w e i g h t s = m a l lo c ((p a r a m e t e r s −>mode != REDUCED ? p a r a m e t e r s −>p r e c e d i n g B a n d s

+3 : p a r a m e t e r s −>p r e c e d i n g B a n d s) * s i z e o f (i n t 3 2 _ t)) ;
10 i n t 3 2 _ t * d i f f V e c t o r = ma l lo c ((p a r a m e t e r s −>mode != REDUCED ? p a r a m e t e r s −>

35

p r e c e d i n g B a n d s +3 : p a r a m e t e r s −>p r e c e d i n g B a n d s) * s i z e o f (i n t 3 2 _ t)) ;
11 u i n t 1 6 _ t * c o u n t e r = m a l lo c (s i z e o f (u i n t 1 6 _ t) * p a r a m e t e r s −>z S i z e) ;
12 u i n t 6 4 _ t * a c c u m u l a t o r = m a l lo c (s i z e o f (u i n t 6 4 _ t) * p a r a m e t e r s −>z S i z e) ;
13

14

15 i f (w e i g h t s == NULL) {
16 e r r o r = 1 ;
17 go to e r r o r ;
18 }
19 i f (d i f f V e c t o r == NULL) {
20 e r r o r = 1 ;
21 go to e r r o r ;
22 }
23 i f (c o u n t e r == NULL) {
24 e r r o r = 1 ;
25 go to e r r o r ;
26 }
27 i f (a c c u m u l a t o r == NULL) {
28 e r r o r = 1 ;
29 go to e r r o r ;
30 }
31 u n s i g n e d i n t n u m W r i t t e n B i t s = 0 ;
32

33 / / Add t h e image h e a d e r
34 w r i t e I m a g e H e a d e r (& numWri t t enBi t s , t o t a l W r i t t e n B y t e s , compressedImage , p a r a m e t e r s) ;
35 f o r (u i n t 1 6 _ t y = 0 ; y < p a r a m e t e r s −>y S i z e ; y ++) {
36 f o r (u i n t 1 6 _ t x = 0 ; x < p a r a m e t e r s −>x S i z e ; x ++) {
37 f o r (u i n t 1 6 _ t z = 0 ; z < p a r a m e t e r s −>z S i z e ; z ++) {
38 u i n t 3 2 _ t r e s i d u a l s = p r e d i c t (image , x , y , z , p a r a m e t e r s , d i f f V e c t o r ,

w e i g h t s) ;
39 encodeSampleAdap t ive (r e s i d u a l s , c o u n t e r , a c c u m u l a t o r , x , y , z ,

t o t a l W r i t t e n B y t e s , &numWri t t enBi t s , compressedImage , p a r a m e t e r s) ;
40 / / p r i n t f (" x : %i , y : %i , z : %i \ n " , x , y , z) ;
41 }
42 }
43 }
44 / *
45 F i l l t h e f i n a l b i t s t o r e a c h t h e word s i z e o f t h e compute r
46 * /
47 f i l l B i t s (& numWri t t enBi t s , t o t a l W r i t t e n B y t e s , compressedImage , p a r a m e t e r s) ;
48

49 / / F r ee on NULL p o i n t e r s i s r e g a r d e d as NOP
50 e r r o r :
51

52

53 f r e e (a c c u m u l a t o r) ;
54 f r e e (c o u n t e r) ;
55 f r e e (w e i g h t s) ;
56 f r e e (d i f f V e c t o r) ;
57 r e t u r n e r r o r ;
58 }
59 }

Listing 3.10: CCSDS 123 Issue 1 Embedded Implementation

36

4. CCSDS 123 Issue 2 Improvements
As it was mentioned in section 2.2 there was still features that was required to be made for the software
to be functioning properly and to perform the baseline compression of near-lossless. This chapter will
describe the new improvements to this software that was made for this thesis. The software implementa-
tion can be found in Appendix D. The main improvements that was required was described in the future
work in section 2.2 and described as such:

• Support different bit sizes, D. The implementation only supports 16-bit image data.

• The software implementation requires to support signed numbers and the implementation only
supports unsigned.

• Argument parsing does not support all user-defined parameters, some of these are set to a default
value in the argument parser.

• Currently the software only support BSQ. An important feature is to support BIP and BIL.

• The hybrid encoder requires future work to solve the issues regarding the codewords and a better
testing solution. A decoder is a possible testing solution.

• The software implementation needs a decompression implementation to be able to read a com-
pressed stream. The sample adaptive already has a possible decoder solution from issue 1, but the
predictor for CCSDS 123 Issue 2 does not have a depredictor and requires an implementation.

This chapter will address these improvements that was required to perform a baseline compression of
near-lossless, and it will not include all features of the CCSDS 123 Issue 2 standard.

4.1. Supporting different bit sizes
Supporting bit-sizes larger than 16-bits would require changing the types used in the compression soft-
ware to accommodate the bitsizes. The CCSDS 123 Issue 1 green paper in [10] addresses the bit-sizes
for CCSDS 123 Issue 1, but Issue 2 changes this because the maximum bit size is 32-bit. In the pro-
gramming language C it would require to use 32-bit or 64-bit types to expand the bit-sizes to prevent
overflows. A bug with overflow was still occurring even if the types are changed. Listing 4.1 shows the
implementation of the scaled predicted sample which had an overflow bug which might not be notice-
able at first. The primary problem is by left shifting the sample in line 6. This line will left shift a 32-bit
sample value by 1 and store the result in 32-bit register. Followed by this the resulting 32-bit register
will be stored into the 64-bit variable doubleResPredSample. If the result of the left shift overflows then
it is because of not left shifting a 64-bit register.

1 u i n t 6 4 _ t c o m p u t e P r e d i c t e d S a m p l e (u i n t 3 2 _ t * sample , u i n t 6 4 _ t * doubleResPredSample ,
u i n t 6 4 _ t h ighResPredSample , u i n t 1 6 _ t x , u i n t 1 6 _ t y , u i n t 1 6 _ t z , s t r u c t a rgumen t s *

p a r a m e t e r s) {

37

2 i f (x+y == 0) {
3 i f (z == 0 | | p a r a m e t e r s −>p r e c e d i n g B a n d s == 0) {
4 (* doub leResPredSample) = p a r a m e t e r s −>sMid < <1;
5 } e l s e {
6 (* doub leResPredSample) = sample [o f f s e t (x , y , z−1, p a r a m e t e r s)] < <1;
7 }
8 } e l s e {
9 (* doub leResPredSample) = h ighResPredSample >> (p a r a m e t e r s −>w e i g h t R e s o l u t i o n +1) ;

10 }
11 r e t u r n (* doub leResPredSample) > >1;
12 }

Listing 4.1: Overflow bug

A simple solution used in the C programming language is by using the method casting which will pro-
mote one of the variables into a selected size. The result for the selected size will therefore promote
all variables used in the calculation. Listing 4.2 fixes this issue due to the specification of C99 integer
promotion rules will promote the results into a 64-bit result [12].

1 u i n t 6 4 _ t c o m p u t e P r e d i c t e d S a m p l e (u i n t 3 2 _ t * sample , u i n t 6 4 _ t * doubleResPredSample ,
u i n t 6 4 _ t h ighResPredSample , u i n t 1 6 _ t x ,

2 i f (x+y == 0) {
3 i f (z == 0 | | p a r a m e t e r s −>p r e c e d i n g B a n d s == 0) {
4 (* doub leResPredSample) = p a r a m e t e r s −>sMid < <1;
5 } e l s e {
6 (* doub leResPredSample) = (u i n t 6 4 _ t) sample [o f f s e t (x , y , z−1, p a r a m e t e r s)] < <1;
7 }
8 } e l s e {
9 (* doub leResPredSample) = h ighResPredSample >> (p a r a m e t e r s −>w e i g h t R e s o l u t i o n +1) ;

10 }
11 r e t u r n (* doub leResPredSample) > >1;
12 }

Listing 4.2: Fixed overflow bug

4.2. Support for signed integers

Another feature is to implement the functionality to read signed integer images as there is a possibility
a camera will capture in signed integers. Instead of creating multiple versions to support integer casting
there was a simpler solution to convert signed integers to unsigned integers. Because the bit-size is
already known at the beginning it was simply to convert signed integers to unsigned integers by adding
the value smid to an signed integer and store the result in an unsigned integer. Using the unsigned value
of smid as calculated in section 2.1 where the D-bit value is the bit-size. The implementation of this is
as shown in Listing 4.3.

1 i f (p a r a m e t e r s −>p i x e l T y p e == SIGNED) {
2 samples [r e a d b y t e s] = b u f f e r + p a r a m e t e r s −>sMid ;
3 } e l s e {
4 samples [r e a d b y t e s] = b u f f e r ;
5 }

Listing 4.3: Conversion of signed integers

38

4.3. Conversion of Endianess
A feature that was not required at the future work but was implemented anyways is the conversion of
big-endian numbers to low-endian. An image created by a big-endian machine without conversion used
on a low-endian machine would make the compression produce unexpected or worse results due to how
the samples are stored in memory. A big-endian machine stores the most significant byte as the first byte
with an increasing order, and low-endian will store the most-significant byte at the end. For example the
32-bit value 0xAABBCCDD would be stored as DD, CC, BB and AA in memory. This is visually
represented in Figure 4.1 where the memory address shows an increasing order towards the right and the
different Endianess and how they store 0xAABBCCDD.

Figure 4.1.: Big-endian vs Low Endian in memory

Converting a big-endian number to a low-endian is performed by shift operations which moves the
bytes to their proper locations. AA would be right shifted to the right by 24 places, BB is shifted to
the right by 8 places, CC is left shifted by 8 places and finally DD is left shifted by 24 places. GCC
provides a builtin function which provides this functionality as shown in Listing 4.4 which will swap a
32-bit integer.

1 # d e f i n e __ b sw ap _ co ns t an t_ 3 2 (x) \
2 ((((x) & 0 xf f000000) >> 24) | (((x) & 0 x00f f0000) >> 8) | \
3 (((x) & 0 x0000f f00) << 8) | (((x) & 0 x000000f f) << 24))

Listing 4.4: Converting endianess

4.4. Support for varying image order and encoding order
Supporting BSQ, BIL and BIP introduces two problems for compression to perform. First is reading
images that are in such order which they are stored in memory as they are specified in section 2.1. As the
programming language C does not allow to easily use a 3-dimensional array without pointer arithmetic
it was simpler to use a one-dimensional array, and to use the parameters x, y, z to denote the coordinates
within this one dimensional array. An offset function was made to perform the conversion from BSQ,BIL
or BIP to 1-Dimensional coordinate. This function is as shown in Listing 4.5 which will read the image
decided by the user.

39

1 i n t o f f s e t (u i n t 1 6 _ t x , u i n t 1 6 _ t y , u i n t 1 6 _ t z , s t r u c t a rgumen t s * a r g s) {
2 i f (a rgs −>imageOrder == BSQ) {
3 r e t u r n (z * a rgs −>x S i z e * a rgs −>y S i z e) + (y * a rgs −>x S i z e) + x ; / / BSQ
4 } e l s e i f (a rgs −>imageOrder == BIP) {
5 r e t u r n (a rgs −>x S i z e * a rgs −>z S i z e *y) + (a rgs −>z S i z e *x) + z ; / / BIP
6 } e l s e {
7 r e t u r n (a rgs −>x S i z e * a rgs −>z S i z e *y) + (a rgs −>x S i z e * z) + x ; / / BIL
8 }
9 }

Listing 4.5: Offset function for reading different image orders

Compression also needs to support encoding in BSQ, BIL and BIP which describes the order of en-
coding pixels. This does not affect what the input image order is stored in as the compression tool can
read an BSQ image and encode it as BIP, or any other combination. The CCSDS 123 standard allows
for encoding sub-frames within frames but this was not necessary to use and was neglected from the
implementation. Encoding in the different orders is simply the way the top level for loop iterates through
the image for encoding. For example the encoding of BSQ would iterate through the spatial (x, y)
coordinates first followed by each band z as this is shown in Figure 4.2.

Figure 4.2.: Big-endian vs Low Endian in memory

The pseudo-code performing this encoding order is as shown in Listing 4.6 which performs this en-
coding order.

1 f o r (u i n t 1 6 _ t z = 0 ; z < p a r a m e t e r s . z S i z e ; z ++) {
2 f o r (u i n t 1 6 _ t y = 0 ; y < p a r a m e t e r s . y S i z e ; y ++) {
3 f o r (u i n t 1 6 _ t x = 0 ; x < p a r a m e t e r s . x S i z e ; x ++) {
4 / / P r e d i c t / Encode
5 }
6 }
7 }

Listing 4.6: Encoding of BSQ

BIP encoding order is the encoding of spectral z followed by spatial x first and finally the spatial coor-
dinate z. The pseudo code for performing this encoding order is as shown in Listing 4.7.

40

1 f o r (u i n t 1 6 _ t y = 0 ; y < p a r a m e t e r s . y S i z e ; y ++) {
2 f o r (u i n t 1 6 _ t x = 0 ; x < p a r a m e t e r s . x S i z e ; x ++) {
3 f o r (u i n t 1 6 _ t z = 0 ; z < p a r a m e t e r s . z S i z e ; z ++) {
4 / / P r e d i c t / Encode
5 }
6 }
7 }

Listing 4.7: Encoding of BIP

Finally the encoding order for BIL is the encoding of spatial coordinate x followed by the spectral
coordinate z and finally the spatial coordinate y. The pseudo code for BIL encoding order is as shown in
Listing 4.8.

1 f o r (u i n t 1 6 _ t y = 0 ; y < p a r a m e t e r s . y S i z e ; y ++) {
2 f o r (u i n t 1 6 _ t z = 0 ; z < p a r a m e t e r s . z S i z e ; z ++) {
3 f o r (u i n t 1 6 _ t x = 0 ; x < p a r a m e t e r s . x S i z e ; x ++) {
4 / / P r e d i c t / Encode
5 }
6 }
7 }

Listing 4.8: Encoding of BIL

4.5. Fixing the hybrid encoder
The hybrid encoder was developed and almost finished in the project thesis as mentioned in section 2.3,
but there was an issue regarding the code tables where at some points it did not provide the correct
codes at the output. The bug occured because of a problem with the implementation and error handling.
The problem with the implementation is that there are 12 arrays of 258 characters that are declared as a
global variable as this is shown in Listing 4.9. The activeprefix will be appended with the hexadecimal
character according to the standard described in section 2.2 but a problem will occur if there is no
valid code and never will be reset. If a code is never found then it will be appended forever until it
will overwrite the string terminator and start overwriting other active-prefixes. This problem occured
especially with codetable 12 where it never stopped and with some more research there was a problem
with the documentation of [4]. Codetable 12 has 106 unique codes as this is shown in Appendix E, but it
should be 109 codes as provided in [13]. After contacting Ian Blanes which is one of the co-auhtors on
[13] it was true that there is some missing codes. Thankful to this contact it was provided a location of
the correct code tables which is provided in [14] which can also be found included in Appendix D.

1 c h a r a c t i v e P r e f i x [1 6] [2 5 8] = { " " , " " , " " , " " , " " , " " , " " , " " , " " , " " , " " , " " , " " ,
" " , " " , " " } ;

2 u i n t 8 _ t code Index [1 6] = {12 , 10 , 8 , 6 , 6 , 4 , 4 , 4 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 0 } ;

Listing 4.9: Array of activeprefixes

4.6. Decompression
With the limited time before delivering the thesis the development of a hybrid decoder was not possible
and is therefore neglected. Even so the unprediction stage was still feasible to implement.

41

4.6.1. Unpredict
After decoding of a mapped quantizer index then it possible to reconstruct sz(t) in the unprediction
step. However it is not entirely possible to reconstruct sz(t) if lossy is chosen where mz(t) 6= 0 and
the original sz(t) is not similar to the reconstructed one. Unprediction uses the prediction stage to
use the same calculations as this will reproduce the statistics as if it were in compression. There is
some differences as the step will require to reverse steps that was done in compression and this will
be described in this subsection. The software top level calculation differs from the one mentioned in
compression and the unprediction is performed as such:

• Compute the local sum for t > 0 (Will store all the sum in memory)

• Compute the local differences and create the diffrences vector for t > 0

• Compute high resolution prediction sample for t > 0

• Compute double resolution prediction sample

• Compute the predicted sample value

• Compute the fidelity control for mz(t)

• Compute the inverse mapped quantizer index to reproduce qz(t) from δz(t)

• Compute the dequantization to reproduce ∆z(t) from qz(t)

• Compute the clipped bin center

• Weight update/Weight init

• For t = 0 return sz(t) = ∆z(t) + ŝz(t).

• For t > 0 return the clipped bin center

The introduction to the unprediction is the inverse of mapped quantizer index to reproduce qz(t) and de-
quatization to reproduce ∆z(t). The other implementations reuses the implementations for compression
from section 2.2 and is therefore negltected in this section. The decoding of the bitstream will provide
a mapped quantizer index δz(t) that is used in reproducing the original sample sz(t). After the step of
prediction then the inverse of mapped quantizer index to calculate the quantizer index qz(t) is possible.
The equation for calculation of the mapped quantizer index is already introduced in Equation 2.61 where
the reverse for calculating the quantizer index qz(t) is in Equation 4.1.

qz(t) =

{
(θz(t)− δz(t))sgn+(ŝz(t)− smid) if δz(t) > 2θz(t)
δz(t)+1

2 (−1)s̃z(t)+δz(t) if δz(t) ≤ 2θz(t)
(4.1)

1 i n t 6 4 _ t i n v e r s e M a p p e d R e s i d u a l (u i n t 3 2 _ t mappedResidual , u i n t 6 4 _ t p r e d i c t e d S a m p l e ,
u i n t 6 4 _ t doubleResPredSample , u i n t 3 2 _ t maximumError , u i n t 1 6 _ t x , u i n t 1 6 _ t y ,
u i n t 1 6 _ t z , s t r u c t a rgumen t s * p a r a m e t e r s) {

2 i n t 6 4 _ t omega = 0 ;
3 i n t 6 4 _ t temp1 = p r e d i c t e d S a m p l e − p a r a m e t e r s −>sMin ;
4 i n t 6 4 _ t temp2 = p a r a m e t e r s −>sMax − p r e d i c t e d S a m p l e ;

42

5 i f (x == 0 && y == 0) {
6 omega = temp1 > temp2 ? temp2 : temp1 ;
7 } e l s e {
8 temp1 = ((temp1 + maximumError) / ((maximumError << 1) + 1)) ;
9 temp2 = ((temp2 + maximumError) / ((maximumError << 1) + 1)) ;

10 omega = temp1 > temp2 ? temp2 : temp1 ;
11 }
12

13 i f (mappedRes idua l > (omega < <1)) {
14 i n t sgn = s g n P l u s (p r e d i c t e d S a m p l e−p a r a m e t e r s −>sMid) ;
15 r e t u r n (omega−mappedRes idua l) * sgn ;
16 } e l s e {
17 i f ((mappedRes idua l + doub leResPredSample) % 2 == 0) {
18 r e t u r n ((mappedRes idua l +1) >> 1) ;
19 } e l s e {
20 r e t u r n −1 * ((mappedRes idua l +1) >> 1) ;
21 }
22 }

Listing 4.10: Dequantization

Calculating the predicted residual ∆z(t) imposes some problems when reconstructing the original sam-
ple sz(t). Reversing the equation for calculating the quantizer index in Equation 2.48 is problematic
because of the maximum error mz(t) where the reversed equation is in Equation 4.2. The introduction
of±mz(t) provides an error where it is not possible to determine if it should be added or subtracted from
the final answer, and this provides no more than mz(t) units of error when reconstructing samlpe sz(t).
Therefore the implementation is neglegting this from the final equation as this is shown in Equation 4.3.

∆(t) =

{
qz(t) if t = 0

2 ∗ qz(t) ∗mz(t) + qz(t)±mz(t) if t > 0
(4.2)

∆(t) =

{
qz(t) if t = 0

2 ∗ qz(t) ∗mz(t) + qz(t) if t > 0
(4.3)

Listing 4.11 shows the implementation of Equation 4.3.

1 i n t 6 4 _ t d e Q u a n t i z i z e r (i n t 6 4 _ t q u a n t i z e r I n d e x , u i n t 3 2 _ t maximumError , u i n t 1 6 _ t x ,
u i n t 1 6 _ t y) {

2 i f (x+y == 0) {
3 r e t u r n q u a n t i z e r I n d e x ;
4 } e l s e {
5 r e t u r n (maximumError * q u a n t i z e r I n d e x < <1) + q u a n t i z e r I n d e x ;
6 }
7 }

Listing 4.11: Dequantization

After the delta residual has been calculated then it is possible to reproduce the sample sz(t) from ∆z(t).
By reversing the equation in Equation 2.47 as this is shown in Equation 4.4.

sz(t) = ∆z(t) + ŝz(t) (4.4)

For t>0 then the reproduction of sample sz(t) is the calculated clipped bin center.

43

5. Hypso on-board processing testing
and changes

As HYPSO mission is close for launch there was several tasks that was necessary for making a success-
ful mission on the on-board processing pipeline. A Direct Memory Access fpga core and a CCSDS 123
Issue 1 core on the FPGA has been previously made by Johan Fjeldtvedt in his master thesis on HYPSO,
where this thesis can be found in [2]. Multiple publications regarding this implementation of CubeDMA
and the CCSDS 123 Issue 1 core has also been made in [15, 16, 17]. During the development the inte-
gration of these systems has been primarily in a embedded system. It required to be implemented into
the linux system on the HYPSO satellite. One problem is that there had not been any integration tests
in the HYPSO system and it was necessary to perform the tests. This chapter will go through how the
system is designed and the necessary Linux kernel driver that is made to accommodate the pipeline. The
system is run on an ZYNQ 7000 SoC that is built up using an ARM CPU and a Xilinx FPGA. Xilinx has
developed a software for developing on their FPGAs called Vivado. It is assumed the reader has some
knowledge regarding the tool Vivado.

The integrated system on the FPGA which is developed by the HYPSO team is shown in figure 5.1.
The system presents the integration of CCSDS and CubeDMA as a custom IP and integrated with the
CPU. Note that the CubeDMA has full access to the Double Data Rate memory through the AXI_HP0
ports which is a slave port using the Advanced eXtensible Interface developed by ARM. CubeDMA is
also configured by the Master General Purpose port, and after cubeDMA has been started it will transfer
data from DDR memory to CCSDS, and from CCSDS to DDR memory. This system is used for all
verifications of hardware with the exception of CubeDMA tests. This test has removed CCSDS from the
FPGA and connects the port s_axis_s2mm port of CubeDMA to m_axis_mm2s port of CubeDMA as
shown in Figure 5.1. The system does have support for interrupts of completed transfers of CubeDMA
but these are not used to lower the necessary development time on the kernel driver HYPSO mission it
was deemed unnecessary.

44

Figure 5.1.: Zynq System Setup in Vivado

5.1. Communication with CubeDMA

Due to the troubles with integrating and communicating with CubeDMA it was necessary to verify and
rewrite the code for communication with this module. This section will describe what CubeDMA does
and how to use it. As mentioned the CubeDMA is an FPGA core to perform direct memory accesses to
offload these operations from the CPU. Allowing the CPU to continue working on other workloads while
waiting for the DMA to finish. The usage of a DMA can be very beneficial when there are many memory
accesses necessary, and for hyperspectral images this can be immense. The CubeDMA was designed to
transfer hyperspectral images, pixel by pixel, from the memory to a destination, and the destination can
be a computation core or itself. The focus of CubeDMA will be the software side of using this core and
the knowledge regarding the hardware is not necessary. Details regarding the hardware design is referred
to the thesis in[2], which also details how to use it in an embedded environment but not a Linux system.

Programming the CubeDMA is allowed through memory mapped registers stored inside the FPGA core
allowing a CPU to communicate and control the CubeDMA. These memory mapped registers are fixed
addresses which a CPU will translate as a communication to the FPGA instead of as a normal memory
access. The CPU translation map can be shown in Figure 5.2 which contains all the address translations.
The addresses which will translate to communication to the FPGA is PL AXI slave port 0 which is ad-
dresses 0x4000_0000 to 0x8000_0000 where 1 is not used. The specific address in this range can be
customised in the Vivado tool for configuring the system but in the HYPSO system it is currently fixed
to 0x4C00_0000 to 0x4C00_FFFF. This means 64k of 32-bit addresses can be used, but not all are used
as this was the default by Vivado.

45

Figure 5.2.: Zynq 7000 CPU memory map[5]

As the addresses are defined then it is necessary to know how to communicate with CubeDMA. Ta-
ble 5.1 and Table 5.2 describes each registers address and the description. Not all registers are used and
the focus will be on the implementation for HYPSO. The source part of the CubeDMA is described by
Table 5.1 where the most important registers are; Control, Status, Base address, Cube Dimension and
row size. Control register allows to start the DMA engine which will make the DMA transfers begin. If
a transfer is complete then the status register will notify if it is done or if an error is triggered. As the
DMA has access to the DDR memory that the CPU also uses it is necessary to define a base address from
where the DMA will read. This is defined through the base address register. The DMA will handle how
many addresses to read through the cube dimension register which is the total size of the hyperspectral
image. Width describes the X axis, height is the Y axis and depth is the Z axis in a spectral cube. Finally
the row size is necessary for the CubeDMA to function which is the multiplication X*Z. Finally once
these registers are defined it is necesarry for configuring CubeDMA for writing to a destination which
has fewer registers. As this is shown in Table 5.2 the registers are Control, Status, Base Address and
Received length. Control registers will allow the core to write to a destination. Status register will no-
tify if a transfer is done or an error has occurred. It is important to define the base address which the
CubeDMA will write to a destination address. Finally the received length address will define the number
of bytes which has been written to the CubeDMA core which can be less or larger than the cube size
register defined. With these registers defined then it is possible to use the CubeDMA.

46

Table 5.1.: Part 1 of memory map registers for CubeDMA[2]

47

Table 5.2.: Part 2 of memory map register for CubeDMA[2]

The address for the registers is the address defined within the parentheses (0xXX) which will define
the offset address from the base address 0x4C00_0000. This offset allows the programming language C
to create an array to access each address individually. As long as the array is an 32bit then the increments
array[0], array[1] and array[2] will be 0x4 each. Using this method in an embedded system without any
operating system is a lot easier as the memory management is handled by the program. This is not the
case for the HYPSO mission as it runs a Linux subsystem which allows to use varied methods such
as using a Linux kernel driver. For this case however the easiest method was to directly use the Linux
memory driver /dev/mem to access the physical memory of the system. This is performed as shown in
Listing 5.1 where mmaping will create a virtual address from the phsyical address CUBEDMA_BASE.

1 # d e f i n e CUBEDMA_BASE 0x43C00000
2 i n t fd = open (" / dev /mem" , O_RDWR| O_SYNC) ;
3

4 deviceMem = (u i n t 3 2 _ t *) mmap(NULL, g e t p a g e s i z e () , PROT_READ | PROT_WRITE , MAP_SHARED,
fd , CUBEDMA_BASE) ;

Listing 5.1: Memory access to cubeDMA

48

5.2. Linux Kernel Driver

The Linux kernel driver has been previously made by Andreas Varntresk on a previous master thesis
for the HYPSO mission, where this thesis can be found in [18], but due to limited time it had not been
completed entirely and was prone for error. This section will not go into much details regarding the im-
plemented kernel driver, but only point out some changes that was made to it to prevent kernel panics and
general errors. One important note is that the Linux kernel used for this project has been changed to make
sure the contiguous memory allocation of hyperspectral images is done correctly. A range of 256MiB
has been reserved from the kernel to make sure the range is never used. This was done because there
was some issues trying to integrate it without changing the linux kernel and proved to crash often. The
reservation of the memory region is done by reducing the amount of memory "accessable" to the linux
kernel from approximately 1 GB to 756 MB when creating the linux kernel. Adresses 0x0000_0000
to 0x3000_0000 is therefore available to the linux kernel, while the rest 0x3000_0000 to 0x4000_0000
is not available to the Linux kernel but can be used. Figure 5.2 shows the CPU addresses map that is
available for the CPU to use where 0x0000_0000 to 0x4000_0000 is used for DDR DRAM. Table 5.3
shows how the memory region is structured. The whole memory region defines a 256MB of reserved
storage but it does not mean it will use all of it. This is a safety prevention if the size of the images will
change in the future. The code for this Linux device driver is as shown in Appendix B.

Table 5.3.: Memory structure of reserved memory
Memory Start Memory End Description
0x000_00000 0x3000_0000 Linux Ram
0x3000_0000 0x4000_0000 CubeDMA addresses

The information regarding how to make kernel drivers is huge and a lot of the information regarding
this can always be outdated or changed as the linux is continuously updated. However the fundamentals
of designing Linux device drivers for this project is gained from the book Linux Device Drivers [19].

5.2.1. Opening and closing the device

Inserting the kernel module driver into the Linux system at runtime can be done by using the command
insmod. This function is a linux command that inserts linux kernel drivers at runtime. The command
will run the MODULE_INIT of the kernel driver which calls the function ebbchar_init in the C code.
This will do the standard init procedure of kernel drivers to insert it into the kernel at runtime. From
the previous work of Andreas Varntresk there has not been much additions to this function other than
adding the function request_mem_region which is a function that will reserve a memory region from
the linux kernel. It serves the purpose of preventing kernel drivers of allocating memory on top of each
other. Releasing this memory region can be done by using the function release_mem_region in the exit
function of the kernel driver. The linux command for inserting the linux kernel driver is done as shown
in Listing 5.2.

Listing 5.2: Linux command for inserting linux driver

$ insmod / l i b / modules /4 .19 .0 − x i l i n x−v2019 . 1 / e x t r a / cubedma . ko

49

Using the rmmod command in the linux terminal will remove the device from the linux kernel and
requires proper memory cleanup to prevent memory leaks and other issues. An issue occured that it was
not possible to do insmod after using the command rmmod to remove the driver. This was easily fixed
by adding the function memunmap to the exit function as it was not cleaning up properly when tested.
This function is used to cleanup the linux function memremap which is used when the driver is inserted.
Once this was changed, the driver would properly cleanup and removed the potential memory leak in the
driver. In the HYPSO system the removal of this kernel driver is performed as shown in Listing 5.3.

Listing 5.3: Linux command for removing linux driver

$ rmmod / l i b / modules /4 .19 .0 − x i l i n x−v2019 . 1 / e x t r a / cubedma . ko

50

6. Results

When testing the compression algorithms there is the possibility of testing on random data but this is
problematic as the compression algorithm does not compress well on random noise at least for compres-
sion rates. Especially since the algorithm is not designed to compress random noise but rather hyper-
spectral images. Therefore for this thesis it was easier to use hyper-spectral images. The testing method
used in this thesis is not to determine the optimal compression parameters, but rather to test for faults
and correctness. The aim for this testing is to provide a well tested compression software for usage by
others. For lossless compression the method to verify a compression algorithm is to run the compression
software on a hyperspectral image or random data. If the image is able to decompress the image back to
the original then the software is determined to be correct or at least working for that dataset. This does
not eliminate the possibility of a small bug in the software that is not detected for other images.

6.1. CCSDS 123 Issue 1 Results

As the CCSDS 123 Issue 1 software was implemented on the HYPSO software as an embedded imple-
mentation and another as a standard version. It was chosen to focus the results on the HYPSO software.
Decompressing images produced from the HYPSO software does require the standard software for ver-
ification. An example image produced from the HYPSO software is as shown in Subfigure 6.1(a). This
is testing with the integrated system of HYPSO software where the camera in use is not the hyperspec-
tral camera but a monochrome camera. As such it captures only monochrome image and each band is
just another capture so the compression output from these captures will not be ideal. The compression
algorithm CCSDS 123 Issue 1 is difficult to debug and verify primarily because of everything can com-
pute correctly until a point in the compression. One of the faults can be presented in Subfigure 6.1(b)
where the original image should be Subfigure 6.1(a). This particular issue was with compression un-
der BIP mode as the weight vector was not set up properly where there was only one weight vector
stored for all bands. Once each weight was set up to be using their own weight vector the problem was
removed. Another issue that would occur is improperly initialising variables and vectors which could
cause compression faults as this is shown in Subfigure 6.1(c). All these faults are primarily fault in the
implementation of the algorithm where there is also the possibility of overflow issues, but the chosen
integer types will cover all the possibility overflows as the bit-sizes are described in [10].

51

(a) Success-
ful test

(b) Fault in
implementa-
tion

(c) Another
fault in im-
plementation

Figure 6.1.: HYPSO compression test of CCSDS 123 Issue 1

6.2. CCSDS 123 Issue 2 Results

As the software did not implement the full standard with every possible feature provided by the standard
it was decided to provide a general overview of what is supported in the software implementation. The
overview is summarised for general features in Table 6.1, prediction features in Table 6.2, the fidelity
control features in Table 6.3 and the encoder features in Table 6.4 where the feature is described and
the status of the feature. Some features of the standard might not be described in the tables and it is
fair to assume it is not implemented. Note that the software does not support decoding to other orders.
Currently if one encodes a BSQ image in BIP order then the decoded image will become a BIP image.

52

Table 6.1.: General status of the software
General Features Status

Error Handling to prevent illegal values Not Implemented
Compression/Decompression of HSI images Implemented

Reading BSQ/BIP/BIL Implemented
Encoding BSQ/BIP/BIL Implemented

Sub-frame Encoding Not Implemented
Decoding BSQ/BIP/BIL to other encoding orders Not Implemented

Config File for custom initializations Not Implemented

Some features of the prediction was not implemented and this is summarised in Table 6.2. Primarily
the parts for custom initialisation and initialisation for bands is not implemented. This was due to the
practical issues with argument parsing with vector values which should have been in an config file.

Table 6.2.: Status of prediction
Prediction Features Status Note
Prediction according to the CCSDS
123 Standard Implemented

Wide Neighbor Oriented local sum Implemented
Narrow Neighbour local sum Implemented
Wide Column Local Sum Implemented
Narrow Column Local Sum Implemented
Init for damping and offset for each
band, in sample representation Not Implemented Only support fixed

values
Custom Weight initialization Not Implemented

Not all features of fidelity control for calculating mz(t) was not implemented and this is summarised
in Table 6.3. The same problem with the implementation of the prediction is the vector values which
would require a config file. Therefore the band dependent values was not implemented.

Table 6.3.: Status of Fidelity Control
Fidelity control Features Status

Absolute Error Implemented
Relative Error Implemented

Absolute and Relative Error Implemented
Band dependent error for Absolute/Relative Not Implemented

Band independent error for Absolute/Relative Implemented
Periodic Error Limit Updating Not Implemented

Finally the status of the implementations of the encoders is summarised in Table 6.4 where it shows
the varied encoders in the standard. As it is mentioned the hybrid decoder was not implemented because
there was not enough time to work on it. Even so the hybrid encoder is implemented which can be used

53

for testing the new encoder and the greater benefits to compression. Note that the block adaptive encoder
is not implemented as this was decided not to be used because of the greater benefits by using sample
adaptive or hybrid.

Table 6.4.: Status of Encoder
Encoding Features Status

Sample Adaptive Encoder Implemented
Sample Adaptive Decoder Implemented

Custom init of Accumulators/Counters Not Implemented
Hybrid Encoder Implemented
Hybrid Decoder Not Implemented

Block Adaptive Encoder/Decoder Not Implemented

Testing the software proved to be difficult primarily due to the size of the software where a lot of the
calculations could prove correct for a small data set while failing on a larger data set. One could calculate
the numbers manually using the mathematical equations but that would still not be feasible because
corner case errors could potentially not occur. A more thorough testing scheme is to use hyperspecral
images. For the testing of the software implementation the testing involves three data images of varied
sizes and locations for testing. Two of the images are provided by CCSDS which is located in [14]
where multiple test data is provided of varied entropy, and one image was fetched from the Hyperspectral
Imager for the Costal Ocean spectrometer located on ISS[20]. For lossless compression of the software
the verification method of the software is to compress and decompress itself where the original image
can be compared to the decompressed image. This method is not entirely robust as a low entropy image
might not trigger some corner cases or create large/small enough numbers for possible failures in the
software. Using multiple different images of varied entropy is important for the verification. These
verification methods does not work when using lossy compression as the decompressed image will not
be equal to the original image. For lossy compression a well known metric for verification of image
quality is using the Peak signal-to-noise ratio which provides an objective numerical value to determine
quality. First a mean squared error is calculated which gives an average error based on the original image
A and the compressed image B. This is calculated by Equation 6.1.

MSE =
1

xyz

x−1∑
i=0

y−1∑
j=0

z−1∑
k=0

[A(i, j, k)−B(i, j, k)]2 (6.1)

PSNR is calculated by Equation 6.2 where MAX is the maximum value possible in the image which is
216−1 for a 16-bit unsigned image. Note that MSE will be 0 when the images are identical which yeilds
a division by zero where the PSNR value is infinite. A lower value of PSNR means lower quality.

PSNR = 10 ∗ log(
MAX2

MSE
) (6.2)

The parameters used for testing all images is as shown in Table 6.5 where the focus of this testing is
the varying maximum error under absolute fidelity control. Using the band independent method where
all error values are using the same number. The first data set to look on is the HICO image which is a
low entropy image with a very flat structure in the image as this is shown on the lossless compressed

54

image in Figure 6.7. The original image is a 250MB file which is compressed using a varying absolute
maximum error x for values 0 to 10 which is incremented by 2x to provide a fast image degradation.
The varying compressed sizes when using the sample adaptive encoder is as shown in Figure 6.2 where
a larger absolute error will reduce the compressed size of the image.

Table 6.5.: Parameters used in Testing
Parameter Value

Prediction mode REDUCED
Dynamic Range 16

Weight resolution 4
Preceding bands 0

Vmin -5
Vmax -4

log2 Tinc 4
Register size, R 64

Local sum Wide Neighbour unless specified
Θ 0

Error type ABSOLUTE
Maximum Error mz(t) Varying

interband offset 0
intraband offset 0

sampleoffset 0
sample damping 0

intraband exponent 0
Umax 14

Initial Accumulator value 0
Initial counter value 7
Counter rescaling 9

55

Figure 6.2.: The compressed size of the original image compared to an increasing absolute error for sample adaptive
encoder

A different look on the compression of an image is the compression rate CR of the compression which
provides the total factor of compression. This is calculated by Equation 6.3 which is the division of the
original image size by the compressed image size. The compression rate using the sample adaptive
encoder with varying absolute error is as shown in Figure 6.3.

CR =
Original Size

Compressed Size
(6.3)

Figure 6.3.: The compression rate compared to an increasing absolute error for the sample adaptive encoder

While the hybrid encoder does not have a working decoder it was still feasible to take a look on the
statistics of the hybrid encoder on how well it would encode compared to the sample adaptive. Figure 6.4
provides the compressed size of the hybrid encoder which would yield smaller compressed sizes.

56

Figure 6.4.: The compressed size of the original image compared to an increasing absolute error for the hybrid
encoder

In other words compression rate would benefit greatly using the hybrid encoder as this is shown in
Figure 6.5 which looked to be going in an linear compression rate. This compression rate however
would peak at some value when the quantization would be too large and make each pixel 0 because of
division of large values using integers which would make the values 0.

Figure 6.5.: The compression rate compared to an increasing absolute error for the hybrid encoder

Lossy compression does come at the cost of image quality when the absolute error value would in-
crease and cause a degredation of the compressed images. The trend of the PSNR is shown in Figure 6.6
where absolute values 0, 2, 4, 16, 32, 64 and 128 saw no severe image degredation as this is shown
respectively in Figure 6.7, Subfigure 6.8(a), Subfigure 6.8(b), Subfigure 6.8(d), Subfigure 6.8(e), Subfig-
ure 6.9(a) and Subfigure 6.9(b). Most edges and distinct objects within the images would slowly become
quantized and become similar to the surroundings. For absolute error 256, 512 and 1024 the images
would degrade severely as this is shown in Subfigure 6.9(c), Subfigure 6.9(d) and Subfigure 6.9(e) re-
spectively. The possible reason for a comparable large and similar PSNR value for these images is the
surrounding water which does not become too much damaged. It should be noted that using different
types of local sums provides different image quality where for all these images are using wide local

57

sums. Looking at a specific spectral band using narrow local sum with absolute error 1024 as this is
shown in Subfigure 6.10(a). The image preserves some of the image but no PSNR increase where the
narrow local sum is at 41.58 compared to 43 with wide local sum. Looking at spectral band 10 however
shows most of the image has been degraded severly as this is shown in Subfigure 6.10(c). Comparably
looking at wide local sum with absolute value 1024 as shown in Subfigure 6.10(b) where the land has
noticeably been degraded in the image.

Figure 6.6.: Chart of the peak signal to noise ratio compared to an increasing absolute error

58

Figure 6.7.: Lossless compressed HICO image with Absolute Error = 0

59

(a) Absolute error 2
with PSNR 88

(b) Absolute error 4
with PSNR 82

(c) Absolute error 8
with PSNR 82

(d) Absolute error 16
with PSNR 77

(e) Absolute error 32
with PSNR 72

Figure 6.8.: Lossy compression of HICO images with absolute error

60

(a) Absolute error 64
with PSNR 66

(b) Absolute error 128
with PSNR 60

(c) Absolute error 256
with PSNR 54

(d) Absolute error 512
with PSNR 48

(e) Absolute error
1024 with PSNR 43

Figure 6.9.: Lossy compression of HICO images with absolute error

61

(a) Narrow local sum (b) Wide local sum (c) BAND 10 of nar-
row local sum

Figure 6.10.: Comparison of different local sums using absolute error 1024

As it can be seen in the HICO images distinct objects in the image could be interpreted which might
have been primarily due to the nature of low entropy in the image. Due to this it would be beneficial to
use a higher entropy image for compression where a landsat image of a mountain was used. The lossless
compressed image of the mountain is as shown in Figure 6.11 where the original image is 12MB in size.
The absolute error values used for the compression of this image is much lower compared to the HICO
image as severe degradation of the image occurred for small values, and the values used is 0, 1, 5, 10, 20
and 40. The compressed sizes using the sample adaptive is as shown in Subfigure 6.12(a).

62

Figure 6.11.: Landsat image of a mountain lossless compressed of size X: 1024 Y: 1024 Z: 6

And the compression rate of the images using the sample adaptive encoder is shown in Subfig-
ure 6.12(b).

(a) The total compressed size when increasing absolute
error

(b) Compression rate when increasing the absolute error

Figure 6.12.: Compressed size and compression rate results from varying absolute error using the sample adaptive
encoder

Using the hybrid encoder provides greater compressed sizes for a larger absolute error value as this is
shown in Figure 6.4. With the compression rate similar to the the HICO image causing an almost linear
compression rate as this is shown in Subfigure 6.13(b). This linearity might occur because of sudden

63

jumps in incriminating of the absolute error on the absolute error.

(a) The total compressed size when increasing absolute
error

(b) Compression rate when increasing the absolute er-
ror

Figure 6.13.: Compressed size and compression rate results from varying absolute error using the hybrid encoder

Finally the PSNR of the compression is as shown in Figure 6.14 where the images would degrade for
larger absolute error values. Using the absolute error values 0, 10, 20 and 40 for the images which is
shown in Figure 6.11, Subfigure 6.15(b), Subfigure 6.15(c) and Subfigure 6.15(d) respectively. Com-
pared to the HICO images these images would degrade higher for very small increments of the absolute
error value to the point of severe degradation as this is shown for absolute error 40. Using the narrow
local sums also caused some degradation of the image as this is shown for absolute error 1 and 40 in
Subfigure 6.16(a) and Subfigure 6.16(b) respectively.

Figure 6.14.: Peak signal-to-noise ratio compared to absolute error value

64

(a) Absolute error 1 with PSNR 49 (b) Absolute error 10 with PSNR 33

(c) Absolute error 20 with PSNR 27 (d) Absolute error 40 with severe image degradation

Figure 6.15.: Lossy compression of landsat mountain images with absolute error

65

(a) Absolute error 1 with PSNR 49 using narrow local sum (b) Absolute error 40 with PSNR 23 using narrow local sum

Figure 6.16.: Lossy compression when using NARROW local sum

The last image used for testing is a landsat image of farmlands/forests to focus on the preservation
of edges in an image when using the compression algorithm. A problem that might occur from using
quantization in lossy compression is that colors might become overlapping and two unique parts in an
image can become one. This can become clearly in an image with varied farmlands or forests as this is
shown in the lossless compressed image Figure 6.17 where it is possible to look at unique parts in the
image.

66

Figure 6.17.: Landsat image lossless compressed of size X: 1024 Y:1024 Z:6

Using similar absolute error values as for the landsat mountain image the compressed sizes is as shown
in Subfigure 6.18(a) for absolute errors 0, 1, 5, 10, 20 and 40. The original image is 12MB in size which
gives the compression rates as shown in Subfigure 6.18(b).

(a) The total compressed size when increasing absolute
error

(b) Compression rate when increasing the absolute error

Figure 6.18.: Compressed size and compression rate results from varying absolute error using the sample adaptive
encoder

67

Using the hybrid encoder gave better compressed sizes compared to the sample adaptive as this is
shown in Subfigure 6.19(a). The compression rate of the hybrid encoder is as shown in Subfigure 6.19(b).

(a) The total compressed size when increasing abso-
lute error

(b) Compression rate when increasing the absolute er-
ror

Figure 6.19.: Compressed size and compression rate results from varying absolute error using the hybrid encoder

The Peak signal-to-noise ratio similar to the landsat mountain results would suffer from a higher ab-
solute error value as this is shown in Figure 6.20. The images produced from the varying absolute error
is as shown in Subfigure 6.21(a), Subfigure 6.21(b), Subfigure 6.21(c), Subfigure 6.21(d) and Subfig-
ure 6.21(e) for absolute values 0, 10, 20, 30 and 40. It is noticeably the image would suffer with a higher
absolute error value to the point where parts in the image would no longer be distinguishable as this is
shown for compression with absolute error 40.

Figure 6.20.: The Peak signal-to-noise ratio of the compressed image compared to absolute error value

68

(a) Absolute error 1 with PSNR 50 (b) Absolute error 10 with PSNR 33

(c) Absolute error 20 with PSNR 28 (d) Absolute error 30 with PSNR 24

(e) Absolute error 40 with PSNR 21

Figure 6.21.: Lossy compression of landsat images with absolute error

Another issue that might arise is how the shapes inside an image is kept when using the different

69

compression parameters when the absolute error does not damage the entire image. Using the top left
corner as a reference as this is shown in Subfigure 6.22(a) looking at a specific band. Using the absolute
error 20 and a wide local sum the results of this is as shown in Subfigure 6.22(b). Noticeably black spots
appears in the image and the image appears to be smudged similar to previous images that have been
compressed. This issue primarily becomes apparent when using the wide local sums and is not a problem
when using the narrow local sums as shown in Subfigure 6.22(c). Focusing on the narrow local sum there
is an interesting part of the compression where small objects are quantized. The roads or small edges are
gone from the image and parts in the image that has a small difference in color has become one. Using a
larger absolute error value of 40 the amount of unique colours in the image becomes a lot smaller as this
is shown in Subfigure 6.22(d). Interestingly the dark colours in the original image is preserved from the
light colours in the image.

(a) Original image (b) Absolute error 20 using wide local sum

(c) Absolute error 20 using narrow local sum (d) Absolute error 40 using narrow local
sum

Figure 6.22.: Top left corner of the original Landsat image

70

6.3. HYPSO mission verification

Veficiation of the compression algorithm CCSDS 123 Issue 1 on the FPGA is a bit more tricky to verify
as it would require a decompression algorithm for verifying a working algorithm. Doing it in this way
would require storing the original data and the compressed data for comparing after decompression is
done. The decompression has to be done on an x86 machine as the decompression is intended to run on
a desktop/server and not on an embedded system. It could run on an embedded system but would take
unnecessary more time. Note that this verification method allows to use random data or hyper spectral
images for testing but varied compression rates will vary. The test verifies the FPGA implementations
and if the integration is working, and not the effect of compression rates. The sizes of the images in this
test is therefore considered not important. Due to the necessity to verify CCSDS Issue 1 on the FPGA
it gave the motivation to further develop and implement a decompression software in C as this was was
described in chapter 3.

The first stage of the verification of the hardware was to verify the CubeDMA. There was some doubts
whatever it was in fact moving data properly or the interface was working properly. The testing of the
DMA engine is very simple and it involves by moving data from one location in memory to another
location in memory through the DMA, if those regions are equal then the DMA has done a successful
transfer. The code for verifying this is done in C code and is run on the target architecture which in this
case is a ZYNQ 7000. The code is as listed in Appendix A, and the result from the code is a simple
success or failure if the memory regions is equal or not.

Finally the verification in the FPGA is the CCSDS 123 core. The code presented in Appendix C will
create some random data for uncompressed data and add image metadata, as this is specified for header
files of the CCSDS 123 standard, to the first 0x13 bytes of compressed data. Adding the metadata is nec-
essary as the FPGA implementation does not do this and would require manual parameters input into the
decompression if so. Next procedure is to interface with the CubeDMA and transfer the whole memory
region to the CCSDS on the FPGA and wait for completion from the FPGA. Once this is complete the
uncompressed data and compressed data will be stored to their individual file for verification. These files
needs to be transferred to an x86 machine for using the decompression software that this was described
in Chapter 3. As not everyone will be using CCSDS 123 Issue 1 software it was decided to make a bash
script to provide a easy verification of decompression. Using the CCSDS 123 Issue 1 software made in
3 it will compare the compressed image with the original image. Comparison in Linux can be done by
using the cmp command which will compare each byte of a file. Note that the bash script requires the
decompression software.

1 # ! / b i n / bash
2 echo " Compressed Image : $1 "
3 echo " O r i g i n a l Image : $2 "
4

5 r e d = ‘ t p u t s e t a f 1 ‘
6 g r e e n = ‘ t p u t s e t a f 2 ‘
7 r e s e t = ‘ t p u t sgr0 ‘
8

9 . / main . o u t − i $2 −−DECOMPRESSION
10 i f cmp D e c o m p r e s s e d F i l e . raw $1 ; t h e n
11 echo " ${ g r e e n } Image $1 i s e q u a l t o D e c o m p r e s s e d F i l e . raw : Compress ion s u c c e s s "
12 e l s e
13 echo " ${ r e d } Images a r e n o t e q u a l : Compress ion f a i l e d "

71

14 f i
15

16 rm D e c o m p r e s s e d F i l e . raw

6.3.1. Verification of Memory Region
An issue that would occasionally occur is a kernel panic when working with the physical memory with
a Linux operating system. Linux provides some methods to reserve memory in the RAM for using by a
kernel driver or in user programs, but it is not always very documented or shared by others developers. It
was then necessary to verify the physical ram was not used by other programs or used by the kernel. The
issue might not always arise early after boot-up as memory allocation by Linux can be placed anywhere
on the physical ram. A simple method to verify the physical memory is by using the linux device
/dev/mem which provides direct access to the physical memory. Listing 6.1 show how to allocate the
memory by using the mmap function provided by linux. The result is a pointer to the physical memory
region which can then be accessed and verified. Testing the memory reagion can be easily done by
iterating through each address of the pointer and writing to the region. If the linux kernel would kernel
panic during this process it would mean the memory region is not reserved. This verification provided
the necessary help to restructure the linux kernel as described in Section 5.2 by reducing the linux kernel
allowed memory, and moving the reserved region to the unused memory. This was decided because it
was unceratin if the linux kernel respects reserving memory region within its available memory region.
The reservation was primarily done by reserving with device trees as this is documented in [21]. A other
option is to use the Contigious Memory Allocator provided by the Linux kernel which provides methods
to allocate a contiguous memory dynamically.

1 i n t fd = open (" / dev /mem" , O_RDWR| O_SYNC) ;
2 u i n t 3 2 _ t deviceMem = (u i n t 3 2 _ t *) mmap(NULL, CUBESIZE ,
3 PROT_READ | PROT_WRITE , MAP_SHARED, fd , 0 x30000000) ;

Listing 6.1: Allocate Memory

72

7. Analysis

Finally the implementation of the software will be discussed and the troubles regarding the implemen-
tations. An analysis regarding the results of the software will be described. As mentioned the software
also had some troubles so the necessary future work for these implementations will also be discussed.
Finally the verification of HYPSO related work and results will also be discussed.

7.1. Issue1

The implementation of CCSDS 123 Issue 1 provided a solution for the HYPSO software which could
perform a software compression if the FPGA would not be able to perform its job. In most cases this
software implementation would not be used as the time to compress in the software is huge compared to
the fpga version as this was studied in [1]. This noticeably becomes a problem when the hyperspectral
image becomes large enough. The main reason for this large comparison in speed is because how an
FPGA can speed up computation by pipelining. Pipelining in a digital design is the usage of registers
to allow for parallel computation in a system as this will store the outputs from each computation into
registers. This for a system that can pipeline each computation can cause a huge speedup where clocks
run at hundreds of MHz. The FPGA implementation made by Johan Fjeldtvedt allows for a pipelined
multicore system which allows for higher speedups where the results of his master thesis provided an
FPGA core which could compute HSI cubes at 1.2Gbps[2] Even with the problems regarding the imple-
mentation of Issue 1 the implementation provides a functioning compression algorithm for the HYPSO
mission to perform hyper-spectral compression and decompression. Compared to the FPGA version it
was not expected to compete with a dedicated hardware implementation but as mentioned to serve as a
backup. Due to this the main focus on the implementation and thesis regarding CCSDS 123 Issue 1 is
to create a software to perform this role. Because of the implementation focus of the software there has
not been a lot of testing regarding parameters and finding optimal parameters for the HYPSO mission.
The approach to this will require to use images from the hyperspectral camera on-board the HYPSO
satellite and download images which the HYPSO mission will focus on. The reason for this is to find
optimal parameters after the satellite has launched. The hyperspectral images produced by HYPSO can
be studied to find optimal compression parameters for optimal compression rates.

The implementation of the software did not go without its problems. As the results are presented there
was some issues with the implementation of the predictor as it would create distorted data. Most of these
problems occured primarily because of the large algorithm where if anything in the algorithm goes wrong
then in most cases everything will be wrong. As the data depends on the previous computed sample then
the fault can have occurred previously in the computation. The issues in the software would be from us-
ing the wrong integer type, data dependencies or misunderstanding the algorithm. Primarily these issues
are from the programmers but the potential culprit could also be the usage of the programming language
C. The language is a complex and detailed system which revolves around implicit programming where
code needs to be explicit declared to make sure the compiler is following. A lot of the problems can

73

occur in the background without the programmer knowing what happens as this was the case for the
software implementation with integer type casting. While there are detailed rules on how the compiler
for C works it provides the necessary work for reading through the standard for C11 which increases the
workload [12]. An important factor of this issue is how a team of a few people or magnitude of hundreds
of engineers working together handles software design and programming. The possibility in a program-
ming language to implement the same thing in hundreds of varied methods allows for misinterpretation.
Solving the casting issue where a good approach could be to define a fixed method for performing a
conversion. For example the programming language GO requires types to be defined explicitly and con-
verted as such which allows for no implicit failure from a programmers perspective. A particular issue
of CCSDS 123 Issue 2 was the usage of signed and unsigned integers when calculating the inverse of the
mapped quantizer index which would cause an overflow issue and make an unsuccessful decompression.
The total development time and debugging time could be severely reduced by creating the software in a
higher level programming language instead of C. Alternatively is the usage of higher level programming
languages where there is less complexity but often at the cost of speed, but as the software could not run
well compared to an FPGA, it is negligible [1]. Using alternative programming language compared to C
allows for less code which can give the programmer easier overlook of what is happening, this particular
issue is primarily regarding the necessary explicit declaration in C where the problems might not occur
obviously. Using a different programming language in an embedded environment does provide possible
challenges when working with an operating system such as Linux. Some programming languages might
not be suitable for performing system operations on an Linux system and could create new possible
challenges. A different approach to this is to use C code for the system that requires C and a high level
programming language for the non C code of the system. This approach is primarily focusing on how
the whole system is designed in a software environment. Communication between the codes can be done
by using the linux system with sockets, signals, pipes and files. In particular that HYPSO software is
entirely built around C will slowly become bigger and bigger with new people working on it every year.
A simple segmentation fault in the software can cause a severe crash to the total software which damages
the mission. Creating the control logic, error handling and the system main glue code in its own module
and code could potentially remove a total software crash. With this design a crash would not shutdown
the whole software but only some sub part of it. This approach is only to prevent a fault from other parts
in the software but does not remove the possible system faults from external sources. This redesign of
the system will take time and will require a lot of work, but might be a good approach to new missions.

7.2. Issue 2

The new compression standard of CCSDS 123 Issue 2 introduced the possibility to compress hyper-
spectral images in a near-lossless scheme. Allowing the possibility of higher compression rates com-
pared to the previous issue and allowing to use new hardware in space missions. Notable improvements
as mentioned is the support for up to 32-bit sizes which gives it a possibility to use modern hardware. In
particular for satellites the costs will increase for providing better and modern hardware while also in-
creasing a demand on transmission bandwidth. This issue provides the growth of compression standards
for reducing the necessary hardware to transmit hyperspectral images. As it might not have been obvious
the primary benefit for the compression standard is the usage of fidelity control to allow the user of the
standard to control the lossy compression. If for example one would like to perform low compression on
few selected bands then this is possible to do. As the results has shown using the absolute method for
fidelity control to perform the compression proved to increase the compression rates almost linearly for

74

the first part of absolute error values. This linearity could be perhaps of the sudden jump when increasing
the absolute error value. Undoubtedly this came at the cost of image quality from looking at the images
and from the PSNR perspective, but as this standard is very new it will still require to research using
the compression standard for practical purposes. Another important improvement to the compression
standard is the new hybrid encoder. This encoder as mentioned allows for compressing multiple samples
into one code-word which reduces the amount of bits necessary to represent the same multiple samples.
This improvement becomes apparent in results for compressed sizes of all images when using larger ab-
solute error values, but the sample adaptive encoder did appear to compete for low absolute error values.
This type of comparison was also performed in [13] where the same type of results was apparent when
competing the hybrid encoder and the sample adaptive encoder.

A particular issue might arise when studying the results of the compressed images which for large ab-
solute error values seemed to damage the image severely. The implementation as similar to the issue 1
implementation did not come without its problems. The C implementation of issue 1 was a copy from
the implementation of issue 2 where bugs that appeared in one version did become apparent in the other.
This grows the suspicion of a possible fault with lossy compression, but as there is no comparison to
other software implementations there is the possibility of software faults. Now that does not remove the
fact that it performs well when using lossy comprssion and there might be no issue at all. The implemen-
tation would still require further verification of the implementation from a third-party so that the results
can be confirmed. The verification performed on the software has had the possibility to use test vectors
from [14] but these has primarily been for supporting 32-bit and the verification of the hybrid encoder.
It still remains to verify the usage fidelity control for compression.

Assuming the results are valid and there is no problem with the compression algorithm. The result-
ing images from the varied tests show that any user of the software or algorithm is required to find an
optimal fidelity control for their usage. This will also grow the requirement for hardware to support
dynamic parameters as the compression algorithm can work for some images and terribly for others.
Even so the compression algorithm proves to be an effective algorithm that can compress images that are
hundreds of MB to a lot less depending on the chosen fidelity control.

Using the compression standard for the FPGA does include some new design challenges for the imple-
mentation. A problem that will damage the possible compression speed on an FPGA is the introduction
of sample representatives. The reason for this is that the calculation of predicted sample at t will require
the sample representative from t−1. This is used for calcuating the localsum and followed by calculating
the local difference. This problem arise for performing prediction under a BSQ/BIL encoding order, but
almost similar problem will arise in a BIP encoding order. For the BIP encoding order the dependency is
apparent when performing prediction mode with P > 0. The algorithm will require to use the preceding
local difference z − 1 when performing prediction at band z, and the local difference again requires the
local sum and the sample representation calculated in z − 1. This kind of problem will arise when at-
tempting to pipeline or attempting an parallel implementation in an FPGA, or creating a multi-threaded
software implementation. This issue will still require further research when attempting further speedups
of the implementation.

As the status of the software is presented there still remains some work to be completed for fully im-
plementing the algorithm. The most important remaining feature is the hybrid decoder which requires

75

some more research and work for completing it. Creating a decoder will allow the software to fully func-
tion with the hybrid encoder to gain the benefits of higher compression rates. The implementation of
the software provides a basic implementation of the CCSDS 123 Issue 2 standard and all other features
not implemented was deemed not necessary as mentioned. These features is therefore considered in the
remaining work if it is required for future usage. The remaining work required is the further verification
of fidelity control to make sure the near-lossless compression is true. A potential verification is to wait
for other researchers to develop their software for comparison.

7.3. HYPSO
As mentioned the need for verifying the HYPSO hardware and communication with the hardware was
a requirement that grew throughout this project. As it can be noticeable is the out of context this type
verification is described in this thesis. This was still required to verify and get a working system for
further development in this project. A description of the additions and changes was therefore required to
be written about in this thesis, as well as the communication with CubeDMA. The communication with
the CubeDMA implemented is using the basic features of the CubeDMA for transferring data. The DMA
can still support different functionality but these functionalities is not used for this context. However if it
is a required functionality then it can be implemented from the baseline communication from this thesis.
From the resulting verification of the CubeDMA proved the results to be successful and a functional
system.

Once the CubeDMA was properly tested and verified it was possible to begin verifying CCSDS 123
FPGA core. As mentioned it was required to implement a header to the FPGA compressed stream and
for decompression to verify a functiong system. This was verified and properly working during the ver-
ification, but did not go without its troubles. During the verification a couple of issues was discovered.
The compression core could not perform compression on images of varied sizes without requiring to
synthesise a new core for the new parameters. This became a problem as capturing images of varied
sizes can be a possibility for HYPSO. A solution is to capture images in multiples of a fixed size. E.g
using X:512 Y:200 Z:128 where Y will be the focus of multiples. When the satellite moves along the
orbit then the image can capture Y=200 images followed by 200 more and so on. If one wants to capture
a size of Y=2000 images then it would require 10 image captures. Even with this problem the FPGA
core provides a functioning compression core of CCSDS 123 Issue 1 for the HYPSO mission.

76

Bibliography
[1] Christoffer Boothby. A software implementation of the ccsds 123 issue 2 compression standard. a

low-complexity lossless and near-lossless compression standard of multispectral and hyperspectral
images, project thesis. 2019.

[2] Johan Fjeldtvedt. Efficient streaming and compression of hyperspectral images, master thesis.
2018.

[3] National Aeronautics and Space Administration. Lossless multispectral and hyperspectral im-
age compression recommended standard. Blue/Silver book CCSDS 123.0-B-1, Consultative
Committee for Space Data Systems, 2012. URL https://public.ccsds.org/Pubs/
123x0b1ec1s.pdf.

[4] National Aeronautics and Space Administration. Low-complexity lossless and near-lossless mul-
tispectral and hyperspectral image compression. Blue book CCSDS 123.0-B-2, Consultative
Committee for Space Data Systems, 2019. URL https://public.ccsds.org/Pubs/
123x0b2c1.pdf.

[5] Zynq-7000 SoC Techincal Refrence Manual, UG585. Xilinx, 2018. URL https://www.
xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.
pdf.

[6] Harry Jones. The recent large reduction in space launch cost. 48th International Conference on
Environmental Systems, 2018.

[7] Scott E Palo. High rate communications systems for cubesats. In 2015 IEEE MTT-S International
Microwave Symposium, pages 1–4. IEEE, 2015.

[8] The consultative committee for space data systems (ccsds). URL https://public.ccsds.
org/default.aspx.

[9] Aaron B. Kiely, Matthew Klimesh, Ian Blanes, Jonathan Ligo, Enrico Magli, Nazeeh Aranki,
Michael Burl, Roberto Camarero, Michael Cheng, Sam Dolinar, and et al. THE NEW CCSDS
STANDARD FOR LOW-COMPLEXITY LOSSLESS AND NEAR-LOSSLESS MULTISPECTRAL
AND HYPERSPECTRALIMAGE COMPRESSION.

[10] National Aeronautics and Space Administration. Lossless multispectral and hyperspectral image
compression. Green book CCSDS 120.0-G-3, Consultative Committee for Space Data Systems,
2015. URL https://public.ccsds.org/Pubs/123x0b2c1.pdf.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844, 9780262033848.

[12] SEI CERT C Coding Standard. Carnegie Mellon University, 2016.

77

https://public.ccsds.org/Pubs/123x0b1ec1s.pdf
https://public.ccsds.org/Pubs/123x0b1ec1s.pdf
https://public.ccsds.org/Pubs/123x0b2c1.pdf
https://public.ccsds.org/Pubs/123x0b2c1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://public.ccsds.org/default.aspx
https://public.ccsds.org/default.aspx
https://public.ccsds.org/Pubs/123x0b2c1.pdf

[13] Ian Blanes, Aaron Kiely, Miguel Hernández-Cabronero, and Joan Serra-Sagristà. Performance
impact of parameter tuning on the ccsds-123.0-b-2 low-complexity lossless and near-lossless mul-
tispectral and hyperspectral image compression standard. Remote Sensing, 11(11):1390, 2019.

[14] Ccsds 123 sharepoint info. URL "https://cwe.ccsds.org/sls/docs/SLS-DC/123.
0-B-Info".

[15] Milica Orlandić, Johan Fjeldtvedt, and Tor Arne Johansen. A parallel fpga implementation of the
ccsds-123 compression algorithm. Remote Sensing, 11(6):673, 2019.

[16] Johan Fjeldtvedt, Milica Orlandić, and Tor Arne Johansen. An efficient real-time fpga implemen-
tation of the ccsds-123 compression standard for hyperspectral images. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 11(10):3841–3852, 2018.

[17] Johan Fjeldtvedt and Milica Orlandić. Cubedma–optimizing three-dimensional dma transfers for
hyperspectral imaging applications. Microprocessors and Microsystems, 65:23–36, 2019.

[18] Andreas Varntresk. Assembly and testing of baselineprocessing chain, master thesis. 2019.

[19] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers, 3rd Edition.
O’Reilly Media, Inc., 2005. ISBN 0596005903.

[20] "hyperspectral imager for the coastal ocean". URL "http://hico.coas.oregonstate.
edu/".

[21] Linux documentation of reserving memory. URL https://github.com/
torvalds/linux/blob/master/Documentation/devicetree/bindings/
reserved-memory/reserved-memory.txt.

"https://cwe.ccsds.org/sls/docs/SLS-DC/123.0-B-Info"
"https://cwe.ccsds.org/sls/docs/SLS-DC/123.0-B-Info"
"http://hico.coas.oregonstate.edu/"
"http://hico.coas.oregonstate.edu/"
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt

A. Verification of CubeDMA

The code for verification of CubeDMA is attached as a delivery to this thesis. Alternatively with access
it can be found in the SmallSat lab github page https://github.com/NTNU-SmallSat-Lab.

https://github.com/NTNU-SmallSat-Lab

B. Linux Kernel Driver

The developed linux kernel driver is attached to this thesis. Alternatively with access it can be found in
the SmallSat lab github page https://github.com/NTNU-SmallSat-Lab.

https://github.com/NTNU-SmallSat-Lab

C. Verification of CCSDS FPGA

The implemented verification software of the CCSDS 123 on the FPGA is attached to this thesis.

D. Software Implementation

The software implementation is included as a zipped file with this thesis. Including Issue 1 and Issue 2
implementation of CCSDS 123.

E. Code Tables and Flush Tables

This appendix provides an example code table and flush table for CCSDS 123 Issue 2. Note that this
is extracted from the PDF of the code tables as provided in [4], and it is liable for changes in the fu-
ture.

CCSDS RECOMMENDED STANDARD FOR LOW-COMPLEXITY LOSSLESS & NEAR-
LOSSLESS MULTISPECTRAL & HYPERSPECTRAL IMAGE COMPRESSION

CCSDS 123.0-B-2 Page B-2 February 2019

Table B-1: Code Table for Low-Entropy Code 0

Input
Codeword

Output
Codeword

Input
Codeword

Output
Codeword

Input
Codeword

Output
Codeword

00 5'h19 09 8’h3B 5 4'h6
010 8'h57 0A 8’hBB 6 4'hE
011 8'hD7 0B 9’h00F 70 7'h0B
012 8'h37 0C 9’h10F 71 7'h4B
013 9'h0AF 0X 8’h7B 72 7'h2B
014 9'h1AF 1 3’h0 73 8'h47
015 9'h06F 2 3’h4 74 8'hC7
016 9'h16F 3 3’h2 75 8'h27
017 10'h03F 40 6’h1D 76 8'hA7
018 10'h23F 41 6’h3D 77 9'h0CF
019 11'h17F 42 6’h03 78 9'h1CF
01A 11'h57F 43 6’h23 79 10'h15F
01B 12'h1FF 440 9’h09F 7A 10'h35F
01C 12'h9FF 441 9’h19F 7B 11'h07F
01X 11'h37F 442 9’h05F 7C 11'h47F
020 8'hB7 443 10’h0BF 7X 10'h0DF
021 8'h77 444 10’h2BF 80 7'h6B
022 8'hF7 445 10’h1BF 81 7'h1B
023 9'h0EF 446 10’h3BF 82 7'h5B
024 9'h1EF 447 11’h2FF 83 8'h67
025 9'h01F 448 11’h6FF 84 8'hE7
026 9'h11F 449 12’h3FF 85 8'h17
027 10'h13F 44A 12’hBFF 86 8'h97
028 10'h33F 44B 13’h0FFF 87 9'h02F
029 11'h77F 44C 13’h1FFF 88 9'h12F
02A 11'h0FF 44X 12’h7FF 89 10'h2DF
02B 12'h5FF 45 7’h33 8A 10'h1DF
02C 12'hDFF 46 7’h73 8B 11'h27F
02X 11'h4FF 47 8’hFB 8C 11'h67F
03 6'h15 48 8’h07 8X 10'h3DF
04 6'h35 49 9’h08F 9 5'h01
05 6'h0D 4A 9’h18F A 5'h11
06 6'h2D 4B 9’h04F B 6'h05
07 7'h13 4C 9’h14F C 6'h25
08 7'h53 4X 8’h87 X 5'h09

Table B-2: Flush Table for Low-Entropy Code 0

Active Prefix Flush Word Active Prefix Flush Word Active Prefix Flush Word
(null) 1'h0 02 6’h1F 7 5'h07
0 2'h1 4 3’h3 8 5'h17
01 5'h0F 44 6’h3F

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Christoffer Boothby

An implementation of a compression
algorithm for hyperspectral images. A
novelty of the CCSDS 123.0-B-2
standard

Master’s thesis in Electronic Systems Design

Supervisor: Milica Orlandic

June 2020

	Acknowledgement
	Abstract
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Chapter outline

	CCSDS 123 Project Thesis
	CCSDS 123 Issue 1
	Predictor
	Local sum
	Local differences
	Weight Vector
	Predicted Sample
	Weight update
	Mapped Prediction residual

	Sample adaptive encoder

	CCSDS 123 Issue 2 Additions
	Predictor
	Local sum
	Local differences
	Weight Vector
	Prediction calculation
	Quantization
	Fidelity control

	Sample representation
	Weight update
	Mapped quantizer index

	Hybrid entropy encoder
	High-Entropy
	Low-Entropy

	CCSDS 123 Issue 2 Software Implementation

	CCSDS 123 Issue 1 implementation
	Standard Version
	Prediction
	Encoding

	Decompression
	Decode
	UnPredict

	Embedded Version

	CCSDS 123 Issue 2 Improvements
	Supporting different bit sizes
	Support for signed integers
	Conversion of Endianess
	Support for varying image order and encoding order
	Fixing the hybrid encoder
	Decompression
	Unpredict

	Hypso on-board processing testing and changes
	Communication with CubeDMA
	Linux Kernel Driver
	Opening and closing the device

	Results
	CCSDS 123 Issue 1 Results
	CCSDS 123 Issue 2 Results
	HYPSO mission verification
	Verification of Memory Region

	Analysis
	Issue1
	Issue 2
	HYPSO

	Bibliography
	Verification of CubeDMA
	Linux Kernel Driver
	Verification of CCSDS FPGA
	Software Implementation
	Code Tables and Flush Tables

