Joar Andreas Gjersund

A Reconfigurable Fault-Tolerant On-
Board Processing System For The
HYPSO CubeSat

Master’s thesis in Electronic Systems Design

Supervisor: Milica Orlandic

June 2020

]
(7}
()

L=
)
_Ul
[
Q
s
(7}
({°]
=

NTNU

Norwegian University of Science and Technology
Engineering

Department of Electronic Systems

Faculty of Information Technology and Electrical

@ NTNU

Kunnskap for en bedre verden

Joar Andreas Gjersund

A Reconfigurable Fault-Tolerant On-

Board Processing System For The
HYPSO CubeSat

Master’s thesis in Electronic Systems Design
Supervisor: Milica Orlandic
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

@ NTNU

Norwegian University of
Science and Technology

Summary

This thesis documents the development of the on-board processing system for a small
satellite with high throughput, dynamically re-configurable, image processing capabili-
ties. The system consisted of a dual ARM core Zyng-7000 SoC that was made to run a
customized Linux operating system loaded using a customized U-Boot bootloader. The
final system was proven to provide a resilient framework for over-the-air firmware and
software updates by applying redundancy and fallback mechanisms along with checksum
algorithms such as CRC-32, SHA-1, and MD5 for integrity validation of data files. The
processing system was also able to prove support for both full and partial dynamic recon-
figuration of the on-chip Artix-7 grade FPGA.

ii

Table of Contents

Summary i
Table of Contents v
List of Tables vii
List of Figures X
Abbreviations xi

I Introduction and background 1
1 Introduction 3
1.1 HYPSOMission 3

1.2 Aimsandobjectives 4

1.3 Outline e e 4

2 Background 5
2.1 Programmable logicdevices, 5
2.1.1 Technologies 5

2.1.2 State of the art and performance considerations 6

2.1.3 Partial reconfiguration L. 7

2.1.4 Limitations and fault tolerance 7

2.2 Error correction and detectiono 7
2.2.1 Errorcorrectingcode 7

2.2.2 Errordetectingcode 9

2.3 Embedded operating systemso 12
231 Linux 13

2.3.2 The Yocto Project 13

2.3.3 Linuxcomponents i 14

iii

II

2.3.4 Petalinux-tools workflow

2.3.5 Open Source Linux Workflow
2.3.6 File Systems for Block Devices
2.4 FPGA design and work flow for Xilinx devices
24.1 GeneralUse-case
242 Vivadoworkflowo
25 DasU-Boot

Design and implementation

Development of a student CubeSat

3.1 Physicalchallenges
3.1.1 Spaceenvironment
312 Power
3.1.3 Reliability
3.1.4 Size and weight constraints

3.2 Practicalchallanges o
3.2.1 Parallel development
3.2.2 Continuity and knowledge transfer
323 Budget

On-board processing System for the HYPSO mission

4.1 Systemarchitecture
411 Overviewo e

4.2 Onboard processing unit
421 Overview e
422 Hardware L
4.2.3 Operating system and services
4.2.4 Software and firmware updates
425 Programmablelogic

Integration and testing

5.1 Development framework L.
5.1.1 Macromanagement
5.1.2 Sourcecontrol
5.1.3 Knowledge transfer considerations
5.1.4 Development software
5.1.5 Remoteaccess e

52 Integration
5.2.1 Firmware
5.2.2 Programmable logic L.
5.23 Software

53 Testing o oo
5.3.1 Testmethodsandsetup
532 Building

23

25
25
25
25
25
26
26
26
27
27

29
29
29
31
31
32
33
33
34

iv

6

5.3.3 File system performancetest
5.3.4 Dynamic reconfiguration of FPGA performance
5.3.5 Error detection and recovery tests
5.3.6 Manual recoverytest

Summary and conclusion

6.1 Futurework

Bibliography

Appendices

A

= m Q = = 9 a

z2 & R =

Partial Reconfiguration of Programmable Logic in Linux

65

HYPSO-DSW-008: Documentation for The Petalinux Bootloader and the Gen-

eration of system Images for Performing Software Updates
Test of Bootloader and Firmware Updates

Example Image Tree Source for a FIT image

Failure mode, effects and criticality analysis for the HYPSO Mission
Device Tree Source for the OPU

Startup Script

Dockerfile for setting up the Petalinux SDK

Filesystem Performance Test Script

Filesystem Performance Test Result

Dynamic Reconfiguration of FPGA Performance Test Program
U-Boot environment Fallback Test and Test Results

Snapshop of Kanban Board

77

95

929

101

119

135

139

143

145

149

159

161

vi

List of Tables

2.1
2.2
23
24

5.1

52

53

54
5.5
5.6
5.7
5.8

Classifications of real-time requirements 12
zlmage format [14] 16
ulmage format [12] oL 16
Petalinux-tools design flow overview [44]. 17
On-chip QSPI NOR flash memory partition layout as defined in the device

tree (appendix F) oo 38
Sequence of commands executed by U-Boot as defined in the boot cmd
variable. 38
Sequence of commands executed by U-Boot as defined in the altbootcmd
variable. 39
SD-Card (mmc 0) partition layout and file-system. 39
eMMC (mmc 1) partition layout and file-system. 39
DRAM memory mapping during booting. 40
DRAM memory mapping after booting. 40
Script and petalinux-tools relationship. 46

vii

viii

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7
2.8

3.1

4.1

4.2
4.3
44
4.5
4.6

5.1
52
53
54
5.5
5.6
5.7

5.8

Overview of programmable logic devices [41].
Efficiency of Hamming code with minimum hamming distance
Maximum bits of payload by Hamming distance [22]
Probability of a collision given a number of 32-it hashes [35].
The three layer model describing the structure of operating systems.

Basic device tree syntax [33].o
Template zynq project generated with petalinux-tools.
General use-case flow.

Hardware-Firmware-Software co-design flow.

The HYPSO Satellite, showing features such as the HSI and RGB camera,
solar arrays, and UHF antennas.
Overview of the different modules on the satellite and their placement. . .
Overview of modules interfacing with the OPU [15].

3D rendering of the breakout board for the onboard processing system [15].

Simplified layer model of hardware, firmware, and software on the OPU. .
Firmware and software execution flow and their memory locations

Layout of the Kanban board. Issues represents detected problems or miss-
ing features. L. L
Overview of the resources available on the Zynq SoC as configured with
Vivado. e
Feature testing setup used for firmware development.
System testing setup used for integration testing.
Flow diagram of the scripted build process
Average and fastest recorded throughput for various devices and file sys-
temsonthe OPU.
Average read and write throughput for various devices and file systems on
the OPU. e
The dummy hyper-spectral image processing pipeline used for testing. . .

6

9
10
11
12
15
18
20

27

30
31
32
32
33
34

36

41
44
44
45

47

48
49

59

5.10
5.11

5.12

5.13

5.14

5.15

5.16
5.17

5.18

Comparison between software and FPGA accelerated hyper-spectral im-

AZE PIOCESSING. .« v v v v i e e e e e e e e e e 50
The bif file describing the layout the bootloader image. 50
Overview of BOOT.BIN content and how the bootloader was corrupted to
test the automatic fallback mechanism. 51
Summary of the test result of the CRC-32 checksum and fallback in U-
boot fromappendix L L 52
U-Boot log indicating the successful flashing of bootloader and golden
image to QSPlandeMMC. 0oL 53
The bit flip on the primary image was simulated by editing the file content
usingahexeditor. oL 54
U-Boot sucessfully detecting a corruption of the FIT image and proceed-
ing to boot fromeMMC. 54

Computing md5 checksum of local and remote file to confirm identical files. 55
[lustration on when and why the power was toggled to increment the boot-
COUMET. . . v v vt vt ittt et e e e e e e e e e 56
Summary of the U-Boot log showing the bootcounter successfully count-
ing the number of power cycles and activating the alternative boot se-
quence after reaching the defined boot limit. 56

Abbreviations

ASIC Application Specific Integrated Circuit
AT&T American Telephone and Teligraph Company
BoB Breakout Board

BSP Board Support Package

CAN Controller Area Network

CLI Command Line Interface

CPLD Complex Programmable Logic Device
CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSP CubeSatProtocol

DMA Direct Memory Access

DRAM Dynamic Random Access Memory
DSP Digital Signal Processing

ECC Error-Correcting Code

ECD Error Correction and Detection

EMIO Expanded Multiplexed I/O

EPS Electronic Power System

FIT Flattened Image Tree

FPGA Field Programmable Gate Array
FSBL First-Stage Bootloader

GAL Generic Array Logic

GPIO General-Purpose Input/Output

Xi

GUI Graphical User Interface

HDF Hardware Defintion File

HDL Hardware Description Language
HSI Hyperspectral Imaging

HYPSO Hyper Spectral Imager for Oceanographic Applications
IP Intellectual Property

ISS International Space Station

MPGA Mask-Programmable Gate Array
MPSoC Multi-Processor System-on-chip
NTNU Norwegian University of Science and Technology
OCM On Chip Memory

OPU On-board Processing Unit

OS Operating System

OSL Open Source Linux

PAL Programmable Array Logic

PC Payload Controller

PHY Physical Layer

PLA Programmable Logic Array

PLD Programmable Logic Device

QSPI Queued Serial Peripheral Interface
RAM Random Access Memory

ROM Read Only Memory

RTL Register Transfer Logic

SDK Software Development Kit

SEE Single Event Effects

SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data

SoC System-on-chip

xii

SoM System-on-Module

SSBL Second-Stage Bootloader
SSH Secure Shell

Tel Tool Command Language
TID Total Ionizing Dose

TMR Triple Modular Redundancy

VHDL Very High Speed Integrated Circuit Hardware Description Language

Xiii

X1iv

Part I

Introduction and background

Chapter

Introduction

It is now 20 years since the concept of CubeSats was formally introduced as an educa-
tional platform. By 2019, in total 1317 nanosatellites and CubeSats have been launched
worldwide. In Norway, there have still not been any successful student satellites in orbit.
The Norwegian student-satellites that have been closest to success are nCube-1, which had
a launch failure and nCube-2 which had a deployment failure, both developed at Norwe-
gian University of Science and Technology (NTNU), and HiNCube, developed at Narvik
University, which got lost after deployment. Additionally, some missions have been can-
celed such as NUTS (NTNU) and CubeSTAR (University of Oslo). Since the launch of
the HiNCube in 2013, there have according to the NanoSats database not been made any
further attempt at launching a Norwegian made student-satellite to orbit [24].

1.1 HYPSO Mission

Hyper Spectral Imager for Oceanographic Applications (HYPSO) is the first space mission
at the SmallSatLab at NTNU in Trondheim. SmallSatLab is a student-driven multidisci-
plinary research incubator, initiated as an effort to promote space-related technology and
build competence on the field within the academic community at NTNU. The HYPSO mis-
sion statement is to “provide oceanographic data to monitor the effects of climate change
and human impact on the world”. By analyzing the spectral signature of light reflected
from the earth’s surface it is possible to detect and measure the presence of biological and
chemical materials such as algae blooms, seaweed, salt content, forest health, etc. The
HYPSO missions goal is to collect and process hyper spectral data on a 6unit CubeSat
which will be deployed to low earth orbit where it should stay operational and collect data
for 7-8 years before it will be decommissioned as atmospheric friction will gradually slow
the vehicle down and finally let it burn up.

Chapter 1. Introduction

1.2 Aims and objectives

This thesis will focus on the On-board Processing Unit (OPU) which is responsible for
capturing and processing hyperspectral images and other mission data. This thesis will
particularly focus on the underlying firmware which makes up the interface between hard-
ware and software, and how it can be modified to protect against potential failures by fa-
cilitating for over-the-air software and firmware updates and implement fail-safe fallback
mechanisms to protect the system.

1.3 Outline

The following chapter will give some background about the problems associated with
processing hyperspectral images and a brief description of available technology for high
throughput data processing before diving deeper into various methods for assuring error-
free data in the system, particularly focusing on instructions data which if left unchecked
can cause unpredictable behavior of the OPU. This chapter also gives an introduction to
embedded operating systems, their use, and how it can be built and customized according
to need.

Part II of this thesis covers the proposed design of the OPU and how it is implemented
on the satellite. This part is introduced in chapter 3 with an overview of the challenges
the design must overcome. In chapter 4 the actual design is presented, by first giving an
overview of the physical system, before diving deeper into the OPU and presenting various
details of the design and how it meets the challenges presented in chapter 3. Chapter
5 covers the integration of the design, with a more detailed description of what practical
work had to be done to integrate the design, how it behaves, and how it was tested. Finally,
in chapter 6, the work is summarized and concluded, and some topics for future work are
presented.

Chapter

Background

2.1 Programmable logic devices

Image and video processing are usually characterized by high computational load and
strict timing requirements. With super-resolution and hyperspectral imaging techniques,
the computational load on the processing system can be significant and beyond what the
traditional von Neumann architecture based computer processor can handle. In place of the
traditional Single Instruction Single Data (SISD) processing architecture, modern process-
ing systems usually include Digital Signal Processing (DSP) - extensions for performing
Single Instruction Multiple Data (SIMD) arithmetic which enables some image and video
processing capabilities. For more flexibility and better performance, customized Appli-
cation Specific Integrated Circuit (ASIC) are sometimes also used to accelerate specific
computations, but these are expensive to develop and therefore usually more suitable for
batch productions [26]. A less expensive, and increasingly popular approach is to use a
Programmable Logic Device (PLD), which makes it possible to quickly implement cus-
tom combinational circuits that enable better control of the data path and flexibility with
regards to parallelization of the workload.

2.1.1 Technologies

Programmable logic devices first appeared in the mid-1970s. At that time the devices could
only be configured by hard-wiring a handful of uncommitted logic gates together. Various
methods to achieve better programmability and performance have since been developed
such as Programmable Logic Array (PLA), Programmable Array Logic (PAL), Generic
Array Logic (GAL), Complex Programmable Logic Device (CPLD), and most recently
the Field Programmable Gate Array (FPGA) [42, 31]. There also exist some factory pro-
grammable devices which are not reconfigurable, such as Read Only Memory (ROM) and
Mask-Programmable Gate Array (MPGA). An overview of available technologies can be
seen in Figure 2.1. The most promising family of PLD’s and currently the most attractive

5

Chapter 2. Background

alternative to ASIC is the FPGA, which can provide several million re-configurable gates
on one chip. I addition, modern FPGAs today are usually also enhanced with other hard-
ware components such as DSPs, networking cores, and complete multi-core processors
making up a complete system often referred to as a System-on-chip (SoC) or a Multi-
Processor System-on-chip (MPSoC).

‘ Programimable Logic

I !
actory Proor- : -
Factory Programmable Field Programmable

Devices Devices
| |
48] i -
ROM MPGA SPLD CPLD FPGA
Read-Crly Mask Sirnple Complex Field
Memory Programmable Programmable Programmable Programmable
Gate Array Logic Devices Logic Devices Gate Array
PEROM PLA PAL GAL
Programmable Programmable Drogrammable Genetic Array
Read-Only WMemory| Logic Array Array Logic Logc
00 |

Figure 2.1: Overview of programmable logic devices [41].

2.1.2 State of the art and performance considerations

Current state of the art PLD’s rely on the FPGA technology which usually is implemented
as a SoC together with multi-core processors and multiple-level on-chip memory [40].
This art enables deployment of software which can re-program the PLD according to need,
thereby optimizing the area utilization by taking advantage of temporal mutual exclusive-
ness [30]. The two top players in the field of FPGA manufacturers are currently Xilinx
and Intel, [40]. The two most recent flagship FPGAs from Xilinx and Intel is Xilinx’s
Virtex and Intel’s Agilex. The Virtex, which is found in the Ultrascale+ SoC uses a 16 nm
fabrication technology, and Intel’s Agilex also found on some recent SoC’s from Intel is
on the other hand built on 10 nm technology.

Finding a suitable FPGA candidate to use when implementing a processing system
is however not just a matter of finding the one who uses the smallest technology node.
Although smaller technology usually is a good indication of the overall performance, other
aspects such as what hardware components are available, what development platform is
supported, and how well documented it is should also be considered. Generally, state-of-
the-art technology is often lacking in both documentation and community support which
both need time to grow. How close to the state-of-the-art one choose to operate should
therefore also be defined by the developers’ experience and available resources.

6

2.2 Error correction and detection

2.1.3 Partial reconfiguration

Partial reconfiguration is the ability to reconfigure only selected areas of the FPGA after
its initial configuration. This facilitates the idle parts of the programmable logic to be
swapped out while active parts are still running, thereby enabling increased utilization
of the available area of the FPGA [30]. Partial reconfiguration can also contribute to
increased fault-tolerance towards single-event upsets by using it in conjunction with read-
back to detect and replace corruption in the configuration memory [20]. A more in-depth
study on FPGA design workflow and practical applications can be found in section 2.4 and
in appendix A.

2.1.4 Limitations and fault tolerance

Digital devices such as FPGAs and ASICs are commonly affected by radiation-induced
faults. These faults can be both permanent and transient. With the rapid down-scaling and
resulting in reduced noise-margins, the susceptibility to radiation-induced transient faults
has increased, while the susceptibility to permanent damage has decreased [7, 11]. The
necessity to implement techniques for automatic error detection and correction of data is
therefore increasing and can be expected to increase in the future.

2.2 Error correction and detection

Data in a processing system usually have a varying level of criticality associated with it.
Data with high criticality is usually what would be labeled as instructions data, which is
data containing instructions to be executed by the processing system. Corruption of such
data can cause the processing system to become unpredictable and in some cases even stop
responding. Less critical data, where some corruption may be acceptable are often what
would be labeled as payload data. Corruption of such data would just result in the quality
of that data getting lowered.

The primary reason that not all data is considered critical is due to the overhead asso-
ciated with correction and detection. To be able to detect a flipped bit, information about
the initial value of the bit must be known. This can be done by appending an extra copy
of the bit and assure that both bits are equivalent. To both check and store, each bit in a
message is expensive, another option is, therefore, to encode the message, such that it can
be represented by a fewer number of bits, this encoding of data is also known as hashing
and is an important component of most integrity checking mechanisms.

2.2.1 Error correcting code

All mechanisms for Error Correction and Detection (ECD) must rely on two fundamental
concepts; i) hashing for detection and ii) redundancy for correction. This inhibits both
performances due to the overhead associated with hashing, and the informational density

7

Chapter 2. Background

that can be achieved.

The efficiency of the ECD scheme can be expressed as a fraction of data bits Np, over
the total number of data bits and redundant bits, Np + Nr. Equation 2.1

Np

E=_"D
Np + Ng

@2.1)

The most basic method for performing ECD is Triple Modular Redundancy (TMR)
which repeats every bit of data three times and uses simple bit-voting to determine the
correct value. In this scheme, the total number of bytes needed to represent one byte
of information is three bytes, and the efficiency will thus be 1/3 (Equation 2.1). The
reliability of triple modular redundancy is also questionable, as it strongly depends on a
week correlation of error between modules. If two of the redundant bytes are stuck at the
same value, that value will always be perceived as the correct value. ECD can however also
be implemented in more clever ways. The number of redundant bits can be reduced when
the hashing is not done over each bit individually as it is done with TMR, but rather done
over blocks of multiple bits. One such method is the Hamming Code [16]. Hamming code
is based on parity bits, which in the example of even parity is a redundant bit appended to
a block of multiple bits to assure that the block contains an even number of high bits. This
way, if the number of high bits in a block is found to be an odd number, at least one bit must
have been flipped. Parity bits can thus be used to detect the presence of one-bit errors in a
block but has no way of knowing which of the bits in the block contains the error, at least
unless the number of bits in the block is more than 1, consequently, a parity bit alone can
therefore not be used for error correction of multi-bit messages. What Richard Hamming
presented in 1950 was however a method to minimize the required number of parity bits
required in a block while still being able to detect which bit had flipped. Hamming found
mathematically that the required number of redundant parity bits to detect and correct a
flipped data bit was given by Equation 2.2. Here r is the number of redundant/parity bits
and m is the number of data bits. From this equation, we can see that the minimum required
redundant bits when the Error-Correcting Code (ECC) is applied to each bit individually
is 2, which is also the same as the number of redundant bits in triple modular redundancy.

2" >m+r+1 (2.2)

With Hamming coding applied to a whole byte, the minimum required number of
redundant bits are 4, leading to the efficiency of 2/3, and significantly better than for triple
modular redundancy. The efficiency can be increased even further by increasing the bit-
width of the hamming code. A graph of the efficiency of the Hamming code can be seen
in Figure 2.2. Although the efficiency of the code increase with increasing block size, the
reliability will decrease. The reliability of the ECC scheme is dependent on the block size
and the hamming distance of the code, which is the minimal number of bit changes needed
to go from one codeword to another. With a hamming distance of three, as used in this
example, the code can only correct one-bit errors in a block [16].

8

2.2 Error correction and detection

0.9

0.84
0.8

0.7

Efficiency

0.3

1 8 16 32 64
Block size

Figure 2.2: Efficiency of Hamming code with minimum hamming distance

2.2.2 Error detecting code

ECC is useful for recovering permanently corrupted data, but sometimes the error might
either just be a transient fault, or a redundant copy of the data may available. In those cases,
backward error recovery can be performed, for example by asking for a repeated read of
data. In such cases, knowing exactly what bit(s) in a block contains the error is not needed
since the whole block will be re-read and re-transmitted either way. To achieve a good ef-
ficiency for error detection, the hashing is then often done over a much larger block, often
even over complete multi-megabyte data files. For such error detection schemes a hash
value, of a certain bit-width, commonly referred to as a checksum, is calculated and ap-
pended to the data block. Upon receiving the data, the receiver recalculates the checksum,
and if the checksum does not match the appended checksum, the block must be corrupted.

Parity

Parity check is the simplest method for error detection and can be used to detect an odd
number of corrupted data bits in a message. Parity checks work by appending a single bit
to a message to assure that the number of active bits in a message is a pair number (even
parity), or odd (odd parity). The receiver can then sum up the total number of active bits
in the message including the parity bit and know that if this number is odd, but parity bit
is even (or sum is even and the parity bit is odd) at least one bit in the message must be
corrupt. Single bit parity checks can only detect an odd number of corrupted bits, thus the
probability of detecting a random error in the message can be as low as 50%.

Chapter 2. Background

CRC

Cyclic Redundancy Check (CRC) uses the reminder of polynomial division to calculate a
hash which can be used to validate that the message is error-free. CRC uses an n+1 -bit
CRC polynomial which is XORed with the message in a cyclic manner starting from the
most significant bits and proceeding with the result shifted one bit with every cycle until
the resulting message is only zeros. The hash is then the resulting n latest bits discarded
during the latest bit shift [34].

The simplest form of CRC is 1 bit CRC, also known as CRC-1. With CRC-1 the
CRC polynomial is two bits wide, resulting in a 1-bit hash after the CRC algorithm has
completed. this hash indicates if the number of active bits in the message is an even
number. CRC-1 is thus the same as even parity described in section 2.2.2. By increasing
the number of bits used for hashing the corresponding probability of detecting errors will
increase. The ability to detect errors can be seen in Figure 2.3. To stay within a Hamming
distance of d which ensures that up to d-1 flipped bits in a message are guaranteed to be
detected, the number of bits in the message must be no more than k, [10].

232 T T
—— CRC-32
—— CRC-8
é
=)
S
o
an
3
I 216 [|
:
g
=]
£
X
<
2 28 L _
26 - |
23 | | | | | | |

3 4 5 6 7 8 9 10 11 12
Hamming Distance (d)

Figure 2.3: Maximum bits of payload by Hamming distance [22]

SHA, MDS5, and other cryptographic hashing algorithms

SHA and MD?5 are two of many cryptographic hash functions commonly used for detecting
data integrity. The ability to detect errors using cryptographic hash functions are usually
described as the probability that two unique messages will generate the same hash, which
is equivalent to the probability of a random error not getting detected. Such matching

10

2.2 Error correction and detection

hashes are often called a collision and their probability is strongly correlated with the
size of the hash, and the block size used by the hashing algorithm. For SHA-1, the hash
size is 160 bits, and the block size 512 bits, while for SHA-256 the hash size is 256
bits. Assuming the probability of a collision is uniformly distributed, the probability of a
collision can be approximated using Equation 2.3 where n is the number of data blocks
in the message, b is the size of the hash, and P is the probability of a collision [35].

—1) 1
Pg%x? 2.3)

For long messages hashed with small blocks, the number of hashes must increase
to cover the whole message, what hashing algorithm to use should, therefore, be partly
decided by the length of the message. As can be seen in Figure 2.4, the probability of a
random error not getting detected is in most practical cases negligible for hashes with a
size of 32-bit. Note that the number of hashes required will be determined by the message
size divided by the block size.

1nn-
warn

= E: o
g

@ B0%
T o
E Lo
=
i oU"

L1y

; l'I

[iy o
c -
B S

=

g 0%
{0

S A

= =U

=

oL e

Mumber of 32-bit hashes

Figure 2.4: Probability of a collision given a number of 32-it hashes [35].

Given the low probability of missing an error when using cryptography hashing algo-
rithms like SHA and MDS, it is easy to assume that those are better to use. It is however
also important to consider extra overhead that more complex hashing algorithms introduce,
and taking the probability of an actual error happening in the first place, less complicated
algorithms like CRC-32 may as well be more than good enough to detect non-intentional
and random corruption of data.

11

Chapter 2. Background

2.3 Embedded operating systems

Embedded processing systems are, contrary to general processing systems, designed to
perform a specific task. While general-purpose processing systems often have multiple
processes running, and can kill and spawn new processes according to need during run-
time, embedded processing systems are often limited to just a few running processes which
are automatically spawned when the system starts up and killed when the system shuts
down. Besides, embedded processing systems are also often characterized by more strict
and predictable response time (Table 2.1).

Real-Time requirement | Constraints

Hard Missed deadline is system failure
Firm Value of output after deadline is zero
Soft Value of output after deadline degrades over time

Table 2.1: Classifications of real-time requirements

General-purpose processing systems will always run some kind of Operating System
(OS) which manage the systems resources and schedule running processes. Depending on
the complexity and number of concurrent tasks running, may embedded processing sys-
tems also run a light-weight OS, but in many cases, the program running on the system
can be programmed bare-metal without any OS. Bare-metal programming gives full ac-
cess to the systems resources and thus also full control of the systems response time. The
trade-off between running an OS and going bare-metal is given by the complexity of the
system and the real-time requirements. A complex system may be difficult to implement
bare-metal without losing control of how the systems resources are scheduled between
processes, which essentially is what the OS does for you.

An OS can be described as a three-layered system; the hardware or physical space
layer, the kernel space layer, and the userspace layer (Figure 2.5). Each layer will only
interface with the neighboring layer, such that all access to the hardware must go via the
kernel space layer. This assures that the kernel can have full control of what hardware
resources are accessed by software and thereby protect and schedule resources between
software running concurrently on the system.

SOFTWARE
User Space Layer

FIRMWARE
Kernel Space Layer

HARDWARE
Physical Space Layer

Figure 2.5: The three layer model describing the structure of operating systems.

12

2.3 Embedded operating systems

2.3.1 Linux

Linux is a free and open-source general-purpose operating system developed in the model
of and emulating the Unix architecture whose family of operating systems originates from
development done at the Bell Labs research Centre by American Telephone and Teligraph
Company (AT&T) [1];[39]. Linux was originally developed as a research project by Linus
Torvalds as he studied for a master’s degree in computer science at Helsingfors University
in Finland. Linux was originally only developed for the Intel x86 family of processors
but was from the ground up designed to be easy to transfer to other types of processors by
making a clear distinction between hardware-dependent code and code that could easily be
ported to new processor architectures by simply recompiling it. As a consequence, Linux
has since been ported to a wide range of processor architectures including the popular
ARM processor found in many of today’s embedded systems. Linux is today included in
a majority of all embedded device unit shipments worldwide [1] and has become increas-
ingly popular for use in space. Linux is today found both in satellites and in more critical
systems such as SpaceX’s Falcon 9, Dragon spacecraft recently used for delivering people
and cargo to the International Space Station (ISS) [25].

2.3.2 The Yocto Project

Yocto is an open-source development platform for creating custom embedded Linux dis-
tributions. Although being widely adopted across the industry, and used by top processing
system vendors such as Intel and Xilinx, it is considered to have a steep learning curve,
confusing workflow, and long build-time [38]. Some vendors choose to wrap the Yocto
building process in their proprietary Software Development Kit (SDK) and accompanying
work-flow. Although this is great for usability and decreases the barrier of setting up and
customizing a Linux distribution for the vendors’ hardware, it may also add extra over-
head to an already slow building process. One example of an SDK’s which uses Yocto for
building Linux Distributions is Xilinx’s Petalinux SDK [46].

Layer Model

Configuration settings and instructions for distribution builds, are organized in different
layers to logically separate information to help simplify future customization and reuse.
Examples of such layers are the Board Support Package (BSP) layer which contains pri-
marily target hardware-specific configurations given by vendors such as device-tree and
bootloaders, the kernel layer which contains instructions about which kernel drivers to in-
stall such as communication ports and memory controllers, and application layers which
contain applications and dependencies and instructions on how and where to install it on
the root file system. When multiple instances of the same layer are present in a project, the
last built layer will overwrite previous builds, this workflow makes it easy to customize
and reuse existing layers to suit the requirements of a particular product without mak-
ing changes to the already existing layer itself. This approach facilitates the isolation of
hardware-specific configurations such that configurations that are common across different
hardware can be easily shared. [38]

13

Chapter 2. Background

Project Components

The configuration settings and instructions for Yocto projects may also be referred to as
project components. These components consist of three different data types:

1) Recipes (files with a .bb suffix) provides details about pieces of software, such as where
to get the source code, which patched to apply, and where on the file system software
components shall be placed.

ii) Class data (files with a .bbclass suffix) contains abstract information about how to build
the component.

iii) Configuration data (files with a .conf suffix) contains configuration definitions and
settings to customize the recipe and class data for the particular build. [38].

Packaging

For parsing, executing, and building the different layers and their underlying components
that together make up the OS, a make-like build tool called BitBake is used. BitBake will
also package all components of the OS into various image files. These image files usually
consist of

i) Kernel image: The program that runs in the background and schedules how system
resources accessed by running processes.

ii) device tree: A file describing the target-dependent hardware.

iii)root-filesystem-image: Contains configuration files, software, scripts, and other user-
files that are mounted to the root/top directory of the OS at startup.

iv) Bootloaders: Program that is responsible for setting up memory and other peripherals,
extracting i, ii, and iii to the prepared memory, and updating the program counter to the
memory address of the kernel (see section 2.3.3).

2.3.3 Linux components
The Linux kernel

The kernel is the program that runs in the background and schedules access to the available
hardware in the system. In the OS layer model (Figure 2.5) the kernel is the interface
between hardware and userspace. This also implies that the kernel is hardware specific,
and thus not necessarily portable between different target hardware. In efforts to increase
the portability and reduce the number of forks on the Linux Kernel, device drivers are
often made configurable via kernel modules that can be used to dynamically extend the
kernel and a separate configuration file called a device tree that contains information about
the underlying hardware [32]. This for instance makes it possible for Xilinx to have only
one fork of the Linux Kernel which supports all their products [45].

Device tree

A device tree is a file containing information about what hardware is available to the
kernel. The device tree’s source file (.dts suffix) is formatted as a tree where each hardware
components is described in a separate node as can be seen in Figure 2.6.

14

2.3 Embedded operating systems

Node name
Unit address
o, | Property name
| Property value
node@0d { 6
a-string-property = "A string";
Properties of node@0 | @-string-list-property = "first string", "second string";

a-byte-data-property = [0x01 0x23 0x34 0x56];
child-node@0 { t

first-child-property; Bytestring

second-child-property = <1>;
a-reference-to-something = <&nodel>;
Y

A phandle

child-node@l { (reference to another node)

Label b
};|

nodel: node@l {
an-empty-property;
a-cell-property = <1 2 3 4>;

child-node@d { |
}; Four cells (32 bits values)

};
};

Figure 2.6: Basic device tree syntax [33].

For deployment, the device tree source files are converted to a device tree blob file (.dtb
suffix) which is a binary file that can be loaded by the bootloader and parsed by the kernel
at boot time [33]. To support dynamically configurable hardware such as programmable
logic, Linux has also added support for device tree overlays, which enables the device tree
to be dynamically configured at run time.

Bootloaders

Bootloaders can be defined as a small program that initializes hardware before handing
off execution to a more complex program. To start up a Linux OS a chain of individual
bootloader stages is usually needed. The startup procedure usually begins with a hardware-
specific read-only bootloader implemented by the hardware manufacturer, and proceeds
with a First-Stage Bootloader (FSBL) which is small enough to reside on the On Chip
Memory (OCM) but complex enough to initialize external memory and extract the Second-
Stage Bootloader (SSBL) to it. The SSBL then handles the extraction and hand-off of the
Linux kernel, root file system, and device tree as well as an integrity check and other
mechanisms for selecting what boot configuration to use. The most well popular SSBL
used for embedded Linux Das U-Boot which is described in more detail in section 2.5.

15

Chapter 2. Background

Boot images

A boot image is a type of computer-file which encapsulates a complete description of
one or more components of a system such as the bootloader (section 2.3.3), kernel (sec-
tion 2.3.3), device tree (section 2.3.3). or root file system (section 2.3.3). The most com-
mon format for Linux images is the zImage, which is a minimalistic image only containing
a small header, some code for performing decompression, and the compressed data (see
Table 2.2) Because it can only contain one image it is sometimes referred to as a single
component image [28].

Header
Decompression Code
Compressed Data

Table 2.2: zImage format [14]

Depending on what bootloader is used, the rootfs, device tree, and kernel can be en-
capsulated into a single file, known as a multi-component image. This file often also
comes with additional fields for checksums to detect corrupted images. Checksum tests
together with redundant images can be used for both forward and backward error correc-
tion, which is critical for reliability in noisy environments. The two most popular image
formats bootable with the U-Boot bootloader (section 5.2.1) are the legacy ulmage and the
more recent Flattened Image Tree (FIT) [14]. Both can be generated with the mkimage
utility that comes with U-Boot [19] and is also part of the Yocto workflow.

The ulmage format includes all images in a single block check-summed with CR32
(see section 2.2.2 for more details). The layout of the ulmage can be seen in Table 2.3.

Header
Header Checksum
Data size
Data load address
Entry point address
Data CRC
0S, CPU
Image type
Compression type
Image name
Image data

Table 2.3: ulmage format [12]

The other popular image format is FIT, which is a more flexible multi-component
image. For example will FIT type images support multiple different hardware, software,
or kernel configurations in the same image. This image format also supports Integrity
protection for each image with various hash algorithms such as shal, sha256, and md5 as

16

2.3 Embedded operating systems

well as the CRC32 algorithm. The FIT image structure is described with an Image Tree
source (.its file) inspired by how the device tree (section 2.3.3) is structured, an example
of this can be found in appendix D. The .its file is taken as an input by the mkimage utility
which outputs an Image Tree Blob (.itb file) which is bootable from U-Boot. [14] [28].

Root file system

The root file system is the file system mounted to the upmost directory in Linux during
boot. It contains all user-space applications and configurations, such as command-line
utilities, kernel modules for additional device drivers not already included with the kernel,
and various configuration files for setting up networking parameters, startup behavior, and
other critical files needed for the system to boot up correctly.

Depending on system requirements the root file system can be mounted on either
volatile Random Access Memory (RAM) or non-volatile flash memory. If mounted to
volatile ram it is usually done so in a driver-less tmpfs configuration opposed to the earlier
method of Ramdev where the root file system was mounted on a simulated hard drive on
ram [18].

2.3.4 Petalinux-tools workflow

Petalinux-tools are according to Xilinx the recommended flow for building Linux systems
for Zynq chips. Petalinux-tools follow a sequential workflow model, making it easy to
use, but giving little room for minimal rebuilds for efficient prototyping and testing. The
sequential workflow follows the steps shown in Table 2.4 [44].

Design Flow Step Tool / Workflow
Hardware platform creation Vivado® Design Suite
Create Petalinux project petalinux-create -t project
Initialize PetaLinux project petalinux-config --get-hw-description
Configure system-level options petalinux-config
Create user components petalinux-create -t COMPONENT
Configure the Linux kernel petalinux-config -c kernel
Configure the root file system petalinux-config -c rootfs
Build the system petalinux-build
Test the system on gemu petalinux-boot --gemu
Deploy the system petalinux-package --boot
Update the PetaLinux tool system software components |petalinux-upgrade --url/--file

Table 2.4: Petalinux-tools design flow overview [44].

Vivado

Vivado Design Suite is a hardware platform design tool for configuring hardware available,
and for the development and configuration of the FPGA. This tool’s work-flow which will
be described in more detail in subsection 2.4.2, is used to export a Hardware Defintion File
(HDF) for configuring the processing system, and a bitstream for configuring the FPGA.

17

Chapter 2. Background

petalinux-create

The petalinux-create command creates a new app, module, or project using either
template or source files depending on what is specified when running the command. When
creating a project using a standard template, a set of configuration files and a set of Yocto
components such as a kernel, bootloader, and device tree, are created and added to a layer
called meta-user as shown in Figure 2.7. When an app or module is created, they will be
placed under the recipes-apps and recipes-modules respectively.

]
T
T T
Mg

Mol

|_
i
|
|
i
|
|
|
L

.

Figure 2.7: Template zynq project generated with petalinux-tools.

petalinux-configs

Each petalinux-config step automatically spawns a dialog menu for configuring
the project or any of its underlying components, which in turn edits, or adds files and
components in the corresponding meta-layer in the projects project-specs folder, or either
of the configuration files. In most cases, this usually involves defining a macro describing
the particular configuration which will then be used to include that feature or setting when
the particular component is being built. Although the menu is easy to use, it does not
properly structure the configurations made so that it is easily portable across different
hardware as discussed in section 2.3.2 and should, therefore, be avoided. The menu is
however great for displaying the available settings to show which macros and files are
available, which then can be added to the project using a bash script, for example through
the find and replace command ”sed”, or the append to file command ~>>".

petalinux-build

The petalinux-build command is used to build either the whole project or individual
components. It will use the Yocto Project to parse the various project components and
packages them accordingly.

18

2.4 FPGA design and work flow for Xilinx devices

petalinux-package

When the four main components; kernel, root-file-system, device-tree, and the bootloader
are built, they can be packaged into a format suitable for deployment using the petalinux—
package command. The two most interesting files generated by this command is a
BOOT.BIN file containing the first and second stage bootloader, and a image . ub file
containing the kernel, root-file-system, and device tree in a FIT image.

2.3.5 Open Source Linux Workflow

The Open Source Linux (OSL) workflow is an alternative to the much simpler Petalinux-
Tools workflow (subsection 2.3.4) and involves working directly with the source files,
thereby giving full transparency of how the system is set-up. It gives more flexibility for
customization of the kernel and bootloader but is usually not needed unless working with
unsupported state-of-the-art hardware.

2.3.6 File Systems for Block Devices

Mounted media devices that are accessed by an operating system and provide non-volatile
data storage are usually managed by a file system. File systems provide a way of structur-
ing data into files and folders, and additional features such as access control mechanisms,
metadata for keeping track of accesses and modification of data files, and in some cases
mechanisms for preventing corruption of data via ECC. There exists today hundreds of dif-
ferent file systems with different strengths and weaknesses, particularly regarding speed,
and reliability. The default file system used with most Linux hosts is Ext -type file systems
(extended file system), while Microsoft Windows usually uses NTFS (New Technology
File system) or FAT-types (File Allocation Table). Performance analysis of the mentioned
file systems has shown that FAT32 which has a simpler structure and smaller overhead,
thus performing faster block allocation, while Ext3 and Ext4 performed better on more
complex elements such as fragmentation and journaling for better protection against data
corruption [9].

2.4 FPGA design and work flow for Xilinx devices

As discussed in section 2.1 algorithms implemented on programmable logic have a more
flexible datapath which is particularly useful for algorithms that do not rely on sequential
dependencies and that can be decomposed into smaller independent tasks. This is because
programmable logic can implement true pipelining and parallelism allowing more work to
be done on a single clock cycle then what would be the case on a sequential processing
device such as the ARM-based processor found on the Zynq SoC.

2.4.1 General Use-case

An FPGA accelerated algorithm often referred to as a hardware accelerator” is controlled
by a Central Processing Unit (CPU) which is responsible for loading the design onto the

19

Chapter 2. Background

FPGA using a bit-stream, preparing the input data to the accelerator, and finally read the
output when the job is done. Control signals and data are transmitted between the CPU
and FPGA using an AXI communication interface [44]. The general flow can be seen in
Figure 2.8. In cases where the FPGA design is contained in a partial configuration, the
full/static bit-stream must be configured first.

Signal accelerator Ly

Load FPGA design | Gelinput data and transmitt data

Wait for complete signal —» Get output data

Figure 2.8: General use-case flow.

2.4.2 Vivado work flow

Vivado is a tool by Xilinx used for hardware design and development, including synthe-
sis and analysis of Hardware Description Language (HDL) designs and SoC development
such as pin mappings and peripheral device interface configurations for the processing
system. Vivado is a Graphical User Interface (GUI) tool but supports scripting using
Tool Command Language (Tcl), which provides good support for automated builds and
transparent version control, making it compatible with automated continuous integration
testing frameworks. This section will give a summary of the workflow used for develop-
ing projects that want to utilize the capabilities of partial reconfiguration. A more detailed
tutorial was also made as a part of this literature study and can be found in appendix A.

Overview

Vivado supports a hierarchical module based project workflow, where interconnections
between modules are defined in a hierarchical block diagram. This allows complex designs
to be managed with high-level abstraction. Modules in a block diagram can be either
closed source Intellectual Property (IP) or an open-source Register Transfer Logic (RTL)
design, written using a HDL language like Verilog or Very High Speed Integrated Circuit
Hardware Description Language (VHDL).

Workflow for configuring static design and reconfigurable partitions

1.1) Create a top-level block design including the processing system block.

i.ii) add IP and modules to be included in the static partition.

1.ii1) add one black box module (a module that has not been instantiated inside the project)
for each re-configurable partition to be used as a wrapper for all modules on that partition.
i.iv) generate global output products and add a RTL wrapper for top level block design
1.v) synthesize project and export hardware definition file.

i.vi) open the synthesized design and define the size of the re-configurable partition for
each black box module and make a checkpoint

20

2.5 Das U-Boot

Workflow for implementing a module to be loaded to a re-configurable partition

ii.i) add source files, making sure the top module is compatible with the black box top
module of the partition.

ii.ii) synthesize as an out of context module by referencing checkpoint from i.vi and defin-
ing the black box module as modules top.

partition.

ii.iv) generate a full and partial bit-streams.

2.5 Das U-Boot

Das U-Boot is a portable open-source bootloader. It uses a Command Line Interface (CLI),
usually accessed over a serial port which can be used to execute small procedures for ac-
cessing various devices such as memory, programmable logic, and for toggling the volt-
age on General-Purpose Input/Output (GPIO) ports. The bootloader is also able to load
bootable images (section 2.3.3) and perform the necessary integrity checks described in
the image file. A list of all supported commands can be found by typing help in the U-
boot CLI. Additional commands and drivers can be installed by defining the proper macro
in the build options (see subsection 2.3.2). An overview of all the available macros can
be found in the README-file available in the U-Boot Github repository [2]. Along with
the commands, U-Boot also uses environmental variables, which can be used to store se-
quence of commands and memory information such as memory offsets and size. Variables
containing sub commands can be executed as commands by calling the run command be-
fore the variable name. The bootloader is by default configured to run the sub-commands
found in the bootcmd variable at startup, making it possible to fully automate the booting
procedure.

21

Chapter 2. Background

22

Part 11

Design and implementation

23

Chapter

Development of a student CubeSat

3.1 Physical challenges

3.1.1 Space environment

Planet earth’s magnetic field deflects high energy ionizing particles that could otherwise
cause transient voltage peaks in electronics capable of temporally corrupting electronic
signals or flipping a bit of memory known as a Single Event Effects (SEE). High doses of
ionizing radiation can also cause permanent damage to electronics known as Total lonizing
Dose (TID). In space, low energy radiation may also cause problems. Earth’s atmosphere
also provides an environment with high heat capacity, effectively low-pass filtering the ex-
treme temperature fluctuations caused by periodic exposure to the sun. Outside the earth’s
atmosphere the temperature difference between day and night is intense, and likewise will
any heat source, such as the heat generated by power-hungry electronics be difficult to
dissipate due to the insulating properties of the vacuum.

3.1.2 Power

Student CubeSats are usually powered using solar panels. This requires both that the
satellite is angled correctly towards the sun, and that the energy harvested can be stored
to provide power during nighttime. To stay within the power budget, the satellite must be
able to turn on and off electronic components on demand. The satellite should also handle
power outage or brownouts without causing permanent damage to components.

3.1.3 Reliability

A student CubeSat is challenging in the sense that it is often both developed and operated
by students with limited prior knowledge in the field. It must, therefore, be expected that
mistakes will be made both during development, testing, and operation. Nevertheless, it is

25

Chapter 3. Development of a student CubeSat

important to plan for what can go wrong and implement systems for remote patching and
automatic recovery.

3.1.4 Size and weight constraints

CubeSat is an open standard that defines various constraints for miniature satellites. Cube-
Sat dimensions are specified in units, where one unit has a size of 10¢m? and about lkg
weight. By adhering to the CubeSat standard when developing a satellite, the cost as-
sociated with launching to orbit is drastically reduced, largely because the deployment
mechanism does not have to be designed from scratch, and because multiple independent
satellites can be deployed simultaneously [37].

3.2 Practical challanges

3.2.1 Parallel development

One challenge when working in a multidisciplinary team is to coordinate how to do co-
operative development across multiple disciplines. For this to work smoothly it is impor-
tant to have a clear plan for the different requirements that makes up the system. These
requirements must be defined in a system design plan before development can begin. Re-
quirements that have not been defined in the system design plan, and thus also not properly
tested, is likely to cause problems at a later stage in the development phase when compo-
nents of the system are being integrated. For inexperienced developers the system design
plan is likely to be incomplete before development begins, this is because the development
in itself is an educational process where new limitations and not yet thought of possibil-
ities are constantly being discovered. An example of a co-operative design flow between
hardware, software, and firmware can be seen in Figure 3.1.

26

3.2 Practical challanges

System Design Plan

Hardware Firmware Software
Component Prototyping with Prototyping with
Qualification Development Board Development Board

¥

v

¥

Schematic Design

v v

Circuit Design

v

Fabrication

'

Factory Testing

l !

Software/Firmware/Hardware Integration

v

Software/Firmware/Hardware Co-Development and Testing —

Software/Firmware Integration

Software/Firmware Co-Development and Testing

Figure 3.1: Hardware-Firmware-Software co-design flow.

3.2.2 Continuity and knowledge transfer

Long term student projects, in general, suffer from high throughput of involved students
and a lack of long-term commitment, often limited to 1-2 semesters of work. Students
participating in the project must therefore often rely on work done by previous students
no longer involved in the project. To succeed it is therefore important to implement good
practices for how knowledge is passed on, and to split up larges tasks in smaller sub-tasks
with clearly defined boundaries and requirements.

3.2.3 Budget

The CubeSat platform was developed as a response to rapidly evolving technology and
tight budgets, which required shorter and cheaper mission timelines, especially concern-
ing development. To meet the budget requirements, CubeSats usually take advantage of
commercially available technology. The combination of rapid development and the use

27

Chapter 3. Development of a student CubeSat

of commercial-grade hardware not properly tested for the space environment have largely
contributed to the low success rate of CubeSat missions [3].

28

Chapter

On-board processing System for the
HYPSO mission

This chapter describes the main considerations and solutions chosen for the firmware of
the OPU to be implemented on the payload HYPSO spacecraft. The first section gives
an overview of all the modules on the satellite, their purpose, and their interconnects.
Finally, a more in-depth look at the hardware, firmware, and software of the OPU are then
presented.

4.1 System architecture

4.1.1 Overview

The HYPSO spacecraft is built on the development platform M6P provided by NanoAvion-
ics, which is a company specialized in providing the subsystems and integrated spacecraft
buses for custom CubeSat missions. The M6P bus is confirming to the 6U CubeSat spec-
ification [36]. Approximately one cube of the six-unit CubeSat is allocated for the OPU
(shown in Figure 4.2), while the remaining space is allocated for sensors and communica-
tion. A model of the satellite can be seen in Figure 4.1.

29

Chapter 4. On-board processing System for the HYPSO mission

Figure 4.1: The HYPSO Satellite, showing features such as the HSI and RGB camera, solar arrays,
and UHF antennas.

An overview of the internal system components of the satellite can be seen in Fig-
ure 4.2 and shows the physical placement of some of the subsystems such as the Hyper-
spectral Imaging (HSI) and RGB camera, radio communication, attitude determination
and control, and the OPU. This thesis will primarily focus on the OPU also referred to as
PicoBoB, which is responsible for controlling the payload instruments and processing the
payload data.

30

4.2 On board processing unit

RGB Camera

Payload
Controller

Solar panels

Figure 4.2: Overview of the different modules on the satellite and their placement.

4.2 On board processing unit

4.2.1 Overview

The OPU consists of a PicoZed System-on-Module (SoM) and a Breakout Board (BoB) to-
gether usually referred to as PicoBoB. It is responsible for collecting and processing data
from sensors on board the payload of the satellite, primarily the hyper spectral imaging
sensor and RGB-camera. Most modules on the spacecraft are off the shelf products devel-
oped by NanoAvionics, except for the payload consisting of the OPU, HSI and RGB cam-
eras (Figure 4.3) which are customized by students as part of the HYPSO research project.
Both instruction data and payload data are transmitted between modules via Controller
Area Network (CAN) using the CubeSatProtocol (CSP), or by properitarian protocols via
ethernet or USB.

31

Chapter 4. On-board processing System for the HYPSO mission

Payload
RGE
—— GigabitEthermet

| — USE 3.0

OPU ‘
| : Power Supply

| P — can

‘ HSI }

Figure 4.3: Overview of modules interfacing with the OPU [15].

The OPU is powered by the Electronic Power System (EPS) which can be controlled
via the Payload Controller (PC) such that a power reset can still be made if the OPU stops
responding. Additionally all communication between ground and OPU is piped through
the PC according to the M6P Platform standard [43].

4.2.2 Hardware

The PicoBoB consists of a PicoZed 7030 Rev. E SoM and a BoB to act as a mechanical,
electrical, communication, and the thermal interface between the PicoZed SoM and the
MBG6P satellite platform and payload instruments [15]. The PicoZed SoM was manufac-
tured by Avnet and consists of a Xilinx Zynq XC7Z030-1SBG485 AP, commonly referred
to as Zyng-7000, a 128 Mb QSPI NOR and 8 GB eMMC Flash storage, 1 GB DDR3
RAM, and a USB and ethernet Physical Layer (PHY) interface controller [4]. The student
developed BoB contains interface connectors, SD-Card readers, voltage regulators, and
logic level shifters. A 3D rendering of the BoB developed by Amund Gjersvik can be seen
in Figure 4.4.

Figure 4.4: 3D rendering of the breakout board for the onboard processing system [15].

32

4.2 On board processing unit

4.2.3 Operating system and services

The OPU runs Linux, which enables a command-line interface for monitoring and man-
aging the systems resources and for starting or stopping services. The command-line in-
terface is accessed through software called opu-services which communicates using CAN
through the PC. In addition to the command-line interface, the software also provides file
transfer services and commands for capturing and processing data. Figure 4.5 shows the
layering of software, firmware, and hardware components according to the layer model
presented in section 2.3. Note that opu-services is not the only service that will be running
on the system. Other running services include dropbear for ssh access used during de-
velopment and various camera-related services included with the camera drivers. Kernel
modules running on the system include drivers for interfacing with the Direct Memory
Access (DMA) reserved memory region, timestamping driver for accurate image frame
synchronization, and userspace IO for direct access to hardware that does not require a
separate kernel module [21].

Opu-services

CubeDMA TimeStamp Userspace 10

Petalinux 2019.1

UART | CAN |USB 2.0|ETHERNET| uSD |eMMC| QSPI |DRAM| GFIC |FPGA| CPU

Figure 4.5: Simplified layer model of hardware, firmware, and software on the OPU.

4.2.4 Software and firmware updates

Software updates are updates of executable file(s) stores on mounted flash memory and
executed by the OS after booting. Firmware updates are updates of the whole FIT im-
age, which consists of the kernel, device tree, and root file system (section 2.3.3), which
may also include updates of the software and programmable logic. The reasoning be-
hind distinguishing firmware and software updates are primarily due to their size, and the
level of risk associated with performing such updates. As shown in Figure 4.6, back-
ward error recovery for firmware updates are done by automatically falling back to the
fallback/golden/non-updateable image if the primary/updateable image fails to boot, or
software fails to load after the image has booted a set number of times in a row. For soft-
ware updates, the exact fallback mechanism is defined by the firmware, but is by default
set so that software is first loaded from the firmware’s root file system, and only if exited
loads the software which originates from a software update. This is done to ensure that the
system will always be in a known state, defined only by the FIT image after a reboot.

33

Chapter 4. On-board processing System for the HYPSO mission

LOAD UPDATEABLE FAIL TO LOAD FIRMWARE LOAD NON-
FIRMWARE TO ——OR FAIL TO LOAD SOFTWARE—sJPDATEABLE/GOLDEN
DRAM AFTER BOOT 5 TIMES FIRMWARE TO DRAM
i 3 . v
! LOAD OPU I LOAD OPU
1 SERVICES FROM SERVICES FROM
1 FIRMWARE I FIRMWARE
| | ! |
1 OPU SERVICES PROCESS EXITED | OPU SERVICES PROCESS EXITED
I 1
1 LOAD OPU ! LOAD OPU
1 SERVICES FROM 1 SERVICES FROM
UFPDATEABLE 1 UFDATEABLE
! SOFTWARE I SOFTWARE
! | I [
! OPU SERVICES PROCESS EXITED 1 OPU SERVICES PROCESS EXITED
1 ¥ v
1
! LOAD OPU 1 LOAD OPU
1 SERVICES FROM SERVICES FROM
1 UPDATEAELE ! UFDATEABLE
I SOFTWARE 1 SOFTWARE
1
1

- -
FLOW CONFISURAELE BY FIRMWARE UPDATE

Figure 4.6: Firmware and software execution flow and their memory locations

4.2.5 Programmable logic

The Zyng-7000 SoC includes an Artix-7 grade FPGA which is used to do accelerate most
of the heavy image processing steps. The FPGA is configured to have one static region
consisting of a timer module for timestamping of HSI frames [23], a DMA module op-
timized for three dimensional DMA access [13], and the general routing of various Ex-
panded Multiplexed I/O (EMIO) pins on the Zynq; and a dynamic region consisting of
various image processing accelerators to be reconfigured on the run in the image process-
ing pipeline such as compression [8, 29], smile and keystone correction [27], and various
implementations of dimensionality reduction and target detection to filter out the most use-
ful data to transfer back down to the ground station [5].

Deciding on the size and resources to be included in the reconfigurable partition of the
FPGA is defined by the most resource-demanding reconfigurable module and is limited by
the number of resources available on the FPGA, and how much time it is allowed to take
to perform a reconfiguration.

34

Chapter

Integration and testing

Integration and Testing of planned designs are perhaps the most time-consuming part of
any development project. This chapter will describe some of the details of how the design
was implemented on the hardware and what tools and methods that were used to make this
process less painful, both for current and future students.

5.1 Development framework

The development framework describes what tools, methods, and best practices that are
used during development. Having a proper framework prepared before starting develop-
ment can be what decides how successful the development project will be. A good devel-
opment framework is something that should help with structuring the project and encour-
age cooperation between the project’s team members. A good development framework
should also be quick and easy to set up and be strict in defining what version of software
to be used to avoid incompatibility issues between different team member’s setup.

5.1.1 Macro management

To help with managing the work done by developers at the macro level a method called
Kanban was used. Kanban is a way of keeping track of work that has to be done and to
better uncover bottlenecks and dependencies across subtasks and thereby making it easier
for team members to prioritize what to work with. Figure 5.1 shows the basic layout of the
Kanban board used for this development project, a snapshot of the actual Kanban board
mid-development can be seen in appendix M. One potential pitfall with using the Kanban
method is that it can act as a replacement of the initial design plan, this is especially true
for design plans that are lacking details about the various requirements, or if the design
plan is buried in a documents archive and where the perceived threshold to update it is too
high. As a result of deviating from the initial design plan more responsibility is put on the
developers who make non-documented changes to properly define requirements for their
design and verify that it is working as expected.

35

Chapter 5. Integration and testing

Backlog To do In progress Review in progress Done

Issues lssues lssues lssues Issues

Figure 5.1: Layout of the Kanban board. Issues represents detected problems or missing features.

5.1.2 Source control

To keep track changes made to the source code and hardware design the distributed ver-
sion control system Git was used. Git allows developers to work on separate branches
dedicated to solving a particular issue (See subsection 5.1.1 for details about how issues
are organized). By keeping ongoing work on a separate branch one can assure that the
developer can work in a contained environment and that ongoing changes do not cause ex-
tra problems for other developers working on separate issues. The common branch which
contains all completed work is normally called the master branch. Sub-projects/modules
that can be developed and tested individually can be separated into what is called repos-
itories which contains their own set of files, branches, and version history. Repositories
are recursive which means repositories can contain child repositories, making it easy to
structure large projects. All repositories were hosted on GitHub which also provides inte-
gration with issues and Kanban. A typical workflow when developing using Git is:

1) Download latest version of master branch from remote repository

git checkout master

2) Create a new feature branch to work on

git checkout -b branch_name

3) Stage all changed files.

git add

4) Commit all staged files

git commit -m "commit message describing what is changed."
5) Create a pull request in GitHub to request committing work to mater branch.

5) Merge and delete feature branch.

5.1.3 Knowledge transfer considerations

Knowledge transfer was primarily done through issues and readme files available in the
repositories. By using the Kanban method, cooperation between developers was strongly
encouraged, which forced developers to write understandable documentation on the work
done and how to recreate it. Besides, documentation covering the initial design plan, test
plans, and test results were also created, some of which can be found in appendix B and
C.

36

5.2 Integration

5.1.4 Development software

Development tools and software necessary for software and firmware development was
automatically set up using Docker. Docker is a virtualization tool for setting up and con-
taining the development environment, assuring full control of what packages and versions
are installed on the development workstation. This was used to aid productivity and re-
producibility of work done across team members. For the firmware of the OPU which is
the primary focus of this thesis, the Petalinux SDK version 2019 was used for building the
Yocto Project and packaging the resulting Linux distribution and bootloader to run on the
OPU system. The Petalinux SDK has around 50 additional package dependencies which
are required for the SDK to work properly. The installation of these is automatically done
through a docker file (appendix H), which is a script that can be executed via docker to set
up the work environment.

5.1.5 Remote access

The ability to work on a development project remotely can sometimes be necessary. Due
to very restrictive access to the lab which was enforced by the University as a response
to the ongoing pandemic, having remote access to hardware in the lab that was neces-
sary for doing development was important. For accessing the lab computer remotely, the
cryptographic network protocol Secure Shell (SSH) was used. It was also found to work
particularly well when used together with Visual Studio Code and the Remote Explorer
extension.

In addition to having remote access to hardware, it was also important to have a channel
for communication between team members. For this purpose, the communication platform
Slack was used for text-based and one-to-one communication, and the video conferencing
software Zoom was used as a replacement for larger gatherings such as design reviews and
weekly Kanban meetings.

5.2 Integration

5.2.1 Firmware
Bootloader and error detection and recovery

The OPU uses the bootloader Das U-Boot for booting up the OS. This bootloader binary
is stored on the bootloader partition of the on chip NOR flash memory which is accessible
by the processing system through Queued Serial Peripheral Interface (QSPI) ((Table 5.1).
The bootloader is configured to load a FIT image containing a kernel, device tree, and
root file system. Configurations of the bootloader are primarily done through environmen-
tal variables stored either on file or included in the bootloader binary. At power-on, the
bootloader will enter a setup sequence where memory and drivers are loaded, and where it
will try to load an environment from the environment partition on the NOR flash memory
shown in Table 5.1. The environment is protected with a CRC32 checksum, with auto-
matic fallback to a clean environment present in the bootloader image. Some of the most

37

Chapter 5. Integration and testing

important variables which are defined in the environment are bootcmd, bootm_low,
bootm_size, loadaddr, bootcounter, bootlimit,and altbootcmd.

Offset Partition Name/Content
Bootloader
0x000000 BOOT.BIN
0x200000 BOOT.BIN
0x400000 BOOT.BIN
Environment
0x600000 env_blob.bin

Table 5.1: On-chip QSPI NOR flash memory partition layout as defined in the device tree (appendix
F)

The content of the bootcmd variables will automatically be executed after the initial
bootloader setup sequence. The bootcmd and altbootcmd variables contain ordered lists
of boot commands for various images at various memory locations such that if the first
boot command fails to load, the next one in the list will be executed. The bootcounter
variable holds the number of times the environment is loaded by the bootloader, if no valid
environment is present, it will default to 0. To keep track of this number, the environment
is automatically saved to flash during each boot, and erased from within the operating sys-
tem when the system has booted up. The bootlimit variable defines the maximum value
of the bootcounter until the bootloader switches from executing the content of bootcmd
at startup to the content of altbootcmd, thus making it possible to invoke an alternative
booting priority, making it possible to perform backwards error recovery in the event of
a software bug on the primary image. The layout of the bootcmd and altbootcmd
variables can be seen in Table 5.2 and 5.3.

Command Description

fatload mmc 1 $loadaddr bitstream.bit; Program FPGA.
fpga loadb 0 S$loadaddr $filesize;

fatload mmc 0 $loadaddr image.ub;
bootm $loadaddr;

Boot image from primary SD.

gpio toggle 46;
fatload mmc 0 $loadaddr image.ub;
bootm $loadaddr;

Toggle SD-Card arbiter and
boot image from fallback SD.

fatload mmc 1 S$loadaddr image_golden.ub;
bootm $loadaddr;

Boot golden image from eMMC.

reset;

Restart boot sequence.

Table 5.2: Sequence of commands executed by U-Boot as defined in the boot cmd variable.

38

5.2 Integration

Command Description

fatload mmc 1 $loadaddr bitstream.bit; Program FPGA.
fpga loadb 0 S$loadaddr $filesize;

fatload mmc 1 $loadaddr image_golden.ub; | Boot golden image from eMMC.
bootm $loadaddr;

gpio toggle 46; Toggle SD-Card arbiter and
fatload mmc 0 $loadaddr image.ub; boot image from fallback SD.
bootm $loadaddr;

gpio toggle 46; Toggle SD-Card arbiter and
fatload mmc 0 $loadaddr image.ub; boot image from primary SD.
bootm $loadaddr;

reset; Restart boot sequence.

Table 5.3: Sequence of commands executed by U-Boot as defined in the altbootcmd variable.

FIT images are together with payload data, software and configuration files kept on
NAND Flash block memory devices. For simplicity it was decided to use FAT32 filesystem
for the FIT images as this was the only supported file system when booting directly from
sd card. The file-system and partition layout can be seen in Table 5.4 and 5.5.

Parition | File-system type Content
1 FAT32 image.ub
2 Ext4 opu-services + payload data

Table 5.4: SD-Card (mmc 0) partition layout and file-system.

Parition | File-system type | Content
1 ‘ FAT32 ‘ image_golden.ub + bistream.bit
2] Ext4 | opu-services (fallback) + payload data

Table 5.5: eMMC (mmc 1) partition layout and file-system.

The 1loadaddr and bootm_size variables defines the location on RAM where the
FIT image is to be loaded and extracted to during boot. The image will be loaded some-
where between 1oadaddr and the end of the memory and extracted somewhere between
bootm_low and bootm_size. The memory address is a hexadecimal number, with each bit
representing one byte of memory. Table 5.6 shows how the memory is mapped by U-Boot
during booting, while Table 5.7 shows how the memory is mapped after being handed over
to the OS.

39

Chapter 5. Integration and testing

Address Content
0x00000000 | U-Boot
0x00008000 | Kernel code and data
0x0b68fb28 | Device Tree
0x0ffffada | Ramdisk
0x10000000 | $loadaddr and $bootm_size
0x10000104 | Linux Kernel Image
0x103f6cd8 | RAMDisk Image (gzip compressed)
0x103f30ec | Flattened Device Tree blob
0x40000000 | END

Table 5.6: DRAM memory mapping during booting.

Address Content
0x00000000 | System RAM
0x30000000 | Reserved Cube DMA
0x40000000 | END

Table 5.7: DRAM memory mapping after booting.

As discussed in subsection 2.1.4 data may become corrupt after deployment. Mech-
anisms for error detection and recovery was therefore implemented both for bootloader
and FIT images. The bootloader was configured to use MDS5 checksum (section 2.2.2)
for verification of the content of the U-Boot image with three copies flashed to the QSPI
NOR Flash memory for redundancy. The FIT image was checksummed with SHA1 (sec-
tion 2.2.2) which was the default algorithm for FIT images built with the Petalinux SDK.
In the event of a failed checksum, the fallback golden FIT was set to be loaded. It was
not decided to add any extra redundancy as corruption of the primary FIT image can be
replaced following the procedure of a firmware update. For protection of temporary data
stored on the external Dynamic Random Access Memory (DRAM) during processing a
proprietary ECC was available on the on-chip memory controller of the Zynqg-7000, and
could be enabled in the FSBL through Vivado. Enabling the ECC would however limit the
amount of usable DRAM to 50% of its original capacity which was not within the require-
ments of the image-processing software running on the OS. FPGA solutions for ECC was
also considered, but would not allow protection of the memory managed by the kernel, as
this would either require support for partial reconfiguration of the FPGA which was still
under development; or removal of the already implemented support for full reconfiguration
of the FPGA within the OS as discussed in subsection 5.2.2.

Operating system

The OS on the OPU uses a customized Linux distribution called Petalinux provided by
Xilinx and developed with Yocto via the Petalinux SDK (subsection 2.3.2). The OS uses
version 2019.1 of the official Linux kernel from Xilinx [47]. The Petalinux SDK auto-
matically configures the kernel according to a hardware description file. The hardware

40

5.2 Integration

description file was exported from Vivado, which is the tool used for managing what hard-
ware resources that are available to the zynq chip and for setting up the programmable
logic. An overview of the available resources on the OPU can be seen in Figure 5.2. Most
of the hardware-specific configurations are not directly configured in the kernel, but rather
included in the device tree blob as discussed in section 2.3.3. The complete device tree
source of the OPU can be found in appendix F.

r— 3l 1O Peripherals por—
SPI O Settings Application Processor Unit (APU)
SFI 1
B 12C 0 B
(15:0) 12C 1 e —— ARM Cortex -A9 ARM Cortex -A9
CAN 0 2
Systermn Level cPU cPU
CAN 1 p—— Contro| Regs
UART 0 64b
vo UART 1 - L oA
MUX GPIO e Snoop Control unit el
(MIO) sD 0 * DMAS I B ‘ Slave
4 “+—{ sp1 CchanmE] ¥ 512 KB L2 Cache and Controller | Ports
USE 0 |
USE 1 | ocM 256 KB
ENETO V. — CoreSight Interconnect SRAM
ENET 1 Central Components
Bankl Intercannect 1
MIO FLASH Memary L]
(53:16) Interfaces — <« oar | ¥
SEEMAH Mernory Interfaces
o 2/3,LPDDR2 -
QUAD SPI < DEVC | Programmable DDR2/3,L
R Logic to Memary - Controller
SMC Timing Interconnect
Calculation
DMA Bync EIEE
Clock i
Rasets | | ceneration Processing System(Ps)
D[1]2]3 DMA
ol 2|3L)‘[enmed LR E 32b GP 32bGP |channels Confia High Performarmce XADC
MIO (EMIO) PS-PL AXl AX AES/ AX] 32b/64b Slave
Clock Parts Master Slave SHA LS
Ports Farts
Programmable Logic(PL)

Figure 5.2: Overview of the resources available on the Zynq SoC as configured with Vivado.

File system

The OS was set up to use a RAM based root file system, implemented with a tmpfs config-
uration. The file system is integrated into the upgradable FIT image stored on NAND flash
memory, and loaded to RAM during booting, as described in section 5.2.1. Loading the
root file system to volatile memory during booting assures that all files are quickly accessi-
ble and that any configuration of the file system that would affect the state of the system is
reset after each boot. One of the potential drawbacks of storing the file system on RAM is
that it decreases the amount of data memory available for the applications running on the
OS. To solve this and decrease the chance of running out of memory, memory swapping
was enabled. By allocating a certain size of the slower flash memory for swapping, the
kernel would extend the virtual data memory available, and automatically swap the less
frequently used data to the flash memory whenever there is no more space left on the RAM.

Setting up the kernel to use tmpfs configuration was enabled by default, and not many
changes needed to be performed. However, to assure enough memory was allocated by the
bootloader when loading the rootfs, the variable bootm_size had to be defined to a proper
value. Additionally, the macro CONFIG_SYS_BOOTMAPSZ had to be undefined in the u-
boot’s configuration file before the bootloader was built. Additionally, the swapspace had

41

Chapter 5. Integration and testing

to be manually enabled during booting using the swaponoff package which was installed
on the OS by defining the CONFIG_util-linux-swaponoff macro in the kernels
configuration file (appendix G).

5.2.2 Programmable logic

The FPGA on the Zynq SoC is programmed with a bitstream file which can be exported
from Vivado. To support dynamic reconfigurability of the FPGA during operations from
within the OS userspace, an FPGA driver and the fpga-manager package had to be installed
on the OS. This was done by defining the macro CONFIG_SUBSYSTEM_FPGA_MANAGER,
CONFIG_SUBSYSTEM_DTB_.OVERLAY, CONFIG_CMA,and CONFIG_DMA_CMin the ker-
nels’s configuration files. Also, the bitstreams exported from Vivado had to be converted
to a bin file to be supported by the FPGA Manager. This could be done using the boot-
gen utility included with Yocto and Petalinux SDK. The Procedure for this conversion
was added to the automatic build script which is discussed in a bit more detail in subsec-
tion 5.3.2. As part of this thesis, a quick guide on how to build re-configurable modules
and bitstreams was made and can be found in appendix A.

5.2.3 Software

The software running on the OPU is packaged into one executable called opu-services.
opu-services provides the necessary communication interface for direct access to the OS
unix style command-line interface, for up and downlink file transfer, for accessing cam-
eras, and for controlling the image processing pipeline. It is therefore critical that opu-
services automatically starts up when the OS has booted. This was assured by adding two
commands in the startup script for starting up opu-services, with the first command trying
to start from the ramdisk image, and the second one for starting from the mounted flash
media in case the first one fails to start or is exited. This also assured that the second opu-
services binary which was executed from flash memory could easily be updated without
needing to perform a complete update of the whole FIT image (appendix G).

File transfer and remote shell access

For uploading and downloading files to the satellite, opu-services implements a file trans-
fer sub-service using the CSP over the CANBUS network. The design and implementation
of the file transfer system were done by Magne Hov as part of his master thesis, details
regarding functionality and performance are documented in [17]. In addition to file trans-
fer, a sub-service for executing shell commands directly on the OPU’s Linux terminal was
also implemented. Both file transfer and remote shell access give the ground station full
access to all data files on the OPU, including the access needed for performing over the air
firmware and software updates and for performing reconfiguration of the FPGA. **/*-/*-*/

42

5.3 Testing

5.3 Testing

Testing should be done frequently in all stages of development. Failing to do proper test-
ing early in a project will result in more time spent debugging problems at a later stage of
the development, and may even result in a flawed design getting deployed. It is therefore
important that a plan for how testing shall be performed is established early, and before
development has begun. This plan should consider the boundary of the tests to be per-
formed, such that i) the tests can be performed regularly without stealing to much time
from developer and ii) that the tests accurately considers the limitations of the surrounding
system. The surrounding system is often simplified, either to save time or because the
surrounding system is incomplete. It is therefore often necessary to do extra tests called
integration testing when all separate parts of the design are complete. The amount of work
associated with integration will depend on how accurate the initial development tests are
performed.

5.3.1 Test methods and setup

The test methods used during this development project can be split into two general types;
feature testing and system testing. Feature testing is a private test setup used for testing
ongoing work that is not yet ready to be integrated into the test setup of co-developers.
System testing is the public test setup and considered the latest and greatest stable release
and used for design reviews, integration tests with outside systems, and generally for mon-
itoring the overall progress of the project. The system testing setup should always run the
latest release on the project’s repository’s master branch.

Due to limited available hardware for feature testing, some developers had to use de-
velopment boards such as ZedBoard for feature testing or coordinate their use of the avail-
able PicoBoBs. The development boards had slightly different hardware and thus required
some modifications to the firmware which was developed for PicoBoB.

Feature test setup

The feature test setup shown in Figure 5.3 had the test boundary defined at the CAN in-
terface between PC and OPU (see Figure 4.3). In addition to the CAN interface, a UART
interface was included in the test setup to show additional information about the status
of the OPU before the system had booted up and was accessible using the CSP interface
established over CAN with opu-services. For certain software development tasks, an extra
ethernet connection to the operator computer was also used for faster file transfer capabil-
ities. More details of this test setup can be found in appendix B.

43

Chapter 5. Integration and testing

Operator Computer

S5H Terminal TH
Debug Terminal =USB={R5-232 Adapter| UART:
[T T T TTTTT TSI T TS
' |
Fr=======- ' ' I—ETH HSI 1
' N ' 1
' i —ruUss ——éAN— oPu :
' hypso-cli —:- —{ CAN Adapter FT—o"M= opu-senvices H
' H ' 1
i I
! out ' ' use RGB !
-------- - " b
! |
! '

Figure 5.3: Feature testing setup used for firmware development.

System Test Setup

The system test setup shown in Figure 5.4 had the boundary defined at the CAN interface
between the PC and the EPS, and other modules on the M6P bus (see Figure 4.3). A more
detailed description of this setup can be found in [6].

CAN-bridge
over internet

FC £=CAN1 /f Vilniu

FlatSat Vilnius

PC AN1—] EP3

r

: — HSI
" - ETH

v | nypso-cii USB=—{ CAN Adapter F==CA opusenvices |

1 N -

N UsB

" D

DuT RGE

Operator Computer

Figure 5.4: System testing setup used for integration testing.

5.3.2 Building

To easily reproduce and keep track of the configurations made to the system the whole
build process was scripted in bash. The script consisted of a nested set of sub-scripts to
raise the level of abstraction and thus make the process more systematic. The flow of
these scripts can be seen in Figure 5.5, with each separate sub-script is shown in grey.
Using this flow the whole build process could be performed running the single command;
build.all.

44

5.3 Testing

build_all <device id= [<type=] update-hypso-sw build-bootfiles <ip address= <version= <type>
k. y
get static IP from table get latest software version from CELLETE
using device id submodules master branch L
create new petalinux project according type
k. y
get version from git commit hash run docker and make for arm
load device tree and configure preject using
\ , hardware definition file
load bitstream and hardware copy software to compressed
defintion file from Vivado Project directory with other
dependencies and copy fo rootfs y

change hostname fo version
.

update-hypso-sw

¥

Change size of RAM to be managed by kernel
according to reserved memory in device tree

k.

build-bootfiles <ip address» <version= <type=

l Configure QSPI NOR Flash partitioning

DEPLQOY

¥

Configure U-Boot

load_sgftware
y

add software and startup-script (and set static IP)

l

add kernel modules

l

Configure packages

buildiiles
v

build project

¥

build bootloader and FIT images

¥

copy files to output directory

Figure 5.5: Flow diagram of the scripted build process

The complete building process takes 5-30 min depending on build configuration and
workstation used. The script supports input arguments for selecting between building for

45

Chapter 5. Integration and testing

the prototyping ZedBoard or for the PicoZed which will be used for the HYPSO-1 mis-
sion, it also supports options for building both the primary and golden image, or for just
building the primary. A breakdown of the sub-scripts relevant to the petalinux-tools work-
flow can be seen in Table 5.8.

Script name | Petalinux-tools commands executed
load_firmware | petalinux-create

petalinux-config —get-hw-description
load_software | petalinux-create -t apps
petalinux-create -t modules
build_files petalinux-build

petalinux-package

Table 5.8: Script and petalinux-tools relationship.

Using bash scripts for automating builds are generally not considered a good practice
as it is unable to automatically detect dependencies across builds and to minimize what
has to be rebuilt. However, after running the script once, the complete project is set up and
can be changed and rebuilt more efficiently using the petalinux-tools makefile commands
described in subsection 2.3.4. Making changes to the actual underlying hardware defined
by the hardware definition file exported from Vivado would however require a complete
rebuilt of the project.

5.3.3 File system performance test

Memory access latency is often the main bottleneck in processing systems. It was therefore
thought interesting to measure and compare the performance of the three largest memory
devices on the system; the external DRAM where the root file system was mounted, the
eMMC, and the SD-Card. It was also interesting to see if there was any measurable dif-
ference in performance between the FAT or Ext4 File System. To test the performance,
various read and write operations with a 64MB large test data spread across 1, 64, and 65K
blocks, with a block size of 64MB, 1MB, and 1KB, respectively was performed, while the
real-time latency between each operation was measured. The full test script made for this
test can be found in appendix I, and the recorded raw data can be found in appendix J.

General performance overview

To get the general performance across the different devices and filesystems the average
throughput (both read and write) with no caching was calculated and plotted as shown in
Figure 5.6. The same graph also shows the overall best-recorded performance, which for
all devices was when the 64MB test data was divided into 64 1MB blocks.

46

5.3 Testing

I naverage [l Dbest
| | |

300 | 288

250 R
e
=
S 200| .
2.
RS
1))
=
o
=
o 150 - 1 i =
<
)
z 111 112 112

100 - R

60 67 63
o)] | 1 |
I I I I
SD-Card (Ext4) SD-Card (FAT) ¢MMC (FAT) DRAM (TMPES)
Device

Figure 5.6: Average and fastest recorded throughput for various devices and file systems on the
OPU.

Read vs. write performance

The average and best recorded read and write performance plotted in Figure 5.7 shows
an up to 50% difference in the recorded throughput between reading and writing data.
Comparing the two file-systems FAT and Ext4 indicated that the FAT file-system might
be slightly faster on average, supporting the findings of previous research summarized in
subsection 2.3.6.

47

Chapter 5. Integration and testing

[Daverage read [l 0 average write [l 0 best read I B best write

300 |- 288|

250 |-
e
2 200 |- 19
= e
& 173
< e
=
B
F 150 [
&
o]
S 111 112 112 L1e
<

100 95 95

90 34
E 65
=
50 || |45 ﬁ 48H
H I H I
SD-Card (Ext4) SD-Card (FAT) eMMC (FAT) DRAM (TMPES)
Device

Figure 5.7: Average read and write throughput for various devices and file systems on the OPU.

Performance with caching enabled

Often the same data is accessed multiple times, in such cases, the Linux Kernel can dras-
tically improve the read throughput by temporally storing a copy of previously accessed
data on a RAM. Measuring the read performance with caching enabled showed that the
read throughput for all devices increased to the same speed as for the DRAM (TMPFES)
device. For more details on these results see appendix J.

5.3.4 Dynamic reconfiguration of FPGA performance

The re-configurable modules briefly mentioned in subsection 4.2.5 were not ready to be
integrated into the image processing pipeline on the system and could therefore not be
used to benchmark and compare the throughput using full and partial reconfiguration to
toggle between the different processing cores. However, as a proof-of-concept and a way
to gather some performance data, a dummy hyper-spectral imaging processing pipeline
was developed. The pipeline consisted of four steps, with each step simulating one op-

48

5.3 Testing

eration performed on the complete image, such as compression, correction, and filtering.
However, since only the achieved throughput and not the actual result of the data was rel-
evant for the test, the various steps were simply replaced with alternating bitwise left and
right shift operation (Figure 5.8).

Latency

shift left shift right shift right

shift left

ereral
roror]
@roral
roRoR

a
1
]
1
]
1

Figure 5.8: The dummy hyper-spectral image processing pipeline used for testing.

The pipeline was tested using hardware accelerators implemented on the FPGA and
through software (appendix K). To simulate a more complex operation where the re-
sources on the FPGA would have to be time-multiplexed, the FPGA was dynamically re-
configured between each step, one of these tests performed full reconfiguration while the
other performed partial reconfiguration using a predefined reconfigurable partition. The
resulting latency for various cube dimensions using the three methods can be seen in Fig-
ure 5.9. Note that in this particular case the configuration data/bitstreams are first loaded
from the SD-Card before loaded onto the FPGA, the extra latency for the smallest cube is
likely related to underlying processes running on the OS and possibly the use of caching
and prefetching/read-ahead of the files on the SD-Card to reduce the load time, and is not
related to the size of the data cube.

49

Chapter 5. Integration and testing

2,200 r -
— CPU
—— FPGA Full Reconfiguration
—— FPGA Partial Reconfiguration
1,600 =
g
)
=
]
<
= 800| :
400 |- -
200 - -
O | |
10 40 80 160 320

Data Cube Size [B?]

Figure 5.9: Comparison between software and FPGA accelerated hyper-spectral image processing.

As shown in Figure 5.9, partial reconfiguration enables faster switching between pro-
cessing cores and will thus achieve lower latency compared to full reconfiguration. This
offset is defined by the size of the re-configurable partition which again must be large
enough to fit the largest core to be loaded onto that partition.

5.3.5 Error detection and recovery tests
Bootloader Image

To protect against the possible corruption of the bootloader image, triple redundancy was
implemented. To test that this was working as intended, each of the bootloader images
were sequentially made corrupt by erasing a small part (10 byte) of the file as shown in
Figure 5.11. The bootloader file named BOOT.BIN consisted of a FSBL and the u-boot
SSBL according to the boot information file shown in Figure 5.10.

[bootloader] images/linux/zynqg fsbl.elf
[checksum=md5] images/linux/u-boot.elf

Figure 5.10: The bif file describing the layout the bootloader image.

50

5.3 Testing

The procedure for performing this test was the following:

1) build deployment images using the build_all script found in the opu-system reposi-
tory.
2) Copy the resulting boot files to the SD-Card of the DUT, assure boot mode is set to QSPI
(see appendix B), and turn on the power and wait for the procedure to complete, indicated
by a "FLASHING FINISHED. YOU CAN TURN OFF THE DEVICE” message on
the UART serial terminal.
3) Switch to SD boot mode and assure that the system boots up.
4) turn off the power, change the bootmode to QSPI, and enter the U-boot terminal by
hitting enter multiple times as soon as power is turned on. Once in the terminal, write the
following commands to erase a portion of the bootloader:
sf probe 0 0 O
sf erase 0x100000 +0x10
5) Repeat step 3.4 with increasing offset for the data to erase, such as 0x220000 and
0x430000 as illustrated in Figure 5.11. 6) After all three bootloader files have been
corrupted the device will fail to start.

BOOT.EIN

0x000000 zyng_fshl
0x200000 Zyng_fsbl
0x400000 zyng_fsbl

not checksum protected data

Figure 5.11: Overview of BOOT.BIN content and how the bootloader was corrupted to test the
automatic fallback mechanism.

OxLFFFFF
OX3FFFFF
OX4FFFFF

The test found that the md5 checksum was able to detect the corrupted bootloader and
proceed to load the backup. It was however also found that corrupting data within the
zynq_fsbl caused the system to fail to start or become unresponsive. This was expected as
this region is not validated with a checksum.

Bootloader environment

The SSBL (U-boot) uses an environment file to store bootloader information such as the
number of attempted boots. This data is automatically checked using CRC-32 before bee-
ing loaded by U-boot. To validate that the CRC-32 checksum is working as intended a
small chunk of the env_blob file (Table 5.1) was erased by running the following com-
mands in the u-boot terminal:

sf probe 0 0 O

sf erase 0x600000 +0x10

This erases 10 bytes of data from the U-boot environment, which causes the CRC test
during booting to fail and thereby the boot environment to be reset to the original values
(shown in Figure 5.12). The complete log of the test can be found in appendix L.

51

Chapter 5. Integration and testing

Loading Environment from SPI Flash...OK

Warning: Bootlimit (5) exceeded. Using altbootcmd.

Hit any key to stop autoboot: 0

zyng> sf erase 0x600000 +0x10

SF: 65536 bytes @ 0x600000 Erased: OK

Zyng> reset

resetting

Loading Environment from SPI Flash... xxx Warning - bad
— CRC, using default environment

Hit any key to stop autoboot...

Figure 5.12: Summary of the test result of the CRC-32 checksum and fallback in U-boot from
appendix L

FIT image

Each of the three components (kernel, ramdisk, and device tree) of the FIT image is pro-
tected by a SHA-1 checksum as discussed in section 5.2.1 and shown in appendix D. This
test was done to validate that this functionality was working and that the bootloader was
able to automatically fall back on the golden backup image. To test this the necessary files
were first built by running the build_all script, copying the generated files to the SD card of
the DUT, and let it automatically flash the bootloader and golden image to the correct flash
devices as specified in Table 5.5 and Table 5.1. A successful flashing was confirmed by
no error messages in the u-boot terminal as shown in Figure 5.15. Once this was complete
the DUT was changed to boot from QSPI.

52

5.3 Testing

Flashing UBOOT

SF: Detected n25gl28 with page size 256 Bytes, erase size
. 64 KiB, total 16 MiB

687056 bytes read in 60 ms (10.9 MiB/s)

SF: 720896 bytes @ 0x0 Erased: OK

device 0 offset 0x0, size 0xa7bdO

SF: 687056 bytes @ 0x0 Written: OK

SF: 720896 bytes @ 0x200000 Erased: OK

device 0 offset 0x200000, size 0xa7bd0

SF: 687056 bytes @ 0x200000 Written: OK

SF: 720896 bytes @ 0x400000 Erased: OK

device 0 offset 0x400000, size 0xa7bd0

SF: 687056 bytes @ 0x400000 Written: OK
Flashing golden image

32756112 bytes read in 2075 ms (15.1 MiB/s)
32756112 bytes written

Flashing bitstream

5980026 bytes read in 394 ms (14.5 MiB/s)
5980026 bytes written

SF: Detected n25gl28 with page size 256 Bytes, erase size
< 64 KiB, total 16 MiB

SF: 131072 bytes @ 0x500000 Erased: OK
FLASHING FINISHED. YOU CAN TURN OFF THE DEVICE

Figure 5.13: U-Boot log indicating the successful flashing of bootloader and golden image to QSPI
and eMMC.

The primary image located on the SD-Card as described in Table 5.4 was then cor-
rupted using a hex editor to simulate a bitflip as shown in Figure 5.14. Turning on the
DUT and a reading of the serial terminal (Figure 5.15) reported a bad data hash for the
kernel and proceeded to load the golden image.

53

Chapter 5. Integration and testing

image.ub - GHex 0

File Edit

0000000000 0D FE ED 01 F3 D1 A4 00 00 00 38 01 F3 CD BO
0000001000 00 00 28 00 00 00 11 00 00 00 10 00 00 00 00...
0000002000 00 00 74 01 F3 CD 78 00 00 00 00 00 00 00 00...
0000003000 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00..
0000004000 00 00 063 00 00 00 04 00 00 00 64 SE CB D9 93.. .
0000005000 00 00 03 00 00 00 53 00 00 00 60 55 2D 62 53....... S....
00000060BF 74 20 66 69 74 49 6D 61 67 65 20 66 6F 72 20Ft fitImage fo
0000007050 65 74 61 4C 69 6E 75 78 2F 34 2E 31 39 2D 78Petalinux/4.19-x

0000008069 6C 69 6E 78 2D 76 32 30 31 39 2E 31 2B 67 69ilinx-v2019.1+gi
0000009074 41 55 54 4F 49 4E 43 2B 39 38 31 31 33 30 33tAUTOINC+9811303

Signed 8 bit: (111 Signed 32 bit: [1713402991 Hexadecimal: | 6F
Unsigned 8 bit: [111 Unsigned 32 bit: [1713402991) octal: (157
Signed 16 bit: [29807 Signed 64bit: (1713402091 | Binary: (01101111
Unsigned 16 bit: | 29807 Unsigned 64 bit: [1713402991 StreamLength: (8 — +
Float 32 bit: | 1,894316e+23 Float 64 bit: | 2,807989e+218
Show little endian decoding Show unsigned and float as hexadecimal

Offset: 0x60

Figure 5.14: The bit flip on the primary image was simulated by editing the file content using a hex
editor.

Loading kernel from FIT Image at 10000000 ...
Using 'conf@system-top.dtb' configuration
Verifying Hash Integrity ... OK
Trying 'kernel@l' kernel subimage

Description: Linux kernel
Type: Kernel Image
Compression: uncompressed
Data Start: 0x10000104

Data Size: 4140776 Bytes = 3.9 MiB
Architecture: ARM
0S: Linux

Load Address: 0x00008000
Entry Point: 0x00008000
Hash algo: shal
Hash value:
— 85181abd564c701c7ffeb78b9898d9744a6dbd4c
Verifying Hash Integrity ... shal error!
Bad hash value for 'hash@l' hash node in 'kernel@l' image
— node
Bad Data Hash
ERROR: cant get kernel image!
Booting from eMMC

Figure 5.15: U-Boot sucessfully detecting a corruption of the FIT image and proceeding to boot
from eMMC.

54

5.3 Testing

File integrity checking with MDS

Sometimes it is useful to verify the integrity of the remote files to assure that the files have
not become corrupted or have been tampered with. To test this functionality one file that
was identical on both the local and remote system, and one file that had been tampered
with was check-summed. The tampered file was made corrupt using the same method as
shown in Figure 5.14. As shown in Figure 5.16 the hash value was identical for the two
identical files and different for the tampered file as expected. The test also showed that
changing the name of the file did not have any effect on the hash.

Local:

hypso@WS1:~/Desktop/tmp$ md5sum image.ub
c6d52f71dad4a7674b795e8b204£95e4c image.ub

Remote (OPU/DUT):

root@f82945d-primary:/media/sd-img# md5sum image.ub
c6d52f71dad4a7674b795e8b204£95e4c image.ub
root@f82945d-primary:/media/sd-img# md5sum

— 1mage_tampered.ub
ae0d446615a6df1107461fd%aa35f8a9 image_tampered.ub
root@f82945d-primary:/media/sd-img# cp image.ub

— 1mage_renamed.ub
root@f82945d-primary:/media/sd-img# md5sum

— 1image_renamed.ub
c6d52f71dada7674b795e8b204£f95ed4c image_renamed.ub

Figure 5.16: Computing md5 checksum of local and remote file to confirm identical files.

5.3.6 Manual recovery test

For extra security in case an undetected bug in a firmware update would cause the system
to become unresponsive a method for manually forcing the system to boot the golden
image was also developed. To test this the boot counter had to be incremented to 5, which
would activate the alternative boot sequence in U-boot. The boot counter was incremented
by manually toggling the power to the system on and off 5 times, with a short delay of
2 sec between each toggle to give time for the bootloader to successfully update the boot
counter variable as depicted in Figure 5.17.

55

Chapter 5. Integration and testing

Load U-Boot

|Load bootcounter \.ralue‘

l

| Increment boot counter ‘

l

| Store boot counter value |

------- l-----

| Load Linux ‘

l

<2s

- = POwer Reset

— <205

| Reset boot counter ‘

Figure 5.17: Illustration on when and why the power was toggled to increment the boot-counter.

A short summary of the results in U-boot can be seen in Figure 5.18. The test also
showed that after the golden image had successfully booted, the bootcounter was reset to

0 again.

HYPSO-1 Booting. Current bootcount
HYPSO-1 Booting. Current bootcount
HYPSO-1 Booting. Current bootcount
HYPSO-1 Booting. Current bootcount
HYPSO-1 Booting. Current bootcount
Warning: Bootlimit (5)

Booting into Petalinux
after rebooting again:
HYPSO-1 Booting. Current bootcount

is 1 of 5
is 2 of 5
is 3 of 5
is 4 of 5
is 5 of 5

exceeded. Using altbootcmd.

is 1 of 5

Figure 5.18: Summary of the U-Boot log showing the bootcounter successfully counting the number
of power cycles and activating the alternative boot sequence after reaching the defined boot limit.

56

Chapter

Summary and conclusion

This thesis presented the work done to set up a fault-tolerant and re-configurable on-board
processing system for the HYPSO CubeSat. The processing system was equipped with
a Zyng-7000 SoC, which was set up to run the customizable embedded Linux distribu-
tion, Petalinux. A large portion of the work documented in this thesis is associated with
system-level design and development workflows for this system, with a focus on ease-of-
use and portability. The implemented processing system that resulted from this work was,
in addition to performance tweaks such as the implementation of a RAM-based root file
system, and the extension of the virtual RAM using swap, also able to prove to support
the dynamic scheduling of full and partial reconfiguration of the on-chip programmable
logic and to provide a reliable framework for performing remote software and firmware
updates by detecting and automatically recovering from the corruption of critical files on
the processing system.

6.1 Future work

The implemented system successfully provides the framework for performing reliable up-
dates and is therefore ready for deployment as soon as the overlying minimal baseline
software for the file-transfer and remote access interface has been properly tested in the
system test setup. Future work should therefore primarily be on the topic of continu-
ous testing and implementation of automated continuous system integration testing, using
Jenkins or similar tool for setting up an automation server. Other topics that can be an
interesting area for further research is to do a more extensive file-system and SD-Card
performance comparisons with a particular focus on speed and fault-tolerance and to do
further research on potential applications for partial reconfiguration such as SEU scrub-
bing, ECC protection of system RAM, and adaptive FPGA designs for high throughput
image processing.

57

Chapter 6. Summary and conclusion

58

Bibliography

(1]

(2]

(3]
[4]

Abbott, D., 2017. Linux for Embedded and Real-time Applications. Newnes.
Google-Books-ID: zZNomDwAAQBAJ.

et. al., 2020. u-boot/u-boot. URL: https://github.com/u-boot/u-boot.
original-date: 2014-11-12T13:29:02Z.

Alanazi, A., Straub, J., 2018. Statistical Analysis of CubeSat Mission Failure , 8.

AVNET, 2018. PicoZed™ 77015 / 72030 SOM (System-On-Module) Hard-
ware User Guide. URL: http://zedboard.org/sites/default/files/
documentations/5279-UG-PicoZed-7015-7030-V2_0.pdf.

Bakken, S., Orlandic, M., Johansen, T.A., 2019. The effect of dimensionality reduc-
tion on signature-based target detection for hyperspectral remote sensing, in: Cube-
Sats and SmallSats for Remote Sensing III, International Society for Optics and Pho-
tonics. p. 111310L.

Birkeland, R., Langer, D., 2020. HYPSO-UM-004 Manual for FlatSat and LidSat.

Bolchini, C., Miele, A., Santambrogio, M.D., 2007. TMR and Partial Dynamic Re-
configuration to mitigate SEU faults in FPGAs, in: 22nd IEEE International Sym-
posium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), pp. 87-95.
doi:10.1109/DFT.2007.25.1SSN: 2377-7966.

Boothby, C., 2019. TFE4580 Project Thesis - A software implementation of the
ccsds 123 Issue 2 compression standard. A low-complexity lossless and near-lossless
compression standard of multispectral and hyperspectral images. Technical Report.
NTNU.

Choi, J.O., 2015. Performance Analysis of Block Write Operation of File
Systems on Linux Environment. Journal of the Korea Institute of Informa-
tion and Communication Engineering 19, 136-140. URL: http://www.
koreascience.or.kr/article/JAK0201506565684274.do, doi:10.
6109/jkiice.2015.19.1.136. publisher: The Korea Institute of Information
and Commucation Engineering.

59

https://github.com/u-boot/u-boot
http://zedboard.org/sites/default/files/documentations/5279-UG-PicoZed-7015-7030-V2_0.pdf
http://zedboard.org/sites/default/files/documentations/5279-UG-PicoZed-7015-7030-V2_0.pdf
http://dx.doi.org/10.1109/DFT.2007.25
http://www.koreascience.or.kr/article/JAKO201506565684274.do
http://www.koreascience.or.kr/article/JAKO201506565684274.do
http://dx.doi.org/10.6109/jkiice.2015.19.1.136
http://dx.doi.org/10.6109/jkiice.2015.19.1.136

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

Derek J.S., R., 2003. An Introduction to Abstract Algebra. Walter de Gruyter, pp.
255-257.

Dodd, P.E., Shaneyfelt, M.R., Schwank, J.R., Felix, J.A., 2010. Current and Fu-
ture Challenges in Radiation Effects on CMOS Electronics. IEEE Transactions
on Nuclear Science 57, 1747-1763. URL: http://ieeexplore.ieee.org/
document /5550487/,doi:10.1109/TNS.2010.2042613.

Fernandes, J.A., 2013. A powerful kernel image format , 38.

Fjeldtvedt, J., Orlandi¢, M., 2019. CubeDMA - Optimizing three-
dimensional DMA transfers for hyperspectral imaging applications. Mi-
croprocessors and Microsystems 65, 23-36. URL: http://www.

sciencedirect.com/science/article/pii/S014193311830228X,
d0i:10.1016/j.micpro.2018.12.0009.

Folkesson, M., 2017. FIT vs legacy image format. URL: https://www.
marcusfolkesson.se/blog/fit-vs—-legacy—-image—format/.

Gjersvik, A., 2020. HYPSO-DR-011: BoB V3 Design Report.

Hamming, R.'W., 1950. Error detecting and error correcting codes. The Bell
System Technical Journal 29, 147-160. doi:10.1002/3.1538-7305.1950.
tb00463.x.

Hov, M., 2019. Design and Implementation of Hardware and Software Interfaces
for a Hyperspectral Payload in a Small URL: https://ntnuopen.ntnu.no/
ntnu-xmlui/handle/11250/2625750. accepted: 2019-10-31T15:12:35Z
Publisher: NTNU.

Hudec, J., 2012. linux - The difference between initrd and initramfs. URL: https:
//stackoverflow.com/a/10604667. library Catalog: stackoverflow.com.

Iwamatsu, N., Denk, W., 2020. mkimage - Generate image for U-Boot. URL:
https://linux.die.net/man/1/mkimage.

Kao, C., 2005. Benefits of Partial Reconfiguration , 3.

Koch, H.J., 2006. The Userspace /O HOWTO — The Linux Kernel
documentation. URL: https://www.kernel.org/doc/html/v4.12/
driver—api/uio-howto.html.

Koopman, P., 2018. Best CRC Polynomials. URL: http://users.ece.cmu.
edu/~koopman/crc/.

Kornberg, J.A., 2020. Time Synchronization of Hyperspectral Image Capture on
board a Nanosatellite. Ph.D. thesis. NTNU.

Kulu, E., 2020. Nanosats Database. URL: https://www.nanosats.eu/
index.html. library Catalog: www.nanosats.eu.

60

http://ieeexplore.ieee.org/document/5550487/
http://ieeexplore.ieee.org/document/5550487/
http://dx.doi.org/10.1109/TNS.2010.2042613
http://www.sciencedirect.com/science/article/pii/S014193311830228X
http://www.sciencedirect.com/science/article/pii/S014193311830228X
http://dx.doi.org/10.1016/j.micpro.2018.12.009
https://www.marcusfolkesson.se/blog/fit-vs-legacy-image-format/
https://www.marcusfolkesson.se/blog/fit-vs-legacy-image-format/
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2625750
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2625750
https://stackoverflow.com/a/10604667
https://stackoverflow.com/a/10604667
https://linux.die.net/man/1/mkimage
https://www.kernel.org/doc/html/v4.12/driver-api/uio-howto.html
https://www.kernel.org/doc/html/v4.12/driver-api/uio-howto.html
http://users.ece.cmu.edu/~koopman/crc/
http://users.ece.cmu.edu/~koopman/crc/
https://www.nanosats.eu/index.html
https://www.nanosats.eu/index.html

[25]

[26]

(27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

Leppinen, H., 2017. Current use of linux in spacecraft flight software. IEEE
Aerospace and Electronic Systems Magazine 32, 4-13. doi:10.1109/MAES.
2017.160182. conference Name: IEEE Aerospace and Electronic Systems Mag-
azine.

Meyer-Baese, U., 2007. Digital Signal Processing with Field Programmable Gate
Arrays. Springer Science & Business Media. Google-Books-ID: wzYuOF6HFXO0C.

Montzka, M., 2020. Fast Spectrograph Corrections on Programmable Logic. Ph.D.
thesis. NTNU.

O’Neal, T., 2019. U-Boot Images - Xilinx Wiki - Confluence. URL:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
18842374 /U-Boot+Images.

Orlandic, M., Fjeldtvedt, J.A., Johansen, T.A., 2019. A Parallel FPGA Im-
plementation of the CCSDS-123 Compression Algorithm. 11 URL: https:
//ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2595160,
doichttps://doi.org/10.3390/rs11060673. accepted: 2019-04-
24T07:24:447 Publisher: MDPI.

Orlandi¢, M., Svarstad, K., 2019. An adaptive high-throughput edge detection fil-
tering system using dynamic partial reconfiguration | SpringerLink. URL: https:
//link.springer.com/article/10.1007/s11554-018-0753-4.

Paul Horowitz, Winfield, H., 2016. The Art of Electron-
ics. 3 ed URL: https://books.google.no/books?id=
LAiWPWAACAAJ&dg=0521809266, 9780521809269&hl=no&sa=X&
ved=0ahUKEwih8JGng9 jnAhVywgYKHeXt CAQQ6AEIKTAA.

Petazzoni, T., 2012. Embedded Linux Conference Europe 2012 - Your new ARM
SoC Linux support check-list! URL: https://www.elinux.org/images/
a/ad/Arm-soc—checklist.pdf.

Petazzoni, T., 2013. Embedded Linux Conference Europe - device tree for
dummies. URL: http://eventsl7.linuxfoundation.org/sites/
events/files/slides/petazzoni-device-tree-dummies.pdf.

Peterson, W.W., Brown, D.T., 1961. Cyclic Codes for Error Detection. Proceed-
ings of the IRE 49, 228-235. d0i:10.1109/JRPROC.1961.287814. conference
Name: Proceedings of the IRE.

Preshing, J., 2011. Hash Collision Probabilities. URL: https://preshing.
com/20110504/hash-collision-probabilities/.

Puig-Suari, J., 2018. 6U CubeSat Design Specification Revision
1.0. URL.: https://staticl.squarespace.com/static/
5418c831ledb0fadecaclbacd/t/5b75dfcd70a6adbee5908£d9/
1534451664215/6U_CDS_2018-06-07_rev_1.0.pdf.

61

http://dx.doi.org/10.1109/MAES.2017.160182
http://dx.doi.org/10.1109/MAES.2017.160182
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842374/U-Boot+Images
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842374/U-Boot+Images
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2595160
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2595160
http://dx.doi.org/https://doi.org/10.3390/rs11060673
https://link.springer.com/article/10.1007/s11554-018-0753-4
https://link.springer.com/article/10.1007/s11554-018-0753-4
https://books.google.no/books?id=LAiWPwAACAAJ&dq=0521809266,9780521809269&hl=no&sa=X&ved=0ahUKEwih8JGnq9jnAhVywqYKHeXtCdQQ6AEIKTAA
https://books.google.no/books?id=LAiWPwAACAAJ&dq=0521809266,9780521809269&hl=no&sa=X&ved=0ahUKEwih8JGnq9jnAhVywqYKHeXtCdQQ6AEIKTAA
https://books.google.no/books?id=LAiWPwAACAAJ&dq=0521809266,9780521809269&hl=no&sa=X&ved=0ahUKEwih8JGnq9jnAhVywqYKHeXtCdQQ6AEIKTAA
https://www.elinux.org/images/a/ad/Arm-soc-checklist.pdf
https://www.elinux.org/images/a/ad/Arm-soc-checklist.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
http://dx.doi.org/10.1109/JRPROC.1961.287814
https://preshing.com/20110504/hash-collision-probabilities/
https://preshing.com/20110504/hash-collision-probabilities/
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5b75dfcd70a6adbee5908fd9/1534451664215/6U_CDS_2018-06-07_rev_1.0.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5b75dfcd70a6adbee5908fd9/1534451664215/6U_CDS_2018-06-07_rev_1.0.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5b75dfcd70a6adbee5908fd9/1534451664215/6U_CDS_2018-06-07_rev_1.0.pdf

[37] Razzaghi, E., 2012. Design and Qualification of On-Board Computer for Aalto-1
CubeSat. Ph.D. thesis. Aalto University.

[38] Rifenbark, S., 2019. Yocto Project Overview and Concepts Manual (Re-
vision 3.0.1). URL: https://www.yoctoproject.org/docs/3.0.2/
overview-manual/overview-manual.html.

[39] Ritchie, D., Thompson, K., 1978. The UNIX Time-Sharing System.
Bell System Technical Journal. URL: http://archive.org/details/
bstj57-6-1905.

[40] Rossler, P., Holler, R., 2020. Programmable logic devices — key components for
today’s and tomorrow’s electronic-based systems. e & i Elektrotechnik und Infor-
mationstechnik 137, 45-51. URL: http://link.springer.com/10.1007/
s00502-019-00781-w,doi:10.1007/s00502-019-00781—w.

[41] Shet, R., 2020. Programmable Logic Devices - A summary of
all types of PLDs. URL: https://www.technobyte.org/
programmable—logic-devices/. library Catalog: www.technobyte.org
Section: Digital Electronics and Digital Logic Design.

[42] Teubner, J., Woods, L., 2013. Data Processing on FPGAs. Morgan & Claypool Pub-
lishers. URL: https://books.google.no/books?id=gbJdAQAAQBAJS
printsec=frontcovers&hl=no#v=onepagesg&f=Ffalse.

[43] Volkova, J., KneiZys, E., Kalabuckas, E., 2018. M6P Platform/Payload Interface
Control Document - Rev. NA-IC6P-001/1.

[44] Xilinx, 2019. UG1157: PetalLinux Tools Documentation: Command Line Reference
Guide.

[45] Xilinx, 2020. Xilinx/linux-xInx. URL: https://github.com/Xilinx/
linux-x1nx. original-date: 2013-03-19T22:15:217Z.

[46] Xilinx Inc., 2019. PetaLinux Tools Documentation: Reference Guide.

[47] gimek, M., 2019. Release xilinx-v2019.1 - Xilinx/linux-xInx. URL:
https://github.com/Xilinx/linux-xlnx/releases/tag/
x1linx-v2019.1.

62

https://www.yoctoproject.org/docs/3.0.2/overview-manual/overview-manual.html
https://www.yoctoproject.org/docs/3.0.2/overview-manual/overview-manual.html
http://archive.org/details/bstj57-6-1905
http://archive.org/details/bstj57-6-1905
http://link.springer.com/10.1007/s00502-019-00781-w
http://link.springer.com/10.1007/s00502-019-00781-w
http://dx.doi.org/10.1007/s00502-019-00781-w
https://www.technobyte.org/programmable-logic-devices/
https://www.technobyte.org/programmable-logic-devices/
https://books.google.no/books?id=qbJdAQAAQBAJ&printsec=frontcover&hl=no#v=onepage&q&f=false
https://books.google.no/books?id=qbJdAQAAQBAJ&printsec=frontcover&hl=no#v=onepage&q&f=false
https://github.com/Xilinx/linux-xlnx
https://github.com/Xilinx/linux-xlnx
https://github.com/Xilinx/linux-xlnx/releases/tag/xilinx-v2019.1
https://github.com/Xilinx/linux-xlnx/releases/tag/xilinx-v2019.1

Appendices

63

Appendix A

Partial Reconfiguration of
Programmable Logic in Linux

65

Partial Reconfiguration of Programmable Logic in
Linux

Joar Andreas Gjersund

Abstract

This document is intended as a guide for getting started with dy-
namic partial reconfiguration of a Zyng-7000 FPGA running Embed-
ded Linux. This document goes through all the steps from setting up
the processing system in Vivado, to defining reconfigurable partions
and generating bitstreams, it also gives a short guide on how to how
to set up the Embedded Linux distribution to enable partial reconfig-
uration.

1 Introduction

Partial Reconfiguration enables us to increase the utilization of the resources
available on the FPGA by taking advantage of the fact that often not all
programmable logic is active at the same time. Partial Reconfiguration can
thus reprogram these regions of the fpga, while other regions are running, al-
lowing time multiplexing the available resources. Applications such as SEU
Scrubbing for correcting configuration cell upsets and real time dynamic
image processing pipe-lining for quickly togling between various image pro-
cessing steps such as compression, correction, and filtering is just the tip of
the iceberg of what possibilities are realizable with partial reconfiguration.

In this report I will go through the simplest example possible intended
as a proof of concept of how this can be actually implemented such that is as
easy as possible for the reader to follow. In this example I will build a simple
one-gate logic reconfigurable module that reads data from a DMA interface,
inverts the data, and returns the data to the DMA see fig. ?7. I will also
build another module using the same reconfigurable partion, that simply
forwards the data without performing any manipulation. I will then show
how these two modules can be reconfigured at runtime. All sources including
a simple app to test the features will be made available on SmallSatLab
Github repository opu-system under the branch bitmap_testing. For access
to this repository, please contact the SmallSatLab at NTNU

Reconfigurable

artition
PS j€———cmd—» CubeDMA |——data out—»

config invert

data in

Reconfigurable

artition
P3S [——cmd—m CubeDMA ——data out—m

config copy

data in

Reconfigurable

artition
PS [———cmd—m CubeDMA ——data out—m

config blank

data in

Figure 1: The three different configurations for this example

2 Hardware and software Requirements

Zyna-7000 SoC. Petalinux 2019.1 Vivado 2019.1 Docker

3 Building the embedded Linux operating System

follow the README guide found in repository.

4 Making a reconfigurable module

4.1 Building The Static Part

Open the vivado project file. make a new source file. verilog.

module test(
s_axis_tdata,

m_axis_tdata,

)3
right click in block diagram and add module. hook up the module
| Mo0_AGLK pXg VTR = copluretrigd generateoutd
MOO_ARESETN —{ capturetrigl generateout!
4§ = MO1_ACLK - freeze pwmo
MO1_ARESETN s axi_aclk interrupt
5_axi_aresetn
AXI Interconnect

proc_sys_reset 0 . AXI Timer

_syne_clk mb_reset
sLin bus_struct_rese([0:0]
et_in peripheral_reset(0:0]

cubedma_top_0
image_processing_0

ug_sys_rst interconnect_aresetn[0:0]

- - m_axis_mmz2s [z
T+ s axis + s axs_s2mm =
= . || + m_axi_mem |

dlk RTL m_axis + + 5_ax_otd_status !

Ked peripheral_aresetn[0:0] 4
. N mm2s_ctr[7:0]
areseln —— dk =)
Processor System Reset g aresetn mm2s_irq
s2mm_irq

image_processing_v1_0

cubedma_top_v1_0

Figure 2: Caption

In the flow navigator press Run Synthesis, when done click cancel and
exit the project. Navigate the the synthesis output folder and make sure
that a dcp checkpoint file has been generated.

4.2 Building The Reconfigurable Modules

Navigate to the source folder of the reconfigurable modules and synthesize
the modules using the following tcl script (make sure the part matches the
hardware and projects part):

read_verilog test_copy/test_copy.v

synth_design -mode out_of_context -flatten_hierarchy rebuilt
< -—top test -part xc7z030sbg485-1

write_checkpoint Synth/reconfig_modules/test_copy_synth.dcp
— -—force

close_design

close_project

read_verilog test_invert/test_invert.v

synth_design -mode out_of_context -flatten_hierarchy rebuilt
— ~top test -part xc7z030sbg485-1

write_checkpoint Synth/reconfig_modules/test_invert_synth.dcp
-~ ~—force

close_design

close_project

The reconfigurable modules consists of the following:
test_copy.v:

module test(

input [63:0] s_axis_data,

output [63:0] m_axis_data

)3

assign m_axis_data = s_axis_data;
endmodule

test_invert.v:

module test(

input [63:0] s_axis_data,

output [63:0] m_axis_data

)3

assign m_axis_data = “s_axis_data;
endmodule

4.3 Drawing The Reconfigurable Partition Layout

The next step is to assign a block on the fpga for the modules to be loaded
to, also called a reconfigurable partition block or simply pblock.

Run the following tcl commands to load the partion planning tool:

open_checkpoint Synth/Static/System_wrapper.dcp
read_checkpoint -cell System_i/test_0/inst

— Synth/reconfig_modules/test_copy_synth.dcp
set_property HD.RECONFIGURABLE 1 [get_cells

— System_i/test_0/inst]

write_checkpoint Checkpoint/top_link_add.dcp -force

find the module and draw the pblock. (It is also possible to use a xdc
constraint file that sets the requirements of the pblock and automatically
draws it). Make sure to include enough resources for all reconfigurable
modules to be included in the partition. Once done, run the DRC Report
tool with partial reconfiguration enabled to make sure everything looks okey.
If it fails, you might have to enable snapping of the pblock. This is done by
selecting the pBlock, and toggle the SNAPPING_MODE to ON, found at
the bottom of the pBlock Properties.

System_i (System |
> Mets (1222
> Leaf Cells (2

> axi_interconnect_0 (System_axi_interconnect

> axi_timer_0 (System_a

> cubedma_top_0 (Sys

> proc_sys_reset_0 (System

> processing_system7_0 (Syste
> smarnconnect_0 (System_smartconnect

test 0 (System_test 0_
> Mets (128
> inst”
Cell Properties...
> xlconcat, v
4

) Floarplanning
Cell Properties

Select Leaf Cells

inst P Draw Pblock
. Mew Pblock...
Name: % Highlight Leaf Cells o
Parent:

Figure 3: Caption
Once done. Run the following script to optimize, place, and route design:

opt_design

place_design

route_design

write_checkpoint Implement/config_copy_top_route_design.dcp
— ~—force

write_checkpoint -force -cell System_i/test_0/inst

— Checkpoint/testO_copy_route_design.dcp

update_design -cell System_i/test_0/inst -black_box
lock_design -level routing

write_checkpoint -force Checkpoint/static_route_design.dcp

The first module is now done. For any successive modules that we would
like to add to the partition the procedure is a bit faster as the pBlock is
already defined. Simply run the following tcl commands:

read_checkpoint -cell System_i/test_0/inst
— Synth/reconfig_modules/test_invert_synth.dcp
opt_design

place_design

route_design

write_checkpoint Implement/config_invert_top_route_design.dcp
— ~—force

write_checkpoint -force -cell System_i/test_0/inst

< Checkpoint/testO_invert_route_design.dcp

close_project

Do this for all reconfigurable modules. When done we need to make a
blanking module, which is used to when transistion between modules. This
can be done by running the following tcl commands:

open_checkpoint Checkpoint/static_route_design.dcp
update_design -buffer_ports -cell System_i/test_0/inst
place_design

route_design

write_checkpoint -force

— Implement/config_blank_top_route_design.dcp
close_project

Finnally, we should run the following command to verify that all reconfig-
urable modules and partion is configured correctly:

pr_verify -initial Implement/config_copy_top_route_design.dcp
— -—additional {Implement/config_invert_top_route_design.dcp
— Implement/config_blank_top_route_design.dcp}
close_project

4.4 Export partial bitstreams

To export the partial bitstreams run the following tcl command:

open_checkpoint Implement/config_copy_top_route_design.dcp
write_bitstream -file Bitstreams/test_copy.bit -force
close_project

open_checkpoint Implement/config_invert_top_route_design.dcp
write_bitstream -file Bitstreams/test_invert.bit -force
close_project

open_checkpoint Implement/config_blank_top_route_design.dcp
write_bitstream -file Bitstreams/test_blank.bit -force
close_project

The bitstreams are now exported in bit format. Note that there both a
partial and a full bitstream is exported for each module, the full bitstream

also includes the static part and one of these must be loaded onto the fpga

before partial bitstreams can be used.

To be able to load bitstreams onto the fpga in linux, the files must be

in bin format. This is achieved by running the bootgen utillity found in

the petalinux sdk. For each of the bitstreams do the following, replacing

bitstreamname with the name of the actual bitstream to convert to bin.:
make an empty file called bitstream.bif with the following content:

all:
{

bitstreamname.bit /* Bitstream file name */

}

run this command in the same folder as the bif file and bitsteram file. Make
sure you have Petalinux SDK installed.

bootgen -image bitstream.bif -arch zynq -process_bitstream
— bin

The bitstreams in correct format will then be generated and saved to the
same folder.

4.5 Loading bitstream onto the FPGA in linux

For loading the bitstream onto the FPGA in linux we use a driver via the
sysfs interface. Make sure the bitstream bin files are copied to the sd card
along with the bootloader and linux image and boot up the system. Once
booted up the bitstreams can be loaded by running the following commands
via the terminal:

for full reconfiguration run:

echo 0 > /sys/class/fpga_manager/fpgalO/flags
mkdir -p /lib/firmware

cp /media/bitstream_full.bit.bin /1ib/firmware/
echo bitstream_full.bit.bin >

— /sys/class/fpga_manager/fpga0/firmware

for partial reconfiguration run:

echo 1 > /sys/class/fpga_manager/fpgalO/flags
mkdir -p /lib/firmware

cp /media/bitstream_partial.bit.bin /1lib/firmware/
echo bitstream_partial.bit.bin >

< /sys/class/fpga_manager/fpgal/firmware

To make this process easier, a tool called fpgautil can also be installed
on the system. The source file can be found in the reference files. loading
bitstream with this tool works like this:

root@38787f2-primary:~# fpgautil
fpgautil: FPGA Utility for Loading/reading PL Configuration

Usage: fpgautil -b <bin file path> -o <dtbo file path>

Options: -b <binfile> (Bin file path)
-0 <dtbofile> (DTBO file path)
-f <flags> Optional: <Bitstream type
- flags>

f := <Full | Partial >

Examples:

(Load Full bitstream using Overlay)

fpgautil -b top.bit.bin -o can.dtbo

(Load Partial bitstream through the sysfs interface)
fpgautil -b top.bit.bin -f Partial

4.6 Verifcation Testing

The design can be validated using the tool bitmap-test as follows:

root@b43e570-primary:~# fpgautil -b

— /media/sd-img/bitstreams/bitstreams/test_blank.bit.bin
fpga_manager fpgaO: writing test_blank.bit.bin to Xilinx Zynq
— FPGA Manager

Time taken to load BIN is 113.000000 Milli Seconds

BIN FILE loaded through FPGA manager successfully
root@b43e570-primary:“# bitmap-test

Iterating

Configure cubeDMA

Starting transfer

ding
received length 2000

Sent:

0101010101
0101010101

0101010101
0101010101
0101010101
0101010101
0101010101
0101010101
0101010101
0101010101

Received:

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000Success
root@b43e570-primary:~# fpgautil -b
— /media/sd-img/bitstreams/bitstreams/test_copy_pblock_inst_partial.bit.bin
- -f Partial
fpga_manager fpgal: writing
— test_copy_pblock_inst_partial.bit.bin to Xilinx Zynq FPGA
— Manager
Time taken to load BIN is 18.000000 Milli Seconds
BIN FILE loaded through FPGA manager successfully
root@b43e570-primary: “# bitmap-test
Iterating
Configure cubeDMA
Starting transfer
ding
received length 2000

Sent:

0101010101
0101010101
0101010101
0101010101
0101010101
0101010101

0101010101
0101010101
0101010101
0101010101

Received:

0101010101
0101010101
0101010101
0101010101
0101010101
0101010101
0101010101
0101010101
0101010101
01010101018uccess
root@b43e570-primary:~“# fpgautil -b
— /media/sd-img/bitstreams/bitstreams/test_invert_pblock_inst_partial.bit.bin
— —f Partial
fpga_manager fpgaO: writing
— test_invert_pblock_inst_partial.bit.bin to Xilinx Zynq
— FPGA Manager
Time taken to load BIN is 18.000000 Milli Seconds
BIN FILE loaded through FPGA manager successfully
root@b43e570-primary:~# bitmap-test
Iterating
Configure cubeDMA
Starting transfer
ding
received length 2000

Sent:

0101010101
0101010101
0101010101
0101010101
0101010101
0101010101
0101010101
0101010101
0101010101
0101010101

10

Received:

65535655346553565534655356553465535655346553565534
65535655346553565534655356553465535655346553565534
65535655346553565534655356553465535655346553565534
65535655346553565534655356553465535655346553565534
65535655346553565534655356553465535655346553565534
65535655346553565534655356553465535655346553565534
65535655346553565534655356553465535655346553565534
65535655346553565534655356553465535655346553565534
65535655346553565534655356553465535655346553565534
655356553465535655346553565534655356553465535655348uccess

5 Conclusion

The example gone through in this report managed to reduce the time needed
to reconfigure the fpga from 113 ms for a full reconfiguration, to only 18
ms for the partial reconfiguration. The work flow for generating partial
reconfiguration modules was heavly inspired by [Kajekar(2020)].

References

[Kajekar(2020)] Kajekar, N.N., 2020. Tutorial on Partial Recon-
figuration of Image Processing Blocks using VIvado and SDK.
Technical Report. University of New Mexico School Of Engineer-
ing - Department of Electrical and Computer Engineering. URL:
http://ivpcl.unm.edu/ivpclpages/Research/drastic/PRWebPage/PRsub.php.

11

Appendix B

HYPSO-DSW-008: Documentation
for The Petalinux Bootloader and
the Generation of system Images
for Performing Software Updates

77

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

Documentation for

The Petalinux Bootloader and the
generation of system images for

performing software updates
HYPSO-DSW-008

Prepared by: HYPSO Project Team

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

Reference: HYPSO-DSW-008
Revision: 1

Date of issue: 27.11.19

Status: Issued

Document Type: 02.12.2019

Table Of Contents

1 Overview
1.1 Purpose
1.2 Scope
1.3 Summary
1.4 Referenced Documents

2 Description of opu-system
2.1 Interfaces with other modules
2.1.1 Inputs
2.1.2 Outputs
2.2 How to generate boot files (bootloader and system images)
2.3 How to deploy
2.4 How to add software and configure startup script
2.4 How to perform a software update

3 Testplan for the Petalinux bootloader
3.1 Requirements

o ©O o o N o oo a0 O M AW W W®W

-

4 List of Abbreviations

Table 1: Table of Changes

Rev. Summary of Changes Author(s) Effective Date
1 First issue Joar Andreas Gjersund | 27.11.2019
2 updated test procedure. Joar Andreas Gjersund | 12.12.2019

20f 16

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

1 Overview

The HYPSO Mission will primarily be a science-oriented technology demonstrator. It will enable
low-cost & high-performance hyperspectral imaging and autonomous onboard processing that
fulfill science requirements in ocean color remote sensing and oceanography. NTNU SmallSat
is prospected to be the first SmallSat developed at NTNU with launch planned for Q4 2020
followed by a second mission later. Furthermore, the vision of a constellation of remote-sensing
focused SmallSat will constitute a space-asset platform added to the multi-agent architecture of
UAVs, USVs, AUVs, and buoys that have similar ocean characterization objectives.

1.1 Purpose

The purpose of the Petalinux bootloader is to load the Linux kernel and root file system (system
image) from flash memory to RAM, perform integrity checks to make sure data is not corrupted,
and finally boot up Linux. The bootloader should include some level of redundancy, so that if the
system image becomes corrupted it should try to load a backup image from another memory
device.

1.2 Scope

This document covers the requirements for the booting procedure, an overview of the
commands that is automatically executed in u-boot during booting and where these commands
are defined, how to build the system images with Docker, and finally the process of deploying
the system to the Zedboard and the Picozed. This document also proposes a testing plan for
validating that the system behaves according to the requirements.

1.4 Referenced Documents

The documents listed have been used as a reference in the creation of this document.

Table 2: Referenced Documents

ID Author Title

UG1144 Xilinx Petalinux Tools Documentation
Xilinx Zedboard HW User guide

[RDO3]

HYPSO-DSW-004 Marion VRIGNAUD Using HYPSO SW for Zedboard

3 of 16

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

Xilinx PicoZed Datasheet

2 Description of opu-system

The opu-system repository is used to generate the necessary files to boot up Petalinux
according to the requirements mentioned in 3.1. The repository consists of a set of scripts for
setting up the proper work environment via Docker, and to automatically generate system
images containing the Petalinux kernel, root file system and all the necessary software
components and dependencies for the payload. The main purpose of the repository is to make
and document the process of generating bootable files according to requirements and to make
this process easy to replicate and configure in the future. An overview of the booting procedure
can be seen in fig. 1. The two system states (green and red) is a seperate OS image (kernel
and root file system), making it possible to tailor permissions, and what software components to
automatically run. The green state, represented by the file image.ub can be updated (e.g.
rewritten) with a new version when performing a software update. The red state, is considered a
golden image and serves as a backup in case of a failed software update or corrupt primary
image. This image (image_golden.ub) should under no circumstances be edited or replaced
during a software update and preferably reside on read-only-memory. The bootloader is
configured to use the initramfs root file system, which means that the root file system will be
loaded to the volatile RAM upon boot. This enables all changes made to the rootfs to be reset
during a reboot.

4 of 16

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

boot ROM ‘

QSPINOR Flash SD-Card NAND Flash _ DDR3 RAM
FSBL+SSBL (U-Baot) | "™ T ®| primayKemeland | -U=s5 > Petalinux
addr: 0x0 and root file system image Primary Image
Failure
QSPINOR Flash
I — — Failure
FSBL+SSBL (U-Baat) | —Uecess
addr: 0x100000
Failure
v
DDR3 RAM
QSPINOR Flash eMMC NAND Flash*
I —Success— Backup Kernel and —Success—» Petalinux
FSBL+SSBL (U-Boot) p r
addr: 0x200000 and root file system image Golden Image
|
Failure)
Failure * Mot available on the prototyping board Zedboard

Fig. 1: Booting procedure.
2.1 Interfaces with other modules

2.1.1 Inputs

This module uses the latest release of the hypso-sw repository. This release should be
structured as it would on the target root file system and compressed to a .tar.xz file. This file will
then automatically be extracted and merged with the root file system upon boot. Use the
prerelease 0.3 in the hypso-sw repository as an example.

2.1.2 Outputs

A successful build should generate the following boot-files specified in this table:

Location/Filename Description
opu-system/petalinux/projects/bootfiles/<name>/BOO
T_QSPI.BIN Bootloader: FSBL+SSBL (UBOOT)

5 of 16

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

opu-system/petalinux/projects/bootfiles/<name>/BOO For flashing bootloader to QSPI. (will automatically run when
T.BIN boot mode is sd)
opu-system/petalinux/projects/bootfiles/<name>/Imag

e.ub Primary Image file
opu-system/petalinux/projects/bootfiles/<name>/Imag

e_golden.ub Golden Image file

2.2 How to generate boot files (bootloader and system images)

e Requirements: Linux, Docker, git

1) Clone the opu-system repository from GitHub in the home directory in linux.

2) Download petalinux-v2019.1-final-installer.run to the directory opu-system/Docker

3) Run the command sudo ./setup-petalinux-docker inside the directory
opu-system/Docker.

4) Runthe command sudo ./run-petalinux-docker. [f repository was not cloned
in the home directory, change the script to reflect the location of the repository.

a) Runthe command . /makeproject <project-name> -picozed -all to
generate all boot files for picozed. *

b) Runthe command . /makeproject <project-name> -all to generate all
boot files for zedboard.*

* Exclude the -all flag to only generate the primary image file
6) Wait for a while.... Grab a coffee, yes, it will take quite some time. (around 30 min)
7) When done, you can find all the necessary files for the system inside
opu-system/petalinux/projects/bootfiles/<project-name>

2.3 How to deploy

e Requirements: Zedboard or Picozed with PicoBOB, boot files (see 2.2.), SD-Card.

1) Format the SD-Card with filesystem Ext4.

2) Copy the file BOOT.BIN, BOOT_QSPI.BIN, image.ub and image_golden.ub located in
the booffiles folder to the SD-Card.

3) Insert the SD-Card into the SD-Card slot on the board, make sure the boot mode pin
straps on the Zedboard or Picozed are set to SD-Card (see fig. 2 and fig.3), and turn on
the power.

6 of 16

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

4) Wait for 15 minutes, then turn off power and change the boot mode pin straps to QSPI
(see fig. 2 and fig.3). The file BOOT_QSPI.BIN and image_golden.ub can now be
deleted from the SD-Card. (All files except image.ub have now been flashed to other
memory devices according to the procedure described in fig. 1)

5) Done.
Table 18 - ZedBoard Configuration Modes
MIO[6] MIO[5] MIO[4] MIO[3] MIO[2]
Xilinx TRM-> | Boot Modef4] | Boot Mode[0] | Boot Modef2?] | Boot_Mode(1] | Boat Mode(3]
JTAG Mode
Cascaded o
JTAG
Independent 1
JTAG
Boot Devices
JTAG 0 0 0
Quad-SPI 1 0 0
SD Card 1 1 0
PLL Mode
PLL Used 0
PLL 1
Bypassed
Bank Voltages
MIO Bank 500 3.3v
MIO Bank 501 1.8v

Fig. 2 : Boot mode pin strap settings for Zedboard

QsPI X LOW (2-3) / (2-3) HIGH (4-5) / (1-2)

SD CARD * b HIGH (1-2) / (1-2) HIGH (4-5) / (1-2)
JTAG * X LOW (2-3) | (2-3) LOW (5-6) / (2-3)
INDEP JTAG ** HIGH (2-3) LOW (2-3) f (2-3) LOW (5-8) / (2-3)
CASCADE JTAG ** LOW (1-2) LOW (2-3) f (2-3) LOW (5-6) / (2-3)

Table 14 = PicoZed 7015/7030 Configuration Modes
“*Interfaces on the End User Carrier Card

Fig 3: Boot mode pin strap settings for Picozed

2.4 How to add software and configure startup script

e Software components, libraries, and applications can be added to the compressed folder
software.tar.xz in the projects/software directory. All these files will automatically be
extracted to the petalinux root file system upon boot.

7 of 16

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019

HYPSO Mission

A startup script, located in the projects folder under the name

linux_startup_ script.sh will automatically be executed when the booting
process has finished. This script is responsible of starting opu-services and mounting
flash memory devices. Note that opu-services must be the last program to run in the
script since this never exit.

2.4 How to perform a software update

Copy and replace projects/software/software.tar.xz with the new software modules and
libraries and optionally update the startup script as described in 2.4.

Optional: Configure the makeproject script.

Generate an OS image as described in 2.2 (exclude the -all flag)

Replace the newly generated image.ub file with the image.ub file present in media/sd on
the satellite using the hypso-cli software.

Perform a reboot. If system is in green state the software update was successful.

8 of 16

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

3 Testplan for the Petalinux bootloader

3.1 Requirements

ID Refines Refined by Definition
The system shall still function in the event of a corrupt or
BL-5-10 SYS.PA.100 inaccessible primary system image.
BL-5-20 SBUS.3.17 The primary system image shall be possible to update
HSI.4.110
BL-5-30 HSI.4.110 The booting procedure shall be fully automated .
The system image shall be loaded to volatile memory
during booting so that the system is restored to its initial
BL-5-40 OPU.4.80 state after a reboot.
The worst case execution time of the complete booting
BL-5-50 HSI.4.110 procedure should be no more than 60 (TBC) s

3.2 Test Procedure

The following procedures are used to verify that the requirements in 3.1 are met. A program that
guides the tester throughout the test procedure and automatically verify if a test pass can be
found in opu-systems/petalinux/verification and can be run in linux by writing the command sudo
./checkkall <path-to-hypso-sw-build-directory>.

Prerequisites
e A computer with hypso-cli readily set up. (Including necessary CAN-usb converter)
o See HYPSO-DSW-004 for instruction on how to set up the hypso-cli on the
computer.
e PicoBOB (DUT)
e Micro SD card.

Hardware Setup and Test procedure.

Note: Remember to follow the labs guidelines/rules regarding ESD protection and clean-room
regulations.

This section explains how to set up the DUT (device under test) and gives a more in-depth
explanation of what is performed “under-the-hood” by the test script.

9 of 16

HYPSO-DSW-008

Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

Find a clean
(preferably
unopened) picozed
board.

319y YBOd 9-+N0S 0002424253V

IRy |

$ZEC00 9161 LOFI OC 1000V

(U IR MR

The picozed used for this test was the 7Z030. (PicoZed Datasheet)
If no factory/clean picozed board is available, make sure that the
u-boot environment is erased before procedure. Where the u-boot
environment is placed in memory depends on the previous
bootloaders configurations, but should by default be on partition 1 of
the QSPI. In that case, run the following command in the petalinux
command line after the picozed as booted up:

$ flash eraseall -j /dev/mtdl

10 of 16

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

Connect the picozed
to a breakout board
to make a PicoBoB.

l.A

AVNET

Connect the CAN
USB converter to the
PicoBoB CAN bus 2

connector - o +5V (optional)
GND —¢ o
e — CAN_L
CANH —1= 4
8. O T— GND
Not connected -—=@ 4 Mot i stbosl
. 9 O——— Not connecte
+5V (optional) ——=0 5

Not connected

;

The CAN USB converter used for this test was systec CAN (IEC
61131-3)

11 of 16

HYPSO-DSW-008

Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

The CAN USB converter pins can be connected directly to the
PicoBoB CAN bus 2 connecter. The bottom connection is used for
serial UART and is not needed for the test.

Connect the power
supply to the
PicoBoB

Connect a power supply (5.9-14.5 V) to the power connector on the
PicoBoB.

12 of 16

HYPSO-DSW-008

Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

An inbuilt buck-converter in the PicoBoB will fine-adjust the voltage for
us. For this test we kept it at around 9V.

Set the boot mode
pin strap switches to
SD-Card (according
to fig. 3)

v, picozed, ol 3¢ QIO
L Yeew

&8 /PiIcozeDl i<

PicoZed 7015/7030 b}
A
l| ¥ ‘ll J ¢ ;;

J Géddde e

The boot mode pin straps switched all the way towards the PCB
border indicate a SD-Card boot. For a mint picozed board there might
be a film covering this switch that must be peeled before it can be

configured.

Find a fresh
Micro-SD card and
make sure it is

Generate all necessary files using the procedure described in Chapter
2.2. And copy them to the Micro SD-Card. If more than one partition is
present, either merge all partitions or copy the files to the first partition.

13 of 16

HYPSO-DSW-008

Documentation for The Petalinux Bootloader 02.12.2019

HYPSO Mission

formatted to
FAT/MS-DOS.
(Should be standard
formatting for most
SD-Cards).

Insert the SD Card
and turn on power

Navigate to opu-systems/petalinux/verification on the client computer
and run the command:

Sudo ./checkall <path to folder of hypso-cli>

Wait for 30s, then turn of the power.

Change the mood
mode pin strap
switch to QSPI mode
(according to fig. 3)

The boot mode pin strap switches set to QSPI.

Turn on power

The test will now ping the picozed to check that the system has booted
up correctly. If it has it will output a “1” on the terminal screen of the
client computer.

- Pass
- Test 1 of 2 passed for requirement: BL-5-10.
- Test 1 of 4 passed for requirement: BL-5-30
- Test 2 of 2 passed for requirement: BL-5-50
- Faill

- requirement BL-5-10 failed.

Turn off power and
corrupt the primary

Make a copy of the image.ub present on the SD-Card. Then edit the
original file image.ub on the micro SD-Card by opening the file up in a

14 of 16

HYPSO-DSW-008

Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

image

text editor on a computer with a Micro SD-Card reader and
delete/reorder some small chunks of the machine code.
Insert the Micro SD-Card into the PicoBoB again.

Turn on power

The test will again perform a ping test to make sure the bootloader has
been able to detect that the primary image is corrupted and that the
golden image correctly boots up. It will again output a “1” on the
terminal screen of the client computer if the test has passed.

- Pass:
- Test 2 of 2 passed for requirement: BL-5-10
- Test 2 of 4 passed for requirement: BL-5-30
- Test 2 of 2 passed for requirement: BL-5-50
- Fail:

- requirement BL-5-10 failed.

Perform a “in-flight”
software update and
turn on power again.

Upload the image.ub-copy from previous step to the mounted micro
SD-Card on the picozed using the hypso-cli terminal (see
HYPSO-DSW-004 for details on how this is done). Make sure the
uploaded copy has the same name and overwrites the image.ub file
already present. When completed, a reboot and an automated
ping-test is executed to confirm that the primary image boots up

correctly.
- Pass:
- Test 3 of 4 passed for requirement: BL-5-30
- Test 1 of 1 passed for requirment BL-5-20
- Fail:

- requirement BL-5-30 failed
- requirement BL-5-20 failed.

6 x (Turn on power,
wait 1 sec. Turn off
power wait 1 sec.).
Then turn on and
leave power on.

This test will check that the alternative boot procedure is working when
bootcounter > bootlimit (5), and correctly boots up the golden image.
- Pass:
- Test 4 of 4 passed for requirement: BL-5-30
- Fail:
- requirement BL-5-30 failed

Continue the script.
When told so,
perform the same
power on-off
procedure as in the
previous step

The test script will now delete all files on the root file system of the
golden image. Reboot, and delete all files on the primary image.

15 of 16

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
HYPSO Mission

The testscript will now output a “1” if the golden and primary image
meets the requirements in BL-5-40
- Pass
- Tes passed for requirement BL-5-40
- Fail
- Requirement BL-5-40 failed

Test complete If all tests have completed sucessfully (no error messages and only 1s
outputted) the system is conforming to the defined requirements.

4 List of Abbreviations

Table 3: List of Abbreviations

Abbrv. Description

DUT Device Under Test
PCB Printed Circuit Board
oS Operating System

16 of 16

94

Appendix C

Test of Bootloader and Firmware
Updates

95

Upload new boot image test report
Date

User(s):

Joar Gjersund

Test Method:

Test was performed using an automated test script which included instructions for physical
actions needed to be performed during the test

Test Equipment & Set-Up Description:
HYPSO-DSW-008 (Rev. 3) chapter 3.2

As-Ran Test Procedure:

HYPSO-DSW-008 (Rev. 3) chapter 3.2

(VR.BL.5-10) Used bash command shred image.ub to inject errors in primary image.

() Used the following procedure and commands in hypso-cli to update image:
copy image.ub to be uploaded in same folder as hypso-cli.

make sure ft list is empty
ftlist 12

ft register 12 image.ub 1

ft prepare local image.ub image.ub.fmt 1 240
ft format 12 1 240 338755

ft upload file 12 image.ub.fmt 1

(wait 1 hour)

ft extract 12 1 image.ub

shell remote 12 10000
cp -fr image.ub /media/sd/image.ub
Reboot

UPDATE:

The file upload seems to work, but due to some bugs it is more complicated than it should be. This is
how | was able to perform a firmware upgrade:

(hypso) ft list 12

(hypso) ft register 12 image.ub 1

(hypso) ft prepare local image.ub image.ub.fmt 1 240
file name: image.ub. fmt

file type: STATIC

file id: 1
entry sz: 240
max entries: 338755

first entry id: 1

total entries: 338755

(hypso) ft format 12 1 240 338755

File ID: 1, status: 0

(hypso) ft upload file 12 image.ub.fmt 1

Uploading 1 missing ranges:

[1-338755]: 100% []
File is complete.

Upload finished.

(hypso) ft extract 12 1 image.ub
/home/hypso/src/ft/ft client.c:722:ft client extract: response length: 0, expected 3.
cli ft extract failed with ret: -71

‘ft extract' failed: 71 (Protocol error)

(hypso) shell remote 12 10000000

Enter "exit", "quit" or "q" to exit remote shell.
(OPU) 1s image.ub-e

(I then had to press tab for autocomplete) getting the following result

(OPU) 1s image.ub-e\360

| then had remove Is prepend cp -fr and append /media/sd/image.ub, like this:
(OPU) cp -fr image.ub-e\360 /media/sd/image.ub

then I did a reboot

(OPU) reboot

The new image (version 092a743) was confirmed by printing the hostname

(hypso) shell remote 12 10000

Enter "exit", "quit" or "q" to exit remote shell.
(OPU) hostname

092a743-primary

Pass or Fail Criteria:

HYPSO-DSW-008 (Rev. 3) chapter 3.2

Test Results:

Requirement Short description | Tests passed
VR.BL.10 3/3
- BL-5-10 Corrupt image 1ft
- BL5.30 Automatic boot 1
- BL5.50 Bootingtime < 10s 1 (recorded booting time was 1 min, but
this was TBC)
VR.PROC.30/VR.BL.3 Read online rootfs | 1

- BL-5-40 1

VR.PROC.50 36GB available 0

VR.BL.20 Image update 1

Discussion of Results:

e Requirement VR.PROC.50 does not pass because the chosen SD-Card does not meet
requirement. Current Available space is 8 GB. This Choice of SD-Card is based on
tolerance towards radiation.

e None of the tests are done via the payload controller (PC), which might affect the test
results. It is assumed that future tests of the PC will uncover these faults. If the same tests
fail when done via the PC, the fault(s) should first be assumed to be with the PC.

e BL.5.50 does not pass or is invalid. Booting time was recorded to be 60s. This is primarily
due to the DUT not being connected to ethernet during the test, and ssh-server waits for
connection to establish. Actual booting time should be tested on a complete setup in the
future. SSH server is also primarily a tool for development and could be considered
disabled when deploying to the satellite.

e VR.BL.20: The time it takes to upload one image (ca. 80MB) just over the canbus is
significant (at least 1 hour). This is without overhead associated with uplink to the PC and
PC buffering which was not part of the test. Hypso-cli also reports some errors during the
upload procedure (also mentioned in HYPSO-TRP-EL-006) and the ft file extract does not
appear to be working as intended.

Conclusion:

File upload displays error messages mostly related to timeout. Those bugs should be fixed.
BL.5.50 does not pass, but was TBC. This requirement should be updated to 100s to account for
possible future updates which can further increase the boot time.

Appendix

Example Image Tree Source for a
FIT image

/dts-vl/;
/A
description = "U-Boot fitImage for plnx_aarcho64
— kernel";
#address—-cells = <1>;
images {
kernel@0 {
description = "Linux Kernel";
data = /incbin/ ("./Image");
type = "kernel";
arch = "arme4d";
os = "linux";
compression = "none";
load = <0x80000>;
entry = <0x80000>;
hash@1l {
algo = "shal";
}i
}i
£dt@0 {
description = "Flattened Device Tree blob";
data = /incbin/ ("./system.dtb");
type = "flat_dt";
arch = "arme4d";

compression = "none";

hash@1l {
algo = "shal";
}i
bi
ramdisk@0 {
description = "ramdisk";
data /incbin/ ("./ramdisk.cpio");
type = "ramdisk";
arch = "arm64d";
os = "linux";

compression = "none";
hash@1l {
algo = "shal";
}i
bi
bi
configurations {
default = "conf@1l";
conf@l {
description = "Boot Linux kernel with FDT blob
— + ramdisk";
kernel = "kernel@O";
fdt = "fdteo";
ramdisk = "ramdisk@O0";
hash@1l {
algo = "shal";
}i
}i
i
}i

Source: https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842374/U-Boot+Images

100

persn .
Appendix

Failure mode, effects and criticality
analysis for the HYPSO Mission

101

uado

Jaboy

(pueg-s) ejep peojAed jo peojumoq
(pueg-g) eyep uoissiw jo >udn
Aep

W pieqeas
Jad sawi | -0} Jeloaoeds ay) 99s [|IM “PUBG-S UBnoiy) BlEp |SH SOAIedaYy
uado Jaboy Aep Jad sawyy /-9 Inoge Yesoaoeds ay) 99s ||IM "PUE]-S ybnouyy ejep | NANLN uoljejs punoig
ISH saA1e0a1 0s]y ‘}senbal uo sejepdn ue|d UOISSIW PUB SPUBLUWOD SPUSS
'S371 uo paseq ajebedoid pue yoeyy ‘Ayuspl siojesadQ “Buuoyuow Ajleq
uado aubepy swaysAsqns Jayjo M Jamod
0} 9nqLIsIp 0} Wa)sAS Jamod [eo}oa|g oy} je pabeuew si yolym sauayeq
ul saJ0)s pue sjaued Jejos wouy uoiesado Buunp ABisus [eouyoale Buipinold
uado zsnuel\ x uiglg r av
uado zsnuey x welg Ajsnowouojne yesoadeds Jo Aj10ojaA pue uonisod ‘UoIeIUSLIO By} Sajewlis] | ov soav
“JOANaUBW Ma|S B wiopad 0] S|9aym UoloBa) S8)eNnjoe pue apnyjje palisap
spiemo} Jeloaoeds sy} syusalQ “suonow [eaisAyd syelosoeds ayy buljjonuo)
uado Jaboy NO sAem|y ‘siajaweled eiswed pue sayepdn p\S Yelosoeds ‘sajepdn H olpel 4HN
ue|d uoissiw Buinieoas pue (buidesyesnoy) Anpwsa|s) Buipuas o} pasn
uado Jaboy (syunowe abie|) ejep |SH Buipuas pue Buirsioay 9 olpel pueg-s suoljesiunwwo)
uado siuuaqg ‘uoln|osal [eneds Jamo| Inqg |[SH ey} A0 Jable| 4 elaWed goy
seH "Burouaiayal-0ab 1oy pazi|nn pue Ajjeneds sabew |SH Bunepljen Joy pasn
uado eleg pus 3 pleoglayiow 4y
-JuoJ) wouj panladal [eubs [eybip sy} sassao0id pue pua-juol) 8y} S|oU0D
uado ele9 pleoq a pusjuoly 4y | OIpEJ pauYyap SIEMYOS
-19yjow Aq passaooid aq o} [eubis |eybip/6ojeue SUOAUOD pue SaAIedaY
I aubepy selawed/Sd3/0d Pue NdO Usdmjaq adepalul 8y o) (pseoq yno yeaiq)gog
uado HBAIS x 80r (lenoads ‘A [eneds ‘x |eneds) g Jabew|
suolsuawip 934y} Ul ejep sai0)s “Buibew [esoadsiadAy uonnjosas ybiH
uado aor snq yeioaoeds ay) pue V| (yun Buissaooid pieoq uo) NdO ISH peojAed
gog+|SH usamjaq aoepalul 8y} si siy) ‘Buissedoid ejep pue [0ju0d peojAed
paso|ojuado a|qisuodsay sjuswauainbal g uonound| J19ys| SoUIRY woaysAggnggnggng woysAggnsgng swayshsqng

Jua.INd “Buiojuow ‘uonels punols)

swaj|qo.id aiemyos

pajeald I JIBYIBUM JO SS399NS WLIJU0D ‘sjuswalinbal swiy *ozis abexoed eyeq "4HN ‘Ael ayjeres
wajqoid asemyos

wajqoid aremyos

jybnoua asioaid si } ey Juepodwi ‘Juswisnipe |gaym Asejos pue Janbiojsubew ‘a|buy

aouewuopad |eondo
Juswabeuew aiemyos s| abuajjeyd ay) ‘spueq |esoads 09|

Kep Jad sawiy G| yues syglo aplales ay |
(3se090 ay) 0} 8s0j0) siayem xa|dwod Ajjeondo :z ase) ‘(eas 0} Ino Jey) Jayem jo adA} auo :| ase)

adoos sy} Jo apIsinO

uosess
-yead Buunp sajepdn uoissiw Ajyaam yum sieah G Jses) je 1oy [euoljelsado aq pjnoys

s9p0d pue 2160| buiwwelboid YO ‘ejep uoissiw payulidn pajesbajul A|injssaoons
ybnouyy sejepdn waysAsgns pue Buinpayds g Buluueld uoissiw a|qixa|} 8|qeus |leys

payiny} punolb aq 0} (-0} INOAD ‘Ee-luD) sainjeubis |eando aaisod Jo % 0}
10 Ajurepsd ypum uonoslep jabie} pue UoBDLISSEJD ‘UooNpal Ajljeucisuswip pleoquo
|NySS800NS Jaye Jy | uey) ssa| ul sabew [eloadsiadAy [euonesado | yulumop pinoys

punoub uo passasoid aq 0} (918 NOAD ‘B-luD) sainjeubis |eondo
a|qejoa3ap Buluiejuod jewloy eyep 17 ul sabew jesjoadsiadAy | uljumop |leys

S 09 Jano Ajngess B6ap 100 J0
apnjiubew yym A)100|9A Jeinbue e je JaAnauBW MBS }OBJ}-SS0JO wiopad pjnoys 9/S

uopn|osal [eneds w 00| JSes| Je eAey pinoys sabewl |SH

uonn|osal [eoads Wu 0> Yim
HIN-SIA Ul spueq [exoads 09}, (¢1ses) je)ueyy ssef uim abew | jses| je oxe} pinoys
Kep Jad sassed ¢ ises| je jobie) swes abew| pjnoys

eale

ZvWy 0/X0/ 1ses| Je Jo uelBamIoN aU) JO Sid)em g 8Se) pue | aseD aAIasSdo [[eyS
S}98M ¢ UIyIm O3 ul (Buruolssiwwod

pue 4O37) suonesado azijeniul pue ajquiniap ‘Aojdap ‘youne| A||nyssaoons |[eys O/S

910-0-SIN'0}

€10-0-SN'6

¢l0-0-S'8

110-0-SW'Z

010-0-SN'9

800-0-SW'S
900-0-SW't

¥00-0-SW'E
¢00-0-SW'¢

100-0-SW'}

(ppe J0 }Ipa 0} 93} [99))S}UBWIWIOD

sjuawalinbai uoissipy

SWOS 10J S| JUSWNIISUl UY "SIUSWNIISUl 84} O) P310)2J 101Id UD S| alay| -
10848 pajuomun uo Buisnod

‘uonouanp Buoim Yym 1o swily Buoim ayy 3o Bulusddoy s| U0 PalIsjald -

10118 JoUOIUSUIUN UD JO 3SN02aq ‘Buiuaddoy 10U S| UOID0 padiajald -

:USYM INDD0 3p0W 31N)I0}

TTOIoUN} O JO 50US5Q0 J1NJ JO JOT100 803 ST 5pOoW a1N|Io} v

$3POW 21N1I04 O SI JOYM

"“Wa)SAS © 1NOQOD UOIIDWIOJUI JO JUNOWD 36.10)
0 JU3sa.d PUD 3Z130WS1ISAS 03 1001 10316 © S| YOI 4 ‘UOIIPPO U] "syuswalinbal
PUD SUOIIDUNS UIOW 8y} 1uaAald 01 A)ay) 1sow ayy sI yoiym Bujuosw 90211140

1SOW 93 940 S1UsUOdUWOoD YdIym 1IN0 puUll 01 sl YOI 4 © Jo asodund ujow ay |

"uloa) 03} a)dwis A1} S| J13S11 1003} 3y} INQ
‘pasAloun aq 0} WalsAs ay) Jo BulpubisiIapuUNn dasp O SPa3U ISAIOUD 3Y) YD IN S

O }ONPUOD 0} J3PJIO U| 1839yspoalds O UMM pa10ald Ajonsn si yDOINS Yl

JBUUDW PIZIPIOPUDIS O Ul UOIIOWIOLUI SIY) SZ1I0WSISAS
PUD ‘A}1021114D PUD (108448) 100dWwl ‘sasn2 J1ay) ‘swajqold Jonua1od BulAiuapl
10J 100} O S| — SISA|OUD A})ODNIIID PUD S108)8 ‘spow ain)oy — YDOINS

¢@s0dund ayy st Joym puo ‘yYDOJINH SI JOYM

3U} Ul 101J3 1O Y010313p 3ll) 3Y) Ul S3119110Q JO X207 :8SN0D aunjio) JO 3)dwoxg
"21N)I0J Ul 3)NS3J JOY] 22UDUIIUIOW 10 3SN ‘UOIJ0)|0ISUl ‘21N}00NUDW
‘UBisap ‘uonooyidads BuliNE S2DOULISWNDIID 3Y)} S| 3SNDD 3IN)ID) Y

¢$,9SN0J 31N)I0} O S| JOYAA

"3SNOY UMOP PaUINg © 2Q UDD 103442 31N)I0)

2y3 ‘241 © BulINP 14210 1USS0P J0IO212P 24l 3Y) J| 20342 a4njio) O Jo 3)dwoxg
£UO110UNJ UIDW Y] PUD S1IUN 13410 U0 3ADY 3p0W 21N)I0)

U1 1M 10313 UDIYM "2PO0W 31N)I0) 2Y) JO 20Uanbasuod ay) si 103443 31N} ay |

$109442 21N)104 O S| JOYM\

"3pOoW 21N)I04
19YlouDn S| ali} ouU S| alay) usym Bul}ia)o 10109190 SHOoWs 3y | 'opow aIN)o4

O s| a1} © BuNP BuIS)O 10U 10103190 SHOWS Y| BPoW a.IN)Iv) O Jo J)dwoxg

"9YOWS US| 31943} USUM 112)0 10U pUD ‘SXouls

S| 13U} Uaym 113)0 0} S| UO[IdUN} S1010818P HOWS Y [Uopoun) o Jo 9)dwoxg

‘Al30a)1ad Buiyiom 210 wWalsAs

21 Ul syusuoduwod 1210 a3)0 1041 SWNSSD 3UO ‘sepowl ainjio) Buipul) usyp

‘Buipoal 10 010 1031100Ul BUIAIB UuosLal

22U311N220 X A1ISASS = NdY
‘Nd¥ 241 210)N2)02 03 32U31INDI0 PUD A}IISA3S 3SN AJUO 0} USSOYD SADY S\
UO0I12313(Q X 22Ua11N22Q X AMISASS = NdY
:0)NWII0L SIYY AQ P310INDI0D SI NdY 34| "0} Uoluano J0123ds plod

2Q PINOYs Ndy YO1y © Yiim sjusuodwo)d 42quinN AYIOLId XSy 10} SPUDIS NdY
(NdY © STIOYM @

19x0ads _

1w

2Q UDJ sjUBWaIINDaI $S322NS UOISSIW OU ‘UOIIdUN) 0) S3S03D W)SAS 21ydonsojo) S
13W 3Q 10U |)IM sjUsWalIiNbal ss820Ns

UOISSIW }SOJ 'SUOIOUNS PaIINbal JO 82U8SQD SNOIISS SSSNDD IN)I0H 1021311 4
sjuswalinbal ss820Ns uolssiw Bumyny

woly waysAs dols 0} SuUOIIDUNS BSNDD S8SOD BWOS Ul AW aIn)io 8)qouispisuo

US}O 1N220 0} A3y Jyusnbai4 g 4 ¥ s o houny : 1o 1q0.9pISUC) €

SWIIS) Ul SSWI} JOISA3S UNJD0 NI 3]90Qo4d ¥ ‘uolnouny mewum\»m 341 UO 1038}48 JoUlW 3SNOD \/,_COEFCOU Aow 24N)Io4 ‘_CC_OLG—Z Y
2Wnay Ut u0d SUI0S 10 Ind20 0} Al 10U0ISE90 € UOI30UNy SWS3SAS Y} UO 108448 OU Ul })NSS1 |)IM S8I10US D8P
AiiNun Ing 81qissod 2oua1INd20 0wy 4 104NE3201d 10 31N|I0) Jusuodwod 1o walsAsgns ‘ssidusioysp ubissp

319q161165U S| 92US11N220 JOY} A)Sxiiun 05 31q0qo.idul| L ‘JUBWIUOIIAUS U018 13UU0sSIad JOY} Yons 1o suonipuod Bunoiado 21q16n6aN L

SSO)O Jequinu Jaqunu

uo13d1I2S3p 92UBIINID0 22Ua14N220 22Ua11N220 uondiiosap AJIiaAsS | ssO)D AYlusAsS | Ajllaasg

onje|

ofew ou uogerspunoi usre | 5 o]
1SH U0 pIoIs 100 1 10
e ou operspunoid ez 5|
ABupioooe siswesed snipy|
PowUIMOp 5 38w 4595 0 P3N0 poyuIMOp aBew ou Huumop o) aBew ou| sojsuen peg 12 ponaoa Jou s 1ep. oo peoifed piy
4101 pauajsuei jou eiep
Swop90 voreiares epdn o oreinooeu! 51 o6ew poNIINGD apeinooeu DoIepN J0u S1SRILE02 UOREIGED Sn00dsTS Y00 @D S1UaRIE0D UoEIIED pETERINO 1|
51391011403 peoyed o} s oBew|
e1ep pouINOp Y000 ¢ umop o) popuetu Z1|
‘1ep possaoond poidnico.
(ds) Busssood snovous |
Sosne0 X105 01 97 Al 0
xoun usen oo @ usen ol
sneo Eyepeiaw paioadtaun
ov
109s1d 51 1 1640 aunsud OF BupiuLMGp Joye 9Bt 1 Yol PoUINOP 1ou 3 OB oteuw| obew sojsuen puncib 1o ndowos gy
el
MWacuosns soeds o abeep.
oBeu 100q Aispuosas|s St Bueu ™
P
(@) ov|
Propuel 10U swersfsqns Jouio
W0y paneos. eiep oINS
Sia Buiddl skes owson
siopowesed snovou3
(peolfed uy10u 11q s1q u paruewid) Gopudten| Sonq vosion o) Buidosyosnoy u swndn dooy
ko uasoyp u 1o ¢ 2semos a1 350 6 poojked yeisoy ‘Spom Bugou bug weoommios ov]
geien 0u uesodws) uonouny e
eyeperow sieudoidde
puss jou 5o0p apows snonaid
erepEIou 1oy Uone Y60 01 9903 a1 Poneooi 100 5| Buwn
eperou 1ndu o Busseooid aBew payiduis fom| Powso91 100 E16p SOQV. cwprowndu BUsSIN
opsouBe eiepelou Uy passaa0sd eiep
Sfe 9S00 pue U
15105 01 a0 paCE) YOl Ut So1EB B0
csoipow semeau e1ep Ajien te) swesBoid onev| o & ez
© u poidnuoo S| aqromea
bou 21 o) possed jou 5 1ep ou)
J1-91qeeAGUN Aeiodual Voroun e
Sompoood Bunweiboid peg
woneasan pue Bunsen ‘spiepus BuweBoxd someg|
s6ey simpous eeperou Seipous ueamyeq seoesiy
10 suondiosep payu 1 snowous3
orpe uogeBaL se paanpaYI IO Bursa) vo-orpus a5 erepeiaw| Bu1sa) puo-orpus snovou3 ompow Bugnosxa sou
papadea aneoai 1ou op saimpou|
Huidn 004 8PS PUELILOD YoBLR 21T 2 e1ep poidniog Japio Buoum o u Uy SaINPON 2| obeuw sso00id
Iva ur sbug dn pos|
wayshsany Auo peai se unon| SaBuews wnspoup
‘s oo uepunpan | oiaeteneun Auesodua) uoruny wen Auo-peas se Kiowaw o o suoped 21000 Alowsu jo eale Buom SR LIV
anyey oiewpien
S (219125 e} 01 g€ 28 S et oG, Budasyasnoy oyuou 15a. [Saeu as0u 10, 29805 5591 ed 50 Buo 1) fowow ssa1 s | anuesio
ow po aut 59199 10u 5300
ooN EEr onsersp onie: "opow e 3 opow

samod oza| eiaeveis
onw 00) Buimelp 1S S| eloweD
samod (ane |13s) Jomod apl
onBS pue g0g au) 0} PelIeUL0D Ing Yo
‘apow eyes u Buieq 18} uonezijenIu elowed na
18148 UO YoRG LN} 10U (I BIBWED
umopInys esewes pajoadxaun sig
§0g 0} pejiwsues g
6uiaq ajiym pajdnuoo eleq
peBbo Josues oBew pasodxiapunpueq €18
2 0} sasua| sasned BuisseBING yoeal jou $80p BIT
1eM}J0S Jo UonEOYURA puE Buss) o |1 v z sdeys Buissenoid Joyjo sadwey i euBis Buiwy Peal 10U SIEMOS
ewouius g I3 z Apeinooe Ul op 0} Bjep YBNOUS 1ON sdeys Buissenosd Joyjo Jedwiey | [euBis Buiw peas Jou se0p ud O SeNjeA Bui BUISSI PeIFalloD 10U Bl ejepelow BuiwiL 28 “4ndyBnoay) ares poiduwesans ‘n
‘aoeds a4} BAAINS 0) paubisap e12p UBIL) Binsodx@ Mo| ‘puooas Jad ajes awel
1 510000 BY) 12y} BINS e UBIH 108U8S UO [0V UBIH ‘9Zlfenul 0) SpeeN
SPU0DBS X 0} SZIENUI O] SPBBN 'NO EJBWED
aqnD peuajsuex aGno elep fenied Ao fir:)
sBew| papadxaun
1o snouou3
aqnD abew) 18nq Ul yors aBew o8
ou Jo pajoadxaun
“snouow3
sjesawey eseaiu]
UIED MHIMS Jomo]
v z z Aenb Jood 4o s1 aqno aBew auy Ul elep BuL sejnpou Buisseooid| 10suss au) SayoEEI 1B UONW 001 PASOdXaIaN0 ‘3GnD
184Ny 0} 1uas aq uea Aifenb 100d Jo ejep aGew| popadxeun
10 snouow3
ueb exempiey oseaioul
uied asemyos aseasou |z v € Auenb Jood Jo s1 8qno aBew oy sojnpow Buisseoosd | Josues ay) saoees 1Bl o 001 pesodxaiapun ‘8qnd aBew| pasodxaianojiapun 68 s14) 0) paisnipe aq o) peau sBunles eJawed
Ja4ny 0} 1uas aq uea Ayienb 10od Jo ejep sBew| papadxaun (indyBnoiuy jes eep mol) ainsodxe By
1o snouow3 ‘pu02as ad 3je1 ALl MO| J0SUBS UO [OY ([2wS
'SPU0D8S X 10} BZIIENIUI 0) SPASN NO BIOWED
pabbojo aqn)
59 0} sasu| sasned BuisseBING eBew| pejoadxeun
10 snouow3
1eM}j0s Jo UolEOYUEA puE Buiss) o |1 z z snouoLa | 8qno aBew! aU) Ui ejep BYL sajnpou Bursseo0sd uonouNyie 21eMy0S sqn
J8uuny 0} 1uas aq uea Ayenb 10od Jo ejep abew| papadxaun
Jo snouou3
ooy aiempiey oS uonesqe Wby zL. € v snouowa | eqno aBew au) ui ejep Byl sojnpou Buisseosd uonepe:Bep [291d0 aqn)
U wiopad JUBLIOWIAUG Paloadka Jauuny 0} s aq uea Ayienb 100d Jo ejep aBew| papadxaun
10} paubisep si MH 1eu) ains aYeN 1o snouou3
ooy alempiey saS Buysa) Yuswownua paoadia| z| € v snouowa) aqno aBewwl aUy il ejep syl sajnpou Buissaooid uopepeBap Josuas Buibew) aqn) Bew ur asioN 88
10} paubisep si MH 1y} ains oXelN Jayun; o} 1ues aq ueo Aienb Jood Jo elep abew| popadxeun
1o snouou3
00wy asempiey 05 uone:queo by |9 € z uoneunsep Auenb Jood Jo aq waisks Jo Yus [edlueyoRw aqn)
U wiopad ‘JUBLIOWIAUS pajoadka BuOIM 0} JuBS 8 UED SIBSSY SnOWIOLINY [UONexSIBa) aBew pue BuiuayaI0sb aBew| papadxaun
10} paubisep S| MH 1y} ains aYe 10 snouou3
uonesqed WBI-Ul wiopad g v z uopeunsap Auenb so0d jo aq sweshsqns aqn) (12syo 8
Buo.m 0} 1uas 9q U SjSSY SNOWOUINY (I UoRExSIBa) abew! pue BurouaaI0e6 uoneBineu pejesqien AIBuiopy eBew| paadxeun 5| Bunuiod) ease Buoim jo abew)
10 snouow3
V0T siempiey 995 uonesqueo 1By |8 I3 z Ailenb J0od Jo 51 8GN0 aBew B Ul elep UL sopnpow Buisseooid | sjusuodwoo [eando Jo JuswBAOL aqn SN0} Jo €| JusuELIY 98 SI410) uonNosay ebew] YBIH
U wioped ‘JusLIOWIAUS pajoadxe Jauuny 0} 1uas aq uea Ayfenb 100d Jo ejep |eolueyoaw 1o uonepeiBep abew| paadxaun pajsnipe aq o} paau sBumas eiawed (INdybnoiy
10} paubisep si MH 1eu) 2ins oYel 10 snouou3 11 BjEp WNIPaLL) BINS0dXe WNIPaW PU0dsS
18d B]EJ BUIBL| WNIPBL ‘I0SUSS UO |0V 361e|
'SPU0DBS X 10 BZIIENUI O] SPARN NO oD
VO3NS alempiey 8o uonesqyed 1461y o € z Aiienb Jood Jo s qno eBew Uy Ul elep ayL sejnpou Buisseooid| sjueuodwion [eando Jo JusweAow aqn) suoissas BulSewysyqio sa
U wioped ‘JuBLIOWIAUB pejoadxe 184Ny 0} 1uas aq uea Aiienb 100d Jo ejep [ed1UBL0BW O UoepeiBep eBew| pepadxeun usemjeq snooj BuiBueyd
10} paUBISap S| MH 12U} 21N el 10 snouow3
VOIW siempiey 995 onesqies 1By o € z SN0UOLIa S| 9qN0 9BEWI AU UI BIEP UL SAINPOW BulSSa00:d Jayun 0 1uBS 8| SUBUOWIOD [e97dO JO JuBWEROW aqn abew ur spejY va
U wioped ‘JUBLIOWIAUS pajoadxe ued Ayjenb J0od Jo elep o ejep snous3 |eolueyoaW o uonepeiBep abew| pajadxaun
10} paubisep S| MH 1y} ains aYeIN 10 snouou3
VO3NS Blempiey 83 20 1B |6 € € snouowe s| 8qno 8wl ay) Ui ejep ayL sejnpouw Buisseooid| sjueuodwion eando Jo JUBWEAO I0SUSS JO UONEIGIED. spueq esoads 19540 e8 s 0) paisnipe)y aweld UBIH 1
-l wioad JuawoIAUB PajoRdXe 194N} 0} 1UBS 3 UED BJEP SNOULT e91UBL9BW O UONIEPEIBRP PUE SISARUE YBNIOY L 5q 0} pasu sBumes esewe “(ndybnoiy) sjes
10} paubiSap S| MH 12U} 21nS el e1ep UBIL) ainsodxa mo] ‘pucass Jad ajes awel
UBIH *10SUBS UO |OY WNIpaU "oZI[enIul 0} SPaN
SpUDaS X o} SZI[eIUl 0} SpaaN 'O elalied
VOIW aiempiey 005 IawouAue pajoade| g z I3 sesodind oyjuers seInpow Buisseoosd uonounyie aieMpiEH 2GnD 10SUBS U0 AW POMBNSAESHO za| eanoeiep s11 0) paisnipe :suondo ejdwex3
10} pauBISap S| MH 12U} 21nS el 10} InjeSN 84 10U [8GN SBeW) BUB UL 184NNy O} JUBS 2q UED BlEP SNOULIT abew) pajoadxeun Jajsuell o 0} pasu sBumas exawed (indynoi sjes
1o snouou3 e1ep uBiL) ainsodxe mo| ‘pucoas od ajes ouel
YBIH 'JOSUSS UO [OV WNIpaW ‘BZI[enu| 0} SpaaN
SPUCRS X o0} ZI[EIIUI 0} SPAaN 'NO elawied
VOIN siempiey 295 Iuswounua paoedxa|z| v B 5qno sBew ainideo o} ageun seinpou Buisseoosd uonoUnyEN sieMpIEH
1o} peubisap s| MH 12U} &ins ayely 184Ny 0} 1UaS 8 UED BJEp SNoULT
papadxs |g v z aqno aBew ainiden o} aigeun sajnpow Buissaooid UolounyeN BIeMy0S 2qno abew oN 18| eanoeep aje1 Buydues [enoads aqnoelep piooay
4 Jeu) suoneIByuod sejewesed JayuNy 0} 1UBS 8q UED BIEP SNOWLT Bew] pajoadxeun picooy ‘21ns0dxe ‘@jes BWIE) '|OY JOSUBS 195 B UM
aiqissod |[2 Joj a1emyos 1821 10 snouow3 5Qnoe|ep & i0oa) ‘PaZIIRNIUI BISLIED ‘U0 BIBWED
SejoN ‘seinsesw BuZiwuIw ainjies -zmz_ (G 1) atgww_ (g-1) @2uainao0 UORIUN) UIBW UO 198)j@ aInfieS ‘S}HUN JeYlo Lo 1988 ainjies. 9sneo aunjied. uondBIap Bunjie opoy ainjie4 Juepow| uojouny ‘apow [euonesado Jo uondisaq ‘apow [euonesedo
ainjiey

1aBew) :ISH :peoifed(g)

‘sainpaooud
Ajquasse Bumoo) pue Bunesi

sainpsooid
Kiquasse Buimoj|o pue bunesiy

'sainpaooud
Ajquasse Bumoyjo) pue Bunesi

sainpaooud
Kiquasse Buimoj|o pue Bunesiy

smalral ubisap Buiwiopad
JENERETERY

opeJb aoeds e Buioinos
uonoajoud abejjorsano yum
U0 Y)Im JaAeosuel) Buoe|das

sabew 6uuojs usym D3 asn

(owwe ‘Buuayng od)
abelojs Alowsw dnyoeq areH

pabewep si pieo as i ejep

obew pjoy o} pasodinda 8q piNoo YoIum
OWW® Poppaqus ue sey pazooid sy |
“Aiowaw a|ye|on woly

abew Buies|o a10j9q Alowaw

3|jejoA-uou woyy abewn Ajuap

®

oL
ok

=)

oL

uonisinboe abew! gOY ON Elep goy 196 L,ued Bunuaiajeioab
pue uonepiien sOav

nboe abew! |SH ON Bjep |SH 106 J,ued syun sy

isinboe abew! gO¥/ISH ON NdO woyy asuodsal

1o ejep Aue 106 },ueo syun Jey10

sabew

JuaLnd ajdnnw Jo sso
Aiowsw

¥aaq ur ebew pjoy Aluo

ueo ‘ejep Aue a10}s 0} 8|qeun
abew auo Jo sso7

uonisinboe abew! gOY ON elep goy 196 L,ued Bunuaiajeioab
pue uonepiien sOav

uonisinboe abew |SH ON

iInboe abewi oN 9jeJsedo J,ued N4O pue sesswe)

pabewep
|ESlUBYOBW SBIqED gSMN
pabewep
[E0I[E0IUEYOBW JOJOBUUOD gSN

pabewep
Ajleoiueyoaw sa|qe jousey)3

pabewep Ajjeoijesiueyoaw
10j08UU0 JousBY)F

ubisap ynoJd Ayney

sAeJ o1ws0d
wouy pabewep Joneosuel NYO

abejjoniano
wouy pabewep JonRoSURL NYO

paydn.0o s| a10}s ejep

E}Ep 210}S Jou S30p

Jajsuel) Buunp paydnuioo ejep

pabeuwiep aie Sd3 woy sajgen
siiey JojenBai AG

pafewep a1e §43 woy sajqed
pabewep si Bunnos S43

pabewep aie S43 woy sajqed
sliey Jojenbas AG

eloweo
g9y woly
asuodsal oN

eloweo
ISH woy
asuodsal oN

NdO woy
asuodsal oN

eoweo
g9y wouy
‘asuodsal oN

ejoweo

ISH woy
‘asuodsal oN

dno woly
asuodsal oN

SPUBWIWOO gOY
Jwsuey) Jo ‘ejepejoul/elep
GOy 918091 Jouue)

Ejepejow/elep
ISH 8A18081 Jouue)

Blep 4SO
JIWSU.J} IO 9AI8031 JOUUBD

pieo-gs
uo sabew 810)s 0} ajqeun

2

) uoissisues Jamod g9y

B} uoissiwsue) Jamod [SH

s|lej uoissiwsuel) Jamod NdO

80

92

S0

€0

20

)

eljswed
=Y

o U 9}
ed/unwwod
o} a|qe

1 NdO 8uL

EIETTEY
ISH

Ul yim 8}
BOIUNWWIOD
0} ajqe
SINdO dyL

gog ein
SNG-NVO
oy} Joro 8}
BOIUNWWOD
o} 9)qe
s1NdO 8L

gog
uo pieo as
01 dO woyy
pauajsuel}

sl
ejep abew|

swajshs

808
0y Jamod
sepinId

IoMeysq [eUILION
|euioN

aubeyy pJeog InQ
Heaig:ISH
:pojhed

(2)

elaweo Bupelsey

aunpeoosd Bunse)
¥00US P UoReIgiA Jadosg

esowes Buelssy
siojowesed elowed Bulesey

sirowesed eisweo Bumesey

sijowesed eloweo Bumesey

sousnbes uoneziiepul veisey
1e6% o pue Jjo esawed
Buiuin) 1o puBWWLIOD BulpussaY

‘souanbes yeisey

“Buum pareies
e10We0 GBI O 159} UOReIqA
PUE 00US 1UBBULIS :UONUBARId
aInpow o} samod Buigesip

‘Sdi3 UoNEBIIN ‘BuLIm pajele:
‘eJWed GBI O SIS8) UONEIIA
PuE 00uS JuUaBULIS :UOJUAAGIY

i

9

9

uoriouny few uo 1098 ainre} ON

uopouny ufew uo 3B BN} ON
uofjouny ufew uo 109e inie} ON
uoriouny ufew uo 1038 ainjre} ON
uorouny ufew uo 10ays iniey ON
uofjouny ufew uo 109ye inle} ON

uorouny few uo 1038 ainjie} ON

uoriouny ufew uo 1038 ainjre} ON
uorouny few uo 103ys iney ON

uofouNy few U 198o Binlie} ON

uofoun; ufew uo joaye BiNe} ON

uorouny few uo 1038 ainjre} ON

uopesado [ewsou Joj o si ABsous
‘210W 0u 1ey) s AiaNEq UIEIP UEd
60| 00} 10} UBIY 00} 5 85N Jomod

Buyssiw 1o pakelop sbew GOy

885 0} suewny
1o} 1BpIey S| BPMIAE O UOREOYUBA
85 0} suewny
10} JBpIEY S1 BPNIAE O UONEOYUBA
05 0} suewny

10} JapIEY S| BpMIYE O UONEIYUBA

Bussiu 10 pakejop aBews goy
585 0] suewny
4o} Jopiey S| OPNINE JO UONEIYLOA
505 0} suewny
10} Jopiey S| BPNINE J0 UOREOYLIA

805 0 suewny
Prige Jo uoneayaA |

10} sapsey s
Buissiw 1o pakejep sbew goy

Buissiw o pafelop ebew gO¥

Buissiuw 10 pafejop obew GOy

505 0} suewny
Jo} Jepiey S| 3pNIRE 40 UOREOYLIA

suopouny jeuoyiesado jauio
pue peojied uiew oy Buuepuly
Ailenueiod pue *Aisieq Buiesp
pouISap Uey) a5 Jomod asour

Buysa) Bunp pasajunooua
10113 UOLILIOD NG UMOUYUN
QuBLILOIAUG Binssaid

Mo 'suoneuen aimesodwa) woy
sbewep Juaueuwsad 10 youne|
Bupnp waisks [eando o) ebeweq
we1sfs jeando Jo aBueyo Busnes
suonewen ainjeseduwis) A1geqoid

quonerpe: aoeds

10sdn 1o dnyoje]
sBupes sresewey Jo Y0P

fexid ‘ainsodxe buiBueyo 1esdn
SBuROS BEIoWEY J0 Y000

jexid ‘ainsodxa BuiBueyo 19sdn
sBumes ued esweo Bubueyd
siesdn ‘ainsodx Buunp Josuss
Bumiy uoneipes 30eds YN 0oL

&Buum 0500] ‘osdn

1sdn Buisned
sepied Jo kel JeljeIs/oILS0D)

o
oys Buisnes ainje; [eoueyoeL

10139 U s0des B9INIES EBWED BOY

saBew payuyumop Jo uoedsu ensin
‘sobew] paYUIUMOP JO UojadsUl [ensIA
Bew) paxulumop Jo uofiadsul nsiA
Buije} S1 PUBLIWOD PaINJRXS 1XaU UL
Bew) paxuIumOop Jo uofiedsu nsin

Bew) paxulumop Jo uofadsul [EnsiA

Bew) paxuIuMOP Jo uofiadsul [EnsiA
Buije} s1 PaINOXS PUELILIOD 1XaU YL
BUIle} S1 PaINORXD PUBLILICD IXU BUL

uonezjenu sjgoueo pue
10119 Ue S}i0de) B0AIBS EIBWIED GO

P8}08UUOD JOU S| BJBWED Jey}
10118 e S10d) BOINISS EIRWED GOY

‘s8N EJoLE0 94} Jomod Yot
MOy BInSEaW UED S ‘Bull JaMod
A UMO SJ 0} Pjosulo0 S1 B1oweD j|

Jou3 sejsuelL

20} J0 0| 1UBUEWIBY
suoisses BuiBewysiaio
UssMaq SN0y BUIBUELD

abew

swey
umopinys esawes peoadaun
oBew) pasodxeon0

‘eBew pesodxaispun

aBew ul asioN

S} uoRNoEXa PUBILIOD

fiperadxeun
‘opow syl BuiBuBYD BJoWED

sitey souanbes uonezijen;

108dx8 suopesado
UByM o IN) Jou S30P BINPOYY

10U pJnoys }1 Usym Jomod sasn BINPO

el

24

[1%]

o

Spuewwod
o1 puodsal o Apeay
J81ndw00 M BugEDINWILID
pue sobew Bunte)

104 Apeas elowieo BusE

o peuin) 2 0) Apesi Buieg

Jomod ou Buisn

pieo @S 0) obew Buines ‘g esowed
woy abew) Buipeay *y BuIsodx3 °g JBBL MS 10 MH 404 Buniem
Z lowatu Bunesoy *| :abew ue Buunided ANUaLIno | eioWed

seinjoid Bupe.

‘PUBWWI0D 2imded o) Burem ‘sainjoid
e} pue Jaypnj painBjuoo aq o) Apeas pue pez| ejowe)
Spucoss 5. 1noge

see al 6yuod woy sislewesed saydde pue esswied oy suedo
80105 GOV PUE BJBLIED O} PaIIBULOD SI Jomod BJayM S5800sd

B10UB OU S3SN PUE JOMOA IO POJIBUUCOSIP S| EIOLIED 40

swusq 89y :peojfed (1)

oIpes 4HN dnXoeq o} Yoyms

4HN O} 4

s
JuswaBpajmousoe
olpouad puag

pJeoquo
Buruueld uoissiw
JInejop aneH
bunsa]

©® o o o

o o o o

0
0
0
0
6

Jwsues) jouuey

oAB19a1 Jouue)

ayees
wouy Anpwa|sy
aAeY J0u S20Q

olpes pueq-s
|04Ju00 Jouue)

elep
Buidesyasnoy
pue sabew

sjuijumop

eep
Buidesyasnoy
pue ‘sabew;
sjujumop

jou |jim 3|
eep
Buidesyesnoy
pue

sabew ydnuod
Juljumoq
eep
Buidesyasnoy
pue ‘sabeuw|

abeyoed ise|
ey} 106 am jeyy
aIns aq Juom
uone)s punols

Buiuued
uoissiw

oy} 8s0
a|npayos
Buiuueld uossiw
SOAI081 JUOp
a|npayos
Buiuueld uossiw
SeAIval JuoQ

paydnuiod
alemyos ‘Jomod
aAeY Jou $30Q

paydnuiod
asemyos ‘Jomod
aABY Jou $80Q

JOU 8.e SI0SUBS

IBM)JOS USZO)

LTINS
Buons ‘euusjue
Jo Bunuiod peg

syse}
Jayjo yum Asnq
S| J9]|01U0D
peojfed

19podua
paydniio)

BUUSJUE By}
Jo Bunuiod peg

mopuim
uonediunwwod
3y} apIsINO

pajeinjes
sI snqejeq

|eubis AsioN

‘euUsjUE JO
Bunuiod Buoip
eubis AsioN

X1 9zi[enul jou ssoq

X 9zIleniul jou seoq

Anaws|e) Buoim spusg

300ga1 Jou s80Q

sjoxoed Buissiw ay) Buiwsues) swnsal Jued
ayeyspuey oN

0} payse Bulag Jnoyim ejep pio spuasay

19]|0JU0d
peojfed woyy ejep [e}bip ansi0al Jusaop

ejep jdnuod spueg

punoub o) a)jjajes Wwol elep puss Jou sa0q

JuawaBpajmouo. Ue puss Jou sa0q

VIN
ejep Aue puss jou s80qQ

E1ep 1dn1I0o SaAIR08Y

|le Je ejep aAa10al Jou se0Qq

[433]

(1%3)

[39]

69

€19

89
19

99

SO

9

€9

[43)

XY ozifenu|

sj00gey

10JJU0D UOISSILUSUEI) JO30Bd

punoub yim axeyspueq

Ja)jo5u00 peojhed
woyy ejep [e}bip an1809Y

ejep Bojeue
0} [eNBIp wouy eyep YaAuo)

punoib o} ayij|e)es
woyy [eubis Bojeue jwsuel |

panval ale
sabesjoed jey) abpajmousioy

(31080 uondnuiod ejeq)
J9)j013u00 peojhed o}
olpes wouj ejep [eybip puss

ejep [eybip o}
Bojeue wouy [eubis paauo)

punoib
woyy [eubis Bojeue aal@09Y

XL PUE XY 9ZIlenu| 9pol ajes
IN0-%08Y0 wajsAsqgns
onsouBelp pue joogay

‘punolb x| pueg-s
0} J3j|0u02 peojked
wouy ejep sjwisuel |

NO SAVMTY "punoib X pueq-s
woyy ejep Buinieoay

olpey pueq-g wiwo) :peojked(o)

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE R

Anowseje) Buoum spuss
100G91 10u 5900

0} pose Buiaq INOLIM EIEP PIO SPUBSEY
ejep [ened puss

elep 1dnu0o spuss

®jep puas jou seoq

Ejep 1dnLI0d senEoeY
1e ejep arajo81 Jou $80Q

XL PUE X SZIEIU| IN0-403> WAISASNS ‘Sansoubelp pue 100qey opo ajes
X e owes apl
“pUN0I 0} 18nduwod 1yBl W0l eIEp SHWSURIL XL 4HN

NO SAVMTY Punoi woy eiep bu e 30

o1pes 3HN wwod(H)

o 1ese1 10u se0q Tesay spou Bugquimiep o) y0q 5306 ‘sienbiciaUBEW/SIERLM spow ajes
UOIERJ/5105SS (/e $1000@1 0 SN “UOfIIMIES 'SWSISASANS U SalewouY
o B z y6nous sanonsenbue §21
S1EIn0E 10 SiBaUM UONERY Jewi 1e sa¥e X pue 7 doa 10u 5300
v v ' 0L0-0°SI ‘700-0°SW 'Z00-0°S y6nous i pauoo e MaIS I0US00 421 nais yoensson
S1eino0e 10u sjgaUM UODERY Jemuy 6ue s/bop
o B z yBnous Sanoojonsenbue 921
alEIn0E 10 SipaUM UONERY Jewiu 1e saxe x pu A doay 1ou Sa0q
v v ' 0L0-0°SI 'P00-0-SW 'Z00-0-S y6noue sleipao e mals0U o006 nais i ars yoe ul
S1EIn0E 10U SipaUM UONERY ©0)10a¥ 12 SO¥E-A PUE X Ul SaNI00jaA JeINBuy “AI00joA JEINBUE S/63D |> BABILO 0} SjoauM.
P uonoeas oy salemoe 0/
o B z 0L0-0°SIV 'P00-0°SW 'Z00-0-S Buuogounjew gy ‘unoue o102 1s0wle Jou salbue MeA pue s ¥zl
aleIno0E 10U SiPBUM UONERY
v v ' 0L0-0-SI 'H00-0-SIN 'Z00-0-SIW Buogaunyew qy ‘uBnovs sbuebuom g2l 2 50UUE) Sa/BuE MEA pUE 01 BuIdoaY BllM o2 mols asedoig
aleIno0E 10U SjPaUM UONERY £0) affue toyd ue o) uiod s
v v ' 200050 Buoounew gy Uopaup 1B U uiod o se0q 22l Bunuiog 1U20) 296LINS §UE3 SPIENO] UMOP UBIEAS EIOIE AU SO pen
“BuoUew SipeLM Uoiea)
rounjew sianbiojouBeny
o € z Buuogounew gy Uooeup BU uod Jousa0a 121 Bupuog (soa160p 0g a0y Bunuod ung
“Buopounyew sieeLm ozl ey 10199 9981 A 34 Ui 1
. s98n O/5 o1 * K 1 uns sy “osd
B € z LLOOSIN P00-0SW ‘20005 wopeup B U o 10U S00 021 Bujuog (uooyy oy spiemon iod o) Joioen payddns Jasn)
uonisod payddns sosn e i pue
v z z Buuopoun e sipeUM UoTESY PoraIuoe Jou oprimE poised 61 No @ " o1 Buofe spxe-z /s o SuBlY. ‘spow Ayoofon
B € ' uopunyew sienbiojeuben Hom uop sienbuoleuBeEN 8Ll
< € v Uoounew sipaum uoEaY dn uids jou so0p oouM Uogoeey 41
o B z (av) siosues aemes o ou sove S1a0UM UOYOE) Wy WnuBWo apow alp|
Wwoy SyuewaInseaw Buom dunp o1 wo “suopeqinyied R
“Suoounyew sienbiojeuben o ase (| pue oo IV o3 90 12 NO
s s v dmes u oxels ployoeubews gl
Ul Uooep Ui arey sionbioiauBely
B v z Joue BujeuBis sionbiojoubew 1l
o1 steubts sojenioe Buosp
o e
v < z BuoroUNjew sianbiojouBen wnuowow ezl Buuids woy sileles o sdois SOQY play OoUBew 5,que3 Sozian Juewkodap oye opou eiawMaq
Uogoeas duinp jou 0p sianbilEUBEN uwey E “op o
o
o W o 1w S 10} 40 51 SOV wo sum spow1ai0
leonewor U b 10} 440 ‘Weukord w0

soav()

o
o
o
o
o
o
o
o
o
o
o
o
o
o

Lorsn
LTS P00 20005

LIO0SH 000-SH

av
pue siosuas uns uaaaq seuBle
01 5105198 Uns bl eL3
avpue

‘SuolaUDEw UoNOq SEUDS
Ut ol SseieuiauBeu o el
av pue i

uoanyaq siuis u 1o (I
Jun ouwBITSEOw 10U U Mets

prie seuss i sies o) opnuye seuns3

vonsod seunsocisies | wonsod seuns3

sopon uns sreunss rsieser| sopon uns seuwns3

Pyonubew s oI Stes 21 Pl auBews s

Ao sentue ounsocrsies | Aojon semdue oeuwns3

(o1 spo st S0v

Swawsinseaw
pue sisfjeue Jamod Bunuiopad|

synoup Buuisep|
ey s301eid 159 BUMO04

o060

i wershsans:
2q 1 warsAsqns paieyy| i vonduouoo Jamod
ead 4By poroadxaun
siej weishsans seowies waishsans,
Buoum oul U swoishs d 0, ojge
q 100 I waysAsans peroayy]
i) ejoL [CETIY

Anowsio) Jouueuo
'Sd3 40 BULIO}UO Jamod 6L UO PIOUSBIL B} UeL JUBLIND BJ0L SOLLINSUOO WaIsASNS Y/

‘9B1eosip-0-Uidap Uy siow peBIEYISIp Sie SaLoNEE
(¢powonuoa 1ou AB1oua se(os se wes) pabiew Jou aie souoneE
112 souanieq auios

PaloAUCD 10u 51 AB12US JEI0S

JoMOd 196 10U 0p SwEISASANS

195 8pous eanu Ut 1amod 186 o} pasoddns Jou ase:
‘aB1esIp-Jo-Uidep e esow pabiely

I1e} sauaneq owos
PauaAUD Jou 51 ABious Jelos
Jamod 196 1ou op suiisksang

ajores Po100gal 10U S| ST
o, asuodsal on

1one] spows

“saueneq
seueneq Ul omod aioiS.
‘seueneq abieyd
10m0d 0} ABsoua 1e[0S HOAUOD

d enauisia

SuweIsASqns Jo UORAINSUCD 1BLID JOYUON

saueNEa Jo sbreyosIp Y
‘sousneq abuey)

seuspeq Ul amod aiols.
1000 01 ABsu3 1810 BOAUOD

Syl UodLNSUCD uaLD
LA 5 0} PUNOJ PUE PRIOHUOW 318 SIRUUELD Jamod [y

sauBIEa J0 363 n
swiasfsqns [eoquo-uou o} Jemod jno.
seuepeq Ul omod aiols.

‘seusneq ebieyD

1oM0d) ABJUB JEI0S BAUOD
swaysfsqns [eopuo

seueNeq Jo ebieyosip J
SouaNeq Ul Jomod 2101
Sd3 10000y

10M0d 0) ABJUS JEI0S UBAUOD.

“uB 01 5 uond

umeIp 5| amod Uonu 00} Uaym suaddey 'Sd3 510009y

PO leanud

PON ojes

aube

1amod(H)

dmes |eas

ay) sem 1 i se
punoib uo ws

ueyoswsjepdn
1801

euuBUE
18B61q ‘ayie1eS
ayy Bupioesy
Seuusjue om|

elep
anes o) seoe|d
Juslayp skempe
pue ‘ejep

anes o) seoe|d
JussoyIp aneH

uoneys punosb
Jayjoue esn

g

)

9l

<

padnuico
59 pINCo aJeMy0s p1eOqUO

Buiyiou seopjop

0} JeyMm Mouy Jou S30p B}ojes
[ejes sy}
£q poo}SIapUN JOU B SPUBWILIOD
10 ‘SPUBWIWIOD PUSS JOU UED
ayljeres ay)

0} SpuewWoD Buipuas saninowIa
©ejep 931081 Jou sa0p ‘[eubls ON

penisues) S1 [euBls oN

apowsjes 0} 0B pjnod ajjeres

Kiowsu (0]
au) soup 0 aney (M Jojesedo
8y} ‘azAjeue o} Jnouyp abew|

(penes sy Inq)ebew 196 jou seop

abew joenuod
10U SB0P ‘SNJEIS Y)ESY MOUY
Jou saou ‘sebexoed ejep Buiso]

a|jees Jo Snejs yjeay mouy
Jou saop ‘abew Bunoenuod JoN

10 SMjE)S y)EaY Mous| Jou seoq
Ejep pajdnuioo aAa)

SWWOO JO BJep Ou BABY S\

Swwoo
ou ‘aY[3}es Ay} J0 %oel)} 350

awes

Swwoo
ou ‘aY[aIes au} J0 %oel} 350

ajepdn
Bulpuss usym ajejjeles
woyy uswabpajmousoe ou

syndul Buoipy

Auadoid
3Jom jou saop Buipoous

BIEMJOS UBZO0I4

oyiaIes Jayjoue
wouy ueyy [eubis Joxeam
‘euusjue jo Buyuiod peg

Apadoud Buryiom jou
J1ep8AUOD [EYBIP 0) BojeuEe
Apedosd

pUBWIWOO pee Juseod

Q1eM}OS USZO1Y

U008 JoUIBJUI ON
aseq ejep auljuo ssaooe
1uE “paydnuio si Alowew
ayp 10 “IIny s1 Asowspy

|eubis
Asiou 1o 1apooap ul bng

sousJepBlUl
1010] B 10 Ajo81100

Bunuiod jou euuajuy
uonoeup Buoim syuoid
euusjue ay} Jo Asjou 00}
|eubis 1o ‘yeam 0o} [eubig
aNliess 18y

Ue woyy uey ayjjsjes ino
woyy [eubis Jayeam anal

10 Aem Buoim syuiod ayjees

5HOM Jou S80p JaualU|
21EMYOS USZ0I4

wsjueyoaw sjepdn
21BM}JOS 9INSUB JOU UBD

ue|d uoissi Bjeald Jou se0q

EJEp 9POJUS Jou Se0q

s0BpBIUI JOSN
yum Jojesado apiroid Jou saoq

ayeres oel} Jou sa0q

Jeuis Bojeue
0} ejep [ENBIP HEAUOD Jou SB0Q

[euBis paydn.ioo ywsuel

ool Josn
yim ojesado spinoid jou se0p

Jojesado 0} elep pues jJou seop
ejep panaloal aAES Jou 800

|eubis [eyBip apooap jou seoq

Asiou san@oay

1ES WOy
|euBis Bojeue asi0a. Jou s80Q

ay|jeres Buoim soeiL

joeal jou seoq

S

3

€L

43

L

oL

91

1

WISIUBYOBW S1BMYOS BINSUT

ueyd uoissiw sjeai
ejep spoy

00B410)U] JOSN YW J0E1d0 SBPIADIY

ayeres syoei]

|eubis Bojeue 0} E1ep EXBIP SHEAUOD

ayljeles o} |eubis Bojeue sjwsuel|

0B4I61U) JBSN Y J0jE10d0 SBPIADIY

Jojesado 0} ejep spues
©lep MBJ POAIDSI BARS

[euBis [e)bip apooaq

ejep [e)bip o} ayiejes wouy [eubis Bojeue speauoc)

SHleIes woy [eubis Bojeue senEoey

aYl[ores oelL

Jojesedo
uoijeys punosb Wwouy spuewwod aAIgoal o) Apeay

(&) o1 0} paau Jou
se0p ‘sejepdn 81emyos ‘ejep uejd uojssiw Sjwsuel |

Jesoaoeds
2y} Ajlenoe soel) ‘Blep |SH ‘Allewale) SaAR0aY

XL

Xy

alpi/Aqpuers

wiaYpuOLL ANLN uoRels punoio(1)

S oo oo

1140 8U0 Jo} 3iom Ajuo s80Q IN Aep au} Joj suojesado saNpeys Jeinpayds.

2101 Juauoduiod [WaISASQNS 19410 AUR Ul 3} JoU S30P YOIM SIPOW Ban|ie} 99eld(N)

Appendix

Device Tree Source for the OPU

The following device tree source was decompiled from the final device tree blob generated
with Petalinux SDK.

/dts-vl/;
/A
#address—cells = <0x1>;
#size—-cells = <0x1>;
compatible = "avnet,picozed", "xlnx,zyng-7000";
model = "Avnet picoZed";
cpus {
#address—-cells = <0x1>;
#size—-cells = <0x0>;
cpul0 {
compatible = "arm,cortex—-ad";
device_type = "cpu";
reg = <0x0>;
clocks = <0x1 0x3>;

clock-latency = <0x3e8>;
cpul-supply = <0x2>;
operating-points = <0x7al20 0x£f4240
— 0x3d090 0xf4240>;

}i

cpu@l {
compatible = "arm,cortex—-ad";
device_type = "cpu";
reg = <0x1>;

119

}i

clocks = <0x1 0x3>;
}i

frga—-full {

}i

compatible = "fpga-region";
fpga-mgr = <0x3>;
#address—-cells = <0x1>;
#size-cells = <0x1>;
ranges;

pmu@f8891000 {

}i

compatible = "arm, cortex-a9-pmu";

interrupts = <0x0 0x5 0x4 0x0 0Ox6 0x4>;

interrupt-parent = <0x4>;
reg = <0xf8891000 0x1000 0x£f8893000
— 0x1000>;

fixedregulator {

}i

amba {

compatible = "regulator-fixed";
regulator—-name = "VCCPINT";
regulator-min-microvolt = <0xf4240>;
regulator-max—-microvolt = <0xf4240>;
regulator—-boot-on;
regulator—-always-on;

phandle = <0x2>;

u-boot,dm-pre-reloc;
compatible = "simple-bus";
#address—cells = <0x1>;
#size-cells = <0x1>;
interrupt-parent = <0x4>;
ranges;

adc@f8007100 {
compatible =
— "xlnx,zyng-xadc-1.00.a";
reg = <0xf8007100 0x20>;
interrupts = <0x0 0x7 0x4>;
interrupt-parent = <0x4>;
clocks = <0x1 0Oxc>;

120

}i

can@e0008000 {

compatible = "xlnx,zyng-can-1.0";
status = "okay";
clocks = <0x1 0x13 0x1 0x24>;
clock—-names = "can_clk", "pclk";
reg = <0xe0008000 0x1000>;
interrupts = <0x0 Oxlc 0x4>;
interrupt-parent = <0x4>;
tx-fifo-depth = <0x40>;
rx—fifo-depth = <0x40>;

i

can@e0009000 {
compatible = "xlnx,zyng-can-1.0";
status = "disabled";
clocks = <0x1 0x14 0x1 0x25>;
clock—names = "can_clk", "pclk";

reg = <0xe0009000 0x1000>;
interrupts = <0x0 0x33 0x4>;
interrupt-parent = <0x4>;
tx-fifo-depth = <0x40>;
rx—fifo-depth = <0x40>;

Vi

gpio@e000a000 {

compatible = "xlnx,zyng-gpio-1.0";
#gpio-cells = <0x2>;
clocks = <0x1 0x2a>;

gpio-controller;
interrupt-controller;

#interrupt—-cells = <0x2>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x14 0x4>;

reg = <0xe000a000 0x1000>;
emio—gpio-width = <0x40>;
gpio—mask-high = <0x0>;
gpio-mask-low = <0x5600>;
phandle = <0x8>;

i

12c@e0004000 {
compatible = "cdns,i2c-rlpl0";
status = "disabled";

121

}i

clocks = <0x1 0x26>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x19 0x4>;
reg = <0xe0004000 0x1000>;
#address—cells = <0x1>;
#size—-cells = <0x0>;

12c@e0005000 {

}i

compatible = "cdns,i2c-rlpl0";
status = "disabled";

clocks = <0x1 0x27>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x30 0x4>;

reg = <0xe0005000 0x1000>;
#address—cells = <0x1>;
#size-cells = <0x0>;

interrupt-controller@f8£01000 {
compatible = "arm,cortex—-a9-gic";

}i

#interrupt—-cells = <0x3>;
interrupt-controller;

reg

—

<0xf8£f01000 0x1000 Ox£f8£00100

0x100>;
num_cpus = <0x2>;

num_interrupts = <0x60>;
phandle = <0x4>;

cache-controller@f8£02000 {
compatible = "arm,pl310-cache";

}i

reg

<0xf8£f02000 0x1000>;

interrupts = <0x0 0x2 0x4>;
arm,data-latency = <0x3 0x2 0x2>;
arm, tag-latency = <0x2 0x2 0x2>;
cache-unified;

cache-level = <0x2>;

memory—-controller@f8006000 {
compatible = "xlnx,zyng-ddrc—-a05";

}i

reg

<0x£f8006000 0x1000>;

122

ocmc@f800c000 {

compatible = "xlnx,zyng-ocmc—-1.0";

interrupt-parent = <0x4>;

interrupts = <0x0 0x3 0x4>;

reg = <0xf800c000 0x1000>;
}i

serial@e0000000 {
compatible = "xlnx,xuartps",
— "cdns,uart-rlp8";
status = "disabled";
clocks <0x1 0x17 0x1 0x28>;
clock—names = "uart_clk", "pclk";
reg = <0xe0000000 0x1000>;
interrupts = <0x0 Oxlb 0x4>;

i

serial@e0001000 {
compatible = "xlnx,xuartps",
— "cdns,uart-rlp8";
status = "okay";
clocks = <0x1 0x18 0x1 0x29>;
clock—-names = "uart_clk", "pclk";
reg = <0xe0001000 0x1000>;
interrupts = <0x0 0x32 0x4>;
cts—-override;
device_type = "serial";

port—number <0x0>;

i

spi@e0006000 {
compatible = "xlnx,zyng-spi-rlp6";
reg = <0xe0006000 0x1000>;
status = "disabled";
interrupt-parent = <0x4>;
interrupts = <0x0 Oxla 0x4>;
clocks = <0x1 0x19 0x1 0x22>;
clock-names = "ref_clk", "pclk";
#address—-cells = <0x1>;
#size—-cells <0x0>;

i

spi@e0007000 {
compatible = "xlnx,zyng-spi-rlp6";

reg = <0xe0007000 0x1000>;

14

14

14

123

}i

status = "disabled";
interrupt-parent = <0x4>;
interrupts = <0x0 0x31 0x4>;
clocks = <0x1 Oxla 0x1 0x23>;

clock-names = "ref_clk", "pclk";
#address—cells = <0x1>;
#size-cells = <0x0>;

spi@e000d000 {

clock—-names = "ref_clk", "pclk";
clocks = <0x1 Oxa 0x1 0x2b>;
compatible = "xlnx,zyng-gspi-1.0";
status = "okay";

interrupt-parent = <0x4>;
interrupts = <0x0 0x13 0x4>;

reg = <0xe000d000 0x1000>;

#address—cells = <0x1>;
#size—-cells = <0x0>;
is—-dual = <0x0>;

num-cs = <0x1>;

spi-rx-bus-width <0x4>;
spi-tx-bus-width = <0x4>;

flash@0 {
compatible = "n25¢gbl2a",
— "micron,m25p80";
reg = <0x0>;
#address—cells = <0x1>;
#size-cells = <0x1>;
spi-max-frequency =
— <0x2faf080>;

partition@0x00000000 {
label = "boot";
reg = <0x0
—~ 0x500000>;
}i

partition@0x00500000 {
label = "bootenv";
reg = <0x500000
—~ 0x20000>;

}i

124

partition@0x00520000 {
label = "kernel";
reg = <0x520000
-~ 0xa80000>;

}i

partition@0x00£a0000 {
label = "spare";
reg = <0xfa0000
— 0x0>;
}i
i
i

memory—-controller@e000e000 {
#address—cells = <0x1>;

#size-cells = <0x1>;

status = "disabled";

clock—-names = "memclk", "apb_pclk";
clocks = <0x1 Oxb 0x1 0x2c>;
compatible = "arm,pl353-smc-r2pl",
-~ "arm,primecell";
interrupt-parent = <0x4>;
interrupts = <0x0 0x12 0x4>;
ranges;

reg = <0xe000e000 0x1000>;

flash@el000000 {
status = "disabled";
compatible =
— "arm,pl353-nand-r2pl";
reg = <0xel000000
— 0x1000000>;
#address—cells = <0x1>;
#size-cells = <0x1>;

}i

f1ash@e2000000 {
status = "disabled";
compatible = "cfi-flash";
reg = <0xe2000000
< 0x2000000>;
#address—cells = <0x1>;
#size-cells = <0x1>;

}i

125

}i

ethernet@e000b000 {
compatible = "cdns, zyng-gem",
— "cdns,gem";
reg = <0xe000b000 0x1000>;
status = "okay";
interrupts = <0x0 0x16 0x4>;
clocks = <0x1 0Oxle 0x1 Oxle 0Ox1

— 0Oxd>;

clock-names = "pclk", "hclk",

- "tx_clk";

#address—-cells = <0x1>;

#size-cells = <0x0>;

phy-mode = "rgmii-id";

x1lnx, ptp-enet-clock = <0x4£790d8>;
local-mac—-address = [00 Oa 35 00 1le
-~ 53];

}i

ethernet@e000c000 {
compatible = "cdns, zyng-gem",
— "cdns,gem";
reg = <0xe000c000 0x1000>;
status = "disabled";
interrupts = <0x0 0x2d 0x4>;
clocks = <0x1 Ox1f 0Ox1l Ox1f Ox1

- Oxe>;

clock—names = "pclk", "hclk",
o "tx_clk";

#address-cells = <0x1>;
#size-cells = <0x0>;

}i

mmc@e0100000 {
compatible = "arasan,sdhci-8.9a";
status = "okay";
clock—-names = "clk_xin", "clk_ahb";
clocks = <0x1 0x15 0x1 0x20>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x18 0x4>;
reg = <0xe0100000 0x1000>;
x1lnx,has-cd = <0x0>;
x1lnx, has—-power = <0x0>;
x1lnx,has-wp = <0x0>;

126

}i

broken-cd;

mmc@e0101000

i

compatible = "arasan,sdhci-8.9a";
status = "okay";
clock—names = "clk_xin", "clk_ahb";

clocks = <0x1 0x16 0x1 0x21>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x2f 0x4>;
reg = <0xe0101000 0x1000>;
x1lnx,has-cd = <0x1>;

x1lnx, has-power = <0x0>;
x1lnx,has-wp = <0x0>;
non-removable;

slcr@f8000000 {

u-boot,dm-pre-reloc;

#address—-cells = <0x1>;
#size-cells = <0x1>;
compatible = "xlnx,zyng-slcr",
— "syscon", "simple-mfd";

reg = <0xf8000000 0x1000>;
ranges;
phandle = <0x5>;

clkc@100 {
u-boot,dm-pre-reloc;
#clock-cells = <0x1>;
compatible =
— "xlnx,ps7-clkc";
fclk-enable = <0x1>;

14

127

clock-output—-names =

-~ "armpll", "ddrpll",
"iopll", "cpu_6ordx",
"cpu_3or2x", "cpu_2x",
"cpu_1x", "ddrz2x",
"ddr3x", "dci",
"lgspi", "smc", "pcap",
"gemO", "geml",
"fclkO", "fclkl",
"fclk2", "fclk3",
"canO", "canl",
"sdioO", "sdiol",
"uart0O", "uartl",
"spiO", "spil", "dma",
"usb0_aper",
"usbl_aper",
"gemO_aper",
"geml_aper",
"sdioO_aper",
"sdiol_aper",
"spiO_aper",
"spil_aper",
"canO_aper",
"canl_aper",
"i2c0_aper",
"i2cl_aper",
"uartO_aper",
"uartl_aper",
"gpio_aper",
"lgspi_aper",
"smc_aper", "swdt",
"dbg_trc", "dbg_apb";
reg = <0x100 0x100>;
ps—-clk—frequency =

— <0x1fca055>;

phandle = <0x1>;

L

}i

rstc@200 {
compatible =
— "xlnx,zyng-reset";
reg = <0x200 0x48>;
#reset-cells = <0x1>;
syscon = <0x5>;

}i

128

pinctrl@700 {

compatible =
— "xlnx,pinctrl-zyng";
reg = <0x700 0x200>;
syscon = <0x5>;
bi
bi
dmac@f8003000 {
compatible = "arm,pl330",
— "arm,primecell";
reg = <0xf8003000 0x1000>;
interrupt-parent = <0x4>;
interrupt-names = "abort", "dmaO",
— "dmal", "dma2", "dma3", "dmad",

—~ "dmab", "dma6", "dma7";
interrupts = <0x0 Oxd 0x4 0x0 Oxe
— 0x4 0x0 Oxf 0x4 0x0 0x10 0x4
— 0x0 0x11 0x4 0x0 0x28 0x4 0x0
— 0x29 0x4 0x0 0x2a 0x4 0x0 O0x2b

- 0x4>;
#dma—-cells = <0x1>;
#dma—channels = <0x8>;
#dma-requests = <0x4>;
clocks = <0x1 0Ox1lb>;
clock—-names = "apb_pclk";
i
devcfg@f8007000 {
compatible =
— "xlnx,zyng-devcfg-1.0";
interrupt-parent = <0x4>;
interrupts = <0x0 0x8 0x4>;

reg = <0xf8007000 0x100>;
clocks = <0x1 Oxc 0Ox1 Oxf 0Ox1 0x10
— 0x1 0x11 0Ox1 0x12>;
clock—-names = "ref clk", "fclkO",
- "fclkl"™, "fclk2", "fclk3";
syscon = <0x5>;
phandle = <0x3>;

}i

efuse@f800d000 {
compatible = "xlnx,zyng-efuse";

129

reg = <0xf800d000 0x20>;
}i

timer@f8£00200 {
compatible =
— "arm,cortex—a9-global-timer";
reg = <0xf8f00200 0x20>;
interrupts = <0x1l Oxb 0x301>;
interrupt-parent = <0x4>;
clocks = <0x1 0x4>;

i

timer@£f8001000 {
interrupt-parent = <0x4>;
interrupts = <0x0 Oxa 0x4 0x0 0Oxb
— 0x4 0x0 Oxc 0x4>;
compatible = "cdns,ttc";
clocks = <0x1 0x6>;
reg = <0xf8001000 0x1000>;

bi

timer@£f8002000 {
interrupt-parent = <0x4>;
interrupts = <0x0 0x25 0x4 0x0 0x26
— 0Ox4 0x0 0x27 0x4>;
compatible = "cdns,ttc";
clocks = <0x1 0x6>;
reg = <0xf8002000 0x1000>;

bi

timer@f8£00600 {

interrupt-parent = <0x4>;
interrupts = <0x1 Oxd 0x301>;
compatible =

— "arm, cortex—-a9-twd-timer";

reg = <0xf8f00600 0x20>;
clocks = <0x1 Ox4>;
}i

usb@e0002000 {
compatible = "xlnx,zyng-usb-2.20a",
— "chipidea,usb2";
status = "okay";
clocks = <0x1 0Oxlc>;
interrupt-parent = <0x4>;

130

}i

amba_pl

interrupts = <0x0 0x15 0x4>;

reg = <0xe0002000 0x1000>;
phy_type = "ulpi";
dr_mode = "host";
usb-phy = <0x6>;

}i

usb@e0003000 {
compatible = "xlnx,zyng-usb-2.20a",
— "chipidea,usb2";
status = "disabled";
clocks = <0x1 0x1d>;
interrupt-parent = <0x4>;
interrupts = <0x0 Ox2c 0x4>;
reg = <0xe0003000 0x1000>;
phy_type = "ulpi";

}i

watchdog@f8005000 {
clocks = <0x1 0x2d>;

compatible = "cdns,wdt-rlp2";
interrupt-parent = <0x4>;
interrupts = <0x0 0x9 0x1>;
reg = <0xf8005000 0x1000>;
timeout-sec = <0xa>;

}i

{

#address—-cells = <0x1>;

#size—-cells = <0x1>;

compatible "simple-bus";

ranges;

timer@42800000 {
clock-frequency = <0x5e69ec0>;
clock—names = "s_axi_aclk";
clocks = <0x1 0xf>;

compatible = "xlnx,axi-timer-2.

—

reg

"xlnx, xps-timer-1.00.a";
= <0x42800000 0x1000>;

x1lnx, count-width =
x1lnx,gen0-assert =
x1lnx,genl-assert =
x1lnx,one-timer-only

<0x20>;
<0x1>;
<0x1>;

<0x0>;

O",

131

x1lnx,trig0-assert = <0x1>;
x1lnx,trigl-assert = <0x1>;
Vi

cubedma_top@43c00000 {

clock—names = "clk";

clocks = <0x1 0xf>;

compatible =

— "xlnx,cubedma-top-1.0";
interrupt-names = "mm2s_irqg",
- "s2mm_irqg";
interrupt-parent = <0x4>;
interrupts = <0x0 0Ox1ld 0x4 0x0
- 0x4>;

reg = <0x43c00000 0x10000>;
x1lnx, mm2s—-comp-width = <0x10>;
x1lnx, mm2s—num—-comp = <0x4>;
x1nx, s2mm-comp-width = <0x10>;

x1lnx, s2zmm-num-comp = <0x4>;
x1lnx,tinymover = "false";
}i
}i
chosen {
bootargs = "earlyprintk";
stdout-path = "serial(0:115200n8";
}i
aliases {
ethernet0 = "/amba/ethernet@e000b000";
serial0 = "/amba/serial@e0001000";
spi0 = "/amba/spi@e000d000";

}i

memory {
device_type = "memory";
reg = <0x0 0x40000000>;
}i

reserved-memory {

#address—-cells = <0x1>;
#size—-cells = <0x1>;
ranges;

buffer@0x30000000 {

Oxle

132

}i

reg = <0x30000000 0x10000000>;

no-map;
phandle = <0x7>;
i
}i

cubedma@0 {
memory-region = <0x7>;
}i
phy0 {
compatible = "usb-nop-xceiv";

#phy—-cells = <0x0>;
reset-gpios = <0x8 0x7 0x1>;
phandle = <0x6>;

}i

133

134

Appendix

Startup Script

#!/bin/sh

BEGIN INIT INFO

Provides: myapp-init
Required-Start: SALL
Should-Start:
Required-Stop:

Should-Stop:

Default-Start: 2 3 5
Default-Stop:

Description: Linux Startup Script
END INIT INFO

start ()

{

H Hh R kR I K

echo "####H#HHHHEHFHEFFHASFHERFHEHSHAE HYPSO
— STARTUP SCRIPT BELOW
o HEHEHHER AR

#Set static ip address.

echo "Setting static ip address.”

ip addr flush dev ethO

ip addr add 129.241.2.42/23 dev eth0
echo "mounting media..."

mkdir -m 755 /media/sd

mount /dev/mmcblkOpl /media/sd || mount
— /dev/mmcblk0 /media/sd

mkdir -m 755 /media/emmc

mount /dev/mmcblklp2 /media/emmc

135

echo "setting up swap..."
if mountpoint -g /media/emmc

then
if test ! -f /media/emmc/swapfile
then
dd if=/dev/zero
— of=/media/emmc/swapfile bs=1024
— count=1048576
fi
mkswap /media/emmc/swapfile
swapon /media/emmc/swapfile
fi
if mountpoint -g /media/sd
then
if test ! -f /media/sd/swapfile
then
dd if=/dev/zero
— of=/media/sd/swapfile bs=1024
— count=1048576
fi
mkswap /media/sd/swapfile
swapon /media/sd/swapfile
fi

echo "remounting rootfs size to 1G..."
mount —-o remount,size=1G /

echo "mounting gpio"
echo 960 > /sys/class/gpio/export

echo "extracting software to rootfs"
tar —-xf /software.tar.xz -C /
rm /software.tar.xz

echo "running ueye setup script"
run ueye setup script
/usr/bin/ueyesetup -i usb
/usr/bin/ueyesetup —-i eth

echo "starting ueye drivers"”
#start eueye ethernet & usb
/etc/init.d/ueyeethdrc start
/etc/init.d/ueyeusbdrc start

echo "resetting uboot environment (bootcounter)"

136

flash_eraseall -j /dev/mtdl

echo "starting cubeDMA driver"

insmod
« /lib/modules/4.19.0-xi1inx-v2019.1/extra/cubedma.ko

#&&&#
echo "starting opu-services from /home/root".
if mountpoint -g /media/sd

then
/home/root/opu-services 12 canO -m
- /media/sd/
echo "opu-services exited... restarting
— from flash..".
/media/sd/opu-services 12 can0 -m
< /media/sd/

else
/home/root/opu-services 12 can0 -m
— /media/emmc/
echo "opu-services exited... restarting
— from flash..".
/media/emmc/opu-services 12 can0 -m
— /media/emmc/

fi

echo "THIS TEXT SHOULD BE REPLACED WITH A REBOOT
— COMMAND."

stop ()

echo "Bye, bye hypso."
}

restart ()

{

stop

start

}

case "$1" in
start)
start; ;;
stop)

137

stop; ;;

restart)

restart; ;;

*)

echo "Usage: $0 {start|stop|restart}"
exit 1

esac

exit $7?

138

Appendix

Dockerfile for setting up the
Petalinux SDK

FROM ubuntu:18.04

build with docker build —--build-arg PETA_VERSION=2019.1
— ——build-arg

— PETA _RUN_FILE=petalinux-v2019.1-final-installer.run -t
— petalinux:2019.1

ENV DEBIAN_FRONTEND=noninteractive

Install Petalinux Installer Dependences:
RUN dpkg —--add-architecture 1386 && apt—-get update &&
< apt-get install -y \

build-essential \

sudo \

tofrodos \

iproute2 \

gawk \

net-tools \

expect \

libncurses5-dev \

tftpd \

libssl-dev \

flex \

bison \

libselinuxl \

gnupg \

wget \

139

socat \
gcc—multilib \
libsdll.2-dev \
libglib2.0-dev \
lib32zl-dev \
z1iblg:1386 \
libgtk2.0-0 \
screen \

pax \

diffstat \
xvfb \

xterm \
texinfo \

gzip \

unzip \

cpio \

chrpath \
autoconf \
lsb-release \
libtool \
libtool-bin \
locales \

kmod \

git \

python \

vim \

nano

ARG PETA_VERSION
ARG PETA_RUN_FILE

RUN locale-gen en_US.UTF-8 && update-locale

#make a HYPSO user

RUN adduser --disabled-password —-—gecos '' hypso && \
usermod -aG sudo hypso && \
echo "hypso ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers

COPY accept-eula.sh ${PETA_RUN_FILE} /

Run Petalinux installer

RUN chmod a+x /${PETA_RUN_FILE} && \
mkdir -p /opt/Xilinx && \
chmod 777 /tmp /opt/Xilinx && \
cd /tmp && \

140

sudo -u hypso /accept-eula.sh /${PETA_RUN_FILE}
— Jopt/Xilinx/petalinux && \
rm -f /${PETA_RUN_FILE} /accept-eula.sh

Install tools required by PetaLinux
RUN apt-get install -y \
ssh rsync

USER hypso

ENV HOME /home/hypso
ENV LANG en_US.UTF-8
WORKDIR /home/hypso/

#add petalinux tools to path
RUN echo "source /opt/Xilinx/petalinux/settings.sh" >>
— /home/hypso/.bashrc

141

142

Appendix

Filesystem Performance Test Script

#/bin/bash
count=51
block_size=$2

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."

echo "write 1 S$block_size block to SD Card"

time dd if=/dev/zero of=/media/sd-pl/garbage.test
— bs=S$block_size count=S$count

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."

echo "read 1 S$block_size block from SD Card (flushed
— cache)"

time dd if=/media/sd-pl/garbage.test of=/dev/null
— Dbs=$block_size count=$count

echo "read 1 S$block_size block from SD Card"

time dd if=/media/sd-pl/garbage.test of=/dev/null

— bs=$block_size count=Scount
rm /media/sd-pl/garbage.test

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."

143

echo "write 1 $block_size block file to EMMC."
time dd if=/dev/zero of=/media/emmc-pl/garbage.test
— Dbs=$block_size count=$count

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."

echo "read 1 $block_size block from EMMC (flushed cache)"
time dd if=/media/emmc-pl/garbage.test of=/dev/null

— bs=S$block_size count=S$Scount

echo "read 1 $block_size block from EMMC"

time dd if=/media/emmc-pl/garbage.test of=/dev/null

— Dbs=$block_size count=$count

rm /media/emmc-pl/garbage.test

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."

echo "write 1 S$block_size block file to rootfs."
time dd if=/dev/zero of=/garbage.test bs=S$block_size
< count=$count

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."

echo "read 1 S$block_size block from rootfs (flushed cache)"
time dd if=/garbage.test of=/dev/null bs=S$block_size

— count=S$count

echo "read 1 $block_size block from rootfs"

time dd if=/garbage.test of=/dev/null bs=S$block_size

< count=S$count

rm /garbage.test

144

|Appendix J

Filesystem Performance Test Result

145

test

1 64MB write
1 64MB read
64 1MB write
64 1MB read
64K 1KB write
64K 1KB read

1 1KB write

1 1KB read

1 10KB write
1 10KB read
1 100KB write
1 100KB read
1 1MB write

1 1MB read

1 10MB write
1 10MB read
1 100MB write
1 100MB read

avg MB/s
Fastest MB/s

avg read MB/s
avg write MB/s

Fastest read MB/s
Fastest write MB/s

Sheetl

SD (ext4) SD (ext4) cached SD (FAT)

1.01 1
0.867 0.336 0.772

0.76 0.891
0.575 0.237 0.572
2.496 1.79
0.686 0.646 0.687

0.01 0.011
0.008 0.008 0.009
0.009 0.009
0.009 0.008 0.009

0.01 0.011
0.009 0.009 0.01
0.024 0.026
0.018 0.014 0.019
0.144 0.166
0.108 0.064 0.123
1.442 5.699
7.513 0.577 2.225

60.0563027838599 157.50615258409 67.22689076
111.304347826087 270.04219409283 111.8881119

90.2255639097744 157.50615258409 94.53471196
45.0070323488045 52.1597392

111.304347826087
84.2105263157895

111.8881119
71.82940516

Page 1

SD (FAT) cached

0.379

0.247

0.663

0.008

0.009

0.008

0.014

0.057

0.513

148.9526764934

259.1093117409

148.9526764934

eMMC (FAT)
1.115
0.773
0.989
0.572
1.926
0.681

0.008
0.008
0.009
0.008

0.01
0.009
0.027
0.017
0.182
0.108

4.99
3.113

63.4081902246
111.888111888

94.7680157947
47.6426799007

111.888111888
64.7118301314

Sheetl

eMMC (FAT) cached rootfs (RAM) rootfs cached

0.365

0.237

0.65

0.008

0.008

0.008

0.014

0.064

0.566

153.354632587859
270.042194092827

0.443
0.317
0.332
0.222
0.845

0.57

0.008
0.008
0.008
0.008
0.009
0.008
0.015
0.013
0.076
0.056
0.686
0.543

0.37

0.22

0.595

0.008

0.008

0.008

0.014

0.065

0.511

140.7108831 162.0253165
288.2882883 290.9090909

153.354632587859 173.128945 162.0253165

118.5185185

288.2882883
192.7710843

Page 2

148

Append

iX

Dynamic Reconfiguration of FPGA
Performance Test Program

// usage

// ./test.o <width> <height> <depth>

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#define CUBEDMA_BASE 0x43C00000
#define SR _DONE_MSK 0x1

#define
#define
#define
#define
#define
#define

#define

<stdio.h>
<stdint.h>
<stdlib.h>
<unistd.h>
<fcntl.h>
<pthread.h>

<sys/types.h>

<sys/stat.h>

<sys/ioctl.h>

<sys/mman.h>
<sys/time.h>
<time.h>

MM2S _CTRI_REG
MM2S_STAT REG
MM2S _ADDR REG

MM2S _CUBE_DIM REG
MM2S_BLOCK_DIM REG
MM2S_ROW_DIM REG

S2MM_CTRI,_REG 8//0x20

0//0x00
1//0x04
2//0x08
3//0x0C
4//0x10
5//0x14

149

#define S2MM _STAT REG 9//0x24
#define S2MM _ADDR REG 10//0x28
#define S2MM LEN _REG 11//0x2C

#define SEND_PHYS ADDR 0x30000000
#define RECEIVE_PHYS ADDR 0x38000000

#define cubedma_RegWirite (offset, val) deviceMem[offset] =
-~ val;,
#define cubedma RegRead (offset) deviceMem[offset]

char x*p;
int num;

typedef struct
{
uint8_t error:1;
uint8_t complete:l;
} cubedma_init_enable_irqg t;

typedef enum
{
MM2S,
S2MM
} transfer_t;

typedef enum {
SUCCESS,
ERR_TIMEOUT,
ERR_BUSY,
ERR_INV_PARAM
} cubedma_error_t;

typedef struct {

struct{
uint32_t source;
uint32_t destination;

} address;

struct {
uint8_t n_planes;
uint8_t c_offset;
uint8_t planewise:1;
struct {

uint8_t enabled:1;

150

struct {
uint8_t width:4;
uint8_t height:4;
uint32_t size_last_row:20;
} dims;
} blocks;
struct {
uintl6_t width:12;
uintl6_t height:12;
uintl6_t depth:12;
uint32_t size_row:20;
} dims;
} cube;
struct {
cubedma_init_enable_irqg t mm2s;
cubedma_init_enable_irg t s2mm;
} interrupt_enable;
} cubedma_init_t;

#define CTRI_REG_OFFSET (mode) (mode==MM2S)? \
(MM2S_CTRL_REG) : \
(S2MM_CTRI_REG)

#define STAT REG _OFFSET (mode) (mode==MM2S)? \
(MM2S_STAT REG) : \
(S2MM_STAT_REG)

volatile uint8_t * send_channel;
volatile uint8_t =+ receive_channel;

static int fd_send;
static int fd_receive;

volatile uint32_t+ deviceMem;

int cubedma_TransferDone (transfer_t transfer)
{
if (cubedma_RegRead (STAT_REG_OFFSET (transfer)) &
< SR_DONE_MSK)
{
if (transfer == S2MM)
{
printf ("received length %u\n",
— deviceMem[S2MM_LEN_REG]) ;

151

return 1;

}

return 0O;

int gettime (struct timeval t0, struct timeval tl)

{
return ((tl.tv_sec - t0.tv_sec) x 1000.0f +
< (tl.tv_usec -tO0.tv_usec) / 1000.0f);

int main (int argc, char #**argv) {
// Get cubesize parameters defined by user.
const int width = strtol (argv[l], &p, 10);
const int height = strtol(argv([2], &p, 10);
const int depth = strtol (argv[3], &p, 10);
const int cube_size = (depth * height * width);

cubedma_init_t param =
{

.address =

{
.source =
[(uint32_t) (SEND_PHYS_ADDR),
.destination =
. (uint32_t) (RECEIVE_PHYS_ADDR)

by

.cube =
{
.n_planes 0,
.c_offset = 0,
.planewise = 0O,
.blocks =
{
.enabled = 0,
.dims = { 0, 0, 0 }
}I
.dims =
{ //TODO: Get the numbers the camera
- uses
.width = width, //Number of
— frames
.height = height, //Number of
< rows
.depth = depth, //Number of

- cols

152

.size_row = heightsxwidth

by
.interrupt_enable =
{

{0, 0}, {0, O}

bi
int fd = open("/dev/mem", O_RDWR|O_SYNC);

if (fd < 0)

{
perror ("/dev/mem") ;
exit (-1);

fd_send = open ("/dev/cubedmasend", O_RDWR) ;
if (fd_send < 1)
{

printf ("Unable to open CubeDMA send
— channel");

fd_receive = open("/dev/cubedmarecieve",
— O_RDWR) ;
if (fd_receive < 1) {
printf ("Unable to open receive channel");

send_channel = mmap (0, cube_sizexsizeof (uint8_t),
PROT_READ | PROT_WRITE, MAP_SHARED,
- fd_send, SEND_PHYS_ADDR) ;

receive_channel = mmap (0, cube_sizexsizeof (uint8_t),
PROT_READ | PROT_WRITE, MAP_SHARED,
— fd_receive, RECEIVE_PHYS_ADDR) ;

deviceMem (uint32_t %) mmap (NULL, getpagesize(),
— PROT_READ |PROT_WRITE, MAP_SHARED, fd,
— CUBEDMA_BASE) ;

if (receive_channel == NULL) {
perror ("fuck");
exit (-1);

153

—

—

—

deviceMem [MM2S_CTRL_REG] = 0x0;
deviceMem|[S2MM_CTRL_REG] = 0x0;
printf ("GENERATING TEST DATA \n");
for(int 1 = 0; i < cube_size; i++) {

if (i%2)

send_channel [i] = 0x1;

else

send_channel[i] = 0x0;

struct timeval tl1, tO;

ioctl (fd_send, 0);

printf ("Starting FPGA full reconfig test\n");

gettimeofday (&t0, NULL);
system ("fpgautil -b

>

/media/sd-img/fpga/image_processing_light.bit.bin");

printf ("Configure cubeDMA \n");
deviceMem [MM2S_ADDR_REG]

deviceMem [MM2S_CUBE_DIM_ REG]
(param.cube.dims
(param.cube.dims
(param.cube.dims
deviceMem [MM2S_BLOCK_DIM REG]
deviceMem[MM2S_ROW_DIM REG]

param.cube.dims.size_row;
deviceMem|[S2MM_ADDR_REG]

param.address.destination;
deviceMem [MM2S_CTRL_REG]
deviceMem[S2MM_CTRL_REG]

param.address.source;

.width & OxFFF) << 0 |
.height & OxFFF) << 12 |
.depth & OxFF) << 24;

0x0;

0x1;
0x1;

while (!cubedma_TransferDone (MM2S)) ;
while (!cubedma_TransferDone (S2MM)) ;

deviceMem [MM2S_CTRL_REG]
deviceMem[S2MM_CTRL_REG]
memcpy (send_channel,
cube_sizexsizeof (uint8_t));

0x0;
0x0;

receive_channel,

154

system ("fpgautil -b
/media/sd-img/fpga/image_processing_dark.bit.bin");
printf ("Configure cubeDMA \n");
deviceMem[MM2S_ADDR_REG] = param.address.source;
deviceMem [MM2S_CUBE_DIM REG] =
(param.cube.dims.width & OxFFF) << 0 |
(param.cube.dims.height & OxFFF) << 12 |
(param.cube.dims.depth & OxFF) << 24;
deviceMem [MM2S_BLOCK_DIM_REG] = 0x0;
deviceMem [MM2S ROW_DIM_REG] =
param.cube.dims.size_row;
deviceMem[S2MM_ADDR_REG]
param.address.destination;

deviceMem [MM2S_CTRL_REG] 0x1;

deviceMem|[S2MM_CTRL_REG] = 0x1;

while (!cubedma_TransferDone (MM2S)) ;

while (!cubedma_TransferDone (S2MM)) ;

deviceMem [MM2S_CTRL_REG] = 0x0;

deviceMem[S2MM_CTRL_REG] = 0x0;

memcpy (send_channel, receive_channel,

cube_sizexsizeof (uint8_t));
system ("fpgautil -b
/media/sd-img/fpga/image_processing_light.bit.bin");

printf ("Configure cubeDMA \n");

deviceMem[MM2S_ADDR_REG] = param.address.source;

deviceMem [MM2S_CUBE_DIM REG] =
(param.cube.dims.width & OxFFF) << 0 |
(param.cube.dims.height & OxFFF) << 12 |
(param.cube.dims.depth & OxFF) << 24;

deviceMem [MM2S_BLOCK_DIM REG] = 0x0;

deviceMem [MM2S ROW_DIM_REG] =

— param.cube.dims.size_row;

deviceMem|[S2MM_ADDR_REG] =

— param.address.destination;

deviceMem [MM2S_CTRL_REG] = 0x1;
deviceMem|[S2MM_CTRL_REG] = 0x1;

while (! cubedma_TransferDone (MM2S)) ;

while (! cubedma_TransferDone (S2MM)) ;

deviceMem [MM2S_CTRL_REG] = 0x0;
deviceMem|[S2MM_CTRL_REG] = 0x0;

memcpy (send_channel, receive_channel,

< cube_sizexsizeof (uint8_t));

system ("fpgautil -b

— /media/sd-img/fpga/image_processing _dark.bit.bin");

155

printf ("Configure cubeDMA \n");
deviceMem[MM2S_ADDR_REG] = param.address.source;
deviceMem [MM2S_CUBE_DIM_REG] =
(param.cube.dims.width & OxFFF) << 0 |
(param.cube.dims.height & OXFFF) << 12 |
(param.cube.dims.depth & OxFF) << 24;
deviceMem [MM2S_BLOCK_DIM REG] = 0x0;
deviceMem [MM2S_ROW_DIM REG] =
— param.cube.dims.size_row;
deviceMem[S2MM_ADDR_REG]
— param.address.destination;

deviceMem [MM2S_CTRL_REG] = 0x1;
deviceMem|[S2MM_CTRL_REG] 0x1;
while (!cubedma_TransferDone (MM2S)) ;
while (! cubedma_TransferDone (S2MM)) ;
deviceMem [MM2S_CTRL_REG] = 0x0;
deviceMem|[S2MM_CTRL_REG] = 0x0;

gettimeofday (&tl, NULL);
double time_spent_fpga = gettime(t0, tl);
printf ("\n fpga done \n");

memcpy (send_channel, receive_channel,
— cube_sizexsizeof (uint8_t));

printf ("Starting FPGA partial reconfig test\n");
gettimeofday (&t0, NULL);
system ("fpgautil -b
— /media/sd-img/fpga/image_processing_light_pblock_image_processir
— —f Partial");
deviceMem [MM2S_CTRL_REG] = 0x1;
deviceMem|[S2MM_CTRL_REG] = 0x1;
while (! cubedma_TransferDone (MM2S)) ;
while (! cubedma_TransferDone (S2MM)) ;
deviceMem [MM2S_CTRL_REG] = 0x0;
deviceMem|[S2MM_CTRL_REG] 0x0;
memcpy (send_channel, receive_channel,
< cube_sizexsizeof (uint8_t));
system ("fpgautil -b
— /media/sd-img/fpga/image_processing_dark_pblock_image_proces
- —f Partial");
deviceMem [MM2S_CTRL_REG] 0x1;
deviceMem|[S2MM_CTRL_REG] = 0x1;
while (! cubedma_TransferDone (MM2S)) ;

156

while (! cubedma_TransferDone (S2MM)) ;
deviceMem [MM2S_CTRL_REG] = 0x0;
deviceMem|[S2MM_CTRL_REG] = 0x0;
memcpy (send_channel, receive_channel,
— cube_sizexsizeof (uint8_t));
system ("fpgautil -Db

— /media/sd-img/fpga/image_processing_light_pblock_image_proce
« —f Partial");

deviceMem [MM2S_CTRL_REG] = 0x1;
deviceMem|[S2MM_CTRL_REG] = 0x1;

while (! cubedma_TransferDone (MM2S)) ;
while (! cubedma_TransferDone (S2MM)) ;
deviceMem [MM2S_CTRL_REG] = 0x0;
deviceMem|[S2MM_CTRL_REG] = 0x0;
memcpy (send_channel, receive_channel,
— cube_sizexsizeof (uint8_t));
system ("fpgautil -Db

— /media/sd-img/fpga/image_processing_dark_pblock_image_proces
- —f Partial");

deviceMem [MM2S_CTRL_REG] 0x1;
deviceMem|[S2MM_CTRL_REG] = 0x1;

while (! cubedma_TransferDone (MM2S)) ;
while (! cubedma_TransferDone (S2MM)) ;
deviceMem [MM2S_CTRL_REG] = 0x0;
deviceMem|[S2MM_CTRL_REG] = 0x0;

gettimeofday (&tl, NULL);
printf ("\n fpga done \n");
double time_spent_fpga_part = gettime (t0, t1l);

for(int i = 0; i < cube_size; i++) {
if (i%2)
send_channel[i] = 0x1;
else
send_channel[i] = 0x0;

printf ("\n Starting SOFTWARE test \n");
gettimeofday (&t0, NULL);

for(int i = 0; i < cube_size; i++) {
send_channel[i] = send_channel[i]*2;

}

for(int 1 = 0; i < cube_size; i++) {

157

send_channel[i1i] = send_channel[i]/2;
}
for(int 1 = 0; i < cube_size; i++) {
send_channel[i] = send_channel[i]*2;
}
for(int 1 = 0; 1 < cube_size; i++) {
send_channel[i] = send_channel[i]/2;
}
gettimeofday (&tl, NULL);
printf ("\n software done \n");
double time_spent_sw = gettime (t0, tl);

printf ("\n comparing result \n");
for (int i = 0; i < cube_size; i++) {

if (receive_channel[i] != send_channel[i]) {
printf ("not same result for %d.
— send: %u, reseived: %u \n", 1,
— send_channel[i],
— receive_channel[i]);
break;

printf ("FPGA (full): %f \n FPGA (partial): %f \n
< SW: %$f \n", time_spent_fpga,
— time_spent_fpga_part, time_spent_sw);

return 0;

158

Appendix

U-Boot environment Fallback Test
and Test Results

U-Boot 2019.01 (May 25 2020 - 11:50:29 +0000) Xilinx Zyng
— ZC702

CPU: Zyng 7z030

Silicon: v3.1

Model: Avnet picoZed

DRAM: ECC disabled 1 GiB

MMC : mmc@e0100000: 0, mmc@Re0101000: 1

Loading Environment from SPI Flash... SF: Detected n25q9gl28
— with page size 256 Bytes, erase size 64 KiB, total 16
— MiB

OK

In: serial@e0001000

Out: serial@e0001000

Err: serial@e0001000

Model: Avnet picoZed

Net: ZYNQ GEM: e000b000, phyaddr ffffffff, interface

— rgmii-id

eth0: ethernet@e000b000

Saving Environment to SPI Flash... SF: Detected n25gl28
— with page size 256 Bytes, erase size 64 KiB, total 16
-~ MiB

Erasing SPI flash...Writing to SPI flash...done

OK

Warning: Bootlimit (5) exceeded. Using altbootcmd.

Hit any key to stop autoboot: 0

Zyng> sf probe 0 0 O

159

SF: Detected n25gl28 with page size 256 Bytes, erase size
s 64 KiB, total 16 MiB

Zyng> sf erase 0x600000 +0x10

SF: 65536 bytes @ 0x600000 Erased: OK

Zyng> reset

resetting

U-Boot 2019.01 (May 25 2020 - 11:50:29 +0000) Xilinx Zyng
— ZC702

CPU: zZzyng 7z030

Silicon: v3.1

Model: Avnet picoZed

DRAM: ECC disabled 1 GiB

MMC : mmc@e0100000: 0, mmc@e0101000: 1

Loading Environment from SPI Flash... SF: Detected n25gl28
— with page size 256 Bytes, erase size 64 KiB, total 16
— MiB

*%% Warning - bad CRC, using default environment

160

Appendix M

161

Snapshop of Kanban Board

33 Backlog +

@ Scheduling commands on the satellite -
to be executed without radie contact

hypso-sw#74 opened by DennisNTNU

= MoBIP

@ csp file download not working.
hypso-sw#182 opened by JoarGjersund

@ MOBIP for HIL
hardhware.in_loop#7 opened by jigarrett

5 e ()

MOBIP Operational

@ Continuous measurement of current =
and voltages (=telemetry) on PicoBOB
hardware_in_loop#9 opened by evelynlimore

| Testing JERGENRNY] points=13

@ Watchdog on the EPS
hypso-sw#177 opened by sivertba

@ Create telemetry service
hypso-sw#180 opened by magne-hov

#enhancement [Ru]

10 Todo +

@ Consistent ptinting to stdout and
stderr from rgb-service
hypso-sw#70 opened by DennisNTNU

S] o3|

@ eps telemetry log printing doesn't
make sense

hypso-sw#139 opened by magne-hov

@ Resetting the boot counter when
communication is established

hypso-sw#47 opened by JoarGjersund

@ Add to pipeline a script download the -
binned cube.

hardware.in_loop4 opened by DennisNTNU

(BT crorcemr (Y (Y

0]

ntegrate and test implementation of ~ ***
timestamping
hypso-sw#188 opened by magnudan

= 2

@ Test high
BoBu3

hypso-su#189 opened by rogerbirkeland

max") framerate with

Automated as To do Manage

0 In progress

@ Jenkins Unit Tests for CDR
hypso-sw#118 opened by sivertba
enhancement [ERTETETY

(@ Need script for HW mech-tests.
hypso-sw#178 opened by sivertba

@ Measure voltage and current draw by
PicoBOB in different modes

harcware_in_loop#8 opened by evelynlimore

® RGB camera detection #bug on
PicoBoB

hypso-sw#96 opened by rogerbirkeland

® Make bootloader and golden image
read only.
opu-system16 opened by JoarGjersund

@ Create alog file for hsi camera
parameters
hypso-sw#124 apened by magnudan

Tesing [PUTEOY |civc5 |

Automated as In progress

Manage

7 Review in progress

@ CubeDMA interfacing is not working
correctly
hypse-sw#117 opened by magnudan

@ Add compression of software
version(backup ver) and hardware
version to the hsi-service

hypso-sw#75 opened by DennisNTNU

it | o 3]

T Logging process
hypso-sw183 opened by magne-hov

© Review required
@ Improve logging system

hypso-swe159 opened by magne-hov

enhancement

1 Adds DEV(ELOPMENT) option to
makefile

hypso-sw#173 opened by magnudan
© Review required

@ Verify compression
hypso-sw#174 opened by jlgarrett

Automated as I progress

Manage

10 Done

@ ft upload default
ncrease?

hypso-sw186 oper

11 Adjustable FT 4
hypso-sws#185 ope

® Changes approved
1 Update clang-for

hypso-sw#171 opes

‘enhancement
© Changes approved
@ specific comman|

hypso-sw#187 opes

enhancement [}

opu-system#27 op

@ Investigate deletil
from golden ima;

Automated as Done

delay should

ed by rogerbirkeland

leouts.

ed by magne-hov

nat
ed

magne-hov

to list files in opu
el by rogerbirkeland

cal wamnings
obob.tcl

ned by JoarGjersund

ng camera drivers
e

162

Manage

@ NTNU

Kunnskap for en bedre verden

	Summary
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	I Introduction and background
	Introduction
	HYPSO Mission
	Aims and objectives
	Outline

	Background
	Programmable logic devices
	Technologies
	State of the art and performance considerations
	Partial reconfiguration
	Limitations and fault tolerance

	Error correction and detection
	Error correcting code
	Error detecting code

	Embedded operating systems
	Linux
	The Yocto Project
	Linux components
	Petalinux-tools workflow
	Open Source Linux Workflow
	File Systems for Block Devices

	FPGA design and work flow for Xilinx devices
	General Use-case
	Vivado work flow

	Das U-Boot

	II Design and implementation
	Development of a student CubeSat
	Physical challenges
	Space environment
	Power
	Reliability
	Size and weight constraints

	Practical challanges
	Parallel development
	Continuity and knowledge transfer
	Budget

	On-board processing System for the HYPSO mission
	System architecture
	Overview

	On board processing unit
	Overview
	Hardware
	Operating system and services
	Software and firmware updates
	Programmable logic

	Integration and testing
	Development framework
	Macro management
	Source control
	Knowledge transfer considerations
	Development software
	Remote access

	Integration
	Firmware
	Programmable logic
	Software

	Testing
	Test methods and setup
	Building
	File system performance test
	Dynamic reconfiguration of FPGA performance
	Error detection and recovery tests
	Manual recovery test

	Summary and conclusion
	Future work

	Bibliography
	Appendices
	Partial Reconfiguration of Programmable Logic in Linux
	HYPSO-DSW-008: Documentation for The Petalinux Bootloader and the Generation of system Images for Performing Software Updates
	Test of Bootloader and Firmware Updates
	Example Image Tree Source for a FIT image
	Failure mode, effects and criticality analysis for the HYPSO Mission
	Device Tree Source for the OPU
	Startup Script
	Dockerfile for setting up the Petalinux SDK
	Filesystem Performance Test Script
	Filesystem Performance Test Result
	Dynamic Reconfiguration of FPGA Performance Test Program
	U-Boot environment Fallback Test and Test Results
	Snapshop of Kanban Board

