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Summary

This thesis documents the development of the on-board processing system for a small
satellite with high throughput, dynamically re-configurable, image processing capabili-
ties. The system consisted of a dual ARM core Zynq-7000 SoC that was made to run a
customized Linux operating system loaded using a customized U-Boot bootloader. The
final system was proven to provide a resilient framework for over-the-air firmware and
software updates by applying redundancy and fallback mechanisms along with checksum
algorithms such as CRC-32, SHA-1, and MD5 for integrity validation of data files. The
processing system was also able to prove support for both full and partial dynamic recon-
figuration of the on-chip Artix-7 grade FPGA.
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Chapter 1
Introduction

It is now 20 years since the concept of CubeSats was formally introduced as an educa-
tional platform. By 2019, in total 1317 nanosatellites and CubeSats have been launched
worldwide. In Norway, there have still not been any successful student satellites in orbit.
The Norwegian student-satellites that have been closest to success are nCube-1, which had
a launch failure and nCube-2 which had a deployment failure, both developed at Norwe-
gian University of Science and Technology (NTNU), and HiNCube, developed at Narvik
University, which got lost after deployment. Additionally, some missions have been can-
celed such as NUTS (NTNU) and CubeSTAR (University of Oslo). Since the launch of
the HiNCube in 2013, there have according to the NanoSats database not been made any
further attempt at launching a Norwegian made student-satellite to orbit [24].

1.1 HYPSO Mission

Hyper Spectral Imager for Oceanographic Applications (HYPSO) is the first space mission
at the SmallSatLab at NTNU in Trondheim. SmallSatLab is a student-driven multidisci-
plinary research incubator, initiated as an effort to promote space-related technology and
build competence on the field within the academic community at NTNU. The HYPSO mis-
sion statement is to ”provide oceanographic data to monitor the effects of climate change
and human impact on the world”. By analyzing the spectral signature of light reflected
from the earth’s surface it is possible to detect and measure the presence of biological and
chemical materials such as algae blooms, seaweed, salt content, forest health, etc. The
HYPSO missions goal is to collect and process hyper spectral data on a 6unit CubeSat
which will be deployed to low earth orbit where it should stay operational and collect data
for 7-8 years before it will be decommissioned as atmospheric friction will gradually slow
the vehicle down and finally let it burn up.
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Chapter 1. Introduction

1.2 Aims and objectives
This thesis will focus on the On-board Processing Unit (OPU) which is responsible for
capturing and processing hyperspectral images and other mission data. This thesis will
particularly focus on the underlying firmware which makes up the interface between hard-
ware and software, and how it can be modified to protect against potential failures by fa-
cilitating for over-the-air software and firmware updates and implement fail-safe fallback
mechanisms to protect the system.

1.3 Outline
The following chapter will give some background about the problems associated with
processing hyperspectral images and a brief description of available technology for high
throughput data processing before diving deeper into various methods for assuring error-
free data in the system, particularly focusing on instructions data which if left unchecked
can cause unpredictable behavior of the OPU. This chapter also gives an introduction to
embedded operating systems, their use, and how it can be built and customized according
to need.
Part II of this thesis covers the proposed design of the OPU and how it is implemented
on the satellite. This part is introduced in chapter 3 with an overview of the challenges
the design must overcome. In chapter 4 the actual design is presented, by first giving an
overview of the physical system, before diving deeper into the OPU and presenting various
details of the design and how it meets the challenges presented in chapter 3. Chapter
5 covers the integration of the design, with a more detailed description of what practical
work had to be done to integrate the design, how it behaves, and how it was tested. Finally,
in chapter 6, the work is summarized and concluded, and some topics for future work are
presented.
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Chapter 2
Background

2.1 Programmable logic devices
Image and video processing are usually characterized by high computational load and
strict timing requirements. With super-resolution and hyperspectral imaging techniques,
the computational load on the processing system can be significant and beyond what the
traditional von Neumann architecture based computer processor can handle. In place of the
traditional Single Instruction Single Data (SISD) processing architecture, modern process-
ing systems usually include Digital Signal Processing (DSP) - extensions for performing
Single Instruction Multiple Data (SIMD) arithmetic which enables some image and video
processing capabilities. For more flexibility and better performance, customized Appli-
cation Specific Integrated Circuit (ASIC) are sometimes also used to accelerate specific
computations, but these are expensive to develop and therefore usually more suitable for
batch productions [26]. A less expensive, and increasingly popular approach is to use a
Programmable Logic Device (PLD), which makes it possible to quickly implement cus-
tom combinational circuits that enable better control of the data path and flexibility with
regards to parallelization of the workload.

2.1.1 Technologies

Programmable logic devices first appeared in the mid-1970s. At that time the devices could
only be configured by hard-wiring a handful of uncommitted logic gates together. Various
methods to achieve better programmability and performance have since been developed
such as Programmable Logic Array (PLA), Programmable Array Logic (PAL), Generic
Array Logic (GAL), Complex Programmable Logic Device (CPLD), and most recently
the Field Programmable Gate Array (FPGA) [42, 31]. There also exist some factory pro-
grammable devices which are not reconfigurable, such as Read Only Memory (ROM) and
Mask-Programmable Gate Array (MPGA). An overview of available technologies can be
seen in Figure 2.1. The most promising family of PLD’s and currently the most attractive
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Chapter 2. Background

alternative to ASIC is the FPGA, which can provide several million re-configurable gates
on one chip. I addition, modern FPGAs today are usually also enhanced with other hard-
ware components such as DSPs, networking cores, and complete multi-core processors
making up a complete system often referred to as a System-on-chip (SoC) or a Multi-
Processor System-on-chip (MPSoC).

Figure 2.1: Overview of programmable logic devices [41].

2.1.2 State of the art and performance considerations

Current state of the art PLD’s rely on the FPGA technology which usually is implemented
as a SoC together with multi-core processors and multiple-level on-chip memory [40].
This art enables deployment of software which can re-program the PLD according to need,
thereby optimizing the area utilization by taking advantage of temporal mutual exclusive-
ness [30]. The two top players in the field of FPGA manufacturers are currently Xilinx
and Intel, [40]. The two most recent flagship FPGAs from Xilinx and Intel is Xilinx’s
Virtex and Intel’s Agilex. The Virtex, which is found in the Ultrascale+ SoC uses a 16 nm
fabrication technology, and Intel’s Agilex also found on some recent SoC’s from Intel is
on the other hand built on 10 nm technology.

Finding a suitable FPGA candidate to use when implementing a processing system
is however not just a matter of finding the one who uses the smallest technology node.
Although smaller technology usually is a good indication of the overall performance, other
aspects such as what hardware components are available, what development platform is
supported, and how well documented it is should also be considered. Generally, state-of-
the-art technology is often lacking in both documentation and community support which
both need time to grow. How close to the state-of-the-art one choose to operate should
therefore also be defined by the developers’ experience and available resources.

6



2.2 Error correction and detection

2.1.3 Partial reconfiguration

Partial reconfiguration is the ability to reconfigure only selected areas of the FPGA after
its initial configuration. This facilitates the idle parts of the programmable logic to be
swapped out while active parts are still running, thereby enabling increased utilization
of the available area of the FPGA [30]. Partial reconfiguration can also contribute to
increased fault-tolerance towards single-event upsets by using it in conjunction with read-
back to detect and replace corruption in the configuration memory [20]. A more in-depth
study on FPGA design workflow and practical applications can be found in section 2.4 and
in appendix A.

2.1.4 Limitations and fault tolerance

Digital devices such as FPGAs and ASICs are commonly affected by radiation-induced
faults. These faults can be both permanent and transient. With the rapid down-scaling and
resulting in reduced noise-margins, the susceptibility to radiation-induced transient faults
has increased, while the susceptibility to permanent damage has decreased [7, 11]. The
necessity to implement techniques for automatic error detection and correction of data is
therefore increasing and can be expected to increase in the future.

2.2 Error correction and detection

Data in a processing system usually have a varying level of criticality associated with it.
Data with high criticality is usually what would be labeled as instructions data, which is
data containing instructions to be executed by the processing system. Corruption of such
data can cause the processing system to become unpredictable and in some cases even stop
responding. Less critical data, where some corruption may be acceptable are often what
would be labeled as payload data. Corruption of such data would just result in the quality
of that data getting lowered.

The primary reason that not all data is considered critical is due to the overhead asso-
ciated with correction and detection. To be able to detect a flipped bit, information about
the initial value of the bit must be known. This can be done by appending an extra copy
of the bit and assure that both bits are equivalent. To both check and store, each bit in a
message is expensive, another option is, therefore, to encode the message, such that it can
be represented by a fewer number of bits, this encoding of data is also known as hashing
and is an important component of most integrity checking mechanisms.

2.2.1 Error correcting code

All mechanisms for Error Correction and Detection (ECD) must rely on two fundamental
concepts; i) hashing for detection and ii) redundancy for correction. This inhibits both
performances due to the overhead associated with hashing, and the informational density
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Chapter 2. Background

that can be achieved.

The efficiency of the ECD scheme can be expressed as a fraction of data bits ND, over
the total number of data bits and redundant bits, ND +NR. Equation 2.1

E =
ND

ND +NR
(2.1)

The most basic method for performing ECD is Triple Modular Redundancy (TMR)
which repeats every bit of data three times and uses simple bit-voting to determine the
correct value. In this scheme, the total number of bytes needed to represent one byte
of information is three bytes, and the efficiency will thus be 1/3 (Equation 2.1). The
reliability of triple modular redundancy is also questionable, as it strongly depends on a
week correlation of error between modules. If two of the redundant bytes are stuck at the
same value, that value will always be perceived as the correct value. ECD can however also
be implemented in more clever ways. The number of redundant bits can be reduced when
the hashing is not done over each bit individually as it is done with TMR, but rather done
over blocks of multiple bits. One such method is the Hamming Code [16]. Hamming code
is based on parity bits, which in the example of even parity is a redundant bit appended to
a block of multiple bits to assure that the block contains an even number of high bits. This
way, if the number of high bits in a block is found to be an odd number, at least one bit must
have been flipped. Parity bits can thus be used to detect the presence of one-bit errors in a
block but has no way of knowing which of the bits in the block contains the error, at least
unless the number of bits in the block is more than 1, consequently, a parity bit alone can
therefore not be used for error correction of multi-bit messages. What Richard Hamming
presented in 1950 was however a method to minimize the required number of parity bits
required in a block while still being able to detect which bit had flipped. Hamming found
mathematically that the required number of redundant parity bits to detect and correct a
flipped data bit was given by Equation 2.2. Here r is the number of redundant/parity bits
and m is the number of data bits. From this equation, we can see that the minimum required
redundant bits when the Error-Correcting Code (ECC) is applied to each bit individually
is 2, which is also the same as the number of redundant bits in triple modular redundancy.

2r ≥ m+ r + 1 (2.2)

With Hamming coding applied to a whole byte, the minimum required number of
redundant bits are 4, leading to the efficiency of 2/3, and significantly better than for triple
modular redundancy. The efficiency can be increased even further by increasing the bit-
width of the hamming code. A graph of the efficiency of the Hamming code can be seen
in Figure 2.2. Although the efficiency of the code increase with increasing block size, the
reliability will decrease. The reliability of the ECC scheme is dependent on the block size
and the hamming distance of the code, which is the minimal number of bit changes needed
to go from one codeword to another. With a hamming distance of three, as used in this
example, the code can only correct one-bit errors in a block [16].
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Figure 2.2: Efficiency of Hamming code with minimum hamming distance

2.2.2 Error detecting code
ECC is useful for recovering permanently corrupted data, but sometimes the error might
either just be a transient fault, or a redundant copy of the data may available. In those cases,
backward error recovery can be performed, for example by asking for a repeated read of
data. In such cases, knowing exactly what bit(s) in a block contains the error is not needed
since the whole block will be re-read and re-transmitted either way. To achieve a good ef-
ficiency for error detection, the hashing is then often done over a much larger block, often
even over complete multi-megabyte data files. For such error detection schemes a hash
value, of a certain bit-width, commonly referred to as a checksum, is calculated and ap-
pended to the data block. Upon receiving the data, the receiver recalculates the checksum,
and if the checksum does not match the appended checksum, the block must be corrupted.

Parity

Parity check is the simplest method for error detection and can be used to detect an odd
number of corrupted data bits in a message. Parity checks work by appending a single bit
to a message to assure that the number of active bits in a message is a pair number (even
parity), or odd (odd parity). The receiver can then sum up the total number of active bits
in the message including the parity bit and know that if this number is odd, but parity bit
is even (or sum is even and the parity bit is odd) at least one bit in the message must be
corrupt. Single bit parity checks can only detect an odd number of corrupted bits, thus the
probability of detecting a random error in the message can be as low as 50%.
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CRC

Cyclic Redundancy Check (CRC) uses the reminder of polynomial division to calculate a
hash which can be used to validate that the message is error-free. CRC uses an n+1 -bit
CRC polynomial which is XORed with the message in a cyclic manner starting from the
most significant bits and proceeding with the result shifted one bit with every cycle until
the resulting message is only zeros. The hash is then the resulting n latest bits discarded
during the latest bit shift [34].

The simplest form of CRC is 1 bit CRC, also known as CRC-1. With CRC-1 the
CRC polynomial is two bits wide, resulting in a 1-bit hash after the CRC algorithm has
completed. this hash indicates if the number of active bits in the message is an even
number. CRC-1 is thus the same as even parity described in section 2.2.2. By increasing
the number of bits used for hashing the corresponding probability of detecting errors will
increase. The ability to detect errors can be seen in Figure 2.3. To stay within a Hamming
distance of d which ensures that up to d-1 flipped bits in a message are guaranteed to be
detected, the number of bits in the message must be no more than k, [10].
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Figure 2.3: Maximum bits of payload by Hamming distance [22]

SHA, MD5, and other cryptographic hashing algorithms

SHA and MD5 are two of many cryptographic hash functions commonly used for detecting
data integrity. The ability to detect errors using cryptographic hash functions are usually
described as the probability that two unique messages will generate the same hash, which
is equivalent to the probability of a random error not getting detected. Such matching

10



2.2 Error correction and detection

hashes are often called a collision and their probability is strongly correlated with the
size of the hash, and the block size used by the hashing algorithm. For SHA-1, the hash
size is 160 bits, and the block size 512 bits, while for SHA-256 the hash size is 256
bits. Assuming the probability of a collision is uniformly distributed, the probability of a
collision can be approximated using Equation 2.3 where n is the number of data blocks
in the message, b is the size of the hash, and P is the probability of a collision [35].

P ≤ n(n− 1)

2
× 1

2b
(2.3)

For long messages hashed with small blocks, the number of hashes must increase
to cover the whole message, what hashing algorithm to use should, therefore, be partly
decided by the length of the message. As can be seen in Figure 2.4, the probability of a
random error not getting detected is in most practical cases negligible for hashes with a
size of 32-bit. Note that the number of hashes required will be determined by the message
size divided by the block size.

Figure 2.4: Probability of a collision given a number of 32-it hashes [35].

Given the low probability of missing an error when using cryptography hashing algo-
rithms like SHA and MD5, it is easy to assume that those are better to use. It is however
also important to consider extra overhead that more complex hashing algorithms introduce,
and taking the probability of an actual error happening in the first place, less complicated
algorithms like CRC-32 may as well be more than good enough to detect non-intentional
and random corruption of data.
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2.3 Embedded operating systems

Embedded processing systems are, contrary to general processing systems, designed to
perform a specific task. While general-purpose processing systems often have multiple
processes running, and can kill and spawn new processes according to need during run-
time, embedded processing systems are often limited to just a few running processes which
are automatically spawned when the system starts up and killed when the system shuts
down. Besides, embedded processing systems are also often characterized by more strict
and predictable response time (Table 2.1).

Real-Time requirement Constraints
Hard Missed deadline is system failure
Firm Value of output after deadline is zero
Soft Value of output after deadline degrades over time

Table 2.1: Classifications of real-time requirements

General-purpose processing systems will always run some kind of Operating System
(OS) which manage the systems resources and schedule running processes. Depending on
the complexity and number of concurrent tasks running, may embedded processing sys-
tems also run a light-weight OS, but in many cases, the program running on the system
can be programmed bare-metal without any OS. Bare-metal programming gives full ac-
cess to the systems resources and thus also full control of the systems response time. The
trade-off between running an OS and going bare-metal is given by the complexity of the
system and the real-time requirements. A complex system may be difficult to implement
bare-metal without losing control of how the systems resources are scheduled between
processes, which essentially is what the OS does for you.

An OS can be described as a three-layered system; the hardware or physical space
layer, the kernel space layer, and the userspace layer (Figure 2.5). Each layer will only
interface with the neighboring layer, such that all access to the hardware must go via the
kernel space layer. This assures that the kernel can have full control of what hardware
resources are accessed by software and thereby protect and schedule resources between
software running concurrently on the system.

Figure 2.5: The three layer model describing the structure of operating systems.
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2.3.1 Linux

Linux is a free and open-source general-purpose operating system developed in the model
of and emulating the Unix architecture whose family of operating systems originates from
development done at the Bell Labs research Centre by American Telephone and Teligraph
Company (AT&T) [1];[39]. Linux was originally developed as a research project by Linus
Torvalds as he studied for a master’s degree in computer science at Helsingfors University
in Finland. Linux was originally only developed for the Intel x86 family of processors
but was from the ground up designed to be easy to transfer to other types of processors by
making a clear distinction between hardware-dependent code and code that could easily be
ported to new processor architectures by simply recompiling it. As a consequence, Linux
has since been ported to a wide range of processor architectures including the popular
ARM processor found in many of today’s embedded systems. Linux is today included in
a majority of all embedded device unit shipments worldwide [1] and has become increas-
ingly popular for use in space. Linux is today found both in satellites and in more critical
systems such as SpaceX’s Falcon 9, Dragon spacecraft recently used for delivering people
and cargo to the International Space Station (ISS) [25].

2.3.2 The Yocto Project

Yocto is an open-source development platform for creating custom embedded Linux dis-
tributions. Although being widely adopted across the industry, and used by top processing
system vendors such as Intel and Xilinx, it is considered to have a steep learning curve,
confusing workflow, and long build-time [38]. Some vendors choose to wrap the Yocto
building process in their proprietary Software Development Kit (SDK) and accompanying
work-flow. Although this is great for usability and decreases the barrier of setting up and
customizing a Linux distribution for the vendors’ hardware, it may also add extra over-
head to an already slow building process. One example of an SDK’s which uses Yocto for
building Linux Distributions is Xilinx’s Petalinux SDK [46].

Layer Model

Configuration settings and instructions for distribution builds, are organized in different
layers to logically separate information to help simplify future customization and reuse.
Examples of such layers are the Board Support Package (BSP) layer which contains pri-
marily target hardware-specific configurations given by vendors such as device-tree and
bootloaders, the kernel layer which contains instructions about which kernel drivers to in-
stall such as communication ports and memory controllers, and application layers which
contain applications and dependencies and instructions on how and where to install it on
the root file system. When multiple instances of the same layer are present in a project, the
last built layer will overwrite previous builds, this workflow makes it easy to customize
and reuse existing layers to suit the requirements of a particular product without mak-
ing changes to the already existing layer itself. This approach facilitates the isolation of
hardware-specific configurations such that configurations that are common across different
hardware can be easily shared. [38]
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Project Components

The configuration settings and instructions for Yocto projects may also be referred to as
project components. These components consist of three different data types:
i) Recipes (files with a .bb suffix) provides details about pieces of software, such as where
to get the source code, which patched to apply, and where on the file system software
components shall be placed.
ii) Class data (files with a .bbclass suffix) contains abstract information about how to build
the component.
iii) Configuration data (files with a .conf suffix) contains configuration definitions and
settings to customize the recipe and class data for the particular build. [38].

Packaging

For parsing, executing, and building the different layers and their underlying components
that together make up the OS, a make-like build tool called BitBake is used. BitBake will
also package all components of the OS into various image files. These image files usually
consist of
i) Kernel image: The program that runs in the background and schedules how system
resources accessed by running processes.
ii) device tree: A file describing the target-dependent hardware.
iii)root-filesystem-image: Contains configuration files, software, scripts, and other user-
files that are mounted to the root/top directory of the OS at startup.
iv) Bootloaders: Program that is responsible for setting up memory and other peripherals,
extracting i, ii, and iii to the prepared memory, and updating the program counter to the
memory address of the kernel (see section 2.3.3).

2.3.3 Linux components

The Linux kernel

The kernel is the program that runs in the background and schedules access to the available
hardware in the system. In the OS layer model (Figure 2.5) the kernel is the interface
between hardware and userspace. This also implies that the kernel is hardware specific,
and thus not necessarily portable between different target hardware. In efforts to increase
the portability and reduce the number of forks on the Linux Kernel, device drivers are
often made configurable via kernel modules that can be used to dynamically extend the
kernel and a separate configuration file called a device tree that contains information about
the underlying hardware [32]. This for instance makes it possible for Xilinx to have only
one fork of the Linux Kernel which supports all their products [45].

Device tree

A device tree is a file containing information about what hardware is available to the
kernel. The device tree’s source file (.dts suffix) is formatted as a tree where each hardware
components is described in a separate node as can be seen in Figure 2.6.
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Figure 2.6: Basic device tree syntax [33].

For deployment, the device tree source files are converted to a device tree blob file (.dtb
suffix) which is a binary file that can be loaded by the bootloader and parsed by the kernel
at boot time [33]. To support dynamically configurable hardware such as programmable
logic, Linux has also added support for device tree overlays, which enables the device tree
to be dynamically configured at run time.

Bootloaders

Bootloaders can be defined as a small program that initializes hardware before handing
off execution to a more complex program. To start up a Linux OS a chain of individual
bootloader stages is usually needed. The startup procedure usually begins with a hardware-
specific read-only bootloader implemented by the hardware manufacturer, and proceeds
with a First-Stage Bootloader (FSBL) which is small enough to reside on the On Chip
Memory (OCM) but complex enough to initialize external memory and extract the Second-
Stage Bootloader (SSBL) to it. The SSBL then handles the extraction and hand-off of the
Linux kernel, root file system, and device tree as well as an integrity check and other
mechanisms for selecting what boot configuration to use. The most well popular SSBL
used for embedded Linux Das U-Boot which is described in more detail in section 2.5.

15



Chapter 2. Background

Boot images

A boot image is a type of computer-file which encapsulates a complete description of
one or more components of a system such as the bootloader (section 2.3.3), kernel (sec-
tion 2.3.3), device tree (section 2.3.3). or root file system (section 2.3.3). The most com-
mon format for Linux images is the zImage, which is a minimalistic image only containing
a small header, some code for performing decompression, and the compressed data (see
Table 2.2) Because it can only contain one image it is sometimes referred to as a single
component image [28].

Header
Decompression Code

Compressed Data

Table 2.2: zImage format [14]

Depending on what bootloader is used, the rootfs, device tree, and kernel can be en-
capsulated into a single file, known as a multi-component image. This file often also
comes with additional fields for checksums to detect corrupted images. Checksum tests
together with redundant images can be used for both forward and backward error correc-
tion, which is critical for reliability in noisy environments. The two most popular image
formats bootable with the U-Boot bootloader (section 5.2.1) are the legacy uImage and the
more recent Flattened Image Tree (FIT) [14]. Both can be generated with the mkimage
utility that comes with U-Boot [19] and is also part of the Yocto workflow.

The uImage format includes all images in a single block check-summed with CR32
(see section 2.2.2 for more details). The layout of the uImage can be seen in Table 2.3.

Header
Header Checksum

Data size
Data load address

Entry point address
Data CRC
OS, CPU

Image type
Compression type

Image name
Image data

Table 2.3: uImage format [12]

The other popular image format is FIT, which is a more flexible multi-component
image. For example will FIT type images support multiple different hardware, software,
or kernel configurations in the same image. This image format also supports Integrity
protection for each image with various hash algorithms such as sha1, sha256, and md5 as
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well as the CRC32 algorithm. The FIT image structure is described with an Image Tree
source (.its file) inspired by how the device tree (section 2.3.3) is structured, an example
of this can be found in appendix D. The .its file is taken as an input by the mkimage utility
which outputs an Image Tree Blob (.itb file) which is bootable from U-Boot. [14] [28].

Root file system

The root file system is the file system mounted to the upmost directory in Linux during
boot. It contains all user-space applications and configurations, such as command-line
utilities, kernel modules for additional device drivers not already included with the kernel,
and various configuration files for setting up networking parameters, startup behavior, and
other critical files needed for the system to boot up correctly.

Depending on system requirements the root file system can be mounted on either
volatile Random Access Memory (RAM) or non-volatile flash memory. If mounted to
volatile ram it is usually done so in a driver-less tmpfs configuration opposed to the earlier
method of Ramdev where the root file system was mounted on a simulated hard drive on
ram [18].

2.3.4 Petalinux-tools workflow
Petalinux-tools are according to Xilinx the recommended flow for building Linux systems
for Zynq chips. Petalinux-tools follow a sequential workflow model, making it easy to
use, but giving little room for minimal rebuilds for efficient prototyping and testing. The
sequential workflow follows the steps shown in Table 2.4 [44].

Table 2.4: Petalinux-tools design flow overview [44].

Vivado

Vivado Design Suite is a hardware platform design tool for configuring hardware available,
and for the development and configuration of the FPGA. This tool’s work-flow which will
be described in more detail in subsection 2.4.2, is used to export a Hardware Defintion File
(HDF) for configuring the processing system, and a bitstream for configuring the FPGA.
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petalinux-create

The petalinux-create command creates a new app, module, or project using either
template or source files depending on what is specified when running the command. When
creating a project using a standard template, a set of configuration files and a set of Yocto
components such as a kernel, bootloader, and device tree, are created and added to a layer
called meta-user as shown in Figure 2.7. When an app or module is created, they will be
placed under the recipes-apps and recipes-modules respectively.

Figure 2.7: Template zynq project generated with petalinux-tools.

petalinux-configs

Each petalinux-config step automatically spawns a dialog menu for configuring
the project or any of its underlying components, which in turn edits, or adds files and
components in the corresponding meta-layer in the projects project-specs folder, or either
of the configuration files. In most cases, this usually involves defining a macro describing
the particular configuration which will then be used to include that feature or setting when
the particular component is being built. Although the menu is easy to use, it does not
properly structure the configurations made so that it is easily portable across different
hardware as discussed in section 2.3.2 and should, therefore, be avoided. The menu is
however great for displaying the available settings to show which macros and files are
available, which then can be added to the project using a bash script, for example through
the find and replace command ”sed”, or the append to file command ”>>”.

petalinux-build

The petalinux-build command is used to build either the whole project or individual
components. It will use the Yocto Project to parse the various project components and
packages them accordingly.
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petalinux-package

When the four main components; kernel, root-file-system, device-tree, and the bootloader
are built, they can be packaged into a format suitable for deployment using the petalinux-
package command. The two most interesting files generated by this command is a
BOOT.BIN file containing the first and second stage bootloader, and a image.ub file
containing the kernel, root-file-system, and device tree in a FIT image.

2.3.5 Open Source Linux Workflow
The Open Source Linux (OSL) workflow is an alternative to the much simpler Petalinux-
Tools workflow (subsection 2.3.4) and involves working directly with the source files,
thereby giving full transparency of how the system is set-up. It gives more flexibility for
customization of the kernel and bootloader but is usually not needed unless working with
unsupported state-of-the-art hardware.

2.3.6 File Systems for Block Devices
Mounted media devices that are accessed by an operating system and provide non-volatile
data storage are usually managed by a file system. File systems provide a way of structur-
ing data into files and folders, and additional features such as access control mechanisms,
metadata for keeping track of accesses and modification of data files, and in some cases
mechanisms for preventing corruption of data via ECC. There exists today hundreds of dif-
ferent file systems with different strengths and weaknesses, particularly regarding speed,
and reliability. The default file system used with most Linux hosts is Ext -type file systems
(extended file system), while Microsoft Windows usually uses NTFS (New Technology
File system) or FAT-types (File Allocation Table). Performance analysis of the mentioned
file systems has shown that FAT32 which has a simpler structure and smaller overhead,
thus performing faster block allocation, while Ext3 and Ext4 performed better on more
complex elements such as fragmentation and journaling for better protection against data
corruption [9].

2.4 FPGA design and work flow for Xilinx devices
As discussed in section 2.1 algorithms implemented on programmable logic have a more
flexible datapath which is particularly useful for algorithms that do not rely on sequential
dependencies and that can be decomposed into smaller independent tasks. This is because
programmable logic can implement true pipelining and parallelism allowing more work to
be done on a single clock cycle then what would be the case on a sequential processing
device such as the ARM-based processor found on the Zynq SoC.

2.4.1 General Use-case
An FPGA accelerated algorithm often referred to as a ”hardware accelerator” is controlled
by a Central Processing Unit (CPU) which is responsible for loading the design onto the
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FPGA using a bit-stream, preparing the input data to the accelerator, and finally read the
output when the job is done. Control signals and data are transmitted between the CPU
and FPGA using an AXI communication interface [44]. The general flow can be seen in
Figure 2.8. In cases where the FPGA design is contained in a partial configuration, the
full/static bit-stream must be configured first.

Figure 2.8: General use-case flow.

2.4.2 Vivado work flow

Vivado is a tool by Xilinx used for hardware design and development, including synthe-
sis and analysis of Hardware Description Language (HDL) designs and SoC development
such as pin mappings and peripheral device interface configurations for the processing
system. Vivado is a Graphical User Interface (GUI) tool but supports scripting using
Tool Command Language (Tcl), which provides good support for automated builds and
transparent version control, making it compatible with automated continuous integration
testing frameworks. This section will give a summary of the workflow used for develop-
ing projects that want to utilize the capabilities of partial reconfiguration. A more detailed
tutorial was also made as a part of this literature study and can be found in appendix A.

Overview

Vivado supports a hierarchical module based project workflow, where interconnections
between modules are defined in a hierarchical block diagram. This allows complex designs
to be managed with high-level abstraction. Modules in a block diagram can be either
closed source Intellectual Property (IP) or an open-source Register Transfer Logic (RTL)
design, written using a HDL language like Verilog or Very High Speed Integrated Circuit
Hardware Description Language (VHDL).

Workflow for configuring static design and reconfigurable partitions

i.i) Create a top-level block design including the processing system block.
i.ii) add IP and modules to be included in the static partition.
i.iii) add one black box module (a module that has not been instantiated inside the project)
for each re-configurable partition to be used as a wrapper for all modules on that partition.
i.iv) generate global output products and add a RTL wrapper for top level block design
i.v) synthesize project and export hardware definition file.
i.vi) open the synthesized design and define the size of the re-configurable partition for
each black box module and make a checkpoint
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Workflow for implementing a module to be loaded to a re-configurable partition

ii.i) add source files, making sure the top module is compatible with the black box top
module of the partition.
ii.ii) synthesize as an out of context module by referencing checkpoint from i.vi and defin-
ing the black box module as modules top.
ii.iii) Run verification utility to confirm that design is compatible with the reconfigurable
partition.
ii.iv) generate a full and partial bit-streams.

2.5 Das U-Boot
Das U-Boot is a portable open-source bootloader. It uses a Command Line Interface (CLI),
usually accessed over a serial port which can be used to execute small procedures for ac-
cessing various devices such as memory, programmable logic, and for toggling the volt-
age on General-Purpose Input/Output (GPIO) ports. The bootloader is also able to load
bootable images (section 2.3.3) and perform the necessary integrity checks described in
the image file. A list of all supported commands can be found by typing help in the U-
boot CLI. Additional commands and drivers can be installed by defining the proper macro
in the build options (see subsection 2.3.2). An overview of all the available macros can
be found in the README-file available in the U-Boot Github repository [2]. Along with
the commands, U-Boot also uses environmental variables, which can be used to store se-
quence of commands and memory information such as memory offsets and size. Variables
containing sub commands can be executed as commands by calling the run command be-
fore the variable name. The bootloader is by default configured to run the sub-commands
found in the bootcmd variable at startup, making it possible to fully automate the booting
procedure.
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Design and implementation
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Chapter 3
Development of a student CubeSat

3.1 Physical challenges

3.1.1 Space environment

Planet earth’s magnetic field deflects high energy ionizing particles that could otherwise
cause transient voltage peaks in electronics capable of temporally corrupting electronic
signals or flipping a bit of memory known as a Single Event Effects (SEE). High doses of
ionizing radiation can also cause permanent damage to electronics known as Total Ionizing
Dose (TID). In space, low energy radiation may also cause problems. Earth’s atmosphere
also provides an environment with high heat capacity, effectively low-pass filtering the ex-
treme temperature fluctuations caused by periodic exposure to the sun. Outside the earth’s
atmosphere the temperature difference between day and night is intense, and likewise will
any heat source, such as the heat generated by power-hungry electronics be difficult to
dissipate due to the insulating properties of the vacuum.

3.1.2 Power

Student CubeSats are usually powered using solar panels. This requires both that the
satellite is angled correctly towards the sun, and that the energy harvested can be stored
to provide power during nighttime. To stay within the power budget, the satellite must be
able to turn on and off electronic components on demand. The satellite should also handle
power outage or brownouts without causing permanent damage to components.

3.1.3 Reliability

A student CubeSat is challenging in the sense that it is often both developed and operated
by students with limited prior knowledge in the field. It must, therefore, be expected that
mistakes will be made both during development, testing, and operation. Nevertheless, it is
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important to plan for what can go wrong and implement systems for remote patching and
automatic recovery.

3.1.4 Size and weight constraints

CubeSat is an open standard that defines various constraints for miniature satellites. Cube-
Sat dimensions are specified in units, where one unit has a size of 10cm3 and about 1kg
weight. By adhering to the CubeSat standard when developing a satellite, the cost as-
sociated with launching to orbit is drastically reduced, largely because the deployment
mechanism does not have to be designed from scratch, and because multiple independent
satellites can be deployed simultaneously [37].

3.2 Practical challanges

3.2.1 Parallel development

One challenge when working in a multidisciplinary team is to coordinate how to do co-
operative development across multiple disciplines. For this to work smoothly it is impor-
tant to have a clear plan for the different requirements that makes up the system. These
requirements must be defined in a system design plan before development can begin. Re-
quirements that have not been defined in the system design plan, and thus also not properly
tested, is likely to cause problems at a later stage in the development phase when compo-
nents of the system are being integrated. For inexperienced developers the system design
plan is likely to be incomplete before development begins, this is because the development
in itself is an educational process where new limitations and not yet thought of possibil-
ities are constantly being discovered. An example of a co-operative design flow between
hardware, software, and firmware can be seen in Figure 3.1.
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Figure 3.1: Hardware-Firmware-Software co-design flow.

3.2.2 Continuity and knowledge transfer
Long term student projects, in general, suffer from high throughput of involved students
and a lack of long-term commitment, often limited to 1-2 semesters of work. Students
participating in the project must therefore often rely on work done by previous students
no longer involved in the project. To succeed it is therefore important to implement good
practices for how knowledge is passed on, and to split up larges tasks in smaller sub-tasks
with clearly defined boundaries and requirements.

3.2.3 Budget
The CubeSat platform was developed as a response to rapidly evolving technology and
tight budgets, which required shorter and cheaper mission timelines, especially concern-
ing development. To meet the budget requirements, CubeSats usually take advantage of
commercially available technology. The combination of rapid development and the use
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of commercial-grade hardware not properly tested for the space environment have largely
contributed to the low success rate of CubeSat missions [3].
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Chapter 4
On-board processing System for the
HYPSO mission

This chapter describes the main considerations and solutions chosen for the firmware of
the OPU to be implemented on the payload HYPSO spacecraft. The first section gives
an overview of all the modules on the satellite, their purpose, and their interconnects.
Finally, a more in-depth look at the hardware, firmware, and software of the OPU are then
presented.

4.1 System architecture

4.1.1 Overview

The HYPSO spacecraft is built on the development platform M6P provided by NanoAvion-
ics, which is a company specialized in providing the subsystems and integrated spacecraft
buses for custom CubeSat missions. The M6P bus is confirming to the 6U CubeSat spec-
ification [36]. Approximately one cube of the six-unit CubeSat is allocated for the OPU
(shown in Figure 4.2), while the remaining space is allocated for sensors and communica-
tion. A model of the satellite can be seen in Figure 4.1.
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Figure 4.1: The HYPSO Satellite, showing features such as the HSI and RGB camera, solar arrays,
and UHF antennas.

An overview of the internal system components of the satellite can be seen in Fig-
ure 4.2 and shows the physical placement of some of the subsystems such as the Hyper-
spectral Imaging (HSI) and RGB camera, radio communication, attitude determination
and control, and the OPU. This thesis will primarily focus on the OPU also referred to as
PicoBoB, which is responsible for controlling the payload instruments and processing the
payload data.
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Figure 4.2: Overview of the different modules on the satellite and their placement.

4.2 On board processing unit

4.2.1 Overview

The OPU consists of a PicoZed System-on-Module (SoM) and a Breakout Board (BoB) to-
gether usually referred to as PicoBoB. It is responsible for collecting and processing data
from sensors on board the payload of the satellite, primarily the hyper spectral imaging
sensor and RGB-camera. Most modules on the spacecraft are off the shelf products devel-
oped by NanoAvionics, except for the payload consisting of the OPU, HSI and RGB cam-
eras (Figure 4.3) which are customized by students as part of the HYPSO research project.
Both instruction data and payload data are transmitted between modules via Controller
Area Network (CAN) using the CubeSatProtocol (CSP), or by properitarian protocols via
ethernet or USB.
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Figure 4.3: Overview of modules interfacing with the OPU [15].

The OPU is powered by the Electronic Power System (EPS) which can be controlled
via the Payload Controller (PC) such that a power reset can still be made if the OPU stops
responding. Additionally all communication between ground and OPU is piped through
the PC according to the M6P Platform standard [43].

4.2.2 Hardware

The PicoBoB consists of a PicoZed 7030 Rev. E SoM and a BoB to act as a mechanical,
electrical, communication, and the thermal interface between the PicoZed SoM and the
M6P satellite platform and payload instruments [15]. The PicoZed SoM was manufac-
tured by Avnet and consists of a Xilinx Zynq XC7Z030-1SBG485 AP, commonly referred
to as Zynq-7000, a 128 Mb QSPI NOR and 8 GB eMMC Flash storage, 1 GB DDR3
RAM, and a USB and ethernet Physical Layer (PHY) interface controller [4]. The student
developed BoB contains interface connectors, SD-Card readers, voltage regulators, and
logic level shifters. A 3D rendering of the BoB developed by Amund Gjersvik can be seen
in Figure 4.4.

Figure 4.4: 3D rendering of the breakout board for the onboard processing system [15].
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4.2.3 Operating system and services

The OPU runs Linux, which enables a command-line interface for monitoring and man-
aging the systems resources and for starting or stopping services. The command-line in-
terface is accessed through software called opu-services which communicates using CAN
through the PC. In addition to the command-line interface, the software also provides file
transfer services and commands for capturing and processing data. Figure 4.5 shows the
layering of software, firmware, and hardware components according to the layer model
presented in section 2.3. Note that opu-services is not the only service that will be running
on the system. Other running services include dropbear for ssh access used during de-
velopment and various camera-related services included with the camera drivers. Kernel
modules running on the system include drivers for interfacing with the Direct Memory
Access (DMA) reserved memory region, timestamping driver for accurate image frame
synchronization, and userspace IO for direct access to hardware that does not require a
separate kernel module [21].

Figure 4.5: Simplified layer model of hardware, firmware, and software on the OPU.

4.2.4 Software and firmware updates

Software updates are updates of executable file(s) stores on mounted flash memory and
executed by the OS after booting. Firmware updates are updates of the whole FIT im-
age, which consists of the kernel, device tree, and root file system (section 2.3.3), which
may also include updates of the software and programmable logic. The reasoning be-
hind distinguishing firmware and software updates are primarily due to their size, and the
level of risk associated with performing such updates. As shown in Figure 4.6, back-
ward error recovery for firmware updates are done by automatically falling back to the
fallback/golden/non-updateable image if the primary/updateable image fails to boot, or
software fails to load after the image has booted a set number of times in a row. For soft-
ware updates, the exact fallback mechanism is defined by the firmware, but is by default
set so that software is first loaded from the firmware’s root file system, and only if exited
loads the software which originates from a software update. This is done to ensure that the
system will always be in a known state, defined only by the FIT image after a reboot.
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Figure 4.6: Firmware and software execution flow and their memory locations

4.2.5 Programmable logic
The Zynq-7000 SoC includes an Artix-7 grade FPGA which is used to do accelerate most
of the heavy image processing steps. The FPGA is configured to have one static region
consisting of a timer module for timestamping of HSI frames [23], a DMA module op-
timized for three dimensional DMA access [13], and the general routing of various Ex-
panded Multiplexed I/O (EMIO) pins on the Zynq; and a dynamic region consisting of
various image processing accelerators to be reconfigured on the run in the image process-
ing pipeline such as compression [8, 29], smile and keystone correction [27], and various
implementations of dimensionality reduction and target detection to filter out the most use-
ful data to transfer back down to the ground station [5].

Deciding on the size and resources to be included in the reconfigurable partition of the
FPGA is defined by the most resource-demanding reconfigurable module and is limited by
the number of resources available on the FPGA, and how much time it is allowed to take
to perform a reconfiguration.
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Integration and Testing of planned designs are perhaps the most time-consuming part of
any development project. This chapter will describe some of the details of how the design
was implemented on the hardware and what tools and methods that were used to make this
process less painful, both for current and future students.

5.1 Development framework
The development framework describes what tools, methods, and best practices that are
used during development. Having a proper framework prepared before starting develop-
ment can be what decides how successful the development project will be. A good devel-
opment framework is something that should help with structuring the project and encour-
age cooperation between the project’s team members. A good development framework
should also be quick and easy to set up and be strict in defining what version of software
to be used to avoid incompatibility issues between different team member’s setup.

5.1.1 Macro management
To help with managing the work done by developers at the macro level a method called
Kanban was used. Kanban is a way of keeping track of work that has to be done and to
better uncover bottlenecks and dependencies across subtasks and thereby making it easier
for team members to prioritize what to work with. Figure 5.1 shows the basic layout of the
Kanban board used for this development project, a snapshot of the actual Kanban board
mid-development can be seen in appendix M. One potential pitfall with using the Kanban
method is that it can act as a replacement of the initial design plan, this is especially true
for design plans that are lacking details about the various requirements, or if the design
plan is buried in a documents archive and where the perceived threshold to update it is too
high. As a result of deviating from the initial design plan more responsibility is put on the
developers who make non-documented changes to properly define requirements for their
design and verify that it is working as expected.
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Figure 5.1: Layout of the Kanban board. Issues represents detected problems or missing features.

5.1.2 Source control

To keep track changes made to the source code and hardware design the distributed ver-
sion control system Git was used. Git allows developers to work on separate branches
dedicated to solving a particular issue (See subsection 5.1.1 for details about how issues
are organized). By keeping ongoing work on a separate branch one can assure that the
developer can work in a contained environment and that ongoing changes do not cause ex-
tra problems for other developers working on separate issues. The common branch which
contains all completed work is normally called the master branch. Sub-projects/modules
that can be developed and tested individually can be separated into what is called repos-
itories which contains their own set of files, branches, and version history. Repositories
are recursive which means repositories can contain child repositories, making it easy to
structure large projects. All repositories were hosted on GitHub which also provides inte-
gration with issues and Kanban. A typical workflow when developing using Git is:
1) Download latest version of master branch from remote repository
git checkout master
2) Create a new feature branch to work on
git checkout -b branch_name
3) Stage all changed files.
git add .
4) Commit all staged files
git commit -m "commit message describing what is changed."
5) Create a pull request in GitHub to request committing work to mater branch.
5) Merge and delete feature branch.

5.1.3 Knowledge transfer considerations

Knowledge transfer was primarily done through issues and readme files available in the
repositories. By using the Kanban method, cooperation between developers was strongly
encouraged, which forced developers to write understandable documentation on the work
done and how to recreate it. Besides, documentation covering the initial design plan, test
plans, and test results were also created, some of which can be found in appendix B and
C.
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5.1.4 Development software
Development tools and software necessary for software and firmware development was
automatically set up using Docker. Docker is a virtualization tool for setting up and con-
taining the development environment, assuring full control of what packages and versions
are installed on the development workstation. This was used to aid productivity and re-
producibility of work done across team members. For the firmware of the OPU which is
the primary focus of this thesis, the Petalinux SDK version 2019 was used for building the
Yocto Project and packaging the resulting Linux distribution and bootloader to run on the
OPU system. The Petalinux SDK has around 50 additional package dependencies which
are required for the SDK to work properly. The installation of these is automatically done
through a docker file (appendix H), which is a script that can be executed via docker to set
up the work environment.

5.1.5 Remote access
The ability to work on a development project remotely can sometimes be necessary. Due
to very restrictive access to the lab which was enforced by the University as a response
to the ongoing pandemic, having remote access to hardware in the lab that was neces-
sary for doing development was important. For accessing the lab computer remotely, the
cryptographic network protocol Secure Shell (SSH) was used. It was also found to work
particularly well when used together with Visual Studio Code and the Remote Explorer
extension.

In addition to having remote access to hardware, it was also important to have a channel
for communication between team members. For this purpose, the communication platform
Slack was used for text-based and one-to-one communication, and the video conferencing
software Zoom was used as a replacement for larger gatherings such as design reviews and
weekly Kanban meetings.

5.2 Integration

5.2.1 Firmware
Bootloader and error detection and recovery

The OPU uses the bootloader Das U-Boot for booting up the OS. This bootloader binary
is stored on the bootloader partition of the on chip NOR flash memory which is accessible
by the processing system through Queued Serial Peripheral Interface (QSPI) ((Table 5.1).
The bootloader is configured to load a FIT image containing a kernel, device tree, and
root file system. Configurations of the bootloader are primarily done through environmen-
tal variables stored either on file or included in the bootloader binary. At power-on, the
bootloader will enter a setup sequence where memory and drivers are loaded, and where it
will try to load an environment from the environment partition on the NOR flash memory
shown in Table 5.1. The environment is protected with a CRC32 checksum, with auto-
matic fallback to a clean environment present in the bootloader image. Some of the most
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important variables which are defined in the environment are bootcmd, bootm low,
bootm size, loadaddr, bootcounter, bootlimit, and altbootcmd.

Offset Partition Name/Content
Bootloader

0x000000 BOOT.BIN
0x200000 BOOT.BIN
0x400000 BOOT.BIN

Environment
0x600000 env blob.bin

Table 5.1: On-chip QSPI NOR flash memory partition layout as defined in the device tree (appendix
F)

The content of the bootcmd variables will automatically be executed after the initial
bootloader setup sequence. The bootcmd and altbootcmd variables contain ordered lists
of boot commands for various images at various memory locations such that if the first
boot command fails to load, the next one in the list will be executed. The bootcounter
variable holds the number of times the environment is loaded by the bootloader, if no valid
environment is present, it will default to 0. To keep track of this number, the environment
is automatically saved to flash during each boot, and erased from within the operating sys-
tem when the system has booted up. The bootlimit variable defines the maximum value
of the bootcounter until the bootloader switches from executing the content of bootcmd
at startup to the content of altbootcmd, thus making it possible to invoke an alternative
booting priority, making it possible to perform backwards error recovery in the event of
a software bug on the primary image. The layout of the bootcmd and altbootcmd
variables can be seen in Table 5.2 and 5.3.

Command Description
fatload mmc 1 $loadaddr bitstream.bit; Program FPGA.
fpga loadb 0 $loadaddr $filesize;
fatload mmc 0 $loadaddr image.ub; Boot image from primary SD.
bootm $loadaddr;
gpio toggle 46; Toggle SD-Card arbiter and
fatload mmc 0 $loadaddr image.ub; boot image from fallback SD.
bootm $loadaddr;
fatload mmc 1 $loadaddr image_golden.ub; Boot golden image from eMMC.
bootm $loadaddr;
reset; Restart boot sequence.

Table 5.2: Sequence of commands executed by U-Boot as defined in the bootcmd variable.
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Command Description
fatload mmc 1 $loadaddr bitstream.bit; Program FPGA.
fpga loadb 0 $loadaddr $filesize;
fatload mmc 1 $loadaddr image_golden.ub; Boot golden image from eMMC.
bootm $loadaddr;
gpio toggle 46; Toggle SD-Card arbiter and
fatload mmc 0 $loadaddr image.ub; boot image from fallback SD.
bootm $loadaddr;
gpio toggle 46; Toggle SD-Card arbiter and
fatload mmc 0 $loadaddr image.ub; boot image from primary SD.
bootm $loadaddr;
reset; Restart boot sequence.

Table 5.3: Sequence of commands executed by U-Boot as defined in the altbootcmd variable.

FIT images are together with payload data, software and configuration files kept on
NAND Flash block memory devices. For simplicity it was decided to use FAT32 filesystem
for the FIT images as this was the only supported file system when booting directly from
sd card. The file-system and partition layout can be seen in Table 5.4 and 5.5.

Parition File-system type Content
1 FAT32 image.ub
2 Ext4 opu-services + payload data

Table 5.4: SD-Card (mmc 0) partition layout and file-system.

Parition File-system type Content
1 FAT32 image golden.ub + bistream.bit
2 Ext4 opu-services (fallback) + payload data

Table 5.5: eMMC (mmc 1) partition layout and file-system.

The loadaddr and bootm size variables defines the location on RAM where the
FIT image is to be loaded and extracted to during boot. The image will be loaded some-
where between loadaddr and the end of the memory and extracted somewhere between
bootm low and bootm size. The memory address is a hexadecimal number, with each bit
representing one byte of memory. Table 5.6 shows how the memory is mapped by U-Boot
during booting, while Table 5.7 shows how the memory is mapped after being handed over
to the OS.
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Address Content
0x00000000 U-Boot
0x00008000 Kernel code and data
0x0b68fb28 Device Tree
0x0ffffa4a Ramdisk
0x10000000 $loadaddr and $bootm size
0x10000104 Linux Kernel Image
0x103f6cd8 RAMDisk Image (gzip compressed)
0x103f30ec Flattened Device Tree blob
0x40000000 END

Table 5.6: DRAM memory mapping during booting.

Address Content
0x00000000 System RAM
0x30000000 Reserved Cube DMA
0x40000000 END

Table 5.7: DRAM memory mapping after booting.

As discussed in subsection 2.1.4 data may become corrupt after deployment. Mech-
anisms for error detection and recovery was therefore implemented both for bootloader
and FIT images. The bootloader was configured to use MD5 checksum (section 2.2.2)
for verification of the content of the U-Boot image with three copies flashed to the QSPI
NOR Flash memory for redundancy. The FIT image was checksummed with SHA1 (sec-
tion 2.2.2) which was the default algorithm for FIT images built with the Petalinux SDK.
In the event of a failed checksum, the fallback golden FIT was set to be loaded. It was
not decided to add any extra redundancy as corruption of the primary FIT image can be
replaced following the procedure of a firmware update. For protection of temporary data
stored on the external Dynamic Random Access Memory (DRAM) during processing a
proprietary ECC was available on the on-chip memory controller of the Zynq-7000, and
could be enabled in the FSBL through Vivado. Enabling the ECC would however limit the
amount of usable DRAM to 50% of its original capacity which was not within the require-
ments of the image-processing software running on the OS. FPGA solutions for ECC was
also considered, but would not allow protection of the memory managed by the kernel, as
this would either require support for partial reconfiguration of the FPGA which was still
under development; or removal of the already implemented support for full reconfiguration
of the FPGA within the OS as discussed in subsection 5.2.2.

Operating system

The OS on the OPU uses a customized Linux distribution called Petalinux provided by
Xilinx and developed with Yocto via the Petalinux SDK (subsection 2.3.2). The OS uses
version 2019.1 of the official Linux kernel from Xilinx [47]. The Petalinux SDK auto-
matically configures the kernel according to a hardware description file. The hardware
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description file was exported from Vivado, which is the tool used for managing what hard-
ware resources that are available to the zynq chip and for setting up the programmable
logic. An overview of the available resources on the OPU can be seen in Figure 5.2. Most
of the hardware-specific configurations are not directly configured in the kernel, but rather
included in the device tree blob as discussed in section 2.3.3. The complete device tree
source of the OPU can be found in appendix F.

Figure 5.2: Overview of the resources available on the Zynq SoC as configured with Vivado.

File system

The OS was set up to use a RAM based root file system, implemented with a tmpfs config-
uration. The file system is integrated into the upgradable FIT image stored on NAND flash
memory, and loaded to RAM during booting, as described in section 5.2.1. Loading the
root file system to volatile memory during booting assures that all files are quickly accessi-
ble and that any configuration of the file system that would affect the state of the system is
reset after each boot. One of the potential drawbacks of storing the file system on RAM is
that it decreases the amount of data memory available for the applications running on the
OS. To solve this and decrease the chance of running out of memory, memory swapping
was enabled. By allocating a certain size of the slower flash memory for swapping, the
kernel would extend the virtual data memory available, and automatically swap the less
frequently used data to the flash memory whenever there is no more space left on the RAM.

Setting up the kernel to use tmpfs configuration was enabled by default, and not many
changes needed to be performed. However, to assure enough memory was allocated by the
bootloader when loading the rootfs, the variable bootm size had to be defined to a proper
value. Additionally, the macro CONFIG_SYS_BOOTMAPSZ had to be undefined in the u-
boot’s configuration file before the bootloader was built. Additionally, the swapspace had
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to be manually enabled during booting using the swaponoff package which was installed
on the OS by defining the CONFIG_util-linux-swaponoff macro in the kernels
configuration file (appendix G).

5.2.2 Programmable logic

The FPGA on the Zynq SoC is programmed with a bitstream file which can be exported
from Vivado. To support dynamic reconfigurability of the FPGA during operations from
within the OS userspace, an FPGA driver and the fpga-manager package had to be installed
on the OS. This was done by defining the macro CONFIG SUBSYSTEM FPGA MANAGER,
CONFIG SUBSYSTEM DTB OVERLAY, CONFIG CMA, and CONFIG DMA CM in the ker-
nels’s configuration files. Also, the bitstreams exported from Vivado had to be converted
to a bin file to be supported by the FPGA Manager. This could be done using the boot-
gen utility included with Yocto and Petalinux SDK. The Procedure for this conversion
was added to the automatic build script which is discussed in a bit more detail in subsec-
tion 5.3.2. As part of this thesis, a quick guide on how to build re-configurable modules
and bitstreams was made and can be found in appendix A.

5.2.3 Software

The software running on the OPU is packaged into one executable called opu-services.
opu-services provides the necessary communication interface for direct access to the OS
unix style command-line interface, for up and downlink file transfer, for accessing cam-
eras, and for controlling the image processing pipeline. It is therefore critical that opu-
services automatically starts up when the OS has booted. This was assured by adding two
commands in the startup script for starting up opu-services, with the first command trying
to start from the ramdisk image, and the second one for starting from the mounted flash
media in case the first one fails to start or is exited. This also assured that the second opu-
services binary which was executed from flash memory could easily be updated without
needing to perform a complete update of the whole FIT image (appendix G).

File transfer and remote shell access

For uploading and downloading files to the satellite, opu-services implements a file trans-
fer sub-service using the CSP over the CANBUS network. The design and implementation
of the file transfer system were done by Magne Hov as part of his master thesis, details
regarding functionality and performance are documented in [17]. In addition to file trans-
fer, a sub-service for executing shell commands directly on the OPU’s Linux terminal was
also implemented. Both file transfer and remote shell access give the ground station full
access to all data files on the OPU, including the access needed for performing over the air
firmware and software updates and for performing reconfiguration of the FPGA. **/*-/*-*/
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5.3 Testing

Testing should be done frequently in all stages of development. Failing to do proper test-
ing early in a project will result in more time spent debugging problems at a later stage of
the development, and may even result in a flawed design getting deployed. It is therefore
important that a plan for how testing shall be performed is established early, and before
development has begun. This plan should consider the boundary of the tests to be per-
formed, such that i) the tests can be performed regularly without stealing to much time
from developer and ii) that the tests accurately considers the limitations of the surrounding
system. The surrounding system is often simplified, either to save time or because the
surrounding system is incomplete. It is therefore often necessary to do extra tests called
integration testing when all separate parts of the design are complete. The amount of work
associated with integration will depend on how accurate the initial development tests are
performed.

5.3.1 Test methods and setup

The test methods used during this development project can be split into two general types;
feature testing and system testing. Feature testing is a private test setup used for testing
ongoing work that is not yet ready to be integrated into the test setup of co-developers.
System testing is the public test setup and considered the latest and greatest stable release
and used for design reviews, integration tests with outside systems, and generally for mon-
itoring the overall progress of the project. The system testing setup should always run the
latest release on the project’s repository’s master branch.

Due to limited available hardware for feature testing, some developers had to use de-
velopment boards such as ZedBoard for feature testing or coordinate their use of the avail-
able PicoBoBs. The development boards had slightly different hardware and thus required
some modifications to the firmware which was developed for PicoBoB.

Feature test setup

The feature test setup shown in Figure 5.3 had the test boundary defined at the CAN in-
terface between PC and OPU (see Figure 4.3). In addition to the CAN interface, a UART
interface was included in the test setup to show additional information about the status
of the OPU before the system had booted up and was accessible using the CSP interface
established over CAN with opu-services. For certain software development tasks, an extra
ethernet connection to the operator computer was also used for faster file transfer capabil-
ities. More details of this test setup can be found in appendix B.
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Figure 5.3: Feature testing setup used for firmware development.

System Test Setup

The system test setup shown in Figure 5.4 had the boundary defined at the CAN interface
between the PC and the EPS, and other modules on the M6P bus (see Figure 4.3). A more
detailed description of this setup can be found in [6].

Figure 5.4: System testing setup used for integration testing.

5.3.2 Building

To easily reproduce and keep track of the configurations made to the system the whole
build process was scripted in bash. The script consisted of a nested set of sub-scripts to
raise the level of abstraction and thus make the process more systematic. The flow of
these scripts can be seen in Figure 5.5, with each separate sub-script is shown in grey.
Using this flow the whole build process could be performed running the single command;
build all.
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Figure 5.5: Flow diagram of the scripted build process

The complete building process takes 5-30 min depending on build configuration and
workstation used. The script supports input arguments for selecting between building for
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the prototyping ZedBoard or for the PicoZed which will be used for the HYPSO-1 mis-
sion, it also supports options for building both the primary and golden image, or for just
building the primary. A breakdown of the sub-scripts relevant to the petalinux-tools work-
flow can be seen in Table 5.8.

Script name Petalinux-tools commands executed
load firmware petalinux-create

petalinux-config –get-hw-description
load software petalinux-create -t apps

petalinux-create -t modules
build files petalinux-build

petalinux-package

Table 5.8: Script and petalinux-tools relationship.

Using bash scripts for automating builds are generally not considered a good practice
as it is unable to automatically detect dependencies across builds and to minimize what
has to be rebuilt. However, after running the script once, the complete project is set up and
can be changed and rebuilt more efficiently using the petalinux-tools makefile commands
described in subsection 2.3.4. Making changes to the actual underlying hardware defined
by the hardware definition file exported from Vivado would however require a complete
rebuilt of the project.

5.3.3 File system performance test

Memory access latency is often the main bottleneck in processing systems. It was therefore
thought interesting to measure and compare the performance of the three largest memory
devices on the system; the external DRAM where the root file system was mounted, the
eMMC, and the SD-Card. It was also interesting to see if there was any measurable dif-
ference in performance between the FAT or Ext4 File System. To test the performance,
various read and write operations with a 64MB large test data spread across 1, 64, and 65K
blocks, with a block size of 64MB, 1MB, and 1KB, respectively was performed, while the
real-time latency between each operation was measured. The full test script made for this
test can be found in appendix I, and the recorded raw data can be found in appendix J.

General performance overview

To get the general performance across the different devices and filesystems the average
throughput (both read and write) with no caching was calculated and plotted as shown in
Figure 5.6. The same graph also shows the overall best-recorded performance, which for
all devices was when the 64MB test data was divided into 64 1MB blocks.

46



5.3 Testing

SD-Card (Ext4) SD-Card (FAT) eMMC (FAT) DRAM (TMPFS)

50

100

150

200

250

300

60
67 63

140

111 112 112

288

Device

A
ve

ra
ge

T
hr

ou
gh

pu
t[

M
B

/s
]

average best

Figure 5.6: Average and fastest recorded throughput for various devices and file systems on the
OPU.

Read vs. write performance

The average and best recorded read and write performance plotted in Figure 5.7 shows
an up to 50% difference in the recorded throughput between reading and writing data.
Comparing the two file-systems FAT and Ext4 indicated that the FAT file-system might
be slightly faster on average, supporting the findings of previous research summarized in
subsection 2.3.6.
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Figure 5.7: Average read and write throughput for various devices and file systems on the OPU.

Performance with caching enabled

Often the same data is accessed multiple times, in such cases, the Linux Kernel can dras-
tically improve the read throughput by temporally storing a copy of previously accessed
data on a RAM. Measuring the read performance with caching enabled showed that the
read throughput for all devices increased to the same speed as for the DRAM (TMPFS)
device. For more details on these results see appendix J.

5.3.4 Dynamic reconfiguration of FPGA performance
The re-configurable modules briefly mentioned in subsection 4.2.5 were not ready to be
integrated into the image processing pipeline on the system and could therefore not be
used to benchmark and compare the throughput using full and partial reconfiguration to
toggle between the different processing cores. However, as a proof-of-concept and a way
to gather some performance data, a dummy hyper-spectral imaging processing pipeline
was developed. The pipeline consisted of four steps, with each step simulating one op-
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eration performed on the complete image, such as compression, correction, and filtering.
However, since only the achieved throughput and not the actual result of the data was rel-
evant for the test, the various steps were simply replaced with alternating bitwise left and
right shift operation (Figure 5.8).

Figure 5.8: The dummy hyper-spectral image processing pipeline used for testing.

The pipeline was tested using hardware accelerators implemented on the FPGA and
through software (appendix K). To simulate a more complex operation where the re-
sources on the FPGA would have to be time-multiplexed, the FPGA was dynamically re-
configured between each step, one of these tests performed full reconfiguration while the
other performed partial reconfiguration using a predefined reconfigurable partition. The
resulting latency for various cube dimensions using the three methods can be seen in Fig-
ure 5.9. Note that in this particular case the configuration data/bitstreams are first loaded
from the SD-Card before loaded onto the FPGA, the extra latency for the smallest cube is
likely related to underlying processes running on the OS and possibly the use of caching
and prefetching/read-ahead of the files on the SD-Card to reduce the load time, and is not
related to the size of the data cube.
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Figure 5.9: Comparison between software and FPGA accelerated hyper-spectral image processing.

As shown in Figure 5.9, partial reconfiguration enables faster switching between pro-
cessing cores and will thus achieve lower latency compared to full reconfiguration. This
offset is defined by the size of the re-configurable partition which again must be large
enough to fit the largest core to be loaded onto that partition.

5.3.5 Error detection and recovery tests

Bootloader Image

To protect against the possible corruption of the bootloader image, triple redundancy was
implemented. To test that this was working as intended, each of the bootloader images
were sequentially made corrupt by erasing a small part (10 byte) of the file as shown in
Figure 5.11. The bootloader file named BOOT.BIN consisted of a FSBL and the u-boot
SSBL according to the boot information file shown in Figure 5.10.

the_ROM_image:
{

[bootloader] images/linux/zynq_fsbl.elf
[checksum=md5] images/linux/u-boot.elf

}

Figure 5.10: The bif file describing the layout the bootloader image.
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5.3 Testing

The procedure for performing this test was the following:

1) build deployment images using the build all script found in the opu-system reposi-
tory.
2) Copy the resulting boot files to the SD-Card of the DUT, assure boot mode is set to QSPI
(see appendix B), and turn on the power and wait for the procedure to complete, indicated
by a ”FLASHING FINISHED. YOU CAN TURN OFF THE DEVICE” message on
the UART serial terminal.
3) Switch to SD boot mode and assure that the system boots up.
4) turn off the power, change the bootmode to QSPI, and enter the U-boot terminal by
hitting enter multiple times as soon as power is turned on. Once in the terminal, write the
following commands to erase a portion of the bootloader:
sf probe 0 0 0
sf erase 0x100000 +0x10
5) Repeat step 3.4 with increasing offset for the data to erase, such as 0x220000 and
0x430000 as illustrated in Figure 5.11. 6) After all three bootloader files have been
corrupted the device will fail to start.

Figure 5.11: Overview of BOOT.BIN content and how the bootloader was corrupted to test the
automatic fallback mechanism.

The test found that the md5 checksum was able to detect the corrupted bootloader and
proceed to load the backup. It was however also found that corrupting data within the
zynq fsbl caused the system to fail to start or become unresponsive. This was expected as
this region is not validated with a checksum.

Bootloader environment

The SSBL (U-boot) uses an environment file to store bootloader information such as the
number of attempted boots. This data is automatically checked using CRC-32 before bee-
ing loaded by U-boot. To validate that the CRC-32 checksum is working as intended a
small chunk of the env blob file (Table 5.1) was erased by running the following com-
mands in the u-boot terminal:
sf probe 0 0 0
sf erase 0x600000 +0x10
This erases 10 bytes of data from the U-boot environment, which causes the CRC test
during booting to fail and thereby the boot environment to be reset to the original values
(shown in Figure 5.12). The complete log of the test can be found in appendix L.
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Loading Environment from SPI Flash...OK
Warning: Bootlimit (5) exceeded. Using altbootcmd.
Hit any key to stop autoboot: 0
Zynq> sf erase 0x600000 +0x10
SF: 65536 bytes @ 0x600000 Erased: OK
Zynq> reset
resetting ...
Loading Environment from SPI Flash... *** Warning - bad

CRC, using default environment↪→

Hit any key to stop autoboot...

Figure 5.12: Summary of the test result of the CRC-32 checksum and fallback in U-boot from
appendix L

FIT image

Each of the three components (kernel, ramdisk, and device tree) of the FIT image is pro-
tected by a SHA-1 checksum as discussed in section 5.2.1 and shown in appendix D. This
test was done to validate that this functionality was working and that the bootloader was
able to automatically fall back on the golden backup image. To test this the necessary files
were first built by running the build all script, copying the generated files to the SD card of
the DUT, and let it automatically flash the bootloader and golden image to the correct flash
devices as specified in Table 5.5 and Table 5.1. A successful flashing was confirmed by
no error messages in the u-boot terminal as shown in Figure 5.15. Once this was complete
the DUT was changed to boot from QSPI.
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Flashing UBOOT
SF: Detected n25q128 with page size 256 Bytes, erase size

64 KiB, total 16 MiB↪→

687056 bytes read in 60 ms (10.9 MiB/s)
SF: 720896 bytes @ 0x0 Erased: OK
device 0 offset 0x0, size 0xa7bd0
SF: 687056 bytes @ 0x0 Written: OK
SF: 720896 bytes @ 0x200000 Erased: OK
device 0 offset 0x200000, size 0xa7bd0
SF: 687056 bytes @ 0x200000 Written: OK
SF: 720896 bytes @ 0x400000 Erased: OK
device 0 offset 0x400000, size 0xa7bd0
SF: 687056 bytes @ 0x400000 Written: OK
Flashing golden image
32756112 bytes read in 2075 ms (15.1 MiB/s)
32756112 bytes written
Flashing bitstream
5980026 bytes read in 394 ms (14.5 MiB/s)
5980026 bytes written
SF: Detected n25q128 with page size 256 Bytes, erase size

64 KiB, total 16 MiB↪→

SF: 131072 bytes @ 0x500000 Erased: OK
FLASHING FINISHED. YOU CAN TURN OFF THE DEVICE

Figure 5.13: U-Boot log indicating the successful flashing of bootloader and golden image to QSPI
and eMMC.

The primary image located on the SD-Card as described in Table 5.4 was then cor-
rupted using a hex editor to simulate a bitflip as shown in Figure 5.14. Turning on the
DUT and a reading of the serial terminal (Figure 5.15) reported a bad data hash for the
kernel and proceeded to load the golden image.

53



Chapter 5. Integration and testing

Figure 5.14: The bit flip on the primary image was simulated by editing the file content using a hex
editor.

## Loading kernel from FIT Image at 10000000 ...
Using 'conf@system-top.dtb' configuration
Verifying Hash Integrity ... OK
Trying 'kernel@1' kernel subimage

Description: Linux kernel
Type: Kernel Image
Compression: uncompressed
Data Start: 0x10000104
Data Size: 4140776 Bytes = 3.9 MiB
Architecture: ARM
OS: Linux
Load Address: 0x00008000
Entry Point: 0x00008000
Hash algo: sha1
Hash value:

85181abd564c701c7ffeb78b9898d9744a6dbd4c↪→

Verifying Hash Integrity ... sha1 error!
Bad hash value for 'hash@1' hash node in 'kernel@1' image

node↪→

Bad Data Hash
ERROR: cant get kernel image!
Booting from eMMC

Figure 5.15: U-Boot sucessfully detecting a corruption of the FIT image and proceeding to boot
from eMMC.
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File integrity checking with MD5

Sometimes it is useful to verify the integrity of the remote files to assure that the files have
not become corrupted or have been tampered with. To test this functionality one file that
was identical on both the local and remote system, and one file that had been tampered
with was check-summed. The tampered file was made corrupt using the same method as
shown in Figure 5.14. As shown in Figure 5.16 the hash value was identical for the two
identical files and different for the tampered file as expected. The test also showed that
changing the name of the file did not have any effect on the hash.

Local:

hypso@WS1:˜/Desktop/tmp$ md5sum image.ub
c6d52f71da4a7674b795e8b204f95e4c image.ub

Remote (OPU/DUT):

root@f82945d-primary:/media/sd-img# md5sum image.ub
c6d52f71da4a7674b795e8b204f95e4c image.ub
root@f82945d-primary:/media/sd-img# md5sum

image_tampered.ub↪→

ae0d446615a6df1107461fd9aa35f8a9 image_tampered.ub
root@f82945d-primary:/media/sd-img# cp image.ub

image_renamed.ub↪→

root@f82945d-primary:/media/sd-img# md5sum
image_renamed.ub↪→

c6d52f71da4a7674b795e8b204f95e4c image_renamed.ub

Figure 5.16: Computing md5 checksum of local and remote file to confirm identical files.

5.3.6 Manual recovery test

For extra security in case an undetected bug in a firmware update would cause the system
to become unresponsive a method for manually forcing the system to boot the golden
image was also developed. To test this the boot counter had to be incremented to 5, which
would activate the alternative boot sequence in U-boot. The boot counter was incremented
by manually toggling the power to the system on and off 5 times, with a short delay of
2 sec between each toggle to give time for the bootloader to successfully update the boot
counter variable as depicted in Figure 5.17.
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Figure 5.17: Illustration on when and why the power was toggled to increment the boot-counter.

A short summary of the results in U-boot can be seen in Figure 5.18. The test also
showed that after the golden image had successfully booted, the bootcounter was reset to
0 again.

HYPSO-1 Booting. Current bootcount is 1 of 5
HYPSO-1 Booting. Current bootcount is 2 of 5
HYPSO-1 Booting. Current bootcount is 3 of 5
HYPSO-1 Booting. Current bootcount is 4 of 5
HYPSO-1 Booting. Current bootcount is 5 of 5
Warning: Bootlimit (5) exceeded. Using altbootcmd.
.... Booting into Petalinux
.... after rebooting again:
HYPSO-1 Booting. Current bootcount is 1 of 5

Figure 5.18: Summary of the U-Boot log showing the bootcounter successfully counting the number
of power cycles and activating the alternative boot sequence after reaching the defined boot limit.
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Chapter 6
Summary and conclusion

This thesis presented the work done to set up a fault-tolerant and re-configurable on-board
processing system for the HYPSO CubeSat. The processing system was equipped with
a Zynq-7000 SoC, which was set up to run the customizable embedded Linux distribu-
tion, Petalinux. A large portion of the work documented in this thesis is associated with
system-level design and development workflows for this system, with a focus on ease-of-
use and portability. The implemented processing system that resulted from this work was,
in addition to performance tweaks such as the implementation of a RAM-based root file
system, and the extension of the virtual RAM using swap, also able to prove to support
the dynamic scheduling of full and partial reconfiguration of the on-chip programmable
logic and to provide a reliable framework for performing remote software and firmware
updates by detecting and automatically recovering from the corruption of critical files on
the processing system.

6.1 Future work
The implemented system successfully provides the framework for performing reliable up-
dates and is therefore ready for deployment as soon as the overlying minimal baseline
software for the file-transfer and remote access interface has been properly tested in the
system test setup. Future work should therefore primarily be on the topic of continu-
ous testing and implementation of automated continuous system integration testing, using
Jenkins or similar tool for setting up an automation server. Other topics that can be an
interesting area for further research is to do a more extensive file-system and SD-Card
performance comparisons with a particular focus on speed and fault-tolerance and to do
further research on potential applications for partial reconfiguration such as SEU scrub-
bing, ECC protection of system RAM, and adaptive FPGA designs for high throughput
image processing.
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Partial Reconfiguration of Programmable Logic in

Linux

Joar Andreas Gjersund

Abstract

This document is intended as a guide for getting started with dy-
namic partial reconfiguration of a Zynq-7000 FPGA running Embed-
ded Linux. This document goes through all the steps from setting up
the processing system in Vivado, to defining reconfigurable partions
and generating bitstreams, it also gives a short guide on how to how
to set up the Embedded Linux distribution to enable partial reconfig-
uration.

1 Introduction

Partial Reconfiguration enables us to increase the utilization of the resources
available on the FPGA by taking advantage of the fact that often not all
programmable logic is active at the same time. Partial Reconfiguration can
thus reprogram these regions of the fpga, while other regions are running, al-
lowing time multiplexing the available resources. Applications such as SEU
Scrubbing for correcting configuration cell upsets and real time dynamic
image processing pipe-lining for quickly togling between various image pro-
cessing steps such as compression, correction, and filtering is just the tip of
the iceberg of what possibilities are realizable with partial reconfiguration.

In this report I will go through the simplest example possible intended
as a proof of concept of how this can be actually implemented such that is as
easy as possible for the reader to follow. In this example I will build a simple
one-gate logic reconfigurable module that reads data from a DMA interface,
inverts the data, and returns the data to the DMA see fig. ??. I will also
build another module using the same reconfigurable partion, that simply
forwards the data without performing any manipulation. I will then show
how these two modules can be reconfigured at runtime. All sources including
a simple app to test the features will be made available on SmallSatLab
Github repository opu-system under the branch bitmap testing. For access
to this repository, please contact the SmallSatLab at NTNU
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Figure 1: The three different configurations for this example

2 Hardware and software Requirements

Zynq-7000 SoC. Petalinux 2019.1 Vivado 2019.1 Docker

3 Building the embedded Linux operating System

follow the README guide found in repository.

4 Making a reconfigurable module

4.1 Building The Static Part

Open the vivado project file. make a new source file. verilog.

module test(

s_axis_tdata,

2



m_axis_tdata,

);

right click in block diagram and add module. hook up the module

Figure 2: Caption

In the flow navigator press Run Synthesis, when done click cancel and
exit the project. Navigate the the synthesis output folder and make sure
that a dcp checkpoint file has been generated.

4.2 Building The Reconfigurable Modules

Navigate to the source folder of the reconfigurable modules and synthesize
the modules using the following tcl script (make sure the part matches the
hardware and projects part):

read_verilog test_copy/test_copy.v

synth_design -mode out_of_context -flatten_hierarchy rebuilt

-top test -part xc7z030sbg485-1↪→

write_checkpoint Synth/reconfig_modules/test_copy_synth.dcp

-force↪→

close_design

close_project

read_verilog test_invert/test_invert.v

synth_design -mode out_of_context -flatten_hierarchy rebuilt

-top test -part xc7z030sbg485-1↪→

write_checkpoint Synth/reconfig_modules/test_invert_synth.dcp

-force↪→

close_design
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close_project

The reconfigurable modules consists of the following:
test copy.v:

module test(

input [63:0] s_axis_data,

output [63:0] m_axis_data

);

assign m_axis_data = s_axis_data;

endmodule

test invert.v:

module test(

input [63:0] s_axis_data,

output [63:0] m_axis_data

);

assign m_axis_data = ~s_axis_data;

endmodule

4.3 Drawing The Reconfigurable Partition Layout

The next step is to assign a block on the fpga for the modules to be loaded
to, also called a reconfigurable partition block or simply pblock.

Run the following tcl commands to load the partion planning tool:

open_checkpoint Synth/Static/System_wrapper.dcp

read_checkpoint -cell System_i/test_0/inst

Synth/reconfig_modules/test_copy_synth.dcp↪→

set_property HD.RECONFIGURABLE 1 [get_cells

System_i/test_0/inst]↪→

write_checkpoint Checkpoint/top_link_add.dcp -force

find the module and draw the pblock. (It is also possible to use a xdc
constraint file that sets the requirements of the pblock and automatically
draws it). Make sure to include enough resources for all reconfigurable
modules to be included in the partition. Once done, run the DRC Report
tool with partial reconfiguration enabled to make sure everything looks okey.
If it fails, you might have to enable snapping of the pblock. This is done by
selecting the pBlock, and toggle the SNAPPING MODE to ON, found at
the bottom of the pBlock Properties.
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Figure 3: Caption

Once done. Run the following script to optimize, place, and route design:

opt_design

place_design

route_design

write_checkpoint Implement/config_copy_top_route_design.dcp

-force↪→

write_checkpoint -force -cell System_i/test_0/inst

Checkpoint/test0_copy_route_design.dcp↪→

update_design -cell System_i/test_0/inst -black_box

lock_design -level routing

write_checkpoint -force Checkpoint/static_route_design.dcp

The first module is now done. For any successive modules that we would
like to add to the partition the procedure is a bit faster as the pBlock is
already defined. Simply run the following tcl commands:

read_checkpoint -cell System_i/test_0/inst

Synth/reconfig_modules/test_invert_synth.dcp↪→

opt_design
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place_design

route_design

write_checkpoint Implement/config_invert_top_route_design.dcp

-force↪→

write_checkpoint -force -cell System_i/test_0/inst

Checkpoint/test0_invert_route_design.dcp↪→

close_project

Do this for all reconfigurable modules. When done we need to make a
blanking module, which is used to when transistion between modules. This
can be done by running the following tcl commands:

open_checkpoint Checkpoint/static_route_design.dcp

update_design -buffer_ports -cell System_i/test_0/inst

place_design

route_design

write_checkpoint -force

Implement/config_blank_top_route_design.dcp↪→

close_project

Finnally, we should run the following command to verify that all reconfig-
urable modules and partion is configured correctly:

pr_verify -initial Implement/config_copy_top_route_design.dcp

-additional {Implement/config_invert_top_route_design.dcp

Implement/config_blank_top_route_design.dcp}

↪→

↪→

close_project

4.4 Export partial bitstreams

To export the partial bitstreams run the following tcl command:

open_checkpoint Implement/config_copy_top_route_design.dcp

write_bitstream -file Bitstreams/test_copy.bit -force

close_project

open_checkpoint Implement/config_invert_top_route_design.dcp

write_bitstream -file Bitstreams/test_invert.bit -force

close_project

open_checkpoint Implement/config_blank_top_route_design.dcp

write_bitstream -file Bitstreams/test_blank.bit -force

close_project

The bitstreams are now exported in bit format. Note that there both a
partial and a full bitstream is exported for each module, the full bitstream
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also includes the static part and one of these must be loaded onto the fpga
before partial bitstreams can be used.
To be able to load bitstreams onto the fpga in linux, the files must be
in bin format. This is achieved by running the bootgen utillity found in
the petalinux sdk. For each of the bitstreams do the following, replacing
bitstreamname with the name of the actual bitstream to convert to bin.:

make an empty file called bitstream.bif with the following content:

all:

{

bitstreamname.bit /* Bitstream file name */

}

run this command in the same folder as the bif file and bitsteram file. Make
sure you have Petalinux SDK installed.

bootgen -image bitstream.bif -arch zynq -process_bitstream

bin↪→

The bitstreams in correct format will then be generated and saved to the
same folder.

4.5 Loading bitstream onto the FPGA in linux

For loading the bitstream onto the FPGA in linux we use a driver via the
sysfs interface. Make sure the bitstream bin files are copied to the sd card
along with the bootloader and linux image and boot up the system. Once
booted up the bitstreams can be loaded by running the following commands
via the terminal:

for full reconfiguration run:

echo 0 > /sys/class/fpga_manager/fpga0/flags

mkdir -p /lib/firmware

cp /media/bitstream_full.bit.bin /lib/firmware/

echo bitstream_full.bit.bin >

/sys/class/fpga_manager/fpga0/firmware↪→

for partial reconfiguration run:

echo 1 > /sys/class/fpga_manager/fpga0/flags

mkdir -p /lib/firmware

cp /media/bitstream_partial.bit.bin /lib/firmware/

echo bitstream_partial.bit.bin >

/sys/class/fpga_manager/fpga0/firmware↪→
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To make this process easier, a tool called fpgautil can also be installed
on the system. The source file can be found in the reference files. loading
bitstream with this tool works like this:

root@38787f2-primary:~# fpgautil

fpgautil: FPGA Utility for Loading/reading PL Configuration

Usage: fpgautil -b <bin file path> -o <dtbo file path>

Options: -b <binfile> (Bin file path)

-o <dtbofile> (DTBO file path)

-f <flags> Optional: <Bitstream type

flags>↪→

f := <Full | Partial >

Examples:

(Load Full bitstream using Overlay)

fpgautil -b top.bit.bin -o can.dtbo

(Load Partial bitstream through the sysfs interface)

fpgautil -b top.bit.bin -f Partial

4.6 Verifcation Testing

The design can be validated using the tool bitmap-test as follows:

root@b43e570-primary:~# fpgautil -b

/media/sd-img/bitstreams/bitstreams/test_blank.bit.bin↪→

fpga_manager fpga0: writing test_blank.bit.bin to Xilinx Zynq

FPGA Manager↪→

Time taken to load BIN is 113.000000 Milli Seconds

BIN FILE loaded through FPGA manager successfully

root@b43e570-primary:~# bitmap-test

Iterating

Configure cubeDMA

Starting transfer

ding

received length 2000

Sent:

0101010101

0101010101
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0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

Received:

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000Success

root@b43e570-primary:~# fpgautil -b

/media/sd-img/bitstreams/bitstreams/test_copy_pblock_inst_partial.bit.bin

-f Partial

↪→

↪→

fpga_manager fpga0: writing

test_copy_pblock_inst_partial.bit.bin to Xilinx Zynq FPGA

Manager

↪→

↪→

Time taken to load BIN is 18.000000 Milli Seconds

BIN FILE loaded through FPGA manager successfully

root@b43e570-primary:~# bitmap-test

Iterating

Configure cubeDMA

Starting transfer

ding

received length 2000

Sent:

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101
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0101010101

0101010101

0101010101

0101010101

Received:

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101Success

root@b43e570-primary:~# fpgautil -b

/media/sd-img/bitstreams/bitstreams/test_invert_pblock_inst_partial.bit.bin

-f Partial

↪→

↪→

fpga_manager fpga0: writing

test_invert_pblock_inst_partial.bit.bin to Xilinx Zynq

FPGA Manager

↪→

↪→

Time taken to load BIN is 18.000000 Milli Seconds

BIN FILE loaded through FPGA manager successfully

root@b43e570-primary:~# bitmap-test

Iterating

Configure cubeDMA

Starting transfer

ding

received length 2000

Sent:

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101
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Received:

65535655346553565534655356553465535655346553565534

65535655346553565534655356553465535655346553565534

65535655346553565534655356553465535655346553565534

65535655346553565534655356553465535655346553565534

65535655346553565534655356553465535655346553565534

65535655346553565534655356553465535655346553565534

65535655346553565534655356553465535655346553565534

65535655346553565534655356553465535655346553565534

65535655346553565534655356553465535655346553565534

65535655346553565534655356553465535655346553565534Success

5 Conclusion

The example gone through in this report managed to reduce the time needed
to reconfigure the fpga from 113 ms for a full reconfiguration, to only 18
ms for the partial reconfiguration. The work flow for generating partial
reconfiguration modules was heavly inspired by [Kajekar(2020)].
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1 Overview 
The HYPSO Mission will primarily be a science-oriented technology demonstrator. It will enable             
low-cost & high-performance hyperspectral imaging and autonomous onboard processing that          
fulfill science requirements in ocean color remote sensing and oceanography. NTNU SmallSat            
is prospected to be the first SmallSat developed at NTNU with launch planned for Q4 2020                
followed by a second mission later. Furthermore, the vision of a constellation of remote-sensing              
focused SmallSat will constitute a space-asset platform added to the multi-agent architecture of             
UAVs, USVs, AUVs, and buoys that have similar ocean characterization objectives. 

1.1 Purpose 
The purpose of the Petalinux bootloader is to load the Linux kernel and root file system (system                 
image) from flash memory to RAM, perform integrity checks to make sure data is not corrupted,                
and finally boot up Linux. The bootloader should include some level of redundancy, so that if the                 
system image becomes corrupted it should try to load a backup image from another memory               
device.  

1.2 Scope 
This document covers the requirements for the booting procedure, an overview of the             
commands that is automatically executed in u-boot during booting and where these commands             
are defined, how to build the system images with Docker, and finally the process of deploying                
the system to the Zedboard and the Picozed. This document also proposes a testing plan for                
validating that the system behaves according to the requirements. 

1.4 Referenced Documents 
The documents listed have been used as a reference in the creation of this document. 
 
Table 2: Referenced Documents 

ID Author Title 

UG1144 Xilinx Petalinux Tools Documentation 

 Xilinx Zedboard HW User guide 

[RD03]   

HYPSO-DSW-004 Marion VRIGNAUD Using HYPSO SW for  Zedboard 
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 Xilinx PicoZed Datasheet 

2 Description of opu-system 
The opu-system repository is used to generate the necessary files to boot up Petalinux 
according to the requirements mentioned in 3.1. The repository consists of a set of scripts for 
setting up the proper work environment via Docker, and to automatically generate system 
images containing the Petalinux kernel, root file system and all the necessary software 
components and dependencies for the payload. The main purpose of the repository is to make 
and document the process of generating bootable files according to requirements and to make 
this process easy to replicate and configure in the future. An overview of the booting procedure 
can be seen in fig. 1. The two system states (green and red) is a seperate OS image (kernel 
and root file system), making it possible to tailor permissions, and what software components to 
automatically run. The green state, represented by the file image.ub can be updated (e.g. 
rewritten) with a new version when performing a software update. The red state, is considered a 
golden image and serves as a backup in case of a failed software update or corrupt primary 
image. This image (image_golden.ub) should under no circumstances be edited or replaced 
during a software update and preferably reside on read-only-memory. The bootloader is 
configured to use the initramfs root file system, which means that the root file system will be 
loaded to the volatile RAM upon boot. This enables all changes made to the rootfs to be reset 
during a reboot. 
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Fig. 1: Booting procedure. 

2.1 Interfaces with other modules 

2.1.1 Inputs 
This module uses the latest release of the hypso-sw repository. This release should be 
structured as it would on the target root file system and compressed to a .tar.xz file. This file will 
then automatically be extracted and merged with the root file system upon boot. Use the 
prerelease 0.3 in the hypso-sw repository as an example. 

2.1.2 Outputs 
A successful build should generate the following boot-files specified in this table: 
 

Location/Filename Description 

opu-system/petalinux/projects/bootfiles/<name>/BOO
T_QSPI.BIN Bootloader: FSBL+SSBL (UBOOT) 
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opu-system/petalinux/projects/bootfiles/<name>/BOO
T.BIN 

For flashing bootloader to QSPI. (will automatically run when 

boot mode is sd) 

opu-system/petalinux/projects/bootfiles/<name>/Imag
e.ub Primary Image file 

opu-system/petalinux/projects/bootfiles/<name>/Imag
e_golden.ub Golden Image file 

 
 
 
 
 

2.2 How to generate boot files (bootloader and system images) 
● Requirements: Linux, Docker, git 
1) Clone the opu-system repository from GitHub in the home directory in linux. 
2) Download petalinux-v2019.1-final-installer.run to the directory opu-system/Docker 
3) Run the command sudo ./setup-petalinux-docker  inside the directory 

opu-system/Docker. 
4) Run the command sudo ./run-petalinux-docker. If repository was not cloned 

in the home directory, change the script to reflect the location of the repository. 
5)  

a) Run the command ./makeproject <project-name> -picozed -all to 
generate all boot files for picozed. * 

b) Run the command ./makeproject <project-name> -all to generate all 
boot files for zedboard.* 
 

* Exclude the -all flag to only generate the primary image file 
6) Wait for a while…. Grab a coffee, yes, it will take quite some time. (around 30 min) 
7) When done, you can find all the necessary files for  the system inside 

opu-system/petalinux/projects/bootfiles/<project-name>  

2.3 How to deploy 
● Requirements: Zedboard or Picozed with PicoBOB, boot files (see 2.2.), SD-Card. 
1) Format the SD-Card with filesystem Ext4. 
2) Copy the file BOOT.BIN, BOOT_QSPI.BIN, image.ub and image_golden.ub located in 

the bootfiles folder to the SD-Card. 
3) Insert the SD-Card into the SD-Card slot on the board, make sure the boot mode pin 

straps on the Zedboard or Picozed are set to SD-Card (see fig. 2 and fig.3), and turn on 
the power.  
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4) Wait for 15 minutes, then turn off power and change the boot mode pin straps to QSPI 
(see fig. 2 and fig.3). The file BOOT_QSPI.BIN and image_golden.ub can now be 
deleted from the SD-Card. (All files except image.ub have now been flashed to other 
memory devices according to the procedure described in fig. 1) 

5) Done. 

 
Fig. 2 : Boot mode pin strap settings for Zedboard 
 

 
Fig 3: Boot mode pin strap settings for Picozed 
 
 

2.4 How to add software and configure startup script 
● Software components, libraries, and applications can be added to the compressed folder 

software.tar.xz in the projects/software directory. All these files will automatically be 
extracted to the petalinux root file system upon boot. 
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● A startup script, located in the projects folder under the name 
linux_startup_script.sh  will automatically be executed when the booting 
process has finished. This script is responsible of starting opu-services and mounting 
flash memory devices. Note that opu-services must be the last program to run in the 
script  since this never exit. 

2.4 How to perform a software update 
1) Copy and replace projects/software/software.tar.xz with the new software modules and 

libraries and optionally update the startup script as described in 2.4. 
2) Optional: Configure the makeproject script. 
3) Generate an OS image as described in 2.2 (exclude the -all flag) 
4) Replace the newly generated image.ub file with the image.ub file present in media/sd on 

the satellite using the hypso-cli software. 
5) Perform a reboot. If system is in green state the software update was successful. 
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3 Testplan for the Petalinux bootloader 

3.1 Requirements 
 
 

ID Refines Refined by Definition 

BL-5-10  SYS.PA.100 

The system shall still function in the event of a corrupt or 

inaccessible primary system image. 

BL-5-20  SBUS.3.17 The primary system image shall be possible to update 

BL-5-30  
HSI.4.110 
HSI.4.110 The booting procedure shall be fully automated . 

BL-5-40  OPU.4.80 

The system image shall be loaded to volatile memory 

during booting  so that the system is restored to its initial 

state after a reboot. 

BL-5-50  HSI.4.110 

The worst case execution time of the complete booting 

procedure should be no more than 60 (TBC) s 

 

3.2 Test Procedure 
The following procedures are used to verify that the requirements in 3.1 are met. A program that 
guides the tester throughout the test procedure and automatically verify if a test pass can be 
found in opu-systems/petalinux/verification and can be run in linux by writing the command sudo 
./checkkall <path-to-hypso-sw-build-directory>. 

 
Prerequisites 

● A computer with hypso-cli readily set up. (Including necessary CAN-usb converter) 
○ See HYPSO-DSW-004 for instruction on how to set up the hypso-cli on the 

computer. 
● PicoBOB (DUT) 
● Micro SD card. 

 
Hardware Setup and Test procedure. 
Note: Remember to follow the labs guidelines/rules regarding ESD protection and clean-room 
regulations. 
This section explains how to set up the DUT (device under test) and gives a more in-depth 
explanation of what is performed “under-the-hood” by the test script. 
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Find a clean 
(preferably 
unopened) picozed 
board. 

 
The picozed used for this test was the 7Z030. (PicoZed Datasheet) 
If no factory/clean picozed board is available, make sure that the 
u-boot environment is erased before procedure. Where the u-boot 
environment is placed in memory depends on the previous 
bootloaders configurations, but should by default be on partition 1 of 
the QSPI. In that case, run the following command in the petalinux 
command line after the picozed as booted up: 
$ flash_eraseall -j /dev/mtd1 
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Connect the picozed 
to a breakout board 
to make a PicoBoB. 

 
The breakout board used for this test was V1R2. 

Connect the CAN 
USB converter to the 
PicoBoB CAN bus 2 
connector 

 
The CAN USB converter used for this test was systec CAN (IEC 
61131-3)  
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The CAN USB converter pins can be connected directly to the 
PicoBoB CAN bus 2 connecter. The bottom connection is used for 
serial UART and is not needed for the test. 

Connect the power 
supply to the 
PicoBoB 

Connect a power supply  ( 5.9-14.5 V) to the power connector on the 
PicoBoB. 
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An inbuilt buck-converter in the PicoBoB will fine-adjust the voltage for 
us. For this test we kept it at around 9V. 

Set the boot mode 
pin strap switches to 
SD-Card (according 
to fig. 3) 

 
The boot mode pin straps switched all the way towards the PCB 
border indicate a SD-Card boot. For a mint picozed board there might 
be a film covering this switch that must be peeled before it can be 
configured. 

Find a fresh 
Micro-SD card and 
make sure it is 

Generate all necessary files using the procedure described in Chapter 
2.2. And copy them to the Micro SD-Card. If more than one partition is 
present, either merge all partitions or copy the files to the first partition. 
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formatted to 
FAT/MS-DOS. 
(Should be standard 
formatting for most 
SD-Cards). 

Insert the SD Card 
and turn on power 

Navigate to opu-systems/petalinux/verification on the client computer 
and run the command: 
Sudo ./checkall <path to folder of hypso-cli> 

Wait for 30s, then turn of the power. 

Change the mood 
mode pin strap 
switch to QSPI mode 
(according to fig. 3) 

 
The boot mode pin strap switches set to QSPI. 

Turn on power The test will now ping the picozed to check that the system has booted 
up correctly. If it has it will output a “1” on the terminal screen of the 
client computer. 

- Pass 
- Test 1 of 2 passed for requirement: BL-5-10. 
- Test 1 of 4 passed for requirement: BL-5-30 

- Test 2 of 2 passed for requirement: BL-5-50 

- Fail 
- requirement BL-5-10 failed. 

Turn off power and 
corrupt the primary 

Make a copy of the image.ub present on the SD-Card. Then edit the 
original file image.ub on the micro SD-Card by opening the file up in a 

 

14 of 16 



 

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
 HYPSO Mission  

 

image text editor on a computer with a Micro SD-Card reader and 
delete/reorder some small chunks of the machine code. 
Insert the Micro SD-Card into the PicoBoB again. 

Turn on power  The test will again perform a ping test to make sure the bootloader has 
been able to detect that the primary image is corrupted and that the 
golden image correctly boots up. It will again output a “1” on the 
terminal screen of the client computer if the test has passed. 

- Pass:  
- Test 2 of 2 passed for requirement: BL-5-10 
- Test 2 of 4 passed for requirement: BL-5-30 

- Test 2 of 2  passed for requirement: BL-5-50 

- Fail:  
- requirement BL-5-10 failed.  

 

Perform a “in-flight” 
software update and 
turn on power again. 

Upload the image.ub-copy from previous step to the mounted micro 
SD-Card on the picozed using the hypso-cli terminal (see 
HYPSO-DSW-004 for details on how this is done). Make sure the 
uploaded copy has the same name and overwrites the image.ub file 
already present. When completed, a reboot and an automated 
ping-test is executed to confirm that the primary image boots up 
correctly. 

- Pass:  
- Test 3 of 4 passed for requirement: BL-5-30 

- Test 1 of 1 passed for requirment BL-5-20 

- Fail:  
- requirement BL-5-30 failed 
- requirement BL-5-20 failed. 

 

6 x (Turn on power, 
wait 1 sec. Turn off 
power wait 1 sec.). 
Then turn on and 
leave power on. 

This test will check that the alternative boot procedure is working when 
bootcounter > bootlimit (5), and  correctly boots up the golden image. 

- Pass:  
- Test 4 of 4 passed for requirement: BL-5-30 

- Fail:  
- requirement BL-5-30 failed 

 

Continue the script. 
When told so, 
perform the same 
power on-off 
procedure as in the 
previous step 

The test script will now delete all files on the root file system of the 
golden image. Reboot, and delete all files on the primary image. 

 

15 of 16 



 

HYPSO-DSW-008 Documentation for The Petalinux Bootloader 02.12.2019
 HYPSO Mission  

 

 The testscript will now output a “1” if the golden and primary image 
meets the requirements in BL-5-40 

- Pass 
- Tes passed for requirement BL-5-40 

- Fail 
-  Requirement BL-5-40 failed 

 
 

Test complete If all tests have completed sucessfully (no error messages and only 1s 
outputted) the system is conforming to the defined requirements. 

 
 
 

 

4 List of Abbreviations 

 
Table 3: List of Abbreviations 

Abbrv. Description 

DUT Device Under Test 

PCB Printed Circuit Board 

OS Operating System 

 

 

16 of 16 



94



Appendix C
Test of Bootloader and Firmware
Updates
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Upload new boot image test report 

Date 

2 0 2 0 0 3 1 0 

 
User(s): Write down the names of the people involved with this test 

Joar Gjersund 

 
Test Method: Describe  what kind of methods were used during the test 

Test was performed using an automated test script which included instructions for physical 
actions needed to be performed during the test 

 
Test Equipment & Set-Up Description: Describe what kind of equipment was used and the set-up. Use pictures if possible 

HYPSO-DSW-008 (Rev. 3) chapter 3.2 
 

 
As-Ran Test Procedure: Describe how the test was performed, make especially note of an discrepancies from original plan 

HYPSO-DSW-008 (Rev. 3) chapter 3.2 
 
(VR.BL.5-10) Used bash command shred image.ub to inject errors in primary image. 
 
() Used the following procedure and commands in hypso-cli to update image: 
copy image.ub to be uploaded in same folder as hypso-cli. 
 
make sure ft list is empty 
ft list 12 
 
ft register 12 image.ub 1 
ft prepare local image.ub image.ub.fmt 1 240 
ft format 12 1 240 338755 
ft upload file 12 image.ub.fmt 1 
(wait 1 hour) 
 
ft extract 12 1 image.ub 
 
shell remote 12 10000 
cp -fr image.ub /media/sd/image.ub 
Reboot 
 
 
 
 
UPDATE: 
 
The file upload seems to work, but due to some bugs it is more complicated than it should be. This is 
how I was able to perform a firmware upgrade: 

(hypso) ft list 12 

(hypso) ft register 12 image.ub 1 

(hypso) ft prepare local image.ub image.ub.fmt 1 240 

file_name:      image.ub.fmt 



file_type:      STATIC 

file_id:        1 

entry_sz:       240 

max_entries:    338755 

first_entry_id: 1 

total_entries:  338755 

(hypso) ft format 12 1 240 338755 

File ID: 1, status: 0 

(hypso) ft upload file 12 image.ub.fmt 1 

Uploading 1 missing ranges: 

[       1-338755  ]: 100% [=========================]  

File is complete. 

Upload finished. 

(hypso) ft extract 12 1 image.ub 

/home/hypso/src/ft/ft_client.c:722:ft_client_extract: response length: 0, expected 3. 

cli_ft_extract failed with ret: -71 

`ft extract` failed: 71 (Protocol error) 

(hypso) shell remote 12 10000000 

Enter "exit", "quit" or "q" to exit remote shell. 

(OPU) ls image.ub-e 

 

(I then had to press tab for autocomplete) getting the following result 

(OPU) ls image.ub-e\360 

I then had remove ls prepend cp -fr and append /media/sd/image.ub, like this: 

(OPU) cp -fr image.ub-e\360 /media/sd/image.ub 

then I did a reboot 

(OPU) reboot 

The new image (version 092a743) was confirmed by printing the hostname 

(hypso) shell remote 12 10000 

Enter "exit", "quit" or "q" to exit remote shell. 

(OPU) hostname 

092a743-primary 

 

 
Pass or Fail Criteria: Describe shortly what the test is supposed to determine, i.e.  what would constitute success and failure. 

HYPSO-DSW-008 (Rev. 3) chapter 3.2 
 

 
 
Test Results: Quantify results of the test. Use tables and graphs to the extent it is applicable 

 
 

Requirement Short description Tests passed 

VR.BL.10  3/3 

- BL-5-10 Corrupt image 1ft l 

- BL.5.30 Automatic boot 1 

- BL.5.50 Bootingtime < 10s 1 (recorded booting time was 1 min, but 
this was TBC) 

VR.PROC.30/VR.BL.3 Read online rootfs 1 



- BL-5-40  1 

VR.PROC.50 36GB available 0 

VR.BL.20 Image update 1  

 

 
Discussion of Results: Discuss the results in light of the pass / fail criteria of the test 

● Requirement VR.PROC.50 does not pass because the chosen SD-Card does not meet 
requirement. Current Available space is 8 GB. This Choice of SD-Card is based on 
tolerance towards radiation. 

 
● None of the tests are done via the payload controller (PC), which might affect the test 

results. It is assumed that future tests of the PC will uncover these faults. If the same tests 
fail when done via the PC, the fault(s) should first be assumed to be with the PC. 

 
 

● BL.5.50 does not pass or is invalid. Booting time was recorded to be 60s. This is primarily 
due to the DUT not being connected to ethernet during the test, and ssh-server waits for 
connection to establish. Actual booting time should be tested on a complete setup in the 
future. SSH server is also primarily a tool for development and could be considered 
disabled when deploying to the satellite. 
 

● VR.BL.20: The time it takes to upload one image (ca. 80MB) just over the canbus is 
significant (at least 1 hour). This is without overhead associated with uplink to the PC and 
PC buffering which was not part of the test. Hypso-cli also reports some errors during the 
upload procedure (also mentioned in HYPSO-TRP-EL-006) and the ft file extract does not 
appear to be working as intended.  

 
Conclusion: If success, describe the impact of the results. If Failure, describe the remedial measures that should be taken. 

 
File upload displays error messages mostly related to timeout. Those bugs should be fixed. 
BL.5.50 does not pass, but was TBC. This requirement should be updated to 100s to account for 
possible future updates which can further increase the boot time. 

 
 



Appendix D
Example Image Tree Source for a
FIT image

/dts-v1/;

/ {
description = "U-Boot fitImage for plnx_aarch64

kernel";↪→

#address-cells = <1>;

images {
kernel@0 {

description = "Linux Kernel";
data = /incbin/("./Image");
type = "kernel";
arch = "arm64";
os = "linux";
compression = "none";
load = <0x80000>;
entry = <0x80000>;
hash@1 {

algo = "sha1";
};

};
fdt@0 {

description = "Flattened Device Tree blob";
data = /incbin/("./system.dtb");
type = "flat_dt";
arch = "arm64";
compression = "none";

99



hash@1 {
algo = "sha1";

};
};
ramdisk@0 {

description = "ramdisk";
data = /incbin/("./ramdisk.cpio");
type = "ramdisk";
arch = "arm64";
os = "linux";
compression = "none";
hash@1 {

algo = "sha1";
};

};
};
configurations {

default = "conf@1";
conf@1 {

description = "Boot Linux kernel with FDT blob
+ ramdisk";↪→

kernel = "kernel@0";
fdt = "fdt@0";
ramdisk = "ramdisk@0";
hash@1 {

algo = "sha1";
};

};
};

};

Source: https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842374/U-Boot+Images
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Appendix E
Failure mode, effects and criticality
analysis for the HYPSO Mission
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Appendix F
Device Tree Source for the OPU

The following device tree source was decompiled from the final device tree blob generated
with Petalinux SDK.

/dts-v1/;

/ {
#address-cells = <0x1>;
#size-cells = <0x1>;
compatible = "avnet,picozed", "xlnx,zynq-7000";
model = "Avnet picoZed";

cpus {
#address-cells = <0x1>;
#size-cells = <0x0>;

cpu@0 {
compatible = "arm,cortex-a9";
device_type = "cpu";
reg = <0x0>;
clocks = <0x1 0x3>;
clock-latency = <0x3e8>;
cpu0-supply = <0x2>;
operating-points = <0x7a120 0xf4240

0x3d090 0xf4240>;↪→

};

cpu@1 {
compatible = "arm,cortex-a9";
device_type = "cpu";
reg = <0x1>;
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clocks = <0x1 0x3>;
};

};

fpga-full {
compatible = "fpga-region";
fpga-mgr = <0x3>;
#address-cells = <0x1>;
#size-cells = <0x1>;
ranges;

};

pmu@f8891000 {
compatible = "arm,cortex-a9-pmu";
interrupts = <0x0 0x5 0x4 0x0 0x6 0x4>;
interrupt-parent = <0x4>;
reg = <0xf8891000 0x1000 0xf8893000

0x1000>;↪→

};

fixedregulator {
compatible = "regulator-fixed";
regulator-name = "VCCPINT";
regulator-min-microvolt = <0xf4240>;
regulator-max-microvolt = <0xf4240>;
regulator-boot-on;
regulator-always-on;
phandle = <0x2>;

};

amba {
u-boot,dm-pre-reloc;
compatible = "simple-bus";
#address-cells = <0x1>;
#size-cells = <0x1>;
interrupt-parent = <0x4>;
ranges;

adc@f8007100 {
compatible =

"xlnx,zynq-xadc-1.00.a";↪→

reg = <0xf8007100 0x20>;
interrupts = <0x0 0x7 0x4>;
interrupt-parent = <0x4>;
clocks = <0x1 0xc>;
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};

can@e0008000 {
compatible = "xlnx,zynq-can-1.0";
status = "okay";
clocks = <0x1 0x13 0x1 0x24>;
clock-names = "can_clk", "pclk";
reg = <0xe0008000 0x1000>;
interrupts = <0x0 0x1c 0x4>;
interrupt-parent = <0x4>;
tx-fifo-depth = <0x40>;
rx-fifo-depth = <0x40>;

};

can@e0009000 {
compatible = "xlnx,zynq-can-1.0";
status = "disabled";
clocks = <0x1 0x14 0x1 0x25>;
clock-names = "can_clk", "pclk";
reg = <0xe0009000 0x1000>;
interrupts = <0x0 0x33 0x4>;
interrupt-parent = <0x4>;
tx-fifo-depth = <0x40>;
rx-fifo-depth = <0x40>;

};

gpio@e000a000 {
compatible = "xlnx,zynq-gpio-1.0";
#gpio-cells = <0x2>;
clocks = <0x1 0x2a>;
gpio-controller;
interrupt-controller;
#interrupt-cells = <0x2>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x14 0x4>;
reg = <0xe000a000 0x1000>;
emio-gpio-width = <0x40>;
gpio-mask-high = <0x0>;
gpio-mask-low = <0x5600>;
phandle = <0x8>;

};

i2c@e0004000 {
compatible = "cdns,i2c-r1p10";
status = "disabled";
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clocks = <0x1 0x26>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x19 0x4>;
reg = <0xe0004000 0x1000>;
#address-cells = <0x1>;
#size-cells = <0x0>;

};

i2c@e0005000 {
compatible = "cdns,i2c-r1p10";
status = "disabled";
clocks = <0x1 0x27>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x30 0x4>;
reg = <0xe0005000 0x1000>;
#address-cells = <0x1>;
#size-cells = <0x0>;

};

interrupt-controller@f8f01000 {
compatible = "arm,cortex-a9-gic";
#interrupt-cells = <0x3>;
interrupt-controller;
reg = <0xf8f01000 0x1000 0xf8f00100

0x100>;↪→

num_cpus = <0x2>;
num_interrupts = <0x60>;
phandle = <0x4>;

};

cache-controller@f8f02000 {
compatible = "arm,pl310-cache";
reg = <0xf8f02000 0x1000>;
interrupts = <0x0 0x2 0x4>;
arm,data-latency = <0x3 0x2 0x2>;
arm,tag-latency = <0x2 0x2 0x2>;
cache-unified;
cache-level = <0x2>;

};

memory-controller@f8006000 {
compatible = "xlnx,zynq-ddrc-a05";
reg = <0xf8006000 0x1000>;

};
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ocmc@f800c000 {
compatible = "xlnx,zynq-ocmc-1.0";
interrupt-parent = <0x4>;
interrupts = <0x0 0x3 0x4>;
reg = <0xf800c000 0x1000>;

};

serial@e0000000 {
compatible = "xlnx,xuartps",

"cdns,uart-r1p8";↪→

status = "disabled";
clocks = <0x1 0x17 0x1 0x28>;
clock-names = "uart_clk", "pclk";
reg = <0xe0000000 0x1000>;
interrupts = <0x0 0x1b 0x4>;

};

serial@e0001000 {
compatible = "xlnx,xuartps",

"cdns,uart-r1p8";↪→

status = "okay";
clocks = <0x1 0x18 0x1 0x29>;
clock-names = "uart_clk", "pclk";
reg = <0xe0001000 0x1000>;
interrupts = <0x0 0x32 0x4>;
cts-override;
device_type = "serial";
port-number = <0x0>;

};

spi@e0006000 {
compatible = "xlnx,zynq-spi-r1p6";
reg = <0xe0006000 0x1000>;
status = "disabled";
interrupt-parent = <0x4>;
interrupts = <0x0 0x1a 0x4>;
clocks = <0x1 0x19 0x1 0x22>;
clock-names = "ref_clk", "pclk";
#address-cells = <0x1>;
#size-cells = <0x0>;

};

spi@e0007000 {
compatible = "xlnx,zynq-spi-r1p6";
reg = <0xe0007000 0x1000>;

123



status = "disabled";
interrupt-parent = <0x4>;
interrupts = <0x0 0x31 0x4>;
clocks = <0x1 0x1a 0x1 0x23>;
clock-names = "ref_clk", "pclk";
#address-cells = <0x1>;
#size-cells = <0x0>;

};

spi@e000d000 {
clock-names = "ref_clk", "pclk";
clocks = <0x1 0xa 0x1 0x2b>;
compatible = "xlnx,zynq-qspi-1.0";
status = "okay";
interrupt-parent = <0x4>;
interrupts = <0x0 0x13 0x4>;
reg = <0xe000d000 0x1000>;
#address-cells = <0x1>;
#size-cells = <0x0>;
is-dual = <0x0>;
num-cs = <0x1>;
spi-rx-bus-width = <0x4>;
spi-tx-bus-width = <0x4>;

flash@0 {
compatible = "n25q512a",

"micron,m25p80";↪→

reg = <0x0>;
#address-cells = <0x1>;
#size-cells = <0x1>;
spi-max-frequency =

<0x2faf080>;↪→

partition@0x00000000 {
label = "boot";
reg = <0x0

0x500000>;↪→

};

partition@0x00500000 {
label = "bootenv";
reg = <0x500000

0x20000>;↪→

};
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partition@0x00520000 {
label = "kernel";
reg = <0x520000

0xa80000>;↪→

};

partition@0x00fa0000 {
label = "spare";
reg = <0xfa0000

0x0>;↪→

};
};

};

memory-controller@e000e000 {
#address-cells = <0x1>;
#size-cells = <0x1>;
status = "disabled";
clock-names = "memclk", "apb_pclk";
clocks = <0x1 0xb 0x1 0x2c>;
compatible = "arm,pl353-smc-r2p1",

"arm,primecell";↪→

interrupt-parent = <0x4>;
interrupts = <0x0 0x12 0x4>;
ranges;
reg = <0xe000e000 0x1000>;

flash@e1000000 {
status = "disabled";
compatible =

"arm,pl353-nand-r2p1";↪→

reg = <0xe1000000
0x1000000>;↪→

#address-cells = <0x1>;
#size-cells = <0x1>;

};

flash@e2000000 {
status = "disabled";
compatible = "cfi-flash";
reg = <0xe2000000

0x2000000>;↪→

#address-cells = <0x1>;
#size-cells = <0x1>;

};

125



};

ethernet@e000b000 {
compatible = "cdns,zynq-gem",

"cdns,gem";↪→

reg = <0xe000b000 0x1000>;
status = "okay";
interrupts = <0x0 0x16 0x4>;
clocks = <0x1 0x1e 0x1 0x1e 0x1

0xd>;↪→

clock-names = "pclk", "hclk",
"tx_clk";↪→

#address-cells = <0x1>;
#size-cells = <0x0>;
phy-mode = "rgmii-id";
xlnx,ptp-enet-clock = <0x4f790d8>;
local-mac-address = [00 0a 35 00 1e

53];↪→

};

ethernet@e000c000 {
compatible = "cdns,zynq-gem",

"cdns,gem";↪→

reg = <0xe000c000 0x1000>;
status = "disabled";
interrupts = <0x0 0x2d 0x4>;
clocks = <0x1 0x1f 0x1 0x1f 0x1

0xe>;↪→

clock-names = "pclk", "hclk",
"tx_clk";↪→

#address-cells = <0x1>;
#size-cells = <0x0>;

};

mmc@e0100000 {
compatible = "arasan,sdhci-8.9a";
status = "okay";
clock-names = "clk_xin", "clk_ahb";
clocks = <0x1 0x15 0x1 0x20>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x18 0x4>;
reg = <0xe0100000 0x1000>;
xlnx,has-cd = <0x0>;
xlnx,has-power = <0x0>;
xlnx,has-wp = <0x0>;
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broken-cd;
};

mmc@e0101000 {
compatible = "arasan,sdhci-8.9a";
status = "okay";
clock-names = "clk_xin", "clk_ahb";
clocks = <0x1 0x16 0x1 0x21>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x2f 0x4>;
reg = <0xe0101000 0x1000>;
xlnx,has-cd = <0x1>;
xlnx,has-power = <0x0>;
xlnx,has-wp = <0x0>;
non-removable;

};

slcr@f8000000 {
u-boot,dm-pre-reloc;
#address-cells = <0x1>;
#size-cells = <0x1>;
compatible = "xlnx,zynq-slcr",

"syscon", "simple-mfd";↪→

reg = <0xf8000000 0x1000>;
ranges;
phandle = <0x5>;

clkc@100 {
u-boot,dm-pre-reloc;
#clock-cells = <0x1>;
compatible =

"xlnx,ps7-clkc";↪→

fclk-enable = <0x1>;
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clock-output-names =
"armpll", "ddrpll",
"iopll", "cpu_6or4x",
"cpu_3or2x", "cpu_2x",
"cpu_1x", "ddr2x",
"ddr3x", "dci",
"lqspi", "smc", "pcap",
"gem0", "gem1",
"fclk0", "fclk1",
"fclk2", "fclk3",
"can0", "can1",
"sdio0", "sdio1",
"uart0", "uart1",
"spi0", "spi1", "dma",
"usb0_aper",
"usb1_aper",
"gem0_aper",
"gem1_aper",
"sdio0_aper",
"sdio1_aper",
"spi0_aper",
"spi1_aper",
"can0_aper",
"can1_aper",
"i2c0_aper",
"i2c1_aper",
"uart0_aper",
"uart1_aper",
"gpio_aper",
"lqspi_aper",
"smc_aper", "swdt",
"dbg_trc", "dbg_apb";

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

reg = <0x100 0x100>;
ps-clk-frequency =

<0x1fca055>;↪→

phandle = <0x1>;
};

rstc@200 {
compatible =

"xlnx,zynq-reset";↪→

reg = <0x200 0x48>;
#reset-cells = <0x1>;
syscon = <0x5>;

};
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pinctrl@700 {
compatible =

"xlnx,pinctrl-zynq";↪→

reg = <0x700 0x200>;
syscon = <0x5>;

};
};

dmac@f8003000 {
compatible = "arm,pl330",

"arm,primecell";↪→

reg = <0xf8003000 0x1000>;
interrupt-parent = <0x4>;
interrupt-names = "abort", "dma0",

"dma1", "dma2", "dma3", "dma4",
"dma5", "dma6", "dma7";

↪→

↪→

interrupts = <0x0 0xd 0x4 0x0 0xe
0x4 0x0 0xf 0x4 0x0 0x10 0x4
0x0 0x11 0x4 0x0 0x28 0x4 0x0
0x29 0x4 0x0 0x2a 0x4 0x0 0x2b
0x4>;

↪→

↪→

↪→

↪→

#dma-cells = <0x1>;
#dma-channels = <0x8>;
#dma-requests = <0x4>;
clocks = <0x1 0x1b>;
clock-names = "apb_pclk";

};

devcfg@f8007000 {
compatible =

"xlnx,zynq-devcfg-1.0";↪→

interrupt-parent = <0x4>;
interrupts = <0x0 0x8 0x4>;
reg = <0xf8007000 0x100>;
clocks = <0x1 0xc 0x1 0xf 0x1 0x10

0x1 0x11 0x1 0x12>;↪→

clock-names = "ref_clk", "fclk0",
"fclk1", "fclk2", "fclk3";↪→

syscon = <0x5>;
phandle = <0x3>;

};

efuse@f800d000 {
compatible = "xlnx,zynq-efuse";
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reg = <0xf800d000 0x20>;
};

timer@f8f00200 {
compatible =

"arm,cortex-a9-global-timer";↪→

reg = <0xf8f00200 0x20>;
interrupts = <0x1 0xb 0x301>;
interrupt-parent = <0x4>;
clocks = <0x1 0x4>;

};

timer@f8001000 {
interrupt-parent = <0x4>;
interrupts = <0x0 0xa 0x4 0x0 0xb

0x4 0x0 0xc 0x4>;↪→

compatible = "cdns,ttc";
clocks = <0x1 0x6>;
reg = <0xf8001000 0x1000>;

};

timer@f8002000 {
interrupt-parent = <0x4>;
interrupts = <0x0 0x25 0x4 0x0 0x26

0x4 0x0 0x27 0x4>;↪→

compatible = "cdns,ttc";
clocks = <0x1 0x6>;
reg = <0xf8002000 0x1000>;

};

timer@f8f00600 {
interrupt-parent = <0x4>;
interrupts = <0x1 0xd 0x301>;
compatible =

"arm,cortex-a9-twd-timer";↪→

reg = <0xf8f00600 0x20>;
clocks = <0x1 0x4>;

};

usb@e0002000 {
compatible = "xlnx,zynq-usb-2.20a",

"chipidea,usb2";↪→

status = "okay";
clocks = <0x1 0x1c>;
interrupt-parent = <0x4>;
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interrupts = <0x0 0x15 0x4>;
reg = <0xe0002000 0x1000>;
phy_type = "ulpi";
dr_mode = "host";
usb-phy = <0x6>;

};

usb@e0003000 {
compatible = "xlnx,zynq-usb-2.20a",

"chipidea,usb2";↪→

status = "disabled";
clocks = <0x1 0x1d>;
interrupt-parent = <0x4>;
interrupts = <0x0 0x2c 0x4>;
reg = <0xe0003000 0x1000>;
phy_type = "ulpi";

};

watchdog@f8005000 {
clocks = <0x1 0x2d>;
compatible = "cdns,wdt-r1p2";
interrupt-parent = <0x4>;
interrupts = <0x0 0x9 0x1>;
reg = <0xf8005000 0x1000>;
timeout-sec = <0xa>;

};
};

amba_pl {
#address-cells = <0x1>;
#size-cells = <0x1>;
compatible = "simple-bus";
ranges;

timer@42800000 {
clock-frequency = <0x5e69ec0>;
clock-names = "s_axi_aclk";
clocks = <0x1 0xf>;
compatible = "xlnx,axi-timer-2.0",

"xlnx,xps-timer-1.00.a";↪→

reg = <0x42800000 0x1000>;
xlnx,count-width = <0x20>;
xlnx,gen0-assert = <0x1>;
xlnx,gen1-assert = <0x1>;
xlnx,one-timer-only = <0x0>;
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xlnx,trig0-assert = <0x1>;
xlnx,trig1-assert = <0x1>;

};

cubedma_top@43c00000 {
clock-names = "clk";
clocks = <0x1 0xf>;
compatible =

"xlnx,cubedma-top-1.0";↪→

interrupt-names = "mm2s_irq",
"s2mm_irq";↪→

interrupt-parent = <0x4>;
interrupts = <0x0 0x1d 0x4 0x0 0x1e

0x4>;↪→

reg = <0x43c00000 0x10000>;
xlnx,mm2s-comp-width = <0x10>;
xlnx,mm2s-num-comp = <0x4>;
xlnx,s2mm-comp-width = <0x10>;
xlnx,s2mm-num-comp = <0x4>;
xlnx,tinymover = "false";

};
};

chosen {
bootargs = "earlyprintk";
stdout-path = "serial0:115200n8";

};

aliases {
ethernet0 = "/amba/ethernet@e000b000";
serial0 = "/amba/serial@e0001000";
spi0 = "/amba/spi@e000d000";

};

memory {
device_type = "memory";
reg = <0x0 0x40000000>;

};

reserved-memory {
#address-cells = <0x1>;
#size-cells = <0x1>;
ranges;

buffer@0x30000000 {
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reg = <0x30000000 0x10000000>;
no-map;
phandle = <0x7>;

};
};

cubedma@0 {
memory-region = <0x7>;

};

phy0 {
compatible = "usb-nop-xceiv";
#phy-cells = <0x0>;
reset-gpios = <0x8 0x7 0x1>;
phandle = <0x6>;

};
};
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Appendix G
Startup Script

#!/bin/sh
### BEGIN INIT INFO
# Provides: myapp-init
# Required-Start: $ALL
# Should-Start:
# Required-Stop:
# Should-Stop:
# Default-Start: 2 3 5
# Default-Stop:
# Description: Linux Startup Script
### END INIT INFO
start ()
{

echo "################################ HYPSO
STARTUP SCRIPT BELOW
###############################"

↪→

↪→

#Set static ip address.
echo "Setting static ip address."
ip addr flush dev eth0
ip addr add 129.241.2.42/23 dev eth0

echo "mounting media..."
mkdir -m 755 /media/sd
mount /dev/mmcblk0p1 /media/sd || mount

/dev/mmcblk0 /media/sd↪→

mkdir -m 755 /media/emmc
mount /dev/mmcblk1p2 /media/emmc
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echo "setting up swap..."
if mountpoint -q /media/emmc
then

if test ! -f /media/emmc/swapfile
then

dd if=/dev/zero
of=/media/emmc/swapfile bs=1024
count=1048576

↪→

↪→

fi
mkswap /media/emmc/swapfile
swapon /media/emmc/swapfile

fi
if mountpoint -q /media/sd
then

if test ! -f /media/sd/swapfile
then

dd if=/dev/zero
of=/media/sd/swapfile bs=1024
count=1048576

↪→

↪→

fi
mkswap /media/sd/swapfile
swapon /media/sd/swapfile

fi
echo "remounting rootfs size to 1G..."
mount -o remount,size=1G /

echo "mounting gpio"
echo 960 > /sys/class/gpio/export

echo "extracting software to rootfs"
tar -xf /software.tar.xz -C /
rm /software.tar.xz

echo "running ueye setup script"
# run ueye setup script
/usr/bin/ueyesetup -i usb
/usr/bin/ueyesetup -i eth

echo "starting ueye drivers"
#start eueye ethernet & usb
/etc/init.d/ueyeethdrc start
/etc/init.d/ueyeusbdrc start

echo "resetting uboot environment (bootcounter)"
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flash_eraseall -j /dev/mtd1

echo "starting cubeDMA driver"
insmod

/lib/modules/4.19.0-xilinx-v2019.1/extra/cubedma.ko↪→

#&&&#
echo "starting opu-services from /home/root".
if mountpoint -q /media/sd
then

/home/root/opu-services 12 can0 -m
/media/sd/↪→

echo "opu-services exited... restarting
from flash..".↪→

/media/sd/opu-services 12 can0 -m
/media/sd/↪→

else
/home/root/opu-services 12 can0 -m

/media/emmc/↪→

echo "opu-services exited... restarting
from flash..".↪→

/media/emmc/opu-services 12 can0 -m
/media/emmc/↪→

fi

echo "THIS TEXT SHOULD BE REPLACED WITH A REBOOT
COMMAND."↪→

}

stop ()
{

echo "Bye, bye hypso."
}
restart()
{
stop
start
}
case "$1" in
start)
start; ;;
stop)
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stop; ;;
restart)
restart; ;;

*)
echo "Usage: $0 {start|stop|restart}"
exit 1
esac
exit $?
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Appendix H
Dockerfile for setting up the
Petalinux SDK

FROM ubuntu:18.04

# build with docker build --build-arg PETA_VERSION=2019.1
--build-arg
PETA_RUN_FILE=petalinux-v2019.1-final-installer.run -t
petalinux:2019.1 .

↪→

↪→

↪→

ENV DEBIAN_FRONTEND=noninteractive

# Install PetaLinux Installer Dependences:
RUN dpkg --add-architecture i386 && apt-get update &&

apt-get install -y \↪→

build-essential \
sudo \
tofrodos \
iproute2 \
gawk \
net-tools \
expect \
libncurses5-dev \
tftpd \
libssl-dev \
flex \
bison \
libselinux1 \
gnupg \
wget \
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socat \
gcc-multilib \
libsdl1.2-dev \
libglib2.0-dev \
lib32z1-dev \
zlib1g:i386 \
libgtk2.0-0 \
screen \
pax \
diffstat \
xvfb \
xterm \
texinfo \
gzip \
unzip \
cpio \
chrpath \
autoconf \
lsb-release \
libtool \
libtool-bin \
locales \
kmod \
git \
python \
vim \
nano

ARG PETA_VERSION
ARG PETA_RUN_FILE

RUN locale-gen en_US.UTF-8 && update-locale

#make a HYPSO user
RUN adduser --disabled-password --gecos '' hypso && \

usermod -aG sudo hypso && \
echo "hypso ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers

COPY accept-eula.sh ${PETA_RUN_FILE} /

# Run Petalinux installer
RUN chmod a+x /${PETA_RUN_FILE} && \

mkdir -p /opt/Xilinx && \
chmod 777 /tmp /opt/Xilinx && \
cd /tmp && \
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sudo -u hypso /accept-eula.sh /${PETA_RUN_FILE}
/opt/Xilinx/petalinux && \↪→

rm -f /${PETA_RUN_FILE} /accept-eula.sh

# Install tools required by PetaLinux
RUN apt-get install -y \

ssh rsync

USER hypso
ENV HOME /home/hypso
ENV LANG en_US.UTF-8
WORKDIR /home/hypso/

#add petalinux tools to path
RUN echo "source /opt/Xilinx/petalinux/settings.sh" >>

/home/hypso/.bashrc↪→
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Appendix I
Filesystem Performance Test Script

#/bin/bash
count=$1
block_size=$2

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."

echo "write 1 $block_size block to SD Card"

time dd if=/dev/zero of=/media/sd-pl/garbage.test
bs=$block_size count=$count↪→

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."

echo "read 1 $block_size block from SD Card (flushed
cache)"↪→

time dd if=/media/sd-pl/garbage.test of=/dev/null
bs=$block_size count=$count↪→

echo "read 1 $block_size block from SD Card"
time dd if=/media/sd-pl/garbage.test of=/dev/null

bs=$block_size count=$count↪→

rm /media/sd-pl/garbage.test

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."
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echo "write 1 $block_size block file to EMMC."
time dd if=/dev/zero of=/media/emmc-pl/garbage.test

bs=$block_size count=$count↪→

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."

echo "read 1 $block_size block from EMMC (flushed cache)"
time dd if=/media/emmc-pl/garbage.test of=/dev/null

bs=$block_size count=$count↪→

echo "read 1 $block_size block from EMMC"
time dd if=/media/emmc-pl/garbage.test of=/dev/null

bs=$block_size count=$count↪→

rm /media/emmc-pl/garbage.test

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."

echo "write 1 $block_size block file to rootfs."
time dd if=/dev/zero of=/garbage.test bs=$block_size

count=$count↪→

echo 3 | tee /proc/sys/vm/drop_caches
echo "Cache flused."

echo "read 1 $block_size block from rootfs (flushed cache)"
time dd if=/garbage.test of=/dev/null bs=$block_size

count=$count↪→

echo "read 1 $block_size block from rootfs"
time dd if=/garbage.test of=/dev/null bs=$block_size

count=$count↪→

rm /garbage.test
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Appendix J
Filesystem Performance Test Result
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Sheet1

Page 1

test SD (ext4) SD (ext4) cached SD (FAT) SD (FAT) cached
1 64MB write 1.01 1
1 64MB read 0.867 0.336 0.772 0.379
64 1MB write 0.76 0.891
64 1MB read 0.575 0.237 0.572 0.247
64K 1KB write 2.496 1.79
64K 1KB read 0.686 0.646 0.687 0.663

1 1KB write 0.01 0.011
1 1KB read 0.008 0.008 0.009 0.008
1 10KB write 0.009 0.009
1 10KB read 0.009 0.008 0.009 0.009
1 100KB write 0.01 0.011
1 100KB read 0.009 0.009 0.01 0.008
1 1MB write 0.024 0.026
1 1MB read 0.018 0.014 0.019 0.014
1 10MB write 0.144 0.166
1 10MB read 0.108 0.064 0.123 0.057
1 100MB write 1.442 5.699
1 100MB read 7.513 0.577 2.225 0.513

avg MB/s 60.0563027838599 157.50615258409 67.22689076 148.9526764934
Fastest MB/s 111.304347826087 270.04219409283 111.8881119 259.1093117409

avg read MB/s 90.2255639097744 157.50615258409 94.53471196 148.9526764934
avg write MB/s 45.0070323488045 52.1597392

Fastest read MB/s 111.304347826087 111.8881119
Fastest write MB/s 84.2105263157895 71.82940516



Sheet1

Page 2

eMMC (FAT) eMMC (FAT) cached rootfs (RAM) rootfs cached
1.115 0.443
0.773 0.365 0.317 0.37
0.989 0.332
0.572 0.237 0.222 0.22
1.926 0.845
0.681 0.65 0.57 0.595

0.008 0.008
0.008 0.008 0.008 0.008
0.009 0.008
0.008 0.008 0.008 0.008

0.01 0.009
0.009 0.008 0.008 0.008
0.027 0.015
0.017 0.014 0.013 0.014
0.182 0.076
0.108 0.064 0.056 0.065

4.99 0.686
3.113 0.566 0.543 0.511

63.4081902246 153.354632587859 140.7108831 162.0253165
111.888111888 270.042194092827 288.2882883 290.9090909

94.7680157947 153.354632587859 173.128945 162.0253165
47.6426799007 118.5185185

111.888111888 288.2882883
64.7118301314 192.7710843
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Appendix K
Dynamic Reconfiguration of FPGA
Performance Test Program

// usage:
// ./test.o <width> <height> <depth>

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <time.h>

#define CUBEDMA_BASE 0x43C00000
#define SR_DONE_MSK 0x1

#define MM2S_CTRL_REG 0//0x00
#define MM2S_STAT_REG 1//0x04
#define MM2S_ADDR_REG 2//0x08
#define MM2S_CUBE_DIM_REG 3//0x0C
#define MM2S_BLOCK_DIM_REG 4//0x10
#define MM2S_ROW_DIM_REG 5//0x14

#define S2MM_CTRL_REG 8//0x20
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#define S2MM_STAT_REG 9//0x24
#define S2MM_ADDR_REG 10//0x28
#define S2MM_LEN_REG 11//0x2C

#define SEND_PHYS_ADDR 0x30000000
#define RECEIVE_PHYS_ADDR 0x38000000

#define cubedma_RegWrite(offset, val) deviceMem[offset] =
val;↪→

#define cubedma_RegRead(offset) deviceMem[offset]

char *p;
int num;

typedef struct
{

uint8_t error:1;
uint8_t complete:1;

} cubedma_init_enable_irq_t;

typedef enum
{

MM2S,
S2MM

} transfer_t;

typedef enum {
SUCCESS,
ERR_TIMEOUT,
ERR_BUSY,
ERR_INV_PARAM

} cubedma_error_t;

typedef struct {
struct{

uint32_t source;
uint32_t destination;

} address;
struct {

uint8_t n_planes;
uint8_t c_offset;
uint8_t planewise:1;
struct {

uint8_t enabled:1;
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struct {
uint8_t width:4;
uint8_t height:4;
uint32_t size_last_row:20;

} dims;
} blocks;
struct {

uint16_t width:12;
uint16_t height:12;
uint16_t depth:12;
uint32_t size_row:20;

} dims;
} cube;
struct {

cubedma_init_enable_irq_t mm2s;
cubedma_init_enable_irq_t s2mm;

} interrupt_enable;
} cubedma_init_t;

#define CTRL_REG_OFFSET(mode) (mode==MM2S)? \
(MM2S_CTRL_REG): \
(S2MM_CTRL_REG)

#define STAT_REG_OFFSET(mode) (mode==MM2S)? \
(MM2S_STAT_REG): \
(S2MM_STAT_REG)

volatile uint8_t * send_channel;
volatile uint8_t * receive_channel;

static int fd_send;
static int fd_receive;

volatile uint32_t* deviceMem;

int cubedma_TransferDone(transfer_t transfer)
{

if (cubedma_RegRead(STAT_REG_OFFSET(transfer)) &
SR_DONE_MSK)↪→

{
if (transfer == S2MM)
{

printf("received length %u\n",
deviceMem[S2MM_LEN_REG]);↪→

}
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return 1;
}
return 0;

}

int gettime(struct timeval t0, struct timeval t1)
{

return ((t1.tv_sec - t0.tv_sec) * 1000.0f +
(t1.tv_usec -t0.tv_usec) / 1000.0f);↪→

}

int main(int argc, char **argv) {
// Get cubesize parameters defined by user.

const int width = strtol(argv[1], &p, 10);
const int height = strtol(argv[2], &p, 10);
const int depth = strtol(argv[3], &p, 10);
const int cube_size = (depth * height * width);

cubedma_init_t param =
{

.address =
{

.source =
(uint32_t)(SEND_PHYS_ADDR),↪→

.destination =
(uint32_t)(RECEIVE_PHYS_ADDR)↪→

},
.cube =
{

.n_planes = 0,

.c_offset = 0,

.planewise = 0,

.blocks =
{

.enabled = 0,

.dims = { 0, 0, 0 }
},
.dims =
{ //TODO: Get the numbers the camera

uses↪→

.width = width, //Number of
frames↪→

.height = height, //Number of
rows↪→

.depth = depth, //Number of
cols↪→
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.size_row = height*width
}

},
.interrupt_enable =
{

{0, 0}, {0, 0}
}

};

int fd = open("/dev/mem", O_RDWR|O_SYNC);

if (fd < 0)
{

perror("/dev/mem");
exit(-1);

}

fd_send = open("/dev/cubedmasend", O_RDWR);
if(fd_send < 1)
{

printf("Unable to open CubeDMA send
channel");↪→

}

fd_receive = open("/dev/cubedmarecieve",
O_RDWR);↪→

if (fd_receive < 1) {
printf("Unable to open receive channel");

}

send_channel = mmap(0, cube_size*sizeof(uint8_t),
PROT_READ | PROT_WRITE, MAP_SHARED,

fd_send, SEND_PHYS_ADDR);↪→

receive_channel = mmap(0, cube_size*sizeof(uint8_t),
PROT_READ | PROT_WRITE, MAP_SHARED,

fd_receive, RECEIVE_PHYS_ADDR);↪→

deviceMem = (uint32_t *) mmap(NULL, getpagesize(),
PROT_READ|PROT_WRITE, MAP_SHARED, fd,
CUBEDMA_BASE);

↪→

↪→

if(receive_channel == NULL) {
perror("fuck");
exit(-1);
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}

deviceMem[MM2S_CTRL_REG] = 0x0;
deviceMem[S2MM_CTRL_REG] = 0x0;
printf("GENERATING TEST DATA \n");
for(int i = 0; i < cube_size; i++) {

if (i%2)
send_channel[i] = 0x1;
else
send_channel[i] = 0x0;

}

struct timeval t1, t0;

ioctl(fd_send, 0);

printf("Starting FPGA full reconfig test\n");
gettimeofday(&t0, NULL);
system("fpgautil -b

/media/sd-img/fpga/image_processing_light.bit.bin");↪→

printf("Configure cubeDMA \n");
deviceMem[MM2S_ADDR_REG] = param.address.source;
deviceMem[MM2S_CUBE_DIM_REG] =

(param.cube.dims.width & 0xFFF) << 0 |
(param.cube.dims.height & 0xFFF) << 12 |
(param.cube.dims.depth & 0xFF) << 24;

deviceMem[MM2S_BLOCK_DIM_REG] = 0x0;
deviceMem[MM2S_ROW_DIM_REG] =

param.cube.dims.size_row;↪→

deviceMem[S2MM_ADDR_REG] =
param.address.destination;↪→

deviceMem[MM2S_CTRL_REG] = 0x1;
deviceMem[S2MM_CTRL_REG] = 0x1;

while(!cubedma_TransferDone(MM2S));
while(!cubedma_TransferDone(S2MM));
deviceMem[MM2S_CTRL_REG] = 0x0;
deviceMem[S2MM_CTRL_REG] = 0x0;
memcpy(send_channel, receive_channel,

cube_size*sizeof(uint8_t));↪→
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system("fpgautil -b
/media/sd-img/fpga/image_processing_dark.bit.bin");↪→

printf("Configure cubeDMA \n");
deviceMem[MM2S_ADDR_REG] = param.address.source;
deviceMem[MM2S_CUBE_DIM_REG] =

(param.cube.dims.width & 0xFFF) << 0 |
(param.cube.dims.height & 0xFFF) << 12 |
(param.cube.dims.depth & 0xFF) << 24;

deviceMem[MM2S_BLOCK_DIM_REG] = 0x0;
deviceMem[MM2S_ROW_DIM_REG] =

param.cube.dims.size_row;↪→

deviceMem[S2MM_ADDR_REG] =
param.address.destination;↪→

deviceMem[MM2S_CTRL_REG] = 0x1;
deviceMem[S2MM_CTRL_REG] = 0x1;
while(!cubedma_TransferDone(MM2S));
while(!cubedma_TransferDone(S2MM));
deviceMem[MM2S_CTRL_REG] = 0x0;
deviceMem[S2MM_CTRL_REG] = 0x0;
memcpy(send_channel, receive_channel,

cube_size*sizeof(uint8_t));↪→

system("fpgautil -b
/media/sd-img/fpga/image_processing_light.bit.bin");↪→

printf("Configure cubeDMA \n");
deviceMem[MM2S_ADDR_REG] = param.address.source;
deviceMem[MM2S_CUBE_DIM_REG] =

(param.cube.dims.width & 0xFFF) << 0 |
(param.cube.dims.height & 0xFFF) << 12 |
(param.cube.dims.depth & 0xFF) << 24;

deviceMem[MM2S_BLOCK_DIM_REG] = 0x0;
deviceMem[MM2S_ROW_DIM_REG] =

param.cube.dims.size_row;↪→

deviceMem[S2MM_ADDR_REG] =
param.address.destination;↪→

deviceMem[MM2S_CTRL_REG] = 0x1;
deviceMem[S2MM_CTRL_REG] = 0x1;
while(!cubedma_TransferDone(MM2S));
while(!cubedma_TransferDone(S2MM));
deviceMem[MM2S_CTRL_REG] = 0x0;
deviceMem[S2MM_CTRL_REG] = 0x0;
memcpy(send_channel, receive_channel,

cube_size*sizeof(uint8_t));↪→

system("fpgautil -b
/media/sd-img/fpga/image_processing_dark.bit.bin");↪→
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printf("Configure cubeDMA \n");
deviceMem[MM2S_ADDR_REG] = param.address.source;
deviceMem[MM2S_CUBE_DIM_REG] =

(param.cube.dims.width & 0xFFF) << 0 |
(param.cube.dims.height & 0xFFF) << 12 |
(param.cube.dims.depth & 0xFF) << 24;

deviceMem[MM2S_BLOCK_DIM_REG] = 0x0;
deviceMem[MM2S_ROW_DIM_REG] =

param.cube.dims.size_row;↪→

deviceMem[S2MM_ADDR_REG] =
param.address.destination;↪→

deviceMem[MM2S_CTRL_REG] = 0x1;
deviceMem[S2MM_CTRL_REG] = 0x1;
while(!cubedma_TransferDone(MM2S));
while(!cubedma_TransferDone(S2MM));
deviceMem[MM2S_CTRL_REG] = 0x0;
deviceMem[S2MM_CTRL_REG] = 0x0;

gettimeofday(&t1, NULL);
double time_spent_fpga = gettime(t0, t1);
printf("\n fpga done \n");

memcpy(send_channel, receive_channel,
cube_size*sizeof(uint8_t));↪→

printf("Starting FPGA partial reconfig test\n");
gettimeofday(&t0, NULL);

system("fpgautil -b
/media/sd-img/fpga/image_processing_light_pblock_image_processing_0_partial.bit.bin
-f Partial");

↪→

↪→

deviceMem[MM2S_CTRL_REG] = 0x1;
deviceMem[S2MM_CTRL_REG] = 0x1;
while(!cubedma_TransferDone(MM2S));
while(!cubedma_TransferDone(S2MM));
deviceMem[MM2S_CTRL_REG] = 0x0;
deviceMem[S2MM_CTRL_REG] = 0x0;
memcpy(send_channel, receive_channel,

cube_size*sizeof(uint8_t));↪→

system("fpgautil -b
/media/sd-img/fpga/image_processing_dark_pblock_image_processing_0_partial.bit.bin
-f Partial");

↪→

↪→

deviceMem[MM2S_CTRL_REG] = 0x1;
deviceMem[S2MM_CTRL_REG] = 0x1;
while(!cubedma_TransferDone(MM2S));
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while(!cubedma_TransferDone(S2MM));
deviceMem[MM2S_CTRL_REG] = 0x0;
deviceMem[S2MM_CTRL_REG] = 0x0;
memcpy(send_channel, receive_channel,

cube_size*sizeof(uint8_t));↪→

system("fpgautil -b
/media/sd-img/fpga/image_processing_light_pblock_image_processing_0_partial.bit.bin
-f Partial");

↪→

↪→

deviceMem[MM2S_CTRL_REG] = 0x1;
deviceMem[S2MM_CTRL_REG] = 0x1;
while(!cubedma_TransferDone(MM2S));
while(!cubedma_TransferDone(S2MM));
deviceMem[MM2S_CTRL_REG] = 0x0;
deviceMem[S2MM_CTRL_REG] = 0x0;
memcpy(send_channel, receive_channel,

cube_size*sizeof(uint8_t));↪→

system("fpgautil -b
/media/sd-img/fpga/image_processing_dark_pblock_image_processing_0_partial.bit.bin
-f Partial");

↪→

↪→

deviceMem[MM2S_CTRL_REG] = 0x1;
deviceMem[S2MM_CTRL_REG] = 0x1;
while(!cubedma_TransferDone(MM2S));
while(!cubedma_TransferDone(S2MM));
deviceMem[MM2S_CTRL_REG] = 0x0;
deviceMem[S2MM_CTRL_REG] = 0x0;

gettimeofday(&t1, NULL);
printf("\n fpga done \n");
double time_spent_fpga_part = gettime(t0, t1);

for(int i = 0; i < cube_size; i++) {
if (i%2)
send_channel[i] = 0x1;
else
send_channel[i] = 0x0;

}

printf("\n Starting SOFTWARE test \n");
gettimeofday(&t0, NULL);
for(int i = 0; i < cube_size; i++) {

send_channel[i] = send_channel[i]*2;
}
for(int i = 0; i < cube_size; i++) {
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send_channel[i] = send_channel[i]/2;
}
for(int i = 0; i < cube_size; i++) {

send_channel[i] = send_channel[i]*2;
}
for(int i = 0; i < cube_size; i++) {

send_channel[i] = send_channel[i]/2;
}
gettimeofday(&t1, NULL);
printf("\n software done \n");
double time_spent_sw = gettime(t0, t1);

printf("\n comparing result \n");
for (int i = 0; i < cube_size; i++) {

if(receive_channel[i] != send_channel[i]) {
printf("not same result for %d.

send: %u, reseived: %u \n", i,
send_channel[i],
receive_channel[i]);

↪→

↪→

↪→

break;
}

}

printf("FPGA (full): %f \n FPGA (partial): %f \n
SW: %f \n", time_spent_fpga,
time_spent_fpga_part, time_spent_sw);

↪→

↪→

return 0;
}
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Appendix L
U-Boot environment Fallback Test
and Test Results

U-Boot 2019.01 (May 25 2020 - 11:50:29 +0000) Xilinx Zynq
ZC702↪→

CPU: Zynq 7z030
Silicon: v3.1
Model: Avnet picoZed
DRAM: ECC disabled 1 GiB
MMC: mmc@e0100000: 0, mmc@e0101000: 1
Loading Environment from SPI Flash... SF: Detected n25q128

with page size 256 Bytes, erase size 64 KiB, total 16
MiB

↪→

↪→

OK
In: serial@e0001000
Out: serial@e0001000
Err: serial@e0001000
Model: Avnet picoZed
Net: ZYNQ GEM: e000b000, phyaddr ffffffff, interface

rgmii-id↪→

eth0: ethernet@e000b000
Saving Environment to SPI Flash... SF: Detected n25q128

with page size 256 Bytes, erase size 64 KiB, total 16
MiB

↪→

↪→

Erasing SPI flash...Writing to SPI flash...done
OK
Warning: Bootlimit (5) exceeded. Using altbootcmd.
Hit any key to stop autoboot: 0
Zynq> sf probe 0 0 0
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SF: Detected n25q128 with page size 256 Bytes, erase size
64 KiB, total 16 MiB↪→

Zynq> sf erase 0x600000 +0x10
SF: 65536 bytes @ 0x600000 Erased: OK
Zynq> reset
resetting ...

U-Boot 2019.01 (May 25 2020 - 11:50:29 +0000) Xilinx Zynq
ZC702↪→

CPU: Zynq 7z030
Silicon: v3.1
Model: Avnet picoZed
DRAM: ECC disabled 1 GiB
MMC: mmc@e0100000: 0, mmc@e0101000: 1
Loading Environment from SPI Flash... SF: Detected n25q128

with page size 256 Bytes, erase size 64 KiB, total 16
MiB

↪→

↪→

*** Warning - bad CRC, using default environment
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Snapshop of Kanban Board
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