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Abstract
This thesis is a master’s dissertation concluding a master of science in signal processing and communica-
tions. It studies the estimation of center frequency, Instantaneous Frequency (IF) and the symbol rate of
chirp-per-symbol Spread Spectrum (SS) communication signals. Parameter estimators are implemented
and their performance is measured against non-linear and discontinuous chirp modulated signals.

A center frequency estimator based on cycle-frequency correlation and a symbol rate estimator based on
harmonic cycle-frequencies is proposed and compared to traditional methods. Various traditional and
modern IF estimators are compared and studied on various chirp signals.

Statistical analysis shows that a center frequency estimate can be assembled based on the spectral corre-
lation at specific cycle-frequencies, obtaining accuracies that approach that of a second-order interpolated
magnitude spectrum Maximum Likelihood Estimation (MLE) method. From this, it is apparent that
estimates of the center frequencies can be obtained for multiple signals overlapping in time and frequency
by studying their cycle-frequencies.

For IF estimation a piece-wise polynomial IF estimator is shown to outperform all of the studied es-
timators on discontinuous chirps. It suffers from high computing requirements, but is exceptionally
parallelizable. Faster Time-Frequency (TF) based estimators are studied. Of these the Hilbert-Huang
Transform (HHT) is shown to outperform the Wigner-Ville Distribution (WVD) for use with MLE of
discontinuous chirps in moderate Signal-to-Noise Ratio (SNR).

The symbol rate of a chirp signal is found to be estimated computationally efficiently through a harmonic
cycle-frequency Maximum Likelihood (ML) estimate. In two out of three studied cases, this estimator
outperforms an autocorrelation-based counterpart, both in execution time and accuracy.
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Sammendrag
Denne avhandlingen er en masteroppgave som konkluderer en "master of science" i signalbehandling
og kommunikasjon. I oppgaven studeres estimering av senterfrekvens, instantan frekvens og symbol-
hastigheten til frekvensrampe spredd spektrum kommunikasjonssignaler. Det er utviklet signalgenera-
torer og parameterestimatorer. Ytelsen til estimatorene er målt mot de genererte ikke-lineære og ikke-
kontinuerlige frekvensrampemodulerte signaler.

En syklusfrekvens-basert senterfrekvensestimator og en symbolhastighetsestimator basert på harmoniske
syklusfrekvenser er utviklet, og sammenlignet med tradisjonelle metoder. Ulike tradisjonelle og moderne
instantan frekvensestimatorer er sammenlignet og studert på forskjellige frekvensrampesignaler.

Ved bruk av statistisk analyse er det vist at et senterfrekvensestimat kan dannes basert på spektral kor-
relasjon ved spesifikke syklusfrekvenser, og oppnå en nøyaktighet oppimot det en andreordens interpolert
magnitudespektrum sannsynlighetsmaksimerende metode har. Det vil si at estimater av senterfrekvens
kan oppnås for flere signaler som overlapper i tid og frekvens, ved å studere deres syklusfrekvenser.

For estimering av instantan frekvens er det vist at en stykkevis polynom-basert estimator oppnår høyest
nøyaktighet av de studerte estimatorene på ikke-kontinuerlige frekvensramper. Den lider av høy utreg-
ningstid, men er i stor grad parallelliserbar. Raskere tid-frekvens baserte estimatorer er undersøkt. Av
disse utkonkurrerer Hilbert-Huang-transformen, Wigner-Ville for bruk med sannsynlighetsmaksimerende
estimater av ikke-kontinuerlige frekvensrampesignaler i moderat signal-til-støyforhold.

Det er vist at symbolhastigheten til et frekvensrampesignal kan beregnes tidseffektivt gjennom et har-
monisk syklusfrekvensestimat. I to av tre undersøkte tilfeller er denne metoden bedre enn en autokorre-
lasjonsbasert metode både på utregningshastighet, og nøyaktighet.
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Notation and Definitions
a is a scalar.
a is a vector.

a[i] is a time series equivalent of a. Zero-indexed.
A is a matrix.
1 is a column vector of ones. Length defined by context: 1 = [1,1, . . . ,1]T .
â is an estimate of, or estimator for parameter a.
ã is a complex scalar Re{ã} + i Im{ã}.
ã∗ is the complex conjugate of a scalar Re{ã} − i Im{ã}.
ǎ is the Hilbert transformed vector a.
F{⋅} is the Discrete Fouriere Transform operator.
Z{⋅} is the Z-transform operator.
E{⋅} is the expectation operator.
E{⋅} is the signal energy operator.
mod ⋅ is the modulo operator.
arg ⋅ is the argument (angle) operator.
∣ ⋅ ∣ is the element-wise absolute value.
∣∣ ⋅ ∣∣ is the norm of a vector.

⟨a(x), b(x)⟩ is the inner product of a(x) and b(x).
⟨a(x)⟩b is the average of a(x) over b. Defined as ⟨a(x)⟩b ∶= 1

b ∫
b/2
−b/2 a(x)dx.

⌊a⌋ is the greatest integer not superseding a, a ∈ R.
Rab is the correlation of a and b.
⊛ is the convolution operator.
⋅ is the dot-product operator.
× is the multiplication operator.
[a..b] is the interval of integers Z from a to, and including b. [a..b] = {x ∈ Z∣a ≤ x ≤ b}.
[a, b] is the interval of real numbers R from a to, and including b. [a, b] = {x ∈ R∣a ≤ x ≤ b}.
⟨a, b⟩ is the interval of real numbers R between, but not including a or b. ⟨a, b⟩ = {x ∈ R∣a < x < b}.
a ∶= b specifies that a is defined as b.

Vectors and matrices are one-indexed.
Time series are zero-indexed.
Vectors are unless otherwise noted column vectors.
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Chapter 1

Introduction

1.1 Background and Motivation
In the defense and security sector, situational awareness is key. This includes knowing the numbers,
positions, and types of adversaries. One way of obtaining such knowledge is through the radio spectrum.
Modern surveillance systems utilize passive Radio Frequency (RF) receivers looking to detect, classify
and position RF emitters. This classification can be divided into two objectives. Modulation Recognition
(MR) which classifies the type (class) of modulation [1], and Specific Emitter Identification (SEI) which
looks beyond the modulation and analyze specific traits in the signal, so-called fingerprints, in order to
classify not only the class of modulation (e.g., communications standard) but the specific radio class,
or even specific unit of a transmitter (e.g., a specific vehicle) [2]. This information can be used for
situational awareness, or to efficiently counter the adversary with so-called Electronic Countermeasures
(ECM).

State-of-the-art classification systems use a method that can be divided into three steps. First the
system scans the spectrum for emissions e.g., though white space detection [3]. Then detected signals
are separated and studied through banks of parameter estimators to create what is called a feature
vector. This vector contains details about the observed signal. The vector is then fed into a classifier
that outputs a class, like type of modulation, platform, etc. This method is called the feature based
method∗. An overview of the three steps is illustrated in Figure 1.1.

ADC ClassificationFeature
Extraction Class

z̃0(t)

Detection
& Separation

p

t

f

z̃1(t)

z̃n(t)z̃(t)
p = [fc, fsymb, fIF (t)]

Figure 1.1: Three-Step Classification System (Thesis Focus in Red)

To reduce the Probability of Detection (PD) and Probability of Identification (PI) of radio signals, various
techniques are used. Perhaps the most common technique is SS [5], where the spectral power density
of a signal is reduced by spreading the payload signal over a wide bandwidth. This reduces the peak
power envelope close to and below the background noise level, or "noise floor". This makes detection and
identification challenging.

∗A second class of methods is the MLE methods, which can be studied further in [4].
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One SS method is the Chirp Spread Spectrum (CSS). In CSS the signal is spread in frequency by applying
a frequency chirp to each symbol or packet. Traditionally linear chirps have been used, but state-of-
the-art software-defined radios allow the use of more complex non-linear chirp signals [6]. Chirp signals
can obtain large processing gains. By sweeping a wide bandwidth the signal obtains high resistance to
narrow-band interference [7]. The large processing gains also enable low-power transmission and thus
a low spectral power density. This wideband, low-power, low noise-density characteristic makes chirps
challenging to detect, and classify. The close to infinite possible chirp IF trajectories require powerful
and agile algorithms to characterize them.

There is a great deal of research on the detection and classification of traditional modulations [1]. How-
ever, less focus is put on chirp signals†. The goal is to develop a set of estimators which together can
characterize most types of chirp modulations optimally in low SNR.

1.2 Problem Definition
Signal detection and classification as part of Electronic Support Measures (ESM) is widely adopted in
the defense sector. Passive radio detectors are used to detect, classify, and position distant objects for
increased situational awareness among other uses. Frequency modulated or chirp spread spectrum signals
are widely used in radar and communication systems. An emerging technique is the use of nonlinear
frequency modulated (NLFM) pulses. This brings the need for algorithms that can characterize these
waveforms. The task is to develop an algorithm able to characterize chirp modulated communication
signals. The resulting parameters are intended to be used in signal classification.

In this project the student will:

1. Develop a signal generator capable of generating various chirp modulated communication signals.

2. Develop an algorithm capable of characterizing chirp signals, and measure its performance.

1.3 Scenario and Focus
This thesis is based on the scenario of an intercept receiver searching for adversary emitters. An inter-
ceptor will want to intercept communications at short ranges and ranges superseding that of the target
link. It will therefore observe signals of interest in a wide SNR range.

Interceptor

Receiver Transmitter

RIntercept

RCommunication

SI

N

Sc

N

Figure 1.2: Intercept Scenario (Adapted From [8])

The receiver is utilizing digital sampling of a wide bandwidth, and Digital Signal Processing (DSP) for
detection and classification (parameter estimation herein). An emission is detected and extracted as
a time series. The receiver is assumed to have separated all simultaneous emissions to separate bins,
such that only a single emission, packet or pulse train is present in each time series. This time series
is transferred to a feature extractor which populates a feature vector with estimated parameters, and

†Outside of the radar community.
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hands it off to a classification algorithm, e.g., a Support Vector Machine (SVM) [9]. This thesis takes on
the estimation of particular features of chirp modulated signals. The algorithm specified in section 1.2
is implemented as a set of estimators. It is assumed that some prior signal sorting‡ is performed such
that the signal at this particular processing stage is known to be a chirp modulated signal.

The focus of this thesis is to study parameters that can be compared to a theoretical true value. The
chosen parameters are center frequency, IF, and symbol rate. They are assumed by the author to
provide a good decision distance between various chirp signals. Cyclostationary analysis is an emerging
technique which shows promise [11], and is therefore used to assemble estimators. Multiple estimators
are compared for each parameter in order to map their strengths and weaknesses. Two chirp classes with
different challenges are used in order to highlight weaknesses in the estimators. The signal classes are
continuous non-linear, and discontinuous linear chirps.

1.4 Organization
This thesis is organized into six chapters, where this is the first. The second chapter presents the theory
of chirp signals, a method of generating non-linear chirps with "favorable" characteristics, and the basic
structure of Long Range (proprietary physical layer standard) (LoRa) signals. Then a set of estimators
including maximum likelihood center frequency estimator and several IF estimators utilizing various TF
transforms are presented. Some intermediate results are presented to highlight estimator weaknesses
which are widely known. Lastly, cyclostationary analysis and a traditional autocorrelation harmonic
frequency estimator is presented.

The third chapter deals with the implementation of the generation and estimation algorithms. A method
of generating linear and non-linear chirps, and the method used for assembling the estimators are pre-
sented. The methods of assembling IF estimators are presented together with a description of how their
performance is measured. Then a cycle-frequency-based center frequency estimator is presented along
with a procedure of how to utilize a priori knowledge with it. Lastly, a harmonic cycle-frequency esti-
mator is presented as a symbol rate estimator, along with methods of utilizing a priori knowledge with
it.

The fourth chapter presents various characteristics of the generated signals and the implemented esti-
mators. The estimator performance is presented in the form of their error statistics in different Signal-
to-Noise Ratio levels. IF estimator weaknesses are highlighted with additional non-statistical analysis
of single estimate results. Some intermediate results are presented for the Cyclostationary estimators
to highlight the characteristics of the applied signals, in addition to statistical performance as with the
others.

In the fifth chapter, the strengths and weaknesses of the estimators are discussed. Some extrapolation
on the performance of the estimators to their big picture consequences and possibilities are presented.
Lastly, in the sixth chapter, the thesis is summarized.

‡An initial sorting can be achieved through simple fast estimators based on e.g., Higher Order Cumulants (HOCs) in
a decision tree [10].
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Chapter 2

Theory

In this chapter the core theoretical concepts are presented. It starts off with a presentation the funda-
mentals, and properties of the target signals. Thereafter the theory of relevant estimators and related
DSP methods are presented.

2.1 Chirp Signals
A chirp is a complex exponential whose phase Φ(t) changes non-linearly as a function of time. A chirp
is defined as [12]

s̃(t) ∶= a(t)eiΦ(t), (2.1)
where a is a real valued magnitude term, t ∈ T = [−T

2
, T
2
⟩ and T is the chirp period. When a is a scalar

(constant), then the signal has a constant envelope. This is assumed from here on. The frequency of the
signal at time instance t is the instantaneous frequency ω(t). It is defined as

ω(t) ∶= dΦ(t)
dt

[rad], (2.2)

where the IF in Hertz is

f ∶= ω

2π
[Hz]. (2.3)

The "chirp bandwidth" is defined as

Ω ∶= ∫T ω(t)dt. (2.4)

The rate of IF change, defined as the chirp rate is

γ(t) ∶= dω(t)
dt

. (2.5)

For linear chirps, the chirp rate is a scalar.

The following definitions are used throughout this thesis:
Single tone chirps are the set of signals which can be constructed by a single complex exponential. It
has a single IF at any time instance. This is assumed from here on.
Continuous chirps are the set of chirps whose IF is continuous. The IF is continuous when Equation 2.6
holds∗. Let ω be a function of the chirp IF.

lim
t→c

ω(c) = ω(t), t ∈ T . (2.6)

∗This definition holds for interior points of ω(t) only.
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In the case of communication signals, the definition of continuity only applies throughout the symbol
period t ∈ T .
Linear chirps are chirps whose IF is a linear function of time.

ω(t) = a0 + a1t, t ∈ T , a ∈ R2 (2.7)

An example of a continuous linear chirp is displayed in Figure 2.1.
Non-linear chirps are chirps whose IF is a nonlinear (any) function of time.

ω(t) = f(t), t ∈ T (2.8)

where f is any real function. An example of a continuous linear chirp is displayed in Figure 2.5.
Piece-wise linear chirps are chirps built of segments of linear chirps that have instantaneous changes
in chirp rate, and/or IF in their intersection. These are considered a subset of Non-Linear Frequency
Modulation (NLFM) chirps. Figure 2.1 through 2.3 display a continuous, linear chirp in the time-domain,
TF domain, and frequency domain respectively.
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Figure 2.1: Constant Envelope Linear Chirp in the time domain, s(t)
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Figure 2.2: Angular Frequency ω(t) [Hz]
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Figure 2.3: Linear Frequency Modulation (LFM) Periodogram

NLFM chirps have great flexibility in shape and characteristics. The IF function can be shaped to obtain
particular characteristics while maintaining a constant envelope. One such characteristic is autocorrela-
tion functions with increased peak-to-sidelobe distance, compared to that of the LFM counterpart. The
infinite possible IF trajectories allow: construction of sets of orthogonal or uncorrelated signals for use
in e.g. communication networks, communication with narrow-band interference [7], Multiple-Input and
Multiple-Output (MIMO) communications [13] among other uses.

In this thesis only continuous NLFM chirps are considered. Looking at the Power Spectral Density
(PSD) of the linear chirp in Figure 2.3, it is apparent that the PSD is rectangular. This comes from the
fact that the PSD in a frequency range is proportional to the power of the chirp in that range. With
equal bandwidth and constant envelope throughout the chirp, the PSD in a range is proportional to the
chirp rate in that range. The LFM has a constant chirp range throughout the entire range, thus its PSD
is "flat". The autocorrelation Rss of a signal is the Inverse Discrete Fouriere Transform (IDFT) of its
PSD.

Rss(τ) = F−1{S(f)} (2.9)
Shaping the PSD through the chirp rate, therefore shapes its autocorrelation through the Fourier relation.
W. Doerry presents one method of doing just this [12]. Autocorrelation functions from known window
functions can be obtained by shaping a LFM signal with a window function. Let γ(t) be the chirp rate
of a chirp signal for time t ∈ T

γ(t) = γ(0)
W (ω(t) − ω0)

, (2.10)

where W (⋅) is a window function, ω(t) is an LFM IF function, and ω0 ∶= ω(0) is the target center
frequency.

A protocol for generating NLFM chirps with specific length, start and stop frequencies proposed in [12],
is summarized here for clarity. From the target start and stop frequencies, and times, a prototype linear
IF trajectory ωprototype(t) is generated. From this function, a target bandwidth Ωtarget is calculated
using Equation 2.4. Now the NLFM IF path can be found be through Equation 2.10 with a scaled
prototype IF path a × ωprototype(t).

ωNLFM(a, t) = ∫
γ(0)

W ((a × ωprototype(t)) − ω0)
dt (2.11)

a must be set so that the target bandwidth Ωtarget is met, i.e. the start and stop frequency is identical
to that of the prototype IF path. The scaling factor a is found through an optimization technique as
stated below.

a =min
a
∣Ωtarget −ΩNLFM (ωNLFM(a, t))∣ (2.12)
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A popular weighting function with a high peak-to-sidelobe distance is the Hamming window. A Hamming
window is displayed in Figure 2.4, and a Hamming-weighted NLFM is displayed in Figure 2.5.
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Figure 2.4: Hamming Window Weighting Function W (⋅)

Figure 2.5 through 2.7 display a continuous, non-linear chirp in the time-domain, TF domain, and
frequency domain respectively. The chirp has equivalent length and "chirp bandwith" Ω as the LFM
signal in Figure 2.1.
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Figure 2.5: Constant Envelope Non-Linear Chirp in the time domain, s(t)
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Figure 2.7: NLFM Periodogram

These chirps carry no information on their own. In order to be used for radio communications, they
need some form of modulation.

2.1.1 Modulated Chirp Signals
There are multiple ways of modulating information on chirp waveforms. Similar to single tone commu-
nication schemes, one can apply on/off-keying or frequency shift keying (chirps with different starting
frequencies representing different symbols). Complex modulations like Phase Shift Keying (PSK) and
Quadrature Amplitude Modulation (QAM) can be modulated onto the chirp similarly to a single tone
carrier [7]. Such signals are not explored in this thesis. By utilizing orthogonal chirps, M-ary communica-
tions is possible, where each symbol is represented by a dedicated chirp. The optimum filter for detection
of a known signal is the matched filter [14]. This filter is in essence a correlator. In infinite SNR, the
output of a matched filter applied the true symbol, is the autocorrelation of that symbol. An opti-
mum matched filter receiver for an M-ary chirp communications scheme is displayed in Figure 2.8. For
communications purposes, symbols should have a high autocorrelation peak-to-sidelobe ratio, and low
cross-correlation [15], these characteristics are favorable to increase detection performance, and reduce
incorrect symbol detection (symbol-error) in low SNR.

Decision
Device Symbol

Matched Filters

s̃2(t)

s̃M(t)

z̃(t)

Clock

s̃1(t)

Figure 2.8: M-ary Chirp Receiver Architecture

LoRa is an M-ary chirp-per-symbol modulated communications physical layer standard [16], [17]. In
LoRa, the symbols consists of linear chirps with a single chirp rate†. Each symbol has a dedicated starting
frequency. Once the chirp reaches the maximum frequency, it wraps around to the minimum frequency.
Below is an illustration of a symbol alphabet for a LoRa-like M-ary chirp-per-symbol modulation scheme.
As can be seen from the IF symbol map, each symbol is a linear, discontinuous chirp.

†Except during IF wrap around.
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Figure 2.9: Linear Chirp Symbol Map (M = 4)

Digital communication receivers depend on synchronizing to the clock of the incoming signal to sample the
symbols at the correct time (as can be seen from Figure 2.8). To ensure synchronization, communication
packets are equipped with a synchronization sequence. This sequence is known by the receiver, typically
a sequence with "favorable" autocorrelation properties. LoRa is a proprietary standard, so the knowledge
of its physical layer relies on reverse engineering efforts. C. Bernier et al. have attempted to break down
the synchronization sequences of LoRa [18]. Based on this paper, LoRa has an N -symbol preamble (where
N ∈ [2..216−1]). It consists of complete chirps from fmin to fmax. This is followed by a two-symbol frame
synchronization word (of identical symbols) and a 2.25 symbol down-chirp frequency synchronization
sequence. Following the synchronization sequence are the headers and information symbols. Interested
readers are referred to [18] for further details on the synchronization sequences of LoRa. Below is an
illustration of a LoRa-like synchronization sequence.

0.000 0.227 0.455 0.682 0.909 1.136 1.364 1.591 1.818 2.045 2.273 2.500 2.727

t [s] ×10−2
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f
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×105

Preamble
Frame Sync
Frequency Sync

Figure 2.10: LoRa Synchronization Sequence. Grid Marking the Symbol Transitions.

The synchronization sequences are commonly static between packets, and as such they can be utilized
in detection and estimation.

2.2 Signal-to-Noise Ratio
In a real world application the observed signal s̃(t) would be distorted by noise. A typical observation
model is

z̃(t) = s̃(t) + w̃(t), (2.13)

where s̃(t) is the target signal, and w̃(t) is complex White Gaussian Noise (WGN). In order to quantify
the quality of the observation an SNR is defined.
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The SNR is a measure of the signal strength relative to a noise level. It is calculated as the ratio between
the average signal power S, and the average noise power N .

SNR = S

N
(2.14)

The signal power S is defined as the average signal power throughout the signal duration T . The noise
power N is defined as the average power of the noise process W over the observation duration. When
the noise process is a Gaussian process W ∼ N (µ = 0, σ2) (like in this thesis), then the noise power is

N ∶= σ2. (2.15)

For a complex noise process, the real and imaginary noise components are

w̃ = wreal + iwcomplex, wreal ∼ N (0,
σ2

2
) , wcomplex ∼ N (0,

σ2

2
) . (2.16)

The SNR is referred to in decibel form, as

SNR ∶= 10 log10 (
S

N
) . (2.17)

From Equation 2.14 it can be seen that the SNR gives no information on the noise density. A narrow-band
signal in wideband noise can thus appear to be covered in noise, but can easily be extracted through a
TF transform. In order to relate the signal to the noise density, a second relation is used; The normalized
SNR. That is, the bit energy per noise power density per Hertz, defined as

Eb

N0

∶= S ⋅B
N ⋅ fs ⋅ log2(M)

. (2.18)

As the observation is distorted by noise, the true value of a parameters cannot be found. Trough various
techniques called estimators, estimates of varying accuracy can be calculated.

2.3 Estimation
Estimation is the process of guessing the value of a parameter in the presence of some form of noise. The
error of an estimate θ̂ of parameter θ is calculated as follows:

e = θ − θ̂ (2.19)

The quality of an estimator can be measured by use of a loss function L{⋅}, which in its simplest form
is the Mean Absolute Error (MAE) [14, p. 115]‡:

LMAE{ei} =
∣∣ei∣∣1
I
= 1

T ∣ei∣
I

(2.20)

Here the mean absolute error is calculated for a set of I estimation occurrences.

Some estimators allow the use of a priori information. This is knowledge of the probable values of the
parameter θ before computation. Say one is estimating the frequency of a complex exponential in the
presence of noise, and the range for which the frequency θ is likely to occur is known. Using a Discrete
Fouriere Transform (DFT)-based MLE method, one can apply a weighting w to the signal based on
the prior information x̃f ′ = wx̃f

T . One way of expressing the prior probabilities is by use of Gaussian
Mixture Models (GMM) [19, ch. 3]. A GMM is a Ra model built of a set of b ∈ N Gaussians with weight
φ.

p(θ) =
b

∑
i=1

φiN (µi, σi) (2.21)

‡[14] presents the MAE simply as the 1-norm of the error vector.
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2.4 Frequency Domain Estimation
The frequency content of an emission is a powerful parameter. Due to the physical laws of radiation, the
frequency content reveals information about the physical size and technology of the transmitter. Second,
knowledge of the frequency distribution of a signal can aid in the estimation of other parameters. Perhaps
the most fundamental parameter in the frequency domain is the center frequency.

2.4.1 Center Frequency Estimation
The frequency of a complex exponential in WGN can be estimated through a ML method [20]. For a
signal

s̃(t) = a(t)ei2πfct+φ (2.22)

embedded in WGN w(t), resulting in the observation

z̃(t) = s̃(t) + w̃(t), (2.23)

the ML frequency estimator is

f̂ML = argmax
f∈Ω

∣Z̃[f]∣, Ω =
⎧⎪⎪⎨⎪⎪⎩
k
fs
K
∣k ∈ Z ∧ −K

2
≤ k < K

2

⎫⎪⎪⎬⎪⎪⎭
, (2.24)

where fs is the sample frequency, K is the size of the DFT, and

Z̃[f] = F{z̃(t)}. (2.25)

The accuracy of the estimator in Equation 2.24 is proportional to the DFT size K, as the functions
codomain Ω is bound to discrete values, which are fractions of the sampling frequency.

The DFT can be computed (computationally efficiently) through the Fast Fourier Transform (FFT)
[21]. The complexity of this algorithm increases with K log2K. With this algorithm, high accuracy
estimators will require a substantial amount of computation, in addition to the peak search, where the
computational complexity increases linearly with K. Duda shows that using windows on the sampled
data with narrow main lobes can improve the accuracy, and noise immunity of the estimator [22].

A method of improving the accuracy to sub-bin resolution is that of the Quadratically-Interpolated FFT
(QIFT) [23]. This method applies a quadratic interpolation around argmaxf∈Ω ∣Z̃(f)∣. By fitting

y = a2x2 + a1x + a0 (2.26)

to

∣Z̃[f]∣∣
f={fkML−1

,fkML
,fkML+1

}, (2.27)

an estimate the center frequency in non-integer steps is obtained§. Equation 2.26 can be fitted through
e.g. least squares as illustrated in Figure 2.11 [22], [25].
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Figure 2.11: Quadratic Fit Around argmaxf∈Ω ∣Z̃(f)∣

§Additional methods of sub-bin frequency estimators can be found in [24]
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The vertex of the interpolated parabola is the peak of the likelihood function. The estimator f̂ then
becomes

f̂ = −a1
2a2

. (2.28)

This allows greater accuracy without increasing the DFT size. The interpolated DFT MLE method
described above is hereby denoted as the DFT MLE method.

2.4.2 Bandwidth Estimation
A second parameter that can be estimated in the frequency domain is the power bandwidth. For unknown
pulses the bandwidth can be estimated through the PSD of the observation.

B(x) = fxdB
upper − fxdB

lower (2.29)

The upper and lower band limits are the frequencies for which the PSD of the observation P (f) has
fallen x [dB] from its peak.

lim
f→f+

lower

∣10 log10 P (f) − λ(x)∣ = 0, (2.30)

lim
f→f−upper

∣10 log10 P (f) − λ(x)∣ = 0, (2.31)

where

λ(x) = [10 log10maxP (f)] − x [dB]. (2.32)

Equation 2.30 and 2.31 is solved for flower and fupper respectively. This assumes that the x [dB] threshold
is crossed only once at each side of the center frequency. By studying Equation 2.30 and 2.31 it can be
seen that this estimator only works when the PSD peak is > x [dB] above the "noise floor".

Through these methods, the peak of the magnitude spectrum and power bandwidth can be estimated,
however, a chirp has a frequency that changes with time. The time-dependent frequency, or Instantaneous
Frequency can also be estimated.

2.5 Instantaneous Frequency Estimation
The IF is a key parameter of the chirp, from which many other parameters can be calculated. There has
been a lot of research on instantaneous frequency estimation. Some historical and modern methods are
therefore studied.

2.5.1 Direct Estimation
The direct methods are those estimators that do not rely on any transformation of the observation prior
to estimation. The instantaneous frequency of a time series as defined in Equation 2.2 can be calculated
as follows:
Let s(t) be a signal consisting of a complex exponential s(t) = a(t)eiΦ(t). The instantaneous frequency
ω(t) is defined as

ω(t) ∶= 1

2π
dΦ(t)
dt
[Hz]. (2.33)

A phase estimate of an observation will be in the range [−π,π⟩. Once the phase supersedes the range, it
wraps around. This wraparound causes phase ambiguities which breaks the IF estimate (see Figure 2.12).
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A. E. Barnes proposes the computationally efficient two-point FIR IF estimator, which is unaffected by
these phase ambiguities [26]. Let

s̃(t) = x(t) + iy(t) (2.34)

denote the real and imaginary part of the signal s̃(t). The Barnes method is

ω̂(t) = 1

Ts
tan−1(x(t)y(t + Ts) − x(t + Ts)y(t)

x(t)x(t + Ts) + y(t + Ts)y(t)
) [rad]. (2.35)

Barnes might not have been aware of the possibility of unwrapping the phase prior to estimating the IF.
Phase unwrapping is the process of ensuring that the phase is continuous ∆Φ < π. This is accomplished
by successively adding or subtracting 2π recursively from non-compliant samples until they have ∆Φ < π.
Figure 2.12 displays the phase ambiguities of a wrapped phase, and the corresponding unwrapped phase
trajectory.
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Figure 2.12: Wrapped and unwrapped phase functions Φ(t) for a LoRa-Like Symbol

Knowing this, the IF can be estimated as

ω̂(t) = d unwrap (arg(s̃(t)))
dt

[rad], (2.36)

In the case of a sampled time series, the signal s[n] = s(t)∣
t=nTs

will have phase ambiguities for frequency
components which have a frequency ∣f ∣ > fs

2
. For such components, the phase between adjacent samples

will be s[(n + 1)Ts)] − s[nTs] > π, and will cause aliasing, even when phase unwrapping is applied.

The two "direct" methods above offer little noise rejection. An approach with greater noise rejection is
through a TF transform. A TF distribution spreads the noise out in time and frequency as a pseudo noise
suppression. The IF can be estimated through TF transforms such as a WVD [27] and Hilbert Spectrum
[28]¶. All TF transforms have limitations with regards to the TF function codomain or generality of
excitation signals. Hilbert et al. presents a thorough comparison of some of these issues in his paper
introducing the HHT [28].

2.5.2 The Wigner-Ville Distribution
The WVD is a TF distribution which is able to obtain greater time resolution than the well known
spectrogram. It is a special case of Cohens general class of time frequency distributions [31]. The WVD

¶Some of the methods not covered in this thesis is the spectrogram [29], scalarogram [30]
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is the Fourier integral of the central covariance function [31], [32]

W (ω, t) ∶= ∫
∞

−∞
Cc(τ, t)e−iωτ dτ, (2.37)

where Cc(τ, t) is the central covariance function of a time series s̃(t) defined as

Cc(τ, t) ∶= s̃(t −
1

2
τ)s̃∗(t + 1

2
τ). (2.38)

The resulting is a time-frequency distribution of the signal, as displayed in Figure 2.13.

Figure 2.13: Ws̃(ω, t),
S
N
= 10dB

The WVD suffers from so-called cross terms. These are the result of cross WVD of two signals. Let W11

and W22 be the WVD of signals s1(t) and s2(t) respectively. The WVD of signal

s(t) = s1(t) + s2(t), (2.39)

found by substituting Equation 2.39 into 2.37 is [31, ch. 8]

W (t, ω) =W11(t, ω) +W22(t, ω) +W12(t, ω) +W21(t, ω) (2.40)
=W11(t, ω) +W22(t, ω) + 2Re{W12(t, ω)} . (2.41)

The last term in Equation 2.41 is the cross term. The cross-terms lie between the two signal components,
and as shown above; Its magnitude can be twice that of the individual components [27]. The cross-terms
become apparent when applying a chirp symbol like described in subsection 2.1.1. This can be seen
in Figure 2.14 in the time range [0.2,0.6] [s]‖. Note how the cross term shifts from red to blue in an
oscillatory behavior.

Figure 2.14: Ws̃(ω, t), LoRa-Like Symbol with Cross Terms

‖Readers might notice the shorter pulses. The shorter signal is used for visual purposes.

14



In Equation 2.37 there is an infinite integral, which for the Discrete Wigner Distribution (DWD) becomes
an infinite sum. To overcome this, the signal is windowed in what is called the Pseudo Wigner Distribution
(PWD). Its discrete implementation is [33]

W [l, ω] = 2
N−1
∑

n=−N−1
fl[n]e−i2ωn, (2.42)

where

fl[n] = z̃[l + n]z̃∗[l − n]w[n]w[−n], (2.43)

ω is the angular frequency periodic around fs
2

, and w[n] is a window of length 2N −1, with the constraint
w(0) = 1. This window can be utilized to reduce cross terms. This window does not affect the time
resolution, but does reduce the frequency resolution [33]. Such windowing is often implied when using the
term PWD. The term WVD is used in this thesis to state explicitly that there is no frequency smoothing
window applied. That is, a window of 1 is used. This reduces Equation 2.42 and 2.43 to∗∗

W [l, ω] = 2
N−1
∑

n=−N−1
z̃[l + n]z̃∗[l − n]e−i2ωn. (2.44)

A computationally efficient implementation can be found in [35]. Interested readers are referred to [31]
for further details on the WVD.

The WVD is widely describes in the literature for IF estimation. Using MLE on the WVD is an efficient
IF estimator for continuous linear chirps in a constrained SNR range [27], [36]. The method finds the
IF ω(t) that maximizes the likelihood function L(ω∣z̃(t)) =Wz̃(t, ω).

ω̂ = argmax
ω

L(ω∣z̃(t)), (2.45)

2.5.3 Hilbert Spectrum
Huang et al. proposes a method of generating a spectrum with as great of a time resolution as the
WVD, but without the destructive cross terms [28]. This method hereby called the HHT consists of
decomposing the observation into its Intrinsic Mode Functions (IMFs)††. The EMD as presented in [28]
only decomposes real signals, however complex signals can be decomposed using the "bivariate" EMD of
Rilling et al. [38]. Only real EMDs are considered in this thesis. Interested readers are referred to [28],
[37], [39] for details on the algorithm.

The signal is decomposed successively by extracting its mono-component oscillatory modes [40] (IMFs).
Once a component is extracted, it is subtracted from the observation, and the process repeats until a
stopping criterion is met. The signal can thus be expressed as a sum of N real IMFs and a residue [28].

s(t) =
N

∑
i=1

ci(t) + rn(t) (2.46)

Figure 2.15 displays the IMFs for the real part of an NLFM chirp signal, extracted using the sifting
algorithm with stopping criterions φ1 = 0.05, φ2 = 0.5 and α = 0.05 from [39]‡‡.

∗∗The equation on this form is presented as the "Discrete Wigner Distribution" in [34].
††This process called Empirical Mode Decomposition (EMD) is computed through the Sifting algorithm [37].
‡‡The EMD is computed by the pyhht python implementation [41].
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Figure 2.15: NLFM Chirp Decomposed to its IMFs with Residue Using the Sifting Algorithm.

From the series of Equation 2.46, one can compute the Hilbert amplitude spectrum H(ω, t) hereby denoted
as the Hilbert spectrum. First the analytical signal is computed for each component (and residue) through
the Hilbert Transform.§§ The Hilbert transform is defined as

š(t) ∶= 1

πt
⊛ s(t). (2.47)

The IF ωn(t) of each analytical component

š(t) =
N

∑
i=1

či(t) + řn(t), (2.48)

is estimated using Equation 2.36. The magnitude of each component is obtained directly from the
analytical components as

ai(t) = ∣či(t)∣. (2.49)

The polar representation of the signal

s̃(t) = Re
⎧⎪⎪⎨⎪⎪⎩

N

∑
i=1

aie
i ∫ ωi(t)dt + arei ∫ ωr(t)dt

⎫⎪⎪⎬⎪⎪⎭
(2.50)

§§The Hilbert transform is a way of transforming a real signal into a complex or analytical signal. While the real signal
only has a single component Θ, the analytical signal has a real and imaginary component: s̃(t) = Re{s̃(t)} + i Im{s̃(t)}.
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is used to generate the Hilbert spectrum . H(ω, t) is obtained by plotting the components (modes and
residue) along time t, frequency f ∣

f= ω
2π

and magnitude a. The transform has been adapted for various
tasks in SEI [42]–[44]. A resulting spectrum for the troublesome LFM symbol is displayed below¶¶.

Figure 2.16: Hs̃(f, t), LoRa-Like Symbol

One method of estimating the instantaneous frequency based on the Hilbert spectrum is that of the
MLE. Let

L(ω∣z̃(t)) ∶=Hs̃(ω, t) (2.51)

be the likelihood function for instantaneous frequency ω(t) given observation z̃(t). The MLE for the IF
is

ω̂ = argmax
ω

L(ω∣z̃(t)). (2.52)

The method above essentially estimates the IF twice, first for each component, and then based on the
likelihood function of Equation 2.51 (which is the distribution of the IF estimates for the components).
And as such it is a pseudo multi-component variant of Equation 2.36.

2.5.4 Polynomial Phase Trajectory Modeling
A method suitable for continuous chirps is that of polynomial phase trajectory modeling. This method
utilizes a priori information on how rapidly the signal is changing through the use of a phase polynomial.
It is unbiased for continuous NLFM chirps down to low SNR [36]. Polynomial IF estimators can be
applied to the WVD [45] or directly to the signal in time domain. The latter is studied further. This
method is deemed too compute-intensive for practical use in [36]. Since then, the computing cost with
regards to power and time, have decreed manifold. Therefore a revisit seems suitable. Let a signal s̃(t)
be defined as

s̃(t) = a(t)eiΦ(t), (2.53)

where Φ(t) is a polynomial of order P ,

Φ(t) = a0 + a1t + a2t2 + ... + aP tP , P ∈ N, (2.54)

and observation

z̃(t) = s̃(t) + w̃(t) (2.55)

is the observed signal in noise. The polynomial coefficients can be estimated using linear least square
techniques. This method will meet the Cramer-Rao Lower Bound (CRLB) in high SNR [36]. A second

¶¶The low frequency resolution is a consequence of the image discretization.

17



method is the ML polynomial coefficient estimation. This last method is shown to be superior with
regards to performance in low SNR. The MLE polynomial coefficients are estimated as follows: Boashash
shows that the likelihood function for the parameter vector α = [A,a0, a1, .., aP ]T given the observation
z̃(t) can be reduced to [36]

L(α∣z̃(t)) = 2ARe{e−ia0D(a1, a2, .., aP )} −A2 (2.56)

where x(t) is the real, and y(t) the imaginary component of s̃(t), and

D(a1, a2, .., aP ) = ⟨z(t)e−i(a1t+a2t
2,..,aP tP )⟩T . (2.57)

The magnitude scalar A and the coefficient vector a is found by maximization of the likelihood function
L(⋅).

α̂ = argmax
α

L(α∣z̃(t)) (2.58)

The IF estimator is

f̂(t) = 1

2π

P

∑
p=1

pâpt
p−1. (2.59)

A. W. Doerry shows that polynomial reconstruction of NLFM chirps require a phase polynomial of sizes
in the range P = [4..12] [12]. These estimators can estimate the curve of a single chirp. In radio packets
or pulse trains, multiple pulses are transmitted in conjunction. In order to separate the symbols or
pulses, knowledge on the pulse, or symbol period is necessary. In communications, these pulses generally
have identical symbol period for all symbols. As such they contain cyclic properties.

2.6 Cyclostationary Processes
A Cyclostationary (CS) process is a process for which its Higher Order Moments (HOMs) are periodic
(cyclic). A process x is second-order CS in the wide sense if its mean E{x(t)} and autocorrelation
Rxx(t, τ) are periodic around some period T [46], [47, p. 5]

E{x(t)} = E{x(t + T )} (2.60)
Rxx(t, τ) = Rxx(t + T, τ) (2.61)

Communication signals have strong CS properties with a fixed symbol period T . Figure 2.17 displays
the autocorrelation of a pulse train of NLFM pulses. An apparent cyclic nature in the peaks of the
autocorrelation can be seen.
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Figure 2.17: Autocorrelation ∣Rs̃s̃(t)∣ of a 32-Bit NLFM Chirp-Per-Bit Signal

CS analysis is gaining traction in modulation detection and MR due to its robustness to noise and
interference [1], [11]. The cyclic properties of a CS processes can be analyzed in time and frequency
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domain through the Spectral Correlation Density (SCD) and the Cyclic Autocorrelation Funcion (CAF)
respectively. The latter is not considered in this thesis. The SCD is defined as

Sx̃x̃∗(α, f) ∶= lim
∆f→0

lim
T→∞
⟨E{∆X̃1/∆f(t, f)X̃∗1/∆f(t, f − α)}⟩T , (2.62)

were XZ(t, f) is the Short-Time Fourier Transform (STFT), defined as

XZ(t, f) ∶= ∫
t+Z/2

t−Z/2
x(s)e−i2πfs ds. (2.63)

Sz̃z̃∗(α, f) represents the correlation of spectral components at frequencies f and with the cycle-frequency
α. For α = 0, then Sz̃z̃∗(0, f) reduces to the PSD of z̃(t). A Wide Sense Stationary (WSS) process like
WGN is not CS, and will not have an α distribution. An illustration of a SCD is displayed in Figure 2.18.
It shows the distribution of a pulsed communication signal. Communications signals with a constant
symbol period have strong CS features which can be seen along the α axis.

Figure 2.18: Spectral Correlation Density Estimate ∣Ŝs̃s̃∗(α, f)∣ of a 32-bit binary NLFM packet (Positive Frequencies
Only)

The conjugate SCD is simply the SCD with the second STFT term non-conjugated Sx̃x̃(α, f). Figure 2.19
displays the conjugate SCD of a signal as above.

Figure 2.19: Conjugate Spectral Correlation Density Estimate ∣Ŝs̃s̃(α, f)∣ of a 32-bit binary NLFM packet (Positive
Frequencies Only)

For discrete time signals the SCD of Equation 2.62 can be estimated (computationally efficient) through
the FFT Accumulation Method (FAM) [48]. It is defined as∗∗∗

Sαi+q∆α
x̃x̃∗ [n, fj]∆t ∶=∑

r

X̃T [rL, fk]X̃∗T [rL, fl]gc(n − r)e−i2πrq/P , L,N,P ∈ N (2.64)

∗∗∗A two-dimensional "FFTshift" is necessary for Sx̃x̃∗(nL, fj) to go from [−
fs
2
,− fs

2
+∆f, . . . , fs

2
−∆f],

[−
L
2
∆α,− (L

2
− 1)∆α, . . . , (L

2
− 1)∆α].
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where:
∆t = N/fs is the period of the observation.
N is the length of the input. It defines the cycle-frequency resolution

∆α = fs
PL

. (2.65)

N must be of length L ×N ′, and is subject to L << N .
P = N/L.
L is an integer specifying the cycle-frequency range.
gc(⋅) is a data selection window. E.g. a rectangular window 1 of length L.
αi = fk − fl.

XT [n, f] =
N ′/2−1
∑

r=−N ′/2
a[r]x[n − r]e−i2πf[n−r]Ts , N ′ ∈ N (2.66)

where N ′ is an integer specifying the channelization (frequency) resolution

∆f = fs
N ′

, (2.67)

and a(⋅) is a tapering window for the channelization. The window is of length N ′.

Based on this frequency-cycle-frequency transform, signal parameters can be estimated.

2.7 Fundamental Frequency Estimation
Let

s(t) =
R

∑
r=1

ape
i2πrf0+Φr (2.68)

be a harmonic signal consisting of a fundamental s(t)∣
r=1 with frequency f0, and R − 1 harmonic tones.

For a sampled harmonic signal s[n] = s(t)∣
t=nTs

, the fundamental frequency f0 can be estimator through
a ML method. Wise et al. proposes a method of finding the fundamental frequency that maximizes the
signal energy of a periodic signal [49]:

p̂ = argmax
p

2P

K0

N−1
∑
l=1
∣Rz̃z̃[lp]∣ , p ∈ R, (2.69)

where K0 is the length of the discrete signal, N = K0

P
, and P is the period of the sequence. The

autocorrelation is defined as

Rz̃z̃[k] ∶=
K0−1−k
∑
j=0

rjkj+k. (2.70)

The estimate of the fundamental frequency is f̂0 = 1
p̂Ts

. This method can estimate the period p to an
accuracy beyond the sampling period. This is accomplished by allowing p to be any real number (p ∈ R)
with the constraint that pl is rounded to the nearest integer ⌊lp + 1

2
⌋. Wise et al. applies a weighting

in Equation 2.69 that weighs the longer periods equally as the short [49]. Without this weighting, the
estimator becomes

p̂ = argmax
p

N−1
∑
l=1
∣Rz̃z̃ [lp]∣ , p ∈ R (2.71)

subject to lp ∈ Q (2.72)
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Figure 2.20 shows the sum of Equation 2.71 for the autocorrelation displayed in Figure 2.17 with different
periods p. The symbol rate estimate would be the argmax of the sum.
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Figure 2.20: Cyclic period of a 32-Bit NLFM Chirp-Per-Bit Signal

2.8 On the Discrete Fourier Transform and its Frequency Re-
sponse

The DFT is a time-to-frequency transform. It can be used to calculate the frequency content of a vector
or time series. The DFT is defined as††† [50, p. 468]

Z̃[k] ∶=
N−1
∑
n=0

z̃[n]e− i2π
N kn, k = [0..N − 1], (2.73)

where z̃[n] is a time series, and Z̃[k] is the resulting discrete coefficients in the frequency domain.

The DFT is equivalent to a filter bank of N filters, where

h[n] =
⎧⎪⎪⎨⎪⎪⎩

1, 0 ≤ n < N
0 else

(2.74)

is the Finite Impulse Response (FIR) low-pass coefficients for the filter of each bin. Each bin thus has a
non-zero bandwidth set by h[n]. The response of the filter can be represented in the Z-domain as the
sum of the geometric series H(Z) = 1 + z−1 + ⋅ ⋅ ⋅ + z−(N−1), which is

H(z) = 1 − z−N
1 − z−1 , (2.75)

where H(z) = Z {h[n]}. Its frequency response is [50]

H(ω) =H(z)∣
z=eiω = e

−iωN−1
2

sin(Nω/2)
sin(ω/2)

, (2.76)

where ω̂k = 2π k
N

is the angular frequency per bin. The frequency response of a 10-point DFT bin is
displayed below.

†††The DFT can be calculated efficiently by use of the FFT algorithm [21]
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Chapter 3

Method

The performance of the estimators in this thesis is measured through statistical analysis. To ensure the
quality of the analysis, a large number of Monte-Carlo runs are performed. A substancially lower amount
of Monte Carlo iterations are used for vector estimators, as the implemented vector estimators consist
of a series of scalar estimates.

3.1 Signal Generation
3.1.1 Discontinuous Linear Chirp
Linear chirps are constructed by creating a linear IF function ω(t) ranging from fmin to fmax. The
function is windowed in time-domain by a rectangular window. From this, the phase path can be
calculated by use of the relation in Equation 2.2. The signal s̃(t) is constructed using Equation 2.1. By
solving Equation 2.2 for Φ and substituting it and Equation 2.3 into Equation 2.1, the signal is expressed
as

s̃(t) = a(t)ei ∫ 2πf(t)dt, t ∈ [−T
2
,
T

2
⟩ (3.1)

Modulated linear chirp signals are assembled by delaying and wrapping the signal s̃(t) of Equation 3.1
in order to obtain an M -symbol alphabet.

s̃m(t) = s̃(t′)∣
t′∈[Tm

M ,T+Tm
M mod T

M
⟩∣T ′=T , m = [0..M − 1] (3.2)

Where T ′ is the length of the interval for t. The resulting is an M-ary symbol alphabet, which with
four symbols has an IF path similar to that displayed in Figure 2.9. The discontinuous linear chirp
packets are assembled from a four-symbol alphabet in this thesis. The quality of the symbol alphabet
is measured through a cross symbol dot-product. The dot-product of two sequences is equivalent to the
cross-correlation at complete overlap. Figure 4.1 represents the expected correlation during the sampling
for a perfectly synchronized matched filter receiver (like that of Figure 2.8). The "cross dot-product" is
illustrated with a symbol product matrix

Dmn = sm ⋅ sn, m,n = [1..M], (3.3)

where M is the number of symbols in the alphabet.
In packet construction, the symbols are appended as modulated time series. As a result, the phase at
each IF is equal, independent of the symbol and subsequent starting frequency. For the linear chirp
case, a LoRa-like synchronization sequence is added to the beginning of every packet. Let sm(t) be
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symbol m ∈ [0..M − 1] with M = 4, and M4 is the "down chirp" used for synchronization only. Then the
synchronization sequence symbol stream is

q = [s0, s0, s0, s0, s0, s0, s0, s0, s1, s1, s4, s4, s4∣t∈[0,0.25T ⟩] , (3.4)

where the last symbol is only a quarter symbol period long. For packets including a synchronization
sequence, the total length is 31.25×Ts s. These packets are thus slightly shorter than the 32 symbol long
NLFM, and LFM packets without the sequence.

3.1.2 Continuous Non-Linear Chirp
NLFM chirp signals are generated using the method of Doerry [12] with Equation 2.12 and 2.11. The
scaling parameter of Equation 2.12 is found through a Broyden-Fletcher-Goldfarb-Shanno (BFGS) op-
timization approach∗. The symbol alphabet consists of an up chirp and the inverse down chirp. Both
symbols have an initial phase of Φ(−T

2
) = 0. In contrast to the time-rotation method above, only two

symbols are assembled from the IF path (a binary scheme). The communication packets consist of a
random 32-bit sequence, where a "one" is represented by an up chirp, and a "zero" is represented by a
down chirp.

3.2 Instantaneous Frequency Estimation
The IF path of the symbols are estimated using several techniques in order to compare, and measure their
performance. The frequency is estimated as fIF = ω/2π. The estimators are excited with an NLFM and
an LFM chirp as described in subsection 3.1.2. The LFM chirp has an instantaneous IF transition which
makes it discontinuous. The following estimators are implemented: the Barnes† method of Equation 2.35;
the derivative method of Equation 2.36 with phase unwrapping; a WVD method using Equation 2.37
and 2.45; a HHT method; and a piece-wise polynomial method. These last two are described further
below.

The HHT ML method is implemented using Equation 2.52 on a discrete Hilbert spectrum. The decom-
posed signal is computed as described in subsection 2.5.3. The discrete Hilbert spectrum is calculated by
defining a TF matrix Hf,t with the t axis of size T

Ts
, and frequency axis set to 256 giving the frequency

resolution ∆f = fs
2×(256−1)

‡. Then each component is sorted into the corresponding time-frequency bins in
the matrix additively. The HHT MLE is obtained using Equation 2.52 where L [ω∣z̃[n]] ∣ω=2πf ∶=Hf,t.

A second order piece-wise polynomial method is also implemented. This result in a piece-wise linear
estimate of fIF . The observation z̃[n] = z̃(t)∣

t=nTs
is divided into Tp = Ts × 50 long pieces.

q̃m(τ) = z̃(t)w((m − 1)Tp,mTp), m = [1..M], τ = [0, Tp] (3.5)

where w is the selection window defined as

w(t1, t2) = u(t − t1) − u(t − t2), (3.6)

and u(t) is the unit step function. For each section a polynomial phase trajectory is estimated by finding
the vector a = [a1, a2, .., aP ]§ that maximizes D(a) in Equation 2.57 given the observation z̃(t).

a =max
a

D(a) (3.7)

∗Readers are directed to [51] for further details.
†The two-point FIR method.
‡The 1

2
term is due to the analysis of the real component only, which constrains the HHT codomain to {f ∈ R∣0 ≤ f < fs

2
}.

Note that the discrete spectrum reduces the codomain further to a discrete set.
§Which for second-order polynomials become a = [a1, a2].
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The maximization is found through a simulated annealing optimization method. Interested readers
are referred to [52] for details on the method. The IF estimate is obtained by substituting â into
Equation 2.59. Note that as the amplitude and start phase of the signal is not of interest, D(a) is
maximized as opposed to the likelihood function of Equation 2.56, reducing the optimization problem
by two dimensions.

3.3 Center Frequency Estimators
Two Cyclostationary estimators are assembled based on the Spectral Correlation Density. One cyclic
correlation-based center frequency estimator, and one symbol rate estimator. They utilize the FAM of
Equation 2.64 with a a(⋅) being a Hamming window.

The center frequency estimator utilizes the spectral correlation as a means to estimate the center fre-
quency of CS, while rejecting WSS signals.

Let Ŝf,α be the discrete estimate of the SCD using Equation 2.64 with cycle-frequency, and frequency
resolution given by Equation 2.65 and Equation 2.67 respectively. First, the cyclic axis is reduced through
a "cyclic filter", a dot-product with a window.

q̂ =wα ⋅ ∣Ŝ∣ (3.8)

The result of this "filtering" is an estimate of a frequency distribution of cyclic correlation for s̃(t) in
the cycle-frequencies selected by the window w. The window w is a weighting function which enables
the utilization of a priori information on the cyclic distribution of s̃(t). With a priori knowledge on
the cyclic density, a weighting function can be created using Equation 2.21. One example is shown in
Figure 3.1. Here a Probability Density Function (PDF) is build from a GMM using Equation 2.21.
12 Gaussians are placed at the multiples of the true symbol rate of the signals. The Gaussians have
increasing variance with harmonics to represent the uncertainties of the true symbol rate. Any cyclic
pattern can be utilized, here the symbol-rate is used as it appears as the strongest pattern, and it is
agnostic to the chirp modulation technique. The GMM parameters for the weighting function are

φi = ∣
1

i
∣, (3.9)

µi = i × fsymbol [Hz], (3.10)
σi = i × 5 [Hz], (3.11)

where i = [−6,−5, . . . ,−2,−1,1,2, . . . ,5,6].
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Figure 3.1: Cyclic Weighting Function

Next, the smoothed distribution is filtered with a second window wf to capture the correlation over a
frequency band. In the a priori case, wf is the target cyclic correlation frequency distribution (weighted
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by the initial filtering).

q′ =wf ⊛ z (3.12)

Each frequency bin has a non-zero bandwidth given by Equation 2.76, and a null-to-null distance given
by Equation 2.65. Setting wα = δ[n − n0]¶ and wf = δ then q′ is reduced to an N ′ point PSD estimate
[53] of z̃(t)(see Equation 2.67). The result of this processing is a distribution of correlation at selected
cycle-frequencies as a function of frequency. The estimate of the center frequency is found through MLE
on this distribution, using quadratic interpolation as explained in subsection 2.4.1. The estimator is
implemented with various levels of prior knowledge. The variations are listed in Table 3.1

The CS based estimators are compared against a quadratic interpolation MLE method using Equa-
tion 2.24 and 2.28. The magnitude spectrum is estimated using the root of the Welch’s PSD estimate of
size N ′ with zero overlapping and a Hann‖ data selection window.

Table 3.1: Center Frequency Estimator Configurations

Estimator ωα ωf

DFT MLE N/A N/A
CS MLE a priori Ts Equation 3.9-3.11 into 2.21 Estimated 2 dB power BW
CS MLE a priori Ts, Ω Equation 3.9-3.11 into 2.21 Triangle window of length fmax − fmin

3.4 Symbol Rate Estimation
The symbol rate estimate utilizes the estimated SCD Ŝf,α of the observation z̃(t). In order to capture
the cyclic correlation in the full bandwidth while rejecting out-of-band noise, a weighted average window
wf is applied along the frequency axis of Ŝf,α.

sα =wf ⋅ ∣Ŝ
T ∣ (3.13)

The resulting vector is the cyclic autocorrelation in the frequency range given by wf . The vector has
the α-range [−L

2
∆α,− (L

2
− 1)∆α, . . . , (L

2
− 1)∆α]. In this thesis a rectangular window is used (wα = 1)

in the frequency range [fc − BW2dB
2

, fc + BW2dB
2
] (in the non a priori case). Knowing the frequency

distribution of the spectral correlation, a matched window can be used. Generating the window function
requires an estimate of the center frequency, and the 2dB bandwidth of the signal. These parameters
have to be estimated or known a priori. In this thesis the bandwidth is estimated using Equation 2.29
through 2.31. The cyclic correlation in negative and positive frequency are added to obtain a single-sided
correlation vector like that of Equation 2.70, in the frequency domain.

ŝ′α = ŝα[−k∆α] + ŝα[k∆α], k = [−L
2
,−L

2
+ 1, . . . , L

2
− 1] (3.14)

The symbol rate is then estimated using the fundamental frequency method of Equation 2.71 replacing
Rz̃z̃ with ŝ′α, and with P = 5 (utilizing 5 harmonic frequencies).

This estimator estimates the cycle-frequency with the highest harmonic correlation. Essentially it is a
harmonic cycle-frequency estimator. It is applied to symbol-rate estimation through the assumption that
the greatest harmonic cycle-frequency will come from the symbol rate∗∗.

¶n0 is the item for which α = 0.
‖Hann or sometimes called "Hanning" is a window function. Interested readers are referred to [50], [54].

∗∗Correlation between identical symbols with non-identical symbol between, leading to a harmonic-like behavior in the
cycle-frequency domain.
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This CS estimator is implemented with various levels of prior knowledge. The prior knowledge is utilized
by handing the estimator either the true center frequency, and/or a window wf . In addition to the
frequency selective CS estimators, a full bandwidth (BW) estimator is implemented utilizing the cyclic
correlation thorough the whole frequency range [− fs

2
, fs

2
−∆f]. The configurations are listed in Table 3.2.

This CS methods are compared to an autocorrelation-based method using Equation 2.71 where f̂symb = 1
p̂

and P = 16.

Table 3.2: Symbol Rate Estimator Configuration

Estimator Center Frequency ωf

Autocorrelation N/A N/A
CS MLE Estimated Estimated 2 dB power BW (1)
CS MLE full BW N/A Full BW 1

CS MLE a priori fc known Estimated 2 dB power BW (1)
CS MLE a priori fc, Ω known Triangle window of length fmax − fmin
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Chapter 4

Results

In this chapter, the characteristics of the proposed and implemented chirp signals are presented. Then
the statistical performance of the estimators are presented, along with single-estimate, and intermediate
results, highlighting the strengths and weaknesses of some estimators.

4.1 Signal Generation
As the signals are meant for communications, their cross and autocorrelation are important factors. The
autocorrelation Rz̃z̃ of an NLFM chirp compared to that of an equivalent LFM chirp is displayed in
Figure 4.1. Both signals have equal start and stop frequency, constant envelope, and period T . The
NLFM chirp has a Hamming W (⋅) function applied (in Equation 2.10). Note the steep side lobe taper
of the NLFM chirp next to the center peak. As a consequence, it has a somewhat wider main lobe. Both
signals levels at approximately same level of −56dB. For approximately ∣t∣ > 3, the NLFM signal has the
highest correlation∗.

−4 −2 0 2 4

t [s] ×10−3

−100

−75

−50

−25

0

N
or

m
al

iz
ed

C
or

re
la

tio
n

[d
B

]

LFM
NLFM

Figure 4.1: Double Sided Autocorrelation Comparison

Figure 4.2 shows the dot-product matrix for a linear chirp alphabet. The matrix shows the products
in deci-Bell†, normalized to the self-dot-product. The main diagonal line of the matrix represents the
self dot-product or "autocorrelation". The rest of the entries are sm ⋅ sn products. The ratio between
the "self dot product" and cross dot product is hereby denoted as the "isolation" between symbols. The
symbols in Equation 4.1 have approximately 5 − 6dB isolation.

∗Which is unfavourable.
†In a power scale 10 log10 ⋅
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Figure 4.2: Symbol Alphabet Dot Product Matrix

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0 −6.9 −6.2 −6.9
−6.9 0.0 −6.9 −6.2
−6.2 −6.9 0.0 −6.9
−6.9 −6.2 −6.9 0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[dB] (4.1)

The cross-correlation between the two NLFM symbols are shown in Figure 4.3. Notice how the isolation
is > 3dB greater than the discontinuous LFM symbols above at t = 0. The isolation is still a fair bit
lower than the sidelobes of the autocorrelation displayed in Figure 4.1.
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Figure 4.3: NLFM Symbols Double Sided Cross Correlation

The frequency domain power distributions of the M-ary modulated discontinuous LFM and the binary
continuous NLFM are displayed in Figure 4.4 and 4.5 respectively. The PSDs are estimated using Welch’s
method in order to smooth the distributions. Note how the modulated LFM PSD is similar to the pure
LFM of Figure 2.3, but has peaks that occur periodically across most of the frequency range. Note how
the maxima of the PSD is at the outer edges of the flat top of the LFM PSD, approximately at 50kHz.
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Figure 4.4: PSD of M-ary Modulated LFM Packet
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The modulated NLFM PSD has apparent non-symmetric bumps along the "roof" of the PSD, in the
range [50,100] [kHz]. Note the two power peaks adjacent to the true center frequency of 75kHz, and
how the power drops off at the center.
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Figure 4.5: PSD of Binary Modulated NLFM Packet

4.2 Estimation of Instantaneous Frequency
4.2.1 Estimation on Continuous Non-Linear Chirps
Figure 4.6 displays the results of the IF estimator comparison when applied continuous NLFM chirps.
The error measure is the vector or accumulated MAE‡. From Figure 4.6 it is apparent that there are
two patterns for estimation error, one group of estimators (direct methods) with poor performance in
low SNR, but with no apparent bound on the accuracy at high SNR, and the indirect methods, which
outperforms the direct methods in low SNR, but have a performance bound.

The direct methods, the derivative and Barnes Two-point FIR, have continuously decreasing accuracy
with Eb/N0, but obtain high accuracy at high Eb/N0 with no apparent accuracy bound. Of the two, the
derivative method is superior and can operate at ≈ 1dB lower Eb/N0 with similar accuracy as Barnes
method.

The indirect methods, the piece-wise polynomial, and the WVD MLE have superior accuracy to the
methods above from low Eb/N0 and up to 66 − 74dB and > 80dB where the direct methods surpass
the piece-wise polynomial and WVD MLE bounds respectively. These two estimators have an apparent
performance bound. Among the two estimators, the piece-wise polynomial estimator operates in lower
Eb/N0 with improved accuracy compared to the WVD method, although it only has about a single dB
greater operating range. The WVD has a substantially greater accuracy at its bound (it settles at a lower
error level). Lastly there is the HHT MLE which in a sense is indirect as it first decomposes the signal,
then estimates on the discrete spectrum. However, it performs only slightly better than the derivative
method in the range [33,52]dB Eb/N0.

Figure 4.6 show that the piece-wise polynomial estimator is outperformed by the WVD estimator except
for in the low Eb/N0 unlike what’s reported in [36]. In that paper however, a non-piece-wise method is
considered.

‡The accumulated MAE is the sum of the error at each time instance (which there are 6ms×802000 samples/s=4812).
An MAE of 106 is equivalent to a 208Hz error per time instance.
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Figure 4.6: IF Estimator Performance Comparison with NLFM Observation

Figure 4.7 shows the estimated IF with its absolute error throughout the period T , for the piece-wise
polynomial estimator. The signal is embedded in 10dB of noise. The error curve in 4.7 have a sequences
of ramps which converges towards a flat level at the center of the chirp, where the chirp rate is lower. It
seems that even though a second-order polynomial is fitted, the result for each piece is closer to a first
order fit. This is a consequence of the convergence of the minimization process of the estimator. The
comparison above is thus not true to the theoretical performance of the estimator.
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4.2.2 Estimation on Discontinuous Linear Chirps
Figure 4.8 displays an estimate of a discontinuous LFM symbol as specified in section 3.1, using the WVD
MLE method. Note the large error in the range t = [−2,0] [ms]. In this time range, the cross-terms
are more dominant than the actual signal. Note the switching pattern at the beginning and end of the
cross-term dominated area.
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Figure 4.8: WVD MLE IF Estimate of LFM symbol with S
N
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Studying the results for the HHT ML estimator with the same signal (Figure 4.9), it is apparent that
this estimator, while having generally more noise, manages to capture the IF transition. Notice how the
estimate variance is greater for higher frequencies.
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Figure 4.9: HHT MLE IF Estimate of LFM symbol with S
N
= 10dB

Taking another look at the piece-wise polynomial method in Figure 4.10 it is apparent that this estimator
has little reduction in accuracy in the discontinuous case. The piece estimate in the transition time of
−1.5ms has some increased error.
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Figure 4.10: Piece-wise Polynomial IF Estimate of LFM symbol with S
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Figure 4.11 shows the performance of all estimators when observing the discontinuous LFM signal of
the same length and bandwidth as the NLFM case (displayed in Figure 4.6). Note how the WVD has a
substantially greater error rate than the HHT and polynomial methods. The polynomial method obtains
the greatest accuracy of the estimators. The HHT method breaks off at approximately 40 dB, while the
polynomial method continues to operate down to 28 dB Eb/N0.
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Figure 4.11: IF Estimator Performance Comparison with non-linear LFM Observation

The average runtime of the estimators over 12×41 = 492 iterations is listed in the Table 4.1. The derivative
and Barnes estimators are in the sub-millisecond range. The HHT method is in the sub-second range,
WVD in the order of seconds, and the polynomial estimator is in the order of a hundred seconds. Of
the five estimators, three is time-deterministic. The polynomial method depends on an optimization
approach for which the convergence rate may vary, and the HHT MLE method depends on the number
of IMFs it decomposes before reaching the stopping criterion.

Table 4.1: Estimator Mean Run Time

Estimator Mean Run Time
Derivative 6.6 × 10−4 s
Barnes Two-Point FIR 2.4 × 10−4 s
WVD MLE 7.2 s
Hilbert-Huang Transform MLE 0.647 s
Piece-wise Polynomial MLE 1.1 × 102 s
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4.3 Cyclic Estimation of Center frequency
Figure 4.12 displays the performance of the center frequency estimators when applied NLFM modulated
packets. The center frequency is estimated 1000 times per Eb/N0 level (for each estimator). The CS esti-
mators are compared to the classical MLE method. All three estimators seem to have an upper accuracy
bound at different levels and with different convergence rates. The DFT-based estimator converges to the
lowest error at < 200Hz MAE. The CS estimator utilizing a priori knowledge of the symbol rate settles at
the highest error level at ≈ 300Hz MAE. However it outperforms the DFT estimator below 23dBEb/N0.
The CS estimator utilizing both a priori symbol rate information and chirp bandwidth Ω outperforms
the DFT estimator below 30dBEb/N0 and settles quite close at the break-off at 40dBEb/N0. It has
increasing error until it breaks off at 12dBEb/N0, about 1dB lower than the other two estimators.
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Figure 4.12: fc Estimation

4.4 Cyclic Estimation of Symbol Rate
4.4.1 Estimation on Binary Non-Linear Chirps
This sub-section presents the performance of the symbol rate estimators when applied packets of random
binary modulated NLFM pulses. Figure 4.13 displays the distribution of correlation as a function of
cycle-frequency for a chirp with frequency range [75,125] [kHz], symbol rate of fsymb = 1

6ms and a center
frequency of fc = 100kHz. The correlation at the chirp center frequency is displayed. Note the repeating
peaks in positive and negative cycle-frequency. The major peaks are spaced approximately one symbol
rate fsymb apart.
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Figure 4.13: Spectral Correlogram ∣Ŝs̃s̃∗(α, f)∣∣
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The frequency distributions of the correlation for the signal in Figure 2.18 at harmonic cycle-frequencies
are displayed in Figure 4.14. Most of the correlation is located in the chirp range of [75,125] [kHz], but
some leakage can be seen on either side of the range. Note how the frequency distribution varies with
cycle-frequency.
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Figure 4.14: Cyclic Periodogram ∣Ŝs̃s̃∗(α, f)∣∣∣α∣=nfsymb

, n = {0,1,2}

Figure 4.15 displays the harmonic correlation for the SCD of an NLFM chirp signal through the estimator
of Equation 2.71. The argmax of the displayed distribution is the estimate for the symbol rate. The
figure is the equivalent of Figure 2.20 but in the frequency domain. In the figure, there is one major
peak, which is close to the true symbol rate.
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Figure 4.15: Harmonic Correlation of a 32-Bit NLFM Chirp-Per-Bit Signal

Figure 4.16 displays the performance of the symbol rate estimators when applied continuous NLFM
packets. The symbol rate is estimated 100 times per Eb/N0 level. All the estimators settles to different
error levels at high Eb/N0. The autocorrelation estimator settles to the highest error level of just under
10Hz. All estimators breaks off between 15 and 22dBEb/N0. Notice that the non-frequency selective
cyclic estimator settles to the lowest error rate for Eb/N0 > 22dB. Note also how the estimators with a
priori information dominates in the low Eb/N0 levels below 21dBEb/N0. The Cyclic MLE A Priory fc
which estimates 2dB power bandwidth from a known center frequency, obtains neglectable reduction in
settling error rate, and break-off Eb/N0 level compared to the Cyclic ML Estimator which estimates the
2dB power bandwidth and fc.
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Figure 4.16: Symbol Rate Estimation Error

4.4.2 Estimation on M-ary Discontinuous Linear Chirps
This sub-section presents the performance of the estimators when applied packets of random M-ary
modulated LFM chirps with the shifting scheme specified in Equation 3.2. The signals are of the same
length and bandwidth Ω as the ones in the previous sub-section. Figure 4.17 displays the SCD for a
packet. Note how the spectral correlation is evenly spread out through the chirp range of [75,125] [kHz].
There is strong correlation at cycle-frequencies α = nfsymb, n ∈ Z. The strongest correlation is located
at α ≈ ±4 × fsymb.

Figure 4.17: Spectral Correlation Density Estimate ∣Ŝs̃s̃∗(α, f)∣ of a 32-symbol M-ary LFM Packet (Positive Frequencies
Only)

Figure 4.18 displays the correlation from Figure 4.17 along the cycle-frequency axis at the chirp center
frequency. Note how the peak at α = 0 is substantially lower than in the NLFM case. Note also how the
correlation peaks are less distinct compared to that of the NLFM case.
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Figure 4.18: Spectral Correlogram ∣Ŝs̃s̃∗(α, f)∣∣
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The frequency distributions of the correlation for the signal in Figure 4.17 at harmonic cycle-frequencies
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are displayed in Figure 4.19. The correlation is evenly spread out in the chirp frequency range for
multiple harmonics of fsymb, unlike the NLFM case. Note how the fourth harmonic has slightly greater
magnitude than the fundamental in red.
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Figure 4.19: Cyclic Periodogram ∣Ŝs̃s̃∗(α, f)∣∣∣α∣=nfsymb
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Figure 4.20 presents the performance of the estimators when applied signals with a random symbol
sequence. The symbol rate is estimated 1000 times per Eb/N0 level. The CS estimators settle at an error
rate of almost an order greater than in the NLFM case. Additionally, the various CS estimators settle
at the same error rate. The benchmark autocorrelation estimator has substantially greater error than
the cyclic estimators.

10 15 20 25 30 35 40

Eb/N0 [dB]

102

103

M
A

E
[H

z]

Autocorrelation MLE
Cyclic MLE Method, Full BW
Cyclic MLE A-Priori fc
Cyclic MLE A-Priori fc, Ω

Figure 4.20: Symbol Rate Estimation Error, M-ary LFM

Figure 4.21 presents the performance of the estimators when applied a synchronization sequence (as
specified in Equation 3.4). The symbol rate is estimated 1000 times per Eb/N0 level. Note how all
estimators have close to an order of magnitude lower error bounds than in the case above. Here, the
autocorrelation-based estimator performs superiorly, and obtains almost an additional order of magnitude
greater accuracy than the CS estimators. All of the estimators break of at approximately the same Eb/N0,
but as can be seen in both Figure 4.20 and 4.21; The estimators with a priori center frequency and chirp
bandwidth can operate at close to 3-5 dB lower Eb/N0 than the others.
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Figure 4.21: Symbol Rate Estimation Error, M-ary LFM with sync sequence

The mean run times of the estimators are displayed in Table 4.2. Note that the autocorrelation method
is an order of magnitude slower than the CS estimators.

Table 4.2: Symbol Rate Estimator Mean Run Time

Estimator Mean Run Time
Autocorrelation MLE 4.4 s
Cyclic MLE Method 0.22 s
Cyclic MLE Method, Full BW 0.26 s
Cyclic MLE A Priori fc 0.25 s
Cyclic MLE A Priori fc, Ω 0.23 s
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Chapter 5

Discussion

In this chapter, the implemented methods and their experimental results are discussed. Apparent
strengths and weaknesses of the various estimators are discussed with extrapolation to their real-world
implications. Lastly, there are some comments on the generated signals.

5.1 Signal Analysis
5.1.1 IF Estimation
It is apparent that Barnes and the derivative method although fast, are quite inaccurate in any practical
Eb/N0 range, compared to the WVD and the piece-wise polynomial method. Interestingly, the derivative
method performs superior to the Barnes method in practically the whole Eb/N0 range. This is the
opposite of the behavior pointed out by Barnes [26]. In this thesis however, a phase unwrapping is
applied to resolve the ambiguities which are pointed out by Barnes. The Barnes method does run faster
than the derivative method, which might justify its use in time-critical applications.

The WVD estimator obtains the lowest error rate in the practical Eb/N0 regions for NLFM chirps. This
is the opposite of what is stated in the literature [27], [36]. This could be a result of a low chirp rate
γ(t) leading to low levels of cross terms. In a real-world scenario, there would be multi-path terms which
would distort the signal, reducing its performance greatly. There are polynomial WVD methods which
improves the estimate for NLFM waveforms [45], but these assume a continuous IF. With discontinuous
chirp communication gaining popularity, such constraints seem impractical. The weakness of the WVD
is apparent for estimates on discontinuous chirps. For these signals the performance breaks down to a
level where it might not be practical for classification purposes.

The piece-wise polynomial method seems to be a good intermediate between the pure WVD MLE and
polynomial WVD methods. As the polynomial method is free of "cross-terms" and as observed in the
results, the piece-wise nature allows relatively drastic IF jumps (discontinuities). It performs worse than
the WVD MLE method in the continuous case, but outperforms all estimators in the discontinuous
case. From Figure 4.7 it is obvious that there exist better solutions to the optimization problems, as
it seems like all pieces have resulted in a first-order solution∗. The true error rate of this estimator
remains to be seen. The piece-wise estimation partially removes the need for prior information on the
(equivalent)† polynomial order of the observation. For observations of high (equivalent) polynomial order
P ∈ N, the piece separation reduces the problem from RP to M ×R2, where M is the number of pieces
to estimate. Yet with this problem size reduction, the piece-wise polynomial estimator still runs orders
of magnitude slower than the others. It is of course possible that an inefficient optimization algorithm

∗This is observed when maximizing for higher-order polynomials as well.
†As the observation might be linear or piece-wise linear.
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is used, in addition to a high number of samples to solve for. The piece-wise computing as well as the
optimization approach are exceptionally parallelizable. Each piece can be computed independently, and
the optimization can be parallelized even further. It might reach practical speeds when optimized on a
GPU‡ or FPGA§.

The HHT ML estimator performs only marginally better than the derivative method. This is perhaps
not too surprising considering that the IF of each IMF is estimated using that exact method. In the
discontinuous LFM case, it outperforms most estimators and seem to be a suitable TF transform in
moderate SNR scenarios. Estimators using the Hilbert spectrum can reject interfering signal components
if they are weaker than the target signal. Domínguez et al. proposes the use of instantaneous envelope
(magnitude as a function of time) for classification, this parameter could be directly extracted together
with the IF from the spectrum [47].

The IF vector of a chirp contains a lot of information, and as such, requires a high Eb/N0 to accurately
estimate the frequency path (compared to the other estimators). Perhaps the IF could be reduced to
a smaller set of parameters that optimally would be linearly separable between chirps with different IF
trajectories. Examples of such parameters could be: the upper and lower frequency of the chirp; the
location of the power maxima, which for asymmetrical IF-paths can be anywhere between the upper and
lower frequency; a parameter representing the rate of which the IF changes (mean chirp rate ⟨γ(t)⟩T ).
For symmetrical chirps, an additional parameter could be the first-order polynomial fit of the phase path,
(e.g. using Equation 3.7). The problem with these reduced parameters is that they typically require
assumptions to be made, e.g. continuous IF, symmetrical IF path, etc. Thus the methods lose their
generality. As described in section 2.1; The IF path of the chirp is closely related to its PSD. Some
IF-related parameters could thus be extracted from its PSD, or the frequency distribution of the cycle-
frequencies of a SCD. This would allow multiple overlapping signals to be characterized independently¶.
Examples of such parameters could be the skewness, kurtosis, and symmetry (like proposed by Dominguez
[47]) of the frequency distribution, either using the PSD or specific cycle-frequencies.

The IF estimators are intended to estimate on a single chirp. Communication signals contain many such
chirps (assuming a chirp-per-symbol scheme). These estimators thus rely on the quality of the symbol
rate estimate, to separate the chirps.

5.1.2 Center Frequency Estimation
Figure 4.4 and 4.5 display the fundamental issues with estimating the center frequency on signals with
a non-zero bandwidth. As the center frequency is not located at the maxima of the PSD, the DFT ML
method cannot find the true center frequency. The center frequency could be found if the PSD is filtered
with a matched filter, but this requires full knowledge for the signal (apart from the center frequency)
which is unrealistic to assume. A complex exponential has an infinitesimally narrow bandwidth; There-
fore, as the DFT size increases so does the estimate accuracy. However, for finite bandwidth signals
there exists an optimal DFT size, where the frequency response of the DFT bins are the closest to the
matched filter of the observation. This also applies to the FAM-based CS estimators, as its channeliza-
tion is performed using a STFT (see Equation 2.64 and 2.66). With a great DFT size and high SNR,
both the DFT and the CS-based estimators would be biased, as the frequency domain peaks are located
adjacent to the true center frequency. From figures 4.14 and 4.19 it is apparent that the CS estimator
won’t be as biased for the particular NLFM case, as the LFM case.

Based on the results, it is apparent that of the considered a priori cases, knowledge on the chirp band-
width Ω seems to be the most powerful. This prior knowledge could easily be applied to improve the
simpler DFT ML estimator.

‡A Graphics Processing Unit (GPU) is an Integrated Circuit (IC) which can compute problems using multiple cores
for a single function.

§A Field-Programmable Gate Array (FPGA) is a specialized IC which can be configured for parallel, and real-time
processing.

¶This with the assumption that the overlapping signals have different dominant cycle-frequencies.
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Duda [22] proposes that windowing along with polynomial interpolation of the periodogram improves
frequency estimates. In the case of a single chirp with an asymmetric IF trajectory, the windows will skew
the periodogram which would lead to biased estimators. The windowed methods seem not appropriate
for single chirp cases. However, for multi-pulse signals like those studied in this thesis, it might improve
the estimates.

The results show that there is little to gain from utilizing the CS-based estimators for center frequency
estimation, even with a priori information. However, utilizing filters in the cyclic axis allows the sep-
aration of simultaneous signals. That is, by applying filters which only measure the correlation at
cycle-frequencies which are harmonics of symbol rate, then the signals can be separated. This would not
be possible with the magnitude spectrum.

In this thesis, only "symmetrical" chirps are used. For asymmetrical chirps, that is, chirps for which the
mean of the PSD is not at the chirp frequency midpoint fstop− fstop−fstart

2
, the center frequency definition

must be explicitly defined. It could be defined as the mean of the PSD, the frequency midpoint as defined
above, etc. As this parameter is estimated for classification purposes, crude center frequency estimators
might be sufficient.

5.1.3 Symbol Rate Estimation
The CS class of estimators obtains greater accuracy at a lower computational cost than the traditional
autocorrelation counterpart, except for the LFM-with-synchronization scenario. This latter scenario
seems more realistic with regards to having a synchronization sequence. All of the estimators performed
worse in the M-ary case than in the binary. This might be a consequence of fewer repetitions of symbols.
This repetition is the root of the cyclic properties. An interesting result from the LFM case, is how the
strongest correlation appears at cycle-frequency α = 4fsymb. This might be a result of how the symbols
are created by shifting the chirp by 1

M
T , which makes a symbol correlate with the shifted version at

cycle-frequency α =Mfsymb, similar to what is observed. If this is true, then the order of the modulation
could be found through CS analysis, for shifted modulation schemes like LoRa.

The chirp bandwidth is shown to improve the estimates the most, of the studied a priori parameters.
It enables several dB increase in the practical operative Eb/N0 range. The a priori fc estimator with
estimated 2 dB power bandwidth gains only 2 dB of operative range over the full BW estimator. Perhaps
a better power bandwidth estimate would close some of this performance gap. The bandwidth estimator
is dependent on the magnitude spectrum peak to be above the noise floor by the power reduction amount.
With this particular estimator, there is an a priori trade-off between accuracy and SNR operating range.

5.1.4 Execution Time
The estimators are run in parallel while the computer is used for various other tasks. As a result, the
time estimates have some inaccuracies. The estimators are written in Python, where some estimators
utilize greater degrees of low-level optimizations than others. The code is written with libraries such as
NumPy and SciPy [55], which utilize efficient codes written in FORTRAN, C and C++. Some estimators
have less of such optimization, which could lead to additional inaccuracies. The execution time estimates
indicate the order of magnitude which can be expected on single-core operation.

5.2 Signal Generation
Most chirp-based communication systems utilize linear chirp schemes. The implemented NLFM signaling
scheme is thus not very representative of what one can expect to see on the spectrum (at least for
communication purposes). They do however open up for substantially lower inter-symbol isolation (cross-
correlation between symbols) as displayed in Figure 4.3, which makes these suitable for robust low-power
communications and MIMO schemes. The optimization method required to create the IF path makes it
impractical to solve for new IF trajectories in real time. This means that the path must be stored in the
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transmitter devices. The steep IF trajectories obtainable in with NLFM chirps increases the required
sample rate of the transmit-receive systems (in order to avoid aliasing).

The LFM modulated scheme has lower inter-symbol isolation than the NLFM symbols. The waveforms
are however simple to generate and easy to manage. With an increasing number of symbols, the time
shift of each symbol reduces, which leads to a reduction in inter-symbol isolation. This signaling scheme
seems like it would be limited to a low number of symbols before the inter-symbol isolation is too low.

5.3 Further Work
The best-performing IF estimator in this thesis is the piece-wise polynomial phase trajectory estimator.
It however runs orders of magnitude slower than its counterparts when run on a single core. A compu-
tationally efficient implementation should be studied, in order to conclude whether the precise method
is applicable in real-time classification systems. Variations like the faster piece-wise polynomial least
squares method should be compared to the ML method.

The WVD shows great promise on continuous chirp signals, but breaks down on discontinuous. Methods
such as the PWD and refined methods such as Choi-Williams Distribution (CWD)‖ should be studied
further.

The presented estimators and results show that there are methods to extract the center frequency, IF and
symbol rate of arbitrary chirp waveforms. One question that remains is whether the chosen parameters
with the obtainable accuracy is enough to separate different chirp signals. Further experiments with
classification networks should be performed in order to quantify the effectiveness of the estimators.

‖Choi and Williams proposes a method of reducing these cross terms in what has later been termed the CWD function
[56]. Both the CWD and the WVD are special cases of Cohens class of Time-Frequency distributions [31].

42



Chapter 6

Conclusion

In this thesis, a set of estimators are assembled in an attempt to create an algorithm that can characterize
chirp modulated signals. A method of generating non-linear chirps through a chirp-rate forming method
is implemented. It shows promise, but requires a computationally costly optimization approach. A
second LoRa-like signal generator is proposed and implemented. Those signals obtain lower isolation
between the symbols than the NLFM counterpart.

A set of IF estimators are implemented and tested against two sets of challenging chirp pulses. Of the
estimators, the polynomial phase ML estimator shows superior operating SNR range, and beat the others
by several dBs in both the continuous non-linear case and the discontinuous linear case. It suffers from
high computing requirements, but is exceptionally parallelizable. The WVD ML estimator is shown
to work great for continuous IF signals, but breaks down for discontinuous. An HHT ML method is
proposed as a solution, which is relatively fast, and is decent in both the continuous and discontinuous
cases. All of the estimators requires substantially greater SNR than the two other studied parameters.

A cycle-frequency-based center frequency estimator is implemented utilizing knowledge of the symbol
rate. The estimator is compared against a traditional magnitude spectrum ML method. The cycle-
frequency-based estimator outperforms the traditional estimator in low SNR, and with a-priori knowledge
on chirp bandwidth and symbol rate, it manages to obtain approximately the same accuracy for high
SNR. As such the cycle-frequency based method is a candidate for parameter estimaton on simultaneous
and overlapping signals.

Lastly a proposed harmonic cycle-frequency estimator is implemented and used as a symbol rate esti-
mator. It obtains estimates within Hertz to tens of Hertz of the true value. It outperforms a harmonic
autocorrelation based estimator in two out of three test scenarios. The cycle-frequency approach is shown
to run an order of magnitude faster than the autocorrelation approach.
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Appendix A

Recreation of this Work

All signals and simulation in this thesis are built on free and open source tools. All estimators and
signal generation algorithms implemented for this thesis are released in the rf-tool python package. The
package is hosted on PyPi: https://pypi.org/project/rf-tool/. The source code for this package
is hosted on GitHub: https://github.com/ErikBuer/rf-tool.

To install, open a terminal (e.g. anaconda prompt in Windows [57]) and run the following command:

pip i n s t a l l r f − t o o l

The code for running the simulations and generating the plots in this thesis is hosted on GitHub:
https://github.com/ErikBuer/ChirpAnalyzer. To download the package, open a folder of choice and
run the following command in a terminal∗:

g i t c l one https : // github . com/ ErikBuer / ChirpAnalyzer . g i t

∗This requires Git to be installed.
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