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Summary

Pulmonary CT image analysis is a vital part in the assessment and treatment planning
of different lung diseases. The method often requires the lungs to be separated from the
surrounding structures, a process known as lung segmentation. Fissures divide the lungs
into smaller compartments known as lobes, with their own independent vessels and airways
system. Some diseases develop only in one of these lobes, and some treatments are performed
on a lobar level. It is thus necessary to also segment the lobes in many cases. Doing lungs
and lobes segmentation by hand is a tedious and time-consuming process, requiring expert
radiologists. A variety of different methods to automate the segmentation process have been
proposed throughout the years, but many of them struggle on lungs with high amounts of
abnormalities, which often is the case for diseased lungs.

This thesis aims at contributing further towards the full automation of lung and lobe segmen-
tation by investigating two state-of-the-art neural network architectures, and their ability to
generate accurate segmentation models with short training and inference time. The two studied
approaches are the 3D U-Net, and the relatively new PLS-Net. Both are 3D fully convolutional
networks whereby the U-Net is more traditional with a large number of parameters while the
PLS-Net is extremely lightweight in comparison. The two networks were tested for the lung
segmentation task, using different combinations of deep learning frameworks (e.g., Tensorflow
and PyTorch), training precision, batch sizes and input resolutions. In addition, the PLS-Net
was trained and tested for the lobe segmentation task, together with a simple post-processing
step.

The results showed that using smaller input volumes with batch size 2 gave higher accuracy
than using larger input volumes with batch size 1. PyTorch and TensorFlow gave equally good
Dice scores on the lung segmentation task, and PyTorch gave better training performance, but
was slower during inference. Using mixed precision over full precision reduced the memory
footprint by 40%, without reducing the accuracy. The PLS-Net used 30% less memory than
the U-Net for the same input data and batch size, with a reduction of 0.3% in Dice score. For
the lobe segmentation task, the PLS-Net gave a Dice score of 92.6% before post-processing,
and 92.9% after. The lobe segmentation model performed equally well on data from another
data set and the data used for training, but struggled on samples containing abnormalities.
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Sammendrag

Pulmonal CT-bildeanalyse er en viktig del av vurderingen og behandlingsplanleggingen av
forskjellige lungesykdommer. Metoden krever ofte at lungene skilles fra de omkringliggende
strukturene, en prosess kjent som lungesegmentering. Dype spalter (fissurer) deler lungene i
mindre volumer kjent som lapper, med sine egne uavhengige åre- og luftveisystemer. Noen
sykdommer utvikler seg bare i en av disse lappene, og noen behandlinger utføres på et slikt
lappenivå. Det er derfor også nødvendig å segmentere lappene i mange tilfeller. Å gjøre
segmentering av lunger og lapper for hånd er en langtekkelig og tidkrevende prosess, som
krever eksperter innen feltet. Det er foreslått en rekke forskjellige metoder for å automatisere
segmenteringsprosessen gjennom årene, men mange av dem sliter på lunger med store mengder
abnormaliteter, noe som ofte er tilfelle for syke lunger.

Denne oppgaven tar sikte på å bidra ytterligere mot full automatisering av lunge- og lappeseg-
mentering ved å undersøke to toppmoderne nevrale nettverksarkitekturer, og deres evne til å
generere nøyaktige segmenteringsmodeller med kort trening- og inferenstid. De to nettverkene
som skal undersøkes er 3D U-Net, og det relativt nye PLS-Net. Begge er 3D konvolusjonelle
nettverk der U-Net er tradisjonelt med et høyt antall parametere mens PLS-Net er ekstremt
lett til sammenligning. De to nettverkene ble testet for lungesegmenteringsoppgaven ved bruk
av forskjellige kombinasjoner av rammeverk for dyp læring (f.eks. Tensorflow og PyTorch),
treningspresisjon (16-bit vs. 32-bit), batchstørrelser og volumstørrelse. I tillegg ble PLS-Net
trent og testet for lappesegmenteringsoppgaven, etterfulgt av et enkelt postprosseseringssteg.

Resultatene viste at bruk av mindre volum med batchstørrelse 2 ga høyere nøyaktighet enn å
bruke større volum med batchstørrelse 1. PyTorch og TensorFlow ga like gode Dice-verdier
på lungesegmenteringsoppgaven, og PyTorch ga bedre treningsytelse, men var tregere under
inferens. Ved å bruke blandet presisjon over full presisjon, ble minneavtrykket redusert
med 40%, uten å redusere nøyaktigheten. PLS-Net brukte 30% mindre minne enn U-Net
for samme volum og batchstørrelse, med en reduksjon på 0,3% i Dice-verdi. For lappeseg-
menteringsoppgaven ga PLS-Net en Dice-verdi på 92,6% før postprossesering og 92,9 % etter.
Lappesegmenteringsmodellen presterte like bra for data fra et annet datasett som på dataene
brukt til trening, men slet på lunger som inneholdt abnormaliteter.
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1 | Introduction
1.1 Background

Lung diseases are the cause of millions of deaths worldwide [1]. By detecting these diseases
at an early stage, the chance of surviving will be increased. In pulmonary image analysis,
computer tomography (CT) images of the lungs are analysed for abnormalities. A vital part
of pulmonary image analysis is to separate the lungs from the surrounding structures [2], a
process known as lung segmentation.

Pulmonary lobes are different regions of the lungs, divided by boundary surfaces known as
pulmonary fissures. Each of the lobes have their independent vessels and airway system,
which leads to some diseases only developing at a lobar level. Examples of such diseases are
centrilobular emphysema and tuberculosis [3]. Some treatments of lung diseases, such as lung
cancer surgery, are also performed on a lobar level. Thus, segmenting the lobes is of clinical
interest both in disease diagnostics and treatment planning.

All lungs and lobes suffer from inter-patient variability in shape and structure. Diseased lungs
are referred to as pathological lungs, and often contain abnormalities as many lung pathologies
change the tissue density. In turn, this changes the intensity in the CT image, making it
hard to do segmentation based on intensity only [4]. The fissures that divide the lobes have
similar Hounsfield unit (HU) as vessels, and can be challenging to distinguish between each
other. In addition, it is common that one or more fissures are incomplete. This makes lobe
segmentation a challenging task, especially in pathological lungs.

Manual delineation of lungs and lobes is time consuming and require extensive knowledge of the
anatomical structure of the lungs. Different approaches have been proposed to automate the
process throughout the years, including a variety of different algorithms, both semi-automatic
[5] and fully automatic methods [2, 6]. While many of them have proved to perform well on
healthy lungs, and lungs with minimal abnormalities, the general trend is that they struggle in
cases with moderate to high amounts of abnormalities [7]. In most recent efforts, deep neural
networks using supervised learning have been utilized for the segmentation tasks. In 2007,
Harrison et al. proposed a 2D network that proved to give good results on a large variety of
pathological lungs [8]. Later, several 3D networks have also been proposed for both the lung
and lobe segmentation task [9, 10].

Training deep neural networks may be time consuming, and require a lot of computational
power and memory. In addition, a lot of annotated data is needed to achieve good results using
this method. Such data is often hard to obtain due to strict privacy regulations of patient
information, and the need of an expert radiologist to create proper annotated data. However,
applying fully trained deep learning models is significantly faster than manual delineation,
and have proven to outperform the traditional algorithm based methods in cases with high
amount of abnormalities [7].
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Chapter 1. Introduction

1.2 Aim and Method

Segmentation of the lung and its lobes in CT images is an important part in both disease
assessment and treatment planning of lung diseases. While there has been made great efforts
in the field of automating the process in the recent years, there is still a way to go before these
methods can fully reach the accuracy of experienced radiologists. This thesis aims to contribute
further towards the automation of lung- and lobe segmentation through investigating the
feasibility of training accurate segmentation models with shorter training and inference time.
The already well established 3D U-Net by [11] was used together with the relatively new, but
successful PLS-Net by Lee et al. [12], which is extremely lightweight compared to the U-Net.

The impact on training and inference performance when using PyTorch over TensorFlow will
be tested for lung segmentation using the U-Net, in addition to investigating the accuracy
performance of different batch sizes and input resolutions, and the effect of using mixed
precision over full precision. A comparison of the PLS-Net to the U-Net will be made with
respect to training, inference and accuracy performance. The PLS-Net will also be used to
investigate the lobe segmentation problem, in combination with a simple post-processing step.

This master’s thesis is a continuation of a specialization project that started last semester.
The theory chapter is an extended version of the one in the project. In the section on human
lungs, lobes are now covered. Depthwise separable and dilated convolutions, residual learning
and dense connectivity is added to the section on deep learning, and an introduction to the
deep learning frameworks TensorFlow and PyTorch is provided at the end of the chapter.

1.3 Outline of Thesis

The motivation behind this thesis has now been introduced in this first chapter. In the second
chapter, theory covering the basics of the human lungs, an overview of the imaging technique
used to obtain the data, and an introduction to deep learning techniques are presented. The
data and details behind the two network architectures used in the experiments are presented
in Chapter 3, together with a description of the validation study and implementation details.
In Chapter 4, the results from the experiments are presented, before they are discussed in
Chapter 5. A conclusion based on the results and discussion is given in Chapter 6.
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2 | Theory
In this chapter, some theory needed to understand the purpose and methods of this thesis will
be presented. In the first section, a basic introduction of the anatomical structure of the human
lungs will be given. The second section presents theory behind the method used to obtain the
data used in the experiments. Together, these two sections will help the reader understand
and interpret what the data is showing as it is being presented later in the thesis. In the third
section, some general deep learning principles will be introduced. Some understanding of these
principles will be necessary to understand the methods used later on.

2.1 The Human Lungs

The lungs are part of the human respiratory system, which main task is to do gas exchange
with the blood. During cellular respiration the cells release chemical energy from oxygen
molecules to fuel cellular activity. As part of this process, carbon dioxide is released as a
waste product. The oxygen molecules are transported to the cells through the bloodstream,
which also picks up the carbon dioxide and transports it to the lungs. The lungs then transfer
oxygen from the atmosphere into the bloodstream, and releases the carbon dioxide from the
bloodstream into the atmosphere [13].

The lungs are located beneath the rib cage in the chest, surrounded by a membrane known as
the pulmonary pleurae. At some points, this pleura folds in to the lungs as pulmonary fissures,
dividing the lungs into smaller regions. The resulting sections are known as pulmonary lobes,
hereby referred to as the lobes. The left lung is divided into a superior lobe and a lower lobe,
by the left oblique fissure. The right lung is divided by both a right oblique fissure and a
horizontal fissure. This results in three lobes for the right lung: the superior lobe, the middle
lobe and the lower lobe, as shown in Figure 2.1.1.

Figure 2.1.1: Simplified illustration of the human repository system and the lungs.
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Chapter 2. Theory

During inhaling, air from the atmosphere is transported to the lungs through the trachea.
When the trachea reaches the lungs, it branches into a right and a left mainstream bronchi.
These mainstream bronchi are further divided into five lobar bronchi, where each of the
branches supplies one lobe with oxygen. Inside the lobes, the lobar bronchi divides into
bronchioles.

As each lobe is supplied with air from their own, independent lobar bronchi, some diseases
only develops at a lobar level. These types of diseases may include lung cancer [14] and lobar
pneumonia [15]. Therefore, it is often interesting to examine and treat diseases at a lobar level.
In a lobectomy for example, one or several lobes are removed together with nearby lymph
nodes, through surgery. In the planning of such surgeries, knowledge of the patient’s lobes is
vital.

2.2 Computer Tomography

In a CT scan, an X-ray source emitting narrow X-ray beams is rotated around the patient. A
detector picks up the transmitted signal at the other side of the patient. When the source has
done a full rotation, a cross-sectional image or slice, is computed. Then, the patient is moved
forward to obtain a new slice. By repeating this process, and then stacking the resulting slices,
a three dimensional image of the scan region can be obtained. This gives images of sections of
the human body with high quality [16].

X-rays have different attenuation depending on the material they propagates through. The
attenuation coefficient µ within the material is used during the reconstruction of the CT
scan to produce a grayscale image. A linear transformation of the attenuation coefficient is
done to calculate the corresponding HU, defined by (2.2.1), where µwater and µair are the
linear attenuation coefficients of distilled water and air. The HU is a measure of the radio
density, and is used by radiologists to interpret CT images. Dense materials, such as bone,
have positive HU and appear bright, while sparse materials, such as air, have negative values
and appear dark [17].

HU = 1000× µ− µwater

µwater − µair
(2.2.1)

In some cases, a radiocontrast agent is administered to the patient before the scan, to enhance
the visibility of certain internal structures that would prove impossible to distinguish otherwise.
The resulting images are known as contrast CT, and can also be useful to obtain functional
information about tissues.

The lungs contain a lot of air, which is sparse. This makes the lungs appear dark in the
CT images, as shown in Figure 2.2.1, with an intensity value between [-700, -600] HU. The
contrast to the surrounding structures is high, except to the trachea and bronchi, which is also
filled with air, and thus have intensity values close to that of the lungs. The fissures appear as
light, blurred lines in the CT images and can be seen in Figure 2.2.1, where the red arrows
are pointing at the fissures. The thickness of the line may vary, and in some cases, the fissure
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2.3 Deep Learning

is incomplete and not possible to see in a CT image.

(a) Axial (b) Sagittal (c) Coronal

Figure 2.2.1: CT slices of the lungs seen from different views. The red arrows point at the lung
fissures.

2.3 Deep Learning

Machine learning utilizes algorithms and statistical modelling to enable computer systems
to perform specific tasks without being explicitly programmed to do so. It is based on the
idea that a system can learn from raw data by identifying patterns, and use this knowledge to
make subjective decisions on its own. The performance of these machine learning algorithms
are highly dependent on the representation of the data it is given. Each piece of information
in the representation is known as a feature, and it is the choice of these features that affects
the performance the most [18].

Different branches of machine learning exists, depending on the learning technique. In
supervised learning, the model is given a set of training data x with corresponding ground
truths y. It is assumed that there exists an unknown mapping between the training data and
its ground truth, given by y = f(x). The goal of the model is to approximate this mapping
as ŷ = f̂(x). The model use the training data to make a prediction ŷ, and compares this
prediction to the ground truth y, as shown in Figure 2.3.1. Based on this comparison, some
model parameters are updated to get the prediction closer to the ground truth [18].

Figure 2.3.1: Flow chart illustrating the steps behind supervised learning.

Designing a feature extractor to transform the raw input data to suitable feature vectors, is
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Chapter 2. Theory

a difficult task that requires expertise and careful engineering [19]. Deep learning methods
solves this problem by automatically recognizing the representation that best suit the task.
Complex functions are learned by transforming the representations into simpler, more abstract
functions. This process is usually repeated several times, resulting in multiple levels of different
abstract representations.

2.3.1 Feed-forward Neural Networks

The most basic example of a deep learning model is the feed-forward neural network, also
known as a multilayer perceptron (MLP). Feed-forward neural networks consists of an input
layer with known inputs, one or more hidden layers, and an output layer where the outputs
can be observed. These layers, with exception of the input layer, are built by so-called units
or neurons, working in parallel, as illustrated in Figure 2.3.2.

Figure 2.3.2: A feed-forward neural network with one hidden layer. One of the neurons in the hidden
layers are highlighted to show its function in the network.

Each neuron receives inputs x from the neurons in the previous layer, and adds a weight w to
these values. The weighted inputs are summed with a potential bias b, before an activation
function a is applied to make a non-linear mapping. The output h of a neuron, is then given
by (2.3.1), where xi and wi denotes the input and weight of the i-th neuron in the previous
layer [20]. An illustration of the neuron is also shown in Figure 2.3.2.

h = a

 n∑
i=1

wixi + b

 (2.3.1)

In theory, it is possible to represent any function with a simple feed-forward network consisting
of only one hidden layer with a finite number of neurons. For many cases, this would in practice
mean an infeasibly large layer that is not able to learn and generalize properly. Instead, many
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2.3 Deep Learning

simpler layers are used to represent the function. Neural networks with many hidden layers
all called deep, and are better at generalizing [21].

For networks with many layers, the rectified linear unit (ReLU) is commonly used as the
activation function, as it typically learns faster than most other activation functions [19]. The
function of this artificial neuron resembles how a neuron behaves in the human neural system,
hence the name neural networks [17].

2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are commonly used for data represented by multiple
arrays, such as time series and images. In these types of data, neighbouring values are often
highly correlated, and they often contain features that are invariant to the location in the
input data [19]. This makes CNNs a popular choice for most computer vision applications [22].

CNNs use convolutional operations to extract features from the given input. In image
processing, 3D convolutions are used to filter a 3D image with a fixed 3D filter, known as a
kernel. Depending on its filter coefficients, the kernel can extract different features such as
edges and corners. The filtered image is produced by sliding the kernel with a certain stride
value over the input image, where the sum of the products is calculated. The result is a filtered
image or feature map, typically of reduced size, as shown in Figure 2.3.3. This allows the
network to be deeper with fewer parameters. For an input image of size L×M×N and a kernel
of size K ×K ×K, the filtered image will be of size L− (K − 1)×M − (K − 1)×N − (K − 1).
The kernel does not have to be cubic, but for this thesis we assume that it is, for simplicity.

Figure 2.3.3: Filtering of a 3D input image of size 6x6x6 with a kernel of size 3x3x3. The result is a
filtered image of size 4x4x4, assuming no padding is applied at the edges.

The computational cost of convolutional layers is high. To extract all relevant features from the
input, one requires several kernels at each convolutional layer, resulting in a stack of filtered
images from each of the different kernels to represent the feature map. A regular convolution
can be factorised into a depthwise and a pointwise operation. Together, these two steps makes
a so called depthwise separable convolution (DS convolution). While a regular convolution
calculates both spatial and cross-channel correlations simultaneously, the DS convolution
factors these operations into two simpler calculations. First, a spatial convolution is performed
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over each of the input channels, before a pointwise convolution performs a 1×1×1 convolution
to combine the depthwise convolution outputs and project them onto a new channel space [12].

While a regular 3D convolution use a 5D convolution kernel tensor W ∈ RK×K×K×M×N , the
DS convolutions factorise this kernel into a depthwise kernel tensor D ∈ RK×K×K×M and a
pointwise kernel P ∈ RM×N . This is illustrated in Figure 2.3.4, where K is the size of the
cube shaped kernel, M is the number of input channels, N number of output channels, and
the blocks represent the feature maps. By factoring the operations of a regular convolution
into simpler steps, the number of parameters and the computational cost of the necessary
calculations will decrease. This is beneficial as one of the main challenges with deep learning
is the computational cost, especially when dealing with large data such as 3D data.

(a) Regular convolution. (b) DS convolution.

Figure 2.3.4: Comparison of the different operations for a regular convolution and a depthwise
separable convolution.

The range of context that can be seen in each convolutional layer is known as the receptive field.
To capture both low-level and high-level features of the input image, several convolutional
layers in series are commonly used. The first convolutional layers captures the low-level
features, such as color, edges and corners, with small receptive fields. The receptive field then
increases with the downsampled input, resulting in high-level features. This way of increasing
the receptive field may however result in loss of details due to the frequent downsampling.
Another way to extract global context is by increasing the size of the kernel, but this comes
at a memory and computational cost. A third option is to use so called dilated convolution,
where the receptive field grows faster than the number of parameters.

In a dilated convolution, the kernels are upsampled (or dilated) by adding zeros between the
kernel values. The number of zeros between each value is called the dilation rate r, and a
regular convolution is simply a dilated convolution with r = 1. Figure 2.3.5 shows how the
receptive field is expanded with the dilation rate, while the number of parameters at each
convolutional layer stays the same. The receptive field grows exponentially with each layer,
while the number of parameters grows linearly. This makes it an effective way of expanding
the receptive field, without increasing the number of parameters significantly.

A downsampling operation known as pooling, is often performed between every few convolutional
layers, and results in fewer parameters in the network. This helps reduce the number of
feature-map coefficients to process, as well as making successive convolution layers look at
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(a) r = 1 (b) r = 2 (c) r = 4

Figure 2.3.5: Illustration of how the receptive field of a convolution is expanded with the dilation
rate r for a 3× 3 kernel. The red dots illustrates the kernel values of the upsampled kernel. The blue
fields shows the range of the receptive field, where the different shades indicates the overlap between
between the kernel values as they are swept over the data. (a) r = 1 gives a receptive field of 3× 3. (b)

r = 2 gives a receptive filed of 7× 7. (c) r = 4 gives a receptive field of 15× 15.

increasingly larger windows to induce spatial-filter hierarchies [22]. The pooling layer takes a
group, or a pool, of neighboring values in the feature map and outputs only one value. In deep
learning contexts, this value is typically the average or maximum of the pool. Figure 2.3.6
illustrates the process of 2D max pooling.

Figure 2.3.6: 2D max pooling with a pool size of 2x2.

2.3.3 Training Deep Neural Networks

During training of a neural network, the desired response of every neuron in the output layer
is known. The desired outputs of the hidden neurons however, are unknown. A learning
algorithm decides how the weights and bias of the hidden layers should be adjusted to minimize
the error between the actual output and the desired output with the help of a cost function
[18]. The learning algorithm uses a gradient vector to see how adjusting the weights will result
in an increase or decrease in this cost function. The weight vector is then adjusted in the
opposite direction. This is known as backpropagation. The most common form of doing this,
is by drawing a batch of random samples from the training set to feed to the network. This
process is known as stochastic gradient descent (SGD) [19].
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An issue that often occurs during training is overfitting [20], where the model performs
significantly better on the training set than on the validation and test set. This means that
the network is failing in generalizing the information from the training data. One way of
reducing the risk of overfitting is by adding more data to the training set, or reducing the
complexity of the model. In cases where this is not possible, adding regularization to the
network may be useful.

One of the most frequently used regularization techniques is dropout [23]. During training,
this technique randomly drops nodes and their connections in the network, given a probability.
This prevent the network from adapting to much to the given training set, as it forces the
network to use a wider range of neurons. Batch normalization [24] is a technique where the
unit values in the hidden layers are normalized. This speeds up training and allows for a
higher learning rate, in addition to acting as a regularizer because it adds some noise to each
hidden layers activations.

Another useful regularization technique is data augmentation. This is a way of adding more
variability to the data set, by adding different transforms to the data. For images, this could
be different degrees of flipping, rotation, scaling, color transformations, etc. These transforms
are usually assigned a probability of how likely they are to be added to an image, so that
different combinations of the transforms are added to the different samples.

2.3.4 Residual Learning and Dense Connections

For deep neural networks with many layers, the gradient of the error may become vanishingly
small during backpropagation. When the gradient of the error is propagated to the shallower
layers, the gradient at each shallow layer becomes smaller and smaller, until it vanishes
completely. This is known as the vanishing gradient problem, and stops the network from
training properly when gradient-based learning methods are being used.

Batch normalization and ReLUs as activation functions are used to deal with the vanishing
gradients problem, but for deep networks, this might not be enough. Another way of dealing
with this problem, is by using deep residual learning, a method introduced by Kaiming He
et al. in their ResNet [25]. The method uses identity shortcut connections, which promotes
gradient propagation by connecting the output of one layer to the input of another layer, while
skipping one or more layers inbetween. Element-wise addition is used to connect the layers,
as shown in Figure 2.3.7a. The impact of the vanishing gradient problem is reduced as the
activations from previous layers are reused.

If a block of layers is connected in a way where each layer receives feature maps directly from
all preceding layers, the block is said to be densely connected. Gao Huang et al. used a dense
block like that in their well known DenseNet [26], which proved to achieve higher accuracy
with fewer parameters compared to the ResNet of Kaiming He et al. Dense connections use
channel wise concatenation instead of element-wise addition, as shown in Figure 2.3.7b.

Due to the direct connections to different layers, dense networks benefits from a strong gradient
flow, where the error can be easily propagated to the early layers. This further helps with
the vanishing gradient problem. Dense networks also makes it possible for the classifier to
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(a) Residual learning (b) Dense connection

Figure 2.3.7: Illustrations of residual learning and dense connections. Residual learning typically use
element-wise addition, while dense connections use concatenation.

utilize features of different complexity levels, and not only the most complex (high level)
features. This is especially useful when training data is sparse. In addition, receiving inputs
from previous layers will result in more diversified features.

2.3.5 Deep Learning Libraries

For implementing deep neural networks, there are several frameworks to choose from. Tensor-
Flow [27] and PyTorch [28] are two popular choices, both open-source. TensorFlow is based on
Theano, and is developed by Google Brain, while PyTorch is based on Torch, and is developed
by Facebook, Inc.

Both TensorFlow and PyTorch operate on tensors, and view the models as directed acyclic
graphs (DAGs). The main difference between the two frameworks is that TensorFlow use a
static computation graph while PyTorch use a dynamic computation graph. For static graph
frameworks, the graph is only defined once, which means that it cannot be changed on the go.
With dynamic graph frameworks however, a different graph is constructed from scratch for
every training sample. This makes it possible to define and change nodes for every training
instance, which in turn makes it more suitable for variable input sizes.

Normally, the training of neural networks is done with 32-bit floating point type, so called full
precision training. By reducing the floating point to 16-bit, so called half precision training can
be achieved. This results in benefits like computational speed up due to faster math operations
with the reduced data, and a reduction in required memory, which may be very useful for
larger neural networks. Using half precision may come at the expense of numeric instability
and lower accuracy. By using 32-bit floating point for precision-sensitive components such as
optimizers and batch normalization layers while using 16-bit everywhere else, one gets the
benefits of memory reduction and speed up, while keeping the numeric stability and accuracy
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from training with full precision. This is known as mixed precision training, as a combination
of different precision are being used.
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3 | Materials and Methods
3.1 Data

For this thesis, a total of 176 CT volumes were collected from four different sources: 90
CTs were obtained from the publicly available database DeepLesion [29] from the National
Institutes of Health (NIH), 20 from the VESsel SEgmentation in the Lung 2012 challenge
(VESSEL12) [30], 51 from the LUng Nodule Analysis 2016 challenge (LUNA16) [31] and the
remaining 15 from St. Olavs Hospital (STO) in Trondheim (Norway), previously used in [32,
33].

The CT volumes from LUNA16, VESSEL12 and STO were accompanied by corresponding
ground truths of the lungs. In addition, lung segmentations for the NIH data were produced
by applying an already existing lung segmentation model to the CT volumes [34].

The LUNA16 data was also obtained together with ground truths of the lobes. For the volumes
from VESSEL12, lobe segmentations were obtained by applying a lobe segmentation model
that was already trained on the VESSEL12 data. The result was a data set with 176 CTs
with lung annotations and 71 CTs with lobe annotations.

During the study, the lobe annotations for one patient from the VESSEL12 data set was
found to be incomplete. However, the models produced in the experiments for this thesis were
already trained using this data at the point of discovery. The correct lobe annotations were
produced and used for the validation studies. Figure 3.1.1 shows the incomplete segmentation
and the corrected segmentation.

(a) Incomplete lobe segmentation. (b) Corrected lobe segmentation.

Figure 3.1.1: The incomplete and the corrected lobe annotation for one CT from our data set.

In our data set, we have a mix of 86 chest CT volumes and 90 full body CT volumes, with
scan regions as shown in Figure 3.1.2. The dimensions of the CT volumes in the x, y and z
dimension cover [487; 512]× [441; 512]× [56; 854]voxels, where the size of each voxel ranges
from [0.52; 0.98]× [0.52; 0.98]× [0.5; 5.0]mm3 along each axis.
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Figure 3.1.2: The red box indicates the scan region for a chest CT, while the blue box indicates the
scan region for a full body CT.

3.2 Method

In this section, the basic principles behind the U-Net and the PLS-Net architecture will
be introduced. Following the introduction to each of the networks, is a section describing
some architecture and implementation choices made for this study, together with the training
strategy. The implementation details used to perform the experiments are then summarized,
before the final validation study is presented.

3.2.1 U-Net Architecture

The 3D U-Net proposed by Çiçek et al. [11], is a modified version of the original 2D U-Net
introduced by Ronneberger et al. [35]. An example of the network architecture and its
distinctive U-shape, can be seen in Figure 3.2.1. The U-Net is divided into a symmetric
contracting and expanding path, hereby referred to as the encoder and the decoder. While
the encoder aims at capturing the context of the input data, the decoder aims at achieving
precise localization of the segmentation mask.

The U-Net consist of multiple resolution levels, where a set of operations is repeated at every
level. An important building block in the network is the convolution block, that includes a 3D
convolution operator with kernel size 3 × 3 × 3, followed by an activation function. In the
encoder, the convolution block is applied twice at every resolution level, to increase the number
feature channels from the input. The feature maps are then downsampled by a 2× 2× 2 max
pooling with stride two in each direction. No max pooling is done in the last layer.

At the decoder, a simple upsampling of the feature maps with factor two is performed for
every resolution level. A copy from the feature maps at the encoder is concatenated with the
upsampled feature maps, to regain the high resolution details. The convolution block used at
the encoder is then applied twice to reduce the number of feature channels, before the same
process is repeated at the next resolution level. At the output, a 1× 1× 1 convolution followed
by a softmax operation is applied to reduce the number of output channels to the desired
number of classes, C. An overview of the network can be seen in Figure 3.2.1.
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Figure 3.2.1: Overview of the U-net architecture. The blue boxes illustrate the feature maps at each
resolution level. The numbers above the box indicate the number of channels in the feature maps.

3.2.2 Training Strategy for the U-Net

In this thesis, the U-Net was implemented with seven resolution levels, l, to ensure that both
high-level and low-level features from the input data were captured. The number of kernels
applied during the convolution at each resolution level was {6, 8, 16, 32, 96, 128, 256}, from
the lowest to the highest level. To speed up the training, a batch normalization layer was
applied after each convolutional layer, followed by a spatial dropout of 0.2 for regularization.
ReLU was chosen as the activation function for the hidden layers, as it has proven to work
well for networks with many layers [19]. In the final layer, softmax was used as the activation
function to output a vector representing the probability of each class.

The U-Net was trained using the Adam optimizer [36] with a learning rate of 10−3. For the
loss function, the soft Dice coefficient (DC) presented in (3.2.1) was used, where y is the
ground truth, ŷ is the prediction and v is the number of voxels in the volume. The coefficient
is calculated for all classes, and averaged. To formulate a function that can be minimized, the
final loss is then given by 1−DC.

DC(y, ŷ) = 1− 2
∑

v yŷ + 1∑
v y

2 +
∑

v ŷ
2 + 1 (3.2.1)

Training was either done with batch size 1 on samples of size 256× 256× 256, or batch size 2
on samples of size 192× 192× 192. The U-Net was only trained for the lung segmentation
task, with C = 2. Training was done from scratch, and stopped after 20 epochs with no
improvement in the validation loss. The model from the epoch with lowest validation loss was
saved and evaluated.
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3.2.3 PLS Architecture

The second network architecture investigated in this work is the Pulmonary Lobe Segmentation
Network (PLS-Net), as introduced by Lee et al. [12]. The PLS-Net is a 3D fully convolutional
network, with an asymmetric encoder-decoder structure. The network aims at leveraging
information from the whole input volume at once, while keeping the number of network
parameters low.

The PLS-Net was designed to exploit the spatial and contextual information in high-resolution
CT volumes efficiently. To achieve this, Lee et al. introduced the dilated residual dense block
(DRDB) as an important building block in their network. To extract both local and global
contexts from the high resolution input volume, a series of four 3× 3× 3 depthwise separable
convolutional layers with different dilation rates were implemented in the DRDB-block. This
ensures a large diversity of the receptive field. An illustration of the operations and the
resulting feature maps of the DRDB-block is shown in Figure 3.2.2.

Figure 3.2.2: Illustration of the DRDB-block. r indicates the dilation rate of the convolution, and
the blocks represent the feature maps.

When using dilated convolutions, gridding artefacts may occur, as the input of the convolutions
is sampled in a checkerboard manner. When several convolutional layers are following in
cascade, these artefacts may be propagated to the consecutive layers, if the dilation rates have
a common factor relationship. Thus, Lee et al. set the dilation rates of the four consecutive
convolutions to r = {1, 2, 3, 4}. This series of dilated convolutions exponentially enlarges the
receptive field with each following layer.

To ensure multi-scale context, the cascade of dilated convolutions in the PLS-Net was imple-
mented with dense connections and residual learning. The four dilated convolutions were all
densely connected through concatenations, to receive feature maps from the previous layers.
Each dilated convolution layer adds 12 new features to the cumulative feature maps from the
previous layers. A skip connection from the input of the block was then added to the final
concatenated features, after a 1× 1× 1 convolution to ensure compatible shapes, for residual
learning.

The DRDB-block requires a lot of memory during training. After the forward pass, all
intermediate activations for each layer are usually stored in memory to compute the gradients
in the backwards pass. These intermediate activations require a lot of memory to store, but
are cheap to compute. By recomputing all intermediate activations in the backward pass
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instead of storing them, a reduction in required memory can be traded for a small increase in
training time. This memory efficient implementation of the DRDB-block changes the memory
consumption for the feature maps from quadratic to linear, with the network depth.

Lee et al. implemented their network with depthwise separable convolutional layers, to
obtain feature maps with a reduced number of parameters and computational cost. The DS
convolution was followed by batch normalization to help speed up training. The encoder aims
at representing the input by feature maps. Each resolution level l in the encoder included a
3× 3× 3 DS convolution which downsamples the input with a stride of 2. To bring back some
of the spatial information lost during the convolutional and downsampling operations, Lee et
al. added input reinforcement by concatenating the feature maps from the DS convolutional
layer with the a downsampled version of the input image. The image was downsampled with
a factor of 2l, using trilinear interpolation. The concatenation was further followed by a series
of 2l−1 DRDB-blocks. An overview of the network is shown in Figure 3.2.3.

Figure 3.2.3: Overview of the PLS-Net architecture. The different resolution levels are marked with
l, and the number above each block in the network indicates the number of feature channels at that
point. C is the number of desired classes and r is the dilation rate.

Due to the downsampling operations at the encoder, the resolution is gradually reduced to
1/8 of the input resolution. At the decoder, the feature maps were upsampled to the original
input size. A simple upsampling operation will not be able to regain the high resolution details
of the input, and the result would be a coarse segmentation mask. To avoid this, a decoder
with convolutional layers and concatenation with feature maps from the encoder, were used
together with trilinear upsampling with factor 2.

3 × 3 × 3 DS convolutional layers were used to generate 2C feature maps, where C is the
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number of desired classes. The upsampled feature maps were concatenated with the 2C
feature maps from the DRDB-block at the corresponding resolution block. This way, the high
resolution features from the encoder were obtained at the decoder. When the feature maps
were back to the original input size, a 1× 1× 1 convolution followed by a softmax operation
was applied to produce the C probabilities representing each class. An illustration of the final
PLS-Net architecture is shown in Figure 3.2.3.

3.2.4 Training Strategy for the PLS-Net

In this thesis, the PLS-Net was implemented with three resolution levels, where the number of
feature channels produced at each resolution level was {16, 64, 128}, same as for the network
of Lee et al. The number of resolution levels can be lower for the PLS-Net compared to the
U-Net, because of the large receptive field of the DRDB-block. Number of output channels, C,
was 2 for the lung segmentation task, and 6 for the lobe segmentation task.

Same as for the U-Net, the PLS-Net was trained using the Adam optimizer with a learning
rate of 10−3, the Dice loss function introduced in (3.2.1), ReLU as the activation function for
the hidden layers and softmax for the output layer. The network was trained with a batch
size of two, once for samples with a fixed size of 256× 256× 256 for lung segmentation, and
once for variable size of 256× 192× [181; 382] for lobe segmentation. Because of the variable
sizes of the lobe samples, all samples in one batch were padded to the same size before being
fed to the network. Training was done from scratch, and stopped after 20 epochs with no
improvement in the validation loss. The model from the epoch with lowest validation loss was
saved and evaluated.

3.2.5 Implementation Details

All original CT volumes were pre-processed to obtain standardized samples for training,
starting with resampling to a uniform spacing of 1mm. Resizing of the data was then
performed to reduce the required memory during training. The intensity range was clipped to
[−1000, 1000]HU and normalized to zero mean and unit variance. To avoid loosing too much
details of the lobes and its fissures, the data used for lobe segmentation was cropped before
being resized. All slices that did not contain any part of a lung were dropped.

A set of data augmentation transforms was applied at random during training for both
networks: rotation between [-20◦, 20◦] and translate between [-5%, 5%]. For inference, the test
samples were resampled and resized to match the training data used to obtain that specific
model. The predicted segmentation mask was then resampled and resized back to the original
size, to perform evaluation of the models accuracy.

The implementation was done in Python 3.6.9, using either Keras v.2.3.1 with TensorFlow
v.1.15.0 backend, or PyTorch-lighting v.0.7.2 with PyTorch v.1.3.1 as backend. The models
were trained on a remote Ubuntu 18.04.4 server with Intel Core i9-9900K CPU @3.60GHz and
GeForce RTX 2080 with 11GB RAM.
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3.2.6 Validation Studies

Four studies were conducted for this thesis: (i) a lung segmentation study with focus on choice
of framework and training precision, (ii) an evaluation of the PLS-Net for lung segmentation,
(iii) a lobe segmentation study, and (iv) evaluation of the lobe segmentation model on lungs
with abnormalities.

The lung segmentation study: the U-Net presented in Section 3.2.1 was used to train five
models with different combinations of libraries, batch size and input resolution, and training
precision. Details of each model are presented in Table 3.2.1. The data set containing the 176
CT volumes and corresponding lung annotations, was divided into fixed training, validation
and test sets, with the ratio 70-15-15, respectively.

Table 3.2.1: Lung segmentation study: overall U-Net parameters description where bs stands for
batch size.

Model name Network Library Precision Input size bs

Model 1 U-Net TensorFlow Full 256x256x256 1

Model 2 U-Net PyTorch Full 256x256x256 1

Model 3 U-Net TensorFlow Full 192x192x192 2

Model 4 U-Net PyTorch Full 192x192x192 2

Model 5 U-Net PyTorch Mixed 192x192x192 2

PLS-Net for lung segmentation study: the PLS-Net introduced in Section 3.2.3 was
trained for the lung segmentation task, using PyTorch and mixed precision and compared to
U-Net performances. In addition, the impact of using a memory efficient DRDB-block was
studied.

The lobe segmentation task: the PLS-Net was trained using the 71 CT volumes with
corresponding lobe annotations. The network was trained using PyTorch and mixed precision,
and to ensure that the model generalizes to independent data, a five-fold cross-validation regime
was used for the limited data sample. The performances of the lobe models were evaluated for
each of the five lobes independently, as well as in an overall manner. Post-processing using
the predicted lungs mask was also attempted to improve the lobes segmentation quality by
removing any potential excess labeling outside of the lungs.

Lobes segmentation on heavily pathological lungs: the lobe segmentation model from
the third study was applied to some CT volumes containing heavier abnormalities (e.g., extreme
emphysema, partially collapsed lung). These CT volumes were selected from the NIH data set
used for training the lung segmentation models, and did not have any corresponding ground
truths of the lungs. The validation is purely qualitative and based on visual observations.

19



Chapter 3. Materials and Methods

Three different measures were used to assess the performances of the different trained networks
are: the Dice score for segmentation quality (in %), the duration to compare training and
inference speed (in s), and the GPU memory consumption (in GB). In this thesis, the memory
consumption is measured by looking at how much GPU memory the network use during
training of the model and inference. The training speed is a measure of how long it takes
for the whole data set to pass through the network, and will be given as seconds per epoch.
Inference time is the time it takes for a trained network to make a prediction. An average of
the time it takes to make a prediction on each test sample will be given to assess the inference
speed. The Dice score, detailed in Equation (3.2.2), is a measure of the similarity of the
ground truth X and the segmentation mask predicted by the model Y .

DSC = 2|X ∩ Y |
|X|+ |Y | (3.2.2)

In addition to the three measurements mentioned above, visual inspection will be performed
by the author, to further assess the accuracy performance of the models.
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4 | Results
4.1 Lung Segmentation Study

The results from the experiment are summarized in Table 4.1.1, while details regarding each
model are presented in Table 3.2.1.

Table 4.1.1: Comparison of the results from the lung segmentation study.

Training Inference Accuracy
Memory Speed Memory Speed Dice
(GB) (s/epoch) (GB) (ms/sample) (%)

Model 1 8.8 375 4.6 203 95.5
Model 2 8.3 270 4.1 353 91.9
Model 3 9.1 192 2.5 168 97.4
Model 4 7.2 96.2 2.3 172 97.5
Model 5 4.3 103.6 1.7 236 97.5

(a) Ground truth (b) Model 1 (c) Model 2

(d) Model 3 (e) Model 4 (f) Model 5

Figure 4.1.1: Predicted segmentation masks from all models on test sample A, together with the
ground truth.
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Figure 4.1.1 and 4.1.2 present two samples, A and B, of the predicted lung mask of all five
models, together with the ground truth. Visual inspection of the models shows that the
accuracy of Model 1 and Model 2 was very inconsistent. While they performed well on most
of the CT volumes, there were some volumes where they struggled with both false positives
and false negatives. Figure 4.1.1b and 4.1.2b shows the large variation in accuracy for Model
1 over two different samples. The same can be seen in Figure 4.1.1c and 4.1.2c for Model
2. These deviations were not found for Model 3, Model 4 or Model 5, which gave a more
persistent performance.

(a) Ground truth (b) Model 1 (c) Model 2

(d) Model 3 (e) Model 4 (f) Model 5

Figure 4.1.2: Predicted segmentation masks from all models on test sample B, together with the
ground truth.

4.2 Evaluation of the PLS-Net

Table 4.2.1 summarizes the results of training, inference and accuracy performance for the
U-Net and the PLS-Net.

Table 4.2.1: Comparison of the U-Net and the PLS-Net. Both networks were trained with the
PyTorch library, a batch size of 2, mixed precision and samples of size 256x256x256.

Network Training Inference Accuracy
Network # param. Memory Speed Memory Speed Dice

(M) (GB) (s/epoch) (GB) (ms/sample) (%)
U-Net 6.6 8.8 247 2.7 482 97.7

PLS-Net 0.25 5.9 367 2.5 338 97.4

A comparison in training performances of the regular DRDB-block and the memory efficient
DRDB-block is summarized in Table 4.2.2. The regular DRDB-block saves the intermediate
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activations computed in the forward pass, while the memory efficient DRDB-block only stores
the inputs and function parameter, and recomputes the rest during backwards pass.

Table 4.2.2: Comparison of speed and memory consumption for regular and memory efficient DRDB-
block.

Memory (GB) Speed (s/epoch)
Regular DRDB 10.6 345

Memory efficient DRDB 5.9 367

4.3 Lobe Segmentation Study

The results from the lobe segmentation task are presented in Table 4.3.1 together with the
results obtained by Lee et al. in their PLS-Net experiments.

Table 4.3.1: Results from the lobe segmentation study. Dice scores are reported for each individual
lobe and fold, as well as overall scores per lobe and epoch. The Dice scores obtained by Lee et al. are
added for reference. Keep in mind that they used a different data set for training and testing, when
comparing the results.

Dice score (%)

Fold 1 2 3 4 5 Total Lee et al.

Right Superior 92.6 91.5 92.1 94.0 89.8 92.0 96.2

Right Middle 86.5 81.7 85.5 87.9 82.6 84.8 93.6

Right Lower 96.6 92.2 93.8 95.8 94.5 94.6 96.3

Left Superior 97.3 95.8 95.8 96.3 96.1 96.3 96.8

Left Lower 96.8 95.6 94.5 95.8 94.1 95.4 96.1

Overall 94.0 91.4 92.3 94.0 91.4 92.6 95.8

Figure 4.3.1 and Figure 4.3.2 show slices from the right lung of two different test volumes, C
and D. Figure 4.3.1a and 4.3.1b show a comparison of the ground truth and the predicted
mask, while in Figure 4.3.1c and 4.3.1d, the same slice is shown when it is zoomed in on the
borders of the lobes, where the red arrows are pointed at the fissures. The same goes for
Figure 4.3.2. As can be seen from these figures, the model succeeds at locating the fissures,
but has trouble following them closely to the borders of the lungs. This can also be seen in
Figure 4.3.2d, where the gap between the true fissure and the predicted border of the right
lower lobe (blue) and the right middle lobe (green), is marked with a circle. Figure 4.3.2a
shows that the mask used as ground truth is also inaccurate around this fissure, and it can be
argued that the predicted mask is more precise than the ground truth in this particular case.
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(a) Ground truth (b) Prediction (c) Zoomed CT slice (d) Zoomed prediction

Figure 4.3.1: Ground truth and prediction for slice C for the lobe segmentation task.

(a) Ground truth (b) Prediction (c) Zoomed CT slice (d) Zoomed prediction

Figure 4.3.2: Ground truth and prediction for slice D for the lobe segmentation task.

The visual inspection of the predicted lobe masks also showed that on some volumes, voxels
outside of the patients lungs were labeled as lobes, as seen in the upper right corner in Figure
4.3.3a. These errors occurred both outside of the patients’ body, as well as inside, typically
where air was found in the abdominal area. Figure 4.3.3b shows how the model in some cases
failed at labeling all voxels inside the lungs as part of a lobe. For some volumes, the models
also struggled with fragments of one lobe inside of another lobe, as seen in Figure 4.3.3c, where
a patch of the left lower lobe (cyan) is found inside the left superior lobe (yellow).

(a) False positives. (b) False negatives. (c) Misplaced fragments.

Figure 4.3.3: Examples of errors found in the predicted lobes masks, shown for three different
samples.

The Dice scores obtained after applying the lung masks to the predicted lobe segmentations
are presented in Table 4.3.2. The Dice scores displayed in the table are the average over all
five folds.
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Table 4.3.2: Comparison of Dice score before and after the post-processing step. The results are
averaged over all five folds.

Dice score (%)

Fold Raw prediction With lung mask Lee et al.

Right Superior 92.0 92.2 96.2

Right Middle 84.8 85.0 93.6

Right Lower 94.6 94.9 96.3

Left Superior 96.3 96.5 96.8

Left Lower 95.4 95.9 96.1

Overall 92.6 92.9 95.8

Figure 4.3.4 shows a visual representation on the effect of applying the lung mask to a predicted
lobe segmentation mask, containing a lot of redundant labeling outside of the patients body.
The ground truth is shown in Figure 4.3.4a, with the predicted lobe mask in Figure 4.3.4b
and the final result in Figure 4.3.4c.

(a) Ground truth (b) Raw prediction (c) Post lung mask

Figure 4.3.4: Comparison of the predicted lobe mask before and after post processing with the lung
mask.

4.4 Lobe Segmentation on Lungs with Abnormalities

Figure 4.4.1 shows the resulting lobe segmentation mask when the model was applied to a
random CT volume from the NIH data set, which did not contain any abnormalities. As we
did not have any ground truths for this data set, an attempt of highlighting the fissure was
done by the author, and can be seen as red lines in the slices displayed in the figure.
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(a) Axial view. (b) Sagittal view. (c) Coronal view.

Figure 4.4.1: Predicted lobe segmentation mask for a sample from a different data-set than the one
used for training. The red lines are the authors educated guess of where the true fissures are located.

Figure 4.4.2 shows how the lobe segmentation model from fold 1 in Section 4.3 performed on
two different CT volumes, E and F, from the NIH data set, containing abnormalities. Two
slices, 1 and 2, are shown for each of the volumes, where slice 1 shows a part of the volume
where an abnormality is present, while slice 2 shows a part where the abnormality is not
present.

(a) Sample E, slice 1. (b) Sample E, slice 2. (c) Sample F, slice 1. (d) Sample F, slice 2.

Figure 4.4.2: Predicted lobe segmentation mask for two different CT volumes from the NIH data-set
containing abnormalities.
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5.1 Lung Segmentation Study

The results in Table 4.1.1 show that the models trained with batch size 1 gave a lower accuracy
performance than the models trained with batch size 2. The models using batch size 1 were
trained and predicted on larger volumes with higher resolution. As these volumes contain
more information, one could expect the models to perform better in this case. In addition,
the checkerboard effects associated with upsampling the predicted mask back to the original
size should be reduced for the larger volumes. This should in theory give a higher Dice score
compared to using smaller volumes with lower resolution for training and prediction. When
using batch size 1, the weights are updated after every single sample, which may give noisy
training. As a result, the training lasts longer and reaching the optimum could be difficult.
The lungs are relatively large, and with high contrast to most of the surrounding structures.
Thus, using larger volumes during training might not be crucial for the lung segmentation
task.

Visual inspection also shows that the models trained with batch size 1 gave very varying
results over the different test volumes, as seen in Figure 4.1.1b and 4.1.2b, and Figure 4.1.1c
and 4.1.2c. It is also interesting that there seems to be no correlation between which of the
test volumes the two models performed well and bad on. While Model 1 predicted bad on the
test volume displayed in Figure 4.1.1b, Model 2 performed well on this volume, as seen in
Figure 4.1.1c. This is surprising as the two models are trained on the same data, using the
same network. However, due to randomness in initialization and the sequential order of the
data, the same optimum may not be reached for the two networks.

In Table 4.1.1, the Dice scores of Model 3 and Model 4 show that the models trained with
TensorFlow and PyTorch performs equally well for batch size 2. This is expected, as the choice
of framework should not have any impact on the models accuracy performance, as long as the
network architecture and the training data is the same. The mathematical operations in the
networks give the same result regardless of the framework. However, the way the operations
are calculated, stored, and how the hardware is utilized, may differ between frameworks. This
may give different results in training and inference performance, with respect to memory
footprint and speed, as seen in table 4.1.1. During training, PyTorch seems to outperform
TensorFlow in both training time and memory use. This is expected, as TensorFlow aims at
being dynamic and user friendly, while PyTorch is more lightweight in comparison.

The results for Model 4 and Model 5 in Table 4.1.1 show that using mixed precision during
training result in a 40% memory reduction. In spite of the reduction in memory footprint, the
model accuracy does not seem to be reduced in any way. This indicates that no significant
information is lost by reducing neither the input data nor most of the network layers to 16-bit.
A memory reduction of 25% is also observed during inference with the use of mixed precision.
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A speed-up in training and inference time is also expected, as using 16-bit floating point
speeds up data transfer due to lower memory bandwith requirements, and results in faster
math operations. As the results show however, using mixed precision actually increases the
training and inference time. This should not be happening, and might be due to a bug in the
implementation or the framework. The PyTorch models were trained with benchmark enabled,
which is a function that optimizes the model for maximum performance on the GPU, based
on the inputs of the network. With this function enabled, the training speed was reduced
from 562 s/epoch to 96.2 s/epoch for Model 4, and 159 s/epoch to 103.6 s/epoch for Model
5. This indicates that the benchmark-function have a much larger effect on models with
full precision than on models using mixed precision, at least for the hardware used in this
study. However, this does not explain why the inference time was longer for Model 5, as the
benchmark-function was not enabled during inference. The use of mixed precision is relatively
new, as support for half-precision on commercial GPUs was not a given until recently. Even
though the development is fast, not all software is optimized for half-precision, and it might
explain the surprising result.

5.2 Evaluation of the PLS-Net

As we can see from Table 4.2.1, the PLS-Net only use ∼0.25 million parameters, to the U-Nets
∼6.6 million parameters. Because of the large reduction in parameters and computations, we
expect the PLS-Net to have a lower memory footprint and to be faster. As the results shows,
the PLS-Nets memory footprint is reduced by more than 30% during training compared to the
U-Net. The memory use during inference is also reduced for the PLS-Net, and the inference
time is shorter, as expected. Table 4.2.1 does however show that the PLS-Net is slower than
the U-Net during training.

In the implementation of the DRDB-block, the block was implemented to be memory efficient
by recomputing intermediate activations instead of storing them. This came at the cost of
lower training speed, which may explain the unexpected result. However, Table 4.2.2 shows
that while the memory use is reduced by 45% when using a memory efficient DRDB-block,
the extra time used per epoch is relatively small, and does not explain by itself why the
PLS-Net is so much slower during training. According to the developers at PyTorch, using
so called grouped convolutions might not always trigger the 16-bit floating point path, and
thus might not use TensorCores, which is what accelerates the mixed precision models. The
DS-convolutions in the PLS-Net are implemented with such grouped convolutions, while the
U-Net is not. This may explain why one epoch takes longer for the PLS-Net. Even though
time per epoch is longer for the PLS-Net, the total training time for the model is 7% faster
than the U-Net, as it uses fewer epochs to reach the minimum.

The large reduction in memory footprint during training allows PLS-Net to make use of larger
input volumes at no batch size’s expanse. Leveraging input volumes with a higher resolution
provides refined and more detailed segmentation results, lessening the staircase effect around
objects’ edges. As a result, the PLS-Net architecture is well suited for applications requiring
fine details such as the segmentation of pulmonary lobes.

28



5.3 Lobe Segmentation Study

5.3 Lobe Segmentation Study

As could be predicted, the segmentation models struggle more on the right lung than on
the left one since there is one more lobe to take into account (cf. Table 4.3.1). The fissures
separating the different lobes are relatively small and often incomplete, or at least inconsistent
with accessory bits. Handling lobes segmentation in the right lung is thus more complex for
the network. From Lee et al., incomplete fissures have been reported in 70% of their data set
with a 9% occurrence ratio for accessory fissures, suggesting that a network would have a hard
time relying on relevant information that is often of poor quality. From those observations,
the segmentation results for the right middle lobe are understandably worse as it is defined by
two fissures as opposed to any other lobe.

From Table 4.3.1, we can see that the results from this study do not reach the results of Lee et
al., even though the same network architecture was used for both experiments. The inequality
is likely due to the difference in the data used to train the network. While Lee et al. used 210
chest CT scans for their experiments, the experiments done for this thesis only had 71 CT
scans available to use for the lobe segmentation task. This does not seem to be enough data
for the model to generalize properly for this network. The quality of the ground truths used
as target during training is also very important for the result, as the model only can be as
good as these targets. While Lee et al. used ground truths that were checked and corrected
by experienced radiologists, only 51 one of the targets used for this thesis was proper ground
truths. The remaining 20 targets were obtained by using an existing lobe segmentation model,
without being properly checked or corrected. As mentioned in 3.1, a consequence of this was
that the models were trained on at least one incomplete target, which may have caused the
model to underperform.

The overall Dice score of each fold in Table 4.3.1 shows that the results vary from 91.4% to
94.0%. These large variations also imply that the model does not generalize properly because
of the limited data set used for training. Quantity is however not the only problem. The data
used for training a model should also cover a large variety of different cases for the model to
generalize. In the experiments done by Lee et al., the data set was obtained from patients with
different lung diseases, including lungs with abnormalities like fibrosis, nodules, emphysema,
ground-glass opacity and reticular opacity. The data set used in this thesis did not cover the
same span of abnormalities, which may help explain the poor generalization.

Figure 4.3.4 shows that applying the lung mask over the predicted lobes successfully removes
the falsely predicted voxels outside of the lungs. In Table 4.3.2, we can see that the overall
Dice score improves by 0.3%, to 92.9%. This might not be a large improvement, but as long
as the lung mask is available, it is a very simple and computationally inexpensive operation.
The result is still far from that of Lee et al., which implies that a lot of the inaccuracy is due
to the other types of errors found during the visual inspection, such as the "holes" in the lobes,
inaccurate detection of the fissures, and fragments of one lobe inside another lobe.
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5.4 Lobe Segmentation on Lungs with Abnormalities

Figure 4.4.1 shows that applying the lobe segmentation model to a CT volume from another
data set, gives equally good results as for a CT volume from the data set used to train the
model. This shows that the model generalizes well across data sets, as long as there are no
significant abnormalities, which the model is not properly trained for. When the model is
applied to a volume where one of the lungs contains abnormalities however, the result is worse,
as seen in Figure 4.4.2. The data set used to train the model does not include lungs with
abnormalities like this, and it is thus not very surprising that the models’ accuracy is reduced
in such cases.

From figure 4.4.2 we can see how abnormalities in one part of the lung also affects slices where
the abnormalities are not present. This shows how the model use 3D global information when
making the predictions, and that irregularities in one place propagate to other parts of the
lungs. Abnormalities in the right lung will however not affect the left lung, as the model does
not use any information from the right lung to make predictions in the left lung.

5.5 Limitations of Study and Future Work

A shortcoming of this thesis is the lack of proper ground truth for all CT volumes in the data
set. While generating annotations by using existing models gave us more data to work with,
learning from imperfect annotations limits the potential of training using supervised learning.
Achieving proper ground truths is desirable, but is also very time consuming and requires the
help of expert radiologists.

Collecting more data would also be of great use when trying to improve the model performance.
For the models to generalize properly, a sufficient amount of data that covers many different
cases is a requirement. As lung- and lobe segmentation tasks play an important role in
computer-aided diagnostic and treatment planning of lung diseases, it is important that the
models perform well on diseased lungs. These lungs often contain abnormalities, which we
showed that the model did not perform well on, as it was not trained for it. Adding more
data with different abnormalities would thus be an important step in making these models
capable of segmenting diseased lungs and lobes.

There is a lot of potential in using post-processing to improve the segmentation masks of the
lobes. In this thesis, only a simple multiplication of the lung mask was used to improve the
results. Unwanted fragments inside the lobes could be removed by mapping groups of voxels
with one label surrounded by another label, to that neighbouring label. By using a lot of the
same techniques, holes in the lobes could also be filled with the value of the neighbouring
labels.
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In this thesis, the 3D U-Net introduced by Çiçek et al. [11] and the PLS-Net introduced by
Lee et al. [12], were trained and evaluated for automatic lung segmentation, with different
combinations of deep learning frameworks, training precision, batch sizes and input resolutions.
The PLS-Net was also trained and evaluated for automatic lobe segmentation, followed by
a simple post processing step. The different models were evaluated with respect to training,
inference and accuracy performance.

The test results for the lung segmentation showed that the models trained with batch size 2
outperformed the models trained on batch size 1 with respect to accuracy. For the models
trained with batch size 2, the choice of framework and training precision did not seem to affect
the models accuracy at all. PyTorch gave better training performance, but was slower during
inference. However, the inference time was in the order of milliseconds, and the difference will
not have any practical impact for the user. Using mixed precision over full precision reduced
the memory footprint during training and inference, without affecting the accuracy. Training
and inference time were longer for mixed precision than full precision, which was unexpected,
and may be due to an implementation error, a bug in the framework or sub-optimal use of the
hardware.

Comparison of the two networks showed that the PLS-Net gave a reduction of more than
30% in memory footprint compared to the U-Net, for the same batch size and training data.
This reduction makes it possible to feed larger input volumes, or use larger batch sizes for
the PLS-Net. The PLS-Net was faster during inference, but slower during training per epoch,
which according to the developers at PyTorch, might be due to a bug with the depthwise
separable convolution used in the PLS-Net.

Results from the lobe segmentation study showed that the Dice scores obtained in this study
did not reach the scores of Lee et al., as they used almost three times as much data, with
larger variability across the data set and proper ground truths checked by expert radiologists.
Adding lung masks to the predicted lobe segmentation masks for post-processing successfully
removed the false positives outside of the lungs, and improved the overall Dice score by 0.3%.
The new scores did still not reach the result obtained by Lee et al., as the post-processing did
not handle holes (false negatives), fragments and inaccurate fissure detection in the segmented
mask.

Applying the lobe segmentation model to CT volumes from a different data set than the
one used for training, showed that the model did well on volumes without any significant
abnormalities, which means that the model generalizes well across data sets. On volumes
containing abnormalities, the model did not perform well. This was not surprising, as the
data set used to train the model did not include lungs with severe abnormalities. Overall,
the results show that the lung- and lobe segmentation task really is a data diversity problem,
more than a problem with the method.
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